
Authentication Node Development Guide
/ ForgeRock Access Management 7.1.4

Latest update: 7.1.4

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2021 ForgeRock AS.

Abstract

Guide to developing authentication nodes for use in ForgeRock® Access Management (AM)
authentication trees. ForgeRock Access Management provides intelligent authentication,
authorization, federation, and single sign-on functionality.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... iv
1. About Authentication Nodes .. 1

Types of Nodes ... 2
Differences Between Modules and Nodes .. 4
Converting Modules to Nodes ... 5
Determining the Functionality of a Node ... 5

2. Preparing for Development ... 7
The Maven Project for an Authentication Node ... 12

3. The Node Class ... 16
The Meta Data Annotation .. 20
The Node Interface ... 21
The Config Interface ... 22
Injecting Objects Into a Node Instance .. 27
The Action Interface .. 29
Handling Errors .. 37

4. The Plugin Class ... 39
Upgrading Nodes and Configuration Changes ... 40

5. Internationalization ... 44
6. Building and Installing .. 46
7. Maintaining Authentication Nodes ... 48

Testing .. 48
Debugging ... 49
Auditing ... 50
Monitoring ... 51

8. Troubleshooting ... 52
Glossary ... 54

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iv

Overview
This guide provides guidance and best practice for developing and maintaining authentication nodes
in AM.

Quick Start

About Authentication Nodes

Learn how Authentication trees are made
up of authentication nodes, which define

actions taken during authentication.

Prepare your Environment

Discover the prerequisites for customizing
authentication nodes, and how to use a Maven

archetype or the samples provided with
AM to set up a project for building nodes.

Translate your Nodes

Translate the text in your nodes.
Internationalization (i18n) of content targets

both the end user and the node administrator.

Building and Installing

Find out how to build and install authentication
nodes for use in authentication trees.

For information on configuring and using authentication trees, see "Authentication Nodes and Trees"
in the Authentication and Single Sign-On Guide.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

About Authentication Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 1

Chapter 1

About Authentication Nodes
Authentication trees (also referred to as Intelligent Authentication) provide fine-grained
authentication by allowing multiple paths and decision points throughout the authentication flow.

Authentication trees are made up of authentication nodes, which define actions taken during
authentication, similar to authentication modules within chains.

You can create complex yet customer-friendly authentication experiences by linking nodes together,
creating loops, and nesting nodes within a tree, as follows:

Example Authentication Tree

Nodes are designed to be single-responsibility, and where appropriate should be loosely coupled to
other nodes, enabling reuse in multiple situations.

For example, if a newly written node requires a username value, it should not collect it itself, but rely
on another node, namely the Username Collector Node.

About Authentication Nodes
Types of Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 2

Types of Nodes
Collector Nodes

Collector nodes capture data from a user during the authentication process. This data is often
captured by a callback that is rendered in the UI as a text field, drop-down list, or other form
component.

Examples of collector nodes includes the Username Collector Node and Password Collector Node.

Collector nodes may perform some basic processing of the collected data before making it
available to subsequent nodes in the authentication tree.

The Choice Collector Node provides a drop-down list populated with options defined when the
tree is created, or edited.

Not all collector nodes use callbacks. For example, the Zero Page Login Collector Node retrieves
a username and password value from the request headers, if present.

About Authentication Nodes
Types of Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 3

Decision Nodes

Decision nodes retrieve the state produced by one or more nodes, perform some processing on it,
optionally store some derived information in the shared state, and provide one or more outcomes
depending on the result.

The simplest decision node returns a boolean outcome - true, or false.

Complex nodes may have additional outcomes. For example the LDAP Decision Node offers
additional outcomes of Locked and Expired. The tree administrator decides what to do with each
outcome; for example, the True outcome is often routed to a Success node, or to additional nodes
for further authentication.

In the following example tree, two collector nodes are connected before a Data Store Decision
Node. The node then uses the credentials to authenticate the user against the identity stores
configured for the realm. In this instance, an unsuccessful login attempt leads directly to failure;
the user must restart the process from scratch.

A more user-friendly approach might route unsuccessful attempts to a Retry Limit Decision Node.
In the following example, unsuccessful authentication attempts at the Data Store Decision Node
stage are routed into a Retry Limit Decision Node. Depending on how many retries have been
configured, the node either retries or rejects the new login attempt. Rejected attempts lead to a
locked account.

Note

Nodes May Have Prerequisite Stages

About Authentication Nodes
Differences Between Modules and Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 4

Some Decision Nodes are only applicable when used in conjunction with other nodes. For example, the
Persistent Cookie Decision Node looks for a persistent cookie that has been set in the request, typically by the
Set Persistent Cookie Node. The OTP Collector Decision Node, which is both a collector and a decision node,
only works when used in conjunction with a one-time password generated by a HOTP Generator Node.

Differences Between Modules and Nodes
Authentication modules contain multiple states, with the associated inputs and outputs of each state
resulting in either callbacks returned to the user, or state changes inside either AM or at a third party
service.

States within a module either collect input from the user or process it. For example, a module can
collect the username and the password from the user and then authenticate the user against the data
store. When finished, the module decides whether to return a boolean success or failure flag.

The outcome of an authentication module can only be success or failure. Any branching or looping
must be handled within the module. An authentication mechanism is implemented in full within a
single module, rather than across multiple modules. Therefore, authentication modules can become
large - handling multiple steps within the flow of an authentication journey.

Authentication nodes, however, can have an arbitrary number of outcomes that do not need to
represent success or failure. Branching and looping are handled by connecting nodes within the tree
and are fully controlled by the tree administrator, rather than the node developer. Nodes are often
considerably smaller in terms of code size, and are responsible for handling a single step within the
authentication flow. For example, an individual node could capture user input, another could make a
decision based on available state, and another could invoke an external API.

Nodes expose this approach to the tree administrator. Unlike modules, where the journey through the
module's states is defined by the module's developer, a journey through a collection of nodes may be
different for each user.

Node developers should be aware of the expectations for a node to deliver a limited amount of
specific functionality, which tree administrators can connect together in a variety of ways.

Key differentiators:

• Nodes are responsible for a single step of the authentication flow. Modules are responsible for an
entire authentication mechanism.

• Tree administrators control the branching, looping, and sequencing of steps by linking nodes
together. Module developers set these state transitions within the module itself.

• Nodes are stateless; instances of node objects are not retained between HTTP requests, and all
state captured must be saved to the authentication session's shared state. Modules store state
within the module object.

• Node configuration is handled with annotations. Modules use XML.

About Authentication Nodes
Converting Modules to Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 5

• Nodes are easier to test due to their smaller code size and their specific functionality.

Converting Modules to Nodes
The ease of transitioning from a module to a node depends on the amount of functionality provided in
the module. As nodes are more fine-grained than modules, split the functionality of the module into
individual nodes which can then work together to provide functionality similar to the module, but in a
more flexible manner.

An example of this approach was applied to the one-time password nodes, which were developed
from the HOTP authentication module. The module performs the following duties:

1. Generates one-time passwords.

2. Sends one-time passwords by using SMS messaging.

3. Sends one-time passwords by using SMTP.

4. Collects and verifies the one-time password.

The four distinct functions are encapsulated into separate nodes, allowing greater control over the
one-time password process.

For example, a tree administrator who is only interested in sending one-time passwords by using
SMS messages can omit the SMTP node. Separating out the decision functionality means that it can
be combined with another decision node, or simply routed to an alternative authentication process.

Some authentication modules delegate their functionality to utility classes in AM, which simplifies the
process of creating a similarly functioning node.

For example, the LDAP authentication module and LDAP Decision Node share the LDAPAuthUtils class
for LDAP authentication. In cases where such utility classes do not exist, consider extracting the
common functionality used by the module into such a class, so that it can be more easily used by
nodes. For information on sharing configuration, see "Sharing Configuration Between Nodes".

Determining the Functionality of a Node
To determine the functionality of a node, it is important to reduce the responsibility to its core
purpose, while ensuring it performs enough tasks to be useful as a step in an authentication journey.

Before creating a set of nodes, a node developer must first understand the level of granularity
they should produce. For example, a customer's environment may require a series of utility nodes
which, on their own, do not perform authentication actions, but have multiple use cases in many
authentication journeys. In this case, the developer may create nodes that take values from the
shared state and save it to the user's profile.

About Authentication Nodes
Determining the Functionality of a Node

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 6

Individual nodes can respond to a variety of inputs and outputs, and return different sets of callbacks
to the user - similar to the state mechanism used by modules - without leaving the node.

The following guidelines help a node developer to determine the best point at which to split a node
into multiple instances:

• If a node's process method takes input from the user, and then immediately processes it.

Consider splitting the functionality over two nodes. A collector node returns callbacks to the user,
and stores the response in the shared state. A decision node uses the inputs collected so far in the
tree to determine the next course of action.

A node that takes input from the user and makes a decision should only be designed as a single
node if there is no possible additional use for the data gathered, other than making that specific
decision.

• If a processing stage in a node is duplicated in other nodes.

In this case, take the repeating stage out and place it in its own node. Connect this node
appropriately to each of the other nodes.

If multiple nodes contain the same step in processing, such as returning a set of callbacks to ask
the user for a set of data before processing it in different ways, the common functionality should be
pulled out into its own node.

