
Authorization Guide
/ ForgeRock Access Management 5.5

Latest update: 5.5.2

ForgeRock AS
201 Mission St, Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2020 ForgeRock AS.

Abstract

Guide to working with authorization. ForgeRock® Access Management provides
authentication, authorization, entitlement and federation software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
https://opensource.org/licenses/OFL-1.1

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... iv
1. Introducing Authorization .. 1

1.1. Resource Types, Policy Sets, and Policies ... 1
1.2. Policy Decisions .. 4
1.3. Example Authorization ... 5
1.4. Reaching Policy Decisions .. 6

2. Implementing Authorization .. 7
2.1. Implementing Authorization Using the AM Console .. 7
2.2. Implementing Authorization Using the REST API .. 29

3. Implementing Transactional Authorization ... 93
3.1. Introducing Transactional Authorization ... 93
3.2. Using Transactional Authorization .. 98

4. Customizing Authorization ... 110
4.1. Customizing Policy Evaluation With a Plug-In ... 110
4.2. Scripting a Policy Condition ... 117

5. Reference .. 126
5.1. Global Service Properties ... 126
5.2. Authorization API Functionality .. 132

A. About the REST API .. 136
A.1. Introducing REST ... 136
A.2. About ForgeRock Common REST ... 136
A.3. REST API Versioning .. 153
A.4. Specifying Realms in REST API Calls ... 158
A.5. Authentication and Logout ... 159
A.6. Using the Session Token After Authentication .. 166
A.7. Server Information ... 167
A.8. Token Encoding .. 168
A.9. Logging .. 168
A.10. Reference ... 170

B. About Scripting ... 173
B.1. The Scripting Environment ... 173
B.2. Global Scripting API Functionality .. 176
B.3. Managing Scripts ... 178
B.4. Scripting .. 190

C. Getting Support .. 194
C.1. Accessing Documentation Online .. 194
C.2. Using the ForgeRock.org Site .. 194
C.3. Getting Support and Contacting ForgeRock ... 195

Glossary ... 196

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iv

Preface
This guide covers concepts, implementation procedures, and customization techniques for working
with the authorization features of ForgeRock Access Management.

This guide is written for anyone using Access Management to manage authorization.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing Authorization
Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing Authorization
This chapter provides an overview of authorization.

AM provides access management, which consists of:

• Authentication: determining who is trying to access a resource

• Authorization: determining whether to grant or deny access to the resource

Whether access is granted depends on what the policies about access are, who is trying to gain
access, and perhaps some other conditions, such as whether the access itself needs to happen over a
secure channel or what time of day it is.

1.1. Resource Types, Policy Sets, and Policies
Define authorization policies to allow AM to determine whether to grant a subject access to a
resource.

A policy defines the following:

resources

The resource definitions constrain which resources, such as web pages or access to the boarding
area, the policy applies to.

actions

The actions are verbs that describe what the policy allows users to do to the resources, such as
read a web page, submit a web form, or access the boarding area.

subject conditions

The subject conditions constrain who the policy applies to, such as all authenticated users, only
administrators, or only passengers with valid tickets for planes leaving soon.

environment conditions

The environment conditions set the circumstances under which the policy applies, such as only
during work hours, only when accessing from a specific IP address, or only when the flight is
scheduled to leave within the next four hours.

Introducing Authorization
Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 2

response attributes

The response attributes define information that AM attaches to a response following a policy
decision, such as a name, email address, or frequent flyer status.

When queried about whether to let a user through to a protected resource, AM decides whether to
authorize access or not based on applicable policies as described below in "Policy Decisions". AM
communicates its decision to the application that is using AM for access management. In the common
case, this is a web or Java agent installed on the server where the application runs. The agent then
enforces the authorization decision from AM.

Relationship between Realms, Policies, and Policy Sets

To help with the creation of policies, AM uses resource types and policy sets.

Resource types

Resource types define a template for the resources that policies apply to, and the actions that
could be performed on those resources.

For example, the URL resource type that is included by default in AM acts as a template for
protecting web pages or applications. It contains resource patterns, such as *://*:*/*?*, which
can be made more specific when used in the policy. The actions that the resource supports are
also defined, as follows:

• GET

• POST

• PUT

• HEAD

Introducing Authorization
Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 3

• PATCH

• DELETE

• OPTIONS

AM also includes a resource type to protect REST endpoints, with patterns including https://*:*/*
?* and the CRUDPAQ actions:

• CREATE

• READ

• UPDATE

• DELETE

• PATCH

• ACTION

• QUERY

Policy Sets

Policy Sets are associated with a set of resource types, and contain one or more policies based
upon the template it provides.

For example, an application for Example.com's HR service might contain resource types that
constrain all policies to apply to URL resource types under http*://example.com/hr* and http*://example
.com/hr*?*, and only the HTTP GET and POST actions.

Configure policy sets, policies, and resource types in the AM console under Realms > Realm Name >
Authorization.

Introducing Authorization
Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 4

Policy Sets in the AM Console

For more information on viewing, creating, and editing policies and resource types, see "Configuring
Resource Types, Policy Sets, and Policies".

1.2. Policy Decisions
AM relies on policies to reach authorization decisions, such as whether to grant or to deny access
to a resource. AM acts as the policy decision point (PDP), whereas AM web and Java agents act as
policy enforcement points (PEP). In other words, an agent or other PEP takes responsibility only for
enforcing a policy decision rendered by AM. When you configured applications and their policies in
AM, you used AM as a policy administration point (PAP).

Concretely speaking, when a PEP requests a policy decision from AM it specifies the target
resource(s), the policy set (default: iPlanetAMWebAgentService), and information about the subject and
the environment. AM as the PDP retrieves policies within the specified policy set that apply to the
target resource(s). AM then evaluates those policies to make a decision based on the conditions
matching those of the subject and environment. When multiple policies apply for a particular
resource, the default logic for combining decisions is that the first evaluation resulting in a decision

Introducing Authorization
Example Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 5

to deny access takes precedence over all other evaluations. AM only allows access if all applicable
policies evaluate to a decision to allow access.

AM communicates the policy decision to the PEP. The concrete decision, applying policy for a subject
under the specified conditions, is called an entitlement.

The entitlement indicates the resource(s) it applies to, the actions permitted and denied for each
resource, and optionally response attributes and advice.

When AM denies a request due to a failed condition, AM can send advice to the PEP, and the PEP can
then take remedial action. For instance, suppose a user comes to a web site having authenticated
with an email address and password, which is configured as authentication level 0. Had the user
authenticated using a one-time password, the user would have had authentication level 1 in their
session. Yet, because they have authentication level 0, they currently cannot access the desired page,
as the policy governing access requires authentication level 1. AM sends advice, prompting the PEP
to have the user reauthenticate using a one-time password module, gaining authentication level 1,
and thus having AM grant access to the protected page.

1.3. Example Authorization
Consider the case where AM protects a user profile web page. An AM web agent installed in the web
server intercepts client requests to enforce policy. The policy says that only authenticated users can
access the page to view and to update their profiles.

When a user browses to the profile page, the AM agent intercepts the request. The web agent notices
that the request is to access a protected resource, but the request is coming from a user who has
not yet logged in and consequently has no authorization to visit the page. The web agent therefore
redirects the user's browser to AM to authenticate.

AM receives the redirected user, serving a login page that collects the user's email and password.
With the email and password credentials, AM authenticates the user, and creates a session for the
user. AM then redirects the user to the web agent, which gets the policy decision from AM for the
page to access, and grants access to the page.

While the user has a valid session with AM, the user can go away to another page in the browser,
come back to the profile page, and gain access without having to enter their email and password
again.

Notice how AM and the web agent handle the access in the example. The web site developer can
offer a profile page, but the web site developer never has to manage login, or handle who can access
a page. As AM administrator, you can change authentication and authorization independently of
updates to the web site. You might need to agree with web site developers on how AM identifies
users so web developers can identify users by their own names when they log in. By using AM
and web or Java agents for authentication and authorization, your organization no longer needs to
update web applications when you want to add external access to your Intranet for roaming users,
open some of your sites to partners, only let managers access certain pages of your HR web site, or

Introducing Authorization
Reaching Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 6

allow users already logged in to their desktops to visit protected sites without having to type their
credentials again.

1.4. Reaching Policy Decisions
AM has to match policies to resources to take policy decisions. For a policy to match, the resource
has to match one of the resource patterns defined in the policy. The user making the request has to
match a subject. Furthermore, at least one condition for each condition type has to be satisfied.

If more than one policy matches, AM has to reconcile differences. When multiple policies match, the
order in which AM uses them to make a policy decision is not deterministic. However, a deny decision
overrides an allow decision, and so by default once AM reaches a deny decision it stops checking
further policies. If you want AM to continue checking despite the deny, navigate to Configure >
Global Services, select Policy Configuration, and then enable Continue Evaluation on Deny Decision.

Implementing Authorization
Implementing Authorization Using the AM Console

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 7

Chapter 2

Implementing Authorization
This chapter covers how to implement authorization using the AM console and the REST API.

2.1. Implementing Authorization Using the AM Console
This section covers the following topics:

• "Configuring Resource Types, Policy Sets, and Policies"

• "Importing and Exporting Policies"

• "Delegating Policy Management"

2.1.1. Configuring Resource Types, Policy Sets, and Policies
You can configure resource types, policy sets, and policies by using the AM console, or by using the
REST interface.

This section explains how to use the AM console to configure resource types, policy sets, and policies
to protect resources.

For information on managing resource types, policy sets, and policies by using the REST API, see
"Managing Resource Types", "Managing Policy Sets", and "Managing Policies".

Tip

You can also configure policy sets and policies by using the ssoadm command. For more information see
ssoadm(1) in the Reference.

2.1.1.1. Configuring Resource Types
This section describes the process of using the AM console for creating resource types, which define
a template for the resources that policies apply to, and the actions that could be performed on those
resources.

To Configure a Resource Type by Using the AM Console

1. In the AM console, select Realms > Realm Name > Authorization > Resource Types.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 8

a. To create a new resource type, select New Resource Type.

b. To modify an existing resource type, select the resource type name.

c. To delete an existing resource type, in the row containing the resource type select the Delete
button.

You can only delete resource types that are not being used by policy sets or policies. Trying to
delete a resource type that is in use returns an HTTP 409 Conflict status code.

Remove the resource type from any associated policy sets or policies to be able to delete it.

2. Provide a name for the resource type, and optionally a description.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters
listed below causes AM to return a 400 Bad Request error. The special characters are: double
quotes ("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\),
forward slash (/), semicolon (;), and null (\u0000).

3. To define resource patterns that policies using this resource type can expand upon, follow the
steps below:

a. In the Add a new pattern box, enter a pattern with optional wildcards that the policies will
use as a template.

For information on specifying patterns for matching resources, see "Specifying Resource
Patterns with Wildcards".

b. Select the Add Pattern button to confirm the pattern.

Tip

To remove a pattern, select the Delete icon.

4. To define the actions that policies using this resource type can allow or deny, follow the steps
below:

a. In the Add a new action box, enter an action related to the types of resources being
described, and then select Add Action.

b. Select either allow or deny as the default state for the action.

To remove an action, select the Delete icon.

5. Continue adding the patterns and actions that your resource type requires.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 9

Configuring Resource Types in the AM Console

6. Select Create Resource Type to save a new resource type or Save Changes to save modifications
to an existing resource type.

2.1.1.2. Configuring Policy Sets

This section describes how to use the AM console to create policy sets, which are used as templates
for policies protecting Web sites, Web applications, or other resources.

To Configure a Policy Set Using the AM Console

1. In the AM console, select Realms > Realm Name > Authorization > Policy Sets.

a. To create a new policy set, select New Policy Set.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 10

b. To modify an existing policy set, in the row containing the name of the policy set select the
Edit icon, and then select the Settings tab.

2. Enter an ID for the policy set. This is a required parameter.

3. Enter a name for the policy set. The name is optional and is for display purposes only.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters
listed below causes AM to return a 400 Bad Request error. The special characters are: double
quotes ("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\),
forward slash (/), semicolon (;), and null (\u0000).

4. In the Resource Types drop-down menu, select one or more resource types that policies in this
policy set will use.

Tip

To remove a resource type from the policy set, select the label, and then press Delete or Backspace.

5. Select Create to save a new policy set or Save Changes to save modifications to an existing policy
set.

Configuring Policy Sets in the AM Console

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 11

To make use of a policy set and any policies it contains, you must configure a web or Java agent to
use the policy set for policy decisions. For details see "To Specify the Realm and Application for
Policy Decisions" in the Setup and Maintenance Guide.

Note

Once a policy set is created, users can only change the displayName of an existing policy set, not the ID, without
deleting the associated policies.

2.1.1.3. Configuring Policies

This section describes the process of using the AM console to configure policies, which are used to
protect a web site, web application, or other resource.

To Configure a Policy Using the AM Console

1. In the AM console, select Realms > Realm Name > Authorization > Policy Sets, and then select
the name of the policy set in which to configure a policy:

2. To create a new policy, select Add a Policy.

3. In the Name field, enter a descriptive name for the policy.

Note

Do not use special characters within resource type, policy, or policy set names (for example, "my+resource
+type") when using the AM console or REST endpoints. Using the special characters listed below causes
AM to return a 400 Bad Request error. The special characters are: double quotes ("), plus sign (+), comma
(,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/), semicolon (;), and null
(\u0000).

4. To define resources that the policy applies to, follow the steps below:

a. Select a resource type from the Resource Type drop-down list. The set of resource patterns
within the selected resource type will populate the Resources drop-down list. For information
on configuring resource types, see "Configuring Resource Types".

b. Select a resource pattern from the Resources drop-down list.

c. (Optional) Optionally, replace the asterisks with values to define the resources that the policy
applies to.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 12

Editing Resource Patterns Policies

For information on specifying patterns for matching resources, see "Specifying Resource
Patterns with Wildcards".

d. Select Add to save the resource.

The AM console displays a page for your new policy. The Tab pages let you modify the policy's
properties.

Tip

To remove a resource, select the Delete icon.

5. Repeat these steps to add all the resources to which your policy applies, and then select Create.

6. To configure the policy's actions, select the Actions tab and perform the following:

a. Select an action that the policy applies to by selecting them from the Add an Action drop-
down list.

b. Select whether to allow or deny the action on the resources specified earlier.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 13

Allowing or Denying the Action for the Resource

c. Repeat these steps to add all the appropriate actions, and then select Save Changes.

7. Define conditions in the AM console by combining logical operators with blocks of configured
parameters to create a rule set that the policy uses to filter requests for resources. Use drag and
drop to nest logical operators at multiple levels to create complex rule sets.

Valid drop-points in which to drop a block are displayed with a grey horizontal bar.

Valid Drop Point

a. To define the subjects that the policy applies to, complete the following steps on the Subjects
tab:

i. Select Add a Subject Condition, choose the type from the drop-down menu, specify any
required subject values, select the checkmark to the right when done, and then drag the
block into a valid drop point in the rule set above.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 14

Nesting subject conditions

The available subject condition types are:

Authenticated Users

Any user that has successfully authenticated with AM.

Users & Groups

A user or group as defined in the Subjects pages of the realm the policy is created in.

Select one or more users or groups from the User Subjects or Group Subjects drop-
down lists, which display the subjects and groups available within the realm.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 15

To remove an entry, select the value, and then press Delete (Windows/GNU/Linux) or
Backspace (Mac OS X).

OpenID Connect/Jwt Claim

Validate a claim within a JSON Web Token (JWT).

Type the name of the claim to validate in the Claim Name field, for example sub, and
the required value in the Claim Value field, and then select the checkmark.

Repeat the step to enter additional claims.

The claim(s) will be part of the JWT payload together with the JWT header and
signature. The JWT is sent in the authorization header of the bearer token.

This condition type only supports string equality comparisons, and is case-sensitive.

Never Match

Never match any subject. Has the effect of disabling the policy, as it will never match
a subject.

If you do not set a subject condition, "Never Match" is the default. In other words, you
must set a subject condition for the policy to apply.

To match regardless of the subject, configure a subject condition that is "Never
Match" inside a logical Not block.

ii. To add a logical operator, select the Add a Logical Operator button, choose between All
 Of, Not, and Any Of from the drop-down menu, and then drag the block into a valid drop
point in the rule set above.

iii. Continue combining logical operators and subject conditions. To edit an item, select the
Edit button. To remove an item, select the Delete button. When complete, select Save
Changes.

b. To configure environment conditions in the policy, complete the following steps on the
Environments tab:

i. To add an environment condition, select the Environment Condition button, choose the
type from the drop-down menu, specify any required parameters, and then drag the block
into a drop-point in a logical block above.

The available environment condition types are:

Active Session Time

Make the policy test how long the user's stateful or stateless session has been active,
as specified in Max Session Time. To terminate the session if it has been active for

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 16

longer than the specified time, set Terminate Sessions to True. The user will need to
reauthenticate.

Authentication by Module Chain

Make the policy test the service that was used to authenticate the user.

Authentication by Module Instance

Make the policy test the authentication module used to authenticate, specified
in Authentication Scheme. Specify a timeout for application authentication in
Application Idle Timeout Scheme and the name of the application in Application
Name.

Authentication Level (greater than or equal to)

Make the policy test the minimum acceptable authentication level specified in
Authentication Level.

Authentication Level (less than or equal to)

Make the policy test the maximum acceptable authentication level specified in
Authentication Level.

Authentication to a Realm

Make the policy test the realm to which the user authenticated.

Current Session Properties

Make the policy test property values set in the user's stateful or stateless session.

Set Ignore Value Case to True to make the test case-insensitive.

Specify one or more pairs of session properties and values using the format
property:value. For example, specify clientType:genericHTML to test whether the value of
the clientType property is equal togenericHTML.

Identity Membership

Make the policy apply if the UUID of the invocator is a member of at least one of the
AMIdentity objects specified in AM Identity Name.

Often used to filter requests on the identity of a Web Service Client (WSC).

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 17

Note

Java Agents 5 and Web Agents 5 do not support the Identity Membership environment
condition. Instead, use the equivalent Users & Groups subject condition.

IPv4 Address/DNS Name

Make the policy test the IP version 4 address that the request originated from.

The IP address is taken from the requestIp value of policy decision requests. If this is
not provided, the IP address stored in the SSO token is used instead.

Specify a range of addresses to test against by entering four sets of up to three digits,
separated by full stops (.) in both Start IP and End IP.

If only one of these values is provided, it is used as a single IP address to match.

Optionally, specify a DNS name in DNS Name to filter requests to that domain.

IPv6 Address/DNS Name

Make the policy test the IP version 6 address that the request originated from.

The IP address is taken from the requestIp value of policy decision requests. If this is
not provided, the IP address stored in the SSO token is used instead.

Specify a range of addresses to test against by entering eight sets of four hexadecimal
characters, separated by a colon (:) in both Start IP and End IP.

If only one of these values is provided, it is used as a single IP address to match.

Optionally, specify a DNS name in DNS Name to filter requests to those coming from
the specified domain.

Use an asterisk (*) in the DNS name to match multiple subdomains. For example *
.example.com applies to requests coming from www.example.com, secure.example.com, or any
other subdomain of example.com.

LDAP Filter Condition

Make the policy test whether the user's entry can be found using the LDAP search
filter you specify in the directory configured for the policy service, which by default
is the identity repository. Navigate to Configure > Global Services, and then select
Policy Configuration to see the global LDAP configuration.

Alternatively, to configure these settings for a realm, navigate to Realms > Realm
Name > Services, and then select Policy Configuration.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 18

OAuth2 Scope

Make the policy test whether an authorization request includes all of the specified
OAuth 2.0 scopes.

Scope names must follow OAuth 2.0 scope syntax described in RFC 6749, Access
Token Scope . As described in that section, separate multiple scope strings with
spaces, such as openid profile.

The scope strings match regardless of order in which they occur, so openid profile is
equivalent to profile openid.

The condition is also met when additional scope strings are provided beyond those
required to match the specified list. For example, if the condition specifies openid
 profile, then openid profile email also matches.

Resource/Environment/IP Address

Make the policy apply to a complex condition such as whether the user is making a
request from the localhost and has also authenticated with the LDAP authentication
module.

Entries must take the form of an IF...ELSE statement. The IF statement can specify
either IP to match the user's IP address, or dnsName to match their DNS name.

If the IF statement is true, the THEN statement must also be true for the condition to be
fulfilled. If not, relevant advice is returned in the policy evaluation request.

The available parameters for the THEN statement are as follows:

module

The module that was used to authenticate the user, for example DataStore.

service

The service that was used to authenticate the user.

authlevel

The minimum required authentication level.

role

The role of the authenticated user.

user

The name of the authenticated user.

https://tools.ietf.org/html/rfc6749#section-3.3
https://tools.ietf.org/html/rfc6749#section-3.3

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 19

redirectURL

The URL the user was redirected from.

realm

The realm that was used to authenticate the user.

The IP address can be IPv4, IPv6, or a hybrid of the two.

Example: IF IP=[127.0.0.1] THEN role=admins.

Script

Make the policy depend on the outcome of a JavaScript or Groovy script executed at
the time of the policy evaluation.

For information on scripting policy conditions, see "Scripting a Policy Condition".

Time (day, date, time, and timezone)

Make the policy test when the policy is evaluated.

The values for day, date and time must be set in pairs that comprise a start and an
end.

Create conditions that apply between a start and end date and time.

Transaction

Make the policy depend on the successful completion of a transaction performed by
the user.

Configure a transaction with an authentication strategy that asks the user to
reauthenticate before being allowed access to the resource.

Transactions support the following authentication strategies:

• Authenticate to Chain: Specify the name of an authentication chain the user must
successfully complete to access the protected resource.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 20

• Authenticate to Realm: Specify the full path of a realm in which the user must
successfully authenticate to access the protected resource.

For example, /sales/internal.

• Authenticate to Tree: Specify the name of an authentication tree the user must
successfully traverse to access the protected resource.

• Authenticate to Module: Specify the name of an authentication module the user must
successfully authenticate against to access the protected resource.

• Auth Level: Specify the minimum authentication level the user must achieve to
access the protected resource.

Note

If you specify a minimum, you must ensure there are methods available to users to reach
that level. If none are found, the policy will return a 400 Bad request error when attempting
to complete the transaction.

For more information on transactional authorization, see "Implementing
Transactional Authorization".

ii. To add a logical operator, select the Logical button, choose between All Of, Not, and Any Of
from the drop-down menu, and then drag the block into a valid drop point in the rule set
above.

iii. Continue combining logical operators and environment conditions, and when finished,
select Save Changes.

8. (Optional) Add response attributes, retrieved from the user entry in the identity repository,
into the headers of the request at policy decision time. The web or Java agent for the protected
resources/applications or the protected resources/applications themselves retrieve the policy
response attributes to customize or personalize the application. Policy response attributes come
in two formats: subject attributes and static attributes.

To configure response attributes in the policy, complete the following steps on the Response
attributes tab:

a. To add subject attributes, select them from the Subject attributes drop-down list

To remove an entry, select the value, and then press Delete (Windows/GNU/Linux) or
Backspace (Mac OS X)

b. To add a static attribute, specify the key-value pair for each static attribute. Enter the
Property Name and its corresponding Property Value in the fields, and then select the Add (+)
icon.

Implementing Authorization
Configuring Resource Types, Policy Sets, and Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 21

Note

To edit an entry, select the Edit icon in the row containing the attribute, or select the row itself. To
remove an entry, select the Delete icon in the row containing the attribute.

c. Continue adding subject and static attributes, and when finished, select Save Changes.

2.1.1.4. Specifying Resource Patterns with Wildcards

Resource patterns can specify an individual URL or resource name to protect. Alternatively, a
resource pattern can match URLs or resource names by using wildcards.

• The wildcards you can use are * and -*-.

These wildcards can be used throughout resource patterns to match URLs or resource names. For a
resource pattern used to match URLs, wildcards can be employed to match the scheme, host, port,
path, and query string of a resource.

• When used within the path segment of a resource, the wildcard * matches multiple path
segments.

For example, http://www.example.com/* matches http://www.example.com/, http://www.example.com/index
.html, and also http://www.example.com/company/images/logo.png.

• When used within the path segment of a resource, the wildcard -*- will only match a single path
segment.

For example, http://www.example.com/-*- matches http://www.example.com/index.html but does not
match http://www.example.com/company/resource.html or http://www.example.com/company/images/logo.png.

• Wildcards do not match ?. You must explicitly add patterns to match URLs with query strings.

• When matching URLs sent from a web policy or J2EE agent, an asterisk (*) used at the end of a
pattern after a ? character matches one or more characters, not zero or more characters.

For example, http://www.example.com/*?* matches http://www.example.com/users?_action=create, but not
http://www.example.com/users?.

To match everything under http://www.example.com/ specify three patterns, one for http://www.example
.com/*, one for http://www.example.com/*?, and one for http://www.example.com/*?*.

• When matching resources by using the policies?_action=evaluate REST endpoint, an asterisk (*)
used at the end of a pattern after a ? character matches zero or more characters.

For example, http://www.example.com/*?* matches http://www.example.com/users?_action=create, as well
as http://www.example.com/users?.

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 22

To match everything under http://www.example.com/ specify two patterns, one for http://www.example
.com/*, one for http://www.example.com/*?*.

