
OAuth 2.0 Guide
/ ForgeRock Access Management 5.5

Latest update: 5.5.2

ForgeRock AS
201 Mission St, Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2020 ForgeRock AS.

Abstract

Guide showing you how to use ForgeRock® Access Management with OAuth 2.0.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
https://opensource.org/licenses/OFL-1.1

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. v
1. Introducing OAuth 2.0 .. 1

1.1. OAuth 2.0 Authorization Server .. 2
1.2. OAuth 2.0 Client and Resource Server Solution .. 13
1.3. Using Your Own Client and Resource Server .. 14
1.4. Security Considerations .. 15
1.5. OAuth 2.0 JSON Web Token Proof-of-Possession ... 16

2. Implementing OAuth 2.0 ... 19
2.1. Configuring the OAuth 2.0 Authorization Service .. 19
2.2. Registering OAuth 2.0 Clients With the Authorization Service 21
2.3. Configuring as an Authorization Server and Client 31
2.4. Managing OAuth 2.0 Consent ... 38
2.5. Stateless OAuth 2.0 Access and Refresh Tokens ... 44
2.6. Configuring Stateless OAuth 2.0 Token Blacklisting 45
2.7. Configuring Digital Signatures ... 46

3. Using OAuth 2.0 .. 50
3.1. OAuth 2.0 Client and Resource Server Endpoints ... 50
3.2. OAuth 2.0 Device Flow Endpoints .. 60
3.3. OAuth 2.0 Resource Set Endpoint .. 66
3.4. OAuth 2.0 Token Administration Endpoint (Legacy) 68
3.5. OAuth 2.0 Client Administration Endpoint .. 72
3.6. OAuth 2.0 Sample Mobile Applications ... 75

4. Customizing OAuth 2.0 .. 77
4.1. Customizing OAuth 2.0 Scope Handling ... 77

5. Reference .. 81
5.1. OAuth 2.0 Standards .. 81
5.2. OAuth2 Provider ... 82
5.3. Remote Consent Service ... 101
5.4. OAuth 2.0 and OpenID Connect 1.0 Client Settings 102
5.5. OAuth 2.0 Remote Consent Agent Settings ... 112

A. About the REST API .. 118
A.1. Introducing REST ... 118
A.2. About ForgeRock Common REST ... 118
A.3. REST API Versioning .. 135
A.4. Specifying Realms in REST API Calls ... 140
A.5. Authentication and Logout ... 141
A.6. Using the Session Token After Authentication .. 148
A.7. Server Information ... 149
A.8. Token Encoding .. 150
A.9. Logging .. 150
A.10. Reference ... 152

B. About Scripting ... 155
B.1. The Scripting Environment ... 155
B.2. Global Scripting API Functionality .. 158

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iv

B.3. Managing Scripts ... 160
B.4. Scripting .. 172

C. Getting Support .. 176
C.1. Accessing Documentation Online .. 176
C.2. Using the ForgeRock.org Site .. 176
C.3. Getting Support and Contacting ForgeRock ... 177

Glossary ... 178

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. v

Preface
This guide covers concepts, configuration, and usage procedures for working with OAuth 2.0 and
ForgeRock Access Management.

This guide is written for anyone using OAuth 2.0 with Access Management to manage and federate
access to web applications and web-based resources.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing OAuth 2.0
This chapter covers AM support for the OAuth 2.0 authorization framework. The chapter begins by
showing where AM fits into the OAuth 2.0 authorization framework, and then shows how to configure
the functionality.

RFC 6749, The OAuth 2.0 Authorization Framework, provides a standard way for resource owners to
grant client applications access to the owners' web-based resources. The canonical example involves
a user (resource owner) granting access to a printing service (client) to print photos that the user has
stored on a photo-sharing server.

The section describes how AM supports the OAuth 2.0 authorization framework in terms of the roles
that AM plays.1 The following sequence diagram indicates the primary roles AM can play in the
OAuth 2.0 protocol flow.

OAuth 2.0 Protocol Flow

OAut h 2 .0 Prot ocol Flow

Resource Owner

Resource Owner

Client (AM)

Client (AM)

Authorizat ion Server (AM)

Authorizat ion Server (AM)

Resource Server

Resource Server

1 Authorizat ion request

2 Authorizat ion grant

3 Authorizat ion grant

4 Access token

5 Access token

6 Protected resource

1Read RFC 6749 to understand the authorization framework itself.

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Introducing OAuth 2.0
OAuth 2.0 Authorization Server

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 2

1.1. OAuth 2.0 Authorization Server
AM can function as an OAuth 2.0 authorization server. In this role, AM authenticates resource owners
and obtains their authorization in order to return access tokens to clients.

When using AM as authorization server, you can register clients in the AM console alongside agent
profiles under the OAuth 2.0 Client tab. Clients can also register clients with AM dynamically. AM
supports both confidential and public clients.

AM supports the four main grants for obtaining authorization described in RFC 6749: the
authorization code grant, the implicit grant, the resource owner password credentials grant, and the
client credentials grant. See RFC 6749 for details on the authorization grant process, and for details
on how clients should make authorization requests and handle authorization responses. AM also
supports the SAML v2.0 Bearer Assertion Profiles for OAuth 2.0, described in the Internet-Draft.

1.1.1. OAuth 2.0 Authorization Grant

The authorization code grant starts with the client, such as a web-based service, redirecting the
resource owner's user-agent to the AM authorization service. After authenticating the resource owner
and obtaining the resource owner's authorization, AM redirects the resource owner's user-agent back
to the client with an authorization code that the client uses to request the access token. The following
sequence diagram outlines a successful process from initial client redirection through to the client
accessing the protected resource.

OAuth 2.0 Authorization Code Grant Process

OAut h 2 .0 Aut horizat ion Code Grant

Resource Owner User-Agent

Resource Owner User-Agent

Client

Client

AM Authorizat ion Server

AM Authorizat ion Server

Resource Server

Resource Server

1 Redirect ...

2 ...with client_id, scope, state, redirect_uri

3 Authent icate resource owner and confirm resource access

4 If credent ials are valid, redirect ...

5 ...with authorizat ion code, state to
redirect_uri

6 Authent icate, request access token
with authorizat ion code, redirect_uri

7 If authorizat ion code is valid,
return access token

8 Request resource with access token

9 Request token validat ion and inform at ion

1 0 If access token is valid, respond with inform at ion

1 1 If access token is valid, return protected resource

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer

Introducing OAuth 2.0
OAuth 2.0 Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 3

1.1.2. OAuth 2.0 Implicit Grant

The implicit grant is designed for clients implemented to run inside the resource-owner user agent.
Instead of providing an authorization code that the client must use to retrieve an access token, AM
returns the access token directly in the fragment portion of the redirect URI. The following sequence
diagram outlines the successful process.

OAuth 2.0 Implicit Grant Process

OAut h 2 .0 Im plicit Grant

Resource Owner User-Agent

Resource Owner User-Agent

Client

Client

AM Authorizat ion Server

AM Authorizat ion Server

Web-Hosted Client Resource

Web-Hosted Client Resource

Resource Server

Resource Server

1 Redirect ...

2 ...with client_id, scope, state, redirect_uri

3 Authent icate resource owner and
confirm resource access

4 Redirect with redirect_uri, access token in URI fragm ent ...

5 ...to request redirect_uri without the fragm ent

6 Return web page with em bedded script to ext ract access token

7 Execute script to ret rieve access token

8 Return access token

9 Request resource with access token

1 0 Request access token validat ion and inform at ion

1 1 If access token is valid, respond with inform at ion

1 2 If access token is valid, return protected resource

1.1.3. OAuth 2.0 Resource Owner Password Credentials Grant

The resource owner password credentials grant lets the client use the resource owner's user name
and password to get an access token directly. Although this grant might seem to conflict with an
original OAuth goal of not having to share resource owner credentials with the client, it can makes
sense in a secure context where other authorization grant types are not available, such as a client
that is part of a device operating system using the resource owner credentials once and thereafter
using refresh tokens to continue accessing resources. The following sequence diagram shows the
successful process.

Introducing OAuth 2.0
OAuth 2.0 Client Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 4

OAuth 2.0 Resource Owner Password Credentials Grant Process

OAut h 2 .0 Resource Ow ner Passw ord Credent ia ls Grant

Resource Owner

Resource Owner

Client

Client

AM Authorizat ion Server

AM Authorizat ion Server

Resource Server

Resource Server

1 Provide user nam e, password

2 Authent icate

3 If credent ials are valid, return access token

4 Request resource with access token

5 Request access token validat ion and inform at ion

6 If access token is valid, respond with inform at ion

7 If access token is valid, return protected resource

1.1.4. OAuth 2.0 Client Credentials Grant

The client credentials grant uses client credentials as an authorization grant. This grant makes sense
when the client is also the resource owner, for example. The following sequence diagram shows the
successful process.

OAuth 2.0 Client Credentials Grant Process

OAut h 2 .0 Client Credent ia ls Grant

Client ResourceOwner

Client ResourceOwner

AM Authorizat ion Server

AM Authorizat ion Server

Resource Server

Resource Server

1 Authent icate, request access token from token endpoint

2 If credent ials are valid, return access token

3 Request resource with access token

4 Request access token validat ion and inform at ion

5 If access token is valid, respond with inform at ion

6 If access token is valid, return protected resource

1.1.5. OAuth 2.0 Device Flow

The OAuth 2.0 Device Flow is designed for client devices that have limited user interfaces, such as a
set-top box, streaming radio, or a server process running on a headless operating system.

Introducing OAuth 2.0
OAuth 2.0 Device Flow

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 5

Rather than logging in by using the client device itself, you can authorize the client to access
protected resources on your behalf by logging in with a different user agent, such as an Internet
browser on a PC or smartphone, and entering a code displayed on the client device.

The sequence diagram below demonstrates the OAuth 2.0 Device Flow:

OAuth 2.0 Device Flow

User

Client
Device

AM
Authorizat ion Server

1 . Request device code

2 . Return device code, user code, URL,
and interval

3 . Provide user code to user

User

loop [Each Int erval]

4 . Poll for authorizat ion with device code

5 . Return [403] authorizat ion_pending

6 . Enter user code

7 . Authent icate

8 . Approve client access

9 . Return [200] access_token

The steps in the diagram are described below:

Introducing OAuth 2.0
OAuth 2.0 Device Flow

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 6

1. The client device requests a device code from AM by using a REST call.

2. AM returns a device code, a user code, a URL for entering the user code, and an interval, in
seconds.

3. The client device provides instructions to the user to enter the user code. The client may choose
an appropriate method to convey the instructions, for example text instructions on screen, or a QR
code.

4. The client device begins to continuously poll AM to see if authorization has been completed.

5. If the user has not yet completed the authorization, AM returns an HTTP 403 status code, with an
authorization_pending message.

6. The user follows the instructions from the client device to enter the user code by using a separate
device.

7. If the user code is valid AM will ask the user to authenticate.

8. Upon authentication the user can authorize the client device. The AM consent page also displays
the requested scopes, and their values:

Introducing OAuth 2.0
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 7

OAuth 2.0 Consent Page

9. Upon authorization, AM responds to the client device's polling with an HTTP 200 status, and an
access token, giving the client device access to the requested resources.

For more information, see "OAuth 2.0 Device Flow Endpoints".

1.1.6. OAuth 2.0 Remote Consent Service
AM supports OAuth 2.0 remote consent services (RCS), which allow the consent-gathering part of an
OAuth 2.0 flow to be handed off to a separate service.

A remote consent service renders a consent page, gathers the result, signs and encrypts the result,
and returns it to the authorization server.

During an OAuth 2.0 flow that requires user consent, AM can create a consent request JSON Web
Token (JWT) that contains the necessary information to render a consent gathering page.

The consent request JWT contains the following properties:

Introducing OAuth 2.0
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 8

iat

Specifies the creation time of the JWT.

iss

Specifies the name of the issuer - configured in the OAuth 2.0 Provider Service in AM.

aud

Specifies the name of the expected recipient of the JWT, in this case, the remote consent service.

exp

Specifies the expiration time of the JWT.

Use short expiration times, for example 180 seconds, as the JWT is intended for use in machine-
to-machine interactions.

csrf

Specifies a unique string that must be returned in the response to help prevent cross-site request
forgery (CSRF) attacks.

AM generates this string from a hash of the user's session ID.

client_id

Specifies the ID of the OAuth 2.0 client making the request.

client_name

Specifies the display name of the OAuth 2.0 client making the request.

client_description

Specifies a description of the OAuth 2.0 client making the request.

username

Specifies the username of the logged-in user.

Tip

Ensure you encrypt the JWT if the username could be considered personally identifiable information.

scopes

Specifies the requested scopes.

Introducing OAuth 2.0
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 9

claims

Specifies the claims the request is making.

Use the claims field for additional information to display on the remote consent page that helps
the user to determine if consent should be granted. For example, Open Banking OAuth 2.0 flows
may include identifiers for a money transaction.

save_consent_enabled

Specifies whether to provide the user the option to save their consent decision.

If set to false, the value of the save_consent property in the consent response from the RCS must
also be false.

Acting as the authorization server, AM signs and encrypts the JWT.

A remote consent service decrypts the JWT, verifies the signature and other details, such as the
validity of the aud, iss and exp properties, and renders the consent page to the resource owner.

Note

AM sends only the information required to create a consent gathering page to the remote consent service. It
does not send the actual values of the requested scopes.

After the remote consent service gathers the user's consent, it creates a consent response JSON Web
Token, encrypts and signs the response, and returns it to AM for processing.

The consent response JWT contains the following properties:

iat

Specifies the creation time of the JWT.

iss

Specifies the name of the remote consent service.

Should match the value of the aud property received from AM.

aud

Specifies the name of the expected recipient of the JWT, in this case, AM acting as the AS.

Should match the value of the iss property received from AM.

exp

Specifies the expiration time of the JWT.

Introducing OAuth 2.0
JWT Bearer Profile

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 10

Use short expiration times, for example 180 seconds, as the JWT is intended for use in machine-
to-machine interactions.

decision

Specifies true if consent was provided, or false if consent was withheld.

client_id

Specifies the ID of the OAuth 2.0 client making the request, matching the value provided in the
request.

scopes

Specifies an array of allowed scopes.

Must be equal to, or a subset of the array of scopes in the request.

save_consent

Specifies true if the user chose to save their consent decision, or false if they did not.

If save_consent_enabled was set to false in the request, save_consent must also be false.

AM decrypts and verifies the signature of the consent response and other details, such as the validity
of the aud, iss and exp properties, and processes the response. For example, it may save the consent
decision if configured to do so.

Both AM and the remote consent service make the required public keys available from a jwk_uri URI,
enabling the signing and encryption between the two servers.

The OAuth 2.0 flow continues as if AM had gathered the consent itself.

For information on configuring a remote consent service, see"Configuring Remote Consent Services".

1.1.7. JWT Bearer Profile

The Internet-Draft, JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and
Authorization Grants describes a means to use a JWT for client authentication or to use a JWT to
request an access token. When clients are also resource owners, the profile allows clients to issue
JWTs to obtain access tokens rather than use the resource owner password credentials grant.

AM implements both features of the profile. Both involve HTTP POST requests to the access token
endpoint.

When the client bearing the JWT uses it for authentication, then in the POST data the client sets
client_assertion_type to urn:ietf:params:oauth:client-assertion-type:jwt-bearer and client_assertion to the
JWT string.

http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer.html
http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer.html

Introducing OAuth 2.0
JWT Bearer Profile

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 11

JWT Bearer Client Authentication

JW T Bearer Client Aut hent icat ion

Client can be Issuer

Client

Client

Issuer

Issuer

AM
Authorizat ion Server

AM
Authorizat ion Server

1 Request JWT

2 JWT (signed)

3
POST with client_assert ion= The JWT
client_assert ion_type=
urn:iet f:param s:oauth:client -assert ion-type:jwt -bearer

4 Validate JWT

5 Response (for exam ple with an access token)

The HTTP POST to AM looks something like the following, where the assertion value is the JWT:

POST /openam/oauth2/realms/root/access_token HTTP/1.1
Host: openam.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&
code=362ad374-735c-4f69-aa8e-bf384f8602de&
client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3A
 client-assertion-type%3Ajwt-bearer&
client_assertion=eyAiYWxnIjogIlJTMjU2IiB9.eyAic3ViIjogImp3...

In the above profile, AM must be able to validate the JWTwith the following claims:

• "iss" (issuer) whose value identifies the JWT issuer.

Introducing OAuth 2.0
SAML v2.0 Bearer Assertion Profiles

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 12

• "sub" (subject) whose value identifies the principal who is the subject of the JWT.

For client authentication, the "sub" value must be the same as the value of the "client_id".

• "aud" (audience) whose value identifies the authorization server that is the intended audience of
the JWT.

When the JWT is used for authentication, this is the AM access token endpoint.

• "exp" (expiration) whose value specifies the time of expiration.

Important

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT expiration time is
 unreasonable error message.

Also for validation, the issuer must digitally sign the JWT or apply a keyed message digest. When the
issuer is also the client, the client can sign the JWT by using a private key, and include the public key
in its profile registered with AM.

A sample Java-based client is provided.

For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

1.1.8. SAML v2.0 Bearer Assertion Profiles

The Internet-Draft, SAML v2.0 Bearer Assertion Profiles for OAuth 2.0, describes a means to use
SAML v2.0 assertions to request access tokens and to authenticate OAuth 2.0 clients.

At present AM implements the profile to request access tokens.

In both profiles, the issuer must sign the assertion. The client communicates the assertion over a
channel protected with transport layer security by performing an HTTP POST to the AM's access
token endpoint. AM as OAuth 2.0 authorization server uses the issuer ID to validate the signature on
the assertion.

In the profile to request an access token, the OAuth 2.0 client bears a SAML v2.0 assertion that was
issued to the resource owner on successful authentication. A valid assertion in this case is equivalent
to an authorization grant by the resource owner to the client. OAuth 2.0 clients must make it clear to
the resource owner that by authenticating to the identity provider who issues the assertion, they are
granting the client permission to access the protected resources.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer

Introducing OAuth 2.0
OAuth 2.0 Client and Resource Server Solution

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 13

SAML v2.0 Bearer Assertion Authorization Grant

SAM L v2 .0 Bearer Assert ion Aut horizat ion Grant

Client

Client

Issuer

Issuer

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1 Request SAML v2.0 assert ion

2 Signed assert ion

3 Assert ion as authorizat ion grant

4 Access token

5 Access token

6 Protected resource

The HTTP POST to AM to request an access token looks something like this:
POST /openam/oauth2/realms/root/access_token HTTP/1.1
 Host: openam.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer&
 assertion=PHNhbWxwOl...[base64url encoded assertion]...ZT4&
 client_id=[ID registered with OpenAM]

1.2. OAuth 2.0 Client and Resource Server Solution
AM can function as an OAuth 2.0 client for installations where the web resources are protected by
AM. To configure AM as an OAuth 2.0 client, you set up an OAuth 2.0 social authentication module
instance, and then integrate the authentication module into your authentication chains as necessary.

When AM functions as an OAuth 2.0 client, AM provides an AM SSO session after successfully
authenticating the resource owner and obtaining authorization. This means the client can then
access resources protected by agents. In this respect the AM OAuth 2.0 client is just like any other

Introducing OAuth 2.0
Using Your Own Client and Resource Server

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 14

authentication module, one that relies on an OAuth 2.0 authorization server to authenticate the
resource owner and obtain authorization. The following sequence diagram shows how the client gains
access to protected resources in the scenario where AM functions as both authorization server and
client for example.

OAuth 2.0 Client and Authorization Server

OAut h 2 .0 Aut horizat ion Server and AM Client

Resource Owner
User-Agent

Resource Owner
User-Agent

Client
AM OAuth 2.0 Auth Module

Client
AM OAuth 2.0 Auth Module

Authorizat ion Server

Authorizat ion Server

Resource Server
Protected with AM Agent

Resource Server
Protected with AM Agent

1 Redirect ...

2 ...to AM OAuth 2.0 authorizat ion server

3 Authent icate, and confirm authorizat ion grant

4 Redirect ...

5 ...with authorizat ion code to redirect_uri

6 Authent icate, request access token with
authorizat ion code, redirect_uri

7 If authorizat ion code is valid, return access token

8 Request user profile inform at ion with access token

9 If configured, m ap user to local ident ity

1 0 Redirect ...

1 1 ...with SSO token to protected resource

1 2 If authorized by AM (not shown), return protected resource

As the OAuth 2.0 client functionality is implemented as an AM authentication module, you do not
need to deploy your own resource server implementation when using AM as an OAuth 2.0 client.
Instead, use web or Java agents or IG to protect resources.

To configure AM as an OAuth 2.0 client, see the section "Social Authentication Modules" in the
Authentication and Single Sign-On Guide.

1.3. Using Your Own Client and Resource Server
AM returns bearer tokens as described in RFC 6750, The OAuth 2.0 Authorization Framework:
Bearer Token Usage. Notice in the following example JSON response to an access token request that
AM returns a refresh token with the access token. The client can use the refresh token to get a new
access token as described in RFC 6749:

http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc6750

Introducing OAuth 2.0
Security Considerations

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 15

{
 "expires_in": 599,
 "token_type": "Bearer",
 "refresh_token": "f6dcf133-f00b-4943-a8d4-ee939fc1bf29",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
}

In addition to implementing your client, the resource server must also implement the logic for
handling access tokens. The resource server can use the /oauth2/tokeninfo endpoint to determine
whether the access token is still valid, and to retrieve the scopes associated with the access token.

The default AM implementation of OAuth 2.0 scopes assumes that the space-separated (%20 when
URL-encoded) list of scopes in an access token request correspond to names of attributes in the
resource owner's profile.

To take a concrete example, consider an access token request where scope=mail%20cn and where the
resource owner is the default AM demo user. (The demo user has no email address by default, but
you can add one, such as demo@example.com to the demo user's profile.) When the resource server
performs an HTTP GET on the token information endpoint, /oauth2/tokeninfo?access_token=token-id, AM
populates the mail and cn scopes with the email address (demo@example.com) and common name (demo)
from the demo user's profile. The result is something like the following token information response:
{
 "mail": "demo@example.com",
 "scope": [
 "mail",
 "cn"
],
 "cn": "demo",
 "realm": "/",
 "token_type": "Bearer",
 "expires_in": 577,
 "client_id": "MyClientID",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
}

AM is designed to allow you to plug in your own scopes implementation if the default implementation
does not do what your deployment requires. See "Customizing OAuth 2.0 Scope Handling" for an
example.

1.4. Security Considerations
OAuth 2.0 messages involve credentials and access tokens that allow the bearer to retrieve protected
resources. Therefore, do not let an attacker capture requests or responses. Protect the messages
going across the network.

RFC 6749 includes a number of Security Considerations, and also requires Transport Layer
Security (TLS) to protect sensitive messages. Make sure you read the section covering Security
Considerations, and that you can implement them in your deployment.

http://tools.ietf.org/html/rfc6749#section-10

Introducing OAuth 2.0
OAuth 2.0 JSON Web Token Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 16

Also, especially when deploying a mix of other clients and resource servers, take into account the
points covered in the Internet-Draft, OAuth 2.0 Threat Model and Security Considerations, before
putting your service into production.

1.5. OAuth 2.0 JSON Web Token Proof-of-Possession
AM supports associating a confirmation key with an access token to support proof-of-possession
interactions as per the Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs) internet-
draft. This allows the presenter of a bearer token to prove that it was originally issued the access
token.

AM supports confirmation keys for both stateful and stateless OAuth 2.0 tokens. For more
information about stateless OAuth 2.0 tokens, see "Stateless OAuth 2.0 Access and Refresh Tokens".

To implement proof-of-possession for tokens, the client should include a JSON web key (JWK) when
making a request to an authorization server, such as AM, for an OAuth 2.0 access token. The JWK
consists of the public key of a keypair generated by the client.

When the issued access token is presented to a resource server, the resource server can
cryptographically confirm proof-of-possession of the token by using the associated JWK to form a
challenge-response interaction with the client.

http://tools.ietf.org/html/draft-ietf-oauth-v2-threatmodel
https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-11

Introducing OAuth 2.0
OAuth 2.0 JSON Web Token Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 17

OAut h 2 .0 Proof-of-Possession

Resource Server

Client

Client Resource Server

AM

AM

Obt ain Access Token

1 Request access token and include a JWK

2 Return JWT with em bedded JWK (stateless) or access token ID (stateful)

Access a Resource

3 Present JWT / access token ID Resource Server

I f st at e ful. . .

4 Int rospect access
token ID to acquire JWK

Challenge-Response

5 Create a challenge
using the JWK

6 Issue challenge

7 Solve the challenge using the private key

8 Issue response

Validate response and
allow or deny access
to the resource.

Introducing OAuth 2.0
OAuth 2.0 JSON Web Token Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 18

For information on adding proof-of-possession keys to access token requests, see "Using OAuth 2.0
JSON Web Token Proof-of-Possession".

Implementing OAuth 2.0
Configuring the OAuth 2.0 Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 19

Chapter 2

Implementing OAuth 2.0
This chapter covers implementing and configuring AM support for OAuth 2.0.

2.1. Configuring the OAuth 2.0 Authorization Service
You configure the OAuth 2.0 authorization service for a particular realm from the Realms > Realm
Name > Dashboard page of the AM console.