• If a single function within the node has obvious use cases in other authentication journeys.

In this case, the functionality should be written into a single, reusable node. For example, in multi-
factor authentication, a mechanism for reporting a lost device is applicable to many node types,
such as mobile push, OATH, and others.

Preparing for Development

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 7

Chapter 2

Preparing for Development
This chapter explains the prerequisites for customizing authentication nodes, and how to use a
Maven archetype or the samples provided with AM to set up a project for building nodes.

Tip

For information about customizing post-authentication hooks for a tree, see "Creating Post-Authentication
Hooks for Trees" in the Authentication and Single Sign-On Guide.

To prepare for creating or modifying authentication nodes, complete the following procedures:

• "To Prepare an Environment For Building Custom Authentication Nodes"

• "To Set Up a Maven Project For Building Custom Authentication Nodes"

To Prepare an Environment For Building Custom Authentication Nodes

Complete the following steps to set up your environment for building custom authentication nodes:

1. Ensure your BackStage account is part of a subscription:

a. In a browser, go to the ForgeRock BackStage website and log in or register for an account.

b. Confirm or request that your account is added to a subscription. For more details, see
"Getting access to product support" in the ForgeRock Knowledge Base.

2. Install Apache Maven 3.2.5 or later, and Oracle JDK or OpenJDK version 11 or later.

Tip

To verify the installed versions, run the mvn --version command:

https://backstage.forgerock.com/
https://backstage.forgerock.com/knowledge/kb/article/a57648047

Preparing for Development

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 8

$ mvn --version
Maven home: /usr/local/Cellar/maven/3.6.0/libexec
Java version: 11.0.4, vendor: AdoptOpenJDK, runtime: /Library/Java/JavaVirtualMachines/
adoptopenjdk-11.jdk/Contents/Home
Default locale: en_US, platform encoding: UTF-8
OS name: "mac os x", version: "10.16", arch: "x86_64", family: "mac"

3. Configure Maven to be able to access the ForgeRock repositories by adding your BackStage
credentials to the Maven settings.xml file. For details, see "How do I access the ForgeRock
protected Maven repositories?" in the ForgeRock Knowledge Base.

If you want to use the archetype to create a project for custom authentication nodes, you also
need access to the forgerock-private-releases repository. Ensure your settings.xml file contains a
profile similar to the following:
<profiles>
 <profile>
 <id>forgerock</id>
 <repositories>
 <repository>
 <id>forgerock-private-releases</id>
 <url>https://maven.forgerock.org:443/artifactory/private-releases</url>
 <releases>
 <enabled>true</enabled>
 <checksumPolicy>fail</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <checksumPolicy>warn</checksumPolicy>
 </snapshots>
 </repository>
 </repositories>
 </profile>
</profiles>
<activeProfiles>
 <activeProfile>forgerock</activeProfile>
</activeProfiles>

To Set Up a Maven Project For Building Custom Authentication Nodes

ForgeRock provides a Maven archetype for creating a starter project suitable for building an
authentication node. You can also download the projects used to build the authentication nodes
included with AM and modify those to match your requirements.

https://backstage.forgerock.com/knowledge/kb/article/a74096897
https://backstage.forgerock.com/knowledge/kb/article/a74096897

Preparing for Development

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 9

Note

Ensure you have completed the steps in "To Prepare an Environment For Building Custom Authentication
Nodes" before proceeding.

Complete either of the following steps to set up or download a Maven project for building custom
authentication nodes:

1. To use the ForgeRock auth-tree-node-archetype archetype to generate a starter Maven project:

a. In a terminal window, go to a folder wherein you'll create the new Maven project. For
example:
$ cd ~/Repositories

b. Run the mvn archetype:generate command, providing the following information:

groupId

A domain name that you control, used for identifying the project.

artifactId

The name of the JAR created by the project, without version information. Also the name of
the folder created to store the project.

version

The version assigned to the project.

package

The package name in which your custom authentication node classes are generated.

authNodeName

The name of the custom authentication node, also used in the generated README.md file and
for class file names.

Important

AM stores installed nodes with a reference generated from the node’s class name. An installed
node that is registered through a plugin is stored with the name returned as a result of calling
Class.getSimpleName(). AM does not protect installed node names. The most recently installed
node with a specific name will overwrite any previous installation of that node (including the
nodes that are provided with AM by default). You must therefore choose a unique name for your
custom node, and make sure that the name does not collide with the names of existing nodes.

Alternatively, use the namespace property in the @Node.Metadata annotation to change
the name that is saved for the node. For example, adding namespace=Namespace.PRODUCT

Preparing for Development

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 10

to the WriteFederationInformationNode results in that node being stored as product-
WriteFederationInformationNode.

For example:
$ mvn archetype:generate \
 -DgroupId=com.example \
 -DartifactId=customAuthNode \
 -Dversion=1.0.0-SNAPSHOT \
 -Dpackage=com.example.customAuthNode \
 -DauthNodeName=myCustomAuthNode \
 -DarchetypeGroupId=org.forgerock.am \
 -DarchetypeArtifactId=auth-tree-node-archetype \
 -DarchetypeVersion=7.1.4 \
 -DinteractiveMode=false
[INFO] Project created from Archetype in dir: /Users/ForgeRock/Repositories/customAuthNode
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.397 s
[INFO] Finished at: 2018-01-18T15:45:06+00:00
[INFO] Final Memory: 16M/491M
[INFO] --

A new custom authentication node project is created; for example, in the /Users/ForgeRock/
Repositories/customAuthNode folder.

+ Example

Preparing for Development

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 11

Node Project Created by Using the Archetype

2. To download the project containing the default AM authentication nodes from the am-external
repository:

a. If you do not already have a ForgeRock BackStage account, get one from https://
backstage.forgerock.com. You cannot clone the am-external repository without a BackStage
account.

b. Clone the am-external repository:
$ git clone https://myBackStageUsername@stash.forgerock.org/scm/openam/am-external.git

Tip

URL encode your BackStage Username if it contains special characters. For example : becomes %3A
and @ becomes %40.

Enter your BackStage password when prompted to do so.

c. Check out the release/7.1.4 branch:
$ cd am-external
$ git checkout releases/7.1.4

The AM authentication nodes project is located in the am-external/openam-auth-trees/auth-nodes/
folder.

https://backstage.forgerock.com
https://backstage.forgerock.com

Preparing for Development
The Maven Project for an Authentication Node

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 12

+ Example

Node Project Cloned from ForgeRock

The Maven Project for an Authentication Node
When configuring your project for creating custom nodes, consider the following points:

• Your node may be deployed into a different AM version to that which you compiled against.

ForgeRock endeavours to make nodes from previous product versions binary compatible with
subsequent product versions, so a node built against AM 6 APIs may be deployed in an AM 7.1
instance.

• Other custom nodes may depend on your node, which may be being built against a different version
of the AM APIs.

Preparing for Development
The Maven Project for an Authentication Node

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 13

• Other custom nodes, or AM itself, may be using the same libraries as your node; for example,
Guava or Apache Commons, and so on. This may cause version conflicts.

To help protect against some of these issues, consider the following recommendations:

• Mark all ForgeRock product dependencies as provided in your build system configuration.

• Repackage all non-internal, non-ForgeRock dependencies inside your own .jar file. Repackaged
dependencies will not clash with a different version of the same library from another source.

Tip

If you are using Maven, use the maven-shade-plugin to repackage dependencies.

+ Files Contained in the Maven Project

pom.xml

Apache Maven project file for the custom authentication node.

This file specifies how to build the custom authentication node, and also specifies its
dependencies on AM components.

The following is an example pom.xml file from a node project:
<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>example-node-plugin</artifactId>
 <version>1.0.0</version>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.forgerock.am</groupId>
 <artifactId>openam-bom</artifactId>
 <version>7.1.4</version>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.forgerock.am</groupId>
 <artifactId>auth-node-api</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.forgerock.am</groupId>
 <artifactId>openam-annotations</artifactId>
 <scope>provided</scope>

https://maven.apache.org/plugins/maven-shade-plugin/

Preparing for Development
The Maven Project for an Authentication Node

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 14

 </dependency>
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>26.0-jre</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <configuration>
 <shadedArtifactAttached>false</shadedArtifactAttached>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 <relocations>
 <relocation>
 <pattern>com.google</pattern>
 <shadedPattern>com.example.node.guava</shadedPattern>
 </relocation>
 </relocations>
 <filters>
 <filter>
 <artifact>com.google.guava:guava</artifact>
 <excludes>
 <exclude>META-INF/**</exclude>
 </excludes>
 </filter>
 </filters>
 <transformers>
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
 <manifestEntries>
 <Import-
Package>javax.annotation;resolution:=optional,sun.misc;resolution:=optional</Import-Package>
 </manifestEntries>
 </transformer>
 </transformers>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

authNodeName.java

Core class for the custom authentication node. See "The Node Class".

authNodeNamePlugin.java

Plugin class for the custom authentication node. See "The Plugin Class".

authNodeName.properties

Properties file containing the localized strings displayed by the custom authentication node.
See "Internationalization".

Preparing for Development
The Maven Project for an Authentication Node

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 15

You must include a nodeDescription property in your node to ensure that it appears in the
authentication tree designer. AM uses the nodeDescription property value as the name of your
node.