• When defining patterns to match URLs with query strings, AM sorts the query string field-value
pairs alphabetically by field name when normalizing URLs before checking whether a policy
matches. Therefore the query string ?subject=SPBnfm+t5PlP+ISyQhVlplE22A8=&action=get is equivalent to
the query string ?action=get&subject=SPBnfm+t5PlP+ISyQhVlplE22A8=.

• Duplicate slashes (/) are not considered part of the resource name to match. A trailing slash is
considered by AM as part of the resource name.

For example, http://www.example.com//path/, and http://www.example.com/path// are treated in the same
way.

http://www.example.com/path, and http://www.example.com/path/ are considered two distinct resources.

• Wildcards can be used to match protocols, host names, and port numbers.

For example, *://*:*/* matches http://www.example.com:80/index.html, https://www.example.com:443/index
.html, and http://www.example.net:8080/index.html.

When a port number is not explicitly specified, then the default port number is implied. Therefore
http://www.example.com/* is the same as http://www.example.com:80/*, and https://www.example.com/* is the
same as https://www.example.com:443/*.

• Wildcards cannot be escaped.

• Do not mix * and -*- in the same pattern.

• By default, comparisons are not case sensitive. The delimiter, wildcards and case sensitivity are
configurable. To see examples of other configurations, in the AM console, navigate to Configure >
Global Services, select Policy Configuration, and scroll to Resource Comparator.

2.1.2. Importing and Exporting Policies
You can import and export policies to and from files.

You can use these files to backup policies, transfer policies between AM instances, or store policy
configuration in a version control system such as Git or Subversion.

AM supports exporting policies in JSON and eXtensible Access Control Markup Language (XACML)
Version 3.0 format. The features supported by each format are summarized in the table below:

Comparison of Policy Import/Export Formats

Supported?Feature
JSON XACML

Can be imported/exported from within the AM console? No Yes

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 23

Supported?Feature
JSON XACML

Can be imported/exported on the command line, using the ssoadm
command?

Yes Yes

Exports policies? Yes Yes
Exports policy sets? Yes Partial a

Exports resource types? Yes Partial a

Creates an exact copy of the original policy sets, resource types, and
policies upon import?

Yes Partial b

aOnly the details of policy sets and resource types that are actually used within a policy is exported to the XACML format. The
full definition is not exported.
bPolicy sets and resource types will be generated from the details in the XML, but may not match the definitions of the
originals, for example the names are auto-generated.

Note

AM can only import XACML 3.0 files that were either created by an AM instance, or that have had minor
manual modifications, due to the reuse of some XACML 3.0 parameters for non-standard information.

You can import and export policies by using the policy editor in the AM console, using the REST API,
or with the ssoadm command.

• "To Export Policies in XACML Format (AM Console)"

• "To Import Policies in XACML Format (AM Console)"

• "To Export Policies in JSON Format (Command Line)"

• "To Import Policies in JSON Format (Command Line)"

• "To Export Policies in XACML Format (Command Line)"

• "To Import Policies in XACML Format (Command Line)"

For information on importing and exporting policies in XACML format by using the REST API, see
"Importing and Exporting XACML 3.0".

To Export Policies in XACML Format (AM Console)

• In the AM console, select Realms > Realm Name > Authorization > Policy Sets, and then select
Export Policy Sets.

All policy sets, and the policies within will be exported in XACML format.

To Import Policies in XACML Format (AM Console)

1. In the AM console, select Realms > Realm Name > Authorization > Policy Sets, and then select
Import Policy Sets.

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 24

2. Browse to the XACML format file, select it, and then select Open.

Any policy sets, and the policies within will be imported from the selected XACML format file.

Note

Policy sets and resource types will be generated from the details in the XACML format file, but may not
match the definitions of the originals, for example the names are auto-generated.

To Export Policies in JSON Format (Command Line)

• Use the ssoadm policy-export command:
$ ssoadm \
 policy-export \
 --realm "/" \
 --servername "http://openam.example.com:8080/openam" \
 --jsonfile "myPolicies.json" \
 --adminid amadmin \
 --password-file /tmp/pwd.txt

{
 "RESOURCE_TYPE" : 1,
 "POLICY" : 1,
 "APPLICATION" : 1
}

If exporting from a subrealm, include the top level realm ("/") in the --realm value. For example --
realm "/myRealm".

For more information on the syntax of this command, see "ssoadm policy-export" in the
Reference.

To Import Policies in JSON Format (Command Line)

• Use the ssoadm policy-import command:

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 25

$ ssoadm \
 policy-import \
 --realm "/myRealm" \
 --servername "http://openam.example.com:8080/openam" \
 --jsonfile "myPolicies.json" \
 --adminid amadmin \
 --password-file /tmp/pwd.txt

{
 "POLICY" : {
 "CREATE_SUCCESS" : {
 "count" : 1
 }
 },
 "RESOURCE_TYPE" : {
 "CREATE_SUCCESS" : {
 "count" : 1
 }
 },
 "APPLICATION" : {
 "CREATE_SUCCESS" : {
 "count" : 1
 }
 }
}

If importing to a subrealm, include the top level realm ("/") in the --realm value. For example --
realm "/myRealm".

For more information on the syntax of this command, see "ssoadm policy-import" in the
Reference.

To Export Policies in XACML Format (Command Line)

• Use the ssoadm list-xacml command:

$ ssoadm \
 list-xacml \
 --realm "/" \
 --adminid amadmin \
 --password-file /tmp/pwd.txt

 <?xml version="1.0" encoding="UTF-8"?>
 <PolicySet
 xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
 PolicyCombiningAlgId="urn...rule-combining-algorithm:deny-overrides"
 Version="2014.11.25.17.41.15.597"
 PolicySetId="/:2014.11.25.17.41.15.597">
 <Target />
 <Policy
 RuleCombiningAlgId="urn...rule-combining-algorithm:deny-overrides"
 Version="2014.11.25.17.40.08.067"
 PolicyId="myPolicy">
 <Description />
 <Target>

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 26

 <AnyOf>
 <AllOf>
 <Match
 MatchId="urn...entitlement:json-subject-match">
 <AttributeValue
 DataType="urn...entitlement.conditions.subject.AuthenticatedUsers">
 {}
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="true"
 DataType="urn...entitlement.conditions.subject.AuthenticatedUsers"
 AttributeId="urn...entitlement:json-subject"
 Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject" />
 </Match>
 </AllOf>
 </AnyOf>
 <AnyOf>
 <AllOf>
 <Match
 MatchId="urn...entitlement:resource-match:application:iPlanetAMWebAgentService">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 http://www.example.com:8000/*?*
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="true"
 DataType="htp://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 Category="urn...attribute-category:resource" />
 </Match>
 </AllOf>
 </AnyOf>
 <AnyOf>
 <AllOf>
 <Match
 MatchId="urn...application-match">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 iPlanetAMWebAgentService
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="false"
 DataType="htp://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn...application-id"
 Category="urn...application-category" />
 </Match>
 </AllOf>
 </AnyOf>
 <AnyOf>
 <AllOf>
 <Match
 MatchId="urn...entitlement:action-match:application:iPlanetAMWebAgentService">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 POST
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="true"
 DataType="htp://www.w3.org/2001/XMLSchema#string"

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 27

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 Category="urn...attribute-category:action" />
 </Match>
 </AllOf>
 <AllOf>
 <Match
 MatchId="urn...entitlement:action-match:application:iPlanetAMWebAgentService">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 GET
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="true"
 DataType="htp://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 Category="urn...attribute-category:action" />
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <VariableDefinition
 VariableId="....entitlement.applicationName">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 iPlanetAMWebAgentService
 </AttributeValue>
 </VariableDefinition>
 <VariableDefinition
 VariableId="...privilege.createdBy">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org
 </AttributeValue>
 </VariableDefinition>
 <VariableDefinition
 VariableId="...privilege.lastModifiedBy">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org
 </AttributeValue>
 </VariableDefinition>
 <VariableDefinition
 VariableId="...privilege.creationDate">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#dateTime">
 2014-11-25T17:40:08.067
 </AttributeValue>
 </VariableDefinition>
 <VariableDefinition
 VariableId="...privilege.lastModifiedDate">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#dateTime">
 2014-11-25T17:40:08.067
 </AttributeValue>
 </VariableDefinition>
 <Rule
 Effect="Permit"
 RuleId="null:permit-rule">
 <Description>Permit Rule</Description>

Implementing Authorization
Importing and Exporting Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 28

 <Target>
 <AnyOf>
 <AllOf>
 <Match
 MatchId="urn...entitlement:action-match:application:iPlanetAMWebAgentService">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 POST
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="true"
 DataType="htp://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 Category="urn...attribute-category:action" />
 </Match>
 </AllOf>
 <AllOf>
 <Match
 MatchId="urn...entitlement:action-match:application:iPlanetAMWebAgentService">
 <AttributeValue
 DataType="htp://www.w3.org/2001/XMLSchema#string">
 GET
 </AttributeValue>
 <AttributeDesignator
 MustBePresent="true"
 DataType="htp://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 Category="urn...attribute-category:action" />
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <Condition>
 <Apply
 FunctionId="urn...entitlement:json-subject-and-condition-satisfied">
 <AttributeValue
 DataType="urn...entitlement.conditions.subject.AuthenticatedUsers"
 privilegeComponent="entitlementSubject">
 {}
 </AttributeValue>
 </Apply>
 </Condition>
 </Rule>
 </Policy>
</PolicySet>

 Policy definitions were returned under realm, /.

For more information on the syntax of this command, see "ssoadm list-xacml" in the Reference.

To Import Policies in XACML Format (Command Line)

• Use the ssoadm create-xacml command:

Implementing Authorization
Delegating Policy Management

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 29

$ ssoadm \
 create-xacml \
 --realm "/" \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --xmlfile policy.xml

 Policies were created under realm, /.

For more information on the syntax of this command, see "ssoadm create-xacml" in the
Reference.

2.1.3. Delegating Policy Management

To delegate policy management and other administrative tasks, use privileges. You set privileges in
the AM console on the Privileges page for a realm.

For more information, see "Delegating Realm Administration Privileges" in the Setup and
Maintenance Guide.

2.2. Implementing Authorization Using the REST API
This section describes how to manage and evaluate policies using AM's REST API.

For general information about the REST API, see "About the REST API".

2.2.1. About the REST Policy Endpoints

AM provides REST APIs both for requesting policy decisions, and also for administering policy
definitions.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

• Under /json/realms/root/resourcetypes, you find a JSON-based API for managing resource types.

• Under /json/realms/root/applications and /json/applicationtypes you find JSON-based APIs for
administering policy sets and reading application types.

• Under /json/realms/root/policies, you find a JSON-based API for policy management and evaluation.

• Under /json/conditiontypes you find a JSON-based API for viewing what types of conditions you can
use when defining policies.

• Under /json/subjecttypes you find a JSON-based API for viewing what types of subjects you can use
when defining policies.

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 30

• Under /json/subjectattributes you find a JSON-based API for viewing subjects' attributes you can use
when defining response attributes in policies.

• Under /json/decisioncombiners you find a JSON-based API for viewing implementations you can use
when defining policies to specify how to combine results when multiple policies apply.

Before making a REST API call to request a policy decision or manage a policy component, make sure
that you have:

• Authenticated successfully to AM as a user with sufficient privileges to make the REST API call

• Obtained the session token returned after successful authentication

When making the REST API call, pass the session token in the HTTP header. For more information
about the AM session token and its use in REST API calls, see "Using the Session Token After
Authentication".

2.2.2. Requesting Policy Decisions

You can request policy decisions from AM by using the REST APIs described in this section. AM
evaluates requests based on the context and the policies configured, and returns decisions that
indicate what actions are allowed or denied, as well as any attributes or advice for the resources
specified.

To request decisions for specific resources, see "Requesting Policy Decisions For Specific Resources".

To request decisions for a resource and all resources beneath it, see "Requesting Policy Decisions For
a Tree of Resources".

2.2.2.1. Requesting Policy Decisions For Specific Resources

This section shows how you can request a policy decision over REST for specific resources.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

To request policy decisions for specific resources, perform an HTTP POST using the evaluation
action to the appropriate path under the URI where AM is deployed, /json{/realms/root}/policies?
_action=evaluate. The payload for the HTTP POST is a JSON object that specifies at least the resources,
and takes the following form.

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 31

{
 "resources": [
 "resource1",
 "resource2",
 ...,
 "resourceN"
],
 "application": "defaults to iPlanetAMWebAgentService if not specified",
 "subject": {
 "ssoToken": "SSO token ID string",
 "jwt": "JSON Web Token string",
 "claims": {
 "key": "value",
 ...
 }
 },
 "environment": {
 "optional key1": [
 "value",
 "another value",
 ...
],
 "optional key2": [
 "value",
 "another value",
 ...
],
 ...
 }
}

The values for the fields shown above are explained below:

"resources"

This required field specifies the list of resources for which to return decisions.

For example, when using the default policy set, "iPlanetAMWebAgentService", you can request
decisions for resource URLs.
{
 "resources": [
 "http://www.example.com/index.html",
 "http://www.example.com/do?action=run"
]
}

"application"

This field holds the name of the policy set, and defaults to "iPlanetAMWebAgentService" if not
specified.

For more on policy sets, see "Managing Policy Sets".

"subject"

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 32

This optional field holds an object that represents the subject. You can specify one or more of the
following keys. If you specify multiple keys, the subject can have multiple associated principals,
and you can use subject conditions corresponding to any type in the request.

"ssoToken"

The value is the SSO token ID string for the subject, returned for example on successful
authentication as described in "Authentication and Logout".

"jwt"

The value is a JWT string.

"claims"

The value is an object (map) of JWT claims to their values.

If you do not specify the subject, AM uses the SSO token ID of the subject making the request.

"environment"

This optional field holds a map of keys to lists of values.

If you do not specify the environment, the default is an empty map.

The example below requests policy decisions for two URL resources. The iPlanetDirectoryPro header
sets the SSO token for a user who has access to perform the operation.

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "resources": [
 "http://www.example.com/index.html",
 "http://www.example.com/do?action=run"
],
 "application": "iPlanetAMWebAgentService"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluate
 [{
 "resource" : "http://www.example.com/do?action=run",
 "actions" : {
 },
 "attributes" : {
 },
 "advices" : {
 "AuthLevelConditionAdvice" : ["3"]
 }
}, {
 "resource" : "http://www.example.com/index.html",
 "actions" : {
 "POST" : false,

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 33

 "GET" : true
 },
 "attributes" : {
 "cn" : ["demo"]
 },
 "advices" : {
 }
 }
]

In the JSON list of decisions returned for each resource, AM includes these fields.

"resource"

A resource specified in the request.

The decisions returned are not guaranteed to be in the same order as the resources were
requested.

"actions"

A map of action name keys to Boolean values that indicate whether the action is allowed (true) or
denied (false) for the specified resource.

In the example, for resource http://www.example.com:80/index.html HTTP GET is allowed, whereas
HTTP POST is denied.

"attributes"

A map of attribute names to their values, if any response attributes are returned according to
applicable policies.

In the example, the policy that applies to http://www.example.com:80/index.html causes that the value
of the subject's "cn" profile attribute to be returned.

"advices"

A map of advice names to their values, if any advice is returned according to applicable policies.

The "advices" field can provide hints regarding what AM needs to take the authorization decision.

In the example, the policy that applies to http://www.example.com:80/do?action=run requests that the
subject be authenticated at an authentication level of at least 3.
{
 "advices": {
 "AuthLevelConditionAdvice": [
 "3"
]
 }
}

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 34

See "Policy Decision Advice" for details.

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.2.2. Policy Decision Advice

When AM returns a policy decision, the JSON for the decision can include an "advices" field. This field
contains hints for the policy enforcement point.
{
 "advices": {
 "type": [
 "advice"
]
 }
}

The "advices" returned depend on policy conditions. For more information about AM policy
conditions, see "Managing Policies".

This section shows examples of the different types of policy decision advice and the conditions that
cause AM to return the advice.

"AuthLevel" and "LEAuthLevel" condition failures can result in advice showing the expected or maximum
possible authentication level. For example, failure against the following condition:
{
 "type": "AuthLevel",
 "authLevel": 2
}

Leads to this advice:
{
 "AuthLevelConditionAdvice": [
 "2"
]
}

An "AuthScheme" condition failure can result in advice showing one or more required authentication
modules. For example, failure against the following condition:
{
 "type": "AuthScheme",
 "authScheme": [
 "HOTP"
],
 "applicationName": "iPlanetAMWebAgentService",
 "applicationIdleTimeout": 10
}

Leads to this advice:

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 35

{
 "AuthSchemeConditionAdvice": [
 "HOTP"
]
}

An "AuthenticateToRealm" condition failure can result in advice showing the name of the realm to which
authentication is required. For example, failure against the following condition:
{
 "type": "AuthenticateToRealm",
 "authenticateToRealm": "MyRealm"
}

Leads to this advice:
{
 "AuthenticateToRealmConditionAdvice": [
 "/myRealm"
]
}

An "AuthenticateToService" condition failure can result in advice showing the name of the required
authentication chain. For example, failure against the following condition:
{
 "type": "AuthenticateToService",
 "authenticateToService": "MyAuthnChain"
}

Leads to this advice:
{
 "AuthenticateToServiceConditionAdvice": [
 "MyAuthnChain"
]
}

A "ResourceEnvIP" condition failure can result in advice showing that indicates corrective action to be
taken to resolve the problem. The advice varies, depending on what the condition tests. For example,
failure against the following condition:
{
 "type": "ResourceEnvIP",
 "resourceEnvIPConditionValue": [
 "IF IP=[127.0.0.12] THEN authlevel=4"
]
}

Leads to this advice:
{
 "AuthLevelConditionAdvice": [
 "4"
]
}

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 36

Failure against a different type of "ResourceEnvIP" condition such as the following:
{
 "type": "ResourceEnvIP",
 "resourceEnvIPConditionValue": [
 "IF IP=[127.0.0.11] THEN service=MyAuthnChain"
]
}

Leads to this advice:
{
 "AuthenticateToServiceConditionAdvice": [
 "MyAuthnChain"
]
}

A "Session" condition failure can result in advice showing that access has been denied because the
user's stateful or stateless session has been active longer than allowed by the condition. The advice
will also show if the user's session was terminated and reauthentication is required. For example,
failure against the following condition:
{
 "type": "Session",
 "maxSessionTime": "10",
 "terminateSession": false
}

Leads to this advice:
{
 "SessionConditionAdvice": [
 "deny"
]
}

When policy evaluation denials occur against the following conditions, AM does not return any
advice:

• IPv4

• IPv6

• LDAPFilter

• OAuth2Scope

• SessionProperty

• SimpleTime

2.2.2.3. Requesting Policy Decisions For a Tree of Resources
This section shows how you can request policy decisions over REST for a resource and all other
resources in the subtree beneath it.

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 37

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

To request policy decisions for a tree of resources, perform an HTTP POST using the evaluation
action to the appropriate path under the URI where AM is deployed, for example /json/realms/root
/realms/myRealm/policies?_action=evaluateTree The payload for the HTTP POST is a JSON object that
specifies at least the root resource, and takes the following form.
{
 "resource": "resource string",
 "application": "defaults to iPlanetAMWebAgentService if not specified",
 "subject": {
 "ssoToken": "SSO token ID string",
 "jwt": "JSON Web Token string",
 "claims": {
 "key": "value",
 ...
 }
 },
 "environment": {
 "optional key1": [
 "value",
 "another value",
 ...
],
 "optional key2": [
 "value",
 "another value",
 ...
],
 ...
 }
}

The values for the fields shown above are explained below:

"resource"

This required field specifies the root resource for the decisions to return.

For example, when using the default policy set, "iPlanetAMWebAgentService", you can request
decisions for resource URLs.
{
 "resource": "http://www.example.com/"
}

"application"

This field holds the name of the policy set, and defaults to "iPlanetAMWebAgentService" if not
specified.

For more on policy sets, see "Managing Policy Sets".

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 38

"subject"

This optional field holds an object that represents the subject. You can specify one or more of the
following keys. If you specify multiple keys, the subject can have multiple associated principals,
and you can use subject conditions corresponding to any type in the request.

"ssoToken"

The value is the SSO token ID string for the subject, returned for example on successful
authentication as described in, "Authentication and Logout".

"jwt"

The value is a JWT string.

"claims"

The value is an object (map) of JWT claims to their values.

If you do not specify the subject, AM uses the SSO token ID of the subject making the request.

"environment"

This optional field holds a map of keys to lists of values.

If you do not specify the environment, the default is an empty map.

The example below requests policy decisions for http://www.example.com/. The iPlanetDirectoryPro header
sets the SSO token for a user who has access to perform the operation, and the subject takes the SSO
token of the user who wants to access a resource.

 $ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5...NDU1*" \
 --data '{
 "resource": "http://www.example.com/",
 "subject": { "ssoToken": "AQIC5...zE4*" }
 }' \
 https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluateTree
 [{
 "resource" : "http://www.example.com/",
 "actions" : {
 "GET" : true,
 "OPTIONS" : true,
 "HEAD" : true
 },
 "attributes" : {
 },
 "advices" : {
 }
}, {
 "resource" : "http://www.example.com/*",
 "actions" : {

Implementing Authorization
Requesting Policy Decisions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 39

 "POST" : false,
 "PATCH" : false,
 "GET" : true,
 "DELETE" : true,
 "OPTIONS" : true,
 "HEAD" : true,
 "PUT" : true
 },
 "attributes" : {
 "myStaticAttr" : ["myStaticValue"]
 },
 "advices" : {
 }
}, {
 "resource" : "http://www.example.com/*?*",
 "actions" : {
 "POST" : false,
 "PATCH" : false,
 "GET" : false,
 "DELETE" : false,
 "OPTIONS" : true,
 "HEAD" : false,
 "PUT" : false
 },
 "attributes" : {
 },
 "advices" : {
 "AuthLevelConditionAdvice" : ["3"]
 }
}]

Notice that AM returns decisions not only for the specified resource, but also for matching resource
names in the tree whose root is the specified resource.

In the JSON list of decisions returned for each resource, AM includes these fields.

"resource"

A resource name whose root is the resource specified in the request.

The decisions returned are not guaranteed to be in the same order as the resources were
requested.

"actions"

A map of action name keys to Boolean values that indicate whether the action is allowed (true) or
denied (false) for the specified resource.

In the example, for matching resources with a query string only HTTP OPTIONS is allowed
according to the policies configured.

"attributes"

A map of attribute names to their values, if any response attributes are returned according to
applicable policies.

Implementing Authorization
Managing Resource Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 40

In the example, the policy that applies to http://www.example.com:80/* causes a static attribute to be
returned.

"advices"

A map of advice names to their values, if any advice is returned according to applicable policies.

The "advices" field can provide hints regarding what AM needs to take the authorization decision.

In the example, the policy that applies to resources with a query string requests that the subject
be authenticated at an authentication level of at least 3.

Notice that with the "advices" field present, no "advices" appear in the JSON response.
{
 "advices": {
 "AuthLevelConditionAdvice": ["3"]
 }
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.3. Managing Resource Types
This section describes the process of using the AM REST API for managing resource types, which
define a template for the resources that policies apply to, and the actions associated with those
resources.

For information on creating resource types by using the AM console, see "Configuring Resource
Types".

AM provides the resourcetypes REST endpoint for the following:

• "Querying Resource Types"

• "Reading a Specific Resource Type"

• "Creating a Resource Type"

• "Updating a Resource Type"

• "Deleting a Specific Resource Type"

Resource types are realm specific, hence the URI for the resource types API can contain a realm
component, such as /json{/realm}/resourcetypes. If the realm is not specified in the URI, the top level
realm is used.

Resource types are represented in JSON and take the following form. Resource types are built from
standard JSON objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each
resource type has a unique, system-generated UUID, which must be used when modifying existing
resource types. Renaming a resource type will not affect the UUID.

Implementing Authorization
Managing Resource Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 41

{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e2",
 "name": "URL",
 "description": "The built-in URL Resource Type available to OpenAM Policies.",
 "patterns": [
 "*://*:*/*?*",
 "*://*:*/*"
],
 "actions": {
 "POST": true,
 "PATCH": true,
 "GET": true,
 "DELETE": true,
 "OPTIONS": true,
 "HEAD": true,
 "PUT": true
 },
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1422892465848,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1422892465848
}

The values for the fields shown in the description are explained below:

"uuid"

String matching the unique identifier AM generated for the resource type when created.

"name"

The name provided for the resource type.

"description"

An optional text string to help identify the resource type.

"patterns"

An array of resource patterns specifying individual URLs or resource names to protect.

For more information on patterns in resource types and policies, see "Specifying Resource
Patterns with Wildcards"

"actions"

Set of string action names, each set to a boolean indicating whether the action is allowed.

"createdBy"

A string containing the universal identifier DN of the subject that created the resource type.

"creationDate"

An integer containing the creation date and time, in ISO 8601 format.

Implementing Authorization
Managing Resource Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 42

"lastModifiedBy"

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the resource type has not been modified since it was created, this will be the same value as
createdBy.

"lastModifiedDate"

An string containing the last modified date and time, in ISO 8601 format.

If the resource type has not been modified since it was created, this will be the same value as
creationDate.

