
OpenID Connect 1.0 Guide
/ ForgeRock Access Management 7.1.4

Latest update: 7.1.4

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2021 ForgeRock AS.

Abstract

Guide showing you how to use OpenID Connect 1.0 with ForgeRock® Access Management
(AM). ForgeRock Access Management provides intelligent authentication, authorization,
federation, and single sign-on functionality.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... iv
1. AM as the OpenID Provider .. 1

OpenID Connect Discovery .. 4
Security Considerations ... 5
About Token Storage Location .. 5

2. OpenID Provider Configuration ... 7
Encrypting ID Tokens and Backchannel Logout Tokens ... 9

3. About Claims ... 12
Scripting OpenID Connect 1.0 Claims ... 15

4. Dynamic Client Registration .. 19
Dynamic Client Registration Management ... 29

5. OpenID Connect Client Authentication .. 35
6. OpenID Connect Grant Flows .. 36

Authorization Code Grant .. 37
Authorization Code Grant with PKCE .. 46
Backchannel Request Grant ... 56
Implicit Grant .. 65
Hybrid Grant ... 72

7. Managing OpenID Connect User Sessions ... 81
Checking the State of a Session, and Invalidating Sessions 81
Informing Relying Parties that a Session has Expired .. 85

8. Adding Authentication Requirements to ID Tokens .. 94
The Authentication Context Class Reference (acr) Claim 94
The Authentication Method Reference (amr) Claim .. 100

9. GSMA Mobile Connect .. 104
10. Additional Use Cases for ID Tokens ... 107

Using ID Tokens as Session Tokens ... 107
Using ID Tokens as Subjects in Policy Decision ... 108

11. OpenID Connect 1.0 Endpoints .. 109
/oauth2/userinfo ... 110
/oauth2/idtokeninfo .. 111
/oauth2/connect/checkSession .. 114
/oauth2/connect/endSession ... 115
/oauth2/register ... 116
/.well-known/webfinger .. 117
/oauth2/.well-known/openid-configuration .. 118
/oauth2/connect/jwk_uri ... 119
/oauth2/connect/rp/jwk_uri ... 126

Glossary ... 130

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iv

Overview
This guide covers concepts, configuration, and usage procedures for working with OpenID Connect
1.0 and ForgeRock Access Management.

Quick Start

Configuration

Configure the OAuth 2.0
authorization server to

double as OpenID provider.

Dynamic Client Registration

Discover how clients can
register and manage their
information dynamically.

OpenID Connect Flows

Discover the OpenID Connect flows
and how to implement them in AM.

Authentication Requirements

Require users to satisfy
different rules or conditions
when authenticating during

OpenID Connect flows.

Scopes and Claims

Learn about OpenID claims,
scope-derived claims, and

how to request them to AM.

OpenID Connect Endpoints

Learn about the endpoints that
AM exposes when acting as

an OpenID Connect Provider.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

AM as the OpenID Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 1

Chapter 1

AM as the OpenID Provider
In its role as OpenID provider, AM returns ID tokens to relying parties. Since OpenID Connect builds
on top of OAuth 2.0, when AM is configured as an OpenID provider it can also return access and
refresh tokens to the relying parties, if needed.

Tip

Before configuring OpenID Connect in your environment, ensure you are familiar with the OAuth 2.0 standards
and AM's implementation of OAuth 2.0.

+ OpenID Connect Concepts

OpenID Connect 1.0 is an identity layer built on OAuth 2.0. It enables clients to verify the identity
of users based on the authentication performed by OAuth 2.0 authorization servers, as well as to
obtain profile information about the user using REST.

The following sequence diagram demonstrates the basic OpenID Connect flow:

OpenID Connect 1.0 Protocol Flow

End User

End User

Relying Party

Relying Party

OpenID Provider
(AM)

OpenID Provider
(AM)

1) Authent icat ion request. Redirect...

2) ... for authent icat ion

3) Authent icat ion and authorizat ion request

4) Authent icates, authorizes operat ion

5) Responds with ID token and usually, access token

Optional

6) Request with access token to the oauth2/ userinfo endpoint to access user data

7) Responds with claims about the end- user

OpenID Connect clients can register to the provider and manage their client data dynamically.

http://openid.net/connect/

AM as the OpenID Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 2

To let clients discover the end user's OpenID Connect provider, its endpoints, and how to interact
with it, AM supports OpenID Connect Discovery 1.0.

+ OAuth 2.0 or OpenID Connect?

Both standards were created under the premise of users having the need to interact with a third
party service, but aim to solve different problems:

OAuth 2.0 and OpenID Connect Comparison

 OAuth 2.0 OpenID Connect
Purpose To provide users with a mechanism to

authorize a service to access and use a
subset of their data on their behalf, in a
secure way.

Users must agree to provide access under
the service's term and conditions (for
example, for how long the service has
access to their data, and the purpose that
data would be used for).

To provide users with a mechanism to
authenticate to a service by providing it
with a subset of their data in a secure way.

Since OpenID Connect builds on top of
OAuth 2.0, users authorize a relying party
to collect a subset of their data (usually
information stored in the end user's
profile) from a third party. The service
then uses this data to authenticate the
user and provide its services.

This way, the user can employ the relying
party's services even if they have never
created an account on it.

Use Cases Use-cases are generic and can be tailored
to many needs, but an example is a user
allowing a photo print service access to a
third-party server hosting their pictures,
so the photo print service can print them.

The most common scenario is using social
media credentials to log in to a third-party
service provider.

Tokens Access and refresh tokens ID tokens
Regarding Scopes Concept to limit the information to share

with service or the actions the service can
do with the data. For example, the print
scope may allow a photo print service to
access photos, but not to edit them.

Scopes are not data, nor are related to
user data in any way.

Concept that can be mapped to specific
user data. For example, AM maps the
profile scope to a series of user profile
attributes. Since different identity
managers may present the information in
different attributes, the profile attributes
are mapped to OpenID Connect claims.

Claims are returned as part of the ID
token. In some circumstances, additional
claims can be requested in a call to the
oauth2/userinfo endpoint.

For more information about how AM
maps user profile attributes to claims, see
"About Claims".

AM as the OpenID Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 3

Another difference between the standards is the name of the actors. The names of the actors in
OpenID Connect 1.0 relate to those used in OAuth 2.0 as follows:

OAuth 2.0 and OpenID Connect Actors Comparison

OIDC Actor OAuth 2.0 Actor Description
End User Resource Owner

(RO)
The owner of the information the application needs to access.

The end user that wants to use an application through existing
identity provider account without signing up to and creating
credentials for yet another web service.

Relying Party (RP) Client The third-party that needs to know the identity of the end user
to provide their services. For example, a delivery company or a
shopping site.

OpenID Provider
(OP)

Authorization
Server (AS)

Resource Server
(RS)

A service that has the end user's consent to provide the RP with
access to some of its user information. As OpenID Connect 1.0
defines unique identification for an account (subject identifier
+ issuer identifier), the RP can use this as a key to its own user
profile.

In the case of an online mail application, this key could be used
to access the mailboxes and related account information. In the
case of an online shopping site, this key could be used to access
the offerings, account, shopping cart and so forth. The key makes
it possible to serve users as if they had local accounts.

AM can act as the OpenID Connect provider to authenticate end
users and provide RPs with information about the users in the
form of an OpenID Connect ID token.

AM supports the following OpenID Connect grant types and standards:

Grant Types

• Authorization Code

• Authorization Code with PKCE

• Back Channel Request

• Implicit

• Hybrid

• Hybrid with PKCE

For more information, see "OpenID Connect Grant Flows".

AM as the OpenID Provider
OpenID Connect Discovery

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 4

Standards

• Session Management and Logout

Relying parties can:

• Track whether end users are logged in at the provider using an invisible iframe and the
HTML 5 postMessage API.

• Initiate end user logout at the provider using an endpoint.

AM can also send logout tokens to relying parties when end user sessions linked to ID tokens
become invalid.

For more information, see "Managing OpenID Connect User Sessions".

• Discovery and Dynamic Client Registration

OpenID Connect defines how a relying party can discover the OpenID Provider and
corresponding OpenID Connect configuration for an end user. The discovery mechanism relies
on WebFinger to get the information based on the end user's identifier. The server returns the
information in JSON Resource Descriptor (JRD) format.

For more information, see "OpenID Connect Discovery" and "Dynamic Client Registration".

• Mobile Connect

Mobile Connect builds on top of OpenID Connect to facilitate the use of mobile phones as
authentication devices, offering a way for mobile network operators to act as identity providers.

For more information, see "GSMA Mobile Connect".

Tip

See the complete list of supported OpenID Connect in the Reference and OAuth 2.0 in the Reference standards.

OpenID Connect Discovery
In order to let relying parties (or clients) discover the OpenID Connect Provider for an end user, AM
supports OpenID Connect Discovery 1.0. In addition to discovering the OpenID Provider for an end
user, the relying party can also request the OpenID Provider configuration.

AM exposes the following REST endpoints for discovering the URL of the provider and its
configuration:

• "/oauth2/.well-known/openid-configuration"

• "/.well-known/webfinger"

AM as the OpenID Provider
Security Considerations

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 5

Discovery relies on WebFinger, a protocol to discover information about people and other entities
using standard HTTP methods. WebFinger uses Well-Known URIs, which defines the path prefix /.
well-known/ for the URLs defined by OpenID Connect Discovery.

Relying parties need to find the right host:port/deployment-uri combination to locate the well-known
endpoints. You must manage the redirection to AM using your proxies, load balancers, and others,
such that a request to http://www.example.com/.well-known/webfinger reaches, for example, https://openam.
example.com:8443/openam/.well-known/webfinger.

Once the relying party has discovered the URL of the provider, it can register with it dynamically. For
test purposes, or if it suits your environment better, you can also register them manually in the OAuth
2.0 Guide.

The /.well-known/webfinger endpoint is disabled by default. To enable it, perform the following steps:

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > OpenID
Connect.

2. Enable OIDC Provider Discovery.

3. Save your changes.

The discovery endpoint now allows searches for users within this realm only. Repeat this
procedure in as many realms as necessary.

Security Considerations
AM provides security mechanisms to ensure that OpenID Connect 1.0 ID tokens are properly
protected against malicious attackers: TLS, digital signatures, and token encryption.

While designing a security mechanism, you can also take into account the points developed in the
section on Security Considerations in the OpenID Connect Core 1.0 incorporating errata set 1
specification.

OpenID Connect 1.0 requires the protection of network messages with Transport Layer Security
(TLS). For information about protecting traffic to and from the web container in which AM runs, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

For additional security considerations related to the use of OAuth 2.0, see "Security Considerations"
in the OAuth 2.0 Guide.

About Token Storage Location
AM OpenID Connect and OAuth 2.0-related services are stateless unless otherwise indicated; they do
not hold any token information local to the AM instances.

https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-webfinger
https://datatracker.ietf.org/doc/html/rfc5785
https://openid.net/specs/openid-connect-core-1_0.html#Security

AM as the OpenID Provider
About Token Storage Location

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 6

Access and refresh tokens can be stored in the CTS token store or presented to the clients as JWTs.
However, OpenID Connect tokens and session information are managed in the following way:

• ID tokens are always presented as JWTs.

• OpenID Connect sessions are always stored in the CTS token store.

For more information about how to configure access and refresh token storage, see "About Token
Storage Location" in the OAuth 2.0 Guide in the OAuth 2.0 Guide.

OpenID Provider Configuration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 7

Chapter 2

OpenID Provider Configuration
You can configure AM's OAuth 2.0 provider service to double as an OpenID provider service.

To configure the OAuth 2.0 provider, follow the steps in "To Configure the OAuth 2.0 Provider
Service" in the OAuth 2.0 Guide. When you are finished, see "Additional Configuration" for OpenID
Connect-specific configuration.

Additional Configuration

The OpenID provider is highly configurable:

• To access the OAuth 2.0 provider configuration in the AM console, go to Realms > Realm Name >
Services, and then select OAuth2 Provider.

• To adjust global defaults, in the AM console, go to Configure > Global Services, and then click
OAuth2 Provider.

See the "OAuth2 Provider" in the Reference reference section for details on each of the fields in the
provider.

OpenID Connect Configuration Options

Task Resources
Configure the public keys for the provider

OpenID providers sign ID tokens so that clients can ensure their
authenticity. AM exposes the URI where clients can check the
signing public keys to verify the ID token signatures.

By default, AM exposes an internal endpoint with keys, but you
can configure the URI of your secrets API instead.

"/oauth2/connect/jwk_uri"

Enable the OpenID Connect Discovery endpoint

The discovery endpoint is disabled by default when you configure
the OAuth 2.0 provider. Enable the endpoint if your clients need
to discover the URL of the provider for a given user.

"OpenID Connect Discovery"

Configure pairwise subject types for dynamic registration

To provide different values to the sub claim in the ID token for
different clients (see Subject Identifier Types), configure the
Subject Types Supported map.

N/A

https://openid.net/specs/openid-connect-core-1_0.html#SubjectIDTypes

OpenID Provider Configuration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 8

Task Resources
Also, ensure that the value of the Subject Identifier Hash Salt
field is different from changeme.
Configure whether AM must return scope-derived claims in the
ID token

Scope-derived claims, such as those returned when requesting
the profile scope, are not returned in the ID token by default.

"About Claims"

Configure how AM maps scopes to claims and user profile
attributes

AM lets you map different user profile attributes to claims and
scopes by using the AM scripting engine.

"About Claims"

Configure the OpenID provider for discovery and dynamic client
registration/management

AM supports several methods of dynamic registration that offer
different security measures.

You can also register the clients manually in the OAuth 2.0
Guide.

"OpenID Connect Discovery"

Add authentication requirements to ID tokens

Require the end users to satisfy different authentication rules or
conditions when authenticating to the OpenID provider, such as
using a specific authentication tree.

"Adding Authentication Requirements to
ID Tokens"

Configure AM as part of a GSMA Mobile Connect deployment

Configure the OAuth 2.0 authorization server to double as a
Mobile Connect provider.

"To Configure AM for Mobile Connect"

Configure the secret AM uses to sign ID tokens and logout tokens

ID tokens and backchannel logout tokens are always signed.
By default, AM uses a test secret to sign them; change it in
production environments.

Secret ID Mappings for Signing OpenID
Connect Tokens in the Security Guide

Configure the OpenID provider to encrypt ID tokens and logout
tokens

ID tokens and backchannel logout tokens are only signed by
default. Consider encryption to protect them if they carry
sensitive information about your end users.

"Encrypting ID Tokens and Backchannel
Logout Tokens"

Configure the methods and algorithms available for signed or
encrypted JWTs in the request parameter

If your clients send request parameters to the authorization
endpoint as a JWT instead of as HTTP parameters, configure
the Request parameter signing algorithm field in the OpenID
provider.

Secret ID Mappings for Decrypting
OpenID Connect Request Parameters in
the Security Guide

OpenID Provider Configuration
Encrypting ID Tokens and Backchannel Logout Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 9

Task Resources
Note that the alias mapped to the encryption algorithms are
defined in the secret stores.

Encrypting ID Tokens and Backchannel Logout Tokens
AM supports encrypting ID tokens and backchannel logout tokens to protect them against tampering
attacks, which is outlined in the JSON Web Encryption specification (RFC 7516).

ID tokens and backchannel logout tokens share the same encryption configuration. In other words,
you encrypt neither, or both.

To Configure ID Token and Backchannel Logout Token Encryption

Perform the following steps to enable and configure encryption:

1. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name.

2. On the Signing and Encryption tab, select Enable ID Token Encryption.

3. In the Id Token Encryption Algorithm field, enter the algorithm AM will use to encrypt ID tokens
and backchannel logout tokens:

+ Supported Encryption Algorithms

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding (not recommended).

• dir - Direct encryption with AES using the hashed client secret.

• ECDH-ES - Elliptic Curve Diffie-Hellman

• ECDH-ES+A128KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 128-bit key.

• ECDH-ES+A192KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 192-bit key.

• ECDH-ES+A256KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 256-bit key.

• X25519 - Elliptic Curve Diffie-Hellman with Curve25519.

https://datatracker.ietf.org/doc/html/rfc7516

OpenID Provider Configuration
Encrypting ID Tokens and Backchannel Logout Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 10

• X448 - Elliptic Curve Diffie-Hellman with Curve448.

Only the P-256, P-384, and P-521 curves are supported.

4. In the ID Token Encryption Method field, enter the method AM will use to encrypt ID tokens and
backchannel logout tokens:

+ Supported Encryption Methods

• A128CBC-HS256 - AES 128-bit in CBC mode using HMAC-SHA-256-128 hash (HS256 truncated
to 128 bits)

• A192CBC-HS384 - AES 192-bit in CBC mode using HMAC-SHA-384-192 hash (HS384 truncated
to 192 bits)

• A256CBC-HS512 - AES 256-bit in CBC mode using HMAC-SHA-512-256 hash (HS512 truncated
to 256 bits)

• A128GCM - AES 128-bit in GCM mode

• A192GCM - AES 192-bit in GCM mode

• A256GCM - AES 256-bit in GCM mode

5. (Optional) If you selected an RSA encryption algorithm, perform one of the following actions:

• Enter the public key in the Client ID Token Public Encryption Key field.

• Enter a JWK set in the Json Web Key field.

• Enter a URI containing the public key in the Json Web Key URI field.

6. (Optional) If you selected an ECDH-ES encryption algorithm, perform one of the following
actions:

• Enter a JWK set in the Json Web Key field.

• Enter a URI containing the public key in the Json Web Key URI field.

7. (Optional) If you selected an algorithm different from RSA or ECDH-ES, go to the Core tab and
store the private key/secret in the Client Secret field.

Caution

Several features of OAuth 2.0 use the string stored in the Client Secret field to sign/encrypt tokens
or parameters when you configure specific algorithms. For example, signing ID tokens with HMAC

OpenID Provider Configuration
Encrypting ID Tokens and Backchannel Logout Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 11

algorithms, encrypting ID tokens with AES or direct algorithms, or encrypting OpenID Connect parameters
with AES or direct algorithms.

In this case, these features must share the key/secret stored in the Client Secret field, and you must ensure
that they are configured with the same algorithm.

About Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 12

Chapter 3

About Claims
OpenID Connect relies on claims to provide information about the end user to the relying parties.

+ What Are Claims?

A claim is a piece of information about the end user that the relying party or client can use to
provide them a service.

Consider a page that lets the end user register using their Google account information instead
of providing the information themselves. The page requests Google a set of claims about the end
user, and uses the information on the claims to set up the account without user interaction.

If the end user agrees to share access to their claims, OpenID providers can return them in two
ways: either as key pairs in the ID token, or by making them available at the userinfo endpoint.
Part of implementing OpenID Connect in your environment is deciding which claims are safe to
travel in the ID token, and which ones require the client to access the endpoint.

ID tokens contain additional claims that are not related to user information directly, but that are
relevant to the flow, the relying party, or the authorization server. These are similar to those
contained in access tokens; for example, iss, aud, exp, and others.

Read more:

• Section 2 of the OpenID Connect specification.

• Section 5 of the OpenID Connect specification

Note

AM supports Normal Claims, as specified in section 5.6 of the specification. The optional Aggregated Claims
and Distributed Claims representations are not supported by AM.

When AM is configured as an authorization server, a scope is a concept. For example, Facebook has
an OAuth 2.0 scope named read_stream. AM returns allowed scopes in the access token, but it does not
associate any data with them.

When AM is configured as an OpenID provider, scopes can relate to data in a user profile by making
use of one or more claims.

As each claim represents a piece of information from the user profile, AM displays the actual data the
relying party will receive if the end user consents to sharing it:

https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#Claims

About Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 13

OpenID Connect Consent Page

AM maps scopes and profile data to claims using a script configured in the OAuth2 provider service.
By default, the script maps several user profile attributes to the profile scope:

OpenID Connect Scope Default Claim Mappings

Claim User profile attribute
given_name givenname

zoneinfo preferredtimezone

family_name sn

locale preferredlocale

name cn

After a successful flow, the OpenID provider returns an ID token with the relevant claims. However,
for security reasons, AM does not return scope-derived claims in the ID token by default.

+ Requesting Claims in ID Tokens

Sometimes you may need the provider to return scope-derived claims in the ID token. For
example, when claims are related to authentication conditions or rules the end user needs to
satisfy before being redirected to particular resources.

About Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 14

You can configure AM to either return all scope-derived claims in the ID token, or just the ones
specified in the request:

• To configure the provider to always return scope-derived claims in the ID token, enable Always
Return Claims in ID Tokens (Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect).

This option is disabled by default because of the security concerns of returning claims that may
contain sensitive user information.

• To request that the provider only include certain scope-derived claims in the ID token, enable
the property Enable "claims_parameter_supported" (Realms > Realm Name > Services > OAuth2
Provider > Advanced OpenID Connect) and request said claims in the claims parameter.