The authNodeName reflects the name of your authentication node. For example, the ForgeRock
auth-tree-node-archetype for Maven uses myCustomAuthNode as the authNodeName.

The Node Class

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 16

Chapter 3

The Node Class
In Java terms, an authentication node is a class that implements the Node interface, org.forgerock.
openam.auth.node.api.Node.

The Node class may access and modify the persisted state that is shared between the nodes within a
tree, and may request input by using callbacks. The class also defines the possible exit paths from the
node.

The class is annotated with org.forgerock.openam.auth.node.api.Node.Metadata. The annotation has
two main attributes - configClass and outcomeProvider. Typically, the configClass attribute is an inner
interface in the node implementation class.

For simple use cases, the abstract implementations of the node interface, org.forgerock.openam.
auth.node.api.SingleOutcomeNode and org.forgerock.openam.auth.node.api.AbstractDecisionNode, have their
own outcome providers that can be used. For more complex use cases you can provide your own
implementation.

Conceptually, the Node class is structured as follows:

1. The annotation

The annotation specifies the outcome provider and configuration class. The outcome provider can
use the default SingleOutcomeNode or MultipleOutcomeNode, or a custom OutcomeProvider can be created
and referenced from the annotation.

See the Choice Collector Node for an example of a custom outcome provider.

2. Any private constants

3. The config

The config interface defines the configuration data for a node. A node cannot have state, but it
can have configuration data.

Note that you do not need to provide the implementation class for the Config interface you define.
AM will create these automatically, as required.

An example is the Account lockout Node. The node can be configured to lock or unlock the users'
account, based on it’s configuration.

Configuration is per-node. Different nodes of the same type in the same tree have their own
configuration.

The Node Class

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 17

The config interface configures values using methods. To provide no default value to the tree
administrator, provide the method's signature but not the implementation. To provide a default
value to the tree administrator, mark the method as default and provide both a method and a
value. For example:
public interface Config {

 //This will have no default value for the UI
 @Attribute(order = 10)
 String noDefaultAttribute();

 //This will default to the value LOCK.
 @Attribute(order = 20)
 default LockStatus lockAction() {
 return LockStatus.LOCK;
 }
}

The Config above would resemble the following in the tree designer view:

The @Attribute annotation is required. It can be configured with an order value, which determines
the position of the attribute in the UI, and with validators, to validate the values being set.

In the example above, a custom enum called LockStatus is returned. The options are displayed to
the user automatically.

4. The constructor

Dependencies should be injected by using Guice as this makes it easier to unit test your node. For
example, you should accept the config as a parameter.

You may also wish to obtain AM core classes, such as CoreWrapper, instances of third-party
dependencies, or your own types.

The Node Class

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 18

@Inject
public AccountLockoutNode(CoreWrapper coreWrapper, @Assisted Config config)
throws NodeProcessException {
 this.coreWrapper = coreWrapper;
 this.config = config;
}

5. The process method

The process method takes a TreeContext parameter, does some processing, and returns an Action
object.

An action encapsulates changes to state and flow control. The TreeContext parameter is used to
access the request, callbacks, shared state and other input.

The process method is where state is retrieved and stored. The returning Action can be a response
of callback to the user, an update of state, or a choice of outcome.

The choice of outcome in a simple decision node would be true or false, resulting in the
authentication tree flow moving from the current node to a node at the relevant connection.

6. Any private methods

7. Optionally, a custom outcome provider

The following example is the SetSessionPropertiesNode class, taken from the Set Session Properties
Node:
/*
 * The contents of this file are subject to the terms of the Common Development and
 * Distribution License (the License). You may not use this file except in compliance with the
 * License.
 *
 * You can obtain a copy of the License at legal/CDDLv1.0.txt. See the License for the
 * specific language governing permission and limitations under the License.
 *
 * When distributing Covered Software, include this CDDL Header Notice in each file and include
 * the License file at legal/CDDLv1.0.txt. If applicable, add the following below the CDDL
 * Header, with the fields enclosed by brackets [] replaced by your own identifying
 * information: "Portions copyright [year] [name of copyright owner]".
 *
 * Copyright 2017-2018 ForgeRock AS.
 */

package org.forgerock.openam.auth.nodes;

import java.util.Map;

import javax.inject.Inject;

import org.forgerock.openam.annotations.sm.Attribute;
import org.forgerock.openam.auth.node.api.Action;
import org.forgerock.openam.auth.node.api.Node;
import org.forgerock.openam.auth.node.api.SingleOutcomeNode;

The Node Class

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 19

import org.forgerock.openam.auth.node.api.TreeContext;
import org.forgerock.openam.auth.nodes.validators.SessionPropertyValidator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.google.inject.assistedinject.Assisted;

/**
 * A node which contributes a configurable set of properties to be added to the user's session, if/when it
 is created.
 */
@Node.Metadata(outcomeProvider = SingleOutcomeNode.OutcomeProvider.class,
 configClass = SetSessionPropertiesNode.Config.class)
public class SetSessionPropertiesNode extends SingleOutcomeNode {

 /**
 * Configuration for the node.
 */
 public interface Config {
 /**
 * A map of property name to value.
 * @return a map of properties.
 */
 @Attribute(order = 100, validators = SessionPropertyValidator.class)
 Map<String, String> properties();
 }

 private final Config config;
 private final Logger logger = LoggerFactory.getLogger("amAuth");

 /**
 * Constructs a new SetSessionPropertiesNode instance.
 * @param config Node configuration.
 */
 @Inject
 public SetSessionPropertiesNode(@Assisted Config config) {
 this.config = config;
 }

 @Override
 public Action process(TreeContext context) {
 logger.debug("SetSessionPropertiesNode started");
 Action.ActionBuilder actionBuilder = goToNext();
 config.properties().entrySet().forEach(property -> {
 actionBuilder.putSessionProperty(property.getKey(), property.getValue());
 logger.debug("set session property {}", property);
 });
 return actionBuilder.build();
 }
}

The @Node.Metadata annotation. See "The Meta Data Annotation".
Implementing the Node interface. See "The Node Interface".
Implementing the Config interface. See "The Config Interface".
Injecting the Node instance. See "Injecting Objects Into a Node Instance".
Creating an Action instance. See "The Action Interface".

The Node Class
The Meta Data Annotation

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 20

The Meta Data Annotation
The annotation specifies the outcome provider and config class, and optional config validator class.

outcomeProvider

The class name that the node uses to set up the possible outcomes.

The SingleOutcomeNode and AbstractDecisionNode base classes provide suitable outcome provider
classes for those node types. You can create a custom outcome provider for other circumstances.

For example, the following is the custom outcome provider from the LDAP Decision node, which
has True, False, Locked, Cancelled, and Expired exit paths:
/**
* Defines the possible outcomes from this Ldap node.
*/
public static class LdapOutcomeProvider implements OutcomeProvider {
 @Override
 public List<Outcome> getOutcomes(PreferredLocales locales, JsonValue nodeAttributes) {
 ResourceBundle bundle = locales.getBundleInPreferredLocale(LdapDecisionNode.BUNDLE,
 LdapOutcomeProvider.class.getClassLoader());
 return ImmutableList.of(
 new Outcome(LdapOutcome.TRUE.name(), bundle.getString("trueOutcome")),
 new Outcome(LdapOutcome.FALSE.name(), bundle.getString("falseOutcome")),
 new Outcome(LdapOutcome.LOCKED.name(), bundle.getString("lockedOutcome")),
 new Outcome(LdapOutcome.CANCELLED.name(), bundle.getString("cancelledOutcome")),
 new Outcome(LdapOutcome.EXPIRED.name(), bundle.getString("expiredOutcome")));
 }
}

configClass

The class name that contains the configuration of any attributes requested by the node when
using it as part of a tree.

For more information, See "The Config Interface".

configValidator

An optional class name used to validate the provided configuration.

tags

An optional list of tags which help to categorize the node when using the tree designer view.

Tags are made up of one or more text strings that let users find the node more easily when
designing trees. For example, you could include common pseudonyms for the functionality the
node provides, such as mfa for a node that provides multi-factor authentication functionality.

The tree designer view organizes nodes into a number of categories, based on the presence of
certain tag values, as described in the table below:

The Node Class
The Node Interface

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 21

Authentication Node Tag Categories

Icon Category Tag Example Nodes

 Basic Authentication "basic authentication" Data Store Decision Node
Username Collector Node

 MFA "mfa" Push Sender Node
WebAuthn Authentication Node

 Risk "risk" Account lockout Node
CAPTCHA Node

 Behavioral "behavioral" N/A

 Contextual "contextual" Cookie Presence Decision Node
Set Persistent Cookie Node

 Federation "federation" OAuth 2.0 Node
OpenID Connect Node
Social Facebook Node
Social Google Node

 Identity Management "identity management" Anonymous User Mapping Node

 Utilities "utilities" Choice Collector Node
Polling Wait Node
Scripted Decision Node

Note

Nodes which are not tagged with one of the previous tags appear in an Uncategorized section.

For example, the following is the @Node.Metadata annotation from the Set Session Properties Node:
@Node.Metadata(outcomeProvider = AbstractSocialAuthLoginNode.SocialAuthOutcomeProvider.class,
 configClass = SocialFacebookNode.FacebookOAuth2Config.class,
 tags = {"social", "federation"})

For more information on the @Node.Metadata annotation, see the Node.Metadata annotation type in the
AM 7.1.4 Public API Javadoc.