2.2.3.1. Querying Resource Types

To list all the resource types in a realm, perform an HTTP GET to the /json{/realm}/resourcetypes
endpoint, with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns resource types in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/resourcetypes?_queryFilter=true
{
 "result": [
 {
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e3",
 "name": "LIGHTS",
 "description": "",
 "patterns": [
 "light://*/*"
],
 "actions": {
 "switch_off": true,
 "switch_on": true
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431013059131,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431013069803
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Implementing Authorization
Managing Resource Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 43

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

Supported _queryFilter Fields and Operators

Field Supported Operators
uuid Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
patterns Equals (eq), Contains (co), Starts with (sw)
actions Equals (eq), Contains (co), Starts with (sw)

2.2.3.2. Reading a Specific Resource Type

To read an individual resource types in a realm, perform an HTTP GET to the /json{/realm}/
resourcetypes endpoint, and specify the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/resourcetypes/12345a67-8f0b-123c
-45de-6fab78cd01e3
{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e3",
 "name": "LIGHTS",
 "description": "",
 "patterns": [
 "light://*/*"
],
 "actions": {
 "switch_off": true,
 "switch_on": true
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431013059131,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431013069803
}

Implementing Authorization
Managing Resource Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 44

2.2.3.3. Creating a Resource Type

To create a resource type in a realm, perform an HTTP POST to the /json{/realm}/resourcetypes
endpoint, with an _action parameter set to create. Include a JSON representation of the resource type
in the POST data.

Note

If the realm is not specified in the URL, AM creates the resource type in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters listed
below causes AM to return a 400 Bad Request error. The special characters are: double quotes ("),
plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "My Resource Type",
 "actions": {
 "LEFT": true,
 "RIGHT": true,
 "UP": true,
 "DOWN": true
 },
 "patterns": [
 "http://device/location/*"
]
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/resourcetypes/?_action=create
{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "name": "My Resource Type",
 "description": null,
 "patterns": [
 "http://device/location/*"
],
 "actions": {
 "RIGHT": true,
 "DOWN": true,
 "UP": true,
 "LEFT": true
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431099940616,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431099940616
}

Implementing Authorization
Managing Resource Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 45

2.2.3.4. Updating a Resource Type

To update an individual resource type in a realm, perform an HTTP PUT to the /json{/realm}/
resourcetypes endpoint, and specify the UUID in both the URL and the PUT body. Include a JSON
representation of the updated resource type in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters listed
below causes AM to return a 400 Bad Request error. The special characters are: double quotes ("),
plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --request PUT \
 --header "Content-Type: application/json" \
 --data '{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "name": "My Updated Resource Type",
 "actions": {
 "LEFT": false,
 "RIGHT": false,
 "UP": false,
 "DOWN": false
 },
 "patterns": [
 "http://device/location/*"
]
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/
resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e4
{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "name": "My Updated Resource Type",
 "description": null,
 "patterns": [
 "http://device/location/*"
],
 "actions": {
 "RIGHT": false,
 "DOWN": false,
 "UP": false,
 "LEFT": false
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431099940616,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

Implementing Authorization
Managing Application Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 46

 "lastModifiedDate": 1431101016427
}

2.2.3.5. Deleting a Specific Resource Type

To delete an individual resource types in a realm, perform an HTTP DELETE to the /json{/realm}/
resourcetypes endpoint, and specify the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/resourcetypes/12345a67-8f0b-123c
-45de-6fab78cd01e4
{}

You can only delete resource types that are not being used by a policy set or policy. Trying to delete a
resource type that is in use will return an HTTP 409 Conflict status code, with a message such as:
{
 "code": 409,
 "reason": "Conflict",
 "message": "Unable to remove resource type 12345a67-8f0b-123c-45de-6fab78cd01e4 because it is
 referenced in the policy model."
}

Remove the resource type from any associated policy sets or policies to be able to delete it.

2.2.4. Managing Application Types

Application types act as templates for policy sets, and define how to compare resources and
index policies. AM provides a default application type that represents web resources called
iPlanetAMWebAgentService. AM web and Java agents use a default policy set that is based on this type,
which is also called iPlanetAMWebAgentService.

AM provides the applicationtypes REST endpoint for the following:

• "Querying Application Types"

• "Reading a Specific Application Type"

Applications types are server-wide, and do not differ by realm. Hence the URI for the application
types API does not contain a realm component, but is /json/applicationtypes.

Implementing Authorization
Managing Application Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 47

Application type resources are represented in JSON and take the following form. Application type
resources are built from standard JSON objects and values (strings, numbers, objects, arrays, true,
false, and null).
{
 "name": "iPlanetAMWebAgentService",
 "actions": {
 "POST": true,
 "PATCH": true,
 "GET": true,
 "DELETE": true,
 "OPTIONS": true,
 "PUT": true,
 "HEAD": true
 },
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "saveIndex": "org.forgerock.openam.entitlement.indextree.TreeSaveIndex",
 "searchIndex": "org.forgerock.openam.entitlement.indextree.TreeSearchIndex",
 "applicationClassName": "com.sun.identity.entitlement.Application"
}

The values for the fields shown in the description are explained below:

"name"

The name provided for the application type.

"actions"

Set of string action names, each set to a boolean indicating whether the action is allowed.

"resourceComparator"

Class name of the resource comparator implementation used in the context of this application
type.

The following implementations are available:

"com.sun.identity.entitlement.ExactMatchResourceName"
"com.sun.identity.entitlement.PrefixResourceName"
"com.sun.identity.entitlement.RegExResourceName"
"com.sun.identity.entitlement.URLResourceName"

"saveIndex"

Class name of the implementation for creating indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameIndexGenerator" for URL resource names.

"searchIndex"

Class name of the implementation for searching indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameSplitter" for URL resource names.

Implementing Authorization
Managing Application Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 48

"applicationClassName"

Class name of the application type implementation, such as "com.sun.identity.entitlement
.Application".

2.2.4.1. Querying Application Types

To list all application types, perform an HTTP GET to the /json/applicationtypes endpoint, with a
_queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/applicationtypes?_queryFilter=true
{
 "result" : [... application types ...],
 "resultCount" : 8,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

2.2.4.2. Reading a Specific Application Type

To read an individual application type, perform an HTTP GET to the /json/applicationtypes endpoint,
and specify the application type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/applicationtypes/iPlanetAMWebAgentService
{
 "name": "iPlanetAMWebAgentService",
 "actions": {
 "POST": true,
 "PATCH": true,
 "GET": true,
 "DELETE": true,
 "OPTIONS": true,
 "PUT": true,
 "HEAD": true
 },
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "saveIndex": "org.forgerock.openam.entitlement.indextree.TreeSaveIndex",
 "searchIndex": "org.forgerock.openam.entitlement.indextree.TreeSearchIndex",
 "applicationClassName": "com.sun.identity.entitlement.Application"
}

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 49

2.2.5. Managing Policy Sets
This section describes the process of using the AM REST API for managing policy sets.

Policy set definitions set constraints for defining policies. The default built-in policy set is called
iPlanetAMWebAgentService, which AM web and Java agents use to allow policy management through the
AM console.

For information on creating policy sets by using the AM console, see "Configuring Policy Sets".

AM provides the applications REST endpoint for the following:

• "Querying Policy Sets"

• "Reading a Specific Policy Set"

• "Creating Policy Sets"

• "Updating Policy Sets"

• "Deleting Policy Sets"

Policy sets are realm specific, hence the URI for the policy set API can contain a realm component,
such as /json{/realm}/applications. If the realm is not specified in the URI, the top level realm is used.

Policy sets are represented in JSON and take the following form. Policy sets are built from standard
JSON objects and values (strings, numbers, objects, arrays, true, false, and null).
{
 "creationDate": 1431351677264,
 "lastModifiedDate": 1431351677264,
 "conditions": [
 "AuthenticateToService",
 "Script",
 "AuthScheme",
 "IPv6",
 "SimpleTime",
 "OAuth2Scope",
 "IPv4",
 "AuthenticateToRealm",
 "OR",
 "AMIdentityMembership",
 "LDAPFilter",
 "AuthLevel",
 "SessionProperty",
 "LEAuthLevel",
 "Session",
 "NOT",
 "AND",
 "ResourceEnvIP"
],
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "JwtClaim",
 "AuthenticatedUsers",
 "Identity",

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 50

 "NOT",
 "AND",
 "NONE",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "resourceComparator": null,
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e4"
],
 "attributeNames": [],
 "editable": true,
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "The built-in Application used by AM Policy Agents.",
 "realm": "/",
 "name": "iPlanetAMWebAgentService"
}

The values for the fields shown in the description are explained below:

"conditions"

Condition types allowed in the context of this policy set.

For information on condition types, see "Managing Policies" and "Managing Environment
Condition Types".

"applicationType"

Name of the application type used as a template for this policy set.

"subjects"

Subject types allowed in the context of this policy set.

For information on subject types, see "Managing Policies" and "Managing Subject Condition
Types".

"entitlementCombiner"

Name of the decision combiner, such as "DenyOverride".

For more on decision combiners, see "Managing Decision Combiners".

"saveIndex"

Class name of the implementation for creating indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameIndexGenerator" for URL resource names.

"searchIndex"

Class name of the implementation for searching indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameSplitter" for URL resource names.

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 51

"resourceComparator"

Class name of the resource comparator implementation used in the context of this policy set.

The following implementations are available:

"com.sun.identity.entitlement.ExactMatchResourceName"
"com.sun.identity.entitlement.PrefixResourceName"
"com.sun.identity.entitlement.RegExResourceName"
"com.sun.identity.entitlement.URLResourceName"

"resourceTypeUuids"

A list of the UUIDs of the resource types associated with the policy set.

"attributeNames"

A list of attribute names such as cn. The list is used to aid policy indexing and lookup.

"description"

String describing the policy set.

"realm"

Name of the realm where this policy set is defined. You must specify the realm in the policy set
JSON even though it can be derived from the URL that is used when creating the policy set.

"name"

String matching the name in the URL used when creating the policy set by HTTP PUT or in the
body when creating the policy set by HTTP POST.

"createdBy"

A string containing the universal identifier DN of the subject that created the policy set.

"creationDate"

An integer containing the creation date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

"lastModifiedBy"

A string containing the universal identifier DN of the subject that most recently updated the
policy set.

If the policy set has not been modified since it was created, this will be the same value as
createdBy.

"lastModifiedDate"

An integer containing the last modified date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 52

If the policy set has not been modified since it was created, this will be the same value as
creationDate.

2.2.5.1. Querying Policy Sets

To list all the policy sets in a realm, perform an HTTP GET to the /json{/realm}/applications endpoint,
with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns policy sets in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/applications?_queryFilter=true
{
 {
 "result": [
 {
 "_id": "iPlanetAMWebAgentService",
 "name": "iPlanetAMWebAgentService",
 "displayName": "Default Policy Set",
 "subjects": [
 "NOT",
 "OR",
 "JwtClaim",
 "AuthenticatedUsers",
 "AND",
 "Identity",
 "NONE"
],
 "saveIndex": null,
 "searchIndex": null,
 "entitlementCombiner": "DenyOverride",
 "resourceComparator": null,
 "attributeNames": [
],
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "editable": true,
 "resourceTypeUuids": [
 "76656a38-5f8e-401b-83aa-4ccb74ce88d2"
],
 "creationDate": 1480651214923,
 "lastModifiedDate": 1480651214923,
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "The built-in Application used by AM Policy Agents.",
 "applicationType": "iPlanetAMWebAgentService",
 "conditions": [
 "LEAuthLevel",
 "Script",
 "AuthenticateToService",

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 53

 "SimpleTime",
 "AMIdentityMembership",
 "OR",
 "IPv6",
 "IPv4",
 "SessionProperty",
 "AuthScheme",
 "AuthLevel",
 "NOT",
 "AuthenticateToRealm",
 "AND",
 "ResourceEnvIP",
 "LDAPFilter",
 "OAuth2Scope",
 "Session"
]
 },
 {
 "_id": "sunAMDelegationService",
 "name": "sunAMDelegationService",
 "displayName": "Delegation Policy Set",
 "subjects": [
 "NOT",
 "OR",
 "AuthenticatedUsers",
 "AND",
 "Identity"
],
 "saveIndex": null,
 "searchIndex": null,
 "entitlementCombiner": "DenyOverride",
 "resourceComparator": null,
 "attributeNames": [

],
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "editable": true,
 "resourceTypeUuids": [
 "20a13582-1f32-4f83-905f-f71ff4e2e00d"
],
 "creationDate": 1480651214933,
 "lastModifiedDate": 1480651214933,
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": null,
 "applicationType": "sunAMDelegationService",
 "conditions": [

]
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": 0
}

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 54

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

Supported _queryFilter Fields and Operators

Field Supported Operators
name Equals (eq)
description Equals (eq)
createdBy Equals (eq)
creationDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal to

(le), Less than (lt)

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

lastModifiedBy Equals (eq)
lastModifiedDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal to

(le), Less than (lt)

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

2.2.5.2. Reading a Specific Policy Set

To read an individual policy set in a realm, perform an HTTP GET to the /json{/realm}/applications
endpoint, and specify the policy set name in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/applications/mypolicyset
{
 "creationDate": 1431360678810,
 "lastModifiedDate": 1431360678810,

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 55

 "conditions": [
 "AuthenticateToService",
 "AuthScheme",
 "IPv6",
 "SimpleTime",
 "OAuth2Scope",
 "IPv4",
 "AuthenticateToRealm",
 "OR",
 "AMIdentityMembership",
 "LDAPFilter",
 "SessionProperty",
 "AuthLevel",
 "LEAuthLevel",
 "Session",
 "NOT",
 "AND",
 "ResourceEnvIP"
],
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "JwtClaim",
 "AuthenticatedUsers",
 "Identity",
 "NOT",
 "AND",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e2"
],
 "attributeNames": [],
 "editable": true,
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "My example policy set.",
 "realm": "/",
 "name": "mypolicyset"
 }

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.5.3. Creating Policy Sets

To create a policy set in a realm, perform an HTTP POST to the /json{/realm}/applications endpoint,
with an _action parameter set to create. Include a JSON representation of the policy set in the POST
data.

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 56

Note

If the realm is not specified in the URL, AM creates the policy set in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters listed
below causes AM to return a 400 Bad Request error. The special characters are: double quotes ("),
plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "mypolicyset",
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e2"
],
 "realm": "/",
 "conditions": [
 "AND",
 "OR",
 "NOT",
 "AMIdentityMembership",
 "AuthLevel",
 "AuthScheme",
 "AuthenticateToRealm",
 "AuthenticateToService",
 "IPv4",
 "IPv6",
 "LDAPFilter",
 "LEAuthLevel",
 "OAuth2Scope",
 "ResourceEnvIP",
 "Session",
 "SessionProperty",
 "SimpleTime"
],
 "applicationType": "iPlanetAMWebAgentService",
 "description": "My example policy set.",
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "subjects": [
 "AND",
 "OR",
 "NOT",
 "AuthenticatedUsers",
 "Identity",
 "JwtClaim"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 57

 "searchIndex": null,
 "attributeNames": []
 }' \
 https://openam.example.com:8443/openam/json/realms/root/applications/?_action=create
{
 "creationDate": 1431360678810,
 "lastModifiedDate": 1431360678810,
 "conditions": [
 "AuthenticateToService",
 "AuthScheme",
 "IPv6",
 "SimpleTime",
 "OAuth2Scope",
 "IPv4",
 "AuthenticateToRealm",
 "OR",
 "AMIdentityMembership",
 "LDAPFilter",
 "SessionProperty",
 "AuthLevel",
 "LEAuthLevel",
 "Session",
 "NOT",
 "AND",
 "ResourceEnvIP"
],
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "JwtClaim",
 "AuthenticatedUsers",
 "Identity",
 "NOT",
 "AND",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e2"
],
 "attributeNames": [],
 "editable": true,
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "My example policy set.",
 "realm": "/",
 "name": "mypolicyset"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

Implementing Authorization
Managing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 58

2.2.5.4. Updating Policy Sets

To update an individual policy set in a realm, perform an HTTP PUT to the /json{/realm}/applications
endpoint, and specify the policy set name in the URL. Include a JSON representation of the updated
policy set in the PUT data.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters listed
below causes AM to return a 400 Bad Request error. The special characters are: double quotes ("),
plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --data '{
 "name": "myupdatedpolicyset",
 "description": "My updated policy set - new name and fewer allowable conditions/subjects.",
 "conditions": [
 "NOT",
 "SimpleTime"
],
 "subjects": [
 "AND",
 "OR",
 "NOT",
 "AuthenticatedUsers",
 "Identity"
],
 "applicationType": "iPlanetAMWebAgentService",
 "entitlementCombiner": "DenyOverride",
 "resourceTypeUuids": [
 "76656a38-5f8e-401b-83aa-4ccb74ce88d2"
]
 }' \
 https://openam.example.com:8443/openam/json/realms/root/applications/mypolicyset
{
 "creationDate": 1431362370739,
 "lastModifiedDate": 1431362390817,
 "conditions": [
 "NOT",
 "SimpleTime"
],
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "resourceTypeUuids": [
 "76656a38-5f8e-401b-83aa-4ccb74ce88d2"

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 59

],
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "AuthenticatedUsers",
 "Identity",
 "NOT",
 "AND",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "attributeNames": [],
 "editable": true,
 "description": "My updated policy set - new name and fewer allowable conditions/subjects.",
 "realm": "/",
 "name": "myupdatedpolicyset"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.5.5. Deleting Policy Sets

To delete an individual policy set in a realm, perform an HTTP DELETE to the /json{/realm}/
applications endpoint, and specify the policy set name in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/applications/myupdatedpolicyset
{}

2.2.6. Managing Policies

This section describes the process of using the AM REST API for managing policies.

For information on creating policies by using the AM console, see "Configuring Policies".

AM provides the policies REST endpoint for the following:

• "Querying Policies"

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 60

• "Reading a Specific Policy"

• "Creating Policies"

• "Updating Policies"

• "Deleting Policies"

• "Copying and Moving Policies"

Policies are realm specific, hence the URI for the policies API can contain a realm component, such as
/json{/realm}/policies. If the realm is not specified in the URI, the top level realm is used.

Policy resources are represented in JSON and take the following form. Policy resources are built from
standard JSON objects and values (strings, numbers, objects, arrays, true, false, and null).
{
 "name": "mypolicy",
 "active": true,
 "description": "My Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": true,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "AuthenticatedUsers"
 },
 "condition": {
 "type": "SimpleTime",
 "startTime": "09:00",
 "endTime": "17:00",
 "startDay": "mon",
 "endDay": "fri",
 "enforcementTimeZone": "GMT"
 },
 "resourceTypeUuid": "76656a38-5f8e-401b-83aa-4ccb74ce88d2",
 "resourceAttributes": [
 {
 "type": "User",
 "propertyName": "givenName",
 "propertyValues": []
 }
],
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T17:39:09.393Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T17:37:24.556Z"
}

The values for the fields shown in the example are explained below:

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 61

"name"

String matching the name in the URL used when creating the policy by HTTP PUT or in the body
when creating the policy by HTTP POST.

"active"

Boolean indicating whether AM considers the policy active for evaluation purposes, defaults to
false.

"description"

String describing the policy.

"resources"

List of the resource name pattern strings to which the policy applies. Must conform to the pattern
templates provided by the associated resource type.

"applicationName"

String containing the policy set name, such as "iPlanetAMWebAgentService", or "mypolicyset".

"actionValues"

Set of string action names, each set to a boolean indicating whether the action is allowed. Chosen
from the available actions provided by the associated resource type.

Tip

Action values can also be expressed as numeric values. When using numeric values, use the value 0 for
false and use any non-zero numeric value for true.

"subject"

Specifies the subject conditions to which the policy applies, where subjects can be combined by
using the built-in types "AND", "OR", and "NOT", and where subject implementations are pluggable.

Subjects are shown as JSON objects with "type" set to the name of the implementation (using a
short name for all registered subject implementations), and also other fields depending on the
implementation. The subject types registered by default include the following:

• "AuthenticatedUsers", meaning any user that has successfully authenticated to AM.
{
 "type": "AuthenticatedUsers"
}

Warning

The AuthenticatedUsers subject condition does not take into account the realm to which a user
authenticated. Any user that has authenticated successfully to any realm passes this subject condition.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 62

To test whether a user has authenticated successfully to a specific realm, also add the
AuthenticateToRealm environment condition.

• "Identity" to specify one or more users from an AM identity repository:
{
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com",
 "uid=ahall,ou=People,dc=example,dc=com"
]
}

You can also use the "Identity" subject type to specify one or more groups from an identity
repository:
{
 "type": "Identity",
 "subjectValues": [
 "cn=HR Managers,ou=Groups,dc=example,dc=com"
]
}

• "JwtClaim" to specify a claim in a user's JSON web token (JWT).
{
 "type": "JwtClaim",
 "claimName": "sub",
 "claimValue": "scarter"
}

• "NONE", meaning never match any subject. The result is not that access is denied, but rather that
the policy itself does not match and therefore cannot be evaluated in order to allow access.

The following example defines the subject either as the user Sam Carter from an AM identity
repository, or as a user with a JWT claim with a subject claim with the value scarter:
"subject": {
 "type": "OR",
 "subjects": [
 {
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com"
]
 },
 {
 "type": "JwtClaim",
 "claimName": "sub",
 "claimValue": "scarter"
 }
]
}

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 63

To read a single subject type description, or to list all the available subject types, see "Managing
Subject Condition Types".

"condition"

Specifies environment conditions, where conditions can be combined by using the built-in types
"AND", "OR", and "NOT", and where condition implementations are pluggable.

Conditions are shown as JSON objects with "type" set to the name of the implementation (using a
short name for all registered condition implementations), and also other fields depending on the
implementation. The condition types registered by default include the following.

• "AMIdentityMembership" to specify a list of AM users and groups.
{
 "type": "AMIdentityMembership",
 "amIdentityName": [
 "id=scarter,ou=People,dc=example,dc=com"
]
}

Note

Java Agents 5 and Web Agents 5 do not support the AMIdentityMembership environment condition.
Instead, use the equivalent Identity subject condition.

• "AuthLevel" to specify the authentication level.
{
 "type": "AuthLevel",
 "authLevel": 2
}

• "AuthScheme" to specify the authentication module used to authenticate and the policy set name,
and to set a timeout for authentication.
{
 "type": "AuthScheme",
 "authScheme": [
 "DataStore"
],
 "applicationName": "iPlanetAMWebAgentService",
 "applicationIdleTimeout": 10
}

• "AuthenticateToRealm" to specify the realm to which the user authenticated.
{
 "type": "AuthenticateToRealm",
 "authenticateToRealm": "MyRealm"
}

• "AuthenticateToService" to specify the authentication chain that was used to authenticate.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 64

{
 "type": "AuthenticateToService",
 "authenticateToService": "MyAuthnChain"
}

• "IPv4" or "IPv6" to specify an IP address range from which the request originated.
{
 "type": "IPv4",
 "startIp": "127.0.0.1",
 "endIp": "127.0.0.255"
}

You can also use the "IPv4" and "IPv6" conditions with the "dnsName" field to specify domain
names from which the request originated. Omit "startIp" and "endIp" when using "dnsName".
{
 "type": "IPv4",
 "dnsName": [
 "*.example.com"
]
}

• "LDAPFilter" to specify an LDAP search filter. The user's entry is tested against the search filter
in the directory configured in the Policy Configuration Service.
{
 "type": "LDAPFilter",
 "ldapFilter": "(&(c=US)(preferredLanguage=en-us))"
}

• "LEAuthLevel" to specify a maximum acceptable authentication level.

{
 "type": "LEAuthLevel",
 "authLevel": 2
}

• "OAuth2Scope" to specify a list of attributes that must be present in the user profile.
{
 "type": "OAuth2Scope",
 "requiredScopes": [
 "name",
 "address",
 "email"
]
}

• "ResourceEnvIP" to specify a complex condition such as whether the user is making a request
from a given host and has authenticated with a given authentication level. For example:

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 65

{
 "type": "ResourceEnvIP",
 "resourceEnvIPConditionValue": [
 "IF IP=[127.168.10.*] THEN authlevel=4"
]
}

Entries must take the form of one or more IF...ELSE statements. If the IF statement is true, the
THEN statement must also be true for the condition to be fulfilled. The IF statement can specify
either IP to match the user's IP address, or dnsName to match their DNS name. The IP address
can be IPv4 or IPv6 format, or a hybrid of the two, and can include wildcard characters.

The available parameters for the THEN statement are as follows:

module

The module that was used to authenticate the user, for example DataStore.

service

The authentication chain that was used to authenticate the user.

authlevel

The minimum required authentication level.

role

The role of the authenticated user.

user

The name of the authenticated user.

redirectURL

The URL from which the user was redirected.

realm

The realm to which the user authenticated.