To Set Up the OAuth 2.0 Authorization Service

Follow the steps in this procedure to set up the service with the Configure OAuth Provider wizard:

When you create the service with the Configure OAuth Provider wizard, the wizard also creates a
standard policy in the Top Level Realm (/) to protect the authorization endpoint. In this configuration,
AM serves the resources to protect, and no separate application is involved. AM therefore acts both
as the policy decision point and also as the policy enforcement point that protects the OAuth 2.0
authorization endpoint.

There is no requirement to use the wizard or to create the policy in the Top Level Realm. However,
if you create the OAuth 2.0 authorization service without the wizard, then you must set up the policy
independently as well. The policy must appear in a policy set of type iPlanetAMWebAgentService, which
is the default in the AM policy editor. When configuring the policy allow all authenticated users to
perform HTTP GET and POST requests on the authorization endpoint. The authorization endpoint is
described in "OAuth 2.0 Client and Resource Server Endpoints". For details on creating policies, see
"Implementing Authorization" in the Authorization Guide.

1. In the AM console, select Realms > Realm Name > Dashboard > Configure OAuth Provider >
Configure OAuth 2.0.

2. On the Configure OAuth 2.0 page, select the Realm for the authorization service.

3. (Optional) If necessary, adjust the lifetimes for authorization codes (a lifetime of 10 minutes or
less is recommended in RFC 6749), access tokens, and refresh tokens.

4. (Optional) Select Issue Refresh Tokens unless you do not want the authorization service to supply
a refresh token when returning an access token.

5. (Optional) Select Issue Refresh Tokens on Refreshing Access Tokens if you want the authorization
service to supply a refresh token when refreshing an access token.

http://tools.ietf.org/html/rfc6749#section-4.1.2

Implementing OAuth 2.0
Configuring the OAuth 2.0 Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 20

6. (Optional) If you want to use the default scope implementation, whereby scopes are taken to be
resource owner profile attribute names, then keep the default setting.

If you have a custom scope validator implementation, put it on the AM classpath, and provide the
class name as Scope Implementation Class. For an example, see "Customizing OAuth 2.0 Scope
Handling".

7. Click Create to complete the process.

To access the authorization server configuration in the AM console, browse to Realms > Realm
Name > Services, and then click OAuth2 Provider.

As mentioned at the outset of this procedure, the wizard sets up a policy in the Top Level Realm
to protect the authorization endpoint. The policy appears in the iPlanetAMWebAgentService policy set.
Its name is OAuth2ProviderPolicy.

8. (Optional) If your provider has a custom response type plugin, put it on the AM classpath, and
then add the custom response types and the plugin class names to the list of Response Type
Plugins.

9. (Optional) If you use an external identity repository where resource owners log in not with their
user ID, but instead with their mail address or some other profile attribute, then complete this
step.

The following steps describe how to configure AM authentication so OAuth 2.0 resource owners
can log in using their email address, stored on the LDAP profile attribute, mail. Adapt the names if
you use a different LDAP profile attribute, such as cn:

a. When configuring the data store for the LDAP identity repository, make sure that you select
Load schema when saved, and that you set the Authentication Naming Attribute to mail. You
can find the data store configuration under Realms > Realm Name > Data Stores.

b. Add the mail profile attribute name to the list of attributes that can be used for authentication.

To make the change, navigate to Realms > Realm Name > Services, click OAuth2 Provider,
add the profile attributes to the list titled User Profile Attribute(s) the Resource Owner is
Authenticated On, and then click Save Changes.

c. Create an LDAP authentication module to use with the external directory:

i. In the AM console under Realms > Realm Name > Authentication > Modules, create a
module to access the LDAP identity repository, such as LDAPAuthUsingMail.

ii. In the Attribute Used to Retrieve User Profile field, set the attribute to mail.

iii. In the Attributes Used to Search for a User to be Authenticated list, remove the default
uid attribute and add the mail attribute.

iv. Click Save.

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 21

d. Create an authentication chain to include the module, such as authUsingMail.

i. When creating the authentication chain, choose the LDAPAuthUsingMail module in the
Instance drop-down list, and set the criteria to REQUIRED.

ii. Click Save.

e. Set Organization Authentication Configuration to use the new chain, authUsingMail, and then
click Save.

At this point OAuth 2.0 resource owners can authenticate using their email address rather
than their user ID.

10. Add a multi-valued string syntax profile attribute to your identity repository. AM stores resource
owners' consent to authorize client access in this profile attribute. On subsequent requests from
the same client for the same scopes, the resource owner no longer sees the authorization page.

You are not likely to find a standard profile attribute for this. For evaluation purposes only, you
might try an unused existing profile attribute, such as description.

When moving to production, however, use a dedicated, multi-valued, string syntax profile
attribute that clearly is not used for other purposes. For example, you might call the attribute
oAuth2SavedConsent.

Adding a profile attribute involves updating the identity repository to support use of the attribute,
updating the AMUser Service for the attribute, and optionally allowing users to edit the attribute.
The process is described in "Customizing Profile Attributes" in the Setup and Maintenance Guide,
which demonstrates adding a custom attribute when using DS to store user profiles.

11. Navigate to Realms > Realm Name > Services, click OAuth2 Provider, and then specify the name
of the attribute created in the previous step in the Saved Consent Attribute Name field.

12. Click Save Changes.

To further adjust the authorization server configuration after you create it, in the AM console
navigate to Realms > Realm Name > Services, and then click OAuth2 Provider.

To adjust global defaults, in the AM console navigate to Configure > Global Services, and then click
OAuth2 Provider.

2.2. Registering OAuth 2.0 Clients With the Authorization
Service
You can register an OAuth 2.0 client with the AM OAuth 2.0 authorization service by creating and
configuring an OAuth 2.0 Client profile. When creating a client profile, you must provide at least the
client identifier and client secret.

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 22

Alternatively, you can register a client dynamically. AM supports open registration, registration
with an access token, and registration including a secure software statement issued by a software
publisher.

You can also create an OAuth 2.0 client profile group. OAuth 2.0 clients within a group can specify
one or more properties that inherit their values from the group, allowing configuration of multiple
OAuth 2.0 clients simultaneously. For more information, see "To Configure an OAuth 2.0 Client
Profile Group".

To Create an OAuth 2.0 Client Profile

Use the following procedure to create an OAuth 2.0 client profile:

• In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0. Click Add
Client, and then provide the Client ID, client secret, redirection URIs, scope(s), and default
scope(s). Finally, click Create to create the profile.

To configure the client, see "To Configure an OAuth 2.0 Client Profile".

To Configure an OAuth 2.0 Client Profile

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name
to open the OAuth 2.0 Client page.

2. Adjust the configuration as needed using the inline help for hints, and also the documentation
section "OAuth 2.0 and OpenID Connect 1.0 Client Settings".

Examine the client type option. An important decision to make at this point is whether your
client is a confidential client or a public client. This depends on whether your client can keep its
credentials confidential, or whether its credentials can be exposed to the resource owner or other
parties. If your client is a web-based application running on a server, such as the AM OAuth 2.0
client, then you can keep its credentials confidential. If your client is a user-agent based client,
such as a JavaScript client running in a browser, or a native application installed on a device
used by the resource owner, then the credentials can be exposed to the resource owner or other
parties.

3. When finished, save your work.

To Configure an OAuth 2.0 Client Profile Group

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0.

• To create a new OAuth 2.0 client profile group:

On the Groups tab, select Add Group, and then provide the Group ID. Finally, select Create.

• To configure a OAuth 2.0 client profile group:

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 23

On the Groups tab, select the group to configure.

2. Adjust the configuration as needed using the inline help for hints, and also the documentation
section "OAuth 2.0 and OpenID Connect 1.0 Client Settings".

3. When finished, save your work.

If the group is assigned to one or more OAuth 2.0 client profiles, changes to inherited properties
in the group are also applied to the client profile.

To assign a group to an OAuth 2.0 client profile, see "To Assign a Group to an OAuth 2.0 Client
Profile and Inherit Properties".

To Assign a Group to an OAuth 2.0 Client Profile and Inherit Properties

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0. On the
Clients tab, select the client ID to which a group is to be assigned.

2. On the Core tab, select the group to assign to the client from the Group drop-down.

Warning

Adding or changing an assigned group will refresh the settings page. Unsaved property values will be lost.

The inheritance (padlock) icons appear next to properties that support inheriting their value
from the assigned group. Not all properties can inherit their value, for example, the Client secret
property.

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 24

OAuth 2.0 Client Profile Group Inheritance

3. Inherit a property value from the group by selecting the inheritance button (the open padlock
icon) next to the property.

The value will be inherited from the group and the field will be locked.

Note

If you change the group, properties with inheritance enabled will inherit the value from the new group.

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 25

If you remove the group, inherited property values are written to the OAuth 2.0 client profile, and become
editable.

4. When finished, save your work.

To Configure AM for OAuth 2.0 Dynamic Client Registration

AM supports dynamic registration as defined by RFC 7591, the OAuth 2.0 Dynamic Client
Registration Protocol. The protocol describes how authorization servers can allow OAuth 2.0 clients
to register:

• Openly, without an access token, providing only their client metadata as a JSON resource.

AM generates client_id and client_secret values. AM ignores any values provided in the client
metadata for these properties.

An example is shown in "Open OAuth 2.0 Dynamic Client Registration Example".

• By gaining authorization using an OAuth 2.0 access token, and with their client metadata.

The specification does not describe how the client obtains the access token. In AM, you can
manually register an initial OAuth 2.0 client that obtains the access token on behalf of the client
requesting registration.

An example is shown in "OAuth 2.0 Dynamic Client Registration Example With Access Token".

• With client metadata that includes a software statement.

A software statement is a JWT that holds registration claims about the client, such as the issuer and
the redirection URIs that it will register.

A software statement is issued by a software publisher. The software publisher encrypts and signs
the claims in the software statement.

In AM, you store software publisher details as an agent profile. The software publisher profile
identifies the issuer included in software statements, and holds information required to decrypt
software statement JWTs and to verify their signatures. When the client presents a software
statement as part of the dynamic registration data, AM uses the software publisher profile to
determine whether it can trust the software statement.

The protocol specification does not describe how the client obtains the software statement JWT. AM
expects the software publisher to construct the JWT according to the settings in its agent profile.

An example is shown in "OAuth 2.0 Dynamic Client Registration Example With Software
Statement".

Follow these steps to configure AM for dynamic client registration:

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 26

1. Configure an authorization service.

For details, see "To Set Up the OAuth 2.0 Authorization Service".

2. In AM console under Realm > Services > OAuth2 Provider > Client Dynamic Registration, edit
the relevant settings:

• To allow clients to register without an access token, enable Allow Open Dynamic Client
Registration.

If you enable this option, consider some form of rate limiting. Also consider requiring a
software statement.

• To require that clients present a software statement upon registration, enable Require Software
Statement for Dynamic Client Registration, and edit the Required Software Statement Attested
Attributes list to include the claims that must be present in a valid software statement. In
addition to the elements listed, the issuer (iss) must be specified in the software statement's
claims, and the issuer value must match the Software publisher issuer value for a registered
software publisher agent.

As indicated in the protocol specification, AM rejects registration with an invalid software
statement.

For additional details, see "Client Dynamic Registration".

3. (Optional) If you enabled Require Software Statement for Dynamic Client Registration, then you
must register a software publisher:

a. In the AM console under Realm > Applications > Agents > Software Publisher Agents, add a
new software publisher agent.

If the publisher uses HMAC (symmetric) encryption for the software statement JWT, then the
software publisher's password is also the symmetric key. This is called the Software publisher
secret in the profile.

b. In the software publisher profile, configure the appropriate security settings.

Important

• The Software publisher issuer value must match the iss value in claims of software statements
issued by this publisher.

• If the publisher uses symmetric encryption, including HS256, HS384, and HS512, then the publisher
secret must match the k value in the JWK.

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 27

• If you provide the JWK by URI rather than by value, AM must be able to access the JWK when
processing registration requests.

Open OAuth 2.0 Dynamic Client Registration Example

The following example shows dynamic registration with the Allow Open Dynamic Client Registration
option enabled.

The client registers with its metadata as the JSON body of an HTTP POST to the registration
endpoint. When specifying client metadata, be sure to include a client_name property that holds the
human-readable name presented to the resource owner during consent:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 https://openam.example.com:8443/openam/oauth2/register
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?client_id=2aeff083
-83d7-4ba1-ab16-444ced02b535",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "4637ee46-51df-4901-af39-fec5c3a1054c",
 "client_id": "2aeff083-83d7-4ba1-ab16-444ced02b535",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "6efb5636-6537-4573-b05c-6031cc54af27",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 28

 }

OAuth 2.0 Dynamic Client Registration Example With Access Token

The following example shows dynamic registration with default OAuth 2.0 provider service settings,
providing an access token issued to a statically registered client.

In this example the statically registered client has the following profile settings:

Client ID

masterClient

Client secret

password

Scope(s)

cn

Prior to registration, obtain an access token:
$ curl \
 --request POST \
 --user "masterClient:password" \
 --data "grant_type=password&username=amadmin&password=password&scope=cn" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token
{"access_token":"5e7d1019-b752-43f1-af97-0d6fe2753105","scope":"cn","token_type":"Bearer"
,"expires_in":3599}

The client registers with its metadata, providing the access token. When specifying client metadata,
be sure to include a client_name property that holds the human-readable name presented to the
resource owner during consent:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer 5e7d1019-b752-43f1-af97-0d6fe2753105" \
 --data '{
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 https://openam.example.com:8443/openam/oauth2/register
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?client_id=d58ba00b-
da55-4fa3-9d2a-afe197207be5",

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 29

 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "5e7d1019-b752-43f1-af97-0d6fe2753105",
 "client_id": "d58ba00b-da55-4fa3-9d2a-afe197207be5",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "4da529de-3a18-4fb7-a0a9-07e05a394aa4",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
 }

OAuth 2.0 Dynamic Client Registration Example With Software Statement

The following example extends "OAuth 2.0 Dynamic Client Registration Example With Access Token"
to demonstrate dynamic registration with a software statement.

In this example the software publisher has the following profile settings:

Name

My Software Publisher

Software publisher secret

secret

Software statement signing Algorithm

HS256

Public key selector

JWKs

Software publisher issuer

https://client.example.com

Implementing OAuth 2.0
Registering OAuth 2.0 Clients With the Authorization Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 30

Json Web Key

{"keys": [{"kty": "oct", "k": "secret", "alg":"HS256"}]}

Notice that the value is a key set rather than a single key.

In this example, the software statement JWT is as shown in the following listing, with lines folded for
legibility:
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJpc3MiOiJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbSIsImlhdCI6MTUwNjY3MTg1MSwiZX
hwIjoxNTM4MjA3ODUxLCJhdWQiOiJvcGVuYW0uZXhhbXBsZS5jb20iLCJzdWIiOiI0TlJCMS0w
WFpBQlpJOUU2LTVTTTNSIiwicmVkaXJlY3RfdXJpcyI6WyJodHRwczovL2NsaWVudC5leGFtcG
xlLmNvbS9jYWxsYmFjayJdfQ.
IOxZaWTOzSPkEkrXC9nj8RDrpulzzMuZ-4R7_Ol_jhw

This corresponds to the HS256 encrypted and signed JWT with the following claims payload.:
{
 "iss": "https://client.example.com",
 "iat": 1506671851,
 "exp": 1538207851,
 "aud": "openam.example.com",
 "sub": "4NRB1-0XZABZI9E6-5SM3R",
 "redirect_uris": [
 "https://client.example.com/callback"
]
}

To build your own JWTs for testing and evaluation, use an online service such as https://jwt.io/.

Prior to registration, obtain an access token:
$ curl \
 --request POST \
 --user "masterClient:password" \
 --data "grant_type=password&username=amadmin&password=password&scope=cn" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token
{"access_token":"06bfc193-1f7b-49a1-9926-ffe19e2f5f70","scope":"cn","token_type":"Bearer"
,"expires_in":3599}

The client registers with its metadata that includes the software statement, providing the access
token. When specifying client metadata, be sure to include a client_name property that holds the
human-readable name presented to the resource owner during consent:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer 06bfc193-1f7b-49a1-9926-ffe19e2f5f70" \
 --data '{
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/",
 "software_statement": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
.eyJpc3MiOiJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbSIsImlhdCI6MTUwNjY3MTg1MSwiZXhwIjoxNTM4MjA3ODUxLCJhdWQiOiJvcGVuYW0uZXhhbXBsZS5jb20iLCJzdWIiOiI0TlJCMS0wWFpBQlpJOUU2LTVTTTNSIiwicmVkaXJlY3RfdXJpcyI6WyJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbS9jYWxsYmFjayJdfQ
.IOxZaWTOzSPkEkrXC9nj8RDrpulzzMuZ-4R7_Ol_jhw"

https://jwt.io/

Implementing OAuth 2.0
Configuring as an Authorization Server and Client

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 31

 }' \
 https://openam.example.com:8443/openam/oauth2/register
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?client_id=086658c1
-0517-4667-bc2d-6786224eb126",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "06bfc193-1f7b-49a1-9926-ffe19e2f5f70",
 "client_id": "086658c1-0517-4667-bc2d-6786224eb126",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "software_statement": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9
.eyJpc3MiOiJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbSIsImlhdCI6MTUwNjY3MTg1MSwiZXhwIjoxNTM4MjA3ODUxLCJhdWQiOiJvcGVuYW0uZXhhbXBsZS5jb20iLCJzdWIiOiI0TlJCMS0wWFpBQlpJOUU2LTVTTTNSIiwicmVkaXJlY3RfdXJpcyI6WyJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbS9jYWxsYmFjayJdfQ
.IOxZaWTOzSPkEkrXC9nj8RDrpulzzMuZ-4R7_Ol_jhw",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "272e26a4-b4ea-4033-bfd3-8b1be2c9aa22",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
}

2.3. Configuring as an Authorization Server and Client
This section takes a high-level look at how to set up AM both as an OAuth 2.0 authorization server
and also as an OAuth 2.0 client in order to protect resources on a resource server by using an AM
web agent.

Implementing OAuth 2.0
Configuring as an Authorization Server and Client

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 32

Authorization Server, Client, and Resource Server

The example in this section uses three servers, http://authz.example.com:8080/openam as the OAuth 2.0
authorization server, http://client.example.com:8080/openam as the OAuth 2.0 client, which also handles
policy, http://www.example.com:8080/ as the OAuth 2.0 resource server protected with an AM web agent
where the resources to protect are deployed in Apache Tomcat. The two AM servers communicate
using OAuth 2.0. The web agent on the resource server communicates with AM as agents normally
do, using AM specific requests. The resource server in this example does not need to support OAuth
2.0.

The high-level configuration steps are as follows:

1. On the AM server that you will configure to act as an OAuth 2.0 client, configure an agent profile,
and the policy used to protect the resources.

On the web server or application container that will act as an OAuth 2.0 resource server, install
and configure an AM web agent.

Make sure that you can access the resources when you log in through an authentication module
that you know to be working, such as the default DataStore authentication module.

In this example, you would try to access http://www.example.com:8080/examples/. The web agent
should redirect you to the AM login page. After you log in successfully as a user with access rights
to the resource, AM should redirect you back to http://www.example.com:8080/examples/, and the web
agent should allow access.

Implementing OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 33

Fix any problems you have in accessing the resources before you try to set up access through an
OAuth 2.0 or OpenID Connect authentication module.

2. Configure one AM server as an OAuth 2.0 authorization service, which is described in
"Configuring the OAuth 2.0 Authorization Service".

3. Configure the other AM server, the one with the agent profile and policy, as an OAuth 2.0 client,
by setting up an OAuth 2.0 or OpenID Connect authentication module according to "Social
Authentication Modules" in the Authentication and Single Sign-On Guide.

4. On the authorization server, register the OAuth 2.0 or OpenID Connect authentication module as
an OAuth 2.0 client, which is described in "Registering OAuth 2.0 Clients With the Authorization
Service".

5. Log out and access the protected resources to see the process in action.

2.3.1. Web Site Protected With OAuth 2.0

This example pulls everything together (except security considerations), using AM servers both as the
OAuth 2.0 authorization server, and also as the OAuth 2.0 client, with an AM web or Java agent on
the resource server requesting policy decisions from AM as OAuth 2.0 client. In this way, any server
protected by an agent that is connected to an AM OAuth 2.0 client can act as an OAuth 2.0 resource
server:

1. On the AM server that will be configured as an OAuth 2.0 client, set up an AM web or Java agent
and policy in the Top Level Realm, /, to protect resources.

See the Web Agents User Guide or the Java Agents User Guide for instructions on installing an
agent. This example relies on the Tomcat Java agent, configured to protect resources in Apache
Tomcat (Tomcat) at http://www.example.com:8080/.

The policies for this example protect the Tomcat examples under http://www.example.com:8080/
examples/, allowing GET and POST operations by all authenticated users. For more information,
see "Implementing Authorization" in the Authorization Guide.

After setting up the web or Java agent and the policy, you can make sure everything is working by
attempting to access a protected resource, in this case, http://www.example.com:8080/examples/. The
agent should redirect you to AM to authenticate with the default authentication module, where
you can login as user demo password changeit. After successful authentication, AM redirects your
browser back to the protected resource and the Java agent lets you get the protected resource, in
this case, the Tomcat examples top page.

../../../openam-web-policy-agents/5/web-agents-guide
../../../openam-jee-policy-agents/5/java-agents-guide

Implementing OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 34

Accessing the Apache Tomcat Examples

2. On the AM server to be configured as an OAuth 2.0 authorization server, configure AM's OAuth
2.0 authorization service as described in "Configuring the OAuth 2.0 Authorization Service".

The authorization endpoint to protect in this example is at http://authz.example.com:8080/openam/
oauth2/realms/root/authorize.

3. On the AM server to be configured as an OAuth 2.0 client, configure an AM OAuth 2.0 or OpenID
Connect social authentication module instance for the Top Level Realm:

Under Realms > Top Level Realm > Authentication > Modules, click Add Module. Name
the module OAuth2, and select the Social Auth OAuth2 type, then click Create. The module
configuration page appears. This page offers numerous options. The key settings for this example
are the following:

Client Id

This is the client identifier used to register your client with AM's authorization server, and
then used when your client must authenticate to AM.

Set this to myClientID for this example.

Client Secret

This is the client password used to register your client with AM's authorization server, and
then used when your client must authenticate to AM.

Set this to password for this example. Make sure you use strong passwords when you actually
deploy OAuth 2.0.

Authentication Endpoint URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/authorize.

This AM endpoint can take additional parameters. In particular, you must specify the realm if
the AM OAuth 2.0 provider is configured for a subrealm rather than for the Top Level Realm.

When making a REST API call, specify the realm in the path component of the endpoint. You
must specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each
realm in the hierarchy with the realms/ keyword. For example /realms/root/realms/customers/
realms/europe.

Implementing OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 35

For example, if the OAuth 2.0 provider is configured for the realm customers within the top-
level realm, then use the following URL: http://authz.example.com:8080/openam/oauth2/realms/root/
realms/customers/authorize.

The /oauth2/authorize endpoint can also take module and service parameters. Use either as
described in " Authenticating From a Browser" in the Authentication and Single Sign-On
Guide, where module specifies the authentication module instance to use or service specifies the
authentication chain to use when authenticating the resource owner.

Access Token Endpoint URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/access_token.

This AM endpoint can take additional parameters. In particular, you must specify the realm if
the AM OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm (/).

When making a REST API call, specify the realm in the path component of the endpoint. You
must specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each
realm in the hierarchy with the realms/ keyword. For example /realms/root/realms/customers/
realms/europe.

For example, if the OAuth 2.0 provider is configured for the realm /customers, then use
the following URL: http://authz.example.com:8080/openam/oauth2/realms/root/realms/customers/
access_token.

User Profile Service URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/tokeninfo.

Scope

In this example, cn.

The demo user has common name demo by default, so by setting this to cn|Read your user name,
AM can get the value of the attribute without the need to create additional subjects, or to
update existing subjects. The description, Read your user name, is shown to the resource owner
in the consent page.

OAuth2 Access Token Profile Service Parameter name

Identifies the parameter that contains the access token value, which in this example is
access_token.

Proxy URL

The client redirect URL, which in this example is http://client.example.com:8080/openam/oauth2c/
OAuthProxy.jsp.

Implementing OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 36

Account Mapper

In this example, org.forgerock.openam.authentication.modules.oauth2.DefaultAccountMapper.

Account Mapper Configuration

In this example, cn=cn.

Attribute Mapper

In this example, org.forgerock.openam.authentication.modules.oauth2.DefaultAttributeMapper.

Attribute Mapper Configuration

In this example, cn=cn.

Create account if it does not exist

In this example, disable this functionality.

AM can create local accounts based on the account information returned by the authorization
server.

4. On the AM server configured to act as an OAuth 2.0 authorization server, register the Social
Auth OAuth2 authentication module as an OAuth 2.0 confidential client, which is described in
"Registering OAuth 2.0 Clients With the Authorization Service".

Under Realms > Top Level Realm > Applications > OAuth 2.0 > myClientID, adjust the following
settings:

Client type

In this example, confidential. AM protects its credentials as an OAuth 2.0 client.