The Node Interface
The code for an authentication node must implement the Node interface.

AM provides base classes you can extend to implement the Node interface, depending on the type of
custom authentication node you are creating. The available base classes are as follows:

../apidocs/org/forgerock/openam/auth/node/api/Node.Metadata.html

The Node Class
The Config Interface

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 22

SingleOutcomeNode

Used in nodes that only have a single exit path.

The Modify Auth Level Node is an example of a node that uses the SingleOutcomeNode base class.

For more information, see the SingleOutcomeNode class in the AM 7.1.4 Public API Javadoc.

AbstractDecisionNode

Used in nodes that have a boolean-type exit path. For example, true or false, yes or no, or allow or
deny.

The Data Store Decision Node is an example of a node that uses the AbstractDecisionNode base
class.

For more information, see the AbstractDecisionNode class in the AM 7.1.4 Public API Javadoc.

Implement the Node interface yourself if your custom node exit paths do not match the scenarios
outlined above.

For more information, see the Node interface in the AM 7.1.4 Public API Javadoc.

The Config Interface
The Config interface of a node contains the configuration values required by a particular node
instance.

Note that you do not need to write a class that implements the interface you define, AM will create it
automatically, as required.

Define the properties the node will use in the Config interface, by using the @Attribute annotation.
The @Attribute annotation specifies the order of the properties in the tree designer view as well as
providing a way to specify additional validators.

Example:

../apidocs/org/forgerock/openam/auth/node/api/SingleOutcomeNode.html
../apidocs/org/forgerock/openam/auth/node/api/AbstractDecisionNode.html
../apidocs/org/forgerock/openam/auth/node/api/Node.html

The Node Class
The Config Interface

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 23

public interface Config {
 @Attribute(order = 1)
 String domain();

 @Attribute(order = 2, validators = RequiredValueValidator.class)
 boolean isVerificationRequired();

 @Attribute(order = 3, validators = RequiredValueValidator.class)
 @Password
 char[] clientSecret();

 @Attribute(order = 4)
 default YourCustomEnum action() {
 return YourCustomEnum.LockScreen;
 };
}

The domain attribute is a string-typed value which can be provided in the tree designer view by
the tree administrator. It can be read in the process method by using a reference to the config
interface; for example, config.domain().
A boolean attribute with an additional parameter, validators, containing a reference to a
validation class. In this case, a value is required to be provided by the tree administrator.
Use the Password annotation to mask the input characters and encrypt the value of the attribute.
A custom enum attribute. This provides type safety and negates the misuse of Strings as
generic type-unsafe value holders. The UI will correctly handle the enum and only let the tree
administrator chose from the defined enum values.

The defined properties appear as configurable options in the tree designer view when adding a
node of the relevant type. For example the configuration for the Scripted Decision Node appears as
follows:

Note that attribute names are used when localizing the node's text, see "Internationalization".

For more information, see the Config annotation type and the Attribute annotation type in the AM
7.1.4 Public API Javadoc.

../apidocs/org/forgerock/openam/sm/annotations/adapters/Password.html
../apidocs/org/forgerock/openam/annotations/sm/Config.html
../apidocs/org/forgerock/openam/annotations/sm/Attribute.html

The Node Class
Sharing Configuration Between Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 24

Sharing Configuration Between Nodes
You can share configuration between nodes that have common properties. For example, a number of
your nodes may call out to an external service that requires a username, password, IP address, and
port setting.

Rather than repeat the same configuration in each of these nodes, you can create a shared, auxiliary
service to hold the common properties in one of your nodes, and reference that service from multiple
other nodes.

The following sections explain how to create this auxiliary service and reference it in your nodes. Also
covered is how to run more than one instance of an auxiliary service if required, and how to obtain
the configuration from services built-in to AM.

Creating a Shared Auxiliary Service
You can create a shared auxiliary service in the configuration interface defined as part of a node.
Annotate the service with the org.forgerock.openam.annotations.sm.Config annotation to describe how the
service functions.

Specify the scope of the service, either GLOBAL or REALM, as shown below:
@Config(scope = Config.Scope.REALM)
public interface MyAuxService {
 @Attribute(order = 1)
 String serviceUrl();
}

You can also specify other features of the service, such as whether the service is a singleton in its
scope, or if it can have multiple instances. For information about supporting multiple instances, see
"Allowing Multiple Instances of an Auxiliary Service".

Referencing a Shared Auxiliary Service Instance
To access the shared auxiliary service, add org.forgerock.openam.sm.AnnotatedServiceRegistry to the
@Inject-annotated constructor of the node.

Obtain the instance using the get instance methods on that class, for example:
serviceRegistry.getRealmSingleton(MyAuxService.class, realm)

Reinstalling a Shared Auxiliary Service Instance
When developing a custom authentication node that references a shared auxiliary service, it can be
useful for the node to be able to remove and then reinstall the auxiliary service during upgrade, so
that any existing configuration is cleared.

In the upgrade function of your plugin class, use the following example code to remove and reinstall a
service:

The Node Class
Sharing Configuration Between Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 25

public void upgrade(String fromVersion) throws PluginException {
 SSOToken adminToken = AccessController.doPrivileged(AdminTokenAction.getInstance());
 if (fromVersion.equals(PluginTools.DEVELOPMENT_VERSION)) {
 ServiceManager sm = new ServiceManager(adminToken);
 if (sm.getServiceNames().contains("MyAuxService")) {
 sm.removeService("MyAuxService", "1.0");
 }
 pluginTools.install(MyAuxService.class);
 }
}

For more information on upgrading custom authentication nodes, see "Upgrading Nodes and
Configuration Changes".

Allowing Multiple Instances of an Auxiliary Service

To enable configuration of multiple instances of the auxiliary service in either the same realm or at a
global level, set the collection attribute to true in the Config annotation.

You can present the names of the instances of the service as a drop-down menu to the tree
administrator.

To be able to present the names, make sure the service instance exposes its id, as follows:
@Config(scope = Config.Scope.REALM, collection = true)
public interface MyAuxService {
 @Id
 String id();

 @Attribute(order = 1)
 String serviceUrl();
}

Change the nodes that will be using a service instance to store the id it uses, and implement
choiceValuesClass as shown below:
public class MyCustomNode implements Node {
 public interface Config {
 @Attribute(order = 1, choiceValuesClass = ExternalServiceValues.class)
 String serviceId();
 }

 public static class ExternalServiceValues extends ChoiceValues {

 @Override
 public Map<String, String> getChoiceValues() {
 return getChoiceValues(null);
 }

 @Override
 public Map<String, String> getChoiceValues(Map envParams) {
 String realmName = "/";
 if (envParams != null) {
 realmName = (String) envParams.getOrDefault(Constants.ORGANIZATION_NAME, "/");
 }

The Node Class
Sharing Configuration Between Nodes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 26

 try {
 return InjectorHolder.getInstance(AnnotatedServiceRegistry.class)
 .getRealmInstances(MyAuxService.class, Realms.of(realmName))
 .stream()
 .collect(Collectors.toMap(MyAuxService::id, MyAuxService::id));
 } catch (SSOException | SMSException | RealmLookupException e) {
 LoggerFactory.getLogger("amAuth").error("Couldn't load realm {}", realmName, e);
 throw new IllegalStateException("Couldn't load realm that was passed", e);
 }
 }
 }
 // ...
}

Obtaining Configuration of Services Built-in to AM
You can obtain configuration from services built-in to AM. For example, you might want to access the
Email Service configuration to obtain the SMTP settings for the realm.

AM services are defined by two methods:

1. Most services are defined by using an annotated interface.

2. Legacy services that are defined by using an XML file.

See the following sections for information on obtaining the configuration from services defined with
either of the two methods.

Obtaining the Configuration from an Annotated Service

To obtain the configuration from a service that uses an annotated interface, add org.forgerock.openam.
sm.AnnotatedServiceRegistry to your Guice constructor. If the configuration is realm-based, include the
realm in the constructor, as follows:
public class MyCustomNode extends SingleOutcomeNode {

 private final AnnotatedServiceRegistry serviceRegistry;
 private final Realm realm;

 @Inject
 public MyCustomNode(@Assisted Realm realm, AnnotatedServiceRegistry serviceRegistry) {
 this.realm = realm;
 this.serviceRegistry = serviceRegistry;
 }
 // ...
}

Obtain an instance of the service using one of the get methods of AnnotatedServiceRegistry in the
constructor.

If the calls you make depend on input from elsewhere in the tree you can add AnnotatedServiceRegistry
to the process method. Note that the following example assumes that a previous node has stored the
ID of the AM service to use in shared state:

The Node Class
Injecting Objects Into a Node Instance

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 27

public Action process(TreeContext context) throws NodeProcessException {
 String serviceId = context.getState.get("myAuxServiceId");
 MyAuxService instance = serviceRegistry.getRealmInstance(MyAuxService.class, realm, serviceId);
 // ...
}

Obtaining the Configuration from a Legacy Service

To obtain an instance of the configuration from a legacy service, use the APIs in the com.sun.identity.
sm package.