• "Session" to specify how long the user's stateful or stateless session has been active, and to
terminate the session if deemed too old, such that the user must authenticate again. Note that
AM terminates stateless sessions only if session blacklisting is in effect. For more information
about session blacklisting, see "Session Termination" in the Authentication and Single Sign-On
Guide.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 66

{
 "type": "Session",
 "maxSessionTime": "10",
 "terminateSession": false
}

• "SessionProperty" to specify attributes set in the user's stateful or stateless session.
{
 "type": "SessionProperty",
 "ignoreValueCase": true,
 "properties": {
 "CharSet": [
 "UTF-8"
],
 "clientType": [
 "genericHTML"
]
 }
}

• "SimpleTime" to specify a time range, where "type" is the only required field.
{
 "type": "SimpleTime",
 "startTime": "07:00",
 "endTime": "19:00",
 "startDay": "mon",
 "endDay": "fri",
 "startDate": "2015:01:01",
 "endDate": "2015:12:31",
 "enforcementTimeZone": "GMT+0:00"
}

The following example defines the condition as neither Saturday or Sunday, nor certain client IP
addresses.
{
 "type": "NOT",
 "condition": {
 "type": "OR",
 "conditions": [
 {
 "type": "SimpleTime",
 "startDay": "sat",
 "endDay": "sun",
 "enforcementTimeZone": "GMT+8:00"
 },
 {
 "type": "IPv4",
 "startIp": "192.168.0.1",
 "endIp": "192.168.0.255"
 }
]
 }
}

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 67

To read a single condition type description, or to list all the available condition types, see
"Managing Environment Condition Types".

"resourceTypeUuid"

The UUIDs of the resource type associated with the policy.

"resourceAttributes"

List of attributes to return with decisions. These attributes are known as response attributes.

The response attribute provider is pluggable. The default implementation provides for statically
defined attributes and for attributes retrieved from user profiles.

Attributes are shown as JSON objects with "type" set to the name of the implementation (by
default either "Static" for statically defined attributes or "User" for attributes from the user
profile), "propertyName" set to the attribute names. For static attributes, "propertyValues" holds
the attribute values. For user attributes, "propertyValues" is not used; the property values are
determined at evaluation time.

"createdBy"

A string containing the universal identifier DN of the subject that created the policy.

"creationDate"

An integer containing the creation date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

"lastModifiedBy"

A string containing the universal identifier DN of the subject that most recently updated the
policy.

If the policy has not been modified since it was created, this will be the same value as createdBy.

"lastModifiedDate"

An integer containing the last modified date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

If the policy has not been modified since it was created, this will be the same value as
creationDate.

2.2.6.1. Querying Policies

Use REST calls to list all the policies in a realm, or to find policies that explicitly apply to a given user
or group, by using the procedures below:

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 68

• "To List All Policies in a Realm"

• "To Query Policies in a Realm by User or Group"

To List All Policies in a Realm

• To list all the policies in a realm, perform an HTTP GET to the /json{/realm}/policies endpoint,
with an _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns policies in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/policies?_queryFilter=true
{
 "result": [
 {
 "name": "example",
 "active": true,
 "description": "Example Policy",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T14:48:08.711Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T14:48:08.711Z"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 69

Supported _queryFilter Fields and Operators

Field Supported Operators
name Equals (eq)
description Equals (eq)
applicationName Equals (eq)
createdBy Equals (eq)
creationDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal

to (le), Less than (lt)

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

lastModifiedBy Equals (eq)
lastModifiedDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal

to (le), Less than (lt)

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

To Query Policies in a Realm by User or Group

You can query policies that explicitly reference a given subject by providing the universal ID (UID) of
either a user or group. AM returns any policies that explicitly apply to the user or group as part of a
subject condition.

Tip

You can obtain the universal ID for a user or group by using REST. See "Reading Identities using the REST API"
in the Setup and Maintenance Guide.

The following caveats apply to querying policies by user or group:

• Group membership is not considered. For example, querying policies for a specific user will not
return policies that only use groups in their subject conditions, even if the user is a member of any
of those groups.

• Wildcards are not supported, only exact matches.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 70

• Only policies with a subject condition type of Identity are queried—environment conditions are not
queried. The Identity subject condition type is labelled as Users & Groups in the policy editor in the
AM console.

• Policies with subject conditions that only contain the user or group in a logical NOT operator are
not returned.

To query policies by user or group:

• Perform an HTTP GET to the /json{/realm}/policies endpoint, with an _queryId parameter set to
queryByIdentityUid, and a uid parameter containing the universal ID of the user or group:

$ curl \
 --get \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data "_queryId=queryByIdentityUid" \
 --data "uid=id=demo,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,dc=org" \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/policies
 {
 "result" : [{
 "name" : "mySubRealmPolicy",
 "active" : true,
 "description" : "",
 "resources" : ["*://*:*/*?*", "*://*:*/*"],
 "applicationName" : "iPlanetAMWebAgentService",
 "actionValues" : {
 "POST" : true,
 "PATCH" : true,
 "GET" : true,
 "DELETE" : true,
 "OPTIONS" : true,
 "PUT" : true,
 "HEAD" : true
 },
 "subject" : {
 "type" : "Identity",
 "subjectValues" :
 [
 "id=demo,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,dc=org"
]
 },
 "resourceTypeUuid" : "76656a38-5f8e-401b-83aa-4ccb74ce88d2",
 "lastModifiedBy" : "id=amAdmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate" : "2016-05-05T08:45:35.716Z",
 "createdBy" : "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate" : "2016-05-03T13:45:38.137Z"
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : 0
}

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 71

Note

If the realm is not specified in the URL, AM searches the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

2.2.6.2. Reading a Specific Policy

To read an individual policy in a realm, perform an HTTP GET to the /json{/realm}/policies endpoint,
and specify the policy name in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/policies/example
{
 "result": [
 {
 "name": "example",
 "active": true,
 "description": "Example Policy",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T14:48:08.711Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T14:48:08.711Z"
 }
],
 "resultCount": 1,

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 72

 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.6.3. Creating Policies

To create a policy in a realm, perform an HTTP POST to the /json{/realm}/policies endpoint, with an
_action parameter set to create. Include a JSON representation of the policy in the POST data.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters listed
below causes AM to return a 400 Bad Request error. The special characters are: double quotes ("),
plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "mypolicy",
 "active": true,
 "description": "My Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/policies?_action=create
 {

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 73

 "name": "mypolicy",
 "active": true,
 "description": "My Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T14:48:08.711Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T14:48:08.711Z"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.6.4. Updating Policies

To update an individual policy in a realm, perform an HTTP PUT to the /json{/realm}/policies
endpoint, and specify the policy name in the URL. Include a JSON representation of the updated
policy in the PUT data.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the AM console or REST endpoints. Using the special characters listed
below causes AM to return a 400 Bad Request error. The special characters are: double quotes ("),
plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --header "Content-Type: application/json" \

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 74

 --data '{
 "name": "myupdatedpolicy",
 "active": true,
 "description": "My Updated Policy.",
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "actionValues": {
 "POST": true,
 "GET": true
 },
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com",
 "uid=bjenson,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4"
}' \
 https://openam.example.com:8443/openam/json/realms/root/policies/mypolicy
 {
 "name": "myupdatedpolicy",
 "active": true,
 "description": "My Updated Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": true,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=bjenson,ou=People,dc=example,dc=com",
 "uid=scarter,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T17:26:59.116Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T17:25:18.632Z"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.2.6.5. Deleting Policies

To delete an individual policy in a realm, perform an HTTP DELETE to the /json{/realm}/policies
endpoint, and specify the policy name in the URL.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 75

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --request DELETE \
 https://openam.example.com:8443/openam/json/realms/root/policies/myupdatedpolicy
{}

2.2.6.6. Copying and Moving Policies
You can copy or move an individual policy by performing an HTTP POST to the /json{/realm}/
policies/policyName endpoint as follows:

• Specify the _action=copy or _action=move URL parameter.

• Specify the realm in which the input policy resides in the URL. If the realm is not specified in the
URL, AM copies or moves a policy from the top level realm.

• Specify the policy to be copied or moved in the URL.

• Specify the SSO token of an administrative user who has access to perform the operation in the
iPlanetDirectoryPro header.

Specify JSON input data as follows:

JSON Input Data for Copying or Moving Individual Policies

Object Property Description
to name The name of the output policy.

Required unless you are copying or moving a
policy to a different realm and you want the
output policy to have the same name as the
input policy.

to application The policy set in which to place the output
policy.

Required when copying or moving a policy to a
different policy set.

to realm The realm in which to place the output policy.
If not specified, AM copies or moves the policy
within the realm identified in the URL.

Required when copying or moving a policy to a
different realm.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 76

Object Property Description
to resourceType The UUID of the output policy's resource type.

Required when copying or moving a policy to a
different realm.

The follow example copies the policy myPolicy to myNewPolicy. The output policy is placed in the myRealm
realm, in the same policy set as the input policy:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data '{
 "to": {
 "name": "myNewPolicy"
 }
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myRealm/policies/myPolicy?_action=copy
{
 "name":"myNewPolicy",
 "active":true,
 "description":"",
 "applicationName":"iPlanetAMWebAgentService",
 "actionValues":{},
 "resources":['"*://*:*/*"],
 "subject":{"type":"NONE"},
 "resourceTypeUuid":"d98e59c9-766a-4934-b5de-8a28a9edc158",
 "lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",
 "lastModifiedDate":"2015-12-19T15:22:44.861Z",
 "createdBy":"id=amadmin,ou=user,dc=example,dc=com",
 "creationDate":"2015-12-19T15:22:44.861Z"
}

The following example moves a policy named myPolicy in the myRealm realm to myMovedPolicy in the
myOtherRealm realm. The output policy is placed in the iPlanetAMWebAgentService policy set, which is the
policy set in which the input policy is located.

The realm myOtherRealm must be configured as follows for the example to run successfully:

• It must have a resource type that has the same resources as the resource type configured for the
myPolicy policy.

• It must have a policy set named iPlanetAMWebAgentService.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 77

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data '{
 "to": {
 "name": "myMovedPolicy",
 "realm": "/myOtherRealm",
 "resourceType: "616b3d02-7a8d-4422-b6a7-174f62afd065"
 }
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myRealm/policies/myPolicy?_action=move
{
 "name":"myMovedPolicy",
 "active":true,
 "description":"",
 "actionValues":{},
 "applicationName":"iPlanetAMWebAgentService",
 "resources":["*://*:*/*"],
 "subject":{"type":"NONE"},
 "resourceTypeUuid":"616b3d02-7a8d-4422-b6a7-174f62afd065",
 "lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",
 "lastModifiedDate":"2015-12-21T19:32:59.502Z",
 "createdBy":"id=amadmin,ou=user,dc=example,dc=com",
 "creationDate":"2015-12-21T19:32:59.502Z"
 }

You can also copy and move multiple policies—all the policies in a policy set—in a single operation by
performing an HTTP POST to the /json{/realm}/policies endpoint as follows:

• Specify the _action=copy or _action=move URL parameter.

• Specify the realm in which the input policies reside as part of the URL. If no realm is specified in
the URL, AM copies or moves policies within the top level realm.

• Specify the SSO token of an administrative user who has access to perform the operation in the
iPlanetDirectoryPro header.

Specify JSON input data as follows:

JSON Input Data for Copying or Moving Multiple Policies

Object Property Description
from application The policy set in which the input policies are

located.

Required.
to application The policy set in which to store output policies.

Required when copying or moving policies to a
different policy set.

to realm The realm in which to store output policies.

Implementing Authorization
Managing Policies

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 78

Object Property Description
Required when copying or moving policies to a
different realm.

to namePostfix A value appended to output policy names in
order to prevent name clashes.

Required.
resourceTypeMapping Varies; see

Description
One or more resource types mappings, where
the left side of the mapping specifies the UUID
of a resource type used by the input policies and
the right side of the mapping specifies the UUID
of a resource type used by the output policies.
The two resource types should have the same
resource patterns.

Required when copying or moving policies to a
different realm.

The following example copies all the policies in the iPlanetAMWebAgentService policy set in the myRealm
realm to the iPlanetAMWebAgentService policy set in the myOtherRealm realm, appending the string -copy to
the output policy names.

The realm myOtherRealm must be configured as follows for the example to run successfully:

• It must have a resource type that maps to the ccb50c1a-206d-4946-9106-4164e8f2b35b resource type. The
two resource types should have the same resource patterns.

• It must have a policy set named iPlanetAMWebAgentService.

The JSON output shows that a single policy is copied. The policy myNewPolicy is copied to realm
myOtherRealm. The copied policy receives the name myOtherRealm-copy:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data '{
 "from": {
 "application": "iPlanetAMWebAgentService"
 },
 "to": {
 "realm": "/myOtherRealm",
 "namePostfix": "-copy"
 },
 "resourceTypeMapping": {
 "ccb50c1a-206d-4946-9106-4164e8f2b35b": "616b3d02-7a8d-4422-b6a7-174f62afd065"
 }

 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myRealm/policies?_action
 =copy
{
 "name":"myNewPolicy-copy",
 "active":true,

Implementing Authorization
Importing and Exporting XACML 3.0

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 79

 "description":"",
 "actionValues":{},
 "applicationName":"iPlanetAMWebAgentService",
 "resources":["*://*:*/*"],"subject":{"type":"NONE"},
 "resourceTypeUuid":"616b3d02-7a8d-4422-b6a7-174f62afd065",
 "lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",
 "lastModifiedDate":"2015-12-21T20:01:42.410Z",
 "createdBy":"id=amadmin,ou=user,dc=example,dc=com",
 "creationDate":"2015-12-21T20:01:42.410Z"
}

2.2.7. Importing and Exporting XACML 3.0

AM supports the ability to export policies to eXtensible Access Control Markup Language (XACML)
3.0-based formatted policy sets through its /xacml/policies REST endpoint. You can also import
XACML 3.0 policy sets back into AM by using the same endpoint. The endpoint's functionally is
identical to that of the ssoadm create-xacml and ssoadm list-xacml commands. For more information,
see "Importing and Exporting Policies".

Note

AM can only import XACML 3.0 policy sets that were either created by an AM instance, or that have had minor
manual modifications, due to the reuse of some XACML 3.0 parameters for non-standard information.

When exporting AM policies to XACML 3.0 policy sets, AM maps its policies to XACML 3.0 policy
elements. The mappings are as follows:

Policies to XACML Mappings

AM Policy XACML Policy
Policy Name Policy ID
Description Description
Current Time (yyyy.MM.dd.HH.mm.ss.SSS) Version
xacml rule target entitlement excluded resource names
Rule Deny Overrides Rule Combining Algorithm ID
Any of:

• Entitlement Subject

• Resource Names

• Policy Set Names

• Action Values

Target

Any of:

• Policy Set Name

Variable Definitions

Implementing Authorization
Importing and Exporting XACML 3.0

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 80

AM Policy XACML Policy
• Entitlement Name

• Privilege Created By

• Privilege Modified By

• Privilege Creation Date

• Privilege Last Modification Date
Single Level Permit/Deny Actions converted to Policy
Rules

Rules

Note

XACML obligation is not supported. Also, only one XACML match is defined for each privilege action, and only
one XACML rule for each privilege action value.

2.2.7.1. Exporting to XACML

AM supports exporting policies into XACML 3.0 format. AM only exports a policy set that contains
policy definitions. No other types can be included in the policy set, such as sub-policy sets or rules.
The policy set mapping is as follows:

Policy Set Mappings

AM XACML
Realm:<timestamp>(yyyy.MM.dd.HH.mm.ss.SSS) PolicySet ID
Current Time (yyyy.MM.dd.HH.mm.ss.SSS) Version
Deny Overrides Policy Combining Algorithm ID
No targets defined Target

The export service is accessible at the /xacml/policies endpoint using a HTTP GET request at the
following endpoint for the root realm or a specific realm:

http://openam.example.com:8080/openam/xacml/policies
http://openam.example.com:8080/openam/xacml/{realm}/policies

where {realm} is the name of a specific realm

You can filter your XACML exports using query search filters. Note the following points about the
search filters:

• LDAP-based Searches. The search filters follow the standard guidelines for LDAP searches as they
are applied to the entitlements index in the LDAP configuration backend, located at: ou=default
,ou=OrganizationalConfig,ou=1.0,ou=sunEntitlementIndexes, ou=services,dc=openam,dc=forgerock,dc=org.

Implementing Authorization
Importing and Exporting XACML 3.0

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 81

• Search Filter Format. You can specify a single search filter or multiple filters in the HTTP URL
parameters. The format for the search filter is as follows:

[attribute name][operator][attribute value]

If you specify multiple search filters, they are logically ANDed: the search results meet the criteria
specified in all the search filters.

XACML Export Search Filter Format

Element Description
Attribute Name The name of the attribute to be searched for. The only permissible

values are: application (keyword for policy set), createdby,
lastmodifiedby, creationdate, lastmodifieddate, name, description.

Operator The type of comparison operation to perform.

• = Equals (text)

• < Less Than or Equal To (numerical)

• > Greater Than or Equal To (numerical)
Attribute Value The matching value. Asterisk wildcards are supported.

To Export Policies

• Use the /xacml/policies endpoint to export the AM entitlement policies into XACML 3.0 format.
The following curl command exports the policies and returns the XACML response (truncated for
display purposes).
$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 http://openam.example.com:8080/openam/xacml/policies

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-overrides"
 Version="2014.10.08.21.59.39.231" PolicySetId="/:2014.10.08.21.59.39.231">
 <Target/>
 <Policy RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-overrides"
 Version="2014.10.08.18.01.03.626"
 PolicyId="Rockshop_Checkout_https://forgerock-rockshop.openrock.org:443/wp-login.php*?*">
 ...

To Export Policies with Search Filters

1. Use the /xacml/policies endpoint to export the policies into XACML 3.0 format with a search filter.
This command only exports policies that were created by "amadmin".

Implementing Authorization
Importing and Exporting XACML 3.0

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 82

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 http://openam.example.com:8080/openam/xacml/policies?filter=createdby=amadmin

2. You can also specify more than one search filter by logically ANDing the filters as follows:
$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 http://openam.example.com:8080/openam/xacml/policies?filter=createdby=amadmin&
 filter=creationdate=135563832

2.2.7.2. Importing from XACML

AM supports the import of XACML 3.0-based policy sets into AM policies using the REST /xacml/
policies endpoint. To test an import, AM provides a dry-run feature that runs an import without
saving the changes to the database. The dry-run feature provides a summary of the import so that you
can troubleshoot any potential mismatches prior to the actual import.

You can import a XACML policy using an HTTP POST request for the root realm or a specific realm at
the following endpoints:

http://openam.example.com:8080/openam/xacml/policies
http://openam.example.com:8080/openam/xacml/{realm}/policies

where {realm} is the name of a specific realm

To Import a XACML 3.0 Policy

1. You can do a dry run using the dryrun=true query to test the import. The dry-run option outputs in
JSON format and displays the status of each import policy, where "U" indicates "Updated"; "A" for
"Added". The dry-run does not actually update to the database. When you are ready for an actual
import, you need to re-run the command without the dryrun=true query.

Implementing Authorization
Managing Environment Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 83

$ curl \
 --request POST \
 --header "Content-Type: application/xml" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data @xacml-policy.xml \
 http://openam.example.com:8080/openam/xacml/policies?dryrun=true
[
 {
 "status":"A",
 "name":"aNewPolicy"
 },
 {
 "status":"U",
 "name":"anExistingPolicy"
 },
 {
 "status":"U",
 "name":"anotherExistingPolicy"
 }
]

2. Use the /xacml/policies endpoint to import a XACML policy:
$ curl \
 --request POST \
 --header "Content-Type: application/xml" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data @xacml-policy.xml \
 http://openam.example.com:8080/openam/xacml/policies

Tip

You can import a XACML policy into a realm as follows:
$ curl \
 --request POST \
 --header "Content-Type: application/xml" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data @xacml-policy.xml \
 http://openam.example.com:8080/openam/xacml/{realm}/policies

2.2.8. Managing Environment Condition Types
Environment condition types describe the JSON representation of environment conditions that you
can use in policy definitions.

AM provides the conditiontypes REST endpoint for the following:

• "Querying Environment Condition Types"

• "Reading a Specific Environment Condition Type"

Environment condition types are server-wide, and do not differ by realm. Hence the URI for the
condition types API does not contain a realm component, but is /json/conditiontypes.

Implementing Authorization
Managing Environment Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 84

Environment condition types are represented in JSON and take the following form. Environment
condition types are built from standard JSON objects and values (strings, numbers, objects, arrays,
true, false, and null).
{
 "title": "IPv4",
 "logical": false,
 "config": {
 "type": "object",
 "properties": {
 "startIp": {
 "type": "string"
 },
 "endIp": {
 "type": "string"
 },
 "dnsName": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
}

Notice that the environment condition type has a title, a "logical" field that indicates whether the
type is a logical operator or takes a predicate, and a configuration specification. The configuration
specification in this case indicates that an IPv4 environment condition has two properties, "startIp"
and "endIp", that each take a single string value, and a third property, "dnsName," that takes an
array of string values. In other words, a concrete IP environment condition specification without a
DNS name constraint could be represented in a policy definition as in the following example:
{
 "type": "IPv4",
 "startIp": "127.0.0.1",
 "endIp": "127.0.0.255"
}

The configuration is what differs the most across environment condition types. The NOT condition,
for example, takes a single condition object as the body of its configuration.
{
 "title" : "NOT",
 "logical" : true,
 "config" : {
 "type" : "object",
 "properties" : {
 "condition" : {
 "type" : "object",
 "properties" : {
 }
 }
 }
 }
}

Implementing Authorization
Managing Environment Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 85

The concrete NOT condition therefore takes the following form.
{
 "type": "NOT",
 "condition": {
 ...
 }
}

The OR condition takes an array of conditions.
{
 "title" : "OR",
 "logical" : true,
 "config" : {
 "type" : "object",
 "properties" : {
 "conditions" : {
 "type" : "array",
 "items" : {
 "type" : "any"
 }
 }
 }
 }
}

A corresponding concrete OR condition thus takes the following form.
{
 "type": "OR",
 "conditions": [
 {
 ...
 },
 {
 ...
 },
 ...
]
}

2.2.8.1. Querying Environment Condition Types

To list all environment condition types, perform an HTTP GET to the /json/conditiontypes endpoint,
with a _queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/conditiontypes?_queryFilter=true
 {

Implementing Authorization
Managing Environment Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 86

 "result" : [
 {
 "title": "IPv4",
 "logical": false,
 "config": {
 "type": "object",
 "properties": {
 "startIp": {
 "type": "string"
 },
 "endIp": {
 "type": "string"
 },
 "dnsName": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
 },
 {
 "title": "NOT",
 "logical": true,
 "config": {
 "type": "object",
 "properties": {
 "condition": {
 "type": "object",
 "properties": { }
 }
 }
 }
 },
 {...},
 {...},
 {...}
],
 "resultCount" : 18,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

2.2.8.2. Reading a Specific Environment Condition Type

To read an individual environment condition type, perform an HTTP GET to the /json/conditiontypes
endpoint, and specify the environment condition type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Implementing Authorization
Managing Subject Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 87

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/conditiontypes/IPv4
{
 "title" : "IPv4",
 "logical" : false,
 "config" : {
 "type" : "object",
 "properties" : {
 "startIp" : {
 "type" : "string"
 },
 "endIp" : {
 "type" : "string"
 },
 "dnsName" : {
 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
}

2.2.9. Managing Subject Condition Types

Subject condition types describe the JSON representation of subject conditions that you can use in
policy definitions.

AM provides the subjecttypes REST endpoint for the following:

• "Querying Subject Condition Types"

• "Reading a Specific Subject Condition Type"

Environment condition types are server-wide, and do not differ by realm. Hence the URI for the
condition types API does not contain a realm component, but is /json/subjecttypes.

Subject condition types are represented in JSON and take the following form. Subject condition types
are built from standard JSON objects and values (strings, numbers, objects, arrays, true, false, and
null).

Implementing Authorization
Managing Subject Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 88

{
 "title" : "Identity",
 "logical" : false,
 "config" : {
 "type" : "object",
 "properties" : {
 "subjectValues" : {
 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
}

Notice that the subject type has a title, a "logical" field that indicates whether the type is a logical
operator or takes a predicate, and a configuration specification. The configuration specification
in this case indicates that an Identity subject condition has one property, "subjectValues", which
takes an array of string values. In other words, a concrete Identity subject condition specification is
represented in a policy definition as in the following example:
{
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com"
]
}

The configuration is what differs the most across subject condition types. The AND condition, for
example, takes an array of subject condition objects as the body of its configuration.
{
 "title" : "AND",
 "logical" : true,
 "config" : {
 "type" : "object",
 "properties" : {
 "subjects" : {
 "type" : "array",
 "items" : {
 "type" : "any"
 }
 }
 }
 }
}

The concrete AND subject condition therefore takes the following form.

Implementing Authorization
Managing Subject Condition Types

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 89

{
 "type": "AND",
 "subject": [
 {...},
 {...},
 {...},
 {...}
]
}

2.2.9.1. Querying Subject Condition Types

To list all environment condition types, perform an HTTP GET to the /json/subjecttypes endpoint, with
a _queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/subjecttypes?_queryFilter=true
 {
 "result" : [
 {
 "title": "JwtClaim",
 "logical": false,
 "config": {
 "type": "object",
 "properties": {
 "claimName": {
 "type": "string"
 },
 "claimValue": {
 "type": "string"
 }
 }
 }
 },
 {
 "title": "NOT",
 "logical": true,
 "config": {
 "type": "object",
 "properties": {
 "subject": {
 "type": "object",
 "properties": { }
 }
 }
 }
 },
 {...},
 {...},
 {...}
],

Implementing Authorization
Managing Subject Attributes

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 90

 "resultCount" : 5,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

2.2.9.2. Reading a Specific Subject Condition Type
To read an individual subject condition type, perform an HTTP GET to the /json/subjecttypes endpoint,
and specify the subject condition type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/subjecttypes/Identity
{
 "title" : "Identity",
 "logical" : false,
 "config" : {
 "type" : "object",
 "properties" : {
 "subjectValues" : {
 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
}

2.2.10. Managing Subject Attributes
When you define a policy subject condition, the condition can depend on values of subject attributes
stored in a user's profile. The list of possible subject attributes that you can use depends on the LDAP
User Attributes configured for the Identity data store where AM looks up the user's profile.