Redirection URIs

In this example, http://client.example.com:8080/openam/oauth2c/OAuthProxy.jsp.

Scopes

In this example, cn.

5. Before you try it out, on the AM server configured to act as an OAuth 2.0 client, you must make
the following additional change to the configuration.

Your AM OAuth 2.0 client authentication module is not part of the default chain, and therefore AM
does not call it unless you specifically request the OAuth 2.0 client authentication module.

To cause the Java agent to request your OAuth 2.0 client authentication module explicitly,
navigate to your agent profile configuration, in this case Realms > Top Level Realm >

Implementing OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 37

Applications > Agents > J2EE > Agent Name > AM Services > AM Login URL, and add http://
client.example.com:8080/openam/XUI/?realm=/#login&module=OAuth2, moving it to the top of the list.

Save your work.

This ensures that the Java agent directs the resource owner to AM with the instruction to
authenticate using the OAuth2 authentication module.

6. Try it out.

First make sure you are logged out of AM, for example by browsing to the logout URL, in this case
http://client.example.com:8080/openam/XUI/?realm=/#logout.

Next attempt to access the protected resource, in this case http://www.example.com:8080/examples/.

If everything is set up properly, the Java agent redirects your browser to the login page of AM
with module=OAuth2 among other query string parameters. After you authenticate, for example as
user demo, password changeit, AM presents you with an authorization decision page.

Presenting Authorization Decision Page to Resource Owner

When you click Allow, the authorization service creates an SSO session, and redirects the client
back to the resource, thus allowing the client to access the protected resource. If you configured
an attribute on which to store the saved consent decision, and you choose to save the consent
decision for this authorization, then AM can use that saved decision to avoid prompting you
for authorization next time the client accesses the resource, but only ensure that you have
authenticated and have a valid session.

Successfully Accessing the Apache Tomcat Examples

Implementing OAuth 2.0
Managing OAuth 2.0 Consent

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 38

2.4. Managing OAuth 2.0 Consent
This section covers configuring an OAuth 2.0 remote consent service, as well as how OAuth 2.0
clients can manage their own consent.

AM also exposes a RESTful API that lets administrators read, list, and delete OAuth 2.0 tokens. For
details, see "OAuth 2.0 Token Administration Endpoint (Legacy)".

2.4.1. Configuring Remote Consent Services

This section describes how to configure AM to use a Remote Consent Service (RCS). It also
demonstrates use of the built-in sample remote consent service.

Configuring a remote consent service requires completion of these high-level tasks:

1. Add the details of the remote consent service as an agent profile in AM.

You can configure a single remote consent service in a realm, by adding the details to a Remote
Consent Agent profile.

The profile defines properties for signing and encrypting the consent request and consent
response, redirect URI, and the jwk_uri URI details of the remote consent service.

For details, see "To Configure AM to use a Remote Consent Service".

2. Enable remote consent and specify the agent profile in AM's OAuth 2.0 provider service.

For details, see "To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

3. Configure the remote consent service with AM's jwk_uri URI details, so that it can obtain signature
and decryption keys.

AM includes an example remote consent service. For details, see "To Configure the AM Example
Remote Consent Service".

To Configure AM to use a Remote Consent Service

To add the details of the remote consent service as an agent profile:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Applications > Remote Consent Agents, and in the Agent table, select New.

3. Enter a name, for example myRCSAgent, a password, and then select Create.

4. Select the Remote Consent Agent, and then configure the properties as required.

For information on the available properties, see "OAuth 2.0 Remote Consent Agent Settings".

Implementing OAuth 2.0
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 39

5. Save your changes.

The remote Consent Agent profile is now available for selection in the OAuth 2.0 provider. See
"To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile

To add the details of the remote consent agent profile to an OAuth 2.0 provider service:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Services, and then select OAuth2 Provider.

Tip

If you have not yet configured an OAuth 2.0 provider, follow the steps in "To Set Up the OAuth 2.0
Authorization Service".

3. On the Consent tab:

a. Select Enable Remote Consent.

b. In the Remote Consent Service ID drop-down, select the name of the Remote Consent Agent,
for example myRCSAgent.

4. On the Consent tab, select Enable Remote Consent, and in the Remote Consent Service ID drop-
down, select the name of the Remote Consent Agent, for example myRCSAgent.

5. (Optional) If required, modify the supported signing and encryption methods and algorithms
used for the consent request and consent response JSON web tokens.

For more information on the available properties, see"Consent".

The result may resemble the following:

Implementing OAuth 2.0
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 40

Configuring RCS in an OAuth 2.0 Provider

6. Save your changes.

OAuth 2.0 flows by any client in the realm will now use the remote consent service. OAuth 2.0
clients in other realms are unaffected.

To Configure the AM Example Remote Consent Service

AM includes an example Remote Consent Service to demonstrate and test AM's remote consent
feature.

Implementing OAuth 2.0
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 41

Note

The Remote Consent Service in AM is not intended for use in production environments, for example the
encryption and signing algorithms are not configurable. It serves as an example of configuring AM to use a
custom remote consent service.

The following example uses two instances of AM:

• One instance that acts as the authorization server, for example http://openam.example.com:8080/openam.
For information on configuring this instance, see "To Configure AM to use a Remote Consent
Service" and "To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

• One instance that acts as the example remote consent service, for example https://rcs.exampe
.com:8443/openam. To configure this instance, perform the following steps:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Services, and then select Add a Service.

3. From the Choose a service type drop-down, select Remote Consent Service.

4. Perform the following steps to configure the Remote Consent Service:

a. In Client Name, enter the same name given to the Remote Consent Agent profile in AM.

In this example, enter myRCSAgent.

b. In Signing Key Alias, enter the alias of key that will sign the consent response. Ensure the
selected key matches the supported signing methods and algorithms configured for the
remote consent service in the OAuth 2.0 provider in AM.

For this example, enter test. This test key alias will work with the default signing settings,
and is provided by default in AM's default key store.

c. In Encryption Key Alias, enter the alias of key that will encrypt the consent response. Ensure
the selected key matches the supported encryption methods and algorithms configured for
the remote consent service in the OAuth 2.0 provider in AM.

For this example, enter selfserviceenctest. This test key alias will work with the default
encryption settings, and is provided by default in AM's default key store.

d. In Authorization Server jwk_uri, enter the URI where the remote consent service can obtain
the keys that vam uses to sign and encrypt the consent request.

For this example, enter http://openam.example.com:8080/openam/oauth2/connect/jwk_uri.

5. Select Create.

6. Verify the configuration. For more information about the available properties, see "Remote
Consent Service".

Implementing OAuth 2.0
Allowing Clients To Skip Consent

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 42

7. Save your changes.

Performing an OAuth 2.0 flow on the AM instance that is acting as the authorization server will
redirect the user to the second instance when user consent is required:

Example Remote Consent Service

Note that the fr-dark-theme has been applied to AM instance acting as the the remote consent
service for the purpose of this demonstration.

For more information on customizing the user interface, see "Customizing the User Interface" in
the UI Customization Guide.

2.4.2. Allowing Clients To Skip Consent

Companies that have internal applications that use OAuth 2.0 or OpenID Connect 1.0 can allows
clients to skip consent and make consent confirmation optional so as not to disrupt their online
experience.

Implementing OAuth 2.0
User Consent Management

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 43

To Allow a Client To Skip Consent

1. In the AM console, select Realms, and then select the realm that you are working with.

2. First, create or update your OAuth2 provider:

a. Select Dashboard > Configure OAuth Provider > Configure OpenID Connect, and then click
Create.

b. Click Services > OAuth2 Provider.

c. On the OAuth2 Provider tabs, click the drop-down arrow, and select Consent.

d. Enable Allow Clients to Skip Consent.

e. Click Save Changes.

3. Next, create or update an OpenID Connect client:

a. Navigate to Realms > Realm Name > Applications > OAuth 2.0.

b. Click Add Client. Enter a Client ID, Redirection URIs, Scope(s), and Default Scope(s) as needed,
and then click Create.

c. On the newly created client page, click the Advanced tab.

d. Enable Implied consent.

e. Click Save Changes.

When both settings are set on the OAuth2 provider and OAuth 2.0 Client settings, AM will
treat the requests as if the client has already saved its consent and will suppress any user
consent pages to the client.

2.4.3. User Consent Management

Users of OAuth 2.0 clients can now manage their authorized applications on their user page in the
AM console. For example, the user logs in to the AM console as demo, and then clicks the Dashboard
link on the Profile page. In the Authorized Apps section, the users can view their OAuth 2.0 tokens
or remove them by clicking the Revoke Access button, effectively removing their consent to the
application.

Implementing OAuth 2.0
Stateless OAuth 2.0 Access and Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 44

OAuth 2.0 Self-Service

2.5. Stateless OAuth 2.0 Access and Refresh Tokens
AM supports stateless access and refresh tokens for OAuth 2.0. Stateless access and refresh tokens
allow clients to directly validate the tokens without storing session information in server memory.

The stateless OAuth 2.0 access token is a JWT, which allows any AM instance in the issuing cluster to
validate an OAuth 2.0 token without the need for cross-server communication.

To Configure Stateless OAuth 2.0 Access and Refresh Tokens

1. Open the AM console.

2. Under Realms, select the realm that you are working with.

3. Click Services, and then select OAuth2 Provider.

4. For Use Stateless Access & Refresh Tokens, slide the toggle button to the right to enable the
feature.

Implementing OAuth 2.0
Configuring Stateless OAuth 2.0 Token Blacklisting

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 45

5. Optional. For Issue Refresh Tokens, slide the toggle button to the right to enable the feature.

6. For Issue Refresh Tokens on Refreshing Access Tokens, slide the toggle button to the right to
enable the feature.

2.6. Configuring Stateless OAuth 2.0 Token Blacklisting
AM provides a blacklisting feature that prevents stateless OAuth v2.0 tokens from being reused if the
authorization code has been replayed or tokens have been revoked by either the client or resource
owner.

To Configure Stateless OAuth 2.0 Token Blacklisting

1. On the AM console, navigate to Configure > Global Services > Global > OAuth2 Provider.

2. Under Global Attributes, enter the number of blacklisted tokens in the Token Blacklisting Cache
Size field.

Token Blacklisting Cache Size determines the number of blacklisted tokens to cache in memory
to speed up blacklist checks. You can enter a number based on the estimated number of
token revocations that a client will issue (for example, when the user gives up access or an
administrator revokes a client's access).

Default: 10000

3. In the Blacklist Poll Interval field, enter the interval in seconds for AM to check for token blacklist
changes from the CTS data store.

The longer the polling interval, the more time a malicious user has to connect to other AM
servers in a cluster and make use of a stolen OAuth v2.0 access and refresh token. Shortening the
polling interval improves the security for revoked tokens but might incur a minimal decrease in
overall AM performance due to increased network activity.

Default: 60 seconds

4. In the Blacklist Purge Delay field, enter the length of time in minutes that blacklist tokens can
exist before being purged beyond their expiration time.

When stateless blacklisting is enabled, AM tracks OAuth v2.0 access and refresh tokens over
the configured lifetime of those tokens plus the blacklist purge delay. For example, if the access
token lifetime is set to 6000 seconds and the blacklist purge delay is one minute, the AM tracks
the access token for 101 minutes. You can increase the blacklist purge delay if you expect system
clock skews in an AM server cluster to be greater than one minute. There is no need to increase
the blacklist purge delay for servers running a clock synchronization protocol, such as Network
Time Protocol.

Default: 1 minute

Implementing OAuth 2.0
Configuring Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 46

5. Click Save to apply your changes.

2.7. Configuring Digital Signatures
AM supports digital signature algorithms that secure the integrity of its JSON payload, which is
outlined in the JSON Web Algorithm specification (RFC 7518).

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256
• HS384 - HMAC with SHA-384
• HS512 - HMAC with SHA-512
• RS256 - RSA using SHA-256
• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve
• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve
• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve

If you intend to use an ECDSA signing algorithm, you must generate a public/private key pair for use
with ECDSA. To generate the public and private key pair, see step 1 in "Configuring Elliptic Curve
Digital Signature Algorithms" in the Authentication and Single Sign-On Guide.

To Configure Digital Signatures

1. Start the AM console. Under Realms, select the realm that you are working with.

2. First, create or update your OAuth2 provider:

a. Select Dashboard > Configure OAuth Provider, then select Configure OpenID Connect, then
click Create.

b. Click Services > OAuth2 Provider.

c. On the OAuth2 Token Signing Algorithm drop-down list, select the signing algorithm to use
for your digital signatures.

d. Take one of the following actions depending on the token signing algorithm:

i. If you are using an HMAC signing algorithm, enter the Base64-encoded key used by
HS256, HS384 and HS512 in the Token Signing HMAC Shared Secret field.

ii. If you are using RS256, enter the public/private key pair used by RS256 in the Token
Signing RSA public/private key pair field. The public/private key pair will be retrieved
from the keystore referenced by the property com.sun.identity.saml.xmlsig.keystore.

iii. If you are using an ECDSA signing algorithm, enter the list of public/private key pairs
used for the elliptic curve algorithms (ES256/ES384/ES512) In the Token Signing ECDSA

https://tools.ietf.org/html/rfc7518
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Implementing OAuth 2.0
Configuring Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 47

public/private key pair alias field. For example, ES256|es256test. Each of the public/private
key pairs will be retrieved from the keystore referenced by the property com.sun.identity
.saml.xmlsig.keystore.

iv. Click Save Changes.

3. Next, update the OpenID Connect client:

a. Under Agent, click New, enter a Name and Password for the agent, and then click Create.

b. In the ID Token Signing Algorithm field, enter the signing algorithm that the ID token for this
client must be signed with. Default: RS256.

• HS256 (HMAC with SHA-256)
• HS384 (HMAC with SHA-384)
• HS512 (HMAC with SHA-512)
• RS256 (RSA using SHA-256)
• ES256 (ECDSA with SHA-256 and NIST standard P-256 elliptic curve)
• ES384 (ECDSA with SHA-384 and NIST standard P-384 elliptic curve)
• ES512 (ECDSA with SHA-512 and NIST standard P-521 elliptic curve)

c. Click Save.

To Obtain the OAuth 2.0/OpenID Connect 1.0 Public Signing Key

AM exposes the public keys used to digitally sign OAuth 2.0 and OpenID Connect 1.0 access and
refresh tokens at a JSON web key (JWK) URI endpoint, which is exposed from all realms for an
OAuth2 provider. The following steps show how to access the public keys:

1. To find the JWK URI, perform an HTTP GET at /oauth2/realms/root/.well-known/openid-configuration.

curl http://openam.example.com:8080/openam/oauth2/realms/root/.well-known/openid-configuration
{
 "id_token_encryption_alg_values_supported":[
 "RSA1_5"
],
 "response_types_supported":[
 "token id_token",
 "code token",
 "code token id_token",
 "token",
 "code id_token",
 "code",
 "id_token"
],
 "registration_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/
register",
 "token_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/access_token",
 "end_session_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/
endSession",
 "scopes_supported":[
 "phone",

Implementing OAuth 2.0
Configuring Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 48

 "address",
 "email",
 "openid",
 "profile"
],
 "acr_values_supported":[

],
 "version":"3.0",
 "userinfo_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/userinfo",
 "token_endpoint_auth_methods_supported":[
 "client_secret_post",
 "private_key_jwt",
 "client_secret_basic"
],
 "subject_types_supported":[
 "public"
],
 "issuer":"http://openam.example.com:8080/openam/oauth2/realms/root",
 "id_token_encryption_enc_values_supported":[
 "A256CBC-HS512",
 "A128CBC-HS256"
],
 "claims_parameter_supported":true,
 "jwks_uri":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/jwk_uri",
 "id_token_signing_alg_values_supported":[
 "ES384",
 "ES256",
 "ES512",
 "HS256",
 "HS512",
 "RS256",
 "HS384"
],
 "check_session_iframe":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/
checkSession",
 "claims_supported":[
 "zoneinfo",
 "phone_number",
 "address",
 "email",
 "locale",
 "name",
 "family_name",
 "given_name",
 "profile"
],
 "authorization_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/authorize"
}

2. Perform an HTTP GET at the JWKS URI to get the public signing key:

Implementing OAuth 2.0
Configuring Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 49

$ curl http://openam.example.com:8080/openam/oauth2/realms/root/connect/jwk_uri
{
 "keys":
 [
 {
 "kty":"RSA",
 "kid":"SylLC6Njt1KGQktD9Mt+0zceQSU=",
 "use":"sig",
 "alg":"RS256",
 "n":"AK0kHP1O-RgdgLSoWxkuaYoi5Jic6hLKeuKw8WzCfsQ68ntBDf6tVOTn_kZA7Gjf4oJ
 AL1dXLlxIEy-kZWnxT3FF-0MQ4WQYbGBfaW8LTM4uAOLLvYZ8SIVEXmxhJsSlvaiTWCbNFaOf
 iII8bhFp4551YB07NfpquUGEwOxOmci_",
 "e":"AQAB"
 }
]
}

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 50

Chapter 3

Using OAuth 2.0
This chapter covers examples and usage of AM with OAuth 2.0.

AM exposes the following REST endpoints for different OAuth 2.0 purposes:

• Endpoints for OAuth 2.0 clients and resource servers, mostly defined in RFC 6749, The OAuth 2.0
Authorization Framework, with additional tokeninfo and introspect endpoints useful to resource
servers and clients.

• An endpoint for reading OAuth 2.0 resource sets. This is specific to AM.

• An endpoint for OAuth 2.0 token administration. This is specific to AM.

• An endpoint for OAuth 2.0 client administration. This is specific to AM.

When accessing the APIs, browser-based REST clients can rely on AM to handle the session as usual.
First authenticate with AM. Then perform the operations in the browser session.

Clients not running in a browser can authenticate as described in "Authentication and Logout",
whereby AM returns a tokenId value. Clients pass the tokenId value in a header named after the
authentication cookie, by default iplanetDirectoryPro.

3.1. OAuth 2.0 Client and Resource Server Endpoints
AM exposes REST endpoints for making calls to AM acting as an authorization server.

In addition to the standard authorization and token endpoints described in RFC 6749, AM also
exposes a token information endpoint for resource servers to get information about access tokens
so they can determine how to respond to requests for protected resources, and an introspection
endpoint to retrieve metadata about a token, such as approved scopes and the context in which the
token was issued.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

When acting as an OAuth 2.0 authorization server, AM exposes the following endpoints for clients
and resource servers:

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 51

/oauth2/authorize

Authorization endpoint defined in RFC 6749, used to obtain consent and an authorization grant
from the resource owner.

The /oauth2/authorize endpoint is protected by the policy you created after OAuth 2.0 authorization
server configuration, which grants all authenticated users access.

The following is an example URL for obtaining consent:

https://openam.example.com:8443/openam/oauth2/realms/root/authorize\ ?client_id=myClient\
 &response_type=code\ &scope=profile\ &redirect_uri=https://www.example.com

After logging in, the URL above presents the OAuth 2.0 consent screen, similar to the following:

OAuth 2.0 Consent Screen

You must specify the realm if the AM OAuth 2.0 provider is configured for a subrealm rather than
the top-level realm. For example, if the OAuth 2.0 provider is configured for the /customers realm,
then use /oauth2/realms/root/realms/customers/authorize.

If creating your own consent page or when using REST calls, you can create a POST request to
the endpoint with the following additional mandatory parameters:

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 52

decision

Whether the resource owner consents to the requested access, or denies consent.

Valid values are allow or deny.

save_consent

Updates the resource owner's profile to avoid having to prompt the resource owner to grant
authorization when the client issues subsequent authorization requests.

To save consent, set the save_consent property to on.

You must provide the Saved Consent Attribute Name property with a profile attribute in
which to store the resource owner's consent decision.

For more information on setting this property in the OAuth2 Provider service, see "OAuth2
Provider".

csrf

Duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO token of the
resource owner giving consent.

Duplicating the cookie value helps prevent against Cross-Site Request Forgery (CSRF)
attacks.

Example:
$ curl \
 --request POST \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --Cookie "iPlanetDirectoryPro=AQIC5w...*" \
 --data "redirect_uri=http://www.example.net" \
 --data "scope=profile" \
 --data "response_type=code" \
 --data "client_id=myClient" \
 --data "csrf=AQIC5w...*" \
 --data "decision=allow" \
 --data "save_consent=on" \
 "https://openam.example.com:8443/openam/oauth2/realms/root/authorize?
response_type=code&client_id=myClient"\
 "&scope=profile&redirect_uri=http://www.example.net"

The /oauth2/authorize endpoint can take additional parameters, such as:

• module and service. Use either as described in " Authenticating From a Browser" in the
Authentication and Single Sign-On Guide, where module specifies the authentication module
instance to use or service specifies the authentication tree or chain to use when authenticating
the resource owner.

• response_mode=form_post. Use this parameter to return a self-submitting form that contains the
code instead of redirecting to the redirect URL with the code as a string parameter. For more
information, see the OAuth 2.0 Form Post Response Mode spec.

https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 53

• code_challenge. Use this parameter when Proof Key for Code Exchange (PKCE) support is
enabled in the OAuth2 Provider service. To configure it, navigate to Realms > Realm Name
> Services > OAuth2 Provider > Advanced and enable the Code Verifier Parameter Required
property. For more information about the PKCE support, see Proof Key for Code Exchange by
OAuth Public Clients - RFC 7636.

/oauth2/access_token

Token endpoint defined in RFC 6749, used to obtain an access token from the authorization
server.

Also used to obtain an access token in the OAuth 2.0 Device flow. For more information, see
"OAuth 2.0 Device Flow Endpoints".

The /oauth2/access_token endpoint can take an additional parameter, auth_chain=authentication-chain,
which allows client to specify the authentication chain to use for Password Grant Type.

The following example shows how a client can specify the authentication chain, myAuthChain:
$ curl \
 --request POST \
 --user "myClientID:password" \
 --data
 "grant_type=password&username=amadmin&password=cangetinam&scope=profile&auth_chain=myAuthChain" \
 https://openam.example.com:8443/openam/oauth2/access_token

The /oauth2/access_token endpoint can take additional parameters. In particular, you must specify
the realm if the AM OAuth 2.0 provider is configured for a subrealm rather than the top-level
realm.

For example, if the OAuth 2.0 provider is configured for the /customers realm, then use /oauth2/
realms/root/realms/customers/access_token.

/oauth2/device

Device flow endpoint as defined by the Internet-Draft OAuth 2.0 Device Flow, used by a client
device to obtain a device code or an access token.

Example: https://openam.example.com:8443/openam/oauth2/realms/root/device/code

For more information, see "OAuth 2.0 Device Flow Endpoints".

/oauth2/token/revoke

When a user logs out of an application, the application revokes any OAuth 2.0 tokens (access and
refresh tokens) that are associated with the user. The client can also revoke a token without the
need of an SSOToken by sending a request to the /oauth2/token/revoke endpoint as follows:
$ curl \
 --request POST \
 --data "token=d06ab31e-9cdb-403e-855f-bd77652add84" \
 --data "client_id=MyClientID" \
 --data "client_secret=password" \
 https://openam.example.com:8443/openam/oauth2/realms/root/token/revoke

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
https://datatracker.ietf.org/doc/draft-denniss-oauth-device-flow/

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 54

If you are revoking an access token, then that token will be revoked. If you are revoking a
refresh token, then both the refresh token and any other associated access tokens will also be
revoked. Associated access tokens means that any other tokens that have come out of the same
authorization grant will also be revoked. For cases where a client has multiple access tokens for a
single user that were obtained via different authorization grants, then the client will have to make
multiple calls to the /oauth2/token/revoke endpoint to invalidate each token.

/oauth2/tokeninfo

Endpoint not defined in RFC 6749, used to validate tokens, and to retrieve information, such as
scopes.

The /oauth2/tokeninfo endpoint takes an HTTP GET on /oauth2/tokeninfo?access_token=token-id, and
returns information about the token.

Resource servers — or any party having the token ID — can get token information through this
endpoint without authenticating. This means any application or user can validate the token
without having to be registered with AM.

Given an access token, a resource server can perform an HTTP GET on /oauth2/tokeninfo?
access_token=token-id to retrieve a JSON object indicating token_type, expires_in, scope, and the
access_token ID.

Example: https://openam.example.com:8443/openam/oauth2/realms/root/tokeninfo

The following example shows AM issuing an access token, and then returning token information:
$ curl \
 --request POST \
 --user "myClientID:password" \
 --data "grant_type=password&username=demo&password=changeit&scope=cn%20mail" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token
 {
 "expires_in": 599,
 "token_type": "Bearer",
 "refresh_token": "f6dcf133-f00b-4943-a8d4-ee939fc1bf29",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
 }

$ curl https://openam.example.com:8443/openam/oauth2/realms/root/tokeninfo\
 ?access_token=f9063e26-3a29-41ec-86de-1d0d68aa85e9
 {
 "mail": "demo@example.com",
 "grant_type":"password",
 "scope": [
 "mail",
 "cn"
],
 "cn": "demo",
 "realm": "/",
 "cnf": {
 "jwk": {
 "alg": "RS512",
 "e": "AQAB",

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 55

 "n": "k7qLlj...G2oucQ",
 "kty": "RSA",
 "use": "sig",
 "kid": "myJWK"
 }
 }
 "token_type": "Bearer",
 "expires_in": 577,
 "client_id": "MyClientID",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
}

Note

Running a GET method to the /oauth2/tokeninfo endpoint as shown in the previous example writes the
token ID to the access log. To not expose the token ID in the logs, send the OAuth 2.0 access token as part
of the authorization bearer header:

$ curl \
 --request GET \
 --header "Authorization Bearer aec6b050-b0a4-4ece-a86f-bd131decbb9c" \
 "https://openam.example.com:8443/openam/oauth2/tokeninfo"

The resource server making decisions about whether the token is valid can thus use the /oauth2
/tokeninfo endpoint to retrieve expiration information about the token. Depending on the scopes
implementation, the JSON response about the token can also contain scope information. As
described in "Using Your Own Client and Resource Server", the default scopes implementation
in AM considers scopes to be names of attributes in the resource owner's user profile. Notice
that the JSON response contains the values for those attributes from the user's profile, as in the
preceding example, with scopes set to mail and cn.