For example, to obtain the configuration values from a realm instance of a service, use
ServiceConfigManager as follows:
ServiceConfigManager scm = new ServiceConfigManager("legacyServiceName", token);
ServiceConfig sc = scm.getOrganizationConfig(realm.asPath(), null);
final Map<String, Set<String>> configMap = sc.getAttributes();

However, to obtain the configuration values from a global instance of a service, use
ServiceSchemaManager as follows:
ServiceSchemaManager ssm = new ServiceSchemaManager("legacyServiceName", getAdminToken());
Map<String, Set<String>> configMap = ssm.getGlobalSchema().getAttributeDefaults();

Injecting Objects Into a Node Instance
A node instance is constructed every time that node is reached in a tree, and is discarded as soon as
it has been used to process the state once.

This model is different to authentication modules, which are instantiated once for each end-user
authentication process, and then all authentication interactions for the life of the authentication
process address the same instance in the same JVM.

Modules can store state in the module instance. However, state stored in a node will be lost when the
node's process method is complete. To make state available for other nodes in the tree, nodes must
either return the state to the user or store it in the shared state.

AM uses Google's Guice dependency injection framework for authentication nodes. AM uses Guice to
manage most of its object life-cycles. You can use just-in-time bindings from the constructor to inject
an object from Guice.

The following node-specific instances are available from Guice:

@Assisted Realm

The realm that the node is in.

@Assisted UUID

The unique ID of the node instance.

The Node Class
Using a Cache

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 28

@Assisted AuthTree

The tree that this node is being processed as part of.

<T> @Assisted T

The configuration object that is an instance of the interface specified in the configClass metadata
parameter.

Tip

Any other objects in AM that are managed by Guice can also be obtained from within the constructor.

The following example is the injection used by the Account lockout Node:
@Inject
public AccountLockoutNode(CoreWrapper coreWrapper, @Assisted Config config)
 throws NodeProcessException {
 this.coreWrapper = coreWrapper;
 this.config = config;
}

For more information, see the Inject annotation type and the AssistedInject annotation type in the
Google Guice Javadoc.

Using a Cache

You can use Guice injection to cache information in a node by annotating the object that contains the
cache with the @Singleton annotation, for example:
@Node.Metadata(
 outcomeProvider = SingleOutcomeNode.OutcomeProvider.class,
 configClass = MyCustomNode.Config.class)
 public class MyCustomNode extends SingleOutcomeNode {

 public interface Config {
 String url();
 }

 private final Config config;
 private final MyCustomNodeCache cache;

 @Inject
 public MyCustomNode(@Assisted Config config, MyCustomNodeCache cache) {
 this.config = config;
 this.cache = cache;
 }

 @Override
 public Action process(TreeContext context) {
 CachedThing thing = cache.getThing(config.url());
 // implement node logic here
 }
}

https://www.javadoc.io/doc/com.google.inject/guice/4.2.1/com/google/inject/Inject.html
https://google.github.io/guice/api-docs/4.2.1/javadoc/com/google/inject/assistedinject/AssistedInject.html

The Node Class
Custom Guice Bindings

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 29

@Singleton
class MyCustomNodeCache {
 private final LoadingCache<String, CachedThing> cache =
 CacheBuilder.newBuilder()
 .build(CacheLoader.from(url -> read(url)));

 public CachedThing get(String url) {
 return cache.get(url);
 }

 private CachedThing read(String url) {
 // Access resource and construct
 }
}

Custom Guice Bindings

If just-in-time bindings are not sufficient for your use case, you can add your own Guice module into
the injector configuration by implementing your own com.google.inject.Module and registering it using
the service loader mechanism. For example:

com/example/MyCustomModule.java

public class MyCustomModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Thing.class).to(MyThing.class);
 // and so on
 }
}

META-INF/services/com.google.inject.Module

See https://docs.oracle.com/javase/tutorial/ext/basics/spi.html

com.example.MyCustomModule

The MyCustomModule object will then be automatically configured as part of the injector creation.

The Action Interface
The Action interface encapsulates changes to authentication tree state and flow control.

The Action interface uses the following fields:

callbacks

A list of the callbacks that have been requested by the node. This list may be null.

The Node Class
The Action Interface

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 30

errorMessage

A custom error message string that will be included in the response JSON if the authentication
tree reaches the Failure authentication node.

Each node in a tree can replace or update the error message string as the user traverses through
the authentication tree.

Note that your custom node or custom UI is responsible for localization of the error string, if
required.

outcome

The result of the node.

sessionProperties

A map of properties that will be added to the final session if the authentication tree completes
successfully.

Use the putSessionProperty(String key, String value) and removeSessionProperty(String key) methods
to add or remove entries from the map.

Node state

State that AM shares between nodes through the tree context; the properties set so far by nodes
in the tree.

See "Storing Values in Shared Tree State".

The methods provided within the Action interface are as follows:

goTo()

Specify the exit path to take, and move on to the next node in the tree.

For example:
return goTo(false).build();

See the goTo method in the AM 7.1.4 Public API Javadoc.

send()

Send the specified callbacks to the user for them to interact with.

For example, the Username Collector Node uses the following code to send the NameCallback
callback to the user to request the USERNAME value:

../apidocs/org/forgerock/openam/auth/node/api/Action.html#goTo-java.lang.String-

The Node Class
Storing Values in Shared Tree State

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 31

return send(new NameCallback(bundle.getString("callback.username"))).build();

See the send methods in the AM 7.1.4 Public API Javadoc.

sendingCallbacks()

Returns true if the action is a request for input from the user.

See the sendingCallbacks method in the AM 7.1.4 Public API Javadoc.

suspend()

Suspends the authentication tree, and allows the user to resume it from the point it was
suspended.

For example, the following call is taken from the Email Suspend Node:
return suspend(resumeURI -> createSuspendOutcome(context, resumeURI, recipient,
 templateObject)).build();

Use the SuspensionHandler interface for handling the suspension request.

For more information, see the suspend method in the AM 7.1.4 Public API Javadoc.

This example demonstrates an authentication level decision:
@Override
public Action process(TreeContext context) throws NodeProcessException {
 NodeState state = context.getStateFor(this);
 if (!state.isDefined(AUTH_LEVEL)) {
 throw new NodeProcessException("Auth level is required");
 }
 JsonValue authLevel = state.get(AUTH_LEVEL);
 boolean authLevelSufficient =
 !authLevel.isNull()
 && authLevel.asInteger() >= config.authLevelRequirement();
 return goTo(authLevelSufficient).build();
}

For more information, see the Action class in the AM 7.1.4 Public API Javadoc.

Storing Values in Shared Tree State

Tree state exists for the lifetime of the authentication session. Once tree execution is complete, the
authentication session is terminated and a user session is created. The purpose of tree state is to hold
state between the nodes.

A good example is the Username Collector Node, which gets the user name from the user and stores
it the shared tree state. Later, the Data Store Decision Node can pull this value from shared tree
state and use it to authenticate the user.

../apidocs/org/forgerock/openam/auth/node/api/Action.html#send(javax.security.auth.callback.Callback...)
../apidocs/org/forgerock/openam/auth/node/api/Action.html#sendingCallbacks()
../apidocs/org/forgerock/openam/auth/node/api/SuspensionHandler.html
../apidocs/org/forgerock/openam/auth/node/api/Action.html#suspend(org.forgerock.openam.auth.node.api.SuspensionHandler)
../apidocs/org/forgerock/openam/auth/node/api/Action.html

The Node Class
Storing Values in Shared Tree State

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 32

Authentication sessions when using chains and modules are stateful - the AM server that starts the
authentication flow must not change. A load balancer cookie is set on the responses to the user to
ensure the same AM server is used.

In contrast, authentication trees can be made stateless, so that any AM instance in a deployment can
continue the authentication session.

For more information on configuring sessions, see Sessions Guide.

Storing Values in a Tree's Node State
Always store the authentication state in the NodeState object that AM lets you access from the
TreeContext object passed to the node's action() method. AM ensures that the node state is made
available to downstream nodes:

• Store non-sensitive information with the NodeState.putShared() method.

• Store sensitive information, such as passwords, with the NodeState.putTransient() method.

AM encrypts the transient state with the key that has the am.authn.trees.transientstate.encryption
secret ID. Downstream consumers, such as IDM user self-service nodes, must have the same key to
decrypt and read it.

To ensure that the authentication flow is not bloated with calls to encrypt/decrypt data, and to
ensure the authentication session size stays small, limit what you store with putTransient(). This is
especially true when the realm is configured for client-based authentication sessions.

Setting and Getting Values Stored in Tree State
Internally, AM distinguishes the following node state data:

• Shared state, where nodes store non-sensitive information that needs to be available during the
authentication flow.

You store this with the NodeState.putShared() method.

• Transient state, where nodes store sensitive information that AM encrypts on round trips to the
client needs.

You store this with the NodeState.putTransient() method.

• Secure state, where nodes store decrypted transient state.

For details, see NodeState.

To Set Values in Tree State

• To set node state values, get the NodeState using Then, use the NodeState.putShared() and NodeState.
putTransient() methods as described above.