AM provides the subjectattributes REST endpoint for the following:

• "Querying Subject Attributes"

Subject attributes derive from the list of LDAP user attributes configured for the Identity data store.
For more information, see "Setting Up Identity Data Stores" in the Setup and Maintenance Guide.

2.2.10.1. Querying Subject Attributes
To list all subject attributes, perform an HTTP GET to the /json/subjectattributes endpoint, with a
_queryFilter parameter set to true.

Implementing Authorization
Managing Decision Combiners

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 91

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/subjectattributes/?_queryFilter=true

{
 "result" : [
 "sunIdentityServerPPInformalName",
 "sunIdentityServerPPFacadeGreetSound",
 "uid",
 "manager",
 "sunIdentityServerPPCommonNameMN",
 "sunIdentityServerPPLegalIdentityGender",
 "preferredLocale",
 "...",
 "...",
 "..."
],
 "resultCount": 87,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Note that no pagination cookie is set and the subject attribute names are all returned as part of the
"result" array.

2.2.11. Managing Decision Combiners

Decision combiners describe how to resolve policy decisions when multiple policies apply.

AM provides the decisioncombiners REST endpoint for the following:

• "Querying Decision Combiners"

• "Reading a Specific Decision Combiner"

Decision combiners are server-wide, and do not differ by realm. Hence the URI for the condition
types API does not contain a realm component, but is /json/decisioncombiners.

2.2.11.1. Querying Decision Combiners

To list all decision combiners, perform an HTTP GET to the /json/decisioncombiners endpoint, with a
_queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Implementing Authorization
Managing Decision Combiners

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 92

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/decisioncombiners?_queryFilter=true
{
 "result": [
 {
 "title": "DenyOverride"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Query".

2.2.11.2. Reading a Specific Decision Combiner

To view an individual decision combiner, perform an HTTP GET on its resource.

To read an individual decision combiner, perform an HTTP GET to the /json/decisioncombiners
endpoint, and specify the decision combiner name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/decisioncombiners/DenyOverride
{
 "title" : "DenyOverride"
}

Implementing Transactional Authorization
Introducing Transactional Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 93

Chapter 3

Implementing Transactional Authorization
This chapter covers transactional authorization. Transactional authorization makes use of the session
upgrade functionality, applying it while authorization is in progress. For information on session
upgrade, see "About Authentication Levels" in the Authentication and Single Sign-On Guide.

Transactional authorization improves security by requiring a user to perform additional actions when
trying to access a resource protected by an AM policy. For example, they must reauthenticate to an
authentication module or respond to a push notification on their mobile device.

Performing the additional action successfully grants access to the protected resource, but only once.
Additional attempts to access the resource will require the user to perform the configured actions
again.

3.1. Introducing Transactional Authorization
Transactional authorization is implemented as a new environment condition type that can be added
to authorization policies. For more information on policies, see "Resource Types, Policy Sets, and
Policies".

The transactional authorization environment condition can be combined in policies with the other
conditions, for example, only requiring a push notification response when access is attempted to the
employees subrealm but outside usual working hours, as shown below:

Implementing Transactional Authorization
Introducing Transactional Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 94

Combining With Other Environment Conditions

The following diagram describes the sequence of events that occur when accessing a resource that is
protected by a REST application, and an AM policy containing a transactional environment condition:

Implementing Transactional Authorization
Introducing Transactional Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 95

Accessing Resources with Transactional Authorization

Authent icated User

Protected Web Server
(REST App) Access Managem ent Server

CTS

1 . Access at tem pt

2 . Evaluate policies Policy has t ransact ion condit ion

Transact ion

3 . Create and store t ransact ion token

Transact ion state: CREATED

4 . Return t ransact ion ID in advices

Regular Session Upgrade St eps

5 . Init iate authent icat ion, include t ransact ion ID

6 . Modify t ransact ion token state

Transact ion state: IN_PROGRESS

7 . Return callbacks for authent icat ion

8 . Render callbacks

9 . Perform requested authent icat ion

1 0 . Return com pleted callbacks

1 1 . Modify t ransact ion token state

Transact ion state: COMPLETED

1 2 . Return exist ing token ID

1 3 . Reevaluate policies, include t ransact ion ID

1 4 . Verify t ransact ion token state

1 5 . Transact ion state is COMPLETED
and t ransact ion was authorized

Transact ion state: DELETED

1 6 . Allow single access

1 7 . Access resource once

The sequence of events for a transaction authorization is as follows:

1. An authenticated user attempts to access a resource that is protected by an AM server.

2. The resource server contacts AM to evaluate the policies that apply.

The resource server can be protected with ForgeRock's Web or Java Agents version 5 or newer,
which support transactional authorization natively, or a custom application that uses ForgeRock's
REST API as per the diagram to manage the transactional authorization.

Implementing Transactional Authorization
Introducing Transactional Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 96

3. As the policy contains a transaction environment condition, AM creates a transaction token in the
Core Token Service (CTS) store. The initial transaction token state is set to CREATED.

The transaction token contains information about the policy evaluation, including the:

• Realm

• Resource

• Subject

• Audit tracking ID

• Authentication method

To protect against tampering, AM verifies that these details do not change and match those in the
incoming requests for the duration of the transaction.

The transaction token has a time-to-live (default 180 seconds) defined in the Transaction
Authentication Service. If the transaction is not completed in this time the token is deleted, and
the flow will need to be restarted. Alter the default if the transaction includes authentication
actions that take more time to complete, for example, using the HOTP authentication module for
one-time password over email.

The time-to-live can be configured globally, or per-realm. See "Transaction Authentication
Service".

4. In the JSON response to the policy evaluation request, AM returns the transaction ID—the unique
ID of the newly created transaction token—in the TransactionConditionAdvice array in the advices
object:
{
 "resource": "http://www.example.com:8000/index.html",
 "actions": {},
 "attributes": {},
 "advices": {
 "TransactionConditionAdvice": [
 "7b8bfd4c-60fe-4271-928d-d09b94496f84"
]
 },
 "ttl": 0
}

5. As the JSON response to the evaluation does not grant any actions but does contain advices,
the REST application on the resource server extracts the transaction ID and returns it to the
authentication service to commence the authentication.

The transaction ID is included in the TransactionConditionAdvice attribute value pair in the
composite advice query parameters sent as part of the request for actions.

ForgeRock web and Java agents manage this interaction natively. For information on using the
REST API to handle advices elements in policy evaluations, see "Requesting Policy Decisions".

Implementing Transactional Authorization
Introducing Transactional Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 97

6. AM extracts the transaction ID from the composite advice, verifies the corresponding transaction
token, and changes the state to IN_PROGRESS.

If the transaction ID is not in the expected state or does not exist, a 401 Unauthorized error is
returned. For example:
{
 "code": 401,
 "reason": "Unauthorized",
 "message": "Unable to read transaction.",
 "detail": {
 "errorCode": "128"
 }
}

7. AM responds with the callbacks necessary to satisfy any environment conditions.

Note

The advices returned by transaction environment conditions have the lowest precedence when compared to
the other condition advices. End-users will have to complete the non-transactional condition advices before
they can complete the transactional condition advices.

8. The REST application renders the callbacks and presents them to the user.

9. The user completes the required actions, for example authenticates to the specified chain, or
responds to the push notification on their registered mobile device.

10. The REST app completes the callbacks and returns the result to AM.

11. AM verifies the transaction token, and changes the state to COMPLETED.

12. With the transaction now complete, AM returns the original token.

Note that the authentication performed as part of an authorization flow does not behave exactly
the same as a standard authentication. The differences are:

• The user's original session is not upgraded or altered in any way.

• Failing the authentication during the authorization flow does not increment account lockout
counters.

13. The web or Java agent or custom application on the resource server can re-evaluate the policies
applying to the protected resources again, but includes the ID of the completed transaction as a
value in the TxId array in the environment object:

Implementing Transactional Authorization
Using Transactional Authorization

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 98

{
 "resources" : ["http://www.example.com:8000/index.html"],
 "application" : "iPlanetAMWebAgentService",
 "subject" : {
 "ssoToken" : "AQIC5w....*AJTMQAA*"
 },
 "environment": {
 "TxId": ["7b8bfd4c-60fe-4271-928d-d09b94496f84"]
 }
}

14. AM verifies the transaction was authorized and that the transaction token is in the COMPLETED state.

15. If the transaction was completed successfully, authorization continues. The transaction token is
marked for deletion, so that it cannot be used to grant more than a single access.

16. As the authentication required to complete the transaction was successful, AM returns the result
of the policy reevaluation. For example, the following response grants the POST and GET actions to
the resource http://www.example.com:8000/index.html:
{
 "resource": "http://www.example.com:8000/index.html",
 "actions": {
 "POST": true,
 "GET": true
 },
 "attributes": {},
 "advices": {},
 "ttl": 0
}

Important

Successful transactional authorization responses set the time-to-live (ttl) value to zero to ensure that the
policy decision is not cached and cannot be used more than once.

ForgeRock agents prior to version 5 do not support a time-to-live value of zero and cannot be used for
transactional authorization.

17. The user is able to access the protected resource once. Additional attempts to access a resource
protected with a policy containing a transactional environment condition require a new
transaction to be completed.

3.2. Using Transactional Authorization
This section demonstrates how to set up transactional authorization to send push notifications to a
user's mobile device to authorize access to a protected resource.

Implementing Transactional Authorization
Transactional Authorization Prerequisite Tasks

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 99

3.2.1. Transactional Authorization Prerequisite Tasks

Before attempting this demonstration you must perform the following prerequisite tasks:

• Create an authentication chain containing the ForgeRock Authenticator (PUSH) Registration
authentication module. Log in to that chain as the demo user and register a mobile device using the
ForgeRock Authenticator application.

See Procedure 4.2: "To Create an Authentication Chain for Push Registration and Passwordless
Authentication" and "Registering a Device for Multi-Factor Authentication" in the Authentication
and Single Sign-On Guide.

• Set up the Push Notification Service in AM with valid credentials.

For information on provisioning the credentials required by the Push Notification Service, see "How
do I set up OpenAM/AM Push Notification Service credentials?" in the ForgeRock Knowledge Base.

For detailed information about Push Notification Service properties, see "Push Notification
Service".

• Perform at least one of the following steps:

• To use the AM console for the demonstration, set up a web agent to protect web resources. See
"First Steps" in the Quick Start Guide.

• To use the AM REST API for the demonstration, create a user account that has read access to
the policy endpoints. By default, users do not have permissions to access the policy evaluation
endpoints directly. To allow access to the policy REST endpoints, follow the steps in "To Allow a
User to Evaluate Policies".

After completing the prerequisite tasks, proceed to the steps outlined in "To Prepare AM for
Transactional Authorization with Push Notifications".

3.2.2. Preparing AM for Transactional Authorization with Push Notifications

Perform the following steps to set up an authorization policy with a transaction environment
condition, which requires users to respond to a push notification message on their registered mobile
device to authorize access to a protected resource.

Ensure you have completed the steps outlined in "Transactional Authorization Prerequisite Tasks"
before proceeding.

To Prepare AM for Transactional Authorization with Push Notifications

1. Add a ForgeRock Authenticator (Push) authentication module:

a. Log in as an AM administrator, for example, amadmin.

https://backstage.forgerock.com/knowledge/kb/article/a47604373
https://backstage.forgerock.com/knowledge/kb/article/a47604373

Implementing Transactional Authorization
Preparing AM for Transactional Authorization with Push Notifications

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 100

b. Navigate to Realms > Top Level Realm > Authentication > Modules, and then select Add
Module.

c. On the New Module page, name the module pushAuth, select ForgeRock Authenticator (Push)
as the module type, and then select Create.

d. (Optional) Alter the Login Message. For example:
Authorize {{user}} at {{issuer}}?

e. Select Save Changes

2. Add the module to an authentication chain:

a. Navigate to Realms > Top Level Realm > Authentication > Chains, and then select Add
Chain.

b. On the Add Chain page, name the chain pushAuthChain, and then select Create.

c. On the Edit Chain tab, select Add a Module.

d. On the New Module dialog, in the Select Module drop-down menu, select the push module
you create in the earlier step, for example, pushAuth, in the Select Criteria drop-down menu,
select Required, and then select OK.

e. On the Edit Chain tab, select Save Changes.

3. Create an authorization policy as described in "To Configure a Policy" in the Quick Start Guide,
and then make the following changes to the policy:

a. Navigate to Realms > Top Level Realm > Authorization > Policy Sets, and then select Default
Policy Set.

b. On the Default Policy Set page, select Authenticated users can get Apache HTTP home page.

c. On the Environments tab, select Add an Environment Condition, and then select Transaction.

d. In the Authentication Strategy drop-down, select Authenticate to Chain.

e. In the Strategy Specifier field, enter the name of the push authorization chain created earlier,
for example, pushAuthChain.

Note

The value entered must exactly match the name of the chain. The value is not validated by the UI, and
an incorrect value will cause the authorization to fail.

f. Select the checkmark icon, and then select Save Changes.

Implementing Transactional Authorization
Using Transactional Authorization with the AM Console

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 101

The resulting policy will resemble the following image:

Transaction Environment Condition in a Policy

When completed, choose one of the following options for the next step:

• To use the AM console for the demonstration, proceed to the steps outlined in "Using Transactional
Authorization with the AM Console".

• To use the AM REST API for the demonstration, proceed to the steps outlined in "Using
Transactional Authorization with the REST APIs".

3.2.3. Using Transactional Authorization with the AM Console
This section describes how to use the AM console to perform a transactional authorization that sends
a push notification to a mobile device.

Ensure you have completed the steps outlined in "To Prepare AM for Transactional Authorization with
Push Notifications" before proceeding.

Implementing Transactional Authorization
Using Transactional Authorization with the AM Console

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 102

To Perform Transactional Authorization with the AM Console

1. In a web browser, navigate to a URL that is protected by the policy you edited in "To Prepare AM
for Transactional Authorization with Push Notifications", such as http://www.example.com:8000/index
.html

The web agent will redirect the browser to the AM login screen.

2. Log in to AM as user demo with password changeit.

AM will display the authenticator push page:

The mobile device that was registered to the demo user will receive a push notification message:

3. On the registered mobile device, tap the notification.

The ForgeRock Authenticator app will open. Swipe the switch to authorize the access attempt.

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 103

After authorizing the request in the ForgeRock Authenticator app, the authenticator push page in
the web browser redirects to the requested resource, completing the transactional authorization.

Note that refreshing the protected page in the web browser at this point starts a new
transactional authorization flow, and send a new push notification.

3.2.4. Using Transactional Authorization with the REST APIs

This section describes how to use the AM REST API to perform a transactional authorization that
sends a push notification to a mobile device.

Ensure you have completed the steps outlined in "To Prepare AM for Transactional Authorization with
Push Notifications" before proceeding.

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 104

To Perform Transactional Authorization with the AM REST API

1. Obtain a session token from AM for user demo with password changeit:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "X-OpenAM-Username: demo"
 \
--header "X-OpenAM-Password: changeit"
 \
--data "{}" \
http://openam.example.com:8080/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console"
 "realm":"/"
}

2. Request a policy evaluation with the tokenId from the previous step as the subject, and a resource
URL that is protected by the policy you edited in "To Prepare AM for Transactional Authorization
with Push Notifications", such as http://www.example.com:8000/index.html.

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 105

Note

The request requires authentication as a user with the privileges to access the policy endpoints, for
example by specifying the SSO token ID in the iPlanetDirectoryPro cookie. See "Authentication and
Logout".

$ curl \
--cookie "iPlanetDirectoryPro=AQIC5wM2L...zEAAA..*" \"
 \
--request POST
 \
--header "Content-Type: application/json"
 \
--data '{
 "resources" : ["http://www.example.com:8000/index.html"],
 "subject" : {
 "ssoToken" : "AQIC5w...NTcy*"
 }
}' \
http://openam.example.com:8080/openam/json/policies/?_action=evaluate
[
 {
 "resource": "http://www.example.com:8000/index.html",
 "actions": {},
 "attributes": {},
 "advices": {
 "TransactionConditionAdvice": [
 "9dae2c80-fe7a-4a36-b57b-4fb1271b0687"
]
 },
 "ttl": 0
 }
]

AM returns an empty actions element, and a transaction ID in the TransactionConditionAdvice
property, because a transactional authorization is required to access the resource.

3. Initiate authentication, and include the transaction ID in the composite advice. Note that the
steps used for performing a transactional authorization are identical to performing a session
upgrade. See "Session Upgrade" in the Authentication and Single Sign-On Guide.

The transaction ID returned in the previous step must be returned as composite advice query
parameters, wrapped in URL-encoded XML. The XML format is as follows:
<Advices>
 <AttributeValuePair>
 <Attribute name="TransactionConditionAdvice"/>
 <Value>Transaction Id</Value>
 </AttributeValuePair>
</Advices>

Use the SSO token of the demo user for this request.

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 106

Note that the following curl command URL-encodes the XML values, and the -G parameter
appends them as query string parameters to the URL:
$ curl -G
 \
--cookie "iPlanetDirectoryPro=AQIC5w...NTcy*" \"
 \
--request POST
 \
--header "Content-Type: application/json"
 \
--data-urlencode 'authIndexType=composite_advice'
 \
--data-urlencode 'authIndexValue=<Advices>
 <AttributeValuePair>
 <Attribute name="TransactionConditionAdvice"/>
 <Value>9dae2c80-fe7a-4a36-b57b-4fb1271b0687</Value>
 </AttributeValuePair>
</Advices>' \
'http://openam.example.com:8080/openam/json/authenticate'
{
 "authId": "eyJ0eXAiOi...WLxJ-1d6ovYKHQ",
 "template": "",
 "stage": "AuthenticatorPush3",
 "header": "Authenticator Push",
 "callbacks": [
 {
 "type": "PollingWaitCallback",
 "output": [
 {
 "name": "waitTime",
 "value": "10000"
 }
]
 },
 {
 "type": "ConfirmationCallback",
 "output": [
 {
 "name": "prompt",
 "value": ""
 },
 {
 "name": "messageType",
 "value": 0
 },
 {
 "name": "options",
 "value": [
 "Use Emergency Code"
]
 },
 {
 "name": "optionType",
 "value": -1
 },
 {
 "name": "defaultOption",

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 107

 "value": 0
 }
],
 "input": [
 {
 "name": "IDToken2",
 "value": 100
 }
]
 }
]
}

At this point, the mobile device that was registered to the demo user will receive a push notification
message, that they should authorize in the ForgeRock Authenticator app.

4. Ensure that the time specified in the waitTime property in the callbacks has passed, in this case at
least 10 seconds, and then complete and return the requested callbacks.

The value of the authId property must also be returned, as well as the URL-encoded transaction
ID.

Use the SSO token of the demo user for this request.

Note

In this example, the required XML parameters have been URL-encoded and added to the URL. The curl
command is not able to use the --data-urlencode option for query-string parameters and also send a JSON
payload.

$ curl \
--cookie "iPlanetDirectoryPro=AQIC5w...NTcy*" \"
 \
--request POST
 \
--header "Content-Type: application/json"
 \
--data '{
 "authId":"eyJ0eXAiOi...WLxJ-1d6ovYKHQ",
 "template":"",
 "stage":"AuthenticatorPush3",
 "header":"Authenticator Push",
 "callbacks":[
 {
 "type":"PollingWaitCallback",
 "output":[
 {
 "name":"waitTime",
 "value":"10000"
 }
]
 },
 {
 "type":"ConfirmationCallback",

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 108

 "output":[
 {
 "name":"prompt",
 "value":""
 },
 {
 "name":"messageType",
 "value":0
 },
 {
 "name":"options",
 "value":[
 "Use Emergency Code"
]
 },
 {
 "name":"optionType",
 "value":-1
 },
 {
 "name":"defaultOption",
 "value":0
 }
],
 "input":[
 {
 "name":"IDToken2",
 "value":100
 }
]
 }
]
}' \
"http://openam.example.com:8080/openam/json/authenticate
\
?authIndexType=composite_advice\
&authIndexValue=%3CAdvices%3E%0A\
%3CAttributeValuePair%3E%0A%3CAttribute%20name%3D\
%22TransactionConditionAdvice%22%2F%3E%0A\
%3CValue%3E9dae2c80-fe7a-4a36-b57b-4fb1271b0687\
%3C%2FValue%3E%0A%3C%2FAttributeValuePair\
%3E%0A%3C%2FAdvices%3E"
{
 "tokenId":"AQIC5w...NTcy*",
 "successUrl":"http://www.example.com:8000/index.html",
 "realm":"/"
}

If the callbacks were correctly completed, and the push notification was responded to in the
ForgeRock Authenticator app, AM returns the original tokenId value.

If the push notification has not yet been responded to in the ForgeRock Authenticator app, AM
will return the required callbacks again, as in the previous step. Wait until the amount of time
specified in the waitTime element has passed and retry the request until the tokenId returns.

Implementing Transactional Authorization
Using Transactional Authorization with the REST APIs

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 109

5. Re-evaluate the policy, including the transaction ID as the value of a TxId property in the
environment element:
$ curl \
--cookie "iPlanetDirectoryPro=AQIC5wM2L...zEAAA..*" \"
 \
--request POST
 \
--header "Content-Type: application/json"
 \
--data '{
 "resources" : ["http://www.example.com:8000/index.html"],
 "subject" : {
 "ssoToken" : "AQIC5w...NTcy*"
 },
 "environment": {
 "TxId": ["9dae2c80-fe7a-4a36-b57b-4fb1271b0687"]
 }
}' \
http://openam.example.com:8080/openam/json/policies/?_action=evaluate
[
 {
 "resource": "http://www.example.com:8000/index.html",
 "actions": {
 "POST": true,
 "GET": true
 },
 "attributes": {},
 "advices": {},
 "ttl": 0
 }
]

As the authentication required by the transaction was successful, the second policy evaluation
returns the POST and GET actions as defined in the policy.

Notice that the time-to-live (ttl) value of the policy evaluation result is set to 0, meaning that the
policy must not be cached. The policy only allows a single access to the resource, which must be
managed by the policy enforcement point.

Note that performing the policy evaluation again with the same subject and resource at this point
starts a new transactional authorization flow, requiring each of the steps above to be repeated in
order to access the protected resource each time.

Customizing Authorization
Customizing Policy Evaluation With a Plug-In

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 110

Chapter 4

Customizing Authorization
This chapter describes how to customize policy evaluation by writing a policy plug-in and by scripting
a customized policy condition.

4.1. Customizing Policy Evaluation With a Plug-In
AM policies let you restrict access to resources based both on identity and group membership,
and also on a range of conditions including session age, authentication chain or module used,
authentication level, realm, session properties, IP address and DNS name, user profile content,
resource environment, date, day, time of day, and time zone. Yet, some deployments require further
distinctions for policy evaluation. This section explains how to customize policy evaluation for
deployments with particular requirements not met by built-in AM functionality.

This section shows how to build and use a custom policy plugin that implements a custom subject
condition, a custom environment condition, and a custom resource attribute.

4.1.1. About the Sample Plugin

The AM policy framework lets you build plugins that extend subject conditions, environment
conditions, and resource attributes.

For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

Get a local clone so that you can try the sample on your system. In the sources, you find the following
files under the /path/to/openam-samples-external/policy-evaluation-plugin directory:

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample policy evaluation plugin, and also specifies its
dependencies on AM components.

src/main/java/org/forgerock/openam/examples/SampleAttributeType.java

Extends the com.sun.identity.entitlement.ResourceAttribute interface, and shows an implementation
of a resource attribute provider to send an attribute with the response.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing Authorization
Building the Sample Plugin

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 111

src/main/java/org/forgerock/openam/examples/SampleConditionType.java

Extends the com.sun.identity.entitlement.EntitlementCondition interface, and shows an
implementation of a condition that is the length of the user name.

A condition influences whether the policy applies for a given access request. If the condition is
fulfilled, then AM includes the policy in the set of policies to evaluate in order to respond to a
policy decision request.

src/main/java/org/forgerock/openam/examples/SampleSubjectType.java

Extends the com.sun.identity.entitlement.EntitlementSubject interface, and shows an implementation
that defines a user to whom the policy applies.

A subject, like a condition, influences whether the policy applies. If the subject matches in the
context of a given access request, then the policy applies.

src/main/java/org/forgerock/openam/examples/SampleEntitlementModule.java
src/main/resources/META-INF/services/org.forgerock.openam.entitlement.EntitlementModule

These files serve to register the plugin with AM.

The Java class, SampleEntitlementModule, implements the org.forgerock.openam.entitlement
.EntitlementModule interface. In the sample, this class registers SampleAttribute, SampleCondition, and
SampleSubject.