+ Voluntary and Essential Claims in the claims Parameter

Claims specified using the claims parameter can be voluntary or essential:

• Essential. The relying party specifies a number of claims that are necessary to ensure a
good experience to the end user.

For example, to provide personalized services, the relying party may require the end user's
phone number to send them an SMS.

• Voluntary. The relying party specifies a number of claims that are useful but not required
to provide services to the end user.

For an example on requesting voluntary and essential claims, see "Requesting acr Claims
Example".

Clients can still retrieve additional claims from the /oauth2/userinfo endpoint.

Tip

The OAuth 2.0 provider's Supported Claims field restricts the claims that can be granted in ID tokens, but not
the claims a client can register with during dynamic client registration.

You can also use this field to configure how AM presents the claims in the AM consent screen. By default,
scope-derived claims are not configured to display in the consent screen. You can either disable the consent
pages in the OAuth 2.0 Guide, or manually configure the claims for display.

+ How to Configure Claims in the AM Consent Screen

Configure how claims appear in the consent screen by client or by realm (in the OAuth 2.0 provider
service). For examples, see the Supported Claims field in the provider's "Advanced" in the Reference
reference section or the Claim(s) field in Core Properties in the OAuth 2.0 Guide.

Claims may be entered as simple strings or pipe-separated strings representing the internal claim name,
locale, and localized description. For example: name|en|Your full name.

About Claims
Scripting OpenID Connect 1.0 Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 15

If the description is omitted, the claim is not displayed in the consent page. This may be useful when the
client requires claims that are not meaningful for the end user.

Client-level configuration overrides that at provider level.

Scripting OpenID Connect 1.0 Claims
The script is configured in the OAuth 2.0 provider. To configure a different script of the type OIDC
 Claims, go to Realms > Realm Name > Services > OAuth 2.0 Provider > OpenID Connect, and then
select it in the OIDC Claims Script drop-down menu.

To examine the contents of the default OIDC claims script, go to Realms > Realm Name > Scripts,
and then select the OIDC Claims Script.

For more information about scripting in AM, see Getting Started with Scripting.

Tip

For examples of customizing the claims script, see:

• How do I add custom claims to the OIDC Claims Script in AM (All versions)?

• How do I override claims in the OIDC ID token in Identity Cloud or AM 7.1.x?

• How do I add a session property claim to the OIDC Claims Script in AM (All versions)?

OpenID Connect Claims Scripting API

The following properties are available to scripts:

claims

Contains a map of the claims the server provides by default. For example:
{
 "sub": "248289761001",
 "updated_at": "1450368765"
}

clientProperties

A map of properties configured in the relevant client profile. Only present if the client was
correctly identified.

The keys in the map are as follows:

https://backstage.forgerock.com/knowledge/kb/article/a74498680
https://backstage.forgerock.com/knowledge/kb/article/a99038127
https://backstage.forgerock.com/knowledge/kb/article/a40599606

About Claims
OpenID Connect Claims Scripting API

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 16

clientId

The URI of the client.

allowedGrantTypes

The list of the allowed grant types (org.forgerock.oauth2.core.GrantType) for the client.

allowedResponseTypes

The list of the allowed response types for the client.

allowedScopes

The list of the allowed scopes for the client.

customProperties

A map of any custom properties added to the client.

Lists or maps are included as sub-maps.

For example, a custom property of

customMap[Key1]=Value1

is returned as

customMap > Key1 > Value1.

To add custom properties to a client, go to OAuth 2.0 > Clients > Client ID > Advanced, and
update the Custom Properties field. The custom properties can be added in the format shown
in these examples:

customproperty=custom-value1
customList[0]=customList-value-0
customList[1]=customList-value-1
customMap[key1]=customMap-value-1
customMap[key2]=customMap-value-2

From within the script, you can then access the custom properties in the following way:

var customProperties = clientProperties.get("customProperties");
var property = customProperties.get(PROPERTY_KEY);

identity

Contains a representation of the identity of the resource owner.

For more details, see the com.sun.identity.idm.AMIdentity class in the ForgeRock Access
Management Javadoc.

../apidocs/com/sun/identity/idm/AMIdentity.html
../apidocs/com/sun/identity/idm/AMIdentity.html

About Claims
OpenID Connect Claims Scripting API

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 17

requestedClaims

Contains requested claims if the claims query parameter is used in the request, and Enable
"claims_parameter_supported" is checked in the OAuth 2.0 provider service configuration;
otherwise, this property is empty.

For more information see Requesting Claims using the "claims" Request Parameter in the OpenID
Connect Core 1.0 specification.

Example:
{
 "given_name": {
 "essential": true,
 "values": [
 "Demo User",
 "D User"
]
 },
 "nickname": null,
 "email": {
 "essential": true
 }
}

requestProperties

A map of the properties present in the request. Always present.

The keys in the map are as follows:

requestUri

The URI of the request.

realm

The realm to which the request was made.

requestParams

The request parameters, and/or posted data. Each value in this map is a list of one, or more,
properties.

Important

To mitigate the risk of reflection-type attacks, use OWASP best practices when handling these
properties. For example, see Unsafe use of Reflection.

scopes

Contains a set of the requested scopes. For example:

https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
https://owasp.org/www-community/vulnerabilities/Unsafe_use_of_Reflection

About Claims
OpenID Connect Claims Scripting API

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 18

[
 "profile",
 "openid"
]

scriptName

The display name of the script. Always present.

session

Contains a representation of the user's session object if the request contained a session cookie.

For more details, see the com.iplanet.sso.SSOToken class in the ForgeRock Access Management
Javadoc.

../apidocs/com/iplanet/sso/SSOToken.html
../apidocs/com/iplanet/sso/SSOToken.html

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 19

Chapter 4

Dynamic Client Registration
AM supports dynamic registration, as defined in RFC 7591 (OAuth 2.0 Dynamic Client Registration
Protocol), and in the OpenID Connect Dynamic Client Registration 1.0 specification. The
specifications describe how OAuth 2.0 and OpenID Connect clients can register:

+ Client Registration Methods

• Without an access token, providing only their client metadata as a JSON resource.

AM generates client_id and client_secret values. AM ignores any values provided in the client
metadata for these properties.

• Providing either a self-signed or a CA-signed X.509 certificate as authentication (OAuth 2.0
Mutual TLS Client Authentication and Certificate Bound Access Tokens internet-draft) and its
client metadata as JSON.

• By gaining authorization using an OAuth 2.0 access token, and with their client metadata.

The specification does not describe how the client obtains the access token. In AM, you can
manually register an initial OAuth 2.0 client that obtains the access token on behalf of the client
requesting registration.

Note

The logo_uri, client_uri, and policy_uri parameters are only accepted during dynamic client
registration if the access token contains the dynamic_client_registration special scope.

• With client metadata that includes a software statement.

A software statement is a JWT that holds registration claims about the client, such as the issuer
and the redirection URIs that it will register.

A software statement is issued by a software publisher. The software publisher encrypts and
signs the claims in the software statement.

In AM, you store software publisher details as an agent profile. The software publisher profile
identifies the issuer included in software statements, and holds information required to decrypt
software statement JWTs and to verify their signatures. When the client presents a software
statement as part of the dynamic registration data, AM uses the software publisher profile to
determine whether it can trust the software statement.

https://datatracker.ietf.org/doc/html/rfc7591
https://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 20

The protocol specification does not describe how the client obtains the software statement JWT.
AM expects the software publisher to construct the JWT according to the settings in its agent
profile. Note, however, that AM ignores keys specified in JWT headers, such as jku and jwe.

To Configure AM for Dynamic Client Registration

Perform the following steps to configure AM for dynamic client registration:

1. Configure an authorization service.

For details, see "To Configure the OAuth 2.0 Provider Service" in the OAuth 2.0 Guide.

2. Navigate to Realms > Realm > Services > OAuth2 Provider.

3. On the Client Dynamic Registration tab, consider configuring the following settings:

• To let clients register without an access token, enable Allow Open Dynamic Client Registration.

If you enable this option, consider some form of rate limiting. Also consider requiring a
software statement.

• To require that clients present a software statement upon registration, enable Require Software
Statement for Dynamic Client Registration, and edit the Required Software Statement Attested
Attributes list to include the claims that must be present in a valid software statement. In
addition to the elements listed, the issuer (iss) must be specified in the software statement's
claims, and the issuer value must match the Software publisher issuer value for a registered
software publisher agent.

As indicated in the protocol specification, AM rejects registration with an invalid software
statement.

If the issuer is compressing the JWT, note that by default, AM rejects JWTs that expand to a size
larger than 32 KiB (32768 bytes).For more information, see "Controlling the Maximum Size of
Compressed JWTs" in the Security Guide.

For additional details, see "Client Dynamic Registration" in the Reference.

4. (Optional) If the clients will authenticate using mTLS with CA-signed (PKI) certificates, configure
AM to hold the certificates belonging to the certificate authorities you want the instance of AM to
trust. For more information, see "Mutual TLS Using Public Key Infrastructure" in the OAuth 2.0
Guide.

5. (Optional) If you enabled Require Software Statement for Dynamic Client Registration, you must
register a software publisher:

a. In the AM console, go to Realm > Applications > OAuth 2.0 > Software Publisher, and add a
new software publisher agent.

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 21

If the publisher uses HMAC (symmetric) encryption for the software statement JWT, then the
software publisher's password is also the symmetric key. This is called the Software publisher
secret in the profile.

b. In the software publisher profile, configure the appropriate security settings.

Important

• The Software publisher issuer value must match the iss value in claims of software statements
issued by this publisher.

• If the publisher uses symmetric encryption, including HS256, HS384, and HS512, then the Software
publisher secret must match the k value in the JWK.

• If you provide the JWK by URI rather than by value, AM must be able to access the JWK when
processing registration requests.

6. (Optional) On the Advanced tab, in the Client Registration Scope Whitelist field, add the scopes
clients can register with.

7. (Optional) Review the following dynamic client registration examples:

+ Open Dynamic Client Registration

The following example shows dynamic registration with the Allow Open Dynamic Client
Registration option enabled (Realms > Realm Name > Services > OAuth2 Provider > Client
Dynamic Registration).

The client registers with its metadata as the JSON body of an HTTP POST to the registration
endpoint. When specifying client metadata, be sure to include a client_name property that holds
the human-readable name presented to the resource owner during consent:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/realms/root/realms/alpha/
oauth2/register?client_id=2aeff083-83d7-4ba1-ab16-444ced02b535",
 "client_type": "Confidential",

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 22

 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "4637ee46-51df-4901-af39-fec5c3a1054c",
 "client_id": "2aeff083-83d7-4ba1-ab16-444ced02b535",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "6efb5636-6537-4573-b05c-6031cc54af27",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
 }

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

+ Dynamic Client Registration with Mutual TLS Authentication

The following example shows the different properties required for clients using mTLS for
authentication depending on the type of certificate presented:

Clients using CA-signed X.509 certificates (PKI)

To use CA-signed certificates (PKI), you must configure AM to hold the certificates
belonging to the certificate authorities you want the instance of AM to trust. For more
information, see "Mutual TLS Using Public Key Infrastructure" in the OAuth 2.0 Guide.

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to tls_client_auth.

• tls_client_auth_subject_dn, which must be set to the distinguished name as it appears in
the subject field of the certificate. For example, CN=myOauth2Client.

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 23

Clients using self-signed X.509 certificates

Clients authenticating using self-signed certificates can provide their certificates for
validation in one of the following ways:

• As a JWKS.

In this scenario, the client provides as part of its metadata the JWKS containing its
certificate(s).

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to self_signed_tls_client_auth.

• A JWKS, configured as per RFC 7517, which includes certificate information.

• As a JWKS URI, which AM will check periodically to retrieve the certificates from.

In this scenario, the client provides as part of its metadata the URI from where AM will
retrieve the certificate(s) for validation.

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to self_signed_tls_client_auth.

• jwks_uri, which must be set to the URI from where AM will retrieve the certificates.
For example, https://www.example.com/mysecureapps/certs.

• As an X.509 certificate.

In this scenario, the client provides as part of its metadata a single X.509 certificate in
PEM format.

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to self_signed_tls_client_auth.

• tls_client_auth_x509_cert, which must be set to an X.509 certificate in PEM format.
You can choose to include or exclude the -----BEGIN CERTIFICATE----- and -----END
 CERTIFICATE----- labels.

The following example shows dynamic registration of a client that will provide their self-
signed ECDSA P-256 certificate in a JWKS:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "jwks": {
 "keys": [{
 "kty": "EC",

https://datatracker.ietf.org/doc/html/rfc7517

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 24

 "crv": "P-256",
 "x": "9BmRru-6AYQ8U_9tUFhMGVG-BvC4vRthzLJTntfSdBA",
 "y": "MqPzVSeVNzzgcR-zZeLGog3GJ4d-doRE9eiGkCKrB48",
 "kid": "a4:68:90:1c:f6:c1:43:c0",
 "x5c": [
 "MIIBZTCCAQugAwIB.....xgASSpAQC83FVBawjmbv6k4CN95G8zHsA=="
]
 }]
 },
 "client_type": "Confidential",
 "grant_types": ["authorization_code", "client_credentials"],
 "response_types": ["code", "token"],
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "token_endpoint_auth_method": "self_signed_tls_client_auth",
 "tls_client_auth_subject_dn": "CN=myOauth2Client",
 "tls_client_certificate_bound_access_tokens": true
}' \
 "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "jwks": {
 "keys": [
 {
 "kty": "EC",
 "crv": "P-256",
 "x": "9BmRru-6AYQ8U_9tUFhMGVG-BvC4vRthzLJTntfSdBA",
 "y": "MqPzVSeVNzzgcR-zZeLGog3GJ4d-doRE9eiGkCKrB48",
 "kid": "a4:68:90:1c:f6:c1:43:c0",
 "x5c": [
 "MIIBZTCCAQugAwIB.....xgASSpAQC83FVBawjmbv6k4CN95G8zHsA=="
]
 }
]
 },
 "application_type": "web",
 "tls_client_auth_subject_dn": "CN=myOauth2Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/
alpha/register?client_id=83635999-2794-4fcd-b6b3-67e2d86c1952",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "tu4KR0jO3iGn0ubOOY0YCSfyPmk",
 "client_id": "83635999-2794-4fcd-b6b3-67e2d86c1952",
 "token_endpoint_auth_method": "self_signed_tls_client_auth",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "jwks",
...
}

Note that the example sets tls_client_certificate_bound_access_tokens to true to let the client
obtain certificate-bound access tokens. For more information, see "Certificate-Bound Proof-of-
Possession" in the OAuth 2.0 Guide.

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 25

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

+ Dynamic Client Registration With Access Token

The following example shows dynamic registration with default OAuth 2.0 provider service
settings, providing an access token issued to a statically registered client.

In this example the statically registered client has the following profile settings:

Client ID

masterClient

Client secret

password

Scope(s)

dynamic_client_registration

Prior to registration, obtain an access token:
$ curl \
--request POST \
--user "masterClient:password" \
--data "grant_type=password&username=amadmin&password=password&scope=dynamic_client_registration"
 \
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/access_token
{
 "access_token":"5e7d1019-b752-43f1-af97-0d6fe2753105",
 "scope":"dynamic_client_registration",
 "token_type":"Bearer",
 "expires_in":3599
}

The client registers with its metadata, providing the access token. When specifying client
metadata, be sure to include a client_name property that holds the human-readable name
presented to the resource owner during consent:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Authorization: Bearer 5e7d1019-b752-43f1-af97-0d6fe2753105" \
--data '{
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 26

 "client_uri": "https://client.example.com/"
}' \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?
client_id=d58ba00b-da55-4fa3-9d2a-afe197207be5",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "5e7d1019-b752-43f1-af97-0d6fe2753105",
 "client_id": "d58ba00b-da55-4fa3-9d2a-afe197207be5",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "4da529de-3a18-4fb7-a0a9-07e05a394aa4",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
 }

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

+ Dynamic Client Registration With Software Statement

The following example extends Dynamic Client Registration With Access Token to
demonstrate dynamic registration with a software statement.

In this example, the software publisher has the following profile settings:

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 27

Name

My Software Publisher

Software publisher secret

secret

Software publisher issuer

https://client.example.com

Software statement signing Algorithm

HS256

Public key selector

JWKs

Json Web Key

{"keys": [{"kty": "oct", "k": "secret", "alg":"HS256"}]}

Notice that the value is a key set rather than a single key.

In this example, the software statement JWT is as shown in the following listing, with lines
folded for legibility:
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJpc3MiOiJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbSIsImlhdCI6MTUwNjY3MTg1MSwiZX
hwIjoxNTM4MjA3ODUxLCJhdWQiOiJvcGVuYW0uZXhhbXBsZS5jb20iLCJzdWIiOiI0TlJCMS0w
WFpBQlpJOUU2LTVTTTNSIiwicmVkaXJlY3RfdXJpcyI6WyJodHRwczovL2NsaWVudC5leGFtcG
xlLmNvbS9jYWxsYmFjayJdfQ.
IOxZaWTOzSPkEkrXC9nj8RDrpulzzMuZ-4R7_Ol_jhw

This corresponds to the HS256 encrypted and signed JWT with the following claims payload.:
{
 "iss": "https://client.example.com",
 "iat": 1506671851,
 "exp": 1538207851,
 "aud": "openam.example.com",
 "sub": "4NRB1-0XZABZI9E6-5SM3R",
 "redirect_uris": [
 "https://client.example.com/callback"
]
}

Prior to registration, obtain an access token:

Dynamic Client Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 28

$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=Ch4ng31t" \
--data "scope=dynamic_client_registration" \
--data "client_id=masterClient" \
--data "client_secret=password" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/access_token"
{
 "access_token":"06bfc193-1f7b-49a1-9926-ffe19e2f5f70",
 "scope":"dynamic_client_registration",
 "token_type":"Bearer",
 "expires_in":3599
}

The client registers with its metadata that includes the software statement, providing the
access token. When specifying client metadata, be sure to include a client_name property that
holds the human-readable name presented to the resource owner during consent:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer 06bfc193-1f7b-49a1-9926-ffe19e2f5f70" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/",
 "software_statement": "eyJ0eXAiOiJKV1QiLCJ6W....9nj8RDrpulzzMuZ-4R7_Ol_jhw"
 }' \
 "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/
alpha/register?client_id=086658c1-0517-4667-bc2d-6786224eb126",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "06bfc193-1f7b-49a1-9926-ffe19e2f5f70",
 "client_id": "086658c1-0517-4667-bc2d-6786224eb126",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "software_statement": "eyJ0eXAiOiJKV1QiLCJ6W....9nj8RDrpulzzMuZ-4R7_Ol_jhw",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "272e26a4-b4ea-4033-bfd3-8b1be2c9aa22",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",

Dynamic Client Registration
Dynamic Client Registration Management

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 29

 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
}

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Note

AM returns an error when a client tries to register with an unsupported signing or encryption algorithm as
part of its configuration.

For example, it will return an error if there is a typo in an algorithm, or if a public client tries to send a
symmetric signing or encryption algorithm as part of its configuration: these algorithms are derived from
the client's secret, which public clients do not have.

Dynamic Client Registration Management
AM lets clients manage their information dynamically, as per RFC 7592 OAuth 2.0 Dynamic
Client Registration Management Protocol and OpenID Connect Dynamic Client Registration 1.0
incorporating errata set 1. This RFC is an extension of the Dynamic Client Registration Protocol (RFC
7591).

Note that, during dynamic client registration, AM supplies clients with the following information:

• registration_client_uri. The FQDN of the client configuration endpoint the client can use to update
their data. This endpoint always contains the client ID as a query parameter.

Note that you cannot provide a client ID when dynamically registering a new client as this is a
generated value.

• registration_access_token. The token clients must use to authenticate to the client configuration
endpoint.

Clients must store this information, since it is mandatory to read, update, and modify their profile
information.

https://datatracker.ietf.org/doc/html/rfc7592
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

Dynamic Client Registration
Dynamic Client Registration Management

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 30

To Configure Client Dynamic Registration Management

1. Configure AM for dynamic client registration.

For more information, see "To Configure AM for Dynamic Client Registration".

2. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Client Dynamic
Registration, and ensure that Generate Registration Access Tokens is enabled.

3. Save your changes, if required.

4. (Optional) Review the following examples:

+ Client Read Request

Clients can use the read request to retrieve their current configuration from AM.

In this example, a client dynamically registered using the following command:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"

Among the returned information, the OAuth 2.0/OpenID Connect provider supplied the client
with the following data:
...
"registration_client_uri":"https://openam.example.com:8443/openam/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173",
"registration_access_token":"o5IlBXOxC7RGPTIe8is_zzz6Yqg",
...