../apidocs/org/forgerock/openam/auth/node/api/NodeState.html

The Node Class
Accessing an Identity's Profile

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 33

For example:
public Action process(TreeContext context) {
 String username;
 String password;
 // ...
 NodeState state = context.getStateFor(this);
 state.putShared(USERNAME, username); // Non-sensitive information
 state.putTransient(PASSWORD, password); // Sensitive information
 if (!state.isDefined(OPTIONAL_NUMERIC)) { // Check before updating
 state.putShared(OPTIONAL_NUMERIC, 42);
 }
 goToNext().build();
 }

To Get Values in Tree State

• To read node state values, use the NodeState.ifDefined(String key) and NodeState.get(String key)
methods.

For example:
// Getting values from NodeState
public Action process(TreeContext context) {
 NodeState state = context.getStateFor(this);
 String username;
 if (state.isDefined(USERNAME)) {
 username = state.get(USERNAME);
 } else {
 throw new NodeProcessException("Username is required");
 }
 // ...
 goToNext().build();
}

The get(String key) method retrieves the state for the key from NodeState states in the following
order:

1. transient

2. secure

3. shared

For example, if the same property is stored in the transient and shared states, the method returns
the value of the property in the transient state first.

Accessing an Identity's Profile
AM allows a node to read and write data to and from an identity's profile. This is useful if a node
needs to store information more permanently than when using either the authentication trees'
NodeState, or the identity's session.

The Node Class
Accessing an Identity's Profile

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 34

Warning

Any node which reads or writes to an identity's profile must only occur in a tree after the identity has been
verified. For example, as the final step in a tree, or directly after a Data Store Decision Node.

To read an identity's profile from a realm, use the IdUtils static class:
AMIdentity id = IdUtils.getIdentity(username, realm);

Tip

Wrap the method call in an instantiable class to ease testing.

If AM is configured to search for the identity's profile using a different search attribute to the default,
provide the attributes as a third argument to the method.

To obtain the attributes you could request them in the configuration of the node, or obtain them from
the realm's authentication service configuration.

The following example demonstrates how to obtain the user alias:
public AMIdentity getIdentityFromSearchAlias(String username, String realm) {
 ServiceConfig serviceConfig = coreWrapper
 .getServiceConfigManager(ISAuthConstants.AUTH_SERVICE_NAME,
 AccessController.doPrivileged(AdminTokenAction.getInstance()))
 .getOrganizationConfig(realm);

 Set<String> realmAliasAttrs = serviceConfig.getAttributes()
 .get(ISAuthConstants.AUTH_ALIAS_ATTR);

 return IdUtils.getIdentity(username, realm, realmAliasAttrs);
}

By combining these approaches, you can search for an identity by using the ID and whichever
configured attribute field(s) as necessary.

Reading Values from an Identity's Profile

• To read individual specific attribute values from a profile, after obtaining the profile, use the
AMIdentity#getAttribute(String name) method.

Writing Values to an Identity's Profile

• To write a value into an identity's profile, create a Map<String, Set<String>> structure of the
attributes you wish to write, as follows:
Map<String, Set<String>> attrs = new HashMap<>();
attrs.put("attribute", Collections.singleton("value"));
user.setAttributes(attrs);
user.store();

The Node Class
Creating and Managing Callbacks

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 35

Creating and Managing Callbacks

Callbacks are the method that nodes use to obtain interaction with the authenticating user.

Calling the getCallbacks() method on a TreeContext - the sole argument to the process() method of a
node - returns a list of all the callbacks that have just been displayed in the UI.

Callbacks must implement the javax.security.auth.callback.Callback interface, although there are
already many convenient existing implementations in the package and you may not need to create
your own.

Below is an example of multiple callbacks that have been created by a node and passed to the UI:

The Node Class
Creating and Managing Callbacks

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 36

In order to process responses to callbacks, it is necessary to know which callback is at which position
in the list. You can find the position of the callbacks created by the current node by using the
constant properties for each callback position in the processing node.

If the callbacks were created in previous nodes, their positions must be stored in the shared state
before subsequent nodes can use them.

The following is the code that created the UI displayed in the previous image:
ImmutableList.of(
 new TextOutputCallback(messageType, message.toUpperCase()),
 new PasswordCallback(bundle.getString("oldPasswordCallback"), false),
 new PasswordCallback(bundle.getString("newPasswordCallback"), false),
 new PasswordCallback(bundle.getString("confirmPasswordCallback"), false),
 confirmationCallback
);

Note that the order of callbacks defined in code is preserved in the UI.

Sending and Executing JavaScript in a Callback

A node can provide JavaScript for execution on the client side browser.

For example, the following is a simple JavaScript script named hello-world.js:
alert("Hello, World!");

Execute the script on the client by using the following code:
String helloScript = getScriptAsString("hello-world.js");
ScriptTextOutputCallback scriptCallback = new ScriptTextOutputCallback(helloScript);
ImmutableList<Callback> callbacks = ImmutableList.of(scriptCallback);
return send(callbacks).build();

Variables can be injected using your favorite Java String utilities, such as String.format(script,
 myValue).

To retrieve the data back from the script, add HiddenValueCallback to the list of callbacks sent to the
user, as follows:

 HiddenValueCallback hiddenValueCallback = new HiddenValueCallback("myHiddenOutcome", "false");

The JavaScript needs to add the required data to the HiddenValueCallback and submit the form, for
example:
document.getElementById('myHiddenOutcome').value = "client side data"
 document.getElementById("loginButton_0").click();

In the process method of the node, retrieve the hidden callback as follows:

The Node Class
Handling Multiple Visits to the Same Node

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 37

Optional<String> result = context.getCallback(HiddenValueCallback.class)
 .map(HiddenValueCallback::getValue)
 .filter(scriptOutput -> !Strings.isNullOrEmpty(scriptOutput));

if (result.isPresent()) {
 String myClientSideData = result.get();
}

Handling Multiple Visits to the Same Node

Authentication flow can return to the same decision node by using two different methods.

The first method is to route the failure outcome through a Retry Limit Decision Node. This node can
limit how many times a user can enter incorrect authentication details. In these instances, the user is
returned to re-enter their information; for example, back to an earlier Username Collector Node.

The second method involves routing directly back to the currently processing node. To achieve this,
use the Action.send() method, rather than Action.goTo(). The Action.goTo method passes control onto the
next node in the tree. The Action.send() method takes a list of callbacks which you can construct in the
current node. The return value is an ActionBuilder, which can be used to create an Action, as follows:
ActionBuilder action = Action.send(ImmutableList.of(new ChoiceCallback(), new ConfirmationCallback()));

A typical example of returning to the same node is a password change screen where the user
must enter their current password, new password, and new password confirmation. The node that
processes these callbacks needs to remain on the screen and display an error message if any of the
data entered by the user is incorrect. For example, if the new password and password confirmation
do not match.

When a ConfirmationCallback is invoked on a screen that was produced by Action.send(), it will always
route back to the node that created it. Once the details are valid, return an Action created using
Action.goTo() and tree processing can continue as normal.

Handling Errors
This section covers error handling in authentication nodes, including how to report errors to end
users and tree administrators, as well as handling unrecoverable errors.

Authentication trees provide a number of ways to output error messages to the user:

Authentication Errors

The most common error to display is a message in the event of an unsuccessful authentication. In an
authentication tree, this occurs when the authentication process terminates at the failure node:

The Node Class
Unrecoverable Errors

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 38

Unrecoverable Errors

By default, when a catastrophic error occurs during node processing, a NodeProcessException exception
should be thrown, which halts the authentication journey immediately, and displays a generic error
message. This may not be desirable, as it could create a negative user experience.

Instead, errors that occur during node processing should be be caught within the processing block of
the node's code, and the user should be routed to an erroneous state outcome. It may be appropriate
to have a single error outcome, multiple error outcomes, or no error outcome at all, depending on the
node.

It is valuable to store information about the cause of the error in the shared state, in case a node
further along the tree processes it. This information should include error text to display to the user.
If the shared state is used for this purpose, it is important to document not only the meaning of the
various outcomes, but also the keys used to store information in the shared state.

Configuration Errors

You can display error messages to the tree administrator; for example, when a configuration property
of a node is required, but not provided.

To automatically display an appropriate error message when required values are missing, annotate
your config property with @RequiredValueValidator, as follows:
@Attribute(order = 300, validators = {RequiredValueValidator.class})
Set<String> accountSearchBaseDn();

To control the messages displayed on error, ensure there is a .properties file under src/main/resources/
org.forgerock.openam.auth.nodes with the same name as your node class. For more information,
see"Internationalization".

The Plugin Class

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 39

Chapter 4

The Plugin Class
The plugin class is responsible for informing AM about the details of the customized authentication
node. There is little variation between the plugin class for each authentication node, other than the
version number and class names within.

Authentication nodes are installed into the product using the AM plugin framework. All AM plugins
are created by implementing org.forgerock.openam.plugins.AmPlugin interface and then registering it
using the Java service architecture - placing a file in META-INF/services.

For plugins that provide authentication nodes there is an abstract implementation of the AmPlugin
interface named org.forgerock.openam.auth.node.api.AbstractNodeAmPlugin.