/oauth2/introspect

Endpoint defined in RFC7662 - OAuth 2.0 Token Introspection, used to retrieve metadata about a
token, such as approved scopes and the context in which the token was issued.

Given an access token, a client can perform an HTTP POST on /oauth2/introspect?token=access_token
to retrieve a JSON object indicating the following:

active

Is the token active.

scope

A space-separated list of the scopes associated with the token.

client_id

Client identifier of the client that requested the token.

https://tools.ietf.org/html/rfc7662

Using OAuth 2.0
OAuth 2.0 Client and Resource Server Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 56

user_id

The user who authorized the token.

token_type

The type of token.

exp

When the token expires, in seconds since January 1 1970 UTC.

sub

Subject of the token.

iss

Issuer of the token.

cnf

Confirmation key claim containing the optional decoded JSON web key (JWK) associated
with the access token. For more information, see "OAuth 2.0 JSON Web Token Proof-of-
Possession".

To allow a client to introspect access tokens issued to other clients in the same realm, set the
special scope, am-introspect-all-tokens, in the client profile.

The /oauth2/introspect endpoint requires authentication. Clients can use one of the following three
methods to authenticate to the endpoint:

• Basic Authorization. Authenticate by passing an authorization header with a bearer type of
"Basic" with a value of the base64-encoded string of client_id:client_secret. For an example, see
below.

• Header Values. Authenticate by passing in the client_id and client_secret as header values.

• JWT Bearer Token. Authenticate by passing in a JWT assertion using the client_assertion_type
query parameter set to urn:ietf:params:oauth:client-assertion-type:jwt-bearer and a
client_assertion query parameter that contains the JWT assertion. For an example, see "JWT
Bearer Profile".

The next example shows the response when authenticating to the /oauth2/introspect endpoint with
basic authorization:

Using OAuth 2.0
Using OAuth 2.0 JSON Web Token Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 57

$ curl \
 --request POST \
 --header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA==" \
 https://openam.example.com:8443/openam/oauth2/realms/root/introspect\
 ?token=f9063e26-3a29-41ec-86de-1d0d68aa85e9
{
 "active": true,
 "scope": "mail cn",
 "client_id": "myOAuth2Client",
 "user_id": "demo",
 "token_type": "access_token",
 "exp": 1419356238,
 "sub": "demo",
 "iss": "https://openam.example.com:8443/openam/oauth2"
 "cnf": {
 "jwk": {
 "alg": "RS512",
 "e": "AQAB",
 "n": "k7qLlj...G2oucQ",
 "kty": "RSA",
 "use": "sig",
 "kid": "myJWK"
 },
 "auth_level": 0
 }
}

Before the resource owner granted consent to the client, the resource owner authenticated with
AM, and AM assigned an authentication level of 0. Notice that AM returns that authentication
level as the value of the auth_level claim.

Note

Running a POST method to the /oauth2/introspect endpoint as shown in the previous example writes the
token ID to the access log. To hide the token ID in the logs, send the OAuth 2.0 access token as part of the
POST body:

$ curl \
 --request POST \
 --header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA==" \
 --data "token=f9063e26-3a29-41ec-86de-1d0d68aa85e9"
 "https://openam.example.com:8443/openam/oauth2/introspect"

3.1.1. Using OAuth 2.0 JSON Web Token Proof-of-Possession

To use the proof-of-possession feature and associate a JSON web key with an OAuth 2.0 access token,
perform the following steps:

To Use OAuth 2.0 Proof-of-Possession

1. Generate a JSON web key pair for the OAuth 2.0 client.

Using OAuth 2.0
Using OAuth 2.0 JSON Web Token Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 58

AM supports both RSA and elliptic curve (EC) key types. For testing purposes, you can use an
online JSON web key generator, such as https://mkjwk.org/, to generate a key pair in JWK format.
Be sure to store the full key pair, including the private key, in a secure location that is accessible
by your OAuth 2.0 client. To verify proof-of-possession of the access token, an OAuth 2.0 resource
server can challenge your OAuth 2.0 client to decrypt a message or nonce that it has encrypted
with the public key. The private key is required to decrypt such challenges.

Your OAuth 2.0 client should never reveal the private key, however. Only the public key from the
pair should be added to the request for an access token. The key should be represented in JWK
format and may resemble the following example:

{
 "jwk": {
 "alg": "RS256",
 "e": "AQAB",
 "n": "xea7Tb7rbQ4ZrHNKrg...QFXtJ-didSTtXWCWU1Qrcj0hnDjvkuUFWoSQ_7Q",
 "kty": "RSA",
 "use": "enc",
 "kid": "myPublicJSONWebKey"
 }
}

Note

The jwe and jku formats are not supported, the public key must be represented in jwk format.

2. Base64-encode the JWK. The result may resemble the following example:

ew0KICAgICJKV0siOiB7DQogICAgICAgICJhbGciOiAiUlMyNTYiLA0KICAgICAgICAiZSI6IC
JBUUFCIiwNDQogICAgICAgICJraWQiOiAibXlQdWJsaWNKU09OV2ViS2V5Ig0KICAgIH0NCn0=

3. Include the base64-encoded JWK as the value of the cnf_key parameter in the request to the
authorization server for an access token:
$ curl \
 --request POST \
 --header "Authorization: Basic bXlDbGllbnQ6cGFzc3dvcmQ=" \
 --data "grant_type=client_credentials"\
 --data "scope=profile" \
 --data "cnf_key=ew0KICAgICJKV0siOiB7DQogICAgICAgICJhb
 GciOiAiUlMyNTYiLA0KICAgICAgICAiZSI6IC
 JBUUFCIiwNDQogICAgICAgICJraWQiOiAibXl
 QdWJsaWNKU09OV2ViS2V5Ig0KICAgIH0NCn0=" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token

• If the authorization server is configured to use stateful OAuth 2.0 tokens, the response will
include an access token ID in the access_token property, which identifies the access token data
stored on the server. For example:

https://mkjwk.org/

Using OAuth 2.0
Using OAuth 2.0 JSON Web Token Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 59

{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If the authorization server is configured to use stateless OAuth 2.0 tokens, the response will
be a JSON web token in the access_token, which has the JWK embedded within. The following
example has shortened the access token for display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

4. To access a resource on the resource server:

a. Present the value of the access_token element to the resource server.

b. If stateful OAuth 2.0 tokens are enabled, the resource server can make a POST request to the
/oauth2/introspect endpoint to acquire the public key. The public key from the original JWK is
returned in the cnf element:
$ curl \
 --request POST \
 --header "Authorization: Basic bXlDbGllbnQ6cGFzc3dvcmQ=" \
 https://openam.example.com:8443/openam/oauth2/realms/root/introspect
\
?token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04
{
 "active": true,
 "scope": "profile",
 "client_id": "myClient",
 "user_id": "myClient",
 "token_type": "access_token",
 "exp": 1477666348,
 "sub": "myClient",
 "iss": "http://openam.example.com:8080/openam/oauth2/realms/root",
 "cnf": {
 "jwk": {
 "alg": "RS256",
 "e": "AQAB",
 "n": "xea7Tb7rbQ4ZrHNKrg...QFXtJ-didSTtXWCWU1Qrcj0hnDjvkuUFWoSQ_7Q",
 "kty": "RSA",
 "use": "enc",
 "kid": "myPublicJSONWebKey"
 },
 "auth_level": 0
 }
}

Using OAuth 2.0
OAuth 2.0 Device Flow Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 60

c. The resource server should now use the public key to cryptographically confirm proof-of-
possession of the token by the presenter, for example with a challenge-response interaction.

Successful completion of the challenge-response means that the client must possess the
private key that matches the public key presented in the original request, and access to
resources can be granted.

3.2. OAuth 2.0 Device Flow Endpoints
If a client device has a limited user interface, it can obtain an OAuth 2.0 device code and ask a user to
authorize the client on a more full-featured user agent, such as an Internet browser.

AM provides the /oauth2/device/code, /oauth2/device/user, and /oauth2/access_token endpoints to support
the OAuth 2.0 Device Flow.

The following procedures show how to use the OAuth 2.0 device flow endpoints:

• "To Request a User Code in the OAuth 2.0 Device Flow".

• "To Grant Consent in the OAuth 2.0 Device Flow".

• "To Poll for Authorization in the OAuth 2.0 Device Flow".

Note

In the examples nonce and state OAuth 2.0 parameters are omitted, but should be used in production.

To Request a User Code in the OAuth 2.0 Device Flow

Devices can display a user code and instructions to a user, which can be used on a separate client to
provide consent, allowing the device to access resources.

As user codes may be displayed on lower resolution devices, the list of possible characters used
has been optimized to reduce ambiguity. User codes consist of a random selection of eight of the
following characters:
234567ABCDEFGHIJKLMNOPQRSTVWXYZabcdefghijkmnopqrstvwxyz

To request a user code in the OAuth 2.0 device flow:

1. Ensure that an OAuth 2.0 client profile is configured in AM, as described in "OAuth 2.0 and
OpenID Connect 1.0 Client Settings".

2. Create a POST request to the /oauth2/device/code endpoint to acquire a device code. The following
URL parameters are required:

Using OAuth 2.0
OAuth 2.0 Device Flow Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 61

response_type

Specifies the response type required by the request. Must be set to token.

scope

Specifies the list of scopes requested by the client, separated by URL-encoded space
characters.

client_id

Specifies the name of the client agent profile in AM.

$ curl \
 --data response_type=token \
 --data scope=phone%20email%20profile%20address \
 --data client_id=myDeviceAgentProfile \
 http://openam.example.com:8080/openam/oauth2/realms/root/device/code
{
 "interval": 5,
 "device_code": "7a95a0a4-6f13-42e3-ac3e-d3d159c94c55",
 "verification_url": "http://openam.example.com:8080/openam/oauth2/realms/root/device/user",
 "user_code": "VAL12e0v",
 "expires_in": 300
}

On success, AM returns a verification URL, and a user code to enter at that URL. AM also returns
an interval, in seconds, that the client device must wait for in between requests for an access
token.

3. The client device should now provide instructions to the user to enter the user code and grant
access to the OAuth 2.0 device. The client may choose an appropriate method to convey the
instructions, for example text instructions on screen, or a QR code. See "To Grant Consent in the
OAuth 2.0 Device Flow".

4. The client device should also begin polling the authorization server for the access token, once
consent has been given. See "To Poll for Authorization in the OAuth 2.0 Device Flow".

To Grant Consent in the OAuth 2.0 Device Flow

OAuth 2.0 device flow requires that the user grants consent to allow the client device to access
resources.

• You can grant consent in the OAuth 2.0 device flow using the AM user interface, or by making
calls to AM endpoints.

• To use the AM user interface, the user should visit the verification URL in a web browser and
enter the user code:

Using OAuth 2.0
OAuth 2.0 Device Flow Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 62

OAuth 2.0 User Code

The user can then authorize the device flow client by allowing the requested scopes:

Using OAuth 2.0
OAuth 2.0 Device Flow Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 63

OAuth 2.0 Consent Page

• To use endpoint calls, create a POST request to the /oauth2/device/user endpoint. The following
URL parameter is required:

user_code

The user code as provided by the /oauth2/device/code endpoint.

The form data should be in x-www-form-urlencoded format, and contain the following fields:

user_code

The user code as provided by the /oauth2/device/code endpoint.

scope

Specifies the list of scopes consented to by the user, separated by URL-encoded space
characters.

Using OAuth 2.0
OAuth 2.0 Device Flow Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 64

client_id

Specifies the name of the client agent profile in AM.

response_type

Must be token.

decision

To allow client access, specify allow. Any other value will deny consent.

csrf

Duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO token of
the user granting access.

Duplicating the cookie value helps prevent against Cross-Site Request Forgery (CSRF)
attacks.

The iPlanetDirectoryPro cookie is required and should contain the SSO token of the user
granting access to the client.
$ curl \
 -X POST \
 --header "Cookie: iPlanetDirectoryPro=AQIC5..." \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --data scope=phone%20email%20profile%20address \
 --data user_code=VAL12e0v \
 --data response_type=token \
 --data client_id=myDeviceAgentProfile \
 --data decision=allow \
 --data csrf=AQIC5... \
 http://openam.example.com:8080/openam/oauth2/realms/root/device/user?user_code=VAL12e0v

AM returns HTML containing a JavaScript fragment named pageData, with details of the result.

Successfully allowing or denying access returns:
pageData = {
 locale: "en-us",
 baseUrl : "http://openam.example.com:8080/openam/XUI",
 realm : "//XUI",
 done: true
};

If the supplied user code has already been used, or is incorrect, the following is returned:

Using OAuth 2.0
OAuth 2.0 Device Flow Endpoints

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 65

pageData = {
 locale: "*",
 errorCode: "not_found",
 realm : "/",
 baseUrl : "http://openam.example.com:8080/openam/XUI"
};

If the user gives consent, AM adds the OAuth 2.0 client to the user's profile page in the
Authorized Apps section. For more information, see "User Consent Management".

Important

As per Section 4.1.1 of the OAuth 2.0 authorization framework, it is required that the authorization server
legitimately obtains an authorization decision from the resource owner.

Any client using the endpoints to register consent is responsible for ensuring this requirement, AM cannot
assert that consent was given in these cases.

To Poll for Authorization in the OAuth 2.0 Device Flow

• On the client device, create a POST request to poll the /oauth2/access_token endpoint to request an
access token. Include the client ID, client secret, and the device code as query parameters in the
request. You must also specify a grant_type of http://oauth.net/grant_type/device/1.0.

The client device must wait for the number of seconds previously provided as the value of interval
between polling AM for an access token.
$ curl \
 --data client_id=myDeviceAgentProfile \
 --data client_secret=password \
 --data grant_type=http://oauth.net/grant_type/device/1.0 \
 --data code=7a95a0a4-6f13-42e3-ac3e-d3d159c94c55 \
 http://openam.example.com:8080/openam/oauth2/realms/root/access_token
{
 "scope": "phone email address profile",
 "code": "20c1fc0c-3153-4a11-8d1f-d815c1a522b5"
}

If the user has authorized the client device, an HTTP 200 status code is returned, with an access
token that can be used to request resources.
{
 "expires_in": 3599,
 "token_type": "Bearer",
 "access_token": "c1e9c8a4-6a6c-45b2-919c-335f2cec5a40"
}

If the user has not yet authorized the client device, an HTTP 403 status code is returned, with the
following error message:

https://tools.ietf.org/html/rfc6749#section-4.1.1

Using OAuth 2.0
OAuth 2.0 Resource Set Endpoint

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 66

{
 "error": "authorization_pending",
 "error_description": "The user has not yet completed authorization"
}

If the client device is polling faster than the specified interval, an HTTP 400 status code is
returned, with the following error message:
{
 "error": "slow_down",
 "error_description": "The polling interval has not elapsed since the last request"
}

3.3. OAuth 2.0 Resource Set Endpoint
AM provides a read-only REST endpoint for viewing a resource set registered to a particular user.
The endpoint is /users/user/oauth2/resourcesets/ resource_set_ID.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

The following URL could be used to display the resource sets belonging to a user named demo in a
subrealm of the top-level realm named myrealm:
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/users/demo/oauth2/resourcesets
/43225628-4c5b-4206-b7cc-5164da81decd0

To read a resource set, either the resource set owner or an administrator such as amadmin must have
logged in to AM (the authorization server) and have been issued an SSO token.

To Read an OAuth 2.0 Resource Set

• Create a GET request to the resourcesets endpoint, including the SSO token in a header based on
the configured session cookie name (for example: iPlanetDirectoryPro), and with the resource set
ID in the URL.

The following example uses an SSO token acquired by the amadmin user to view a resource set, and
related policy, belonging to the demo user in the top level realm:
$ curl \
--header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
https://openam.example.com:8443/openam/json/realms/root/users/demo
\
/oauth2/resourcesets/43225628-4c5b-4206-b7cc-5164da81decd0
{
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/comment"
],
 "_id": "43225628-4c5b-4206-b7cc-5164da81decd0",

Using OAuth 2.0
OAuth 2.0 Resource Set Endpoint

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 67

 "resourceServer": "UMA-Resource-Server",
 "name": "My Videos",
 "icon_uri": "http://www.example.com/icons/cinema.png",
 "policy": {
 "permissions": [
 {
 "subject": "user.1",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view"
]
 },
 {
 "subject": "user.2",
 "scopes": [
 "http://photoz.example.com/dev/scopes/comment",
 "http://photoz.example.com/dev/scopes/view"
]
 }
]
 },
 "type": "http://www.example.com/rsets/videos"
}

Tip

You can specify the fields that are returned with the _fields query string filter. For example ?
_fields=scopes, resourceServer, name

On success, an HTTP 200 OK status code is returned, with a JSON body representing the
resource set. If a policy relating to the resource set exists, a representation of the policy is also
returned in the JSON.

If the specified resource set does not exist, an HTTP 404 Not Found status code is returned, as
follows:
{
 "code": 404,
 "reason": "Not Found",
 "message": "No resource set with id, bad-id-3e28-4c19-8a2b-36fc24c899df0, found."
}

If the SSO token used is not that of the resource set owner or an administrator, an HTTP 403
Forbidden status code is returned, as follows:
{
 "code": 403,
 "reason": "Forbidden",
 "message": "User, user.1, not authorized."
}

Using OAuth 2.0
OAuth 2.0 Token Administration Endpoint (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 68

3.4. OAuth 2.0 Token Administration Endpoint (Legacy)
The AM-specific OAuth 2.0 token administration endpoint /frrest/oauth2/token lets administrators
read, list, and delete (revoke) OAuth 2.0 tokens. OAuth 2.0 clients can also manage their own tokens.

Important

The /frrest/oauth2/token endpoint is deprecated and it does not work with stateless OAuth 2.0 tokens.

Use the following endpoints instead:

• /oauth2/introspect. Use this endpoint to read and list OAuth 2.0 tokens.

• /oauth2/token/revoke. Use this endpoint to delete (revoke) OAuth 2.0 tokens.

To list the contents of a specific token, perform an HTTP GET on /frrest/oauth2/token/token-id as in the
following example:
$ curl \
 --request POST \
 --user "myClientID:password" \
 --data "grant_type=password&username=demo&password=changeit&scope=cn" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token
{
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
 }

$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c
 {
 "expireTime": [
 "1418818601396"
],
 "tokenName": [
 "access_token"
],
 "scope": [
 "cn"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "parent": [],
 "id": [
 "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
],
 "tokenType": [
 "Bearer"

Using OAuth 2.0
OAuth 2.0 Token Administration Endpoint (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 69

],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/"
],
 "userName": [
 "demo"
]
 }

To list the tokens for the current user, perform an HTTP GET on /frrest/oauth2/token/?
_queryId=access_token including in a header the SSO token of the current user. The following example
shows a search for the demo user's access tokens:
$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=access_token
 {
 "result": [
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"

Using OAuth 2.0
OAuth 2.0 Token Administration Endpoint (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 70

],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
 }

To list a specific user's tokens, perform an HTTP GET on /oauth2/token/?_queryId=userName=string, /frrest
/oauth2/token/?_queryId=userName=string, where string is the user, such as user.4. You must use an amadmin
token with this GET method. Delegated admins are not supported here. Include in a header the SSO
token of an administrative user, such as amAdmin. For example:
$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=userName=user.4
{
 "result": [
 {
 "_id": "2aaddde8-586b-4cb7-b431-eb86af57aabc",
 "_rev": "-549186065",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myClientID"

Using OAuth 2.0
OAuth 2.0 Token Administration Endpoint (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 71

],
 "parent": [],
 "refreshToken": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "id": [
 "2aaddde8-586b-4cb7-b431-eb86af57aabc"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-777"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_id": "5e1423a2-d2cd-40d5-8f54-5b695836cd44",
 "_rev": "1171292923",
 "tokenName": [
 "refresh_token"
],
 "expireTime": "Oct 18, 2016 10:51 AM",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myClientID"
],
 "authModules": [],
 "id": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-776"
],
 "redirectURI": [],
 "realm": [
 "/test"
],
 "userName": [

Using OAuth 2.0
OAuth 2.0 Client Administration Endpoint

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 72

 "user.4"
],
 "acr": [],
 "display_name": "",
 "scopes": "openid"
 },
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
 }

To delete (revoke) a token, perform an HTTP DELETE on /frrest/oauth2/token/token-id including the
SSO token of an administrative user, such as amadmin, as in the following example:
$ curl \
 --request POST \
 --user "myClientID:password" \
 --data "grant_type=password&username=demo&password=changeit&scope=cn" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token
 {
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
}

 $ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c
{
 "success": "true"
 }

3.5. OAuth 2.0 Client Administration Endpoint
The OAuth 2.0 administration endpoint lets AM administrators and agent administrators create (that
is, register) and delete OAuth 2.0 clients.

AM exposes this endpoint at /json/realm-config/agents/OAuth2Client/, for example https://openam.example
.com:8443/openam/json/realms/root/realm-config/agents/OAuth2Client/.

You can use the AM API Explorer for detailed information about the parameters supported by this
endpoint, and to test it against your deployed AM instance.

In the AM console, click the Help icon, and then navigate to API Explorer > /realm-config > /agents
> /OAuth2Client.

Using OAuth 2.0
OAuth 2.0 Client Administration Endpoint

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 73

To create an OAuth 2.0 client, perform an HTTP POST to /realm-config/agents/OAuth2Client/Client ID
with a JSON object fully specifying the client.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

The following example creates an OAuth 2.0 client named myClient in a subrealm of the top-level realm
named subrealm1:
$ curl \
 --request PUT \
 --header 'Content-Type: application/json' --header 'Accept: application/json' \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 --data '{
 "userpassword": "secret12",
 "com.forgerock.openam.oauth2provider.clientType":"Confidential",
 "com.forgerock.openam.oauth2provider.redirectionURIs":
 ["www.client.com","www.example.com"],
 "com.forgerock.openam.oauth2provider.scopes":
 ["cn","sn"],
 "com.forgerock.openam.oauth2provider.defaultScopes":
 ["cn"],
 "com.forgerock.openam.oauth2provider.name":
 ["My Test Client"],
 "com.forgerock.openam.oauth2provider.description":
 ["OAuth 2.0 Client"]
 }' \
 'http://openam.example.com:8080/openam/json/realms/root/realms/subrealm1/realm-config/agents/
OAuth2Client/testClient'
{
 "_id" : "testClient",
 "_rev" : "2001898072",
 "com.forgerock.openam.oauth2provider.redirectionURIs" : ["www.client.com", "www.example.com"],
 "com.forgerock.openam.oauth2provider.tokenEndPointAuthMethod" : "client_secret_basic",
 "com.forgerock.openam.oauth2provider.jwks" : null,
 "com.forgerock.openam.oauth2provider.claims" : ["[0]="],
 "com.forgerock.openam.oauth2provider.jwtTokenLifeTime" : 0,
 "com.forgerock.openam.oauth2provider.accessTokenLifeTime" : 0,
 "com.forgerock.openam.oauth2provider.defaultMaxAge" : 600,
 "idTokenEncryptionEnabled" : false,
 "userpassword" : "secret12",
 "com.forgerock.openam.oauth2provider.contacts" : ["[0]="],
 "com.forgerock.openam.oauth2provider.subjectType" : "Public",
 "com.forgerock.openam.oauth2provider.postLogoutRedirectURI" : ["[0]="],
 "com.forgerock.openam.oauth2provider.clientType" : "Confidential",
 "com.forgerock.openam.oauth2provider.scopes" : ["cn", "sn"],
 "com.forgerock.openam.oauth2provider.description" : ["OAuth 2.0 Client"],
 "idTokenPublicEncryptionKey" : null,
 "idTokenEncryptionMethod" : "A128CBC-HS256",
 "com.forgerock.openam.oauth2provider.jwksURI" : "http://openam.example.com:8080/openam/oauth2/realms/
root/realms/subrealm1/connect/jwk_uri",
 "com.forgerock.openam.oauth2provider.clientJwtPublicKey" : null,
 "com.forgerock.openam.oauth2provider.authorizationCodeLifeTime" : 0,
 "com.forgerock.openam.oauth2provider.accessToken" : null,
 "com.forgerock.openam.oauth2provider.sectorIdentifierURI" : null,
 "idTokenEncryptionAlgorithm" : "RSA1_5",
 "com.forgerock.openam.oauth2provider.refreshTokenLifeTime" : 0,

Using OAuth 2.0
OAuth 2.0 Client Administration Endpoint

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 74

 "com.forgerock.openam.oauth2provider.clientSessionURI" : null,
 "com.forgerock.openam.oauth2provider.defaultScopes" : ["cn"],
 "com.forgerock.openam.oauth2provider.clientName" : ["[0]="],
 "com.forgerock.openam.oauth2provider.idTokenSignedResponseAlg" : "HS256",
 "com.forgerock.openam.oauth2provider.defaultMaxAgeEnabled" : false,
 "com.forgerock.openam.oauth2provider.name" : ["My Test Client"],
 "com.forgerock.openam.oauth2provider.responseTypes" : [
 "[6]=code token id_token",
 "[0]=code",
 "[4]=token id_token",
 "[2]=id_token",
 "[3]=code token",
 "[1]=token",
 "[5]=code id_token"],
 "com.forgerock.openam.oauth2provider.publicKeyLocation" : "jwks_uri",
 "sunIdentityServerDeviceStatus" : "Active",
 "isConsentImplied" : false,
 "_type" : {
 "_id" : "OAuth2Client",
 "name" : "OAuth2 Clients",
 "collection" : true
 }
}

To delete an OAuth 2.0 client, perform an HTTP DELETE on /json/realm-config/agents/
OAuth2Client/client-id, as in the following example:
$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 https://openam.example.com:8443/openam/json/realms/root/realm-config/agents/OAuth2Client/myClient
{"success":"true"}

Tip

When making a REST API call, specify the realm in the path component of the endpoint. You must specify
the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the hierarchy with the
realms/ keyword. For example /realms/root/realms/customers/realms/europe.