To request the information stored in its client profile, clients perform an HTTP GET request to
the client registration endpoint. Use the registration token to authenticate to the endpoint by
sending the token as an authorization bearer header. For example:

Dynamic Client Registration
Dynamic Client Registration Management

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 31

$ curl \
--request GET \
--header "Authorization: Bearer o5IlBXOxC7RGPTIe8is_zzz6Yqg" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register?
client_id=77f296b3-5293-4219-981d-128322c1e173"
{
 "request_object_encryption_alg":"",
 "default_max_age":1,
 "application_type":"web",
 "client_name#en":"My Client",
 "userinfo_encrypted_response_enc":"A128CBC_HS256",
 "client_type":"Confidential",
 "userinfo_encrypted_response_alg":"",
 "token_endpoint_auth_method":"client_secret_basic",
 "userinfo_signed_response_alg":"",
 "client_id":"77f296b3-5293-4219-981d-128322c1e173",
 "public_key_selector":"x509",
 "client_secret":"vXxY3HJ7_...84qfRQHYW3QbZfDSXieAgIVa2tg",

}

If the OAuth 2.0/OpenID Connect provider is configured for a subrealm rather than the Top
Level Realm, you must specify it in the endpoint. For example, if the provider is configured for
the /alpha realm, then use /oauth2/realms/root/realms/alpha/register.

The server does not return the registration_client_uri nor the registration_access_token
attributes.

+ Client Update Request

Clients can use the update request to modify their client profile while retaining their client ID.

In this example, a client dynamically registered using the following command:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"

Among the returned information, the OAuth 2.0/OpenID Connect provider supplied the client
with the following data:

Dynamic Client Registration
Dynamic Client Registration Management

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 32

...
"registration_client_uri":"https://openam.example.com:8443/openam/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173",
"registration_access_token":"o5IlBXOxC7RGPTIe8is_zzz6Yqg",
"grant_types":["authorization_code"],
...

The client performs a read request to the OAuth 2.0/OpenID Connect provider to retrieve its
current configuration.

When updating the client's metadata, AM:

• Resets to the default value any client setting not sent with the update request.

• Returns a new registration access token to the client.

• Rejects requests where the client secret does not match with the one already registered.

• Rejects requests containing the following metadata (as per RFC 7592):

• registration_access_token

• registration_client_uri

• client_secret_expires_at

• client_id_issued_at

To update the metadata, clients make an HTTP PUT request to the registration endpoint. The
request contains all the metadata returned from the read request minus the information that,
as specified by the spec, should not be sent. Use the registration token to authenticate to the
endpoint by sending the token as an authorization bearer header.

Note that to update the client scopes, you must ensure that the scopes are set in the Client
Registration Scope Whitelist field in the provider's "Advanced" in the Reference configuration.

In the following example, the OAuth 2.0 client sends the required metadata to AM, updating
its grant types to "authorization code","implicit":
$ curl \
--request PUT \
--header "Authorization: Bearer o5IlBXOxC7RGPTIe8is_zzz6Yqg" \
--data '{
 "request_object_encryption_alg":"",
 "default_max_age":1,
 "application_type":"web",
 "client_name#en":"My Client",
 "userinfo_encrypted_response_enc":"",
 "client_type":"Confidential",
 "userinfo_encrypted_response_alg":"",
 "token_endpoint_auth_method":"client_secret_basic",
 "userinfo_signed_response_alg":"",
 "client_id":"77f296b3-5293-4219-981d-128322c1e173",

Dynamic Client Registration
Dynamic Client Registration Management

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 33

 "public_key_selector":"x509",
 "scope":"write",
 "authorization_code_lifetime":0,
 "client_secret":"vXxY3HJ7_...84qfRQHYW3QbZfDSXieAgIVa2tg",
 "user_info_response_format_selector":"JSON",
 "tls_client_certificate_bound_access_tokens":false,
 "id_token_signed_response_alg":"RS256",
 "default_max_age_enabled":false,
 "subject_type":"public",
 "grant_types":["authorization_code","implicit"],
 "jwt_token_lifetime":0,
 "id_token_encryption_enabled":false,
 "redirect_uris":["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp":"#######",
 "id_token_encrypted_response_alg":"RSA-OAEP-256",
 "id_token_encrypted_response_enc":"A128CBC-HS256",
 "access_token_lifetime":0,
 "refresh_token_lifetime":0,
 "scopes":["write"],
 "request_object_signing_alg":"",
 "response_types":["code"]
}' \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register?
client_id=77f296b3-5293-4219-981d-128322c1e173"
{
 "request_object_encryption_alg":"",
 "default_max_age":1,
 "application_type":"web",
 "client_name#en":"My Client",
 "userinfo_encrypted_response_enc":"",
 "client_type":"Confidential",
 "userinfo_encrypted_response_alg":"",
 "registration_access_token":"NrvX2bqydMgr...EGI32YuvyrkxDpD_xJVHtHo6fXQ",
 "client_id":"77f296b3-5293-4219-981d-128322c1e173",
 ...
}

Tip

To update the client profile with custom attributes, specify the properties as part of the request, for
example:

--data '{
 "customProperties":["customProperty1=1",customProperty2=2"]
}'

If the OAuth 2.0/OpenID Connect provider is configured for a subrealm rather than the Top
Level Realm, you must specify it in the endpoint. For example, if the provider is configured for
the /alpha realm, then use /oauth2/realms/root/realms/alpha/register.

Dynamic Client Registration
Dynamic Client Registration Management

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 34

When successful, AM returns an HTTP 200 message and the profile data with the changes.
Note that the registration access token has changed; the client must store the new token
securely.

+ Client Deletion Request

Clients can use the delete request to deprovision themselves from AM.

In this example, a client dynamically registered using the following command:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register"

Among the returned information, the OAuth 2.0/OpenID Connect provider supplied the client
with the following data:
...
"registration_client_uri":"https://openam.example.com:8443/openam/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173",
"registration_access_token":"o5IlBXOxC7RGPTIe8is_zzz6Yqg",
...

To deprovision themselves, clients send an HTTP DELETE request to the client registration
endpoint. Use the registration token to authenticate to the endpoint by sending the token as
an authorization bearer header. For example:
$ curl \
--request DELETE \
--header "Authorization: Bearer o5IlBXOxC7RGPTIe8is_zzz6Yqg" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/register?
client_id=77f296b3-5293-4219-981d-128322c1e173"

If the OAuth 2.0/OpenID Connect provider is configured for a subrealm rather than the Top
Level Realm, you must specify it in the endpoint. For example, if the provider is configured for
the /customers realm, then use /oauth2/realms/root/realms/customers/register.

If the deprovision is successful, AM returns an HTTP 204 No Content message. AM does not
invalidate the authorization grants or active tokens associated with the client, which will
expire in time. However, new requests to OAuth 2.0 endpoints will fail since the client no
longer exists.

OpenID Connect Client Authentication

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 35

Chapter 5

OpenID Connect Client Authentication
OAuth 2.0 and OpenID Connect clients can use the same authentication methods described in "OAuth
2.0 Client Authentication" in the OAuth 2.0 Guide.

However, when using OpenID Connect, you must specify in the client profile the type of
authentication the client is using. To configure the authentication method, go to Realms > Realm
Name > Applications > OAuth 2.0 > Advanced, and select one of the following options in the Token
Endpoint Authentication Method drop down:

• client_secret_post, if the client sends its credentials as form parameters.

• client_secret_basic, if the client sends its credentials in a basic authorization header.

• private_key_jwt, if the client sends its credentials as a JWT.

• tls_client_auth, if the client uses a CA-signed certificate for mutual TLS authentication.

• self_signed_tls_client_auth, if the client uses a self-signed certificate for mutual TLS authentication.

• none, if the client is public.

AM will not require a public client to authenticate even if the authentication method is set to a
value different from none.

OpenID Connect Grant Flows

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 36

Chapter 6

OpenID Connect Grant Flows
This chapter describes the OpenID Connect flows that AM supports as per OpenID Connect Core
1.0 incorporating errata set 1, and also provides the information required to implement them. All the
examples assume the realm is configured for CTS-based tokens, but the examples also apply to client-
based tokens.

You should decide which flow is best for your environment based on the application that would be the
relying party. The following table provides an overview of the flows AM supports when they should be
used:

Deciding Which Flow to Use Depending on the Relying Party

Relying Party Which Grant to
use?

Description

The relying party is a web
application running on a server.
For example, a .war application.

Authorization
Code

The OpenID Connect provider uses the user-agent,
for example, the end user's browser, to transport a
code that is later exchanged for an ID token (and/or an
access token).

For security purposes, you should use the
Authorization Code grant with PKCE when possible.

The relying party is a native
application or a single-page
application (SPA). For example, a
desktop, a mobile application, or a
JavaScript application.

Authorization
Code with
PKCE

Since the relying party does not communicate securely
with the OpenID Connect provider, the code may be
intercepted by malicious users. The implementation
of the Proof Key for Code Exchange (PKCE) standard
mitigates against those attacks.

The relying party knows the user's
identifier, and wishes to gain
consent for an operation from
the user by means of a separate
authentication device.

Backchannel
Request Grant

The relying party does not require that the user
interacts directly with it; instead it can initiate a
backchannel request to the user's authentication
device, such as a mobile phone with an authenticator
app installed, to authenticate the user and consent to
the operation.

For example, a smart speaker wants to authenticate
and gain consent from its registered user after
receiving a voice request to transfer money to a third-
party.

The relying party is an SPA. For
example, a JavaScript application.

Implicit The OpenID Connect provider uses the user-agent, for
example, the end user's browser, to transport an ID
token (and maybe an access token) to the relying party.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 37

Relying Party Which Grant to
use?

Description

Therefore, the tokens might be exposed to the end user
and other applications.

For security purposes, you should use the
Authorization Code grant with PKCE when possible.

The relying party is an application
that can use the ID token
immediately, and then request
an access token and/or a refresh
token.

Hybrid AM uses the user-agent, for example, the end user's
browser, to transport any combination of ID token,
access token, and authorization code to the relying
party.

The relying party uses the ID token immediately. Later
on, it can use either the access token to request a
refresh token, or the authorization code to request an
access token.

For security purposes, you should implement the
PKCE specification when using the Hybrid flow when
possible.

Tip

ForgeRock provides a Postman collection to try out the flows. See "ForgeRock Grant Flows Collection" in the
OAuth 2.0 Guide.

Authorization Code Grant
Endpoints

• /oauth2/authorize in the OAuth 2.0 Guide

• /oauth2/access_token in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The Authorization Code grant is a two-step interactive process used when the client, for example, a
Java application running on a server, requires access to protected resources.

The Authorization Code grant is the most secure of all the OAuth 2.0/OpenID Connect grants for the
following reasons:

• It is a two-step process. The user must authenticate and authorize the client to see the resources
and the OpenID provider must validate the code again before issuing the access/ID tokens.

• The OpenID provider delivers the tokens directly to the client, usually over HTTPS. The client
secret is never exposed publicly, which protects confidential clients.

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 38

OpenID Connect Authorization Code Grant Flow

OpenID Provider
(AM)

End User
User- Agent

End User
User- Agent

Relying Party

Relying Party

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1) Prepare authent icat ion request

2) Redirect....

3) ...for authent icat ion

4) Authent icate end user and confirm resource access

5) If credent ials are valid, redirect...

6) ...with authorizat ion code to
redirect_uri

7) Authent icate, request tokens with authorizat ion code

8) If authorizat ion code is valid,
return access and ID tokens

9) Validate ID token and get user subject ID

Optional

10) Request addit ional claims with access token

11) Return addit ional claims

+ Authorization Code Grant Flow Explained

The steps in the diagram are described below:

1. The end user wants to use the services provided by the relying party. The relying party,
usually a web-based service, requires an account to provide those services.

The end user issues a request to the relying party to access their information, which is stored
in an OpenID provider.

2. To access the end user's information in the provider, the relying party requires authorization
from the end user. Therefore, the relying party redirects the end user's user-agent...

3. ... to the OpenID provider.

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 39

4. The OpenID provider authenticates the end user, confirms resource access, and gathers
consent if not previously saved.

5. The OpenID provider redirects the end user's user agent to the relying party.

6. During the redirection process, the OpenID provider appends an authorization code.

7. The relying party receives the authorization code and authenticates to the OpenID provider to
exchange the code for an access token and an ID token (and a refresh token, if applicable).

Note that this example assumes a confidential client. Public clients are not required to
authenticate.

8. If the authorization code is valid, the OpenID provider returns an access token and an ID token
(and a refresh token, if applicable) to the relying party.

9. The relying party validates the ID token and its claims.

Now, the relying party can use the ID token subject ID claim as the end user's identity.

10. The relying party may require more claims than those included in the ID token. In this case, it
makes a request to the OpenID provider's oauth2/userinfo endpoint with the access token.

11. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the relying party can use the subject ID and the additional retrieved claims as the end
user's identity.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
ID token and an access token:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant Flow"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain an
ID token only, as well.

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code plugin is configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

• A confidential client called myClient is registered in AM with the following configuration:

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 40

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The client redirects the end user's user-agent to the authorization server's authorization endpoint
specifying, at least, the following form parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize \
?client_id=myClient \
&response_type=code \
&scope=openid%20profile \
&state=abc123 \
&nonce=123abc \
&redirect_uri=https://www.example.com:443/callback

Note that the URL is split and spaces have been added for readability purposes. The state and
nonce parameters have been included to protect against CSRF and replay attacks.

2. The end user authenticates to AM, for example, using the credentials of the demo user. In this case,
they log in using the default chain or tree configured for the realm.

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 41

After logging in, AM presents its consent screen:

OpenID Connect Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "About Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the end user to the URL specified in the redirect_uri parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code AM has
issued. For example:
https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https://
openam.example.com:8443/openam/oauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an ID/Access Token in
the Authorization Code Grant Flow" to exchange the authorization code for an access token and
an ID token.

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 42

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
Flow

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain an
ID token only, as well.

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code plugin is configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in this procedure to obtain an authorization code without using a browser:

1. The end user logs in to AM, for example, using the credentials of the demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/alpha"
}

2. The client makes a POST call to AM's authorization endpoint, specifying the SSO token of the demo
in a cookie and, at least, the following parameters:

• client_id=your_client_id

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 43

• response_type=code

• redirect_uri=your_redirect_uri

• scope=openid profile

You can configure the openid scope as a default scope in the client profile or the OAuth 2.0/
OpenID provider to avoid including the scope parameter in your calls, if required.

However, since the openid scope is required in OpenID Connect flows, the example specifies it.

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:
$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "scope=openid profile" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "state=abc123" \
--data "nonce=123abc" \
--data "decision=allow" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize"

Note that the state and nonce parameters have been included to protect against CSRF and replay
attacks.

If AM is able to authenticate the user and the client, it returns an HTTP 302 response with the
authorization code appended to the redirection URL:

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 44

HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an ID/Access Token in the
Authorization Code Grant Flow" to exchange the authorization code for an ID/access token.

To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
Flow

Perform the steps in the following procedure to exchange an authorization code for an ID/access
token:

1. Ensure the relying party has obtained an authorization code by performing the steps in either
"To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow" or "To
Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant Flow".

2. The relying party makes an HTTP POST request to the token endpoint in the OpenID provider
specifying, at least, the following parameters:

• grant_type=authorization_code

• code=your_authorization_code

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token" in the OAuth 2.0 Guide.

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "OAuth 2.0 Client Authentication" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/access_token.

For example:

OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 45

$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or AM will not validate the code.

AM returns an ID and an access token. For example:
{
 "access_token":"cnM3nSpF5ckCFZOaDem2vANUdqQ",
 "scope":"openid profile",
 "id_token":"eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg",
 "token_type":"Bearer",
 "expires_in":3599
}

If the client does not require the access token, revoke it in the OAuth 2.0 Guide.

Tip

AM can also issue refresh tokens at the same time the access tokens are issued. For more information, see
"Refresh Tokens" in the OAuth 2.0 Guide.

3. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

Tip

For access to a sample JavaScript-based relying party to test the Authorization Code grant flow, see How do I
access and build the sample code provided for AM (All versions)? in the ForgeRock Knowledge Base.

Clone the example project to deploy it in the same web container as AM. Edit the configuration at the outset
of the .js files in the project, register a corresponding profile for the example relying party as described in
"Dynamic Client Registration", and browse the deployment URL to see the initial page.

The example relying party uses an authorization code to request an access token and an ID token. It shows
the response to that request. It also validates the ID token signature using the default (HS256) algorithm,

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 46

and decodes the ID token to validate its content and show it in the output. Finally, it uses the access token to
request information about the end user who authenticated, and displays the result.

Authorization Code Grant with PKCE
Endpoints

• /oauth2/authorize in the OAuth 2.0 Guide

• /oauth2/access_token in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The Authorization Code grant, when combined with the PKCE standard (RFC 7636), is used when the
client, usually a mobile or a JavaScript application, requires access to protected resources.

The flow is similar to the regular Authorization Code grant type, but the client must generate a
code that will be part of the communication between the client and the OpenID provider. This code
mitigates against interception attacks performed by malicious users.

Since communication between the client and the OpenID provider is not secure, clients are usually
public so their secrets do not get compromised. Also, browser-based clients making OAuth 2.0
requests to different domains must implement Cross-Origin Resource Sharing (CORS) calls to access
OAuth 2.0 resources in different domains.

The PKCE flow adds three parameters on top of those used for the Authorization code grant:

• code_verifier (form parameter). Contains a random string that correlates the authorization request
to the token request.

• code_challenge (query parameter). Contains a string derived from the code verifier that is sent in
the authorization request and that needs to be verified later with the code verifier.

• code_challenge_method (query parameter). Contains the method used to derive the code challenge.

https://datatracker.ietf.org/doc/html/rfc7636

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 47

OpenID Connect Authorization Code Grant with PKCE Flow
OpenID Provider

(AM)

End User
User- Agent

End User
User- Agent

Relying Party

Relying Party

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1) Prepare authent icat ion request

2) Create code challenge and code verf ier

3) Redirect....

4) ...for authent icat ion

5) Authent icate end user and confirm resource access

6)
If credent ials are valid
store code_challenge

and code_challenge_method

7) Redirect...

8) ...with authorizat ion code to
redirect_uri

9) Request tokens with authorizat ion code and code_verif ier

10) Verify code_challenge
and authorizat ion_code

11) Return access and ID tokens

12) Validate ID token and get user subject ID

Optional

13) Request addit ional claims with access token

14) Return addit ional claims

+ Authorization Code Grant with PKCE Flow Explained

The steps in the diagram are described below:

1. The end user wants to use the services provided by the relying party. The relying party,
usually a web-based service, requires an account to provide those services.

The end user issues a request to the relying party to access their information which is stored
in an OpenID provider.

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 48

2. To access the end user's information in the provider, the relying party requires authorization
from the end user. When using the PKCE standard, the relying party must generate a unique
code and a way to verify it, and append the code to the request for the authorization code.

3. The relying party redirects the end user's user-agent with code_challenge and code_challenge_
method...

4. ... to the OpenID provider.

5. The OpenID provider authenticates the end user, confirms resource access, and gathers
consent if not previously saved.

6. If the end user's credentials are valid and they consent to provide their data to the relying
party, the OpenID provider stores the code challenge and its method.

7. The OpenID provider redirects the end user's user agent to the redirection URI (usually the
relying party).

8. During the redirection process, the OpenID provider appends an authorization code.

9. The relying party receives the authorization code and authenticates to the OpenID provider
to exchange the code for an access token and an ID token (and a refresh token, if applicable),
appending the verification code to the request.

10. The OpenID provider verifies the code challenge stored in memory using the validation code.
It also verifies the authorization code.

11. If both codes are valid, the OpenID provider returns an access and an ID token (and a refresh
token, if applicable) to the relying party.

12. The relying party validates the ID token and its claims.

Now, the relying party can use the ID token subject ID claim as the end user's identity.

13. The relying party may require more claims than those included in the ID token. In this case, it
makes a request to AM's oauth2/userinfo endpoint with the access token.

14. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the relying party can use the subject ID and the additional retrieved claims as the end
user's identity.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
access token:

• "To Generate a Code Verifier and a Code Challenge"

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 49

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant with
PKCE Flow"

To Generate a Code Verifier and a Code Challenge

The relying party (the client) must be able to generate a code verifier and a code challenge. For
details, see the PKCE standard (RFC 7636). The information contained in this procedure is for
example purposes only:

1. The client generates the code challenge and the code verifier. Creating the challenge using a
SHA-256 algorithm is mandatory if the client supports it, as per the RFC 7636 standard.