The following is an example of the plugin class for an authentication node:

public class MyCustomNodePlugin extends AbstractNodeAmPlugin {

 private static String currentVersion = "1.0.0";

 @Override
 protected Map<String, Iterable<? extends Class<? extends Node>>>
 getNodesByVersion() {
 return Collections.singletonMap("1.0.0", Collections.singletonList(MyCustomNode.class));
 }

 @Override
 public String getPluginVersion() {
 return MyCustomNodePlugin.currentVersion;
 }
}

Name the plugin class after the core class, and append Plugin. For example, MyCustomNodePlugin.
Provide a version number for the authentication node.
Ensure a call to the getNodesByVersion() function returns the core classes of the authentication
nodes to register. In this example the version is 1.0.0, and there is just one node being registered
as that version.

AM plugins are notified of the following events:

onInstall

The plugin has been found during AM startup, and is being installed for the first time. It should
create all the services and objects it needs.

The Plugin Class
Upgrading Nodes and Configuration Changes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 40

onStartup(StartupType startupType)

The plugin is installed and is being started. Any dependency plugins can be relied on as having
been started.

The type of startup is provided:

• FIRST_TIME_INSTALL. The AM instance has been installed for the first time.

• FIRST_TIME_DEMO_INSTALL. The AM deployment has been installed for the first time, using an
embedded data store as the config and user stores.

• NORMAL_STARTUP. The AM instance is starting from a previously installed state, or is joining an
already installed cluster.

onShutdown

The AM instance is in the process of shutting down cleanly. Any resources the plugin is using
should be released and cleaned up.

upgrade(String fromVersion)

An existing version of the plugin is installed, and a new version has been found during startup.
The plugin should make any changes it needs to the services and objects used in the previous
version, and create all the services and objects required by the new version.

The version of the plugin being upgraded is provided.

onAmUpgrade(String fromVersion, String toVersion)

An AM system upgrade is in progress. Any updates needed to accommodate the AM upgrade
should be made.

Plugin-specific upgrade should not be made here, as upgrade will be called subsequently if the
plugin version has also changed.

The AM version being upgraded from, and to, are provided.

The plugin is responsible for maintaining a version number for its content, which is used for
triggering appropriate events for installation and upgrade.

For more information, see amPlugin in the AM 7.1.4 Public API Javadoc.

Upgrading Nodes and Configuration Changes
Over time, it may become necessary to change the schema of the configuration for your node.

../apidocs/org/forgerock/openam/plugins/AmPlugin.html

The Plugin Class
Upgrading Simple Node Configuration Schema Changes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 41

When this happens, the changes must be propagated to the AM configuration system. To ensure
an update of the AM configuration, use either of the following methods, depending on the stage of
development:

1. In the development stage, give your nodes the special version number 0.0.0. Any AM configuration
created by nodes that have this special version number is wiped on each restart of AM.

Important

If you are using custom nodes with version 0.0.0 in trees, you must remove them from the trees before
restarting AM and reinsert them after the restart. If you do not do this, the entire tree cannot be viewed in
the UI after the restart.

2. After moving to production and switching to semantic versioning, you must write upgrade
functions into the node to locate existing configuration and convert it to the new schema.

For information on upgrading schema in production mode, see "Upgrading Simple Node
Configuration Schema Changes" and "Upgrading Complex Node Configuration Schema Changes".

Upgrading Simple Node Configuration Schema Changes

This section explains how to upgrade nodes with simple schema changes. For example, changing an
attribute to a compatible type.

When configuration schema changes are simple, call the PluginTools#upgradeAuthNode(Class) method in
the upgrade method of your plugin, as follows:
@Override
public void upgrade(String fromVersion) throws PluginException {
 pluginTools.upgradeAuthNode(MyCustomNode.class);
}

Examples of simple schema changes include:

• Changing the type of an attribute to one that is backwards-compatible with any existing values. For
example changing an integer to a string type, or T to Set<T>.

• Adding a new attribute that has a default value defined. For example:
public class MyCustomNode implements Node {
 public interface Config {
 @Attribute(order = 1)
 String existingAttribute();
 @Attribute(order = 2)
 default Integer newAttribute() {
 return 5;
 }
 }
 // ...
}

The Plugin Class
Upgrading Complex Node Configuration Schema Changes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 42

Upgrading Complex Node Configuration Schema Changes

This section explains how to upgrade nodes that are changing the configuration schema such
that existing values would clash with the new schema. For example, changing an attribute to an
incompatible type.

When configuration schema changes are complex, use the API provided in the com.sun.identity.sm
package, as detailed below.

In this example, version 1.0.0 of a node has the following configuration schema:
public interface Config {
 @Attribute(order = 1)
 String name();
}

Version 2.0.0 of the node requires the user's given name and family name separately, rather than
simply a name string.

The config for version 2.0.0 is as follows:
public interface Config {
 @Attribute(order = 1)
 String givenName();

 @Attribute(order = 2)
 String familyName();
}

To upgrade this example node configuration, find all existing instances of configuration created by
the version 1.0.0 node, find the current values for the name attribute, and split it on the first space
character to use in the two new attributes.

The following code shows how to upgrade the schema of this example node:
@Override
public void upgrade(String fromVersion) throws PluginException {
 try {
 SSOToken token = coreWrapper.getAdminToken();
 String serviceName = MyCustomNode.class.getSimpleName();
 ServiceConfigManager configManager = new ServiceConfigManager(serviceName, token);

 // Read all the values from all node in all the realms that will need replacing
 OrganizationConfigManager realmManager = new OrganizationConfigManager(token, "/");
 Set<String> realms = ImmutableSet.<String>builder()
 .add("/")
 .addAll(realmManager.getSubOrganizationNames("*", true))
 .build();
 Map<Pair<Realm, String>, String> oldValues = new HashMap<>();
 for (String realm : realms) {
 ServiceConfig container = configManager.getOrganizationConfig(realm, null);
 for (String nodeId : container.getSubConfigNames()) {
 ServiceConfig nodeConfig = container.getSubConfig(nodeId);
 String name = nodeConfig.getAttributes().get("name").iterator().next();
 oldValues.put(Pair.of(Realms.of(realm), nodeId), name);
 }

The Plugin Class
Upgrading Complex Node Configuration Schema Changes

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 43

 }

 // Do the upgrade of the schema
 pluginTools.upgradeAuthNode(MyCustomNode.class);

 // Remove the old value and set the new values
 for (Map.Entry<Pair<Realm, String>, String> nameForUpdate : oldValues.entrySet()) {
 String realm = nameForUpdate.getKey().getFirst().asPath();
 String nodeId = nameForUpdate.getKey().getSecond();
 String name = nameForUpdate.getValue();
 int spaceIndex = name.indexOf(" ");

 ServiceConfig container = configManager.getOrganizationConfig(realm, null);
 ServiceConfig nodeConfig = container.getSubConfig(nodeId);
 nodeConfig.removeAttribute("name");
 nodeConfig.setAttributes(ImmutableMap.of(
 "givenName", singleton(name.substring(0, spaceIndex)),
 "familyName", singleton(name.substring(spaceIndex + 1))));
 }
 } catch (SSOException | SMSException | RealmLookupException e) {
 throw new PluginException("Could not upgrade", e);
 }
 super.upgrade(fromVersion);
}

Internationalization

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 44

Chapter 5

Internationalization
Internationalization (i18n) of content targets both the end user and the node administrator. Messages
sent to users and other UI can be internationalized.

Additionally, error messages and administrator-facing UI can be internationalized using the same
mechanism for better operator experience.

Internationalized nodes use the locale of the request to find the correct resource bundle, with a
default fallback if none is found.

To Localize Node UI Text

1. Create a Java resource bundle under the resources folder in the Maven project for your node.

The path and filename must match that of the core class that will use the translated text.

For example, the resource bundle for the Username Collector Node is located in the following
path: src/main/resources/org/forgerock/openam/auth/nodes/UsernameCollectorNode

Example Resource Bundle

Internationalization

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 45

2. Add the properties and strings that the node will display to the user. For example:
callback.username=User Name

3. Create a .properties file in the resource bundle for each language your node will display. The
filename must include the language identifier, as per rfc5646 - Tags for Identifying Languages.

For example, for French translations your .properties file could be called UsernameCollectorNode_fr.
properties.

4. Replicate the properties and translate the values in each .properties files. For example:
callback.username=Nom d'utilisateur

5. In the core class for your node, specify the path to the resource bundle from which the node will
retrieve the translated strings:
private static final String BUNDLE =
 "org/forgerock/openam/auth/nodes/UsernameCollectorNode"

6. Define a reference to the bundle using the getBundleInPreferredLocale function to enable retrieval of
translated strings:
ResourceBundle bundle = context.request.locales.getBundleInPreferredLocale(BUNDLE,
 getClass().getClassLoader());

7. Use the getString function whenever you need to retrieve a translation from the resource bundle:
return send(new NameCallback(bundle.getString("callback.username"))).build();

https://datatracker.ietf.org/doc/html/rfc5646

Building and Installing

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 46

Chapter 6

Building and Installing
This section explains how to build and install authentication nodes for use in authentication trees.

To Build and Install Custom Authentication Nodes

1. Change to the root directory of the Maven project of the custom nodes. For example:
$ cd /Users/Forgerock/Repositories/am-external/openam-auth-trees/auth-nodes

2. Run the mvn clean package command.

The project will generate a .jar file containing your custom nodes. For example, auth-
nodes-7.1.4.jar.