The services file, org.forgerock.openam.entitlement.EntitlementModule, holds the fully qualified class
name of the EntitlementModule that registers the custom implementations. In this case, org.forgerock
.openam.entitlement.EntitlementModule.

For an explanation of service loading, see the ServiceLoader API specification.

4.1.2. Building the Sample Plugin
Follow the steps in this procedure to build the sample plugin:

To Build the Sample Plugin

1. If you have not already done so, download and build the samples.

For information on downloading and building AM sample source code, see How do I access and
build the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge
Base.

2. When the build is complete, copy the policy-evaluation-plugin-5.5.jar file to the WEB-INF/lib
directory where you deployed AM:
$ cp target/*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

3. Edit the /path/to/tomcat/webapps/openam/XUI/locales/en/translation.json file to update the user
interface to include the custom subject and environment conditions:

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/ServiceLoader.html
https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing Authorization
Adding Custom Policy Implementations to Existing Policy Sets

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 112

a. Locate the line that contains the following text:
"subjectTypes": {

b. Insert the following text after the line you located in the previous step:
"SampleSubject": {
 "title": "Sample Subject",
 "props": {
 "name": "Name"
 }
},

c. Locate the line that contains the following text:
"conditionTypes": {

d. Insert the following text after the line you located in the previous step:
"SampleCondition": {
 "title": "Sample Condition",
 "props": {
 "nameLength": "Minimum username length"
 }
},

4. If you require additional translations under /path/to/tomcat/webapps/openam/XUI/locales, modify other
translation.json files as needed.

5. Clear your browser's cache and restart your browser.

Clearing the cache and refreshing the browser is required when you modify the translation.json
file.

6. Restart AM or the container in which it runs.

4.1.3. Adding Custom Policy Implementations to Existing Policy Sets
In order to use your custom policy in existing policy sets, you must update the policy sets. Note that
you cannot update a policy set that already has policies configured. When there are already policies
configured for a policy set, you must instead first delete the policies, and then update the policy set.

Update the iPlanetAMWebAgentService policy set in the top level realm of a fresh installation. First,
authenticate to AM as the amadmin user:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: amadmin" \
 --header "X-OpenAM-Password: password" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{"tokenId":"AQIC5wM2...","successUrl":"/openam/console"}

Customizing Authorization
Trying the Sample Subject and Environment Conditions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 113

Then update the iPlanetAMWebAgentService policy set by adding the SampleSubject subject condition and
the SampleCondition environment condition:
$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5wM2..." \
 --header "Content-Type: application/json" \
 --data '{
 "name": "iPlanetAMWebAgentService",
 "conditions": [
 "LEAuthLevel",
 "Script",
 "AuthenticateToService",
 "SimpleTime",
 "AMIdentityMembership",
 "OR",
 "IPv6",
 "IPv4",
 "SessionProperty",
 "AuthScheme",
 "AuthLevel",
 "NOT",
 "AuthenticateToRealm",
 "AND",
 "ResourceEnvIP",
 "LDAPFilter",
 "OAuth2Scope",
 "Session",
 "SampleCondition"
],
 "subjects": [
 "NOT",
 "OR",
 "JwtClaim",
 "AuthenticatedUsers",
 "AND",
 "Identity",
 "NONE",
 "SampleSubject"
],
 "applicationType": "iPlanetAMWebAgentService",
 "entitlementCombiner": "DenyOverride"
 }' https://openam.example.com:8443/openam/json/realms/root/applications/iPlanetAMWebAgentService

4.1.4. Trying the Sample Subject and Environment Conditions

Using the AM console, add a policy to the iPlanetAMWebAgentService policy set in the top level realm
that allows HTTP GET access for URLs based on the template http://www.example.com:80/* and uses the
custom subject and environment conditions.

Create the policy with the following properties:

Customizing Authorization
Trying the Sample Subject and Environment Conditions

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 114

Sample Policy Properties

Property Value
Name Sample Policy

Resource Type URL

Resources Use the *://*:*/*resource template to specify the resource http://www
.example.com:80/*.

Actions Allow GET
Subject Conditions Add a subject condition of type Sample Subject and a name of demo so that

the demo user is the only user who can access the resource.
Environment Conditions Add an environment condition of type Sample Condition and a minimum

username length of 4 so that only users with a username length of 4
characters or greater can access the resource.

With the policy in place, authenticate both as a user who can request policy decisions and also as a
user trying to access a resource. Both of these calls return tokenId values for use in the policy decision
request.
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: amadmin" \
 --header "X-OpenAM-Password: password" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{"tokenId":"AQIC5wM2LY4Sfcw...","successUrl":"/openam/console"}

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{"tokenId":"AQIC5wM2LY4Sfcy...","successUrl":"/openam/console"}

Use the administrator tokenId as the header of the policy decision request, and the user tokenId as the
subject ssoToken value.

Customizing Authorization
Trying the Sample Resource Attributes

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 115

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 --data '{
 "subject": {
 "ssoToken": "AQIC5wM2LY4Sfcy..."},
 "resources": [
 "http://www.example.com:80/index.html"
],
 "application": "iPlanetAMWebAgentService"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluate

[
 {
 "resource": "http://www.example.com:80/index.html",
 "actions": {
 "GET": true
 },
 "attributes": {},
 "advices": {}
 }
]

Notice that the actions returned from the policy evaluation call are set in accordance with the policy.

4.1.5. Trying the Sample Resource Attributes

The sample custom policy plugin can have AM return an attribute with the policy decision. In order
to make this work, list the resource type for the URL resource type to obtain its UUID, and then update
your policy to return a test attribute:

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5wM2..." \
 https://openam.example.com:8443/openam/json/realms/root/resourcetypes?_queryFilter=name%20eq%20%22URL%22
{
 "result":[
 {
 "uuid":"URL-resource-type-UUID",
 "name":"URL",
 "description":"The built-in URL Resource Type available to AM Policies.",
 "patterns":["*://*:*/*","*://*:*/*?*"],
 ...
 }
],
 "resultCount":1,
 "pagedResultsCookie":null,
 "totalPagedResultsPolicy":"NONE",
 "totalPagedResults":-1,
 "remainingPagedResults":0
}

$ curl \

Customizing Authorization
Trying the Sample Resource Attributes

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 116

 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 --header "Content-Type: application/json" \
 --data '{
 "name": "Sample Policy",
 "active": true,
 "description": "Try sample policy plugin",
 "resourceTypeUuid": "URL-resource-type-UUID",
 "resources": [
 "http://www.example.com:80/*"
],
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "GET": true
 },
 "subject": {
 "type": "SampleSubject",
 "name": "demo"
 },
 "condition": {
 "type": "SampleCondition",
 "nameLength": 4
 },
 "resourceAttributes": [
 {
 "type": "SampleAttribute",
 "propertyName": "test"
 }
]
}' http://openam.example.com:8088/openam/json/policies/Sample%20Policy

When you now request the same policy decision as before, AM returns the test attribute that you
configured in the policy.

Customizing Authorization
Extending the ssoadm Classpath

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 117

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 --data '{
 "subject": {
 "ssoToken": "AQIC5wM2LY4Sfcy..."},
 "resources": [
 "http://www.example.com:80/index.html"
],
 "application": "iPlanetAMWebAgentService"
 }' \
 http://openam.example.com:8080/openam/json/realms/root/policies?_action=evaluate

[
 {
 "resource": "http://www.example.com/profile",
 "actions": {
 "GET": true
 },
 "attributes": {
 "test": [
 "sample"
]
 },
 "advices": {}
 }
]

4.1.6. Extending the ssoadm Classpath

After customizing your AM deployment to use policy evaluation plugins, inform ssoadm users to add
the jar file containing the plugins to the classpath before running policy management subcommands.

To add a jar file to the ssoadm classpath, set the CLASSPATH environment variable before running the
ssoadm command.
$ export CLASSPATH=/path/to/jarfile:$CLASSPATH
$ ssoadm ...

4.2. Scripting a Policy Condition
This section demonstrates how to use the sample policy condition script as part of an authorization
policy. To examine the contents of the sample policy condition script in the AM console browse to
Realms > Top Level Realm > Scripts, and then select Scripted Policy Condition.

The default policy condition script demonstrates how to access a user's profile information, use that
information in HTTP calls, and make a policy decision based on the outcome.

For general information about scripting in AM, see "About Scripting".

Customizing Authorization
Preparing

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 118

For information about APIs available for use when scripting policy conditions, see the following
sections:

• "Global Scripting API Functionality"

• "Authorization API Functionality"

4.2.1. Preparing
AM requires a small amount of configuration before trying the default policy condition script. The
default policy condition script requires that the subject of the policy has an address in their profile.
The script compares the address to the country in the resource URL and to the country from which
the request originated, as determined by an external GeoIP web service. The demo user also requires
access to evaluate policies.

The procedures in this section are:

• "To Add an Address to the Demo User"

• "To Allow a User to Evaluate Policies"

• "To Create a Policy that Uses the Default Policy Condition Script"

• "To Enable Message-level Logging for Policy Evaluation"

To Add an Address to the Demo User

In this procedure, add an address value to the demo user's profile. The default policy condition script
uses the address when performing policy evaluation.

1. Log in as an AM administrator, for example amadmin.

2. Select Realms > Top Level Realm > Subjects.

3. On the User tab, select the demo user.

4. In Home Address, enter a valid address. For example:
201 Mission St, Suite 2900, San Francisco, CA 94105

5. Select Save.

To Allow a User to Evaluate Policies

In this procedure, add a user to a group and assign the privilege required to perform policy
evaluations.

1. Log in as an AM administrator, for example amadmin.

2. Select Realms > Top Level Realm > Subjects.

Customizing Authorization
Preparing

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 119

3. On the User tab, select New, enter an ID for the user, such as restPolicyUser, complete the
required fields, and then select OK.

4. On the Group tab, select New, enter an ID for the group, such as policyEval, and then select OK.

5. On the User tab:

a. Select the user you created, for example, restPolicyUser.

b. Select the Group tab.

c. In the Available box, select the group created in step 3, for example policyEval, and then
select Add.

d. Select Save.

6. Select Realms > Top Level Realm > Privileges.

7. Select the group created in step 3, for example policyEval.

8. On the Privileges page, select REST calls for policy evaluation.

9. Select Save.

To Create a Policy that Uses the Default Policy Condition Script

In this procedure, create a policy that uses the default policy condition script. Policy evaluations can
then be performed to test the script functionality.

1. Log in as an AM administrator, for example amadmin.

2. Select Realms > Top Level Realm > Authorization > Policy Sets.

3. On the Policy Sets page, select Default Policy Set.

4. On the Default Policy Set page, select Add a Policy.

5. Define the policy as follows:

a. Enter a name for the policy.

b. Define resources to which the policy applies:

i. Select URL from the Resource Type drop down list.

ii. Select the resource pattern *://*:*/* from the Resources drop down list.

iii. Select Add.

The *://*:*/* resource appears in the Resources field.

iv. Select Add Resource to add a second resource to the policy.

Customizing Authorization
Preparing

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 120

v. Select the resource pattern *://*:*/*?* from the Resources drop down list.

vi. Select Add.

The *://*:*/*?* resource appears along with the *://*:*/* resource in the Resources field.

vii. Select Create to create the policy.

The Resources tab appears as follows:

c. Specify actions to which the policy applies:

i. Select the Actions tab.

ii. Select GET from the Add an Action drop down list.

iii. The GET action appears in the list of actions. The default state for the GET action is
Allow.

The Actions tab appears as follows:

Customizing Authorization
Preparing

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 121

iv. Select Save Changes.

d. Configure subjects to which the policy applies:

i. Select the Subjects tab.

ii. Select the edit icon—the pencil.

iii. Select Authenticated Users from the Type drop down list.

iv. Select the OK icon—the check mark.

The Subjects tab appears as follows:

Customizing Authorization
Preparing

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 122

v. Select Save Changes.

e. Configure environments in which the policy applies:

i. Select the Environments tab.

ii. Select Add an Environment Condition.

iii. Select Script from the Type drop down list.

iv. Select Scripted Policy Condition from the Script Name drop down list.

v. Select the OK icon—the check mark.

The Environments tab appears as follows:

Customizing Authorization
Preparing

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 123

vi. Select Save Changes.

f. No additional configuration is required in the Response Attributes or Details tabs.

To Enable Message-level Logging for Policy Evaluation

The default policy condition script writes to the debug logs at the message level. Message-level debug
logging is not enabled for policy evaluation by default.

This section shows how to enable message-level debug logging for policy evaluation, so that logger
output from the default policy condition script can be viewed in the Entitlement debug log.

1. Log in as an AM administrator, for example amadmin.

2. Visit the Debug.jsp page, for example: https://openam.example.com:8443/openam/Debug.jsp.

3. In the Debug instances drop-down, select Entitlement.

4. In the Level drop-down, choose the debug level required. In this example, select Message.

Customizing Authorization
Trying the Default Policy Condition Script

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 124

5. Select Submit, and on the summary page that appears, select Confirm.

Message-level debug logging is now enabled for policy evaluation.

4.2.2. Trying the Default Policy Condition Script

This section demonstrates using a policy that contains the default policy condition script.

To evaluate against a policy, you must first obtain an SSO token for the subject performing the
evaluation, in this case the demo user. You can then make a call to the policies?_action=evaluate
endpoint, including some environment information, which the policy uses to make an authorization
decision.

To Evaluate a Policy

1. Obtain an SSO Token for the demo user:
curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5wM2...",
 "successUrl": "/openam/console"
}

2. Send an evaluation request to the policies endpoint, using the SSO token of the demo user in the
iPlanetDirectoryPro header.

In the JSON data, set the subject property to also be the SSO token of the demo user. In the
resources property, include a URL that resides on a server in the same country as the address set
for the demo user. In the environment property, include an IP address that is also based in the same
country as the user and the resource. The example below uses the ForgeRock Community web
site URL and an IP address from a ForgeRock office, both located in the United States:
curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5wM2..." \
 --data '{
 "resources": [
 "http://www.forgerock.org:80/index.html"
],
 "application": "iPlanetAMWebAgentService",
 "subject": { "ssoToken": "AQIC5wM2..."},
 "environment": {
 "IP": [
 "38.99.39.210"
]
 }
}' \
https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluate

Customizing Authorization
Trying the Default Policy Condition Script

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 125

[
 {
 "advices": {},
 "ttl": 9223372036854775807,
 "resource": "http://www.forgerock.org:80/index.html",
 "actions": {
 "POST": true,
 "GET": true
 },
 "attributes": {
 "countryOfOrigin": [
 "United States"
]
 }
 }
]

If the country in the subject's profile matches the country determined from the source IP in
the environment and the country determined from the resource URL, then AM returns a list of
actions available. The script will also add an attribute to the response called countryOfOrigin with
the country as the value.

If the countries do not match, no actions are returned. In the following example, the resource
URL is based in France, while the IP and user's address in the profile are based in the United
States:
curl -X POST
 \
-H "Content-Type: application/json"
 \
-H "iPlanetDirectoryPro: AQIC5wM2..."
 \
-d '{
 "resources": [
 "http://www.forgerock.fr:80/index.html"
],
 "application": "iPlanetAMWebAgentService",
 "subject": { "ssoToken": "AQIC5wM2..."},
 "environment": {
 "IP": [
 "38.99.39.210"
]
 }
}' \
'https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluate'
[
 {
 "advices": {},
 "ttl": 9223372036854775807,
 "resource": "http://www.forgerock.fr:80/index.html",
 "actions": {},
 "attributes": {}
 }
]

Reference
Global Service Properties

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 126

Chapter 5

Reference
This reference section covers settings and the scripting API relating to authorization in AM.

5.1. Global Service Properties
The following sections document AM services with configuration properties that affect AM
authorization:

• "Push Notification Service"

• "Policy Configuration"

• "Transaction Authentication Service"

5.1.1. Push Notification Service

amster service name: pushNotification

5.1.1.1. Realm Defaults

The following settings appear on the Realm Defaults tab:

SNS Access Key ID

Amazon Simple Notification Service Access Key ID. For more information, see https://
aws.amazon.com/developers/access-keys/.

For example, you might set this property to: AKIAIOSFODNN7EXAMPLE

amster attribute: accessKey

SNS Access Key Secret

Amazon Simple Notification Service Access Key Secret. For more information, see https://
aws.amazon.com/developers/access-keys/.

For example, you might set this property to: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

amster attribute: secret

https://aws.amazon.com/developers/access-keys/
https://aws.amazon.com/developers/access-keys/
https://aws.amazon.com/developers/access-keys/
https://aws.amazon.com/developers/access-keys/

Reference
Push Notification Service

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 127

SNS Endpoint for APNS

The Simple Notification Service endpoint in Amazon Resource Name format, used to send push
messages to the Apple Push Notification Service (APNS).

For example, you might set this property to: arn:aws:sns:us-east-1:1234567890:app/APNS/
production

amster attribute: appleEndpoint

SNS Endpoint for GCM

The Simple Notification Service endpoint in Amazon Resource Name format, used to send push
messages over Google Cloud Messaging (GCM).

For example, you might set this property to: arn:aws:sns:us-east-1:1234567890:app/GCM/
production

amster attribute: googleEndpoint

SNS Client Region

Region of your registered Amazon Simple Notification Service client. For more information, see
https://docs.aws.amazon.com/general/latest/gr/rande.html.

The possible values for this property are:

us-gov-west-1
us-east-1
us-west-1
us-west-2
eu-west-1
eu-central-1
ap-southeast-1
ap-southeast-2
ap-northeast-1
ap-northeast-2
sa-east-1
cn-north-1

Default value: us-east-1

amster attribute: region

Message Transport Delegate Factory

The fully qualified class name of the factory responsible for creating the
PushNotificationDelegate. The class must implement org.forgerock.openam.services.push
.PushNotificationDelegate.

Default value: org.forgerock.openam.services.push.sns.SnsHttpDelegateFactory

amster attribute: delegateFactory

https://docs.aws.amazon.com/general/latest/gr/rande.html

Reference
Policy Configuration

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 128

Response Cache Duration

The minimum lifetime to keep unanswered message records in the message dispatcher cache, in
seconds. To keep unanswered message records indefinitely, set this property to 0.Should be tuned
so that it is applicable to the use case of this service. For example, the ForgeRock Authenticator
(Push) authentication module has a default timeout of 120 seconds.

Default value: 120

amster attribute: mdDuration

Response Cache Concurrency

Level of concurrency to use when accessing the message dispatcher cache. Defaults to 16,
and must be greater than 0. Choose a value to accommodate as many threads as will ever
concurrently access the message dispatcher cache.

Default value: 16

amster attribute: mdConcurrency

Response Cache Size

Maximum size of the message dispatcher cache, in number of records. If set to 0 the cache can
grow indefinitely. If the number of records that need to be stored exceeds this maximum, then
older items in the cache will be removed to make space.

Default value: 10000

amster attribute: mdCacheSize

5.1.2. Policy Configuration

amster service name: policyconfiguration

5.1.2.1. Global Attributes

The following settings appear on the Global Attributes tab:

Resource Comparator

OpenAM uses resource comparators to match resources specified in policy rules. When setting
comparators on the command line, separate fields with | characters.

Default value:

serviceType=iPlanetAMWebAgentService|class=com.sun.identity.policy.plugins.HttpURLResourceName|
wildcard=*|oneLevelWildcard=-*-|delimiter=/|caseSensitive=false

Reference
Policy Configuration

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 129

serviceType=sunIdentityServerDiscoveryService|
class=com.sun.identity.policy.plugins.PrefixResourceName|wildcard=*|oneLevelWildcard=-*-|delimiter=;|
caseSensitive=false

amster attribute: resourceComparators

Continue Evaluation on Deny Decision

If no, then OpenAM stops evaluating policy as soon as it reaches a deny decision.

Default value: false

amster attribute: continueEvaluationOnDeny

Realm Alias Referrals

If yes, then OpenAM allows creation of policies for HTTP and HTTPS resources whose FQDN
matches the DNS alias for the realm even when no referral policy exists.

Default value: false

amster attribute: realmAliasReferrals

5.1.2.2. Realm Defaults
The following settings appear on the Realm Defaults tab:

Primary LDAP Server

Configuration directory server host:port that OpenAM searches for policy information.

Format: local server name | host name:port

Multiple entries must be prefixed by local server name.

Default value: openam.example.com:50389

amster attribute: ldapServer

LDAP Users Base DN

Base DN for LDAP Users subject searches.

Default value: dc=openam,dc=forgerock,dc=org

amster attribute: usersBaseDn

LDAP Bind DN

Bind DN to connect to the directory server for policy information.

Default value: cn=Directory Manager

Reference
Policy Configuration

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 130

amster attribute: bindDn

LDAP Bind Password

Bind password to connect to the directory server for policy information.

amster attribute: bindPassword

LDAP Organization Search Filter

Search filter to match organization entries.

Default value: (objectclass=sunismanagedorganization)

amster attribute: realmSearchFilter

LDAP Users Search Filter

Search filter to match user entries.

Default value: (objectclass=inetorgperson)

amster attribute: usersSearchFilter

LDAP Users Search Scope

Search scope to find user entries.

The possible values for this property are:

SCOPE_BASE
SCOPE_ONE
SCOPE_SUB

Default value: SCOPE_SUB

amster attribute: usersSearchScope

LDAP Users Search Attribute

Naming attribute for user entries.

Default value: uid

amster attribute: usersSearchAttribute

Maximum Results Returned from Search

Search limit for LDAP searches.

Default value: 100

amster attribute: maximumSearchResults

Reference
Policy Configuration

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 131

Search Timeout

Time after which OpenAM returns an error for an incomplete search, in seconds.

Default value: 5

amster attribute: searchTimeout

LDAP SSL/TLS

If enabled, OpenAM connects securely to the directory server. This requires that you install the
directory server certificate.

Default value: false

amster attribute: sslEnabled

LDAP Connection Pool Minimum Size

Minimum number of connections in the pool.

Default value: 1

amster attribute: connectionPoolMinimumSize

LDAP Connection Pool Maximum Size

Maximum number of connections in the pool.

Default value: 10

amster attribute: connectionPoolMaximumSize

Heartbeat Interval

Specifies how often should OpenAM send a heartbeat request to the directory.

Use this option in case a firewall/loadbalancer can close idle connections, since the heartbeat
requests will ensure that the connections won't become idle.

Default value: 10

amster attribute: policyHeartbeatInterval

Heartbeat Unit

Defines the time unit corresponding to the Heartbeat Interval setting.

Use this option in case a firewall/loadbalancer can close idle connections, since the heartbeat
requests will ensure that the connections won't become idle.

The possible values for this property are:

second

Reference
Transaction Authentication Service

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 132

minute
hour

Default value: SECONDS

amster attribute: policyHeartbeatTimeUnit

Subjects Result Time to Live

Maximum time that OpenAM caches a subject result for evaluating policy requests, in minutes. A
value of 0 prevents OpenAM from caching subject evaluations for policy decisions.

Default value: 10

amster attribute: subjectsResultTTL

User Alias

If enabled, OpenAM can evaluate policy for remote users aliased to local users.

Default value: false

amster attribute: userAliasEnabled

5.1.3. Transaction Authentication Service
amster service name: transaction

5.1.3.1. Realm Defaults
The following settings appear on the Realm Defaults tab:

Time to Live

The number of seconds within which the transaction must be completed.

Default value: 180

amster attribute: timeToLive

5.2. Authorization API Functionality
This section covers functionality available when scripting authorization using the policy condition
script context type.

5.2.1. Accessing Authorization State
Server-side scripts can access the current authorization state through the following objects:

Reference
Accessing Profile Data

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 133

Authorization State Objects

Object Type Description
authorized Boolean Return true if the authorization is currently successful, or false if

authorization has failed. Server-side scripts must set a value for
authorized before completing.

environment Map<String,
 Set<String>>

Describe the environment passed from the client making the
authorization request.

For example, the following shows a simple environment map with a single
entry:
"environment": {
 "IP": [
 "127.0.0.1"
]
}

resourceURI String Specify the URI of the resource to which authorization is being
requested.

username String Specify the user ID of the subject that is requesting authorization.

5.2.2. Accessing Profile Data

Server-side authorization scripts can access profile data of the subject of the authorization request
through the methods of the identity object.

Note

To access the profile data of the subject, they must be logged in and their SSO token must be available.

Authorization Script Profile Data Methods

Method Parameters Return
Type

Description

identity.getAttribute Attribute Name (type: String) Set Return the values of the named
attribute for the subject of the
authorization request.

identity.setAttribute Attribute Name (type: String)

Attribute Values (type: Array)

Void Set the named attribute to the
values specified by the attribute
value for the subject of the
authorization request.

identity.addAttribute Attribute Name (type: String)

Attribute Value (type: String)

Void Add an attribute value to the list of
attribute values associated with the
attribute name for the subject of the
authorization request.

Reference
Accessing Session Data

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 134

Method Parameters Return
Type

Description

identity.store None Void Commit any changes to the identity
repository.

Caution

You must call store() otherwise
changes will be lost when the
script completes.

5.2.3. Accessing Session Data

Server-side authorization scripts can access session data of the subject of the authorization request
through the methods of the session object.

Note

To access the session data of the subject, they must be logged in and their SSO token must be available.

Authorization Script Session Methods

Method Parameters Return
Type

Description

session.getProperty Property Name (type: String) String Retrieve properties from the
session associated with the subject
of the authorization request. For
example, AuthLevel.