The following is an example of a code verifier and code challenge written in JavaScript:
function base64URLEncode(words) {
 return CryptoJS.enc.Base64.stringify(words)
 .replace(/\+/g, '-')
 .replace(/\//g, '_')
 .replace(/=/g, '');
}
var verifier = base64URLEncode(CryptoJS.lib.WordArray.random(50));
var challenge = base64URLEncode(CryptoJS.SHA256(verifier));

This example generates values such as ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_
F4OduTI4 for the code verifier and j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y for the code challenge.
These values will be used in subsequent procedures.

The relying party is now ready to request an authorization code.

2. The relying party performs the steps in one of the following procedures to request an
authorization code:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code plugin is configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

https://datatracker.ietf.org/doc/html/rfc7636

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 50

The Code Verifier Parameter Required drop-down menu (Realms > Realm Name > Services >
OAuth2 Provider > Advanced) specifies whether AM requires clients to include a code verifier in
their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down
menu.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: none

If you were using a confidential OpenID Connect client, you must specify a method to
authenticate. For more information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The relying party redirects the end user's user-agent to the AM's authorization endpoint
specifying, at least, the following query parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• code_challenge=your_code_challenge

• code_challenge_method=S256

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 51

https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize \
?client_id=myClient \
&response_type=code \
&scope=openid%20profile \
&redirect_uri=https://www.example.com:443/callback \
&code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y \
&code_challenge_method=S256 \
&nonce=123abc \
&state=abc123

Note that the URL is split and spaces have been added for readability purposes. The state and
nonce parameters have been included to protect against CSRF and replay attacks.

2. The end user authenticates to AM, for example, using the credentials of the demo user. In this case,
they log in using the default chain or tree configured for the realm.

After logging in, AM presents its consent screen:

OpenID Connect Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "About Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the end user to the URL specified in the redirect_uri parameter.

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 52

4. Inspect the URL in the browser. It contains a code parameter with the authorization code AM has
issued. For example:
https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https://
openam.example.com:8443/openam/oauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an ID/Access Token in
the Authorization Code Grant with PKCE Flow" to exchange the authorization code for an ID/
access token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code plugin is configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

The Code Verifier Parameter Required drop-down menu (Realms > Realm Name > Services >
OAuth2 Provider > Advanced) specifies whether AM require clients to include a code verifier in
their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down
menu.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Redirection URIs: https://www.example.com:443/callback

• Token Endpoint Authentication Method: none

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in this procedure to obtain an authorization code:

1. The end user logs in to AM, for example, using the credentials of the demo user. For example:

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 53

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/alpha"
}

2. The client makes an HTTP POST request to AM's authorization endpoint, specifying in a cookie
the SSO token of the demo and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• decision=allow

• csrf=demo_user_SSO_token

• code_challenge=your_code_challenge

• code_challenge_method=S256

• scope=openid profile

You can configure the openid scope as a default scope in the client profile or the OAuth 2.0/
OpenID provider to avoid including the scope parameter in your calls, if required.

However, since the openid scope is required in OpenID Connect flows, the example specifies it.

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 54

$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "scope=openid profile" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "state=abc123" \
--data "nonce=123abc" \
--data "decision=allow" \
--data "code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y" \
--data "code_challenge_method=S256" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize"

Note that the state and nonce parameters have been included to protect against CSRF and replay
attacks.

If AM is able to authenticate the user and the client, it returns an HTTP 302 response with the
authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an ID/Access Token in the
Authorization Code Grant with PKCE Flow" to exchange the authorization code for an ID/access
token.

To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
with PKCE Flow

Perform the steps in the following procedure to exchange an authorization code for an ID/access
token:

1. Ensure the client has obtained an authorization code by performing the steps in either "To Obtain
an Authorization Code Using a Browser in the Authorization Code Grant with PKCE Flow" or "To
Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow".

2. The client creates a POST request to the token endpoint in the authorization server specifying, at
least, the following parameters:

• grant_type=authorization_code

OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 55

• code=your_authorization_code

• client_id=your_client_id

• redirect_uri=your_redirect_uri

• code_verifier=your_code_verifier

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token" in the OAuth 2.0 Guide.

For example:
$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "code_verifier=ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_F4OduTI4" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or AM will not validate the code.

AM returns an ID and an access token. For example:
{
 "access_token":"cnM3nSpF5ckCFZOaDem2vANUdqQ",
 "scope":"openid profile",
 "id_token":"eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg",
 "token_type":"Bearer",
 "expires_in":3599
}

If the client does not require the access token, revoke it in the OAuth 2.0 Guide.

Tip

AM can also issue refresh tokens at the same time the access tokens are issued. For more information, see
"Refresh Tokens" in the OAuth 2.0 Guide.

3. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 56

Backchannel Request Grant
Endpoints

• /oauth2/bc-authorize in the OAuth 2.0 Guide

• /oauth2/access_token in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The Backchannel Request grant is used when performing Client Initiated Backchannel Authentication
(CIBA).

CIBA allows a client application, known as the consumption device, to obtain authentication and
consent from a user, without requiring the user to interact with the client directly.

Instead, the user authenticates and consents to the operation using a separate, "decoupled" device,
known as the authentication device. For example, an authenticator application, or a mobile banking
application on their mobile phone.

Note

AM applies the guidelines suggested by the OpenID Financial-grade API (FAPI) Working Group to the
implementation of CIBA.

https://openid.net/wg/fapi/

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 57

For more information, see OpenID Connect 1.0 in the Reference.

OpenID Connect Backchannel Request Grant Flow

OpenID Provider
(AM)

End User
(Auth Device)

End User
(Auth Device)

Client
(Consumption

Device)

Client
(Consumption

Device)

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1) Prepare signed JWT

2) Request Authent icat ion Request ID with signed JWT

3) If JWT is verif ied, return auth_req_id

loop [Respecting specified intervals...]

4) Poll for authorizat ion result using auth_req_id

In the Background...

5) Request authorizat ion, with Binding Message

6) Authorizat ion approved

7) Return access and/ or ID token

Optional

8) Request addit ional claims with access token

9) Return addit ional claims

+ Backchannel (CIBA) Request Grant Flow Explained

The steps in the diagram are described below:

1. The client has a need to authenticate a user. It has a user identifier, and creates a signed JWT.

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 58

2. The client creates a POST request containing the signed JWT, and sends it to AM.

3. AM validates the signature using the public key, performs validation checks on the JWT
contents, and if verified, returns an auth_req_id, as well as a polling interval.

4. The client begins polling AM using the auth_req_id to check if the user has authorized the
operation. The client must respect the interval returned each time, otherwise an error
message is returned.

5. AM sends the user a push notification message, including the contents of the binding_message,
requesting authorization.

6. The user authorizes the request by performing the required authorization gesture on their
authentication device, usually a mobile phone. For example, it may be swiping a slider, or
authenticating using facial recognition or a fingerprint sensor.

7. If the authorization is valid, the OpenID provider returns an access token token (and an ID/
refresh token, if applicable) to the client.

Now, the client can use the ID token subject ID claim as the end user's identity.

8. The client may require more claims than those included in the ID token. In this case, it makes
a request to the OpenID provider's oauth2/userinfo endpoint with the access token.

9. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the client can use the subject ID and the additional retrieved claims as the end user's
identity.

Perform the steps in the following procedures to obtain an authorization request ID and exchange it
for an ID token and an access token:

• "To Configure AM to use the Backchannel Request Grant Flow"

• "To Obtain an Authentication Request ID Using the Backchannel Request Grant Flow"

• "To Exchange an Authorization Request ID for an ID/Access Token in the Backchannel Request
Grant Flow"

To Configure AM to use the Backchannel Request Grant Flow

Perform the following steps to prepare AM for the backchannel request grant flow:

1. In AM, configure an OAuth 2.0/OpenID provider. Ensure that:

• The Back Channel Request grant type is configured in the Grant Types field.

2. Associate an authentication tree that performs push authentication with the acr_values property
contained in the signed JWT.

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 59

The authentication tree must start with a "Username Collector Node" in the Authentication and
Single Sign-On Guide , and contain a "Push Sender Node" in the Authentication and Single Sign-
On Guide and "Push Result Verifier Node" in the Authentication and Single Sign-On Guide, and a
"Polling Wait Node" in the Authentication and Single Sign-On Guide.

The following is an example of a suitable authentication tree:

For more information on creating authentication trees for push authentication, see "Creating
Trees for Push Authentication and Registration" in the Authentication and Single Sign-On Guide.

To associate a push authentication tree with incoming acr_values, perform the following steps:

a. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

b. In the OpenID Connect acr_values to Auth Chain Mapping box, enter the value of the acr_
values property in the Key field, and the name of the push authentication tree to use in the
Value field, for example CIBA, and then click Add.

c. Save your changes.

For more information, see "The Authentication Context Class Reference (acr) Claim".

For more information, see "OpenID Provider Configuration".

3. In AM, create a confidential OAuth 2.0 client with a client ID of myCIBAClient. The client ID must
match the value of the iss claim in the signed JWT prepared above.

The client profile should have the following configuration:

• Client secret: forgerock

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 60

• Scopes: openid profile

• Grant Types: Back Channel Request

• Token Endpoint Authentication Method: client_secret_basic

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

• The client must be provided with the public key of the keypair that will be used to sign the JWT.

On the Signing and Encryption tab, you must configure either the JWKs URI or the JWK Set
fields, as follows:

• JWKs URI: specifies a URI that exposes the public keys AM will use to validate the JWT
signature.

For example, http://www.example.com/issuer/jwk_uri.

Note

If you configure this field, ensure the following properties are configured with values suitable for your
environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWK set: Specifies a JWK set containing the public keys used to validate JWT signatures.

The following is an example of a public elliptic curve JWK set:
{
 "keys": [
 {
 "kty": "EC",
 "use": "sig",
 "crv": "P-256",
 "kid": "myCIBAKey",
 "x": "m0CkpWpZyGu-FLRLjCGBVGC7Fwm5vGt8Lm3HhYU4ylg",
 "y": "U8NMtO-C2c3yhu2I_ApAELttmaittfPNPQaIJxvTCHk",
 "alg": "ES256"
 }
]
}

For more information about the contents of the JWK set, see the JSON Web Key (JWK)
specification.

https://datatracker.ietf.org/doc/html/rfc7517

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 61

You can store more than one key in the JWK set. However, it is easier to implement key rotation
exposing the validation keys on the URI instead.

For more information, see "Dynamic Client Registration".

To Obtain an Authentication Request ID Using the Backchannel Request Grant Flow

Perform the steps in this procedure to obtain an authentication request ID, using CIBA:

1. On the client, prepare a signed JWT. The JWT must contain, at least, the following claims in the
payload:

aud

Specifies a string or an array of strings that is the intended audience of the JWT. Must be set
to the authorization server's OAuth 2.0 endpoint, for example:
"aud": "http://openam.example.com:8080/openam/oauth2"

exp

Specifies the expiration time of the JWT in Unix time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT
 expiration time is unreasonable error message.

iss

Specifies the unique identifier of the JWT issuer.

The identifier must match the client ID of the OAuth 2.0 client in AM, for example
myCIBAClient.

login_hint

Specifies the principal who is the subject of the JWT. It should be a string that identifies the
resource owner.

Tip

You can provide a previously obtained ID token in a property named id_token_hint as the hint for
determining the resource owner, rather than a string.

scope

Specifies a space-separated list of the requested scopes. Must include the openid scope.

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 62

acr_values

Specifies an identifier that maps to the authentication mechanism AM uses to obtain
authorization from the end user.

binding_message

Specifies a message delivered to the user when obtaining authorization.

Should be a short (100 characters or fewer), description of the operation the end user is
authorizing, and should include an identifier to match the authorization request to the client
that initiated the request.

Note

If the binding message is sent using push notifications, the following additional limitations apply to the
value:

1. Must begin with a letter, number, or punctuation mark.

2. Must not include line breaks or control characters.

For example:

Allow ExampleBank to transfer £50 from your 'Main' account to your 'Savings' account? (EB-0246326)

The following is an example of the payload of a basic JWT:
{
 "login_hint": "demo",
 "scope": "openid profile",
 "acr_values": "push",
 "iss": "myCIBAClient",
 "aud": "http://openam.example.com:8080/openam/oauth2",
 "exp": 1559311511,
 "binding_message": "Allow ExampleBank to transfer £50 from your 'Main' account to your 'Savings'
 account? (EB-0246326)"
}

For more information about JWTs, see the RFC 7523 standard.

AM ignores keys specified in JWT headers, such as jku and jwe, and will use the configuration in
the client profile to verify the JWT's signature.

2. The client makes a POST request to the authorization server's backchannel authorization
endpoint, including the signed JWT, and the client credentials in the authorization header.

For example:

https://datatracker.ietf.org/doc/html/rfc7523

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 63

$ curl --request POST \
--header "authorization: Basic bXlDSUJBQ2xpZW50OmZvcmdlcm9jaw==" \
--data "request=eyJhbGci...kfPjAfnBg " \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/bc-authorize"

The basic authorization header is the base64-encoded value of your client ID, a colon
character (:), and the client secret. For example myCIBAClient:forgerock.

For more information about authenticating clients, see "OAuth 2.0 Client Authentication" in
the OAuth 2.0 Guide.
The "request" field should contain the entire signed JWT.

The value in this example has been truncated for display purposes.

AM returns JSON containing the auth_req_id value:
{
 "auth_req_id": "35Evy3bJXJEnhll2ebacgROYfbU",
 "expires_in": 600,
 "interval": 2
}

AM will also send the user a push notification message, containing the contents of the binding_
message, to request authorization for the operation.

For more information on interacting with push notifications, see "MFA: Push Authentication" in
the Authentication and Single Sign-On Guide.

3. The client performs the steps in "To Exchange an Authorization Request ID for an ID/Access
Token in the Backchannel Request Grant Flow" to exchange the authentication request ID for an
ID token (and an access/refresh token).

To Exchange an Authorization Request ID for an ID/Access Token in the Backchannel Request
Grant Flow

Perform the steps in the following procedure to exchange an authorization request ID for an ID/
access token:

1. The client starts to poll the token endpoint in the OpenID provider with HTTP POST requests,
with the client credentials in the authorization header, and specifies the following parameters:

• grant_type=urn:openid:params:grant-type:ciba

• auth_req_id=your_authorization_request_id

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/access_token.

For example:

OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 64

$ curl --request POST \
--header "authorization: Basic bXlDSUJBQ2xpZW50OmZvcmdlcm9jaw==" \
--data "grant_type=urn:openid:params:grant-type:ciba" \
--data "auth_req_id=35Evy3bJXJEnhll2ebacgROYfbU" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/access_token"

The basic authorization header is the base64-encoded value of your client ID, a colon
character (:), and the client secret. For example myCIBAClient:forgerock.

For more information about authenticating clients, see "OAuth 2.0 Client Authentication" in
the OAuth 2.0 Guide.

• If the user has authenticated and authorized the operation, AM returns an ID token and an
access token. For example:
{
 "access_token": "z4mWG0cxqwPwgjj7srJ2Jdxe9ag",
 "id_token": "eyJ0eXAiOi...YA9Hoqwew",
 "token_type": "Bearer",
 "expires_in": 3599
}

Tip

AM can also issue refresh tokens at the same time the access tokens are issued. For more information,
see "Refresh Tokens" in the OAuth 2.0 Guide.

• If the user has not yet authenticated and authorized the operation, AM returns an HTTP 400
response, as follows:
{
 "error_description": "End user has not yet been authenticated",
 "error": "authorization_pending"
}

The client should wait the number of seconds specified by the interval value that was returned
when requesting the auth_req_id, and then resend the POST request. The default value for
interval is two seconds.

• If the client does not wait for the interval before resending the request, AM returns an HTTP
400 response, as follows:
{
 "error_description": "The polling interval has not elapsed since the last request",
 "error": "slow_down"
}

2. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 65

Implicit Grant
Endpoints

• "/oauth2/authorize" in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The OpenID Connect implicit grant is designed for public clients that run inside the end user's user-
agent. For example, JavaScript applications.

This flow lets the relying party interact directly with the OpenID provider, AM, and receive tokens
directly from the authorization endpoint instead of from the token endpoint.

Since applications running in the user-agent are considered less trusted than applications running in
servers, the authorization server will never issue refresh tokens in this flow. Also, you must consider
the security impact of cross-site scripting (XSS) attacks that could leak the ID and access tokens to
other systems, and implement Cross-Origin Resource Sharing (CORS) to make OAuth 2.0/OpenID
Connect requests to different domains.

Due to the security implications of this flow, it is recommended to use the Authorization Code grant
with PKCE flow whenever possible.

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 66

OpenID Connect Implicit Flow
OpenID Provider

(AM)
End User

User- Agent

End User
User- Agent

Relying Party

Relying Party

Authorizat ion Server

Authorizat ion Server

UserInfo Endpoint

UserInfo Endpoint

1) Redirect...

2) ... for authent icat ion

3) Authent icate end user and
confirm resource access

4) Redirect with redirect_uri, access and/ or ID token in URI fragment...

5) ... to request_uri without the fragment

6) Return web page with embedded script to ex tract
access and/ or ID token

7) Extract the access and/ or ID token

8) Return access and/ or ID token

9) Validate ID Token and get user subject ID

Optional

10) Request addit ional claims with access token

11) Return addit ional claims

+ Implicit Flow Explained

The steps in the diagram are described below:

1. The relying party, usually a single-page application (SPA), receives a request to access user
information stored in an OpenID provider. To access this information, the client requires
authorization from the end user.

2. The relying party redirects the end user's user-agent or opens a new frame to the AM OpenID
provider.

As part of the OpenID Connect flow, the request contains the openid scope and the nonce
parameter.

3. The OpenID provider authenticates the end user, confirms resource access, and gathers
consent if not previously saved.

4. If the end user's credentials are valid, the authorization server returns an ID token (and
optionally, an access token) to the user-agent as part of the redirection URI.

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 67

5. The user-agent must extract the token(s) from the URI. In this example, the user-agent follows
the redirection to the relying party without the token(s)...

6. ... And the relying party returns a web page with an embedded script to extract the token(s)
from the URI.

In another possible scenario, the redirection URI is a dummy URI in the application running in
the user-agent which already has the logic in itself to extract the tokens.

7. The user-agent executes the script and retrieves the tokens.

8. The user-agent returns the tokens to the relying party.

9. The relying party validates the ID token and its claims.

Now, the relying party can use the ID token subject ID claim as the end user's identity.

10. The relying party may require more claims than those included in the ID token. In this case, it
makes a request to the OpenID provider's oauth2/userinfo endpoint with the access token.

11. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the relying party can use the subject ID and the additional retrieved claims as the end
user's identity.

Perform the steps in the following procedures to obtain an ID token and an access token:

• "To Obtain an ID/Access Token Using a Browser in the Implicit Grant"

• "To Obtain an ID/Access Token Without Using a Browser in the Implicit Grant"

To Obtain an ID/Access Token Using a Browser in the Implicit Grant

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain
the ID token only, as well.

The procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The token and id_token plugins are configured in the Response Type Plugins field.

• The Implicit Grant grant type is configured in the Grant Types field.

For more information, see "OpenID Provider Configuration".

• A public client called myClient is registered in AM with the following configuration:

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 68

• Scopes: openid profile

• Response Types: token id_token

Configure id_token to receive an ID token only.

• Grant Types: Implicit

• Authentication Method: none

• Token Endpoint Authentication Method: none

If you were using a confidential OpenID Connect client, you must specify a method to
authenticate. For more information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in this procedure to obtain an ID token and an access token using the Implicit
grant:

1. The client makes a GET call to AM's authorization endpoint specifying, at least, the following
parameters:

• client_id=your_client_id

• response_type=token id_token

To obtain only an ID token, use response_type=id_token instead.

• redirect_uri=your_redirect_uri

• nonce=your_nonce

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize \
?client_id=myClient \
&response_type=token%20id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com:443/callback \
&state=abc123 \
&nonce=123abc

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 69

Note that the URL is split for readability purposes and that the state parameter has been included
to protect against CSRF attacks.

2. The end user logs in to AM, for example, using the credentials of the demo user. In this case, they
log in using the default chain or tree configured for the realm.

After logging in, AM presents the AM user interface consent screen:

Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "About Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the resource owner to the URL specified in the redirect_uri parameter.

4. Inspect the URL in the browser. It contains an access_token and an id_token parameter with the
tokens AM has issued. For example:
https://www.example.com:443/callback/
#access_token=pRbNamsGPv1T7NfAf5Dbx4AHM2c&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg&state=123&token_type=Bearer&expires_in=3599

If you only request an ID token, the response would not include the access_token parameter.

5. (Optional) The relying party can request additional claims about the end user from AM.

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 70

For more information, see "/oauth2/userinfo".

To Obtain an ID/Access Token Without Using a Browser in the Implicit Grant

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain
the ID token only, as well.

The procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The token plugin is configured in the Response Type Plugins field.

• The Implicit Grant grant type is configured in the Grant Types field.

For more information, see "OpenID Provider Configuration".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: token id_token

• Grant Types: Implicit

• Authentication Method: none

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in this procedure to obtain an ID token and an access token using the Implicit
grant:

1. The end user authenticates to AM, for example, using the credentials of the demo user. For
example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/alpha"
}

OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 71

2. The client makes a POST call to the AM's authorization endpoint, specifying the SSO token of the
demo in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=token id_token

To obtain only an ID token, use response_type=id_token instead.

• redirect_uri=your_redirect_uri

• nonce=your_nonce

• scope=openid profile

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:
curl --dump-header - \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--request POST \
--data "client_id=myClient" \
--data "response_type=token id_token" \
--data "scope=openid profile" \
--data "state=123abc" \
--data "nonce=abc123" \
--data "decision=allow" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize"

Note that the state parameter has been included to protect against CSRF attacks.

If the authorization server is able to authenticate the user, it returns an HTTP 302 response with
the access and ID tokens appended to the redirection URI:

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 72

HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 04 Mar 2019 16:56:46 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback#access_token=az91IvnIQ-
uP3Eqw5QqaXXY_DCo&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg&state=123abc&token_type=Bearer&expires_in=3599
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

If you only request an ID token, the response would not include the access_token parameter.

3. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

Tip

For access to a sample JavaScript-based relying party to test the Implicit grant flow, see How do I access and
build the sample code provided for AM (All versions)? in the ForgeRock Knowledge Base.

Clone the example project to deploy it in the same web container as AM. Edit the configuration at the outset
of the .js files in the project, register a corresponding profile for the example relying party as described in
"Dynamic Client Registration", and browse the deployment URL to see the initial page.

The example relying party validates the ID token signature using the default (HS256) algorithm, decodes de
ID token to validate its contents and shows it in the output. Finally, the relying party uses the access token to
request information about the end user who authenticated, and displays the result.

Hybrid Grant
Endpoints

• /oauth2/authorize in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The OpenID Connect Hybrid grant is designed for clients that require flexibility when requesting ID,
access, and refresh tokens.

Similar to the Authorization Code grant flow, the Hybrid grant flow is a two-step process:

1. The relying party makes a first request for tokens or codes. For example, a request for an ID
token and an access code. AM returns them in the redirection fragment, as it does during the
Implicit grant flow.

The client relying party usually starts using these tokens immediately.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 73

2. Some time after the first request has happened, the relying party makes a second request for
additional tokens. For example, a request for an access token using the access code, or a request
for a refresh token.

Important

Consider the following security tips when implementing this flow:

• Requesting an access token during the first step exposes the token in the redirection fragment, just like
during the Implicit grant flow.

Also, you must consider the security impact of cross-site scripting (XSS) attacks that could leak the ID and
access tokens to other systems, and implement Cross-Origin Resource Sharing (CORS) to make OAuth 2.0/
OpenID Connect requests to different domains.

Due to the security implications, ForgeRock recommends not to request access tokens during the first step of
this flow.

• If the relying party is a public client, you can use the PKCE specification to mitigate against interception
attacks performed by malicious users.

A common use case is the relying party requesting an ID token which can be used to, for example,
pre-register the end user so they can start shopping. Only later and, if required, the relying party
requests an access token to inquire the OpenID provider about additional claims. For example, during
the check out, the relying party requests from AM the end user's address details.

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 74

OpenID Connect Hybrid Flow
OpenID Provider

(AM)

End User
User- Agent

End User
User- Agent

Relying Party

Relying Party

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1) Prepare authent icat ion request

2) Redirect...

3) ...for authent icat ion

4) Authent icate end user and confirm resource access

5) If credent ials are valid, redirect...

6) ...with authorizat ion code and ID token to redirect_uri

7) Store authorizat ion code. Validate ID token and get subject ID

8) Provide services

When required (before authz code expires)

9) Authent icate, request access token with authorizat ion code

10) If authorizat ion code is valid, return access token

11) Request addit ional claims with access token

12) Return addit ional claims

13) Provide addit ional services

+ Hybrid Flow Explained

The steps in the diagram are described below:

1. The end user wants to use the services provided by the relying party. The relying party,
usually a web-based service, requires an account to provide those services.

The end user issues a request to the relying party to access their information, which is stored
in an OpenID provider.

2. To access the end user's information in the provider, the relying party requires authorization
from the end user. Therefore, the relying party redirects the end user's user agent...

3. ... to the OpenID provider.

4. The OpenID provider authenticates the end user, confirms resource access, and gathers
consent if not previously saved.

5. If the end user's credentials are valid, the OpenID provider redirects the end user to the
relying party.

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 75

6. During the redirection process, the OpenID provider appends an authorization code and an ID
token to the URL.

Note that AM can return any combination of access token, ID token, and authorization code
depending on the request. In this example, the access token is not requested at this time due
to security concerns.

7. The relying party stores the authorization code for future use. It also validates the ID token
and gets the subject ID.

8. With the ID token, the relying party starts providing services to the end user.

9. Later, but always before the authorization code has expired, the relying party requests an
access token from the OpenID provider so it can access more information about the end user.

A use case would be the end user requiring services from the relying party that requires
additional (usually more sensitive) information. For example, the end user requests the relying
party to compare their electricity usage and supplier information against offers in the market.

If required, the relying party could also request a refresh token.

10. If the relying party credentials and the authorization code are valid, AM returns an access
token.

11. The relying party makes a request to AM's /oauth2/userinfo endpoint with the access token to
access the end user's additional claims.

12. If the access token is valid, the /oauth2/userinfo endpoint returns additional claims, if any.

13. The relying party can now use the subject ID in the ID token and the additional claims as the
end user's identity to provide them with more services.

Perform the steps in the following procedure to obtain an authorization code and an ID token, and
later an access token:

To Obtain an Authorization Code and an ID Token Using a Browser in the Hybrid Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The token, code, and id_token plugins are configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

For more information, see "OpenID Provider Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 76

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code id_token token

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

Perform the steps in the following procedure to obtain an ID token and an authorization code that will
later be exchanged for an access token:

1. The client redirects the end user's user-agent to the authorization server's authorization endpoint
specifying, at least, the following form parameters:

• client_id=your_client_id

• response_type=code id_token

As per the specification, you can request the following response types:

• code id_token

• code token

• code id_token token

Since AM returns the tokens in the redirection URL, requesting access tokens in this way poses
a security risk.

• redirect_uri=your_redirect_uri

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:

https://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 77

https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize \
?client_id=myClient \
&response_type=code%20id_token \
&scope=openid%20profile \
&state=abc123 \
&nonce=123abc \
&redirect_uri=https://www.example.com:443/callback

Note that the URL is split and spaces have been added for readability purposes. The state and
nonce parameters have been included to protect against CSRF and replay attacks.

Tip

Implement the PKCE specification to mitigate against interception attacks performed by malicious users.

For more information about the required additional parameters and an example, see "Authorization Code
Grant with PKCE".

2. The end user authenticates to AM, for example, using the credentials of the demo user. In this case,
they log in using the default chain or tree configured for the realm.

After logging in, AM presents its consent screen:

OpenID Connect Consent Screen

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 78

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "About Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the end user to the URL specified in the redirect_uri parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code and an
id_token parameter with the ID token AM has issued. For example:
https://www.example.com:443/
callback#code=bOrAijEerd_YdNCUC1piL5VfNO4&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg

The client relying party can now use the ID token as the end user's identity and store the access
code for later use.

5. (Optional) The client exchanges the authorization code for an access token (and maybe, an
refresh token). Perform the steps in one of the following procedures:

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
with PKCE Flow"

To Obtain an Authorization Code and an ID Token Without Using a Browser in the Hybrid Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider.

For more information, see "OpenID Provider Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code id_token token

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "OpenID Connect Client Authentication".

For more information, see "Dynamic Client Registration".

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 79

Perform the steps in the following procedure to obtain an ID token and an authorization code that will
later be exchanged for an access token:

1. The end user logs in to AM, for example, using the credentials of the demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/alpha"
}

2. The client makes a POST call to AM's authorization endpoint, specifying the SSO token of the demo
in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=code id_token

As per the specification, you can request the following response types:

• code id_token

• code token

• code id_token token

Since AM returns the tokens in the redirection URL, requesting access tokens in this way poses
a security risk.

• redirect_uri=your_redirect_uri

• scope=openid profile

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the Top Level Realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /alpha realm, then use /oauth2/realms/root/realms/alpha/authorize.

For example:

https://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 80

$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "scope=openid profile" \
--data "response_type=code id_token" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "state=abc123" \
--data "nonce=123abc" \
--data "decision=allow" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize"

Note that the state and nonce parameters have been included to protect against CSRF and replay
attacks.

Tip

Implement the PKCE specification to mitigate against interception attacks performed by malicious users.

For more information about the required additional parameters and an example, see "Authorization Code
Grant with PKCE".

If AM is able to authenticate the user and the client, it returns an HTTP 302 response with the
authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/
callback#code=bOrAijEerd_YdNCUC1piL5VfNO4&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

The client relying party can now use the ID token as the end user's identity and store the access
code for later use.

3. (Optional) The client exchanges the authorization code for an access token (and maybe, a refresh
token). Perform the steps in one of the following procedures:

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
with PKCE Flow"

Managing OpenID Connect User Sessions
Checking the State of a Session, and Invalidating Sessions

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 81

Chapter 7

Managing OpenID Connect User Sessions
Logging in to the OpenID provider and obtaining tokens are well-stabilized processes in the
OpenID specification. However, keeping the relying party informed of the session's validity is not
as straightforward. The end user's session in AM is unavailable to the relying party, and therefore,
the only information the relying party has is the expiration time of the ID token, which may be
undesirable.

To solve this problem, AM supports different OpenID Connect specifications:

OpenID Connect Session Management

Relying parties can request session
information from AM, and act on it. For

example, they can request the user to log in.

Relying parties can also request AM to log out a user.

OpenID Connect Backchannel Logout

AM sends a logout token to the relevant
relying parties when a user session

linked to an ID token has become invalid.

Checking the State of a Session, and Invalidating Sessions
The OpenID Connect Session Management 1.0 draft series defines a mechanism for relying parties to:

• Request the providers to confirm if a specific OpenID Connect session is still valid or not when
presented with an ID token.

• Request session termination for a user in the provider. For example, if the user decides to log out.

To keep the process transparent to the end user, relying parties use hidden iframes to request
session status from the providers and take actions based on it.

To link ID tokens to sessions and, therefore, let relying parties query AM for session status, AM
creates a token in the CTS store with the link information. This also ensures that any AM instance can
retrieve session information for a particular token.

Session management is enabled by default. To disable it, go to Realms > Realm Name > Services >
OAuth2 Provider > Advanced OpenID Connect, and disable OIDC Session Management. Note that
this will disable backchannel logout as well.

Managing OpenID Connect User Sessions
Session Management Draft 10

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 82

AM supports Draft 05 and Draft 10 of the specification. They use different endpoints and to achieve
the same end result, as you will see next.

• "Session Management Draft 10"

• "Session Management Draft 05"

Session Management Draft 10

Draft 10 does not specify or mandate any session-related endpoint. Therefore, AM's implementation
of Draft 10 is as follows:

• /oauth2/authorization. Retrieves session state for requests.

• /json/sessions. (AM-specific). Logs out end users.

For more information, see "Logging out of AM Using REST" in the Authentication and Single Sign-
On Guide.

The simplest strategy to check session state using the authorization endpoint is to create an iframe
whose src attribute is AM's /oauth2/authorize endpoint with the required parameters. Note that you
must also include any other parameter required in your environment, such as client authentication
methods.

For AM to validate an end user session against an ID token, the user-agent must provide the SSO
token of the end user's session as the iplanetDirectoryPro cookie. Therefore, the flow would resemble
the following:

https://openid.net/specs/openid-connect-session-1_0-05.html
https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-session-1_0-10.html

Managing OpenID Connect User Sessions
Session Management Draft 10

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 83

Session Management Flow
AM

End User
User- Agent

End User
User- Agent

OAuth 2.0/ OIDC
Provider

OAuth 2.0/ OIDC
Provider

Authent icat ion
Service

Authent icat ion
Service

Relying Party

Relying Party

1) Wants to access resources/ services

2) Redirects...

3) ... to log in

Login f low happens

4) Redirects with access/ ID tokens

5) Returns resources/ services

Some time later

6) Wants to access resources/ services, with appended access/ ID tokens

7) Requests session state to / oauth2/ authorize

Sending ID token,
iplanetDirectoryPro cookie,
and prompt= none

Session is OK

8) Redirects with no content,
or returns HTTP 204 no content

9) Returns resources/ services

Session is Not OK

10) Redirects with no content and error descript ion,
or returns HTTP 400 bad request

11) Redirects...

12) ... to log in

Login f low happens

13) Redirects with access/ ID tokens

14) Returns resources/ services

Some time later

15) Clicks the log out button

16) Request log out to the json/ sessions endpoint

17) Logs out user

18) Returns confirmation

19) Redirects to main page

Managing OpenID Connect User Sessions
Session Management Draft 10

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 84

The following is an example of a public client requesting session state:
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize \
?client_id=myClient \
&response_type=none \
&id_token_hint=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg \
&redirect_uri=https://www.example.com:443/callback \
&prompt=none

• prompt=none. Specifies that the request is a repeated authentication request for a specific end user.
AM will not display any user interaction pages to the end user.

• id_token_hint=your_ID_token. Specifies the ID token associated to an end user. AM validates the ID
token against the user's session.

• response_type=none. Specifies that AM should not issue any token as response.

Note that the URL is split for readability purposes and that the end user's SSO token must be set in a
cookie in order to validate the session.

If the session is valid and the request contains a redirection URI, AM redirects to the specified URI
with no content. If the request does not contain a redirection URI, AM returns an HTTP 204 no
content message.

If the session is invalid and the request contains a redirection URI, AM redirects to the specified URI
with no content and appends an error_description parameter to the URL. For example:
https://www.example.com:443/callback?error_description=The%20request%20requires
%20login.&error=login_required

If the request does not contain a redirection URI, AM returns an HTTP 400 error message and
redirects to an AM console page showing a message, such as login required. The request requires login.

The relying party's iframe, or the redirection page, should be able to retrieve the error messages and
act in consequence. For example, redirecting the end user to a login page.

Enabling Session Management Draft 10

To let clients use session management draft 10 with AM, perform the following steps:

1. Configure the provider:

a. Go to Realms > Realm Name > Services > OAuth2 Provider.

b. On the Core tab, add the none|org.forgerock.oauth2.core.NoneResponseTypeHandler plugin in the
Response Type Plugins field, if it is not already present.

c. Save your changes.

d. On the Advanced OpenID Connect tab, enable OIDC Session Management, if it is not already
enabled.

Managing OpenID Connect User Sessions
Session Management Draft 05

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 85

e. Save your changes.

2. Configure the clients:

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Clients > Client Name > OpenID
Connect > Advanced.

b. In the Response Types field, add the none type.

c. Save your changes.

Session Management Draft 05

Draft 05 of the of the Session Management specification defined two endpoints for managing OpenID
sessions. These endpoints have been removed from version 10 of the draft, but AM still supports
them:

• /oauth2/connect/checkSession. It lets clients retrieve session state. This endpoint serves the check_
session_iframe URL that allows the relying party to interact with the endpoint.

When checking session state with the check session endpoint, you must configure the Client
Session URI field in the client profile as the iframe URL in the relying party.

For an alternative method of checking session state compliant with version 10 of the session
management draft, see "Session Management Draft 10".

• /oauth2/connect/endSession. It lets clients terminate end user sessions and redirect end users to a
particular page after logout.

For more information about the endpoints, see "OpenID Connect 1.0 Endpoints".

Informing Relying Parties that a Session has Expired
OpenID Connect Back-Channel Logout 1.0 Draft 06 defines how a provider can send a logout token to
the relevant relying parties when an end user session linked to an ID token becomes invalid.

When back-channel logout is enabled, AM sends a logout token to a URL configured in the relying
party's client profile. This URL must be a page or application in the relying party that is capable of
dealing with the token.

AM stores a list of logged in clients in the end user's session so that, when it becomes invalid, AM has
a list of URLs to which it needs to send the logout token to.

This is particularly important in scenarios where different relying parties use the same user session
to obtain ID tokens. By storing the URLs in the session itself, AM ensures that all the related relying
parties receive a logout token.

https://openid.net/specs/openid-connect-backchannel-1_0.html

Managing OpenID Connect User Sessions
Informing Relying Parties that a Session has Expired

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 86

Next, the relying party validates the logout token, and clears any state associated with the
combination of session ID, user, and issuer. Finally, it sends a response to AM with the outcome of
the logout, as explained in 2.8 Back-Channel Logout Response of the draft.

Depending on which status code AM receives, it logs an audit event of the type AM-BACK-CHANNEL-LOGOUT
in the activity log file, which resembles the following:
{
 "_id":"cb52bc45-549d-4a9c-86cc-20d7500e333b-96127",
 "eventName":"AM-BACK-CHANNEL-LOGOUT","transactionId":"cb52bc45-549d-4a9c-86cc-20d7500e333b-94750",
 ...
 ...
 "operation":"Sent logout request to https://rp.example.com:8443/logout, which responded with HTTP code
 200.",
 ...
}

AM will log the HTTP code that the relying party returns, or an error if there is no response before
the request times out.

The following simplified diagram illustrates a possible back-channel logout flow:

Managing OpenID Connect User Sessions
Informing Relying Parties that a Session has Expired

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 87

Back-Channel Logout Flow

AM

End User
User- Agent

End User
User- Agent

OAuth 2.0/ OIDC
Provider

OAuth 2.0/ OIDC
Provider

Authent icat ion
Service

Authent icat ion
Service

Relying Party

Relying Party

1) Wants to access resources/ services

2) Redirects...

3) ... to log in

Login f low happens

4) Redirects with access/ ID tokens

5) Returns resources/ services

Some time later

6) Logs out user

Reasons:
- Session reaching the maximum t ime- to- live
- Session reaching idle t imeout
- User logging out
- Admin user terminat ing the session
- Other

If OIDC Session Management is enabled
and the client has a backchannel URL configured...

7) Sends logout token

8) Validates logout token

9) Cleans up related
session information

10) Responds with the status
of the logout request

- HTTP 200 OK
- HTTP 400 Bad Request
- HTTP 501 Not implemented
- HTTP 504 Gateway Timeout

11) Logs result of backchannel
logout operat ion

Managing OpenID Connect User Sessions
Back-Channel Logout Limitations

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 88

Back-Channel Logout Limitations

The current implementation of back-channel logout in AM has the following limitations:

• It is only supported for CTS-based sessions.

• AM currently only supports back-channel logout when acting as the provider.

The Logout Token

The logout token is defined in section 2.4 Logout Token of the draft. The following is an example
logout token issued by AM, and the description of its claims:
{
 "aud": "backchannelConfidentialClient",
 "sub": "(usr!ForgerockDemo)",
 "auditTrackingId": "cb52bc45-549d-4a9c-86cc-20d7500e333b-91288",
 "iss": "https://openam.example.com:8443/openam/oauth2/backchannelSubRealm",
 "cause": "CLIENT_LOGOUT",
 "iat": 1614005410,
 "jti": "1cd8805d-6fc0-4699-a33f-a75d45b24e9e",
 "events": {
 "http://schemas.openid.net/event/backchannel-logout": {}
 },
 "sid": "mTNo042FCiPkgAJKjdjgCvBWvVYTB1d+zreDBnZAqvM="
}

Specifies the audience of the logout token. In this case, the client that requested the ID token(s)
related to the user that has been logged out.
Specifies the subject of the logout token. In this case, the user that has been logged out.

The subject of the logout token matches the subject of the ID token(s).

+ About the Subject Claim

The subject claim is in the format (type!subject), where:

• subject is the identifier of the user/identity, or the name of the OAuth 2.0/OpenID Connect
client that is the subject of the token.

• type can be one of the following:

• age. Specifies that the subject is an OAuth 2.0/OpenID Connect-related user-agent or
client. For example, an OAuth 2.0 client, a Remote Consent Service agent, and a Web and
Java Agent internal client.

• usr. Specifies that the subject is a user/identity.

Managing OpenID Connect User Sessions
Enabling Back-Channel Logout

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 89

For example, (usr!demo), or (age!myOAuth2Client).

(AM-specific) Determines the unique audit identifier for this token.
Specifies the authorization server that issued the logout token.
(AM-specific) Documents the reason why the user was logged out, if known. Possible values are:

• CLIENT_LOGOUT. AM has received a call to the sessions endpoint in the Authentication and Single
Sign-On Guide to end the session.