The following example deletes an OAuth 2.0 client with ID myClient from a subrealm in the top-level realm
named myRealm:

Using OAuth 2.0
OAuth 2.0 Sample Mobile Applications

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 75

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 https://openam.example.com:8443/openam/json/realms/root/realms/myRealm/realm-config/agents/
OAuth2Client/myClient
{"success":"true"}

3.6. OAuth 2.0 Sample Mobile Applications
Source code for sample mobile applications is available in sample repositories in the ForgeRock
commons project. Get local clones of one or more of the following repositories so that you can try
these sample applications on your system:

• AM OAuth2.0 Android sample app

• AM OAuth 2.0 iOS sample app

For example, if you have a Mac running OS X 10.8 or later with Xcode installed, try the AM OAuth 2.0
iOS Sample App.

https://stash.forgerock.org/projects/COMMONS
https://stash.forgerock.org/projects/COMMONS
https://stash.forgerock.org/projects/COMMONS/repos/mobile-samples-android-openam-apps/browse
https://stash.forgerock.org/projects/COMMONS/repos/mobile-samples-ios-openam-ios-oauth2-sample-app/browse
http://commons.forgerock.org/samples/mobile/ios/openam-ios-oauth2-sample-app/
http://commons.forgerock.org/samples/mobile/ios/openam-ios-oauth2-sample-app/

Using OAuth 2.0
OAuth 2.0 Sample Mobile Applications

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 76

OAuth 2.0 iOS Sample Application

Customizing OAuth 2.0
Customizing OAuth 2.0 Scope Handling

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 77

Chapter 4

Customizing OAuth 2.0
This chapter covers customizing AM's support for OAuth 2.0.

4.1. Customizing OAuth 2.0 Scope Handling
RFC 6749, The OAuth 2.0 Authorization Framework, describes access token scopes as a set of case-
sensitive strings defined by the authorization server. Clients can request scopes, and resource owners
can authorize them.

The default scopes implementation in AM treats scopes as profile attributes for the resource owner.
When a resource server or other entity uses the access token to get token information from AM, AM
populates the scopes with profile attribute values. For example, if one of the scopes is mail, AM sets
mail to the resource owner's email address in the token information returned.

You can change this behavior by writing your own scope validator plugin. This section shows how
to write a custom OAuth 2.0 scope validator plugin for use in an OAuth 2.0 provider (authorization
server) configuration.

4.1.1. Designing an OAuth 2.0 Scope Validator Plugin
A scope validator plugin implements the org.forgerock.oauth2.core.ScopeValidator interface. As
described in the API specification, the ScopeValidator interface has several methods that your plugin
overrides.

The following example plugin sets whether read and write permissions were granted.
public class CustomScopeValidator implements ScopeValidator {
 @Override
 public Set<String> validateAuthorizationScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request oAuth2Request) {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

http://tools.ietf.org/html/rfc6749
../apidocs/?org/forgerock/oauth2/core/ScopeValidator.html

Customizing OAuth 2.0
Designing an OAuth 2.0 Scope Validator Plugin

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 78

 @Override
 public Set<String> validateAccessTokenScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request request) {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateRefreshTokenScope(
 ClientRegistration clientRegistration,
 Set<String> requestedScope,
 Set<String> tokenScope,
 OAuth2Request request) {
 if (requestedScope == null || requestedScope.isEmpty()) {
 return tokenScope;
 }

 Set<String> scopes = new HashSet<String>(tokenScope);
 scopes.retainAll(requestedScope);
 return scopes;
 }

 /**
 * Set read and write permissions according to scope.
 *
 * @param token The access token presented for validation.
 * @return The map of read and write permissions,
 * with permissions set to {@code true} or {@code false},
 * as appropriate.
 */
 private Map<String,Object> mapScopes(AccessToken token) {
 Set<String> scopes = token.getScope();
 Map<String, Object> map = new HashMap<String, Object>();
 final String[] permissions = {"read", "write"};

 for (String scope : permissions) {
 if (scopes.contains(scope)) {
 map.put(scope, true);
 } else {
 map.put(scope, false);
 }
 }
 return map;
 }

 @Override
 public UserInfoClaims getUserInfo(
 AccessToken token,
 OAuth2Request request)
 throws UnauthorizedClientException {
 Map<String, Object> response = mapScopes(token);

Customizing OAuth 2.0
Building the OAuth 2.0 Scope Validator Sample Plugin

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 79

 response.put("sub", token.getResourceOwnerId());
 UserInfoClaims userInfoClaims = new UserInfoClaims(response, null);
 return userInfoClaims;
 }

 @Override
 public Map<String, Object> evaluateScope(AccessToken token) {
 return mapScopes(token);
 }

 @Override
 public Map<String, String> additionalDataToReturnFromAuthorizeEndpoint(
 Map<String, Token> tokens,
 OAuth2Request request) {
 return new HashMap<String, String>(); // No special handling
 }

 @Override
 public void additionalDataToReturnFromTokenEndpoint(
 AccessToken token,
 OAuth2Request request)
 throws ServerException, InvalidClientException {
 // No special handling
 }
}

4.1.2. Building the OAuth 2.0 Scope Validator Sample Plugin
For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

Get a local clone so that you can try the sample on your system. In the sources, you find the following
files:

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample scope validator plugin, and also specifies its
dependencies on AM components.

src/main/java/org/forgerock/openam/examples/CustomScopeValidator.java

Core class for the sample OAuth 2.0 scope validator plugin

See "Designing an OAuth 2.0 Scope Validator Plugin" for a listing.

After you successfully build the project, you find the openam-scope-sample-5.5.jar in the /path/to/openam-
samples-external/openam-scope-sample/target directory of the project.

4.1.3. Configuring an Instance to Use the Plugin
After building your plugin .jar file, copy the .jar file under WEB-INF/lib/ where you deployed AM.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing OAuth 2.0
Trying the Sample Plugin

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 80

Restart AM or the container in which it runs.

In the AM console, you can either configure a specific OAuth 2.0 provider to use your plugin, or
configure your plugin as the default for new OAuth 2.0 providers. In either case, you need the
class name of your plugin. The class name for the sample plugin is org.forgerock.openam.examples
.CustomScopeValidator.

• To configure a specific OAuth 2.0 provider to use your plugin, navigate to Realms > Realm Name
> Services, click OAuth2 Provider, and enter the class name of your scopes plugin to the Scope
Implementation Class field.

• To configure your plugin as the default for new OAuth 2.0 providers, add the class name of your
scopes plugin. Navigate to Configure > Global Services, click OAuth2 Provider, and set Scope
Implementation Class.

4.1.4. Trying the Sample Plugin

In order to try the sample plugin, make sure you have configured an OAuth 2.0 provider to use the
sample plugin. Also, set up an OAuth 2.0 client of the provider that takes scopes read and write.

Next try the provider as shown in the following example:
$ curl \
 --request POST \
 --data "grant_type=client_credentials \
&client_id=myClientID&client_secret=password&scope=read" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token

{
 "scope": "read",
 "expires_in": 59,
 "token_type": "Bearer",
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

$ curl https://openam.example.com:8443/openam/oauth2/realms/root/tokeninfo
\
?access_token=0d492486-11a7-4175-b116-2fc1cbff6d78
{
 "scope": [
 "read"
],
 "grant_type": "client_credentials",
 "realm": "/",
 "write": false,
 "read": true,
 "token_type": "Bearer",
 "expires_in": 24,
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

As seen in this example, the requested scope read is authorized, but the write scope has not been
authorized.

Reference
OAuth 2.0 Standards

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 81

Chapter 5

Reference
This reference section covers settings and other information relating to OAuth 2.0 support in AM.

5.1. OAuth 2.0 Standards
AM implements the following RFCs, Internet-Drafts, and standards relating to OAuth 2.0:

OAuth 2.0

RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage

RFC 7009: OAuth 2.0 Token Revocation

RFC 7515: JSON Web Signature (JWS)

RFC 7517: JSON Web Key (JWK)

RFC 7518: JSON Web Algorithms (JWA)

RFC 7519: JSON Web Token (JWT)

RFC 7522: Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants

RFC 7523: JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization
Grants

RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol

RFC 7636: Proof Key for Code Exchange by OAuth Public Clients

RFC 7662: OAuth 2.0 Token Introspection

RFC 7800: Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)

Internet-Draft: OAuth 2.0 Device Flow for Browserless and Input Constrained Devices

https://oauth.net/2/
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc7009
http://tools.ietf.org/html/rfc7515
http://tools.ietf.org/html/rfc7517
http://tools.ietf.org/html/rfc7518
http://tools.ietf.org/html/rfc7519
http://tools.ietf.org/html/rfc7522
http://tools.ietf.org/html/rfc7522
http://tools.ietf.org/html/rfc7523
http://tools.ietf.org/html/rfc7523
https://tools.ietf.org/html/rfc7591
http://tools.ietf.org/html/rfc7636
http://tools.ietf.org/html/rfc7662
http://tools.ietf.org/html/rfc7800
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-06

Reference
OAuth2 Provider

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 82

5.2. OAuth2 Provider
amster service name: oauth-oidc

5.2.1. Global Attributes
The following settings appear on the Global Attributes tab:

Token Blacklist Cache Size

Number of blacklisted tokens to cache in memory to speed up blacklist checks and reduce load on
the CTS.

Default value: 10000

amster attribute: blacklistCacheSize

Blacklist Poll Interval (seconds)

How frequently to poll for token blacklist changes from other servers, in seconds.

How often each server will poll the CTS for token blacklist changes from other servers. This
is used to maintain a highly compressed view of the overall current token blacklist improving
performance. A lower number will reduce the delay for blacklisted tokens to propagate to all
servers at the cost of increased CTS load. Set to 0 to disable this feature completely.

Default value: 60

amster attribute: blacklistPollInterval

Blacklist Purge Delay (minutes)

Length of time to blacklist tokens beyond their expiry time.

Allows additional time to account for clock skew to ensure that a token has expired before it is
removed from the blacklist.

Default value: 1

amster attribute: blacklistPurgeDelay

HMAC ID Token Authenticity Secret

A secret to use when signing a claim in HMAC-signed ID tokens so that authenticity can be
assured when they are presented back to OpenAM.

amster attribute: idTokenAuthenticitySecret

ID Token Signing Key Alias for Agent Clients

The alias for the RSA key that should be used signing ID tokens for Agent OAuth2 Clients

Reference
Core

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 83

Default value: test

amster attribute: agentIdTokenSigningKeyAlias

Stateless Grant Token Upgrade Compatibility Mode

Enable OpenAM to consume and create stateless OAuth 2.0 tokens in two different formats
simultaneously.

Enable this option when upgrading OpenAM to allow the new instance to create and consume
stateless OAuth 2.0 tokens in both the previous format, and the new format. Disable this option
once all OpenAM instances in the cluster have been upgraded.

Default value: false

amster attribute: statelessGrantTokenUpgradeCompatibilityMode

5.2.2. Core
The following settings appear on the Core tab:

Use Stateless Access & Refresh Tokens

When enabled, OpenAM issues access and refresh tokens that can be inspected by resource
servers.

Default value: false

amster attribute: statelessTokensEnabled

Authorization Code Lifetime (seconds)

The time an authorization code is valid for, in seconds.

Default value: 120

amster attribute: codeLifetime

Refresh Token Lifetime (seconds)

The time in seconds a refresh token is valid for. If this field is set to -1, the token will never
expire.

Default value: 604800

amster attribute: refreshTokenLifetime

Access Token Lifetime (seconds)

The time an access token is valid for, in seconds.

Default value: 3600

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 84

amster attribute: accessTokenLifetime

Issue Refresh Tokens

Whether to issue a refresh token when returning an access token.

Default value: true

amster attribute: issueRefreshToken

Issue Refresh Tokens on Refreshing Access Tokens

Whether to issue a refresh token when refreshing an access token.

Default value: true

amster attribute: issueRefreshTokenOnRefreshedToken

5.2.3. Advanced
The following settings appear on the Advanced tab:

Custom Login URL Template

Custom URL for handling login, to override the default OpenAM login page.

Supports Freemarker syntax, with the following variables:

Variable Description
gotoUrl The URL to redirect to after login.
acrValues The Authentication Context Class Reference (acr)

values for the authorization request.
realm The OpenAM realm the authorization request was

made on.
module The name of the OpenAM authentication

module requested to perform resource owner
authentication.

service The name of the OpenAM authentication
chain requested to perform resource owner
authentication.

locale A space-separated list of locales, ordered by
preference.

The following example template redirects users to a non-OpenAM front end to handle login, which
will then redirect back to the /oauth2/authorize endpoint with any required parameters:

http://mylogin.com/login?goto=${goto}<#if acrValues??>&acr_values=${acrValues}</#if><#if realm??
>&realm=${realm}</#if><#if module??>&module=${module}</#if><#if service??>&service=${service}</#if><#if
 locale??>&locale=${locale}</#if>

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 85

NOTE: Default OpenAM login page is constructed using "Base URL Source" service.

amster attribute: customLoginUrlTemplate

Scope Implementation Class

The class that contains the required scope implementation, must implement the org.forgerock
.oauth2.core.ScopeValidator interface.

Default value: org.forgerock.openam.oauth2.OpenAMScopeValidator

amster attribute: scopeImplementationClass

Response Type Plugins

List of plugins that handle the valid response_type values.

OAuth 2.0 clients pass response types as parameters to the OAuth 2.0 Authorization endpoint (
/oauth2/authorize) to indicate which grant type is requested from the provider. For example, the
client passes code when requesting an authorization code, and token when requesting an access
token.

Values in this list take the form response-type|plugin-class-name.

Default value:

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler

amster attribute: responseTypeClasses

User Profile Attribute(s) the Resource Owner is Authenticated On

Names of profile attributes that resource owners use to log in. You can add others to the default,
for example mail.

Default value: uid

amster attribute: authenticationAttributes

User Display Name attribute

The profile attribute that contains the name to be displayed for the user on the consent page.

Default value: cn

amster attribute: displayNameAttribute

Supported Scopes

The set of supported scopes, with translations.

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 86

Scopes may be entered as simple strings or pipe-separated strings representing the internal
scope name, locale, and localized description.

For example: read|en|Permission to view email messages in your account

Locale strings are in the format: language_country_variant, for example en, en_GB, or en_US_WIN.

If the locale and pipe is omitted, the description is displayed to all users that have undefined
locales.

If the description is also omitted, nothing is displayed on the consent page for the scope. For
example specifying read| would allow the scope read to be used by the client, but would not
display it to the user on the consent page when requested.

amster attribute: supportedScopes

Subject Types supported

List of subject types supported. Valid values are:

• public - Each client receives the same subject (sub) value.

• pairwise - Each client receives a different subject (sub) value, to prevent correlation between
clients.

Default value: public

amster attribute: supportedSubjectTypes

Default Client Scopes

List of scopes a client will be granted if they request registration without specifying which scopes
they want. Default scopes are NOT auto-granted to clients created through the OpenAM console.

amster attribute: defaultScopes

OAuth2 Token Signing Algorithm

Algorithm used to sign stateless OAuth 2.0 tokens in order to detect tampering.

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 87

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

The possible values for this property are:

HS256
HS384
HS512
RS256
ES256
ES384
ES512

Default value: HS256

amster attribute: tokenSigningAlgorithm

Stateless Token Compression

Whether stateless access and refresh tokens should be compressed.

amster attribute: tokenCompressionEnabled

Token Signing HMAC Shared Secret

Base64-encoded key used by HS256, HS384 and HS512.

amster attribute: tokenSigningHmacSharedSecret

Token Signing RSA Public/Private Key Pair

The public/private key pair used by RS256.

The public/private key pair will be retrieved from the keystore referenced by the property com.sun
.identity.saml.xmlsig.keystore.

Default value: test

amster attribute: keypairName

Token Signing ECDSA Public/Private Key Pair Alias

The list of public/private key pairs used for the elliptic curve algorithms (ES256/ES384/ES512).
Add an entry to specify an alias for a specific elliptic curve algorithm, for example ES256|
es256Alias.

Each of the public/private key pairs will be retrieved from the keystore referenced by the
property com.sun.identity.saml.xmlsig.keystore.

Default value:

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 88

ES512|es512test
ES384|es384test
ES256|es256test

amster attribute: tokenSigningECDSAKeyAlias

Subject Identifier Hash Salt

If pairwise subject types are supported, it is STRONGLY RECOMMENDED to change this value.
It is used in the salting of hashes for returning specific sub claims to individuals using the same
request_uri or sector_identifier_uri.

For example, you might set this property to: changeme

amster attribute: hashSalt

Code Verifier Parameter Required

If enabled, requests using the authorization code grant require a code_challenge attribute.

For more information, read the draft specification for this feature.

Default value: false

amster attribute: codeVerifierEnforced

Modified Timestamp Attribute Name

The identity Data Store attribute used to return modified timestamp values.

This attribute is paired together with the Created Timestamp Attribute Name attribute
(createdTimestampAttribute). You can leave both attributes unset (default) or set them both. If you
set only one attribute and leave the other blank, the access token fails with a 500 error.

For example, when you configure AM as an OpenID Connect Provider in a Mobile Connect
application and use DS as an Identity data store, the client accesses the userinfo endpoint
to obtain the updated_at claim value in the ID token. The updated_at claim obtains its value
from the modifiedTimestampAttribute attribute in the user profile. If the profile has never been
modified, updated_at claim uses the createdTimestampAttribute attribute. For more information, see
"Configuring as an OP for Mobile Connect" in the OpenID Connect 1.0 Guide.

amster attribute: modifiedTimestampAttribute

Created Timestamp Attribute Name

The identity Data Store attribute used to return created timestamp values.

This attribute is paired together with the Modified Timestamp Attribute Name (modifyTimestampAttribute).
You can leave both attributes unset (default) or set them both. If you set only one attribute and
leave the other blank, the access token fails with a 500 error.

https://tools.ietf.org/html/draft-ietf-oauth-spop-12

Reference
Client Dynamic Registration

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 89

For example, when you configure AM as an OpenID Connect Provider in a Mobile Connect
application and use DS as an Identity data store, the client accesses the userinfo endpoint
to obtain the updated_at claim value in the ID token. The updated_at claim obtains its value
from the modifiedTimestampAttribute attribute in the user profile. If the profile has never been
modified, updated_at claim uses the createdTimestampAttribute attribute. For more information, see
"Configuring as an OP for Mobile Connect" in the OpenID Connect 1.0 Guide.

amster attribute: createdTimestampAttribute

Enable Auth Module Messages for Password Credentials Grant

If enabled, authentication module failure messages are used to create Resource Owner Password
Credentials Grant failure messages. If disabled, a standard authentication failed message is used.

The Password Grant Type requires the grant_type=password parameter.

Default value: false

amster attribute: moduleMessageEnabledInPasswordGrant

5.2.4. Client Dynamic Registration

The following settings appear on the Client Dynamic Registration tab:

Require Software Statement for Dynamic Client Registration

When enabled, a software statement JWT containing at least the iss (issuer) claim must be
provided when registering an OAuth 2.0 client dynamically.

Default value: false

amster attribute: dynamicClientRegistrationSoftwareStatementRequired

Required Software Statement Attested Attributes

The client attributes that are required to be present in the software statement JWT when
registering an OAuth 2.0 client dynamically. Only applies if Require Software Statements for
Dynamic Client Registration is enabled.

Leave blank to allow any attributes to be present.

Default value: redirect_uris

amster attribute: requiredSoftwareStatementAttestedAttributes

Allow Open Dynamic Client Registration

Allow clients to register without an access token. If enabled, you should consider adding some
form of rate limiting. For more information, see Client Registration in the OpenID Connect
specification.

http://openid.net/specs/openid-connect-registration-1_0.html#ClientRegistration

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 90

Default value: false

amster attribute: allowDynamicRegistration

Generate Registration Access Tokens

Whether to generate Registration Access Tokens for clients that register by using open dynamic
client registration. Such tokens allow the client to access the Client Configuration Endpoint as
per the OpenID Connect specification. This setting has no effect if Allow Open Dynamic Client
Registration is disabled.

Default value: true

amster attribute: generateRegistrationAccessTokens

5.2.5. OpenID Connect
The following settings appear on the OpenID Connect tab:

OIDC Claims Script

The script that is run when issuing an ID token or making a request to the userinfo endpoint
during OpenID requests.

The script gathers the scopes and populates claims, and has access to the access token, the user's
identity and, if available, the user's session.

The possible values for this property are:

OIDC Claims Script

Default value: OIDC Claims Script

amster attribute: oidcClaimsScript

ID Token Signing Algorithms supported

Algorithms supported to sign OpenID Connect id_tokens.

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

http://openid.net/specs/openid-connect-registration-1_0.html#ClientConfigurationEndpoint
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 91

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster attribute: supportedIDTokenSigningAlgorithms

ID Token Encryption Algorithms supported

Encryption algorithms supported to encrypt OpenID Connect ID tokens in order to hide its
contents.

OpenAM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
RSA1_5
A256KW
dir
A192KW

amster attribute: supportedIDTokenEncryptionAlgorithms

ID Token Encryption Methods supported

Encryption methods supported to encrypt OpenID Connect ID tokens in order to hide its contents.

OpenAM supports the following ID token encryption algorithms:

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 92

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedIDTokenEncryptionMethods

Supported Claims

Set of claims supported by the OpenID Connect /oauth2/userinfo endpoint, with translations.

Claims may be entered as simple strings or pipe separated strings representing the internal claim
name, locale, and localized description.

For example: name|en|Your full name..

Locale strings are in the format: language + "_" + country + "_" + variant, for example en, en_GB,
or en_US_WIN. If the locale and pipe is omitted, the description is displayed to all users that have
undefined locales.

If the description is also omitted, nothing is displayed on the consent page for the claim. For
example specifying family_name| would allow the claim family_name to be used by the client, but
would not display it to the user on the consent page when requested.

amster attribute: supportedClaims

OpenID Connect JWT Token Lifetime (seconds)

The amount of time the JWT will be valid for, in seconds.

Default value: 3600

amster attribute: jwtTokenLifetime

Token Encryption RSA Public/Private Key Pair Alias

The list of public/private key pairs used for the RSA algorithms (RSA1_5/RSA-OAEP/RSA-
OAEP-256). Add an entry to specify an alias for a specific RSA algorithm, for example RSA1_5|
rsa1_5Alias.

Each of the public/private key pairs will be retrieved from the keystore referenced by the
property com.sun.identity.saml.xmlsig.keystore.

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 93

Default value:

RSA1_5|test
RSA-OAEP|test
RSA-OAEP-256|test

amster attribute: tokenEncryptionSigningKeyAlias

5.2.6. Advanced OpenID Connect

The following settings appear on the Advanced OpenID Connect tab:

Remote JSON Web Key URL

The Remote URL where the providers JSON Web Key can be retrieved.

If this setting is not configured, then OpenAM provides a local URL to access the public key of the
private key used to sign ID tokens.

amster attribute: jkwsURI

Idtokeninfo Endpoint Requires Client Authentication

When enabled, the /oauth2/idtokeninfo endpoint requires client authentication if the signing
algorithm is set to HS256, HS384, or HS512.

Default value: true

amster attribute: idTokenInfoClientAuthenticationEnabled

Enable "claims_parameter_supported"

If enabled, clients will be able to request individual claims using the claims request parameter, as
per section 5.5 of the OpenID Connect specification.