5.2.4. Setting Authorization Responses

Server-side authorization scripts can return information in the response to an authorization request.

Authorization Script Response Methods

Method Parameters Return Type Description
responseAttributes.put Attribute Name (type:

String)

Attribute Values (type:
Array)

Void Add an attribute to
the response to the
authorization request.

advice.put Advice Key (type: String)

Advice Values (type: Array)

Void Add advice key-
value pairs to the

Reference
Setting Authorization Responses

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 135

Method Parameters Return Type Description
response to a failing
authorization request.

ttl TTL Value (type: Integer) Void Add a time-to-
live value, which
is a timestamp
in milliseconds
to the response
to a successful
authorization. After
the time-to-live value
the decision is no
longer valid.

If no value is set,
TTL Value defaults
to Long.MAX_VALUE
(9223372036854775807),
which means the
decision has no
timeout, and can live
for as long as the
calling client holds
on to it. In the case
of policy enforcement
points, they hold onto
the decision for their
configured cache
timeout.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 136

Appendix A. About the REST API

This appendix shows how to use the RESTful interfaces for direct integration between web client
applications and ForgeRock Access Management.

A.1. Introducing REST
Representational State Transfer (REST) is an architectural style that sets certain constraints for
designing and building large-scale distributed hypermedia systems.

As an architectural style, REST has very broad applications. The designs of both HTTP 1.1 and
URIs follow RESTful principles. The World Wide Web is no doubt the largest and best known REST
application. Many other web services also follow the REST architectural style. Examples include
OAuth 2.0, OpenID Connect 1.0, and User-Managed Access (UMA).

The ForgeRock Common REST (CREST) API applies RESTful principles to define common verbs for
HTTP-based APIs that access web resources and collections of web resources.

Interface Stability: Evolving

Most native AM REST APIs use the CREST verbs. (In contrast, OAuth 2.0, OpenID Connect 1.0 and
UMA APIs follow their respective standards.)

A.2. About ForgeRock Common REST
ForgeRock® Common REST is a common REST API framework. It works across the ForgeRock
platform to provide common ways to access web resources and collections of resources. Adapt the
examples in this section to your resources and deployment.

http://en.wikipedia.org/wiki/Representational_state_transfer

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 137

A.2.1. Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a user
at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource's _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

A.2.2. Common REST Verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ.
For details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see "Create".

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see "Read".

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see "Update".

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see "Delete".

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 138

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see "Patch".

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see "Action".

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see "Query".

A.2.3. Common REST Parameters
Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action
_api
_crestapi
_fields
_mimeType
_pageSize
_pagedResultsCookie
_pagedResultsOffset
_prettyPrint
_queryExpression
_queryFilter
_queryId
_sortKeys
_totalPagedResultsPolicy

Note

Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Continue reading for details about how to use each parameter.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 139

A.2.4. Common REST Extension Points
The action verb is the main vehicle for extensions. For example, to create a new user with HTTP
POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers. Stored
queries can call for additional parameters. The parameters are also passed in the query string. Which
parameters are valid depends on the stored query.

A.2.5. Common REST API Documentation
Common REST APIs often depend at least in part on runtime configuration. Many Common REST
endpoints therefore serve API descriptors at runtime. An API descriptor documents the actual API as
it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular
tools such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport
protocol. It requires a client that understands Common REST, as it omits many Common REST
defaults.

Note

Consider limiting access to API descriptors in production environments in order to avoid unnecessary traffic.

To provide documentation in production environments, see "To Publish OpenAPI Documentation" instead.

To Publish OpenAPI Documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API
descriptors at runtime through Common REST, prepare final versions, and publish them alongside
the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers
as described in the following steps:

1. Configure the software to produce production-ready APIs.

https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 140

In other words, the software should be configured as in production so that the APIs are identical
to what developers see in production.

2. Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json:

$ curl -o myapi.json endpoint?_api

3. (Optional) If necessary, edit the descriptor.

For example, you might want to add security definitions to describe how the API is protected.

If you make any changes, then also consider using a source control system to manage your
versions of the API descriptor.

4. Publish the descriptor using a tool such as Swagger UI.

You can customize Swagger UI for your organization as described in the documentation for the
tool.

A.2.6. Create
There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter
_action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for
the resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

https://github.com/swagger-api/swagger-ui

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 141

The _id and content of the resource depend on the server implementation. The server is not required
to use the _id that the client provides. The server response to the create request indicates the
resource location as the value of the Location header.

If you include the If-None-Match header, its value must be *. In this case, the request creates the object
if it does not exist, and fails if the object does exist. If you include the If-None-Match header with any
value other than *, the server returns an HTTP 400 Bad Request error. For example, creating an
object with If-None-Match: revision returns a bad request error. If you do not include If-None-Match: *,
the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.7. Read
To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier
(_id) and accept a JSON response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 142

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the
_mimeType query string parameter instead.

A.2.8. Update
To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final
element of the path to the resource, and the JSON resource as the payload. Use the If-Match: _rev
header to check that you are actually updating the version you modified. Use If-Match: * if the version
does not matter. Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 143

A.2.9. Delete
To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept
a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.10. Patch
To patch a resource, send an HTTP PATCH request with the following parameters:

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you'll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 144

• list semantics array, where the elements are ordered, and duplicates are allowed.

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations. The following sections show each of these
operations, along with options for the field and value:

A.2.10.1. Patch Operation: Add
The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number.

An add operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

• If you add an array of values, the PATCH operation appends it to the existing list of values.

• If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The list of values included in a patch are merged with the existing set of
values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:
{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the
- at the end of the fruits array.
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:
{
 "fruits" : ["orange", "apple", "pineapple"]
}

A.2.10.2. Patch Operation: Copy
The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add operation
on the target field.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 145

The following copy operation takes the value from a field named mail, and then runs a replace operation
on the target field, another_mail.
[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source field value and the target field value are configured as arrays, the result depends on
whether the array has list semantics or set semantics, as described in "Patch Operation: Add".

A.2.10.3. Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify. The
value that you include must be one number, and may be positive or negative. The value of the target
field must accept numbers. The following increment operation adds 1000 to the target value of /user/
payment.
[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

A.2.10.4. Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname, followed by
a replace operation on the target field value, lastName. If the target field does not exist, it is created.
[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in "Patch
Operation: Add".

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 146

A.2.10.5. Patch Operation: Remove
The remove operation ensures that the target field no longer contains the value provided. If the remove
operation does not include a value, the operation removes the field. The following remove deletes the
value of the phoneNumber, along with the field.
[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array.

A remove operation has different results on two standard types of arrays:

• List semantic arrays: A remove operation deletes the specified element in the array. For example, the
following operation removes the first phone number, based on its array index (zero-based):
[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

A.2.10.6. Patch Operation: Replace
The replace operation removes any existing value(s) of the targeted field, and replaces them with the
provided value(s). It is essentially equivalent to a remove followed by a add operation. If the arrays are
used, the criteria is based on "Patch Operation: Add". However, indexed updates are not allowed,
even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds
the new value of +1 408 555 9999.
[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:
{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 147

Apply the following operations on that resource:
[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:
[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:
[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

A.2.10.7. Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named /
objects, and applies the something.js script as shown:
[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 148

A.2.10.8. Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you
use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method.
Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException.

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.11. Action

Actions are a means of extending Common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in "Create".

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 149

A.2.12. Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an
HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or _queryId
parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional explanation:

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation
(JSON) Data Interchange Format. In particular, as described in section 7 of the RFC, the escape
character in strings is the backslash character. For example, to match the identifier test\, use _id
 eq 'test\\'. In the JSON resource, the \ is escaped the same way: "_id":"test\\".

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 150

When using a query filter in a URL, be aware that the filter expression is part of a query
string parameter. A query string parameter must be URL encoded as described in RFC 3986:
Uniform Resource Identifier (URI): Generic Syntax For example, white space, double quotes
("), parentheses, and exclamation characters need URL encoding in HTTP query strings. The
following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA, DIGIT, and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the
URL query string parameter as %5C. To encode the query filter expression _id eq 'test\\', use _id
+eq+'test%5C%5C', for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is one
of the following:

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 151

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and
_queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or
_pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults",
in accordance with the totalPagedResultsPolicy, and provides the value as part of the
response. The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT).
If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result counting is
disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[+-]field[,[+-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

Because ascending order is the default, including the + character in the query is unnecessary. If
you do include the +, it must be URL-encoded as %2B, for example:
http://localhost:8080/api/users?_prettyPrint=true&_queryFilter=true&_sortKeys=%2Bname/givenName

The _sortKeys parameter is not supported for predefined queries (_queryId).

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 152

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.13. HTTP Status Codes
When working with a Common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 153

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource's current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

A.3. REST API Versioning
In OpenAM 12.0.0 and later, REST API features are assigned version numbers.

Providing version numbers in the REST API helps ensure compatibility between releases. The version
number of a feature increases when AM introduces a non-backwards-compatible change that affects
clients making use of the feature.

AM provides versions for the following aspects of the REST API.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 154

resource

Any changes to the structure or syntax of a returned response will incur a resource version
change. For example changing errorMessage to message in a JSON response.

protocol

Any changes to the methods used to make REST API calls will incur a protocol version change.
For example changing _action to $action in the required parameters of an API feature.

A.3.1. Supported REST API Versions

The REST API version numbers supported in AM 5.5 are as follows:

Supported protocol versions

The protocol versions supported in AM 5.5 are:

1.0

Supported resource versions

The resource versions supported in AM 5.5 are shown in the following table.

Supported resource Versions

Base End Point Supported Versions
/json /authenticate 1.1, 2.0

/users 1.1, 1.2, 2.0, 2.1, 3.0
/groups 1.1, 2.0, 2.1, 3.0
/agents 1.1, 2.0, 2.1, 3.0
/realms 1.0
/dashboard 1.0
/sessions 1.1
/serverinfo/* 1.1
/users/{user}/devices/trusted 1.0
/users/{user}/uma/policies 1.0
/applications 1.0, 2.0
/resourcetypes 1.0
/policies 1.0, 2.0
/applicationtypes 1.0
/conditiontypes 1.0

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 155

Base End Point Supported Versions
/subjecttypes 1.0
/subjectattributes 1.0
/decisioncombiners 1.0
/subjectattributes 1.0

/xacml /policies 1.0
/frrest /token 1.0

/client 1.0

The AM Release Notes section, "Changes and Deprecated Functionality" in the Release Notes
describes the differences between API versions.

A.3.2. Specifying an Explicit REST API Version

You can specify which version of the REST API to use by adding an Accept-API-Version header to the
request, as in the following example, which is requesting resource version 2.0 and protocol version
1.0:
$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

You can configure the default behavior AM will take when a REST call does not specify explicit
version information. For more information, see "Configuring the Default REST API Version for a
Deployment".

A.3.3. Configuring the Default REST API Version for a Deployment

You can configure the default behavior AM will take when a REST call does not specify explicit
version information using either of the following procedures:

• "Configure Versioning Behavior by using the AM Console"

• "Configure Versioning Behavior by Using the ssoadm Command"

The available options for default behavior are as follows:

Latest

The latest available supported version of the API is used.

This is the preset default for new installations of AM.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 156

Oldest

The oldest available supported version of the API is used.

This is the preset default for upgraded AM instances.

Note

The oldest supported version may not be the first that was released, as APIs versions become deprecated
or unsupported. See "Deprecated Functionality" in the Release Notes.

None

No version will be used. When a REST client application calls a REST API without specifying the
version, AM returns an error and the request fails.

Configure Versioning Behavior by using the AM Console

1. Log in as AM administrator, amadmin.

2. Click Configure > Global Services, and then click REST APIs.

3. In Default Version, select the required response to a REST API request that does not specify an
explicit version: Latest, Oldest, or None.

4. (Optional) Optionally, enable Warning Header to include warning messages in the headers of
responses to requests.

5. Save your work.

Configure Versioning Behavior by Using the ssoadm Command

• Use the ssoadm set-attr-defs command with the openam-rest-apis-default-version attribute set to
either Latest, Oldest or None, as in the following example:
$ ssh openam.example.com
$ cd /path/to/openam-tools/admin/openam/bin
$./ssoadm \
 set-attr-defs \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename RestApisService \
 --schematype Global \
 --attributevalues openam-rest-apis-default-version=None

Schema attribute defaults were set.

A.3.4. REST API Versioning Messages
AM provides REST API version messages in the JSON response to a REST API call. You can also
configure AM to return version messages in the response headers.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 157

Messages include:

• Details of the REST API versions used to service a REST API call.

• Warning messages if REST API version information is not specified or is incorrect in a REST API
call.

The resource and protocol version used to service a REST API call are returned in the Content-API-
Version header, as shown below:
$ curl \
 -i \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

HTTP/1.1 200 OK
Content-API-Version: protocol=1.0,resource=2.0
Server: Restlet-Framework/2.1.7
Content-Type: application/json;charset=UTF-8

{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console"
}

If the default REST API version behavior is set to None, and a REST API call does not include the
Accept-API-Version header, or does not specify a resource version, then a 400 Bad Request status code is
returned, as shown below:
$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/serverinfo/*

{
 "code":400,
 "reason":"Bad Request",
 "message":"No requested version specified and behavior set to NONE."
}

If a REST API call does include the Accept-API-Version header, but the specified resource or protocol
version does not exist in AM, then a 404 Not Found status code is returned, as shown below:
$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0, resource=999.0" \
 https://openam.example.com:8443/openam/json/realms/root/serverinfo/*

{
 "code":404,
 "reason":"Not Found",
 "message":"Accept-API-Version: Requested version \"999.0\" does not match any routes."
}

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 158

Tip

For more information on setting the default REST API version behavior, see "Specifying an Explicit REST API
Version".

A.4. Specifying Realms in REST API Calls
This section describes how to work with realms when making REST API calls to AM.

Realms can be specified in the following ways when making a REST API call to AM:

DNS Alias

When making a REST API call, the DNS alias of a realm can be specified in the subdomain and
domain name components of the REST endpoint.

To list all users in the top-level realm use the DNS alias of the AM instance, for example the REST
endpoint would be:
https://openam.example.com:8443/openam/json/users?_queryId=*

To list all users in a realm with DNS alias suppliers.example.com the REST endpoint would be:
https://suppliers.example.com:8443/openam/json/users?_queryId=*

Path

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

To authenticate a user in the top-level realm, use the root keyword. For example:
https://openam.example.com:8443/openam/json/realms/root/authenticate

To authenticate a user in a subrealm named customers within the top-level realm, the REST
endpoint would be:
https://openam.example.com:8443/openam/json/realms/root/realms/customers/authenticate

If realms are specified using both the DNS alias and path methods, the path is used to determine the
realm.

For example, the following REST endpoint returns users in a subrealm of the top-level realm named
europe, not the realm with DNS alias suppliers.example.com:
https://suppliers.example.com:8443/openam/json/realms/root/realms/europe/users?_queryId=*

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 159

A.5. Authentication and Logout
You can use REST-like APIs under /json/authenticate and /json/sessions for authentication and for
logout.

The /json/authenticate endpoint does not support the CRUDPAQ verbs and therefore does not
technically satisfy REST architectural requirements. The term REST-like describes this endpoint
better than REST.

The simplest user name/password authentication returns a tokenId that applications can present as
a cookie value for other operations that require authentication. The type of tokenId returned varies
depending on whether stateless sessions are enabled in the realm to which the user authenticates:

• If stateless sessions are not enabled, the tokenId is an AM SSO token.

• If stateless sessions are enabled, the tokenId is an AM SSO token that includes an encoded AM
session.

Developers should be aware that the size of the tokenId for stateless sessions—2000 bytes or greater
—is considerably longer than for stateful sessions—approximately 100 bytes. For more information
about stateful and stateless session tokens, see "Session Cookies" in the Authentication and Single
Sign-On Guide.

When authenticating with a user name and password, use HTTP POST to prevent the web container
from logging the credentials. Pass the user name in an X-OpenAM-Username header, and the password in
an X-OpenAM-Password header:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

To use UTF-8 user names and passwords in calls to the /json/authenticate endpoint, base64-encode the
string, and then wrap the string as described in RFC 2047:
encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

For example, to authenticate using a UTF-8 username, such as ɗëɱø, perform the following steps:

1. Encode the string in base64 format: yZfDq8mxw7g=.

2. Wrap the base64-encoded string as per RFC 2047: =?UTF-8?B?yZfDq8mxw7g=?=.

https://www.ietf.org/rfc/rfc2047.txt

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 160

3. Use the result in the X-OpenAM-Username header passed to the authentication endpoint as follows:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: =?UTF-8?B?yZfDq8mxw7g=?=" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

This zero page login mechanism works only for name/password authentication. If you include a POST
body with the request, it must be an empty JSON string as shown in the example. Alternatively, you
can leave the POST body empty. Otherwise, AM interprets the body as a continuation of an existing
authentication attempt, one that uses a supported callback mechanism.

The authentication service at /json/authenticate supports callback mechanisms that make it possible to
perform other types of authentication in addition to simple user name/password login.

Callbacks that are not completed based on the content of the client HTTP request are returned in
JSON as a response to the request. Each callback has an array of output suitable for displaying to the
end user, and input which is what the client must complete and send back to AM. The default is still
user name/password authentication:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "authId": "...jwt-value...",
 "template": "",
 "stage": "DataStore1",
 "callbacks": [
 {
 "type": "NameCallback",
 "output": [
 {
 "name": "prompt",
 "value": " User Name: "
 }
],
 "input": [
 {
 "name": "IDToken1",
 "value": ""
 }
]
 },
 {
 "type": "PasswordCallback",

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 161

 "output": [
 {
 "name": "prompt",
 "value": " Password: "
 }
],
 "input": [
 {
 "name": "IDToken2",
 "value": ""
 }
]
 }
]
}

The authID value is a JSON Web Token (JWT) that uniquely identifies the authentication context to AM,
and so must also be sent back with the requests.

To respond to the callback, send back the JSON object with the missing values filled, as in this case
where the user name is demo and the password is changeit:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId":"AQIC5wM2...U3MTE4NA..*","successUrl": "/openam/console","realm":"/" }

The response is a token ID holding the SSO token value.

Alternatively, you can authenticate without requesting a session using the noSession query string
parameter:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/realms/root/authenticate?noSession=true

{ "message":"Authentication Successful","successUrl":"/openam/console","realm":"/" }

AM can be configured to return a failure URL value when authentication fails. No failure URL is
configured by default. The Default Failure Login URL can be set per realm; see "Post Authentication

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 162

Processing" in the Authentication and Single Sign-On Guide for details. Alternatively, failure URLs
can be configured per authentication chain, which your client can specify using the service parameter
described below. On failure AM then returns HTTP status code 401 Unauthorized, and the JSON in
the reply indicates the failure URL:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: badpassword" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "code":401,
 "reason":"Unauthorized",
 "message":"Invalid Password!!",
 "failureUrl": "http://www.example.com/401.html"
}

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

For example, to authenticate to a subrealm customers within the top-level realm, then the
authentication endpoint URL is as follows: https://openam.example.com:8443/openam/json/realms/root/realms
/customers/authenticate

The following additional parameters are supported:

You can use the authIndexType and authIndexValue query string parameters as a pair to provide
additional information about how you are authenticating. The authIndexType can be one of the following
types:

composite

Set the value to a composite advice string.

level

Set the value to the authentication level.

module

Set the value to the name of an authentication module.

resource

Set the value to a URL protected by an AM policy.

role

Set the value to an AM role.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 163

service

Set the value to the name of an authentication chain.

user

Set the value to an AM user ID.

For example, to log into AM using the built-in ldapService authentication chain, you could use the
following:
$ curl \
--request POST
 \
--header 'Accept-API-Version: resource=2.0, protocol=1.0'
 \
--header 'X-OpenAM-Username: demo'
 \
--header 'X-OpenAM-Password: changeit' \
'http://openam.example.com:8080/openam/json/authenticate?authIndexType=service&authIndexValue=ldapService'

You can use the query string parameter, sessionUpgradeSSOTokenId=tokenId, to request session upgrade.
Before the tokenId is searched for in the query string for session upgrade, the token is grabbed from
the cookie. For an explanation of session upgrade, see "Session Upgrade" in the Authentication and
Single Sign-On Guide.

AM uses the following callback types depending on the authentication module in use:

• ChoiceCallback: Used to display a list of choices and retrieve the selected choice.

• ConfirmationCallback: Used to ask for a confirmation such as Yes, No, or Cancel and retrieve the
selection.

• HiddenValueCallback: Used to return form values that are not visually rendered to the end user.

• HttpCallback: Used for HTTP handshake negotiations.

• LanguageCallback: Used to retrieve the locale for localizing text presented to the end user.

• NameCallback: Used to retrieve a name string.

• PasswordCallback: Used to retrieve a password value.

• PollingWaitCallback: Used to restrict polling requests by specifying an amount of time to wait before
responding.

• RedirectCallback: Used to redirect the client user-agent.

• ScriptTextOutputCallback: Used to insert a script into the page presented to the end user. The script
can, for example, collect data about the user's environment.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 164

• TextInputCallback: Used to retrieve text input from the end user.

• TextOutputCallback: Used to display a message to the end user.

• X509CertificateCallback: Used to retrieve the content of an x.509 certificate.

A.5.1. Logout
Authenticated users can log out with the token cookie value and an HTTP POST to /json/sessions/?
_action=logout:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Cache-Control: no-cache" \
 --header "iplanetDirectoryPro: AQIC5wM2...U3MTE4NA..*" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout

{"result":"Successfully logged out"}

A.5.2. logoutByHandle
To log out a session using a session handle, first perform an HTTP GET to the resource URL, /json/
sessions/, using the queryFilter action to get the session handle:
$ curl \
--request GET
 \
--header "Content-Type: application/json"
 \
--header "Cache-Control: no-cache"
 \
--header "iPlanetDirectoryPro: AQICS...NzEz*"
 \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
https://openam.example.com:8443/openam/json/realms/root/sessions?_queryFilter=username%20eq%20%22demo
%22%20and%20realm%20eq%20%22%2F%22
{
 "result": [
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm":"/",
 "sessionHandle":"shandle:SJ80.*AA....JT.*",
 "latestAccessTime":"2018-10-23T09:37:54.387Z",
 "maxIdleExpirationTime":"2018-10-23T10:07:54Z",
 "maxSessionExpirationTime":"2018-10-23T11:37:54Z"
 },
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm":"/",
 "sessionHandle":"shandle:H4CV.*DV....FM.*",
 "latestAccessTime":"2018-10-23T09:37:43.780Z",

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 165

 "maxIdleExpirationTime":"2018-10-23T10:07:43Z",
 "maxSessionExpirationTime":"2018-10-23T11:37:43Z"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To log out a session using a session handle, perform an HTTP POST to the resource URL, /json/
sessions/, using the logoutByHandle action.
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Cache-Control: no-cache"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--header "Accept-API-Version: resource=3.1, protocol=1.0"
 \
--data '{
 "sessionHandles": [
 "shandle:SJ80.*AA....JT.*",
 "shandle:H4CV.*DV....FM.*"
]
 }' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logoutByHandle
{
 "result": {
 "shandle:SJ80.*AA....JT.*": true,
 "shandle:H4CV.*DV....FM.*": true
 }
}

A.5.3. Load Balancer and Proxy Layer Requirements

When authentication depends on the client IP address and AM lies behind a load balancer or proxy
layer, configure the load balancer or proxy to send the address by using the X-Forwarded-For header,
and configure AM to consume and forward the header as necessary. For details, see "Handling HTTP
Request Headers" in the Installation Guide.

A.5.4. Windows Desktop SSO Requirements

When authenticating with Windows Desktop SSO, add an Authorization header containing the
string Basic , followed by a base64-encoded string of the username, a colon character, and the
password. In the following example, the credentials demo:changeit are base64-encoded into the string
ZGVtbzpjaGFuZ2VpdA==:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 166

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "X-OpenAM-Username: demo"
 \
--header "X-OpenAM-Password: changeit"
 \
--header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA=="
 \
--header "Accept-API-Version: resource=2.0, protocol=1.0"
 \
--data "{}" \
https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId":"AQIC5w...NTcy*","successUrl":"/openam/console","realm":"/" }

A.6. Using the Session Token After Authentication
The following is a common scenario when accessing AM by using REST API calls:

• First, call the /json/authenticate endpoint to log a user in to AM. This REST API call returns a tokenID
value, which is used in subsequent REST API calls to identify the user:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console" }

The returned tokenID is known as a session token (also referred to as an SSO token). REST API calls
made after successful authentication to AM must present the session token in the HTTP header as
proof of authentication.

• Next, call one or more additional REST APIs on behalf of the logged-in user. Each REST API call
passes the user's tokenID back to AM in the HTTP header as proof of previous authentication.

The following is a partial example of a curl command that inserts the token ID returned from a prior
successful AM authentication attempt into the HTTP header:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 167

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5w...NTcy*"
 \
--header "Accept-API-Version: resource=2.0, protocol=1.0"
 \
--data '{
 ...

Observe that the session token is inserted into a header field named iPlanetDirectoryPro. This header
field name must correspond to the name of the AM session cookie—by default, iPlanetDirectoryPro.
You can find the cookie name in the AM console by navigating to Deployment > Servers > Server
Name > Security > Cookie, in the Cookie Name field of the AM console.