• SESSION_TERMINATION. An administrative user has terminated the session.

• SESSION_MAX_TIMEOUT. AM terminated the session because it reached its maximum time-to-live.

• SESSION_IDLE_TIMEOUT. AM terminated the session because it reached its maximum idle time.

If the reason is not known, the claim does not show in the token.
Specifies the creation time of the logout token.
Specifies the unique identifier for the logout token.
Specifies a JSON object that contains the http://schemas.openid.net/event/backchannel-logout URL,
which marks the JWT as a logout token. The value of the object is always an empty JSON object
({}).
Specifies a session ID that identifies the relying party's session with the provider.

The sid in the logout token matches the sid in the related ID token, and therefore, the relying
party can match both when doing session clean up operations.

If a relying party requests several ID tokens using the same end user session, they will all share
the same sid.

However, if several relying parties use the same user session to obtain ID tokens, the sid in them
will be different. When the end user's session becomes invalid, AM will send logout tokens to all
the relying parties involved.

Note that the claim is only populated in the logout token if Backchannel Logout Session Required
is enabled in the client profile. See "Enabling Back-Channel Logout".

Enabling Back-Channel Logout

To enable back-channel logout, first configure the OAuth 2.0 provider for the realm, and next
configure the clients that will use the feature:

1. Configure the OAuth 2.0 provider:

a. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

b. Enable OIDC Session Management, if it is not already enabled.

Managing OpenID Connect User Sessions
The Back-Channel Logout Postman Collection

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 90

Note

OIDC Session Management is enabled by default, and it is also required for Session Management.

When enabled, AM will always add a sid to the ID tokens, regardless of whether clients have logout
URLs configured in them or not.

c. Save your changes.

d. (Optional) Review the logout token signing secret.

AM signs logout tokens with the same secret it uses to sign ID Tokens. For more information,
see Secret ID Mappings for Signing OpenID Connect Tokens in the Security Guide.

e. (Optional) Configure AM to encrypt the logout tokens.

Encryption is disabled by default. To enable it, you must configure ID token encryption as
well. For more information, see "Encrypting ID Tokens and Backchannel Logout Tokens".

2. Configure the clients:

a. In the AM console, go to Realms > Realm Name > Applications > OAuth 2.0 > Clients >
Client Name > OpenID Connect.

b. In the Back Channel Logout URI field, set the URL in the relying party to where AM will send
the logout token during back-channel logout.

This URL can use the http or the https schemes, and may contain a port, a path, or query
parameters, depending on the implementation of the relying party. For example, https://my-
rp.example.com:8443/logout.

c. (Optional) If the logout token must contain the session ID (sid), enable Backchannel Logout
Session Required.

d. Save your changes, and configure as many clients as required.

Tip

Clients registering dynamically can provide their back-channel logout configuration, too.

The Back-Channel Logout Postman Collection

ForgeRock provides a back-channel logout Postman collection to try out the functionality. The
source for the REST calls, including the prerequisites needed to run the collection, is provided as a
downloadable JSON file collection.

https://www.postman.com/

Managing OpenID Connect User Sessions
The Back-Channel Logout Postman Collection

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 91

Back-channel logout relies on a relying party that can acknowledge the logout token and send a
response back to AM. To emulate this, you can send a mock server in Postman.

Perform the following steps to download, configure, and run the back-channel logout Postman
collection:

1. Download and install Postman.

2. Download the ForgeRock OpenID Connect Back-Channel Logout Collection.

3. Import the collection in Postman:

a. Go to File > Import ... > Upload Files.

b. Select the collection you downloaded, and click Open. Then, click Import.

4. (Optional) Create a Postman mock server. Follow the instructions in the Setting Up Mock
Servers in the Postman Documentation.

The mock server will work as the relying party. Inspect the requests sent to the mock server to
see the logout tokens sent by AM.

When you create a mock server, Postman presents you with some information and the URL you
can use to call it. For example, https://f4a08510-2f95-4990-8cb0-5a4f281a8bac.mock.pstmn.io.

Save this URL; you need to configure it in the following step of this procedure.

5. Configure the collection's variables to suit your environment:

a. In Postman, on the Collections tab, select the ForgeRock OpenID Connect Back-Channel
Logout Collection. Click on the ... button, and then on Edit.

The Edit Collection page appears.

b. Click on the Variables tab, and change at least the value of the following variables:

• URL_base

Configure the URL of your AM environment. For example, https://openam.example.com:8443/
openam.

• admin_password

Configure the password of the administrative user, such as amAdmin, that the collection will
use to create AM configuration objects.

• back_channel_logout_uri

Configure the back-channel logout URL of your relying party, or the URL of the Postman
mock server.

https://www.postman.com/downloads
https://learning.postman.com/docs/designing-and-developing-your-api/mocking-data/setting-up-mock
https://learning.postman.com/docs/designing-and-developing-your-api/mocking-data/setting-up-mock

Managing OpenID Connect User Sessions
The Back-Channel Logout Postman Collection

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 92

c. Click Update to save your changes.

You are ready to start running the collection.

The collection is divided into the following folders:

• Prerequisites, containing REST calls to configure a new realm containing an authorization
server, and to create the clients and users required to run the collection.

• OpenID Connect Back-Channel Logout Flow, containing REST calls for the authorization code grant
flow, and to log out the demo user.

• Mock Response, containing a REST call to send AM a response when using the mock server.

6. Run the collection.

7. (Optional) (Mock server only) On the mockup server window, check the request body of the Mock
 Up Response to see the logout token.

+ Example Postman Mock Up Server Window with the Response Body Expanded

8. Inspect the contents of the logout token.

Tokens created by the collection are not encrypted.

9. Open the AM activity audit log.

Managing OpenID Connect User Sessions
The Back-Channel Logout Postman Collection

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 93

Check for an entry with event name AM-BACK-CHANNEL-LOGOUT with the logout request, and the relying
party's response. For example:
{
 "_id":"cb52bc45-549d-4a9c-86cc-20d7500e333b-96127",
 "eventName":"AM-BACK-CHANNEL-LOGOUT","transactionId":"cb52bc45-549d-4a9c-86cc-20d7500e333b-94750",
 ...
 ...
 "operation":"Sent logout request to https://f4a08510-2f95-4990-8cb0-5a4f281a8bac.mock.pstmn.io, which
 responded with HTTP code 200."
 ...
 }

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 94

Chapter 8

Adding Authentication Requirements to ID
Tokens
Relying parties may require end users to satisfy different rules or conditions when authenticating to
the provider. Consider the case of a financial services provider. While authenticating with username
and password may be acceptable to create an account, accessing the end user's bank account details
may require multi-factor authentication.

By specifying an authentication context reference (acr) or an authentication method reference (amr)
claim in the request, relying parties can require that AM authenticate users using specific chains,
modules, or trees.

The following sections show how AM implements both claims, and how to configure AM to honor
them:

• "The Authentication Context Class Reference (acr) Claim"

• "The Authentication Method Reference (amr) Claim"

The Authentication Context Class Reference (acr) Claim
In the OpenID Connect specification, the acr claim identifies a set of rules the user must satisfy when
authenticating to the OpenID provider. For example, a chain or tree configured in AM.

To avoid exposing the name of authentication trees or chains, AM implements a map that consists of a
key (the value that is included in the acr claim) and the name of the authentication tree or chain.

The specification indicates that the acr claim is a list of authentication contexts; AM honors the first
value in the list for which it has a valid mapping. For example, if the relying party requests a list of
acr values such as acr-1 acr-2 acr-3 and only acr-2 and acr-3 are mapped, AM will always choose acr-2
to authenticate the end user.

The acr claim is optional and therefore is not added to ID tokens by default, but you can request AM
to include it by specifying it as a voluntary or essential claim:

+ Voluntary Claim

Request voluntary acr claims when the fact that the user has authenticated to a specific chain or
tree would improve the user experience in the OpenID Connect flow, but it is not a requisite.

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 95

You can request voluntary acr claims in the following ways:

• Specifying the authentication chains or trees in the acr_values parameter when requesting an ID
token to the /oauth2/authorize endpoint.

• Specifying the authentication chains or trees in JSON format in the claims parameter when
requesting an ID token to the /oauth2/authorize endpoint.

If the end user is already authenticated to the first value on the list for which AM has a mapping,
AM does not force the user to reauthenticate. If they are not already authenticated, or if they are
authenticated to any other tree or chain on the list, AM uses the first value for which it has a valid
mapping to authenticate them.

Consider an example where the relying party requests a list of acr values, such as acr-1 acr-2 acr-
3, and AM only has acr-2 and acr-3 mapped:

• AM will not force the end user to reauthenticate if they are already authenticated to acr-2
(which is the first value in the list for which AM has a mapping).

• AM will force the end user to reauthenticate to acr-2 in the following cases:

• If the end user has authenticated to acr-3.

• If the end user has authenticated to any other tree or chain.

• If the end user has not yet authenticated.

If the user reauthenticates to a tree, AM destroys the original session and provides them with a
new one that reflects the new authentication journey.

If the user reauthenticates to a chain, AM updates the original session to reflect the new
authentication journey.

If the relying party requests authentication chains or trees that are not mapped in AM as valid
acr values, AM continues the grant flow. The resulting ID token will contain an acr claim with the
following values:

• 0 (zero), if the client authenticated to AM using a chain or tree that is not mapped to an acr
value.

• acr_key_string, if the client authenticated to AM using a chain or tree that is mapped to an acr
value.

If the end user authenticated to more than one chain or tree, AM will use the last chain or tree,
provided it is mapped to an acr value.

+ Essential Claim

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 96

Request essential acr claims when the user must authenticate to a specific chain or tree to
complete an OpenID Connect flow.

To request essential acr claims, specify the required authentication chains or trees in JSON format
in the claims parameter when requesting an ID token to the /oauth2/authorize endpoint.

AM will always force the end user to authenticate to the first value in the list for which AM has a
mapping, even if the end user already authenticated using the same chain or tree.

Consider an example where the relying party requests a list of acr values, such as acr-1 acr-2 acr-
3, and AM only has acr-2 and acr-3 mapped:

AM will force the end user to authenticate to acr-2 in the following cases:

• If the end user has authenticated to either acr-2 or acr-3.

• If the end user has authenticated to any other chain or tree.

• If the end user is not authenticated.

If the user reauthenticates to a tree, AM destroys the original session and provides them with a
new one that reflects the new authentication journey.

If the user reauthenticates to a chain, AM updates the original session to reflect the new
authentication journey.

This mechanism can be used to perform step-up authentication, but AM does not consider if, for
example, the authentication level of the current session is higher than the one achievable with the
requested tree or chain.

If the relying party requests authentication chains or trees that are not mapped in AM as valid acr
values, AM returns an error and redirects to the redirect_uri value, if available.

Perform the steps in the following procedure to configure AM to honor acr claims:

To Configure AM for the acr Claim

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. (Optional) To request acr claims using the claims parameter, enable
"claims_parameter_supported".

3. In the OpenID Connect acr_values to Auth Chain Mapping box, map an identifier (the key in the
map) to an authentication chain or tree. For example:

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 97

The identifier is the string that AM will add in the acr claim.

4. Save your changes.

5. (Optional) In the Default ACR values field, specify the identifiers of the authentication trees or
chains AM should use to authenticate end users when acr values are not specified in the request.
AM treats acr values specified in this field as voluntary claims.

Acr values specified in the request will override the default values.

If a request does not specify acr values and the Default ACR values field is empty, AM
authenticates the end user with the default authentication chain or tree defined for the realm
where the OAuth 2.0 provider is configured.

Tip

Query the /oauth2/.well-known/openid-configuration endpoint to determine the acr values supported by
the OpenID provider. Mapped acr values are returned in the acr_values_supported object.

6. Save your changes.

7. (Optional) Review the "Requesting acr Claims Example".

Requesting acr Claims Example

This example assumes the following configuration:

• An authentication tree called Example is configured in AM. For more information, see "Configuring
Authentication Trees" in the Authentication and Single Sign-On Guide.

• The Example tree is mapped to the example_tree identifier in the acr_value map of the OAuth 2.0
provider. For more information, see "To Configure AM for the acr Claim".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: token id_token

• Grant Types: Implicit

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 98

• AM is configured as an OAuth 2.0/OpenID Provider.

Perform the following steps to request acr claims:

1. Log in to AM, for example, as the demo user. Ensure you are not using the Example tree to log in, and
note the value of the iplanetDirectoryPro cookie.

2. In a new tab of the same browser, request an ID token using, for example, the "Implicit Grant"
flow. Perform one of the following steps:

a. Request voluntary claims with the acr_values parameter. For example:
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize? \
client_id=myClient \
&response_type=id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com/callback \
&acr_values=example_chain%20example_tree \
&nonce=abc123 \
&prompt=login \
&state=123abc

Note that the URL is split for readability purposes and that the prompt=login parameter has
been added. In most cases, this parameter is not required with the current implementation
of acr claims, but it is recommended to add it for compliance with the specification when you
need to force the user to re-authenticate.

For information, see the prompt parameter in the OAuth 2.0 Guide.

b. Request voluntary claims with the claims parameter.

The claims parameter expects a JSON object, such as:
{"id_token":{"acr":{"values":["example_chain","example_tree"]}}}

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize? \
client_id=myClient \
&response_type=id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com/callback \
&nonce=abc123 \
&state=123abc \
&prompt=login \
&claims=%7B%22id_token%22%3A%7B%22acr%22%3A%7B%22values%22%3A%5B%22example_chain%22%2C
%22example_tree%22%5D%7D%7D%7D

Note that the URL is split for readability purposes, and that the JSON value of the claims
parameter is URL encoded.

c. Request essential claims with the claims parameter.

The claims parameter expects a JSON object, such as:

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 99

{"id_token":{"acr":{"essential":true,"values":["example_chain","example_tree"]}}}

If "essential":true is not included in the JSON, AM assumes the acr request is voluntary.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/authorize? \
client_id=myClient \
&response_type=id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com/callback \
&nonce=abc123 \
&state=123abc \
&prompt=login \
&claims=%7B%22id_token%22%3A%7B%22acr%22%3A%7B%22essential%22%3Atrue%2C%22values%22%3A%5B
%22example_chain%22%2C%22example_tree%22%5D%7D%7D%7D

Note that the URL is split for readability purposes, and that the JSON value of the claims
parameter is URL encoded.

AM redirects to the Example tree. Note that the new URL contains the following parameters:

• authIndexValue, the value of which is the Example tree.

• goto, the value of which is the URL the UI will use to return to the authorization endpoint once
the authentication flow has finished.

• acr_sig, the value of which is a unique string that identifies this particular acr request.

3. Log in again as the demo user. Note that the value of the iplanetDirectoryPro cookie changes to
reflect the new session.

AM redirects back to the authorization endpoint, and shows you the OAuth 2.0 consent page.
Grant consent by selecting Allow. AM redirects you now to the URI specified by the redirect_uri
parameter with an ID token in the fragment.

4. Decode the ID token. It contains the acr claim with the value of example_tree, which the identifier
mapped to the Example tree in the acr_value map of the OAuth 2.0 provider:

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 100

{
 "at_hash": "3WHa52upb5ihwWVDC8a-Tw",
 "sub": "demo",
 "auditTrackingId": "fe330f16-2115-45fe-ae04-f68a9fc2ef92-65191",
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "tokenName": "id_token",
 "nonce": "abc123",
 "sid": "I0GdWDfy1qhahDl1PpEA0v5LDspul+qW70biBhetUCk=",
 "aud": "myClient",
 "acr": "example_tree",
 "org.forgerock.openidconnect.ops": "7r1RiXbjWp1QBjJ8Uys4Ob8cwxY",
 "azp": "myClient",
 "auth_time": 1554724614,
 "realm": "/alpha",
 "exp": 1554728218,
 "tokenType": "JWTToken",
 "iat": 1554724618
}

The Authentication Method Reference (amr) Claim
In the OpenID Connect specification, the amr claim identifies a family of authentication methods, such
as a one-time password or multi-factor authentication.

In AM, you can map authentication modules to specific values that the relying party understands. For
example, you could map an amr value called PWD to the LDAP module.

Unlike acr claims, relying parties do not request amr claims. As long as authentication modules are
mapped to amr values, and provided that end users log in using one of the mapped modules, AM will
return the amr claim in the ID token.

Since authentication nodes are not used on their own but as part of a tree context, you cannot map
amr values to specific authentication nodes. However, you can map an AuthType session property to an
amr value using the "Set Session Properties Node" in the Authentication and Single Sign-On Guide.
AM will add the configured amr claim to the ID token, provided the user's journey on the tree goes
through the node.

The following is an example of a decoded ID token that contains both acr and amr claims:

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 101

{
 "at_hash": "kP7U-po4xla0OYqJ60p72Q",
 "sub": "demo",
 "auditTrackingId": "ac8ecadc-140f-48a0-b3ec-ccd02d6f9c3d-183361",
 "amr": [
 "PWD"
],
 "iss": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha",
 "tokenName": "id_token",
 "nonce": "abc123",
 "sid": "I0GdWDfy1qhahDl1PpEA0v5LDspul+qW70biBhetUCk=",
 "aud": "myClient",
 "acr": "0",
 "org.forgerock.openidconnect.ops": "hM7F00xw0kzb7os_S9KdmDphosY",
 "azp": "myClient",
 "auth_time": 1554889732,
 "realm": "/alpha",
 "exp": 1554893403,
 "tokenType": "JWTToken",
 "iat": 1554889803
}

In this example, the end user logged in with an authentication chain or tree that is not mapped to
an acr value. Therefore, AM returned "acr": "0". However, the relying party at least knows the user
logged in with an authentication method of the family PWD. The relying party can use this knowledge
to take additional actions, such as request the end user to reauthenticate using a particular chain or
tree.

See the following procedures to map amr values:

• "To Use a Set Session Properties Node to Map an amr Value"

• "To Map an Authentication Module to an amr Value"

To Use a Set Session Properties Node to Map an amr Value

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. In the OpenID Connect id_token amr Values to Auth Module Mappings box, map an identifier
(the key in the map) to any authentication module. The authentication module you use is not
important; AM will only use its name to map the amr, and it will not show in the ID token.

+ Example: Mapping Authentication Modules to amr Identifiers

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 102

3. Save your changes.

4. Create an authentication tree containing the "Set Session Properties Node" in the Authentication
and Single Sign-On Guide.

5. On the Set Session Properties node, configure a key called AuthType. As its value, set the name of
the authentication module you configured with the amr mapping. For example, LDAP.

+ Example: Configuring the AuthType Session Property

Tip

To reference multiple authentication modules, separate amr values with |. For example, if both the LDAP
and the DataStore modules are mapped to amr values, set the AuthType key to the value LDAP|DataStore.

6. Go to Realms > Realm Name > Services, and add a Session Property Whitelist service if one is
not already available.

7. On the Whitelisted Session Property Names field, add the AuthType key. This will ensure that the
property can be read, edited, or deleted, from a session.

Save your changes.

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 103

To Map an Authentication Module to an amr Value

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. In the OpenID Connect id_token amr Values to Auth Module Mappings box, map an identifier (the
key in the map) to an authentication module.

+ Example: Mapping Authentication Modules to amr Identifiers

3. Save your changes.

GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 104

Chapter 9

GSMA Mobile Connect
GSMA Mobile Connect is an application of OpenID Connect that facilitates the use of mobile phones
as authentication devices independent of the service provided, and independent of the device used to
consume the service.

Mobile Connect thus offers a standard way for Mobile Network Operators to act as general-purpose
identity providers, providing a range of levels of assurance and profile data to Mobile Connect-
compliant Service Providers.

In a Mobile Connect deployment, AM can play the following roles:

• The OpenID provider role, implementing the Mobile Connect Profile as part of the Service Provider
(Identity Gateway interface).

As OpenID provider, AM responds to a successful authorization request with a response containing
all the required fields, and also the optional expires_in field. AM supports the mandatory ID Token
properties, though the relying party is expected to use the expires_in value, rather than specifying
max_age as a request parameter:

In addition to the standard user information returned with userinfo, AM as OpenID provider for
Mobile Connect returns the updated_at property, representing the time last updated as seconds since
the epoch.

• The Authenticator role, implementing the Mobile Connect Profile as part of the Identity Gateway
(Authenticators interface).

In the Authenticator role, AM ensures that users authenticate at the appropriate Level of Assurance
(LoA). A Service Provider can request LoAs without regard to the implementation, and the Identity
Gateway includes a claim in the ID Token that indicates the LoA achieved.

+ LoA Support

In AM, LoAs map to an authentication mechanism. Service Providers acting as relying parties
request an LoA by using the acr_values field in an authentication request.

AM returns the corresponding acr claim in the ID token.