Default value: false

amster attribute: claimsParameterSupported

OpenID Connect acr_values to Auth Chain Mapping

Maps OpenID Connect ACR values to authentication chains. For more details, see the acr_values
parameter in the OpenID Connect authentication request specification.

amster attribute: loaMapping

OpenID Connect Default acr Claim

Default value to use as the acr claim in an OpenID Connect ID Token when using the default
authentication chain.

http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 94

amster attribute: defaultACR

OpenID Connect id_token amr Values to Auth Module Mappings

Specify amr values to be returned in the OpenID Connect id_token. Once authentication has
completed, the authentication modules that were used from the authentication service will be
mapped to the amr values. If you do not require amr values, or are not providing OpenID Connect
tokens, leave this field blank.

amster attribute: amrMappings

Always Return Claims in ID Tokens

If enabled, include scope-derived claims in the id_token, even if an access token is also returned
that could provide access to get the claims from the userinfo endpoint.

If not enabled, if an access token is requested the client must use it to access the userinfo
endpoint for scope-derived claims, as they will not be included in the ID token.

Default value: false

amster attribute: alwaysAddClaimsToToken

Store Ops Tokens

Whether OpenAM will store the ops tokens corresponding to OpenID Connect sessions in the
CTS store. Note that session management related endpoints will not work when this setting is
disabled.

Default value: true

amster attribute: storeOpsTokens

Request Parameter Signing Algorithms Supported

Algorithms supported to verify signature of Request parameterOpenAM supports signing
algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header Parameter Values for
JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 95

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster attribute: supportedRequestParameterSigningAlgorithms

Request Parameter Encryption Algorithms Supported

Encryption algorithms supported to decrypt Request parameter.

OpenAM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
RSA1_5
A256KW
dir
A192KW

amster attribute: supportedRequestParameterEncryptionAlgorithms

Request Parameter Encryption Methods Supported

Encryption methods supported to decrypt Request parameter.

OpenAM supports the following Request parameter encryption algorithms:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

Reference
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 96

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRequestParameterEncryptionEnc

Require Pre-registered request_uri Values

When enabled, any request_uri values used must be pre-registered using the request_uris
registration parameter.

Default value: false

amster attribute: requireRequestUriRegistration

Authorized OIDC SSO Clients

Specify a list of client names that are authorized to use OpenID Connect ID tokens as SSO
Tokens.

Clients in this list can use ID tokens issued by AM to a user as if it were a full SSO token
belonging to that user. For information on SSO tokens, see "About Sessions" in the Authentication
and Single Sign-On Guide.

Important

Only add known trusted clients, as enabling this feature grants more authority than an ID Token normally
provides.

Note that Java Agents 5 and Web Agents 5 use OpenID Connect for communicating with AM.
Agent profiles are automatically granted this privilege and do not need to be whitelisted.

amster attribute: authorisedOpenIdConnectSSOClients

5.2.7. Device Flow

The following settings appear on the Device Flow tab:

Verification URL

The URL that the user will be instructed to visit to complete their OAuth 2.0 login and consent
when using the device code flow.

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 97

amster attribute: verificationUrl

Device Completion URL

The URL that the user will be sent to on completion of their OAuth 2.0 login and consent when
using the device code flow.

amster attribute: completionUrl

Device Code Lifetime (seconds)

The lifetime of the device code, in seconds.

Default value: 300

amster attribute: deviceCodeLifetime

Device Polling Interval

The polling frequency for devices waiting for tokens when using the device code flow.

Default value: 5

amster attribute: devicePollInterval

5.2.8. Consent
The following settings appear on the Consent tab:

Saved Consent Attribute Name

Name of a multi-valued attribute on resource owner profiles where OpenAM can save
authorization consent decisions.

When the resource owner chooses to save the decision to authorize access for a client
application, then OpenAM updates the resource owner's profile to avoid having to prompt the
resource owner to grant authorization when the client issues subsequent authorization requests.

amster attribute: savedConsentAttribute

Allow Clients to Skip Consent

If enabled, clients may be configured so that the resource owner will not be asked for consent
during authorization flows.

Default value: false

amster attribute: clientsCanSkipConsent

Enable Remote Consent

Default value: false

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 98

amster attribute: enableRemoteConsent

Remote Consent Service ID

The ID of an existing remote consent service agent.

The possible values for this property are:

[Empty]

amster attribute: remoteConsentServiceId

Remote Consent Service Request Signing Algorithms Supported

Algorithms supported to sign consent_request JWTs for Remote Consent Services.

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster attribute: supportedRcsRequestSigningAlgorithms

Remote Consent Service Request Encryption Algorithms Supported

Encryption algorithms supported to encrypt Remote Consent Service requests.

OpenAM supports the following encryption algorithms:

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 99

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
RSA1_5
A256KW
dir
A192KW

amster attribute: supportedRcsRequestEncryptionAlgorithms

Remote Consent Service Request Encryption Methods Supported

Encryption methods supported to encrypt Remote Consent Service requests.

OpenAM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRcsRequestEncryptionMethods

Remote Consent Service Response Signing Algorithms Supported

Algorithms supported to verify signed consent_response JWT from Remote Consent Services.

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 100

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster attribute: supportedRcsResponseSigningAlgorithms

Remote Consent Service Response Encryption Algorithms Supported

Encryption algorithms supported to decrypt Remote Consent Service responses.

OpenAM supports the following encryption algorithms:

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW

Reference
Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 101

RSA1_5
A256KW
dir
A192KW

amster attribute: supportedRcsResponseEncryptionAlgorithms

Remote Consent Service Response Encryption Methods Supported

Encryption methods supported to decrypt Remote Consent Service responses.

OpenAM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRcsResponseEncryptionMethods

5.3. Remote Consent Service
amster service name: RemoteConsentService

5.3.1. Realm Defaults

The following settings appear on the Realm Defaults tab:

Client Name

The name used to identify this OAuth 2.0 remote consent service when referenced in other
services.

amster attribute: clientId

Signing Key Alias

The alias of the key in the default keystore to use for signing.

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 102

amster attribute: signingKeyAlias

Encryption Key Alias

The alias of the key in the default keystore to use for encryption.

amster attribute: encryptionKeyAlias

Authorization Server jwk_uri

The jwk_uri for retrieving the authorization server signing and encryption keys.

amster attribute: jwksUriAS

JWK Store Cache Timeout (in minutes)

The cache timeout for the JWK store of the authorization server, in minutes.

Default value: 60

amster attribute: jwkStoreCacheTimeout

JWK Store Cache Miss Cache Time (in minutes)

The length of time a cache miss is cached, in minutes.

Default value: 1

amster attribute: jwkStoreCacheMissCacheTime

Consent Response Time Limit (in minutes)

The time limit set on the consent response JWT before it expires, in minutes.

Default value: 2

amster attribute: consentResponseTimeLimit

5.4. OAuth 2.0 and OpenID Connect 1.0 Client Settings
To register an OAuth 2.0 client with AM as the OAuth 2.0 authorization server, or register an OpenID
Connect 1.0 client through the AM console, then create an OAuth 2.0 client profile. After creating the
client profile, you can further configure the properties in the AM console by navigating to Realms >
Realm Name > Applications > OAuth 2.0 > Client Name.

5.4.1. Core

The following properties appear on the Core tab:

Reference
Core

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 103

Group

Set this field if you have configured an OAuth 2.0 client group.

Status

Specify whether the client profile is active for use or inactive.

Client secret

Specify the client secret as described by RFC 6749 in the section, Client Password.

For OAuth 2.0/OpenID Connect 1.0 clients, AM uses the client password as the client shared
secret key when signing the contents of the request parameter with HMAC-based algorithms, such
as HS256.

Client type

Specify the client type.

Confidential clients can maintain the confidentiality of their credentials, such as a web
application running on a server where its credentials are protected. Public clients run the risk
of exposing their passwords to a host or user agent, such as a JavaScript client running in a
browser.

Redirection URIs

Specify client redirection endpoint URIs as described by RFC 6749 in the section, Redirection
Endpoint. AM's OAuth 2.0 authorization service redirects the resource owner's user-agent back
to this endpoint during the authorization code grant process. If your client has more than one
redirection URI, then it must specify the redirection URI to use in the authorization request. The
redirection URI must NOT contain a fragment (#).

Redirection URIs are required for OpenID Connect 1.0 clients.

Scope(s)

Specify scopes that are to be presented to the resource owner when the resource owner is asked
to authorize client access to protected resources.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, the localized description is displayed to all users having undefined

http://tools.ietf.org/html/rfc6749#section-2.3.1
http://tools.ietf.org/html/rfc6749#section-3.1.2
http://tools.ietf.org/html/rfc6749#section-3.1.2

Reference
Core

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 104

locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

AM reserves a special scope, am-introspect-all-tokens. As administrator, add this scope to the
OAuth 2.0 client profile to allow the client to introspect access tokens issued to other clients in
the same realm. This scope cannot be added during dynamic client registration.

Default Scope(s)

Specify scopes in scope or scope|locale|localized description format. These scopes are set
automatically when tokens are issued.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format:language_ country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, thelocalized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

Client Name

Specify a human-readable name for the client.

Authorization Code Lifetime (seconds)

Specify the time in seconds for an authorization code to be valid. If this field is set to zero, the
authorization code lifetime of the OAuth2 provider is used.

Default: 0

Refresh Token Lifetime (seconds)

Specify the time in seconds for a refresh token to be valid. If this field is set to zero, the refresh
token lifetime of the OAuth2 provider is used. If the field is set to -1, the token will never expire.

Default: 0

Access Token Lifetime (seconds)

Specify the time in seconds for an access token to be valid. If this field is set to zero, the access
token lifetime of the OAuth2 provider is used.

Default: 0

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 105

5.4.2. Advanced

The following properties appear on the Advanced tab:

Display name

Specify a client name to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include name or locale|localized name .

The Display name can be entered as a single string or as a pipe-separated string for locale and
localized name, for example, en|My Example Company.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Display description

Specify a client description to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include description or locale|localized
 description .

The Display description can be entered as a single string or as a pipe-separated string for
locale and localized name, for example, en|The company intranet is requesting the following access
 permission.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Request uris

Specify request_uri values that a dynamic client would pre-register.

Only required if the Require request URI supported property is enabled in the OAuth2 Provider
service. See "Advanced OpenID Connect"

Response Types

Specify the response types that the client uses. The response type value specifies the flow that
determine how the ID token and access token are returned to the client. For more information,
see OAuth 2.0 Multiple Response Type Encoding Practices.

By default, the following response types are available:

• code. Specifies that the client application requests an authorization code grant.

• token. Specifies that the client application requests an implicit grant type and requests a token
from the API.

• id_token. Specifies that the client application requests an ID token.

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 106

• code token. Specifies that the client application requests an access token, access token type, and
an authorization code.

• token id_token. Specifies that the client application requests an access token, access token type,
and an ID token.

• code id_token. Specifies that the client application requests an authorization code and an ID
token.

• code token id_token. Specifies that the client application requests an authorization code, access
token, access token type, and an ID token.

Contacts

Specify the email addresses of users who administer the client.

Token Endpoint Authentication Method

Specify the authentication method with which a client authenticates to AM (as an authorization
server) at the token endpoint. The authentication method applies to OIDC requests with scope
openid.

• client_secret_basic. Clients authenticate with AM (as an authorization server) using the HTTP
Basic authentication scheme after receiving a client_secret value.

• client_secret_post. Clients authenticate with AM (as an authorization server) by including the
client credentials in the request body after receiving a client_secret value.

• private_key_jwt. Clients sign a JSON web token (JWT) with a registered public key.

For more information, see Client Authentication in the OpenID Connect Core 1.0 incorporating
errata set 1 specification.

Sector Identifier URI

Specify the host component of this URI, which is used in the computation of pairwise subject
identifiers.

Subject Type

Specify the subject identifier type, which is a locally unique identifier that will be consumed by
the client. Select one of two options:

• public. Provides the same sub (subject) value to all clients.

• pairwise. Provides a different sub (subject) value to each client.

Access Token

Specify the registration_access_token value that you provide when registering the client, and then
subsequently when reading or updating the client profile.

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 107

Implied Consent

Enable the implied consent feature. When enabled, the resource owner will not be asked for
consent during authorization flows. The OAuth2 Provider must also be configured to allow clients
to skip consent.

OAuth 2.0 Mix-Up Mitigation enabled

Enable OAuth 2.0 mix-up mitigation on the authorization server side.

Enable this setting only if this OAuth 2.0 client supports the OAuth 2.0 Mix-Up Mitigation draft,
otherwise AM will fail to validate access token requests received from this client.

5.4.3. OpenID Connect
The following properties appear on the OpenID Connect tab:

Claim(s)

Specify one or more claim name translations that will override those specified for the
authentication session. Claims are values that are presented to the user to inform them what data
is being made available to the client.

Claims can be in entered as simple strings, such as name, email, profile, or sub, or as a pipe-
separated string in the format: scope|locale|localized description. For example, name|en|Full name of
 user.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, thelocalized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example,
a claim of name| would allow the client to use the name claim but would not display it to the user
when requested.

If a value is not given, the value is computed from the OAuth2 provider.

Post Logout Redirect URIs

Specify one or more allowable URIs to which the user-agent can be redirected to after the client
logout process.

Client Session URI

Specify the relying party (client) URI to which the OpenID Connect Provider sends session
changed notification messages using the HTML 5 postMessage API.

Default Max Age

Specify the maximum time in seconds that a user can be authenticated. If the user last
authenticated earlier than this value, then the user must be authenticated again. If specified, the
request parameter max_age overrides this setting.

https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 108

Minimum value: 1.

Default: 600

Default Max Age Enabled

Enable the default max age feature.

OpenID Connect JWT Token Lifetime (seconds)

Specify the time in seconds for a JWT to be valid. If this field is set to zero, the JWT token lifetime
of the OAuth2 provider is used.

Default: 0

5.4.4. Signing and Encryption

The following properties appear on the Signing and Encryption tab:

Json Web Key URI

Specify the URI that contains the client's public keys in JSON web key format.

JWKs URI content cache timeout in ms

Specify the maximum amount of time, in milliseconds, that the content of the JWKS URI can
be cached before being refreshed. This avoids fetching the JWKS URI content for every token
encryption.

Default: 3600000

JWKs URI content cache miss cache time

Specify the minimum amount of time, in milliseconds, that the content of the JWKS URI is cached.
This avoids fetching the JWKS URI content for every token signature verification, for example if
the key ID (kid) is not in the JWKS content already cached.

Default: 60000

Token Endpoint Authentication Signing Algorithm

Specify the JWS algorithm that must be used for signing JWTs used to authenticate the client at
the Token Endpoint.

JWTs that are not signed with the selected algorithm in token requests from the client using the
private_key_jwt or client_secret_jwt authentication methods will be rejected.

Default: RS256

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 109

Json Web Key

Raw JSON web key value containing the client's public keys.

ID Token Signing Algorithm

Specify the signing algorithm that the ID token must be signed with.

Enable ID Token Encryption

Enable ID token encryption using the specified ID token encryption algorithm.

ID Token Encryption Algorithm

Specify the algorithm that the ID token must be encrypted with.

Default value: RSA1_5 (RSAES-PKCS1-V1_5).

ID Token Encryption Method

Specify the method that the ID token must be encrypted with.

Default value: A128CBC-HS256.

Client ID Token Public Encryption Key

Specify the Base64-encoded public key for encrypting ID tokens.

Client JWT Bearer Public Key Certificate

Specify the base64-encoded X509 certificate in PEM format. The certificate is never used during
the signing process, but is used to obtain the client's JWT bearer public key. The client uses the
private key to sign client authentication and access token request JWTs, while AM uses the public
key for verification.

The following is an example of the certificate:

-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLjANBgkqhkiG9w0BAQsFADA5MRswGQYDVQQKExJvcGVuYW0uZXhh
bXBsZS5jb20xGjAYBgNVBAMTEWp3dC1iZWFyZXItY2xpZW50MB4XDTE0MTAyNzExNTY1NloXDTI0
MTAyNDExNTY1NlowOTEbMBkGA1UEChMSb3BlbmFtLmV4YW1wbGUuY29tMRowGAYDVQQDExFqd3Qt
YmVhcmVyLWNsaWVudDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAID4ZZ/DIGEBr4QC
2uz0GYFOCUlAPanxX21aYHSvELsWyMa7DJlD+mnjaF8cPRRMkhYZFXDJo/AVcjyblyT3ntqL+2Js
3D7TmS6BSjkxZWsJHyhJIYEoUwwloc0kizgSm15MwBMcbnksQVN5VWiOe4y4JMbi30t6k38lM62K
KtaSPP6jvnW1LTmL9uiqLWz54AM6hU3NlCI3J6Rfh8waBIPAEjmHZNquOl2uGgWumzubYDFJbomL
SQqO58RuKVaSVMwDbmENtMYWXIKQL2xTt5XAbwEQEgJ/zskwpA2aQt1HE6de3UymOhONhRiu4rk3
AIEnEVbxrvy4Ik+wXg7LZVsCAwEAAaMhMB8wHQYDVR0OBBYEFIuI7ejuZTg5tJsh1XyRopGOMBcs
MA0GCSqGSIb3DQEBCwUAA4IBAQBM/+/tYYVIS6LvPl3mfE8V7x+VPXqj/uK6UecAbfmRTrPk1ph+
jjI6nmLX9ncomYALWL/JFiSXcVsZt3/412fOqjakFVS0PmK1vEPxDlav1drnVA33icy1wORRRu5/
qA6mwDYPAZSbm5cDVvCR7Lt6VqJ+D0V8GABFxUw9IaX6ajTqkWhldY77usvNeTD0Xc4R7OqSBrnA
SNCaUlJogWyzhbFlmE9Ne28j4RVpbz/EZn0oc/cHTJ6Lryzsivf4uDO1m3M3kM/MUyXc1Zv3rqBj
TeGSgcqEAd6XlGXY1+M/yIeouUTi0F1bk1rNlqJvd57Xb4CEq17tVbGBm0hkECM8
-----END CERTIFICATE-----

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 110

You can generate a new key pair alias by using the Java keytool command. Follow the steps in "To
Create Signing Key Aliases In an Existing Keystore" in the Setup and Maintenance Guide.

To export the certificate from the new key pair in PEM format, run a command similar to the
following:
$ keytool \
 -list \
 -alias myAlias \
 -rfc \
 -storetype JCEKS \
 -keystore myKeystore.jceks \
 -keypass myKeypass \
 -storepass myStorepass

Alias name: myAlias
Creation date: Oct 27, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLjANBgkqhkiG9w0BAQsFADA5MRswGQYDVQQKExJvcGVuYW0uZXhh
bXBsZS5jb20xGjAYBgNVBAMTEWp3dC1iZWFyZXItY2xpZW50MB4XDTE0MTAyNzExNTY1NloXDTI0
MTAyNDExNTY1NlowOTEbMBkGA1UEChMSb3BlbmFtLmV4YW1wbGUuY29tMRowGAYDVQQDExFqd3Qt
YmVhcmVyLWNsaWVudDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAID4ZZ/DIGEBr4QC
2uz0GYFOCUlAPanxX21aYHSvELsWyMa7DJlD+mnjaF8cPRRMkhYZFXDJo/AVcjyblyT3ntqL+2Js
3D7TmS6BSjkxZWsJHyhJIYEoUwwloc0kizgSm15MwBMcbnksQVN5VWiOe4y4JMbi30t6k38lM62K
KtaSPP6jvnW1LTmL9uiqLWz54AM6hU3NlCI3J6Rfh8waBIPAEjmHZNquOl2uGgWumzubYDFJbomL
SQqO58RuKVaSVMwDbmENtMYWXIKQL2xTt5XAbwEQEgJ/zskwpA2aQt1HE6de3UymOhONhRiu4rk3
AIEnEVbxrvy4Ik+wXg7LZVsCAwEAAaMhMB8wHQYDVR0OBBYEFIuI7ejuZTg5tJsh1XyRopGOMBcs
MA0GCSqGSIb3DQEBCwUAA4IBAQBM/+/tYYVIS6LvPl3mfE8V7x+VPXqj/uK6UecAbfmRTrPk1ph+
jjI6nmLX9ncomYALWL/JFiSXcVsZt3/412fOqjakFVS0PmK1vEPxDlav1drnVA33icy1wORRRu5/
qA6mwDYPAZSbm5cDVvCR7Lt6VqJ+D0V8GABFxUw9IaX6ajTqkWhldY77usvNeTD0Xc4R7OqSBrnA
SNCaUlJogWyzhbFlmE9Ne28j4RVpbz/EZn0oc/cHTJ6Lryzsivf4uDO1m3M3kM/MUyXc1Zv3rqBj
TeGSgcqEAd6XlGXY1+M/
yIeouUTi0F1bk1rNlqJvd57Xb4CEq17tVbGBm0hkECM8
-----END CERTIFICATE-----

Public key selector

Select the public key for this client, which comes from either the JWKs_URI, manual JWKs, or X.509
field.

User info response format.

Specify the output format from the UserInfo endpoint.

The supported output formats are as follows:

• User info JSON response format.

• User info encrypted JWT response format.

• User info signed JWT response format.

• User info signed then encrypted response format.

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 111

For more information on the output format of the UserInfo Response, see Successful UserInfo
Response in the OpenID Connect Core 1.0 incorporating errata set 1 specification.

Default: User info JSON response format.

User info signed response algorithm

Specify the JSON Web Signature (JWS) algorithm for signing UserInfo Responses. If specified, the
response will be JSON Web Token (JWT) serialized, and signed using JWS.

The default, if omitted, is for the UserInfo Response to return the claims as a UTF-8-encoded
JSON object using the application/json content type.

User info encrypted response algorithm

Specify the JSON Web Encryption (JWE) algorithm for encrypting UserInfo Responses.

If both signing and encryption are requested, the response will be signed then encrypted, with
the result being a nested JWT.

The default, if omitted, is that no encryption is performed.

User info encrypted response encryption algorithm

Specify the JWE encryption method for encrypting UserInfo Responses. If specified, you must also
specify an encryption algorithm in the User info encrypted response algorithm property.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default: A128CBC-HS256

Request parameter signing algorithm

Specify the JWS algorithm for signing the request parameter.

Must match one of the values configured in the Request parameter Signing Algorithms supported
property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Request parameter encryption algorithm

Specify the JWE algorithm for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Algorithms
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect".

http://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse
http://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

Reference
UMA

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 112

Request parameter encryption method

Specify the JWE method for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Methods
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Default: A128CBC-HS256

5.4.5. UMA

The following properties appear on the UMA tab:

Client Redirection URIs

Note

This property is for future use, and not currently active.

Specify one or more allowable URIs to which the client can be redirected after the UMA claims
collection process. The URIs must not contain a fragment (#).

If multiple URIs are registered, the client MUST specify the redirection URI to be redirected to
following approval.

5.5. OAuth 2.0 Remote Consent Agent Settings
To register an OAuth 2.0 remote consent service with AM as the OAuth 2.0 authorization server,
create a Remote Consent Agent profile. After creating the profile, you can further configure the
properties in the AM console by navigating to Realms > Realm Name > Applications > Remote
Consent Agents > Agent Name.

The following properties appear on the agent profile page:

Note

The properties value examples below are applicable to the example remote consent service provided with AM.
Alter the values as required by your remote consent service.

Group

Configure several remote consent agent profiles by assigning them to a group.

Default value: none

amster attribute: agentgroup

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 113

Remote Consent Service secret

If the remote consent agent needs to authenticate to AM, enter the password it will use. Reenter
the password in the Remote Consent Service secret (confirm) property.

amster attribute: userpassword

Consent Request Signing Algorithm

Specify the algorithm used to sign the consent request JWT sent to the Remote Consent Service.

AM supports the signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value: RS256

amster attribute: remoteConsentRequestSigningAlgorithm

Enable consent request Encryption

Specify whether to encrypt the consent request JWT sent to the Remote Consent Service.

Default: true

amster attribute: remoteConsentRequestEncryptionEnabled

Consent request Encryption Algorithm

Specify the encryption algorithm used to encrypt the consent request JWT sent to the Remote
Consent Service.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 114

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• dir - Direct encryption with AES using the hashed client secret.

Default value: RSA-OAEP-256

amster attribute: remoteConsentRequestEncryptionAlgorithm

Consent request Encryption Method

Specify the encryption method used to encrypt the consent request JWT sent to the Remote
Consent Service.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value: A128GCM

amster attribute: remoteConsentRequestEncryptionMethod

Consent response signing algorithm

Specify the algorithm used to verify a signed consent response JWT received from the Remote
Consent Service.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value: RS256

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 115

amster attribute: remoteConsentResponseSigningAlg

Consent response encryption algorithm

Specify the encryption algorithm used to decrypt the consent response JWT received from the
Remote Consent Service.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• dir - Direct encryption with AES using the hashed client secret.

Default value: RSA-OAEP-256

amster attribute: remoteConsentResponseEncryptionAlgorithm

Consent response encryption method

Specify the encryption method used to decrypt the consent response JWT received from the
Remote Consent Service.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value: A128GCM

amster attribute: remoteConsentResponseEncryptionMethod

Redirect URL

Specify the URL to which the user should be redirected during the OAuth 2.0 flow to obtain their
consent.

The AM example remote consent service provides an /oauth2/consent path to obtain consent from
the user.

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 116

Example: http://rcs.example.com:8080/openam/oauth2/consent

amster attribute: remoteConsentRedirectUrl

Public key selector

Specify whether the remote consent service provides its public keys using a JWKs_URI, or manually
in JWKs format.

If JWKs is selected, you must enter the keys in the Json Web Key property. Otherwise complete the
JWKs URI-related properties.