Once a user has authenticated, it is not necessary to insert login credentials in the HTTP header in
subsequent REST API calls. Note the absence of X-OpenAM-Username and X-OpenAM-Password headers in
the preceding example.

Users are required to have appropriate privileges in order to access AM functionality using the
REST API. For example, users who lack administrative privileges cannot create AM realms. For
more information on the AM privilege model, see "Delegating Realm Administration Privileges" in
the Setup and Maintenance Guide.

• Finally, call the REST API to log the user out of AM as described in "Authentication and Logout". As
with other REST API calls made after a user has authenticated, the REST API call to log out of AM
requires the user's tokenID in the HTTP header.

A.7. Server Information
You can retrieve AM server information by using HTTP GET on /json/serverinfo/* as follows:
$ curl \
 --request GET \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 https://openam.example.com:8443/openam/json/serverinfo/*
{
 "domains": [
 ".example.com"
],
 "protectedUserAttributes": [],
 "cookieName": "iPlanetDirectoryPro",
 "secureCookie": false,
 "forgotPassword": "false",
 "forgotUsername": "false",
 "kbaEnabled": "false",
 "selfRegistration": "false",
 "lang": "en-US",
 "successfulUserRegistrationDestination": "default",

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 168

 "socialImplementations": [
 {
 "iconPath": "XUI/images/logos/facebook.png",
 "authnChain": "FacebookSocialAuthenticationService",
 "displayName": "Facebook",
 "valid": true
 }
],
 "referralsEnabled": "false",
 "zeroPageLogin": {
 "enabled": false,
 "refererWhitelist": [
 ""
],
 "allowedWithoutReferer": true
 },
 "realm": "/",
 "xuiUserSessionValidationEnabled": true,
 "FQDN": "openam.example.com"
}

A.8. Token Encoding
Valid tokens in AM requires configuration either in percent encoding or in C66Encode format.
C66Encode format is encouraged. It is the default token format for AM, and is used in this section.
The following is an example token that has not been encoded:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE=@AAJTSQACMDE=#

This token includes reserved characters such as +, /, and = (The @, #, and * are not reserved characters
per se, but substitutions are still required). To c66encode this token, you would substitute certain
characters for others, as follows:

+ is replaced with -
/ is replaced with _
= is replaced with .
@ is replaced with *
is replaced with *
* (first instance) is replaced with @
* (subsequent instances) is replaced with #

In this case, the translated token would appear as shown here:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE.*AAJTSQACMDE.*

A.9. Logging
AM 5.5 supports two Audit Logging Services: a new common REST-based Audit Logging Service, and
the legacy Logging Service, which is based on a Java SDK and is available in AM versions prior to
OpenAM 13. The legacy Logging Service is deprecated.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 169

Both audit facilities log AM REST API calls.

A.9.1. Common Audit Logging of REST API Calls

AM logs information about all REST API calls to the access topic. For more information about AM
audit topics, see "Audit Log Topics" in the Setup and Maintenance Guide.

Locate specific REST endpoints in the http.path log file property.

A.9.2. Legacy Logging of REST API Calls

AM logs information about REST API calls to two files:

• amRest.access. Records accesses to a CREST endpoint, regardless of whether the request
successfully reached the endpoint through policy authorization.

An amRest.access example is as follows:
$ cat openam/openam/log/amRest.access

#Version: 1.0
#Fields: time Data LoginID ContextID IPAddr LogLevel Domain LoggedBy MessageID ModuleName
NameID HostName
"2011-09-14 16:38:17" /home/user/openam/openam/log/ "cn=dsameuser,ou=DSAME Users,o=openam"
aa307b2dcb721d4201 "Not Available" INFO o=openam "cn=dsameuser,ou=DSAME Users,o=openam"
LOG-1 amRest.access "Not Available" 192.168.56.2
"2011-09-14 16:38:17" "Hello World" id=bjensen,ou=user,o=openam 8a4025a2b3af291d01 "Not Available"
INFO o=openam id=amadmin,ou=user,o=openam "Not Available" amRest.access "Not Available"
192.168.56.2

• amRest.authz. Records all CREST authorization results regardless of success. If a request has an
entry in the amRest.access log, but no corresponding entry in amRest.authz, then that endpoint was not
protected by an authorization filter and therefore the request was granted access to the resource.

The amRest.authz file contains the Data field, which specifies the authorization decision, resource, and
type of action performed on that resource. The Data field has the following syntax:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 170

("GRANT"||"DENY") > "RESOURCE | ACTION"

where
 "GRANT > " is prepended to the entry if the request was allowed
 "DENY > " is prepended to the entry if the request was not allowed
 "RESOURCE" is "ResourceLocation | ResourceParameter"
 where
 "ResourceLocation" is the endpoint location (e.g., subrealm/applicationtypes)
 "ResourceParameter" is the ID of the resource being touched
 (e.g., myApplicationType) if applicable. Otherwise, this field is empty
 if touching the resource itself, such as in a query.

 "ACTION" is "ActionType | ActionParameter"
 where
 "ActionType" is "CREATE||READ||UPDATE||DELETE||PATCH||ACTION||QUERY"
 "ActionParameter" is one of the following depending on the ActionType:
 For CREATE: the new resource ID
 For READ: empty
 For UPDATE: the revision of the resource to update
 For DELETE: the revision of the resource to delete
 For PATCH: the revision of the resource to patch
 For ACTION: the actual action performed (e.g., "forgotPassword")
 For QUERY: the query ID if any

$ cat openam/openam/log/amRest.authz

#Version: 1.0
#Fields: time Data ContextID LoginID IPAddr LogLevel Domain MessageID LoggedBy NameID
ModuleName HostName
"2014-09-16 14:17:28" /var/root/openam/openam/log/ 7d3af9e799b6393301
"cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available" INFO
dc=openam,dc=forgerock,dc=org LOG-1 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org"
"Not Available" amRest.authz 10.0.1.5
"2014-09-16 15:56:12" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" d3977a55a2ee18c201
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1
"2014-09-16 15:56:40" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" eedbc205bf51780001
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1

AM also provides additional information in its debug notifications for accesses to any endpoint,
depending on the message type (error, warning or message) including realm, user, and result of the
operation.

A.10. Reference
This reference section covers return codes and system settings relating to REST API support in AM.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 171

A.10.1. REST APIs

amster service name: rest

The following settings are available in this service:

Default Resource Version

The API resource version to use when the REST request does not specify an explicit version.
Choose from:

• Latest. If an explicit version is not specified, the latest resource version of an API is used.

• Oldest. If an explicit version is not specified, the oldest supported resource version of an API
is used. Note that since APIs may be deprecated and fall out of support, the oldest supported
version may not be the first version.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

Latest
Oldest
None

Default value: Latest

amster attribute: defaultVersion

Warning Header

Whether to include a warning header in the response to a request which fails to include the Accept
-API-Version header.

Default value: false

amster attribute: warningHeader

API Descriptions

Whether API Explorer and API Docs are enabled in OpenAM and how the documentation
for them is generated. Dynamic generation includes descriptions from any custom services
and authentication modules you may have added. Static generation only includes services
and authentication modules that were present when OpenAM was built. Note that dynamic
documentation generation may not work in some application containers.

The possible values for this property are:

Enabled with Dynamic Documentation
Enabled with Static Documentation

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 172

Disabled

Default value: STATIC

amster attribute: descriptionsState

Default Protocol Version

The API protocol version to use when a REST request does not specify an explicit version. Choose
from:

• Oldest. If an explicit version is not specified, the oldest protocol version is used.

• Latest. If an explicit version is not specified, the latest protocol version is used.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

Oldest
Latest
None

Default value: Latest

amster attribute: defaultProtocolVersion

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 173

Appendix B. About Scripting

You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

B.1. The Scripting Environment
This section introduces how AM executes scripts, and covers thread pools and security configuration.

You can use scripts to modify default AM behavior in the following situations, also known as contexts:

Client-side Authentication

Scripts that are executed on the client during authentication. Client-side scripts must be in
JavaScript.

Server-side Authentication

Scripts are included in an authentication module and are executed on the server during
authentication.

Policy Condition

Scripts used as conditions within policies.

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 174

AM implements a configurable scripting engine for each of the context types that are executed on the
server.

The scripting engines in AM have two main components: security settings, and the thread pool.

B.1.1. Security
AM scripting engines provide security features for ensuring that malicious Java classes are not
directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 175

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

For more information on configuring script engine security, see "Scripting".

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo
.a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 176

B.1.2. Thread Pools

Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, AM creates a new
thread to execute the script, until the configured maximum number of threads is reached.

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, AM terminates the thread,
shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting".

B.2. Global Scripting API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

B.2.1. Accessing HTTP Services

AM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can call HTTP
services with the httpClient.send method. The method returns an HttpClientResponse object.

Configure the parameters for the HTTP client object by using the org.forgerock.http.protocol package.
This package contains the Request class, which has methods for setting the URI and type of request.

The following example, taken from the default server-side Scripted authentication module script, uses
these methods to call an online API to determine the longitude and latitude of a user based on their
postal address:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 177

function getLongitudeLatitudeFromUserPostalAddress() {

 var request = new org.forgerock.http.protocol.Request();

 request.setUri("http://maps.googleapis.com/maps/api/geocode/json?address=" +
 encodeURIComponent(userPostalAddress));
 request.setMethod("GET");

 var response = httpClient.send(request).get();
 logResponse(response);

 var geocode = JSON.parse(response.getEntity());
 var i;

 for (i = 0; i < geocode.results.length; i++) {
 var result = geocode.results[i];
 latitude = result.geometry.location.lat;
 longitude = result.geometry.location.lng;

 logger.message("latitude:" + latitude + " longitude:" + longitude);
 }
}

HTTP client requests are synchronous and blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Scripted Authentication Module Properties" in the
Authentication and Single Sign-On Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse
.getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 178

Method Parameters Return Type Description
HttpClientResponse.hasHeaders Void Boolean Indicate whether the

returned response had
any headers.

B.2.2. Debug Logging

Server-side scripts can write messages to AM debug logs by using the logger object.

AM does not log debug messages from scripts by default. You can configure AM to log such messages
by setting the debug log level for the amScript service. For details, see "Debug Logging By Service" in
the Setup and Maintenance Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to AM debug

logs if ERROR level logging is
enabled.

logger.errorEnabled Void Boolean Return true when ERROR level
debug messages are enabled.

logger.message Message (type: String) Void Write Message to AM debug logs if
MESSAGE level logging is enabled.

logger.messageEnabled Void Boolean Return true when MESSAGE level
debug messages are enabled.

logger.warning Warning Message (type:
String)

Void Write Warning Message to AM
debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

B.3. Managing Scripts
This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims using the AM console,
the ssoadm command, and the REST API.

B.3.1. Managing Scripts With the AM Console

The following procedures describe how to create, modify, and delete scripts using the AM console:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 179

• "To Create Scripts by Using the AM Console"

• "To Modify Scripts by Using the AM Console"

• "To Delete Scripts by Using the AM Console"

To Create Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Click New Script.

The New Script page appears:

4. Specify a name for the script.

5. Select the type of script from the Script Type drop-down list.

6. Click Create.

The Script Name page appears:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 180

7. Enter values on the Script Name page as follows:

a. Enter a description of the script.

b. Choose the script language, either JavaScript or Groovy. Note that not every script type
supports both languages.

c. Enter the source code in the Script field.

On supported browsers, you can click Upload, navigate to the script file, and then click Open
to upload the contents to the Script field.

d. Click Validate to check for compilation errors in the script.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 181

Correct any compilation errors, and revalidate the script until all errors have been fixed.

e. Save your changes.

To Modify Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Select the script you want to modify from the list of scripts.

The Script Name page appears.

4. Modify values on the Script Name page as needed. Note that if you change the Script Type,
existing code in the script is replaced.

5. If you modified the code in the script, click Validate to check for compilation errors.

Correct any compilation errors, and revalidate the script until all errors have been fixed.

6. Save your changes.

To Delete Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Choose one or more scripts to delete by activating the checkboxes in the relevant rows. Note that
you can only delete user-created scripts—you cannot delete the global sample scripts provided
with AM.

4. Click Delete.

B.3.2. Managing Scripts With the ssoadm Command

Use the ssoadm command's create-sub-cfg, get-sub-cfg, and delete-sub-cfg subcommands to manage
AM scripts.

Create an AM script as follows:

1. Create a script configuration file as follows:
script-file=/path/to/script-file
language=JAVASCRIPT|GROOVY
name=myScript
context=AUTHENTICATION_SERVER_SIDE|AUTHENTICATION_CLIENT_SIDE|POLICY_CONDITION|OIDC_CLAIMS

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 182

2. Run the ssoadm create-sub-cfg command. The --datafile argument references the script
configuration file you created in the previous step:
$ ssoadm \
 create-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/scriptConfiguration \
 --subconfigid myScript \
 --datafile /path/to/myScriptConfigurationFile
Sub Configuration scriptConfigurations/scriptConfiguration was added to realm /myRealm

To list the properties of a script, run the ssoadm get-sub-cfg command:
$ ssoadm \
 get-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
createdBy=
lastModifiedDate=
lastModifiedBy=
name=myScript
context=POLICY_CONDITION
description=
language=JAVASCRIPT
creationDate=
script=...Script output follows...

To delete a script, run the ssoadm delete-sub-cfg command:
$ ssoadm \
 delete-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
Sub Configuration scriptConfigurations/myScript was deleted from realm /myRealm

B.3.3. Managing Scripts With the REST API

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

AM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 183

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

AM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that AM generates for the script.

name

The name provided for the script.

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 184

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 185

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

B.3.4. Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns scripts in the top level realm, as well as any global scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts?_queryFilter
 =true
{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 186

 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

B.3.5. Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 187

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/9de3eb62-f131-4fac-a294
-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

B.3.6. Validating a Script

To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 188

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

B.3.7. Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, AM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 189

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action
 =create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

B.3.8. Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 190

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

B.3.9. Deleting a Script

To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{}

B.4. Scripting
amster service name: scripting

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 191

B.4.1. Configuration

The following settings appear on the Configuration tab:

Default Script Type

The default script context type when creating a new script.

The possible values for this property are:

Policy Condition
Server-side Authentication
Client-side Authentication
OIDC Claims
Decision node script for authentication trees

Default value: POLICY_CONDITION

amster attribute: defaultContext

B.4.2. Secondary Configurations

This service has the following Secondary Configurations.

B.4.2.1. Engine Configuration

The following properties are available for Scripting Service secondary configuration instances:

Engine Configuration

Configure script engine parameters for running a particular script type in OpenAM.

ssoadm attribute: engineConfiguration

To access a secondary configuration instance using the ssoadm command, use: --subconfigname
 [primary configuration]/[secondary configuration] For example:
$ ssoadm set-sub-cfg \
 --adminid amAdmin \
 --password-file admin_pwd_file \
 --servicename ScriptingService \
 --subconfigname OIDC_CLAIMS/engineConfiguration \
 --operation set \
 --attributevalues maxThreads=300 queueSize=-1

Note

Supports server-side scripts only. OpenAM cannot configure engine settings for client-side scripts.

The configurable engine settings are as follows:

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 192

Server-side Script Timeout

The maximum execution time any individual script should take on the server (in seconds).
OpenAM terminates scripts which take longer to run than this value.

ssoadm attribute: serverTimeout

Core thread pool size

The initial number of threads in the thread pool from which scripts operate. OpenAM will
ensure the pool contains at least this many threads.

ssoadm attribute: coreThreads

Maximum thread pool size

The maximum number of threads in the thread pool from which scripts operate. If no free
thread is available in the pool, OpenAM creates new threads in the pool for script execution
up to the configured maximum.

ssoadm attribute: maxThreads

Thread pool queue size

The number of threads to use for buffering script execution requests when the maximum
thread pool size is reached.

ssoadm attribute: queueSize

Thread idle timeout (seconds)

Length of time (in seconds) for a thread to be idle before OpenAM terminates created
threads. If the current pool size contains the number of threads set in Core thread pool size
idle threads will not be terminated, to maintain the initial pool size.

ssoadm attribute: idleTimeout

Java class whitelist

Specifies the list of class-name patterns allowed to be invoked by the script. Every class
accessed by the script must match at least one of these patterns.

You can specify the class name as-is or use a regular expression.

ssoadm attribute: whiteList

Java class blacklist

Specifies the list of class-name patterns that are NOT allowed to be invoked by the script. The
blacklist is applied AFTER the whitelist to exclude those classes - access to a class specified
in both the whitelist and the blacklist will be denied.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 193

You can specify the class name to exclude as-is or use a regular expression.

ssoadm attribute: blackList

Use system SecurityManager

If enabled, OpenAM will make a call to System.getSecurityManager().checkPackageAccess(...) for
each class that is accessed. The method throws SecurityException if the calling thread is not
allowed to access the package.

Note

This feature only takes effect if the security manager is enabled for the JVM.

ssoadm attribute: useSecurityManager

Scripting languages

Select the languages available for scripts on the chosen type. Either GROOVY or JAVASCRIPT.

ssoadm attribute: languages

Default Script

The source code that is presented as the default when creating a new script of this type.

ssoadm attribute: defaultScript

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 194

Appendix C. Getting Support

For more information or resources about AM and ForgeRock Support, see the following sections:

C.1. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

C.2. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 195

C.3. Getting Support and Contacting ForgeRock
ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

https://www.forgerock.com
https://www.forgerock.com/support

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 196

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
subjects can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 197

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 198

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given subject in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and
allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 199

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified subjects in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and user data stores, and
when different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 200

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Session The interval that starts with the user authenticating through AM and
ends when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also Stateful session and
Stateless session.

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a Stateful session, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer.

The load balancer handles failover to provide service-level availability.
Use sticky load balancing based on amlbcookie values to improve site
performance.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateful session An AM session that resides in the Core Token Service's token store.
Stateful sessions might also be cached in memory on one or more

Authorization Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:38.994204)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 201

AM servers. AM tracks stateful sessions in order to handle events
like logout and timeout, to permit session constraints, and to notify
applications involved in SSO when a session ends.

Stateless session An AM session for which state information is encoded in AM and
stored on the client. The information from the session is not retained
in the CTS token store. For browser-based clients, AM sets a cookie in
the browser that contains the session information.

Subject Entity that requests access to a resource

When a subject successfully authenticates, AM associates the subject
with the Principal that distinguishes it from other subjects. A subject
can be associated with multiple principals.

User data store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	Authorization Guide
	Table of Contents
	Preface
	Chapter 1. Introducing Authorization
	1.1. Resource Types, Policy Sets, and Policies
	1.2. Policy Decisions
	1.3. Example Authorization
	1.4. Reaching Policy Decisions

	Chapter 2. Implementing Authorization
	2.1. Implementing Authorization Using the AM Console
	2.1.1. Configuring Resource Types, Policy Sets, and Policies
	2.1.1.1. Configuring Resource Types
	2.1.1.2. Configuring Policy Sets
	2.1.1.3. Configuring Policies
	2.1.1.4. Specifying Resource Patterns with Wildcards

	2.1.2. Importing and Exporting Policies
	2.1.3. Delegating Policy Management

	2.2. Implementing Authorization Using the REST API
	2.2.1. About the REST Policy Endpoints
	2.2.2. Requesting Policy Decisions
	2.2.2.1. Requesting Policy Decisions For Specific Resources
	2.2.2.2. Policy Decision Advice
	2.2.2.3. Requesting Policy Decisions For a Tree of Resources

	2.2.3. Managing Resource Types
	2.2.3.1. Querying Resource Types
	2.2.3.2. Reading a Specific Resource Type
	2.2.3.3. Creating a Resource Type
	2.2.3.4. Updating a Resource Type
	2.2.3.5. Deleting a Specific Resource Type

	2.2.4. Managing Application Types
	2.2.4.1. Querying Application Types
	2.2.4.2. Reading a Specific Application Type

	2.2.5. Managing Policy Sets
	2.2.5.1. Querying Policy Sets
	2.2.5.2. Reading a Specific Policy Set
	2.2.5.3. Creating Policy Sets
	2.2.5.4. Updating Policy Sets
	2.2.5.5. Deleting Policy Sets

	2.2.6. Managing Policies
	2.2.6.1. Querying Policies
	2.2.6.2. Reading a Specific Policy
	2.2.6.3. Creating Policies
	2.2.6.4. Updating Policies
	2.2.6.5. Deleting Policies
	2.2.6.6. Copying and Moving Policies

	2.2.7. Importing and Exporting XACML 3.0
	2.2.7.1. Exporting to XACML
	2.2.7.2. Importing from XACML

	2.2.8. Managing Environment Condition Types
	2.2.8.1. Querying Environment Condition Types
	2.2.8.2. Reading a Specific Environment Condition Type

	2.2.9. Managing Subject Condition Types
	2.2.9.1. Querying Subject Condition Types
	2.2.9.2. Reading a Specific Subject Condition Type

	2.2.10. Managing Subject Attributes
	2.2.10.1. Querying Subject Attributes

	2.2.11. Managing Decision Combiners
	2.2.11.1. Querying Decision Combiners
	2.2.11.2. Reading a Specific Decision Combiner

	Chapter 3. Implementing Transactional Authorization
	3.1. Introducing Transactional Authorization
	3.2. Using Transactional Authorization
	3.2.1. Transactional Authorization Prerequisite Tasks
	3.2.2. Preparing AM for Transactional Authorization with Push Notifications
	3.2.3. Using Transactional Authorization with the AM Console
	3.2.4. Using Transactional Authorization with the REST APIs

	Chapter 4. Customizing Authorization
	4.1. Customizing Policy Evaluation With a Plug-In
	4.1.1. About the Sample Plugin
	4.1.2. Building the Sample Plugin
	4.1.3. Adding Custom Policy Implementations to Existing Policy Sets
	4.1.4. Trying the Sample Subject and Environment Conditions
	4.1.5. Trying the Sample Resource Attributes
	4.1.6. Extending the ssoadm Classpath

	4.2. Scripting a Policy Condition
	4.2.1. Preparing
	4.2.2. Trying the Default Policy Condition Script

	Chapter 5. Reference
	5.1. Global Service Properties
	5.1.1. Push Notification Service
	5.1.1.1. Realm Defaults

	5.1.2. Policy Configuration
	5.1.2.1. Global Attributes
	5.1.2.2. Realm Defaults

	5.1.3. Transaction Authentication Service
	5.1.3.1. Realm Defaults

	5.2. Authorization API Functionality
	5.2.1. Accessing Authorization State
	5.2.2. Accessing Profile Data
	5.2.3. Accessing Session Data
	5.2.4. Setting Authorization Responses

	Appendix A. About the REST API
	A.1. Introducing REST
	A.2. About ForgeRock Common REST
	A.2.1. Common REST Resources
	A.2.2. Common REST Verbs
	A.2.3. Common REST Parameters
	A.2.4. Common REST Extension Points
	A.2.5. Common REST API Documentation
	A.2.6. Create
	A.2.7. Read
	A.2.8. Update
	A.2.9. Delete
	A.2.10. Patch
	A.2.10.1. Patch Operation: Add
	A.2.10.2. Patch Operation: Copy
	A.2.10.3. Patch Operation: Increment
	A.2.10.4. Patch Operation: Move
	A.2.10.5. Patch Operation: Remove
	A.2.10.6. Patch Operation: Replace
	A.2.10.7. Patch Operation: Transform
	A.2.10.8. Patch Operation Limitations

	A.2.11. Action
	A.2.12. Query
	A.2.13. HTTP Status Codes

	A.3. REST API Versioning
	A.3.1. Supported REST API Versions
	A.3.2. Specifying an Explicit REST API Version
	A.3.3. Configuring the Default REST API Version for a Deployment
	A.3.4. REST API Versioning Messages

	A.4. Specifying Realms in REST API Calls
	A.5. Authentication and Logout
	A.5.1. Logout
	A.5.2. logoutByHandle
	A.5.3. Load Balancer and Proxy Layer Requirements
	A.5.4. Windows Desktop SSO Requirements

	A.6. Using the Session Token After Authentication
	A.7. Server Information
	A.8. Token Encoding
	A.9. Logging
	A.9.1. Common Audit Logging of REST API Calls
	A.9.2. Legacy Logging of REST API Calls

	A.10. Reference
	A.10.1. REST APIs

	Appendix B. About Scripting
	B.1. The Scripting Environment
	B.1.1. Security
	B.1.2. Thread Pools

	B.2. Global Scripting API Functionality
	B.2.1. Accessing HTTP Services
	B.2.2. Debug Logging

	B.3. Managing Scripts
	B.3.1. Managing Scripts With the AM Console
	B.3.2. Managing Scripts With the ssoadm Command
	B.3.3. Managing Scripts With the REST API
	B.3.4. Querying Scripts
	B.3.5. Reading a Script
	B.3.6. Validating a Script
	B.3.7. Creating a Script
	B.3.8. Updating a Script
	B.3.9. Deleting a Script

	B.4. Scripting
	B.4.1. Configuration
	B.4.2. Secondary Configurations
	B.4.2.1. Engine Configuration

	Appendix C. Getting Support
	C.1. Accessing Documentation Online
	C.2. Using the ForgeRock.org Site
	C.3. Getting Support and Contacting ForgeRock

	Glossary