LoA support:

• 1 (low - little or no confidence)

http://www.gsma.com/personaldata/mobile-connect

GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 105

• 2 (medium - some confidence, as in single-factor authentication)

• 3 (high - high confidence, as in multi-factor authentication)

LoA support does not include support for 4, which involves digital signatures. Therefore, the dtbs
authorization parameter is not supported when requesting tokens to the authorization endpoint.

Perform the steps in this procedure to set up the OAuth2 provider service:

To Configure AM for Mobile Connect

1. Configure an OAuth2 provider service in the realm. See "To Configure the OAuth 2.0 Provider
Service" in the OAuth 2.0 Guide.

Mobile Connect is an extension of OpenID Connect. Therefore, review the additional
configuration options shown in "OpenID Provider Configuration".

2. Go to Realms > Realm Name > Services > OAuth2 Provider.

3. Configure OpenID Connect authentication context settings for AM to return acr and amr claims in
the ID tokens.

For information and examples, see "Adding Authentication Requirements to ID Tokens".

4. Go to Realms > Realm Name > Identity Stores > Identity Store Name > User Configuration.

The user info endpoint returns updated_at values in the ID Token. If the user profile has never been
updated updated_at reflects creation time.

When using DS as an identity store, the value is read from the modifyTimestamp attribute, or the
createTimestamp attribute for a profile that has never been modified.

5. Add the relevant attributes to the LDAP User Attributes list, and save your changes.

You can now use OpenID Connect with Mobile Connect. As per the specification, you must use the
Authorization Code flow to request ID tokens.

+ Supported Authorization Parameters

Request Parameter Support Description
response_type Supported OAuth 2.0 grant type to use. Set this to code for the

authorization grant.
client_id Supported Set this to the client identifier.
scope Supported Space delimited OAuth 2.0 scope values.

Required: openid

GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 106

Request Parameter Support Description
Optional: profile, email, address, phone, offline_
access

redirect_uri Supported OAuth 2.0 URI where the authorization request
callback should go. Must match the redirect_uri in
the client profile that you registered with AM.

state Supported Value to maintain state between the request and
the callback. Required for Mobile Connect.

nonce Supported String value to associate the client session with
the ID Token. Optional in OIDC, but required for
Mobile Connect.

display Supported String value to specify the user interface display.
login_hint Supported String value that can be set to the ID the user

uses to log in. For example, Bob or bob@example.
com, depending on how the authentication node or
module is configured to search for users.

When provided as part of the OIDC Authentication
Request, the login_hint is set as the value of a
cookie named oidcLoginHint, which is an HttpOnly
cookie (only sent over HTTPS).

acr_values Supported Authentication Context class Reference values
used to communicate acceptable LoAs that users
must satisfy when authenticating to the OpenID
provider.

For more information, see "The Authentication
Context Class Reference (acr) Claim".

dtbs Not supported Data To Be Signed

At present AM does not support LoA 4.

For access to a simple, non-secure GSMA Mobile Connect relying party sample, see How do I access
and build the sample code provided for AM (All versions)? in the ForgeRock Knowledge Base.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Additional Use Cases for ID Tokens
Using ID Tokens as Session Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 107

Chapter 10

Additional Use Cases for ID Tokens
In addition to using the ID tokens in OpenID Connect flows, AM supports using ID tokens in place of
session tokens when calling REST endpoints and using ID tokens in policy evaluation.

Using ID Tokens as Session Tokens
You can authorize trusted clients to use ID tokens as the value of the iPlanetDirectoryPro cookie. This
is useful when clients need to make calls to AM endpoints, such as the authorization endpoints,
without requesting the end user to log in again.

The ID token must be issued using the Authorization Code Grant flow.

To Configure the OAuth 2.0 Service for Authorized Clients

Follow these steps to let clients use ID tokens in the place of session tokens:

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. In the Authorized OIDC SSO Clients field, add the name of each client that will be able to use ID
tokens in place of session tokens.

Because these clients will act with the full authority of the end user, grant this permission to
trusted clients only.

3. Ensure that Enable Session Management is enabled.

4. Save your changes.

Important

Although the lifetime of the ID token can be extended using refresh tokens, the maximum lifetime is still
determined by the session lifetime. If the session expires, the ID token is rejected by AM, even if the token itself
is still valid.

The following is an example of a call to the policies endpoint using an ID token instead of a session
token:

Additional Use Cases for ID Tokens
Using ID Tokens as Subjects in Policy Decision

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 108

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: protocol=1.0,resource=2.0" \
--header "iPlanetDirectoryPro: ID_TOKEN_VALUE" \
--data '{
 "resources":[
 "https://www.france-site.com:8443/index.html"
],
 "subject":{
 "ssoToken": "ID_TOKEN_VALUE"
 },
 "application":"iPlanetAMWebAgentService"
}' \
"https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluate"

Note

To access the policies endpoint, a user must have the Entitlement REST Access privilege.

Using ID Tokens as Subjects in Policy Decision
You can use the ID token as a subject condition during policy evaluation to validate claims within an
ID token.

For example, you can validate that the aud claim has a value of myApplication, which identifies a
particular application or group of applications within your environment.

Note that policy evaluation does not validate the ID token, but the claims within. Your applications
should validate the ID token before requesting policy evaluation from AM.

For more information about configuring policy evaluation using the OpenID Connect/JWT Claim type,
refer to "To Configure a Policy (UI)" in the Authorization Guide.

OpenID Connect 1.0 Endpoints

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 109

Chapter 11

OpenID Connect 1.0 Endpoints
AM exposes the following OpenID Connect-related endpoints:

AM Acting
As...

Endpoint Description

Provider /oauth2/userinfo Retrieves information about an authenticated user. It requires
a valid token issued with, at least, the openid scope (OpenID
Connect userinfo endpoint).

Provider /oauth2/idtokeninfo Validates unencrypted ID tokens (AM-specific endpoint).
Provider /oauth2/connect/checkSession Retrieves OpenID Connect session information (OpenID

Connect Session Management endpoint).
Provider /oauth2/connect/endSession Invalidates OpenID Connect sessions (OpenID Connect Session

Management endpoint).
Provider /oauth2/register Registers, reads, and deletes OAuth 2.0 clients (RFC7592 and

RFC7591)
Provider /.well-known/webfinger Exposes the URL of the OpenID provider during OpenID

Connect discovery.
Provider /oauth2/.well-known/openid-

configuration
Exposes provider configuration for OpenID Connect discovery.

Provider "/oauth2/connect/jwk_uri" Exposes the public keys that clients can use to verify the
signature of client-based tokens and to encrypt OpenID
Connect requests sent as a JWT.

Relying Party "/oauth2/connect/rp/jwk_uri" Exposes AM client public keys. Providers can use them to
encrypt ID tokens sent to AM, and to verify JWT and object
signatures coming from AM.

Tip

When AM acts as an OpenID Connect provider, the OAuth 2.0 endpoints support OpenID Connect specific
parameters, such as prompt and ui_locales.

https://datatracker.ietf.org/doc/html/rfc7592
https://datatracker.ietf.org/doc/html/rfc7591

OpenID Connect 1.0 Endpoints
/oauth2/userinfo

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 110

For a complete list of the endpoints and parameters AM supports as an OAuth 2.0/OpenID Connect provider,
see "OAuth 2.0 Endpoints" and "OAuth 2.0 Administration and Supporting REST Endpoints" in the OAuth 2.0
Guide.

/oauth2/userinfo
Endpoint that returns claims about the authenticated end user, as defined in OpenID Connect Core
1.0 incorporating errata set 1.

When requesting claims, provide an access token granted in an OpenID Connect flow as an
authorization bearer header. The endpoint will return the claims associated with the scopes granted
when the access token was requested.

You must compose the path to the user information endpoint addressing the specific realm where AM
logged in the user. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/
userinfo.

The following example shows AM returning claims about a user:
$ curl \
--request GET \
--header "Authorization: Bearer U-Wjlv-w1jtpuBVWUGFV6PwI_nE" \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/userinfo"
{
 "given_name":"Demo First Name",
 "family_name":"Demo Last Name",
 "name":"demo",
 "sub":"(usr!demo)",
 "subname":"id=demo,ou=user,o=root,ou=services,dc=openam,dc=forgerock,dc=org"
}

If the access token validates successfully, the endpoint returns the claims as JSON.

+ About the Subject and the Subname Claims

The subject claim is in the format (type!subject), where:

• subject is the identifier of the user/identity, or the name of the OAuth 2.0/OpenID Connect client
that is the subject of the token.

• type can be one of the following:

• age. Specifies that the subject is an OAuth 2.0/OpenID Connect-related user-agent or client.
For example, an OAuth 2.0 client, a Remote Consent Service agent, and a Web and Java Agent
internal client.

• usr. Specifies that the subject is a user/identity.

For example, (usr!demo), or (age!myOAuth2Client).

https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo

OpenID Connect 1.0 Endpoints
/oauth2/idtokeninfo

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 111

The value of the subname claim matches the value of the subject portion of the sub claim.

The user information endpoint can return claims as JSON (the default) or as a signed, encrypted, or
signed and encrypted JWT. To configure the response type, perform the following steps:

1. In the AM console, go to Realms > Realm Name > Applications > OAuth 2.0 > Clients > Client
Name > Signing and Encryption.

2. In the User info response format drop-down menu, select the type of response required by the
client.

3. Configure the signing and/or encryption algorithms AM should use when returning claims to this
particular client in the following properties:

• User info signed response algorithm

• User info encrypted response algorithm

• User info encrypted response encryption algorithm

For more information about these properties, see Signing and Encryption Properties in the OAuth
2.0 Guide.

Note that you can configure the algorithms the OAuth 2.0/OpenID Connect provider service
supports by navigating to > Realm Name > Services > OAuth2 Provider > Advanced OpenID
Connect.

For more information about the secret IDs mapped to the OAuth 2.0/OpenID Connect provider
signing and encrypting algorithms, see "Secret ID Default Mappings" in the Security Guide.

Signed, and signed and encrypted JWT responses will include the iss and the aud objects.

/oauth2/idtokeninfo
AM-specific endpoint that lets relying parties validate unencrypted ID tokens and to retrieve claims
within the token.

AM validates the tokens based on rules 1-10 in section 3.1.3.7 of the OpenID Connect Core. During
token validation, AM performs the following steps:

1. Extracts the first aud (audience) claim from the ID token. The client_id, which is passed in as an
authentication of the request, will be used as the client and validated against the aud claim.

2. Extracts the realm claim, if present, defaults to the root realm if the token was not issued by AM.

3. Looks up the client in the given realm, producing an error if it does not exist.

4. Verifies the signature of the ID token, according to the ID Token Signing Algorithm and Public key
selector settings in the client profile.

https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

OpenID Connect 1.0 Endpoints
/oauth2/idtokeninfo

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 112

5. Verifies the issuer, audience, expiry, not-before, and issued-at claims as per the specification.

Tip

By default, the ID token information endpoint requires client authentication. You can configure it by navigating
to Realms > Realm Name Services > OAuth2 Provider > Advanced OpenID Connect and disabling the
Idtokeninfo Endpoint Requires Client Authentication switch.

The ID token information endpoint supports the following parameters:

id_token

Specifies the ID token to validate.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: Yes, when client authentication is enabled.

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

Required: A form of password or credentials is required for confidential clients when client
authentication is enabled. However, the use of the client_assertion parameter depends on the
client authentication method used. For more information, see "OAuth 2.0 Client Authentication"
in the OAuth 2.0 Guide

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

Required: A form of password or credentials is required for confidential clients when client
authentication is enabled. However, the use of the client_assertion_type parameter depends on the
client authentication method used. For more information, see "OAuth 2.0 Client Authentication"
in the OAuth 2.0 Guide

client_secret

Specifies the secret of the client making the request.

Required: A form of password or credentials is required for confidential clients when client
authentication is enabled. However, the use of the client_secret parameter depends on the client
authentication method used. For more information, see "OAuth 2.0 Client Authentication" in the
OAuth 2.0 Guide

OpenID Connect 1.0 Endpoints
/oauth2/idtokeninfo

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 113

claims

Comma-separated list of claims to return from the ID token.

Required: No.

The endpoint is always accessed from the root realm. For example, https://openam.example.com:8443/
openam/oauth2/idtokeninfo.

The following example shows AM returning ID token information:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg" \
"https://openam.example.com:8443/openam/oauth2/idtokeninfo"
{
 "at_hash":"AvJ0dXLQgFxHn-qnqP9xmQ",
 "sub":"(usr!demo)",
 "auditTrackingId":"b3f48c69-de7f-4afc-ab78-582733e5f025-156621",
 "iss":"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha",
 "tokenName":"id_token",
 "nonce":"123abc",
 "sid": "I0GdWDfy1qhahDl1PpEA0v5LDspul+qW70biBhetUCk=",
 "aud":"myClient",
 "c_hash":"jMXGi-FCjUad2VQukJRcLQ",
 "acr":"0",
 "s_hash":"bKE9UspwyIPg8LsQHkJaiQ",
 "azp":"myClient",
 "auth_time":1553077105,
 "realm":"/myRealm",
 "exp":1553080707,
 "tokenType":"JWTToken",
 "iat":1553077107
}

If the ID token validates successfully, the endpoint unpacks the claims from the ID token and returns
them as JSON. You can also use an optional claims parameter in the request to return specific claims.

For example, you can run the following command to retrieve specific claims:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg" \
--data "claims=sub,exp,realm" \
"https://openam.example.com:8443/openam/oauth2/idtokeninfo"
{
 "sub":"(usr!demo)",
 "exp":1553080707,
 "realm":"/myRealm"
}

If a requested claim does not exist, no error occurs; AM will simply not present it in the response.

OpenID Connect 1.0 Endpoints
/oauth2/connect/checkSession

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 114

+ About the Subject and the Subname Claims

The subject claim is in the format (type!subject), where:

• subject is the identifier of the user/identity, or the name of the OAuth 2.0/OpenID Connect client
that is the subject of the token.

• type can be one of the following:

• age. Specifies that the subject is an OAuth 2.0/OpenID Connect-related user-agent or client.
For example, an OAuth 2.0 client, a Remote Consent Service agent, and a Web and Java Agent
internal client.

• usr. Specifies that the subject is a user/identity.

For example, (usr!demo), or (age!myOAuth2Client).

The value of the subname claim matches the value of the subject portion of the sub claim.

The subname claim is not included in the OIDC Claims Script. Therefore, AM does not add it to ID
tokens by default.

Note

The ID token information endpoint does not check if a token has been revoked using the /oauth2/endSession
endpoint.

/oauth2/connect/checkSession
Endpoint to check session state as per OpenID Connect Session Management 1.0 - draft 5.

The relying party client creates an invisible iframe that embeds the URL to the endpoint (by setting it
as the src attribute of the iframe tag).

The endpoint accepts postMessage API requests from the iframe, and it postMessages back with the
login status of the user in AM.

The endpoint is always accessed from the root realm. For example, https://openam.example.com:8443/
openam/oauth2/connect/checkSession.

https://openid.net/specs/openid-connect-session-1_0-10.html

OpenID Connect 1.0 Endpoints
/oauth2/connect/endSession

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 115

Tip

Note that this endpoint has been removed in later versions of the OpenID Connect Session Management draft.
For an alternative method of checking session state, see "Session Management Draft 10".

/oauth2/connect/endSession
Endpoint to terminate authenticated end-user sessions, as per OpenID Connect Session Management
1.0 - draft 5.

Query the well-known configuration endpoint for the realm to determine the URL of the end session
endpoint. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/.well-
known/openid-configuration.

The endpoint supports the following query parameters:

id_token_hint

The ID token corresponding to the identity of the end user the relying party is requesting to be
logged out by AM.

Required: Yes

client_id

To support ending sessions when ID tokens are encrypted, AM requires that the request to the
end session endpoint includes the client ID to which AM issued the ID token.

Failure to include the client ID will result in error; AM needs the information in the client profile
to decrypt the token.

This parameter is not compliant with the specification.

Required: Yes, if the ID token is encrypted.

post_logout_redirect_uri

The URL AM will redirect to after logout.

For security reasons, the value of this parameter must match one of the values configured in the
Post Logout Redirect URIs field of the client profile.

If a logout redirection URL is specified, AM redirects the end user to it after they have been
logged out.

If a logout redirection URL is not specified, AM returns an HTTP 204 message to indicate the
user has been logged out, and does not perform more actions.

https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-session-1_0-10.html

OpenID Connect 1.0 Endpoints
/oauth2/register

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 116

Required: No

This example shows AM deleting a session when an encrypted ID token is provided, and redirecting
the end user to the logout redirect URL specified:
$ curl --dump-header - \
--request GET \
"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/connect/endSession?
id_token_hint=eyJ0eXAiOiJKV1QiLCJra...&post_logout_redirect_uri=https://www.example.com:443/
logout_callback&client_id=myClient"
HTTP/1.1 302
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
Location: https://www.example.com:443/logout_callback
Content-Length: 0
Date: Mon, 12 Sep 2022 09:33:45 GMT

/oauth2/register
Endpoint that lets OAuth 2.0/OpenID Connect clients register dynamically as per RFC7591 and
OpenID Connect Dynamic Client Registration 1.0 incorporating errata set 1. The endpoint also lets
clients read and update their metadata, as well as deprovision themselves as per RFC7592.

You must compose the path to the register endpoint, addressing the specific realm where the client
is or should be registered/deprovisioned. For example, https://openam.example.com:8443/openam/oauth2/
realms/root/realms/alpha/register.

By default, AM requires clients to present an access token to register themselves. This behavior is
controlled by the Allow Open Dynamic Client Registration switch, under the Dynamic Registration tab
of the OAuth 2.0 provider.

Read, update, and delete operations require an authorization bearer header that includes the
registration_access_token, provided to the client during registration.

The endpoint supports the following methods:

• POST. Register clients

• GET. Read client information

• PUT. Update client information

• DELETE. Deprovision a client

For usage information and examples, see the following links:

• "Dynamic Client Registration"

• "Dynamic Client Registration Management"

https://datatracker.ietf.org/doc/html/rfc7591
https://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/rfc7592

OpenID Connect 1.0 Endpoints
/.well-known/webfinger

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 117

/.well-known/webfinger
Lets clients determine the provider URL for an end user, as described in the OpenID Connect
Discovery 1.0 incorporating errata set 1 specification.

Tip

The endpoint is disabled by default; to enable it, see "OpenID Connect Discovery".

The discovery endpoint supports the following parameters:

realm

Specifies the AM realm that must be queried for user information. Unlike other AM endpoints, the
discovery endpoint does not support specifying the realm in the path, because it is always located
after the deployment URI. For example, https://openam.example.com:8443/openam/.well-known/webfinger.

Required: No

resource

Identifies the URL-encoded subject of the request. This parameter can take the following formats,
as defined in the specification:

• acct:user_email. For example, acct%3Ademo%40example.com.

• acct:user_email@host. For example, acct%3Ademo%2540example.com%40server.example.com

• http_or_https://host/username. For example, http%3A%2F%2Fserver.example.com%2Fdemo.

• http_or_https://host:port. For example, http%3A%2F%2Fserver.example.com%3A8080.

The value of host is related to the discovery URL exposed to the clients. In the examples, the
exposed discovery endpoint would be something similar to http://server.example.com/.well-known/
webfinger. For more information about exposing the endpoint through a proxy or load balancer,
see "OpenID Connect Discovery".

Wildcard (*) characters are not supported.

Required: Yes.

rel

Specifies the URL-encoded URI identifying the type of service whose location is requested. The
only valid value is http://openid.net/specs/connect/1.0/issuer.

Required: Yes.

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html

OpenID Connect 1.0 Endpoints
/oauth2/.well-known/openid-configuration

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 118

The following command requests information for the demo user in the example.com domain to the OAuth
2.0 provider service in the Engineering realm:
$ curl \
--request GET \
"https://openam.example.com:8443/openam/.well-known/webfinger\
?resource=acct%3Ademo%40example.com\
&realm=Engineering\
&rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer"
{
 "subject": "acct:demo@example.com",
 "links": [
 {
 "rel": "http://openid.net/specs/connect/1.0/issuer",
 "href": "https://openam.example.com:8443/openam/oauth2"
 }
]

}

/oauth2/.well-known/openid-configuration
Lets relying parties retrieve the OpenID Provider configuration by HTTP GET as specified by OpenID
Connect Discovery 1.0.

When the OpenID Connect provider is configured in a subrealm, relying parties can get the
configuration by passing in the full path to the realm in the URL. For example, if the OpenID Connect
provider is configured in a realm named alpha, the URL would resemble the following: https://openam.
example.com:8443/openam/oauth2/realms/root/realms/alpha/.well-known/openid-configuration.