Default: JWKs_URI

amster attribute: remoteConsentRedirectUrl

Json Web Key URI

Specify the URI from which AM can obtain the Remote Consent Service's public keys.

The AM example remote consent service provides an /oauth2/consent/jwk_uri path to provide the
public keys.

Example: http://rcs.example.com:8080/openam/oauth2/consent/jwk_uri

amster attribute: jwksUri

JWKs URI content cache timeout in ms

Specify the maximum amount of time, in milliseconds, that the content of the JWKS URI can be
cached before being refreshed. This avoids fetching the JWKS URI content for every response
decryption.

Default: 3600000

amster attribute: com.forgerock.openam.oauth2provider.jwksCacheTimeout

JWKs URI content cache miss cache time

Specify the minimum amount of time, in milliseconds, that the content of the JWKS URI is cached.
This avoids fetching the JWKS URI content for every response signature verification, for example
if the key ID (kid) is not in the JWKS content that is already cached.

Default: 60000

amster attribute: com.forgerock.openam.oauth2provider.jwkStoreCacheMissCacheTime

Json Web Key

If the Public key selector: property is set to JWKs, specify the Remote Consent Service's public
keys, in JSON Web Key format.

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 117

Example:
{
 "keys": [
 {
 "kty": "RSA",
 "kid": "RemA6Gw0...LzsJ5zG3E=",
 "use": "enc",
 "alg": "RSA-OAEP-256",
 "n": "AL4kjz74rDo3VQ3Wx...nhch4qJRGt2QnCF7M0",
 "e": "AQAB"
 },
 {
 "kty": "RSA",
 "kid": "wUy3ifIIaL...eM1rP1QM=",
 "use": "sig",
 "alg": "RS256",
 "n": "ANdIhkOZeSHagT9Ze...ciOACVuGUoNTzztlCUk",
 "e": "AQAB"
 }
]
}

amster attribute: jwkSet

Consent Request Time Limit

Specify the amount of time, in seconds, for which the consent request JWT sent to the Remote
Consent Service should be considered valid.

Default: 180

amster attribute: requestTimeLimit

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 118

Appendix A. About the REST API

This appendix shows how to use the RESTful interfaces for direct integration between web client
applications and ForgeRock Access Management.

A.1. Introducing REST
Representational State Transfer (REST) is an architectural style that sets certain constraints for
designing and building large-scale distributed hypermedia systems.

As an architectural style, REST has very broad applications. The designs of both HTTP 1.1 and
URIs follow RESTful principles. The World Wide Web is no doubt the largest and best known REST
application. Many other web services also follow the REST architectural style. Examples include
OAuth 2.0, OpenID Connect 1.0, and User-Managed Access (UMA).

The ForgeRock Common REST (CREST) API applies RESTful principles to define common verbs for
HTTP-based APIs that access web resources and collections of web resources.

Interface Stability: Evolving

Most native AM REST APIs use the CREST verbs. (In contrast, OAuth 2.0, OpenID Connect 1.0 and
UMA APIs follow their respective standards.)

A.2. About ForgeRock Common REST
ForgeRock® Common REST is a common REST API framework. It works across the ForgeRock
platform to provide common ways to access web resources and collections of resources. Adapt the
examples in this section to your resources and deployment.

http://en.wikipedia.org/wiki/Representational_state_transfer

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 119

A.2.1. Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a user
at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource's _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

A.2.2. Common REST Verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ.
For details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see "Create".

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see "Read".

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see "Update".

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see "Delete".

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 120

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see "Patch".

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see "Action".

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see "Query".

A.2.3. Common REST Parameters
Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action
_api
_crestapi
_fields
_mimeType
_pageSize
_pagedResultsCookie
_pagedResultsOffset
_prettyPrint
_queryExpression
_queryFilter
_queryId
_sortKeys
_totalPagedResultsPolicy

Note

Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Continue reading for details about how to use each parameter.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 121

A.2.4. Common REST Extension Points
The action verb is the main vehicle for extensions. For example, to create a new user with HTTP
POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers. Stored
queries can call for additional parameters. The parameters are also passed in the query string. Which
parameters are valid depends on the stored query.

A.2.5. Common REST API Documentation
Common REST APIs often depend at least in part on runtime configuration. Many Common REST
endpoints therefore serve API descriptors at runtime. An API descriptor documents the actual API as
it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular
tools such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport
protocol. It requires a client that understands Common REST, as it omits many Common REST
defaults.

Note

Consider limiting access to API descriptors in production environments in order to avoid unnecessary traffic.

To provide documentation in production environments, see "To Publish OpenAPI Documentation" instead.

To Publish OpenAPI Documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API
descriptors at runtime through Common REST, prepare final versions, and publish them alongside
the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers
as described in the following steps:

1. Configure the software to produce production-ready APIs.

https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 122

In other words, the software should be configured as in production so that the APIs are identical
to what developers see in production.

2. Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json:

$ curl -o myapi.json endpoint?_api

3. (Optional) If necessary, edit the descriptor.

For example, you might want to add security definitions to describe how the API is protected.

If you make any changes, then also consider using a source control system to manage your
versions of the API descriptor.

4. Publish the descriptor using a tool such as Swagger UI.

You can customize Swagger UI for your organization as described in the documentation for the
tool.

A.2.6. Create
There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter
_action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for
the resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

https://github.com/swagger-api/swagger-ui

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 123

The _id and content of the resource depend on the server implementation. The server is not required
to use the _id that the client provides. The server response to the create request indicates the
resource location as the value of the Location header.

If you include the If-None-Match header, its value must be *. In this case, the request creates the object
if it does not exist, and fails if the object does exist. If you include the If-None-Match header with any
value other than *, the server returns an HTTP 400 Bad Request error. For example, creating an
object with If-None-Match: revision returns a bad request error. If you do not include If-None-Match: *,
the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.7. Read
To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier
(_id) and accept a JSON response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 124

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the
_mimeType query string parameter instead.

A.2.8. Update
To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final
element of the path to the resource, and the JSON resource as the payload. Use the If-Match: _rev
header to check that you are actually updating the version you modified. Use If-Match: * if the version
does not matter. Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 125

A.2.9. Delete
To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept
a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.10. Patch
To patch a resource, send an HTTP PATCH request with the following parameters:

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you'll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 126

• list semantics array, where the elements are ordered, and duplicates are allowed.

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations. The following sections show each of these
operations, along with options for the field and value:

A.2.10.1. Patch Operation: Add
The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number.

An add operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

• If you add an array of values, the PATCH operation appends it to the existing list of values.

• If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The list of values included in a patch are merged with the existing set of
values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:
{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the
- at the end of the fruits array.
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:
{
 "fruits" : ["orange", "apple", "pineapple"]
}

A.2.10.2. Patch Operation: Copy
The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add operation
on the target field.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 127

The following copy operation takes the value from a field named mail, and then runs a replace operation
on the target field, another_mail.
[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source field value and the target field value are configured as arrays, the result depends on
whether the array has list semantics or set semantics, as described in "Patch Operation: Add".

A.2.10.3. Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify. The
value that you include must be one number, and may be positive or negative. The value of the target
field must accept numbers. The following increment operation adds 1000 to the target value of /user/
payment.
[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

A.2.10.4. Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname, followed by
a replace operation on the target field value, lastName. If the target field does not exist, it is created.
[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in "Patch
Operation: Add".

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 128

A.2.10.5. Patch Operation: Remove
The remove operation ensures that the target field no longer contains the value provided. If the remove
operation does not include a value, the operation removes the field. The following remove deletes the
value of the phoneNumber, along with the field.
[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array.

A remove operation has different results on two standard types of arrays:

• List semantic arrays: A remove operation deletes the specified element in the array. For example, the
following operation removes the first phone number, based on its array index (zero-based):
[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

A.2.10.6. Patch Operation: Replace
The replace operation removes any existing value(s) of the targeted field, and replaces them with the
provided value(s). It is essentially equivalent to a remove followed by a add operation. If the arrays are
used, the criteria is based on "Patch Operation: Add". However, indexed updates are not allowed,
even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds
the new value of +1 408 555 9999.
[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:
{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 129

Apply the following operations on that resource:
[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:
[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:
[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

A.2.10.7. Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named /
objects, and applies the something.js script as shown:
[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 130

A.2.10.8. Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you
use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method.
Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException.

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.11. Action

Actions are a means of extending Common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in "Create".

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 131

A.2.12. Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an
HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or _queryId
parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional explanation:

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation
(JSON) Data Interchange Format. In particular, as described in section 7 of the RFC, the escape
character in strings is the backslash character. For example, to match the identifier test\, use _id
 eq 'test\\'. In the JSON resource, the \ is escaped the same way: "_id":"test\\".

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 132

When using a query filter in a URL, be aware that the filter expression is part of a query
string parameter. A query string parameter must be URL encoded as described in RFC 3986:
Uniform Resource Identifier (URI): Generic Syntax For example, white space, double quotes
("), parentheses, and exclamation characters need URL encoding in HTTP query strings. The
following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA, DIGIT, and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the
URL query string parameter as %5C. To encode the query filter expression _id eq 'test\\', use _id
+eq+'test%5C%5C', for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is one
of the following:

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 133

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and
_queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or
_pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults",
in accordance with the totalPagedResultsPolicy, and provides the value as part of the
response. The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT).
If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result counting is
disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[+-]field[,[+-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

Because ascending order is the default, including the + character in the query is unnecessary. If
you do include the +, it must be URL-encoded as %2B, for example:
http://localhost:8080/api/users?_prettyPrint=true&_queryFilter=true&_sortKeys=%2Bname/givenName

The _sortKeys parameter is not supported for predefined queries (_queryId).

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 134

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

A.2.13. HTTP Status Codes
When working with a Common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 135

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource's current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

A.3. REST API Versioning
In OpenAM 12.0.0 and later, REST API features are assigned version numbers.

Providing version numbers in the REST API helps ensure compatibility between releases. The version
number of a feature increases when AM introduces a non-backwards-compatible change that affects
clients making use of the feature.

AM provides versions for the following aspects of the REST API.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 136

resource

Any changes to the structure or syntax of a returned response will incur a resource version
change. For example changing errorMessage to message in a JSON response.

protocol

Any changes to the methods used to make REST API calls will incur a protocol version change.
For example changing _action to $action in the required parameters of an API feature.

A.3.1. Supported REST API Versions

The REST API version numbers supported in AM 5.5 are as follows:

Supported protocol versions

The protocol versions supported in AM 5.5 are:

1.0

Supported resource versions

The resource versions supported in AM 5.5 are shown in the following table.

Supported resource Versions

Base End Point Supported Versions
/json /authenticate 1.1, 2.0

/users 1.1, 1.2, 2.0, 2.1, 3.0
/groups 1.1, 2.0, 2.1, 3.0
/agents 1.1, 2.0, 2.1, 3.0
/realms 1.0
/dashboard 1.0
/sessions 1.1
/serverinfo/* 1.1
/users/{user}/devices/trusted 1.0
/users/{user}/uma/policies 1.0
/applications 1.0, 2.0
/resourcetypes 1.0
/policies 1.0, 2.0
/applicationtypes 1.0
/conditiontypes 1.0

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 137

Base End Point Supported Versions
/subjecttypes 1.0
/subjectattributes 1.0
/decisioncombiners 1.0
/subjectattributes 1.0

/xacml /policies 1.0
/frrest /token 1.0

/client 1.0

The AM Release Notes section, "Changes and Deprecated Functionality" in the Release Notes
describes the differences between API versions.

A.3.2. Specifying an Explicit REST API Version

You can specify which version of the REST API to use by adding an Accept-API-Version header to the
request, as in the following example, which is requesting resource version 2.0 and protocol version
1.0:
$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

You can configure the default behavior AM will take when a REST call does not specify explicit
version information. For more information, see "Configuring the Default REST API Version for a
Deployment".

A.3.3. Configuring the Default REST API Version for a Deployment

You can configure the default behavior AM will take when a REST call does not specify explicit
version information using either of the following procedures:

• "Configure Versioning Behavior by using the AM Console"

• "Configure Versioning Behavior by Using the ssoadm Command"

The available options for default behavior are as follows:

Latest

The latest available supported version of the API is used.

This is the preset default for new installations of AM.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 138

Oldest

The oldest available supported version of the API is used.

This is the preset default for upgraded AM instances.

Note

The oldest supported version may not be the first that was released, as APIs versions become deprecated
or unsupported. See "Deprecated Functionality" in the Release Notes.

None

No version will be used. When a REST client application calls a REST API without specifying the
version, AM returns an error and the request fails.

Configure Versioning Behavior by using the AM Console

1. Log in as AM administrator, amadmin.

2. Click Configure > Global Services, and then click REST APIs.

3. In Default Version, select the required response to a REST API request that does not specify an
explicit version: Latest, Oldest, or None.

4. (Optional) Optionally, enable Warning Header to include warning messages in the headers of
responses to requests.

5. Save your work.

Configure Versioning Behavior by Using the ssoadm Command

• Use the ssoadm set-attr-defs command with the openam-rest-apis-default-version attribute set to
either Latest, Oldest or None, as in the following example:
$ ssh openam.example.com
$ cd /path/to/openam-tools/admin/openam/bin
$./ssoadm \
 set-attr-defs \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename RestApisService \
 --schematype Global \
 --attributevalues openam-rest-apis-default-version=None

Schema attribute defaults were set.

A.3.4. REST API Versioning Messages
AM provides REST API version messages in the JSON response to a REST API call. You can also
configure AM to return version messages in the response headers.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 139

Messages include:

• Details of the REST API versions used to service a REST API call.

• Warning messages if REST API version information is not specified or is incorrect in a REST API
call.

The resource and protocol version used to service a REST API call are returned in the Content-API-
Version header, as shown below:
$ curl \
 -i \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

HTTP/1.1 200 OK
Content-API-Version: protocol=1.0,resource=2.0
Server: Restlet-Framework/2.1.7
Content-Type: application/json;charset=UTF-8

{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console"
}

If the default REST API version behavior is set to None, and a REST API call does not include the
Accept-API-Version header, or does not specify a resource version, then a 400 Bad Request status code is
returned, as shown below:
$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/serverinfo/*

{
 "code":400,
 "reason":"Bad Request",
 "message":"No requested version specified and behavior set to NONE."
}

If a REST API call does include the Accept-API-Version header, but the specified resource or protocol
version does not exist in AM, then a 404 Not Found status code is returned, as shown below:
$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0, resource=999.0" \
 https://openam.example.com:8443/openam/json/realms/root/serverinfo/*

{
 "code":404,
 "reason":"Not Found",
 "message":"Accept-API-Version: Requested version \"999.0\" does not match any routes."
}

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 140

Tip

For more information on setting the default REST API version behavior, see "Specifying an Explicit REST API
Version".

A.4. Specifying Realms in REST API Calls
This section describes how to work with realms when making REST API calls to AM.

Realms can be specified in the following ways when making a REST API call to AM:

DNS Alias

When making a REST API call, the DNS alias of a realm can be specified in the subdomain and
domain name components of the REST endpoint.

To list all users in the top-level realm use the DNS alias of the AM instance, for example the REST
endpoint would be:
https://openam.example.com:8443/openam/json/users?_queryId=*

To list all users in a realm with DNS alias suppliers.example.com the REST endpoint would be:
https://suppliers.example.com:8443/openam/json/users?_queryId=*

Path

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

To authenticate a user in the top-level realm, use the root keyword. For example:
https://openam.example.com:8443/openam/json/realms/root/authenticate

To authenticate a user in a subrealm named customers within the top-level realm, the REST
endpoint would be:
https://openam.example.com:8443/openam/json/realms/root/realms/customers/authenticate

If realms are specified using both the DNS alias and path methods, the path is used to determine the
realm.

For example, the following REST endpoint returns users in a subrealm of the top-level realm named
europe, not the realm with DNS alias suppliers.example.com:
https://suppliers.example.com:8443/openam/json/realms/root/realms/europe/users?_queryId=*

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 141

A.5. Authentication and Logout
You can use REST-like APIs under /json/authenticate and /json/sessions for authentication and for
logout.

The /json/authenticate endpoint does not support the CRUDPAQ verbs and therefore does not
technically satisfy REST architectural requirements. The term REST-like describes this endpoint
better than REST.

The simplest user name/password authentication returns a tokenId that applications can present as
a cookie value for other operations that require authentication. The type of tokenId returned varies
depending on whether stateless sessions are enabled in the realm to which the user authenticates:

• If stateless sessions are not enabled, the tokenId is an AM SSO token.

• If stateless sessions are enabled, the tokenId is an AM SSO token that includes an encoded AM
session.

Developers should be aware that the size of the tokenId for stateless sessions—2000 bytes or greater
—is considerably longer than for stateful sessions—approximately 100 bytes. For more information
about stateful and stateless session tokens, see "Session Cookies" in the Authentication and Single
Sign-On Guide.

When authenticating with a user name and password, use HTTP POST to prevent the web container
from logging the credentials. Pass the user name in an X-OpenAM-Username header, and the password in
an X-OpenAM-Password header:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

To use UTF-8 user names and passwords in calls to the /json/authenticate endpoint, base64-encode the
string, and then wrap the string as described in RFC 2047:
encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

For example, to authenticate using a UTF-8 username, such as ɗëɱø, perform the following steps:

1. Encode the string in base64 format: yZfDq8mxw7g=.

2. Wrap the base64-encoded string as per RFC 2047: =?UTF-8?B?yZfDq8mxw7g=?=.

https://www.ietf.org/rfc/rfc2047.txt

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 142

3. Use the result in the X-OpenAM-Username header passed to the authentication endpoint as follows:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: =?UTF-8?B?yZfDq8mxw7g=?=" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

This zero page login mechanism works only for name/password authentication. If you include a POST
body with the request, it must be an empty JSON string as shown in the example. Alternatively, you
can leave the POST body empty. Otherwise, AM interprets the body as a continuation of an existing
authentication attempt, one that uses a supported callback mechanism.

The authentication service at /json/authenticate supports callback mechanisms that make it possible to
perform other types of authentication in addition to simple user name/password login.

Callbacks that are not completed based on the content of the client HTTP request are returned in
JSON as a response to the request. Each callback has an array of output suitable for displaying to the
end user, and input which is what the client must complete and send back to AM. The default is still
user name/password authentication:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "authId": "...jwt-value...",
 "template": "",
 "stage": "DataStore1",
 "callbacks": [
 {
 "type": "NameCallback",
 "output": [
 {
 "name": "prompt",
 "value": " User Name: "
 }
],
 "input": [
 {
 "name": "IDToken1",
 "value": ""
 }
]
 },
 {
 "type": "PasswordCallback",

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 143

 "output": [
 {
 "name": "prompt",
 "value": " Password: "
 }
],
 "input": [
 {
 "name": "IDToken2",
 "value": ""
 }
]
 }
]
}

The authID value is a JSON Web Token (JWT) that uniquely identifies the authentication context to AM,
and so must also be sent back with the requests.

To respond to the callback, send back the JSON object with the missing values filled, as in this case
where the user name is demo and the password is changeit:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId":"AQIC5wM2...U3MTE4NA..*","successUrl": "/openam/console","realm":"/" }

The response is a token ID holding the SSO token value.

Alternatively, you can authenticate without requesting a session using the noSession query string
parameter:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/realms/root/authenticate?noSession=true

{ "message":"Authentication Successful","successUrl":"/openam/console","realm":"/" }

AM can be configured to return a failure URL value when authentication fails. No failure URL is
configured by default. The Default Failure Login URL can be set per realm; see "Post Authentication

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 144

Processing" in the Authentication and Single Sign-On Guide for details. Alternatively, failure URLs
can be configured per authentication chain, which your client can specify using the service parameter
described below. On failure AM then returns HTTP status code 401 Unauthorized, and the JSON in
the reply indicates the failure URL:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: badpassword" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "code":401,
 "reason":"Unauthorized",
 "message":"Invalid Password!!",
 "failureUrl": "http://www.example.com/401.html"
}

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

For example, to authenticate to a subrealm customers within the top-level realm, then the
authentication endpoint URL is as follows: https://openam.example.com:8443/openam/json/realms/root/realms
/customers/authenticate

The following additional parameters are supported:

You can use the authIndexType and authIndexValue query string parameters as a pair to provide
additional information about how you are authenticating. The authIndexType can be one of the following
types:

composite

Set the value to a composite advice string.

level

Set the value to the authentication level.

module

Set the value to the name of an authentication module.

resource

Set the value to a URL protected by an AM policy.

role

Set the value to an AM role.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 145

service

Set the value to the name of an authentication chain.

user

Set the value to an AM user ID.

For example, to log into AM using the built-in ldapService authentication chain, you could use the
following:
$ curl \
--request POST
 \
--header 'Accept-API-Version: resource=2.0, protocol=1.0'
 \
--header 'X-OpenAM-Username: demo'
 \
--header 'X-OpenAM-Password: changeit' \
'http://openam.example.com:8080/openam/json/authenticate?authIndexType=service&authIndexValue=ldapService'

You can use the query string parameter, sessionUpgradeSSOTokenId=tokenId, to request session upgrade.
Before the tokenId is searched for in the query string for session upgrade, the token is grabbed from
the cookie. For an explanation of session upgrade, see "Session Upgrade" in the Authentication and
Single Sign-On Guide.

AM uses the following callback types depending on the authentication module in use:

• ChoiceCallback: Used to display a list of choices and retrieve the selected choice.

• ConfirmationCallback: Used to ask for a confirmation such as Yes, No, or Cancel and retrieve the
selection.

• HiddenValueCallback: Used to return form values that are not visually rendered to the end user.

• HttpCallback: Used for HTTP handshake negotiations.

• LanguageCallback: Used to retrieve the locale for localizing text presented to the end user.

• NameCallback: Used to retrieve a name string.

• PasswordCallback: Used to retrieve a password value.

• PollingWaitCallback: Used to restrict polling requests by specifying an amount of time to wait before
responding.

• RedirectCallback: Used to redirect the client user-agent.

• ScriptTextOutputCallback: Used to insert a script into the page presented to the end user. The script
can, for example, collect data about the user's environment.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 146

• TextInputCallback: Used to retrieve text input from the end user.

• TextOutputCallback: Used to display a message to the end user.

• X509CertificateCallback: Used to retrieve the content of an x.509 certificate.

A.5.1. Logout
Authenticated users can log out with the token cookie value and an HTTP POST to /json/sessions/?
_action=logout:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Cache-Control: no-cache" \
 --header "iplanetDirectoryPro: AQIC5wM2...U3MTE4NA..*" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout

{"result":"Successfully logged out"}

A.5.2. logoutByHandle
To log out a session using a session handle, first perform an HTTP GET to the resource URL, /json/
sessions/, using the queryFilter action to get the session handle:
$ curl \
--request GET
 \
--header "Content-Type: application/json"
 \
--header "Cache-Control: no-cache"
 \
--header "iPlanetDirectoryPro: AQICS...NzEz*"
 \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
https://openam.example.com:8443/openam/json/realms/root/sessions?_queryFilter=username%20eq%20%22demo
%22%20and%20realm%20eq%20%22%2F%22
{
 "result": [
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm":"/",
 "sessionHandle":"shandle:SJ80.*AA....JT.*",
 "latestAccessTime":"2018-10-23T09:37:54.387Z",
 "maxIdleExpirationTime":"2018-10-23T10:07:54Z",
 "maxSessionExpirationTime":"2018-10-23T11:37:54Z"
 },
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm":"/",
 "sessionHandle":"shandle:H4CV.*DV....FM.*",
 "latestAccessTime":"2018-10-23T09:37:43.780Z",

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 147

 "maxIdleExpirationTime":"2018-10-23T10:07:43Z",
 "maxSessionExpirationTime":"2018-10-23T11:37:43Z"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To log out a session using a session handle, perform an HTTP POST to the resource URL, /json/
sessions/, using the logoutByHandle action.
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Cache-Control: no-cache"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--header "Accept-API-Version: resource=3.1, protocol=1.0"
 \
--data '{
 "sessionHandles": [
 "shandle:SJ80.*AA....JT.*",
 "shandle:H4CV.*DV....FM.*"
]
 }' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logoutByHandle
{
 "result": {
 "shandle:SJ80.*AA....JT.*": true,
 "shandle:H4CV.*DV....FM.*": true
 }
}

A.5.3. Load Balancer and Proxy Layer Requirements

When authentication depends on the client IP address and AM lies behind a load balancer or proxy
layer, configure the load balancer or proxy to send the address by using the X-Forwarded-For header,
and configure AM to consume and forward the header as necessary. For details, see "Handling HTTP
Request Headers" in the Installation Guide.

A.5.4. Windows Desktop SSO Requirements

When authenticating with Windows Desktop SSO, add an Authorization header containing the
string Basic , followed by a base64-encoded string of the username, a colon character, and the
password. In the following example, the credentials demo:changeit are base64-encoded into the string
ZGVtbzpjaGFuZ2VpdA==:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 148

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "X-OpenAM-Username: demo"
 \
--header "X-OpenAM-Password: changeit"
 \
--header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA=="
 \
--header "Accept-API-Version: resource=2.0, protocol=1.0"
 \
--data "{}" \
https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId":"AQIC5w...NTcy*","successUrl":"/openam/console","realm":"/" }

A.6. Using the Session Token After Authentication
The following is a common scenario when accessing AM by using REST API calls:

• First, call the /json/authenticate endpoint to log a user in to AM. This REST API call returns a tokenID
value, which is used in subsequent REST API calls to identify the user:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console" }

The returned tokenID is known as a session token (also referred to as an SSO token). REST API calls
made after successful authentication to AM must present the session token in the HTTP header as
proof of authentication.