3. Copy the .jar file to the WEB-INF/lib/ folder where AM is deployed:
$ cp auth-nodes-7.1.4.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

Note

Delete or overwrite older versions of the nodes .jar file from the WEB-INF/lib/ folder, to avoid clashes.

4. Restart AM for the new nodes to become available.

The custom authentication node is now available in the tree designer to add to authentication
trees:

Building and Installing

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 47

Custom Node within a Tree

For more information on using the tree designer to manage authentication trees, see
"Configuring Authentication Trees" in the Authentication and Single Sign-On Guide.

For information on upgrading custom nodes, see "Upgrading Nodes and Configuration Changes".

Maintaining Authentication Nodes
Testing

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 48

Chapter 7

Maintaining Authentication Nodes
This chapter covers post-installation tasks relating to authentication nodes, such as testing,
debugging, auditing, and performance monitoring.

Testing
You can test authentication nodes in numerous ways. For example, you can use unit tests, functional
tests, and perform exploratory or manual testing.

Authentication nodes are well suited to tests which have a high percentage of code coverage. The
low amount of static dependencies mean that unit testing of the node class itself can occur, rather
than simply the business logic classes, as was the case for modules. Furthermore, as nodes should be
significantly smaller than modules, testing iterations should be much shorter.

Unit Tests

Your unit tests should aim for an appropriately high level percentage of coverage of the code. Unit
testing becomes easier with nodes, as most of the business logic is defined by the tree layout, rather
than in the nodes themselves.

At minimum, the process(TreeContext context) method should be tested to ensure that all appropriate
code paths are triggered based on the existence, or lack of, appropriate values in the shared state
and callbacks.

The TreeContext class and contents have been designed to make sure they are simple to use in unit
tests, without the need to resort to mocking.

Functional Tests

Functional tests involve deploying the node into an AM instance and testing it using the
authentication REST API. They should be written to cover all normal flows through the node.

All the appropriate code paths discovered through unit testing should be functionally tested to ensure
that helper, utility, and related mechanisms function as expected.

Additionally, functional tests will ensure that the business logic is correctly called and processed as
expected.

Maintaining Authentication Nodes
Manual Testing

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 49

Tip

Mocking expected services may be useful when functionally testing nodes that call out to third-party services.

Manual Testing

Manual testing should occur both during and after node development.

During development, it is expected a node developer will frequently load and reload nodes to ensure
they operate as expected, including configuration and execution, as well as any expected error
conditions.

After development, manual testing should continue in an exploratory fashion. Simply using a node
numerous times can often highlight areas left unpolished, or particular usability issues that may be
missed by automated testing.

Debugging
Add debug logging to your custom node to help administrators and support staff investigate any
issues which may arise in production.

To add debug logging to a node, obtain a reference to the amAuth SLF4J Logger instance.

For example, you can assign the logger to a private field as follows:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

// ...

private final Logger logger = LoggerFactory.getLogger("amAuth");

Note

Consider the logging level you use - over use of the error or warning level can cause debug logs to fill, and even
affect performance if your node is used frequently.

You can also use the SLF4J varargs methods to defer string concatenation to SLF4J. This means string
concatenation can be skipped if the configured logging level means that your message will not be
written.

The following example uses the debug level:
logger.debug("authLevelSufficient {}", authLevelSufficient);

Maintaining Authentication Nodes
Auditing

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 50

Auditing
Audit logging helps administrators to investigate user and system behavior.

AM records all incoming calls as access events. Additionally, in order to capture further details
regarding authentication flows, AM records an authentication audit event for each node, and the tree
outcome.

A node can provide extra data to be included in the standard audit event which is logged when an
authentication node completes.

AM logs an AM-NODE-LOGIN-COMPLETED audit event each time an authentication node completes. To add
extra information to this audit event, override the node interface method getAuditEntryDetail.

For example, the Retry Limit Decision Node overrides this method to record how many retries
remain:
@Override
public JsonValue getAuditEntryDetail() {
 return json(object(field("remainingRetries",
 String.valueOf(retryLimitCount))));
}

When this node is processed, it results in an audit event similar to the following:
{
 "realm": "/",
 "transactionId": "45453155-cf94-4e23-8ee9-ecdfc9f97e12-1785617",
 "component": "Authentication",
 "eventName": "AM-NODE-LOGIN-COMPLETED",
 "entries": [
 {
 "info": {
 "nodeOutcome": "Retry",
 "treeName": "Example",
 "displayName": "Retry Limit Decision",
 "nodeType": "RetryLimitDecisionNode",
 "nodeId": "bf010b6b-61f8-457e-80f3-c3678e5606d2",
 "authLevel": "0",
 "nodeExtraLogging": {
 "remainingRetries": "2"
 }
 }
 }
],
 "timestamp": "2018-08-24T09:43:55.959Z",
 "trackingIds": [
 "45453155-cf94-4e23-8ee9-ecdfc9f97e12-1785618"
],
 "_id": "45453155-cf94-4e23-8ee9-ecdfc9f97e12-1785622"
}

The result of the getAuditEntryDetail method is stored in the nodeExtraLogging field.

Maintaining Authentication Nodes
Monitoring

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 51

Monitoring
You can track authentication flows which complete with success, failure, or timeout as an outcome
by using the metrics functionality built-in to AM. For more information, see "Monitoring Instances" in
the Maintenance Guide.

You can also use the following nodes in a tree to create custom metrics:

• Meter Node

• Timer Start Node

• Timer Stop Node

Troubleshooting

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 52

Chapter 8

Troubleshooting
This chapter offers solutions to issues that may occur when developing authentication nodes.

Q: I installed my node in AM. Why doesn't it appear in the authentication tree designer?

A: The authNodeName.properties file for your node must include a nodeDescription property to ensure
that that your node appears in the authentication tree designer.

AM uses the nodeDescription property value as the name of your node.

Q: How do I get new attributes to appear in the node after the service has been loaded once?

A: See "Upgrading Nodes and Configuration Changes".

Q: What type of exception should I throw so that the framework handles it gracefully?

A: To display a custom message to the user, exceptions must be handled inside the node and an
appropriate information callback returned. For more information, see "Handling Errors".

Q: Do I need multiple projects/jars for multiple nodes?

A: No - you can bundle multiple nodes into one plugin, which should be deployed in one single .jar
file.

See "Building and Installing".

Q: What ForgeRock utilities exist for me to use to assist in the node building experience?

A: A number of utilities are available for use in your integrations and custom nodes.

See the AM 7.1.4 Public API Javadoc.

Q: Transient State vs Shared State - When should I use one or the other?

A: Transient state is used for secret values that should not persist. See "Storing Values in Shared
Tree State".

Q: If my service collects a username in a different way from the Username Collector Node, where
do I put the username from the framework to get the principal?

A: See "Accessing an Identity's Profile".

Q: Where do I go for examples of authentication nodes?

../apidocs/

Troubleshooting

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 53

A: There are many public examples of ForgeRock community nodes at https://github.com/
ForgeRock.

Examples of community nodes written by third parties may be found on the ForgeRock
Marketplace.

For information on downloading and building AM sample source code, see How do I access and
build the sample code provided for AM (All versions)? in the Knowledge Base.

https://github.com/ForgeRock
https://github.com/ForgeRock
https://backstage.forgerock.com/marketplace/catalogDisplay?from=0&project=openam&category=authentication&subCategory=authTreeNode
https://backstage.forgerock.com/marketplace/catalogDisplay?from=0&project=openam&category=authentication&subCategory=authTreeNode
https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 54

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 55

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 56

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 57

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IDP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 58

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

Authentication Node Development Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 59

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	Authentication Node Development Guide
	Table of Contents
	Overview
	Chapter 1. About Authentication Nodes
	Types of Nodes
	Differences Between Modules and Nodes
	Converting Modules to Nodes
	Determining the Functionality of a Node

	Chapter 2. Preparing for Development
	The Maven Project for an Authentication Node

	Chapter 3. The Node Class
	The Meta Data Annotation
	The Node Interface
	The Config Interface
	Sharing Configuration Between Nodes
	Creating a Shared Auxiliary Service
	Referencing a Shared Auxiliary Service Instance
	Reinstalling a Shared Auxiliary Service Instance
	Allowing Multiple Instances of an Auxiliary Service
	Obtaining Configuration of Services Built-in to AM
	Obtaining the Configuration from an Annotated Service
	Obtaining the Configuration from a Legacy Service

	Injecting Objects Into a Node Instance
	Using a Cache
	Custom Guice Bindings

	The Action Interface
	Storing Values in Shared Tree State
	Storing Values in a Tree's Node State
	Setting and Getting Values Stored in Tree State

	Accessing an Identity's Profile
	Creating and Managing Callbacks
	Sending and Executing JavaScript in a Callback

	Handling Multiple Visits to the Same Node

	Handling Errors

	Chapter 4. The Plugin Class
	Upgrading Nodes and Configuration Changes
	Upgrading Simple Node Configuration Schema Changes
	Upgrading Complex Node Configuration Schema Changes

	Chapter 5. Internationalization
	Chapter 6. Building and Installing
	Chapter 7. Maintaining Authentication Nodes
	Testing
	Debugging
	Auditing
	Monitoring

	Chapter 8. Troubleshooting
	Glossary