Tip

For more information about OpenID Connect discovery, see "OpenID Connect Discovery".

After the relying party has discovered who the provider for the end user is, they can discover the
provider's configuration:

OpenID Connect 1.0 Endpoints
/oauth2/connect/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 119

$ curl "https://openam.example.com:8443/openam/oauth2/.well-known/openid-configuration"
{
 "request_parameter_supported":true,
 "claims_parameter_supported":false,
 "introspection_endpoint":"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/
introspect",
 "check_session_iframe":"https://openam.example.com:8443/openam/oauth2/connect/checkSession",
 "scopes_supported":[
 "address",
 "phone",
 "openid",
 "profile",
 "email"
],
 "userinfo_endpoint":"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/userinfo",
 "jwks_uri":"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/connect/jwk_uri",
 "registration_endpoint":"https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/
register",

}

/oauth2/connect/jwk_uri
Each realm configured for OAuth 2.0 exposes a JSON web key (JWK) URI endpoint that contains
public keys that clients can use to:

• Verify the signature of client-based access tokens and OpenID Connect ID tokens.

• Encrypt OpenID Connect ID requests to AM sent as a JWT.

+ Where Do the Keys Come From?

By default, the endpoint exposes an internal URI relative to the AM deployment. For example,
openam/oauth2/realms/root/connect/jwk_uri.

The keys appearing in that URI are those configured in the AM secret stores in the Security
Guide, regardless of the algorithms configured in the OAuth 2.0 provider. This is to support the
process of deprecating keys/algorithms.

Secrets are configured by default; delete the ones you are not planning to use so that they are not
exposed on the endpoint.

In environments where secrets are centralized, you may want AM to share the URI of your secrets
API instead of the local AM endpoint. To configure it, go to Realms > Realm name > Services >
OAuth2 Provider, and add the new URI to the Remote JSON Web Key URL field.

Note that HMAC-based algorithms, direct encryption, and AES key wrapping encryption algorithms
use the client secret instead of a public key. Therefore, clients do not need to check the JWK URI
endpoint for those algorithms.

OpenID Connect 1.0 Endpoints
/oauth2/connect/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 120

+ The Endpoint is Exposed, But I Haven't Configured an OAuth 2.0 Provider Yet

Web and Java agents use an internal OAuth 2.0 provider to connect to AM. This provider exposes
the endpoint so that agents can access the key configured for the am.global.services.oauth2.oidc.
agent.idtoken.signing secret ID.

Tip

Configure the base URL source service in the Security Guide to change the URL used in the .well-known
endpoints used in OpenID Connect 1.0 and UMA.

The following table summarizes the high-level tasks you need to complete to manage the JWK URI
endpoint in your environment:

Task Resources
Learn where to find and how to query the JWK URI endpoint.

Clients need to find the endpoint to, for example, validate tokens
signed by AM.

"To Access the Keys Exposed by the JWK
URI Endpoint"

Control which keys are displayed.

The JWK URI endpoint returns keys based on the secret
mappings configured for the relevant OAuth 2.0/OpenID
connect functionality. Therefore, to control which keys are
displayed, ensure that you only map the secrets required in your
environment.

"Configuring ID Token Signatures"

Learn how to deprecate algorithms and how to rotate public
keys.

You may need to perform these tasks to replace algorithms with
more secure ones.

"Deprecating Algorithms and Rotating
Public Keys"

Customize the key ID (kid) of the exposed keys.

By default, AM generates a kid for each public key exposed in
the jwk_uri endpoint when AM is configured as an OAuth 2.0
authorization server.

You need to customize AM if any exposed keys in your
environment need a specific kid.

"Customizing Public Key IDs".

Decide if the JWK URI endpoint should display duplicated key IDs

By default, each kid exposed by the jwk_uri endpoint matches a
unique secret, as required by the RFC7517 specification.

If you have several algorithms and key types associated with one
kid, configure AM to display them individually.

"Displaying Every Algorithm and Key Type
Associated to a Key ID".

https://datatracker.ietf.org/doc/html/rfc7517#section-4.5

OpenID Connect 1.0 Endpoints
/oauth2/connect/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 121

To Access the Keys Exposed by the JWK URI Endpoint

Perform the following steps to access the public keys:

1. To find the JWK URI that AM exposes, perform an HTTP GET at /oauth2/realms/root/.well-known/
openid-configuration. For example:
$ curl https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/.well-known/openid-
configuration
{
 "request_parameter_supported": true,
 "claims_parameter_supported": false,
 "introspection_endpoint": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/
introspect",
 "check_session_iframe": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/
connect/checkSession",
 "scopes_supported": [],
 "issuer": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha",
 "id_token_encryption_enc_values_supported": [
 "A256GCM",
 "A192GCM",
 "A128GCM",
 "A128CBC-HS256",
 "A192CBC-HS384",
 "A256CBC-HS512"
],
...
 "jwks_uri": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/connect/
jwk_uri",
 "subject_types_supported": [
 "public"
],
...
}

By default, AM exposes the JWK URI as an endpoint relative to the deployment URI. For example,
https://openam.example.com:8443/openam/oauth2/realms/root/connect/jwk_uri.

In environments where secrets are centralized, you may want AM to share the URI of your
secrets API instead of the local AM endpoint.

To configure it, go to Realms > Realm name > Services > OAuth2 Provider, and add the new URI
to the Remote JSON Web Key URL field.

2. Perform an HTTP GET at the JWK URI to get the relevant public keys. For example:

OpenID Connect 1.0 Endpoints
Configuring ID Token Signatures

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 122

$ curl https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/connect/jwk_uri
{
"keys":[
 {
 "kty":"EC",
 "kid":"I4x/IijvdDsUZMghwNq2gC/7pYQ=",
 "use":"sig",
 "x5t":"GxQ9K-sxpsH487eSkJ7lE_SQodk",
 "x5c":[
 "MIIB/zCCAYYCCQDS7UWmBdQtETAJ0mN0TZL7/MaY..."
],
 "x":"k5wSvW_6JhOuCj-9PdDWdEA4oH90RSmC2GTliiUHAhXj6rmTdE2S-_zGmMFxufuV",
 "y":"XfbR-tRoVcZMCoUrkKtuZUIyfCgAy8b0FWnPZqevwpdoTzGQBOXSNi6uItN_o4tH",
 "crv":"P-384"
 },
 ...
]
}

Configuring ID Token Signatures

ID tokens are signed by default with a test key configured during installation. Change this key on
production-like and production environments.

To Configure ID Token Digital Signatures

Perform the steps in this procedure to configure the signing algorithm AM should use to sign OpenID
Connect tokens:

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider.

2. In the OpenID Connect tab, ensure that the ID Token Signing Algorithms supported list has the
signing algorithms your environment requires.

AM supports the signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS.

Note that the alias mapped to the algorithms are defined in the secret stores, as shown in the
table below:

+ Secret ID Mappings for Signing OpenID Connect Tokens

The following table shows the secret ID mapping used to sign OpenID Connect ID tokens and
backchannel logout tokens:

Secret ID Default Alias Algorithms a

am.services.oauth2.oidc.signing.ES256 es256test ES256
am.services.oauth2.oidc.signing.ES384 es384test ES384

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1

OpenID Connect 1.0 Endpoints
Configuring ID Token Signatures

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 123

Secret ID Default Alias Algorithms a

am.services.oauth2.oidc.signing.ES512 es512test ES512
am.services.oauth2.oidc.signing.RSA rsajwtsigningkey PS256

PS384
PS512
RS256
RS384
RS512

am.services.oauth2.oidc.signing.EDDSA EdDSA with SHA-512
a The following applies to confidential clients only:

If you select an HMAC algorithm for signing ID tokens (HS256, HS384, or HS512), the Client Secret property value in
the OAuth 2.0 Client is used as the HMAC secret instead of an entry from the secret stores.

Since the HMAC secret is shared between AM and the client, a malicious user compromising the client could
potentially create tokens that AM would trust. Therefore, to protect against misuse, AM also signs the token using a
non-shared signing key configured in the am.services.oauth2.jwt.authenticity.signing secret ID.

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

3. (Optional) If the client is configured in AM, go to Realms > Realm Name > Applications > OAuth
2.0 > Client Name.

Clients registering dynamically can see the algorithms that the provider supports by making a
call to the /oauth2/.well-known/openid-configuration endpoint.

4. In the ID Token Signing Algorithm field, enter the signing algorithm that AM will use to sign the
ID token for this client.

Note that the OAuth 2.0 provider must support signing with the chosen algorithm.

5. Save your changes.

AM is ready to sign ID tokens with the algorithm you configured.

OpenID Connect 1.0 Endpoints
Deprecating Algorithms and Rotating Public Keys

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 124

Tip

If you chose a non-HMAC-based algorithm, the client will need to make a request to AM's JWK URI
endpoint for the realm to recover the signing public key they can use to validate the ID tokens.

Deprecating Algorithms and Rotating Public Keys
With signing and encryption methods changing so rapidly, during the lifecycle of your OAuth 2.0
environment you will need to deprecate older, less secure signing and/or encrypting algorithms in
favor of new ones.

In the same way, you will rotate the keys AM uses for signing and encryption if you suspect they may
have been leaked or just due to security policies, such as deprecating algorithms or because they
have reached the end of their lifetime.

The keys you expose in the JWK URI endpoint should reflect the algorithms currently supported by
AM as well as the deprecated ones. Otherwise, clients still using tokens signed with deprecated keys
would not be able to validate them.

This is why deprecating supported algorithms in the OAuth 2.0/OpenID Connect provider is a two-
step process:

1. Remove the old algorithm from the OAuth 2.0 provider supported algorithm list. This stops new
clients from registering with that algorithm.

2. After a grace period, remove the secret mapping associated to that algorithm. This removes the
associated public keys from the JWK URI endpoint.

To Deprecate Supported Algorithms and their Keys

Perform the steps in this procedure to deprecate an algorithm and its related keys. If you only want
to deprecate keys or rotate them as part of your environment's security policies, see "Mapping and
Rotating Secrets" in the Security Guide instead.

1. (Optional) Configure the new algorithm, if required.

a. Go to Realms > Realm Name > Services > OAuth2 Provider > OpenID Connect.

b. (Optional) In the ID Token Signing Algorithm supported field, add the new signing algorithm,
if not already present.

c. (Optional) In the ID Token Encryption Algorithms supported field, add the new encryption
algorithm, if not already present.

d. Save your changes.

2. (Optional) Configure secret ID mappings for the keys using the new algorithm, if required.

OpenID Connect 1.0 Endpoints
Customizing Public Key IDs

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 125

For more information, see "Configuring Secret Stores" in the Security Guide.

3. Remove the algorithm to be deprecated from the relevant OAuth 2.0 provider algorithm list:

a. Go to Realms > Realm Name > Services > OAuth2 Provider > OpenID Connect.

b. (Optional) In the ID Token Signing Algorithm supported field, remove the deprecated signing
algorithm.

c. (Optional) In the ID Token Encryption Algorithms supported field, remove the deprecated
encryption algorithm.

d. Save your changes.

4. Decide on a grace period. For example, a month. During this period both the deprecated and the
new algorithms/keys are supported.

New clients cannot register with the deprecated algorithms and are forced to use a supported
algorithm. However, since the deprecated keys are still mapped to secret IDs, existing clients still
can use them to validate active tokens and encrypt requests.

Existing clients must change their configuration during the grace period to use one of the
supported algorithms.

5. After the grace period, remove the secret ID mappings relevant to the deprecated algorithm.

For more information about secret mappings, see "Mapping and Rotating Secrets" in the Security
Guide.

Customizing Public Key IDs
By default, AM generates a key ID (kid) for each public key exposed in the jwk_uri URI when AM is
configured as an OAuth 2.0 authorization server.

For keys stored in a keystore or HSM secret store, you can customize how key ID values are
determined by writing an implementation of the KeyStoreKeyIdProvider interface and configuring it in
AM:

To Customize Public Key IDs

Perform the following steps:

1. Write your own implementation of the KeyStoreKeyIdProvider interface that provides a specific key
ID for a provided public key. For more information, see the KeyStoreKeyIdProvider interface in the
Access Management 7.1.4 Java API Specification.

2. In the AM console, configure the OAuth 2.0/OpenID Connect Provider service, if not done already.
For more information, see "Authorization Server Configuration" in the OAuth 2.0 Guide.

../apidocs/org/forgerock/openam/secrets/KeyStoreKeyIdProvider.html

OpenID Connect 1.0 Endpoints
Displaying Every Algorithm and Key Type Associated to a Key ID

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 126

3. Go to Configure > Server Defaults > Advanced.

4. Add an advanced server property called org.forgerock.openam.secrets.keystore.keyid.provider, whose
value is the fully qualified name of the class you wrote in previous steps. For example:
org.forgerock.openam.secrets.keystore.keyid.provider =
 com.mycompany.am.secrets.CustomKeyStoreKeyIdProvider

5. Restart the AM instance or the container in which it runs.

6. Verify that the customized key IDs are displayed by navigating to the OAuth 2.0 authorization
server's jwk_uri URI. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
alpha/connect/jwk_uri.

Displaying Every Algorithm and Key Type Associated to a Key ID

By default, each key ID (kid) exposed by the jwk_uri endpoint matches a unique secret, as
recommended by the RFC7517 specification. This means that each kid is of a particular key type, and
uses a particular algorithm.

If you have several algorithms and key types associated with one kid, configure the JWK URI endpoint
to display them as different keys in the JWK. Note that when including all combinations associated
with a kid, that kid does not uniquely identify a particular secret.

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. Enable Include all kty and alg combinations in jwk_uri.

3. Save your changes.

4. Verify that you can now see duplicate kid entries for different combinations of algorithms and key
types.

For more information, see "To Access the Keys Exposed by the JWK URI Endpoint".

/oauth2/connect/rp/jwk_uri
As well as acting as the provider, AM can also act as the relying party. To share its client public
secrets, AM exposes a JSON web key (JWK) URI endpoint for each realm.

Use this endpoint during ForgeRock Identity Platform social identity registration, where providers
can use the exposed secrets to:

• Encrypt ID tokens returned to AM.

• Verify the signature of JWTs coming from AM, such as that of request objects or client
authentication JWTs.

https://datatracker.ietf.org/doc/html/rfc7517#section-4.5
https://backstage.forgerock.com/docs/platform/7.1/platform-self-service-guide/index.html#social-registration

OpenID Connect 1.0 Endpoints
/oauth2/connect/rp/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 127

• Decrypt client authentication JWTs coming from AM.

Specify the AM realm path in the URI, as follows:

/oauth2/realms/root/realms/{realm}/connect/rp/jwk_uri

Example:
$ curl https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/connect/rp/jwk_uri
{
 "keys": [
 {
 "kty": "RSA",
 "kid": "DkKMPE7hFVEn77WWhVuzaoFp4O8=",
 "use": "enc",
 "x5t": "JRxY4hJRL3sI_dAUWUEosCEQJ3A",
 "x5c": [
 "MIIDYTCCAkm...eP4wLr3cM="
],
 "n": "i7t6m4d_02dZ8dOe-DFc...zflF8jR9pewTbQ",
 "e": "AQAB"
 },
 {
 "kty": "RSA",
 "kid": "wU3ifIIaLOUAReRB/FG6eM1P1QM=",
 "use": "sig",
 "x5t": "5eOfy1Nn2MMIKVRRkq0OgFAw348",
 "x5c": [
 "MIIDdzCCAl+gAwIBAgIES3eb+zANBgk...s009kbW6inN8zA6"
],
 "n": "10iGQ5l5IdqB...AJW4ZSg1PPO2UJSQ",
 "e": "AQAB"
 }
]
}

Supply the JWK URI to the provider when registering AM as a relying party. Consult the
documentation provided by your OpenID provider for more information.

The JWK URI endpoint publishes keys based on secret mappings made either globally, or in the
specific realm. The secret IDs to map are as follows:

am.services.oauth2.oidc.rp.jwt.authenticity.signing

The OpenID Connect provider obtains the public key from the alias mapped to this secret, and
uses it to verify the signature applied to request objects it receives.

All aliases configured for the secret ID are published at the endpoint so that, when you rotate
secrets in the Security Guide, the provider is still able to validate JWTs with all the secrets.

The active secret is the only one that AM uses for signing, however.

am.services.oauth2.oidc.rp.idtoken.encryption

The OpenID Connect provider obtains the public key from the alias mapped to this secret, and
uses it to encrypt ID tokens and userinfo endpoint data in JWT format before returning it to AM.

OpenID Connect 1.0 Endpoints
/oauth2/connect/rp/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 128

Unlike the signing secret ID above, only the alias that is marked as active in the mappings is
published at the endpoint. Any additional mappings are ignored.

am.services.oauth2.mtls.client.authentication

The OpenID Connect provider obtains the public JWK from the alias mapped to this secret, and
uses it to verify the mutual TLS self-signed certificate that the client uses to authenticate.

Secrets configured globally will show in the JWK URI for all realms.

In a new installation of AM, these signing and encryption secret IDs are mapped by default, as
explained in the table below:

+ Secret ID Mappings for Decrypting ID Tokens

The following table shows the secret ID mapping to support decryption of ID tokens and userinfo
endpoint data in JWT format when AM is configured as a relying party of the Social Identity
Provider Service:

Secret ID Default Alias Algorithms
am.services.oauth2.oidc.rp.idtoken.encryption test

The public key is exposed in the "/oauth2/connect/rp/jwk_uri".

For more information about the algorithms supported, and how to configure this secret ID
mapping, see "Social Authentication" in the Authentication and Single Sign-On Guide.

+ Secret ID Mappings for Signing JWTs and Objects

The following table shows the secret ID mapping that AM uses to sign JWTs and objects when
configured as a relying party of the Social Identity Provider Service:

Secret ID Default Alias Algorithms
am.services.oauth2.oidc.rp.jwt.authenticity.signing rsajwtsigningkey

The public key is exposed in the "/oauth2/connect/rp/jwk_uri".

For more information about the algorithms supported, and how to configure this secret ID
mapping, see "Social Authentication" in the Authentication and Single Sign-On Guide.

Note

In upgraded AM instances, the secret IDs will not have default aliases mapped, and the JWK URI endpoint
returns an empty JWK set.

By default, secret IDs are mapped to demo keys contained in the default keystore provided with AM
and mapped to the default-keystore keystore secret store. Use these keys for demo and test purposes

OpenID Connect 1.0 Endpoints
/oauth2/connect/rp/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 129

only. For production environments, replace the secrets as required and create mappings for them in a
secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 130

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 131

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 132

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 133

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IDP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 134

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

OpenID Connect 1.0 Guide ForgeRock Access Management 7.1.4 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 135

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	OpenID Connect 1.0 Guide
	Table of Contents
	Overview
	Chapter 1. AM as the OpenID Provider
	OpenID Connect Discovery
	Security Considerations
	About Token Storage Location

	Chapter 2. OpenID Provider Configuration
	Encrypting ID Tokens and Backchannel Logout Tokens

	Chapter 3. About Claims
	Scripting OpenID Connect 1.0 Claims
	OpenID Connect Claims Scripting API

	Chapter 4. Dynamic Client Registration
	Dynamic Client Registration Management

	Chapter 5. OpenID Connect Client Authentication
	Chapter 6. OpenID Connect Grant Flows
	Authorization Code Grant
	Authorization Code Grant with PKCE
	Backchannel Request Grant
	Implicit Grant
	Hybrid Grant

	Chapter 7. Managing OpenID Connect User Sessions
	Checking the State of a Session, and Invalidating Sessions
	Session Management Draft 10
	Enabling Session Management Draft 10

	Session Management Draft 05

	Informing Relying Parties that a Session has Expired
	Back-Channel Logout Limitations
	The Logout Token
	Enabling Back-Channel Logout
	The Back-Channel Logout Postman Collection

	Chapter 8. Adding Authentication Requirements to ID Tokens
	The Authentication Context Class Reference (acr) Claim
	The Authentication Method Reference (amr) Claim

	Chapter 9. GSMA Mobile Connect
	Chapter 10. Additional Use Cases for ID Tokens
	Using ID Tokens as Session Tokens
	Using ID Tokens as Subjects in Policy Decision

	Chapter 11. OpenID Connect 1.0 Endpoints
	/oauth2/userinfo
	/oauth2/idtokeninfo
	/oauth2/connect/checkSession
	/oauth2/connect/endSession
	/oauth2/register
	/.well-known/webfinger
	/oauth2/.well-known/openid-configuration
	/oauth2/connect/jwk_uri
	Configuring ID Token Signatures
	Deprecating Algorithms and Rotating Public Keys
	Customizing Public Key IDs
	Displaying Every Algorithm and Key Type Associated to a Key ID

	/oauth2/connect/rp/jwk_uri

	Glossary