• Next, call one or more additional REST APIs on behalf of the logged-in user. Each REST API call
passes the user's tokenID back to AM in the HTTP header as proof of previous authentication.

The following is a partial example of a curl command that inserts the token ID returned from a prior
successful AM authentication attempt into the HTTP header:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 149

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5w...NTcy*"
 \
--header "Accept-API-Version: resource=2.0, protocol=1.0"
 \
--data '{
 ...

Observe that the session token is inserted into a header field named iPlanetDirectoryPro. This header
field name must correspond to the name of the AM session cookie—by default, iPlanetDirectoryPro.
You can find the cookie name in the AM console by navigating to Deployment > Servers > Server
Name > Security > Cookie, in the Cookie Name field of the AM console.

Once a user has authenticated, it is not necessary to insert login credentials in the HTTP header in
subsequent REST API calls. Note the absence of X-OpenAM-Username and X-OpenAM-Password headers in
the preceding example.

Users are required to have appropriate privileges in order to access AM functionality using the
REST API. For example, users who lack administrative privileges cannot create AM realms. For
more information on the AM privilege model, see "Delegating Realm Administration Privileges" in
the Setup and Maintenance Guide.

• Finally, call the REST API to log the user out of AM as described in "Authentication and Logout". As
with other REST API calls made after a user has authenticated, the REST API call to log out of AM
requires the user's tokenID in the HTTP header.

A.7. Server Information
You can retrieve AM server information by using HTTP GET on /json/serverinfo/* as follows:
$ curl \
 --request GET \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 https://openam.example.com:8443/openam/json/serverinfo/*
{
 "domains": [
 ".example.com"
],
 "protectedUserAttributes": [],
 "cookieName": "iPlanetDirectoryPro",
 "secureCookie": false,
 "forgotPassword": "false",
 "forgotUsername": "false",
 "kbaEnabled": "false",
 "selfRegistration": "false",
 "lang": "en-US",
 "successfulUserRegistrationDestination": "default",

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 150

 "socialImplementations": [
 {
 "iconPath": "XUI/images/logos/facebook.png",
 "authnChain": "FacebookSocialAuthenticationService",
 "displayName": "Facebook",
 "valid": true
 }
],
 "referralsEnabled": "false",
 "zeroPageLogin": {
 "enabled": false,
 "refererWhitelist": [
 ""
],
 "allowedWithoutReferer": true
 },
 "realm": "/",
 "xuiUserSessionValidationEnabled": true,
 "FQDN": "openam.example.com"
}

A.8. Token Encoding
Valid tokens in AM requires configuration either in percent encoding or in C66Encode format.
C66Encode format is encouraged. It is the default token format for AM, and is used in this section.
The following is an example token that has not been encoded:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE=@AAJTSQACMDE=#

This token includes reserved characters such as +, /, and = (The @, #, and * are not reserved characters
per se, but substitutions are still required). To c66encode this token, you would substitute certain
characters for others, as follows:

+ is replaced with -
/ is replaced with _
= is replaced with .
@ is replaced with *
is replaced with *
* (first instance) is replaced with @
* (subsequent instances) is replaced with #

In this case, the translated token would appear as shown here:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE.*AAJTSQACMDE.*

A.9. Logging
AM 5.5 supports two Audit Logging Services: a new common REST-based Audit Logging Service, and
the legacy Logging Service, which is based on a Java SDK and is available in AM versions prior to
OpenAM 13. The legacy Logging Service is deprecated.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 151

Both audit facilities log AM REST API calls.

A.9.1. Common Audit Logging of REST API Calls

AM logs information about all REST API calls to the access topic. For more information about AM
audit topics, see "Audit Log Topics" in the Setup and Maintenance Guide.

Locate specific REST endpoints in the http.path log file property.

A.9.2. Legacy Logging of REST API Calls

AM logs information about REST API calls to two files:

• amRest.access. Records accesses to a CREST endpoint, regardless of whether the request
successfully reached the endpoint through policy authorization.

An amRest.access example is as follows:
$ cat openam/openam/log/amRest.access

#Version: 1.0
#Fields: time Data LoginID ContextID IPAddr LogLevel Domain LoggedBy MessageID ModuleName
NameID HostName
"2011-09-14 16:38:17" /home/user/openam/openam/log/ "cn=dsameuser,ou=DSAME Users,o=openam"
aa307b2dcb721d4201 "Not Available" INFO o=openam "cn=dsameuser,ou=DSAME Users,o=openam"
LOG-1 amRest.access "Not Available" 192.168.56.2
"2011-09-14 16:38:17" "Hello World" id=bjensen,ou=user,o=openam 8a4025a2b3af291d01 "Not Available"
INFO o=openam id=amadmin,ou=user,o=openam "Not Available" amRest.access "Not Available"
192.168.56.2

• amRest.authz. Records all CREST authorization results regardless of success. If a request has an
entry in the amRest.access log, but no corresponding entry in amRest.authz, then that endpoint was not
protected by an authorization filter and therefore the request was granted access to the resource.

The amRest.authz file contains the Data field, which specifies the authorization decision, resource, and
type of action performed on that resource. The Data field has the following syntax:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 152

("GRANT"||"DENY") > "RESOURCE | ACTION"

where
 "GRANT > " is prepended to the entry if the request was allowed
 "DENY > " is prepended to the entry if the request was not allowed
 "RESOURCE" is "ResourceLocation | ResourceParameter"
 where
 "ResourceLocation" is the endpoint location (e.g., subrealm/applicationtypes)
 "ResourceParameter" is the ID of the resource being touched
 (e.g., myApplicationType) if applicable. Otherwise, this field is empty
 if touching the resource itself, such as in a query.

 "ACTION" is "ActionType | ActionParameter"
 where
 "ActionType" is "CREATE||READ||UPDATE||DELETE||PATCH||ACTION||QUERY"
 "ActionParameter" is one of the following depending on the ActionType:
 For CREATE: the new resource ID
 For READ: empty
 For UPDATE: the revision of the resource to update
 For DELETE: the revision of the resource to delete
 For PATCH: the revision of the resource to patch
 For ACTION: the actual action performed (e.g., "forgotPassword")
 For QUERY: the query ID if any

$ cat openam/openam/log/amRest.authz

#Version: 1.0
#Fields: time Data ContextID LoginID IPAddr LogLevel Domain MessageID LoggedBy NameID
ModuleName HostName
"2014-09-16 14:17:28" /var/root/openam/openam/log/ 7d3af9e799b6393301
"cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available" INFO
dc=openam,dc=forgerock,dc=org LOG-1 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org"
"Not Available" amRest.authz 10.0.1.5
"2014-09-16 15:56:12" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" d3977a55a2ee18c201
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1
"2014-09-16 15:56:40" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" eedbc205bf51780001
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1

AM also provides additional information in its debug notifications for accesses to any endpoint,
depending on the message type (error, warning or message) including realm, user, and result of the
operation.

A.10. Reference
This reference section covers return codes and system settings relating to REST API support in AM.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 153

A.10.1. REST APIs

amster service name: rest

The following settings are available in this service:

Default Resource Version

The API resource version to use when the REST request does not specify an explicit version.
Choose from:

• Latest. If an explicit version is not specified, the latest resource version of an API is used.

• Oldest. If an explicit version is not specified, the oldest supported resource version of an API
is used. Note that since APIs may be deprecated and fall out of support, the oldest supported
version may not be the first version.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

Latest
Oldest
None

Default value: Latest

amster attribute: defaultVersion

Warning Header

Whether to include a warning header in the response to a request which fails to include the Accept
-API-Version header.

Default value: false

amster attribute: warningHeader

API Descriptions

Whether API Explorer and API Docs are enabled in OpenAM and how the documentation
for them is generated. Dynamic generation includes descriptions from any custom services
and authentication modules you may have added. Static generation only includes services
and authentication modules that were present when OpenAM was built. Note that dynamic
documentation generation may not work in some application containers.

The possible values for this property are:

Enabled with Dynamic Documentation
Enabled with Static Documentation

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 154

Disabled

Default value: STATIC

amster attribute: descriptionsState

Default Protocol Version

The API protocol version to use when a REST request does not specify an explicit version. Choose
from:

• Oldest. If an explicit version is not specified, the oldest protocol version is used.

• Latest. If an explicit version is not specified, the latest protocol version is used.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

Oldest
Latest
None

Default value: Latest

amster attribute: defaultProtocolVersion

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 155

Appendix B. About Scripting

You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

B.1. The Scripting Environment
This section introduces how AM executes scripts, and covers thread pools and security configuration.

You can use scripts to modify default AM behavior in the following situations, also known as contexts:

Client-side Authentication

Scripts that are executed on the client during authentication. Client-side scripts must be in
JavaScript.

Server-side Authentication

Scripts are included in an authentication module and are executed on the server during
authentication.

Policy Condition

Scripts used as conditions within policies.

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 156

AM implements a configurable scripting engine for each of the context types that are executed on the
server.

The scripting engines in AM have two main components: security settings, and the thread pool.

B.1.1. Security
AM scripting engines provide security features for ensuring that malicious Java classes are not
directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 157

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

For more information on configuring script engine security, see "Scripting".

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo
.a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 158

B.1.2. Thread Pools

Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, AM creates a new
thread to execute the script, until the configured maximum number of threads is reached.

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, AM terminates the thread,
shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting".

B.2. Global Scripting API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

B.2.1. Accessing HTTP Services

AM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can call HTTP
services with the httpClient.send method. The method returns an HttpClientResponse object.

Configure the parameters for the HTTP client object by using the org.forgerock.http.protocol package.
This package contains the Request class, which has methods for setting the URI and type of request.

The following example, taken from the default server-side Scripted authentication module script, uses
these methods to call an online API to determine the longitude and latitude of a user based on their
postal address:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 159

function getLongitudeLatitudeFromUserPostalAddress() {

 var request = new org.forgerock.http.protocol.Request();

 request.setUri("http://maps.googleapis.com/maps/api/geocode/json?address=" +
 encodeURIComponent(userPostalAddress));
 request.setMethod("GET");

 var response = httpClient.send(request).get();
 logResponse(response);

 var geocode = JSON.parse(response.getEntity());
 var i;

 for (i = 0; i < geocode.results.length; i++) {
 var result = geocode.results[i];
 latitude = result.geometry.location.lat;
 longitude = result.geometry.location.lng;

 logger.message("latitude:" + latitude + " longitude:" + longitude);
 }
}

HTTP client requests are synchronous and blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Scripted Authentication Module Properties" in the
Authentication and Single Sign-On Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse
.getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 160

Method Parameters Return Type Description
HttpClientResponse.hasHeaders Void Boolean Indicate whether the

returned response had
any headers.

B.2.2. Debug Logging

Server-side scripts can write messages to AM debug logs by using the logger object.

AM does not log debug messages from scripts by default. You can configure AM to log such messages
by setting the debug log level for the amScript service. For details, see "Debug Logging By Service" in
the Setup and Maintenance Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to AM debug

logs if ERROR level logging is
enabled.

logger.errorEnabled Void Boolean Return true when ERROR level
debug messages are enabled.

logger.message Message (type: String) Void Write Message to AM debug logs if
MESSAGE level logging is enabled.

logger.messageEnabled Void Boolean Return true when MESSAGE level
debug messages are enabled.

logger.warning Warning Message (type:
String)

Void Write Warning Message to AM
debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

B.3. Managing Scripts
This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims using the AM console,
the ssoadm command, and the REST API.

B.3.1. Managing Scripts With the AM Console

The following procedures describe how to create, modify, and delete scripts using the AM console:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 161

• "To Create Scripts by Using the AM Console"

• "To Modify Scripts by Using the AM Console"

• "To Delete Scripts by Using the AM Console"

To Create Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Click New Script.

The New Script page appears:

4. Specify a name for the script.

5. Select the type of script from the Script Type drop-down list.

6. Click Create.

The Script Name page appears:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 162

7. Enter values on the Script Name page as follows:

a. Enter a description of the script.

b. Choose the script language, either JavaScript or Groovy. Note that not every script type
supports both languages.

c. Enter the source code in the Script field.

On supported browsers, you can click Upload, navigate to the script file, and then click Open
to upload the contents to the Script field.

d. Click Validate to check for compilation errors in the script.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 163

Correct any compilation errors, and revalidate the script until all errors have been fixed.

e. Save your changes.

To Modify Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Select the script you want to modify from the list of scripts.

The Script Name page appears.

4. Modify values on the Script Name page as needed. Note that if you change the Script Type,
existing code in the script is replaced.

5. If you modified the code in the script, click Validate to check for compilation errors.

Correct any compilation errors, and revalidate the script until all errors have been fixed.

6. Save your changes.

To Delete Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Choose one or more scripts to delete by activating the checkboxes in the relevant rows. Note that
you can only delete user-created scripts—you cannot delete the global sample scripts provided
with AM.

4. Click Delete.

B.3.2. Managing Scripts With the ssoadm Command

Use the ssoadm command's create-sub-cfg, get-sub-cfg, and delete-sub-cfg subcommands to manage
AM scripts.

Create an AM script as follows:

1. Create a script configuration file as follows:
script-file=/path/to/script-file
language=JAVASCRIPT|GROOVY
name=myScript
context=AUTHENTICATION_SERVER_SIDE|AUTHENTICATION_CLIENT_SIDE|POLICY_CONDITION|OIDC_CLAIMS

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 164

2. Run the ssoadm create-sub-cfg command. The --datafile argument references the script
configuration file you created in the previous step:
$ ssoadm \
 create-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/scriptConfiguration \
 --subconfigid myScript \
 --datafile /path/to/myScriptConfigurationFile
Sub Configuration scriptConfigurations/scriptConfiguration was added to realm /myRealm

To list the properties of a script, run the ssoadm get-sub-cfg command:
$ ssoadm \
 get-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
createdBy=
lastModifiedDate=
lastModifiedBy=
name=myScript
context=POLICY_CONDITION
description=
language=JAVASCRIPT
creationDate=
script=...Script output follows...

To delete a script, run the ssoadm delete-sub-cfg command:
$ ssoadm \
 delete-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
Sub Configuration scriptConfigurations/myScript was deleted from realm /myRealm

B.3.3. Managing Scripts With the REST API

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

AM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 165

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

AM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that AM generates for the script.

name

The name provided for the script.

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 166

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 167

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

B.3.4. Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns scripts in the top level realm, as well as any global scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts?_queryFilter
 =true
{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 168

 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

B.3.5. Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 169

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/9de3eb62-f131-4fac-a294
-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

B.3.6. Validating a Script

To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 170

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

B.3.7. Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, AM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 171

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action
 =create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

B.3.8. Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 172

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

B.3.9. Deleting a Script

To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{}

B.4. Scripting
amster service name: scripting

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 173

B.4.1. Configuration

The following settings appear on the Configuration tab:

Default Script Type

The default script context type when creating a new script.

The possible values for this property are:

Policy Condition
Server-side Authentication
Client-side Authentication
OIDC Claims
Decision node script for authentication trees

Default value: POLICY_CONDITION

amster attribute: defaultContext

B.4.2. Secondary Configurations

This service has the following Secondary Configurations.

B.4.2.1. Engine Configuration

The following properties are available for Scripting Service secondary configuration instances:

Engine Configuration

Configure script engine parameters for running a particular script type in OpenAM.

ssoadm attribute: engineConfiguration

To access a secondary configuration instance using the ssoadm command, use: --subconfigname
 [primary configuration]/[secondary configuration] For example:
$ ssoadm set-sub-cfg \
 --adminid amAdmin \
 --password-file admin_pwd_file \
 --servicename ScriptingService \
 --subconfigname OIDC_CLAIMS/engineConfiguration \
 --operation set \
 --attributevalues maxThreads=300 queueSize=-1

Note

Supports server-side scripts only. OpenAM cannot configure engine settings for client-side scripts.

The configurable engine settings are as follows:

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 174

Server-side Script Timeout

The maximum execution time any individual script should take on the server (in seconds).
OpenAM terminates scripts which take longer to run than this value.

ssoadm attribute: serverTimeout

Core thread pool size

The initial number of threads in the thread pool from which scripts operate. OpenAM will
ensure the pool contains at least this many threads.

ssoadm attribute: coreThreads

Maximum thread pool size

The maximum number of threads in the thread pool from which scripts operate. If no free
thread is available in the pool, OpenAM creates new threads in the pool for script execution
up to the configured maximum.

ssoadm attribute: maxThreads

Thread pool queue size

The number of threads to use for buffering script execution requests when the maximum
thread pool size is reached.

ssoadm attribute: queueSize

Thread idle timeout (seconds)

Length of time (in seconds) for a thread to be idle before OpenAM terminates created
threads. If the current pool size contains the number of threads set in Core thread pool size
idle threads will not be terminated, to maintain the initial pool size.

ssoadm attribute: idleTimeout

Java class whitelist

Specifies the list of class-name patterns allowed to be invoked by the script. Every class
accessed by the script must match at least one of these patterns.

You can specify the class name as-is or use a regular expression.

ssoadm attribute: whiteList

Java class blacklist

Specifies the list of class-name patterns that are NOT allowed to be invoked by the script. The
blacklist is applied AFTER the whitelist to exclude those classes - access to a class specified
in both the whitelist and the blacklist will be denied.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 175

You can specify the class name to exclude as-is or use a regular expression.

ssoadm attribute: blackList

Use system SecurityManager

If enabled, OpenAM will make a call to System.getSecurityManager().checkPackageAccess(...) for
each class that is accessed. The method throws SecurityException if the calling thread is not
allowed to access the package.

Note

This feature only takes effect if the security manager is enabled for the JVM.

ssoadm attribute: useSecurityManager

Scripting languages

Select the languages available for scripts on the chosen type. Either GROOVY or JAVASCRIPT.

ssoadm attribute: languages

Default Script

The source code that is presented as the default when creating a new script of this type.

ssoadm attribute: defaultScript

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 176

Appendix C. Getting Support

For more information or resources about AM and ForgeRock Support, see the following sections:

C.1. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

C.2. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 177

C.3. Getting Support and Contacting ForgeRock
ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

https://www.forgerock.com
https://www.forgerock.com/support

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 178

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
subjects can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 179

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 180

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given subject in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and
allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 181

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified subjects in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and user data stores, and
when different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 182

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Session The interval that starts with the user authenticating through AM and
ends when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also Stateful session and
Stateless session.

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a Stateful session, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer.

The load balancer handles failover to provide service-level availability.
Use sticky load balancing based on amlbcookie values to improve site
performance.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateful session An AM session that resides in the Core Token Service's token store.
Stateful sessions might also be cached in memory on one or more

OAuth 2.0 Guide ForgeRock Access Management 5.5 (2020-05-01T13:32:39.050264)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 183

AM servers. AM tracks stateful sessions in order to handle events
like logout and timeout, to permit session constraints, and to notify
applications involved in SSO when a session ends.

Stateless session An AM session for which state information is encoded in AM and
stored on the client. The information from the session is not retained
in the CTS token store. For browser-based clients, AM sets a cookie in
the browser that contains the session information.

Subject Entity that requests access to a resource

When a subject successfully authenticates, AM associates the subject
with the Principal that distinguishes it from other subjects. A subject
can be associated with multiple principals.

User data store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	OAuth 2.0 Guide
	Table of Contents
	Preface
	Chapter 1. Introducing OAuth 2.0
	1.1. OAuth 2.0 Authorization Server
	1.1.1. OAuth 2.0 Authorization Grant
	1.1.2. OAuth 2.0 Implicit Grant
	1.1.3. OAuth 2.0 Resource Owner Password Credentials Grant
	1.1.4. OAuth 2.0 Client Credentials Grant
	1.1.5. OAuth 2.0 Device Flow
	1.1.6. OAuth 2.0 Remote Consent Service
	1.1.7. JWT Bearer Profile
	1.1.8. SAML v2.0 Bearer Assertion Profiles

	1.2. OAuth 2.0 Client and Resource Server Solution
	1.3. Using Your Own Client and Resource Server
	1.4. Security Considerations
	1.5. OAuth 2.0 JSON Web Token Proof-of-Possession

	Chapter 2. Implementing OAuth 2.0
	2.1. Configuring the OAuth 2.0 Authorization Service
	2.2. Registering OAuth 2.0 Clients With the Authorization Service
	2.3. Configuring as an Authorization Server and Client
	2.3.1. Web Site Protected With OAuth 2.0

	2.4. Managing OAuth 2.0 Consent
	2.4.1. Configuring Remote Consent Services
	2.4.2. Allowing Clients To Skip Consent
	2.4.3. User Consent Management

	2.5. Stateless OAuth 2.0 Access and Refresh Tokens
	2.6. Configuring Stateless OAuth 2.0 Token Blacklisting
	2.7. Configuring Digital Signatures

	Chapter 3. Using OAuth 2.0
	3.1. OAuth 2.0 Client and Resource Server Endpoints
	3.1.1. Using OAuth 2.0 JSON Web Token Proof-of-Possession

	3.2. OAuth 2.0 Device Flow Endpoints
	3.3. OAuth 2.0 Resource Set Endpoint
	3.4. OAuth 2.0 Token Administration Endpoint (Legacy)
	3.5. OAuth 2.0 Client Administration Endpoint
	3.6. OAuth 2.0 Sample Mobile Applications

	Chapter 4. Customizing OAuth 2.0
	4.1. Customizing OAuth 2.0 Scope Handling
	4.1.1. Designing an OAuth 2.0 Scope Validator Plugin
	4.1.2. Building the OAuth 2.0 Scope Validator Sample Plugin
	4.1.3. Configuring an Instance to Use the Plugin
	4.1.4. Trying the Sample Plugin

	Chapter 5. Reference
	5.1. OAuth 2.0 Standards
	5.2. OAuth2 Provider
	5.2.1. Global Attributes
	5.2.2. Core
	5.2.3. Advanced
	5.2.4. Client Dynamic Registration
	5.2.5. OpenID Connect
	5.2.6. Advanced OpenID Connect
	5.2.7. Device Flow
	5.2.8. Consent

	5.3. Remote Consent Service
	5.3.1. Realm Defaults

	5.4. OAuth 2.0 and OpenID Connect 1.0 Client Settings
	5.4.1. Core
	5.4.2. Advanced
	5.4.3. OpenID Connect
	5.4.4. Signing and Encryption
	5.4.5. UMA

	5.5. OAuth 2.0 Remote Consent Agent Settings

	Appendix A. About the REST API
	A.1. Introducing REST
	A.2. About ForgeRock Common REST
	A.2.1. Common REST Resources
	A.2.2. Common REST Verbs
	A.2.3. Common REST Parameters
	A.2.4. Common REST Extension Points
	A.2.5. Common REST API Documentation
	A.2.6. Create
	A.2.7. Read
	A.2.8. Update
	A.2.9. Delete
	A.2.10. Patch
	A.2.10.1. Patch Operation: Add
	A.2.10.2. Patch Operation: Copy
	A.2.10.3. Patch Operation: Increment
	A.2.10.4. Patch Operation: Move
	A.2.10.5. Patch Operation: Remove
	A.2.10.6. Patch Operation: Replace
	A.2.10.7. Patch Operation: Transform
	A.2.10.8. Patch Operation Limitations

	A.2.11. Action
	A.2.12. Query
	A.2.13. HTTP Status Codes

	A.3. REST API Versioning
	A.3.1. Supported REST API Versions
	A.3.2. Specifying an Explicit REST API Version
	A.3.3. Configuring the Default REST API Version for a Deployment
	A.3.4. REST API Versioning Messages

	A.4. Specifying Realms in REST API Calls
	A.5. Authentication and Logout
	A.5.1. Logout
	A.5.2. logoutByHandle
	A.5.3. Load Balancer and Proxy Layer Requirements
	A.5.4. Windows Desktop SSO Requirements

	A.6. Using the Session Token After Authentication
	A.7. Server Information
	A.8. Token Encoding
	A.9. Logging
	A.9.1. Common Audit Logging of REST API Calls
	A.9.2. Legacy Logging of REST API Calls

	A.10. Reference
	A.10.1. REST APIs

	Appendix B. About Scripting
	B.1. The Scripting Environment
	B.1.1. Security
	B.1.2. Thread Pools

	B.2. Global Scripting API Functionality
	B.2.1. Accessing HTTP Services
	B.2.2. Debug Logging

	B.3. Managing Scripts
	B.3.1. Managing Scripts With the AM Console
	B.3.2. Managing Scripts With the ssoadm Command
	B.3.3. Managing Scripts With the REST API
	B.3.4. Querying Scripts
	B.3.5. Reading a Script
	B.3.6. Validating a Script
	B.3.7. Creating a Script
	B.3.8. Updating a Script
	B.3.9. Deleting a Script

	B.4. Scripting
	B.4.1. Configuration
	B.4.2. Secondary Configurations
	B.4.2.1. Engine Configuration

	Appendix C. Getting Support
	C.1. Accessing Documentation Online
	C.2. Using the ForgeRock.org Site
	C.3. Getting Support and Contacting ForgeRock

	Glossary

