
This guide provides general information about AM’s REST APIs.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

Representational State Transfer (REST) is an architectural style that sets certain

constraints for designing and building large-scale distributed hypermedia systems.

As an architectural style, REST has very broad applications. The designs of both HTTP 1.1

and URIs follow RESTful principles. The World Wide Web is no doubt the largest and best

REST API



Learn about

ForgeRock® Common

REST and how AM

supports it.

Get started



Access the online AM

REST API reference

through the AM admin

UI.

API Explorer



Discover the REST

endpoints AM exposes.

REST endpoints



REST in AM



1 / 33

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-api-versioning.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/about-api-explorer.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-endpoints.html

known REST application. Many other web services also follow the REST architectural

style. Examples include OAuth 2.0, OpenID Connect 1.0, and User-Managed Access

(UMA).

The ForgeRock Common REST API applies RESTful principles to define common verbs for

HTTP-based APIs. Most native AM REST APIs use the common REST verbs. In contrast,

OAuth 2.0, OpenID Connect 1.0 and UMA APIs follow their respective standards.

See Configure identities and realms over REST for examples of how to use the REST API

in AM.

ForgeRock® Common REST is a common REST API framework. It works across the

ForgeRock platform to provide common ways to access web resources and collections of

resources. Adapt the examples in this section to your resources and deployment.

Servers generally return JSON-format resources, though resource formats can depend

on the implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in

the resource URIs. For example, if a server has a user collection under /users , then

you can access a user at /users/user-id . The ID is also the value of the _id field of

the resource.

Resources are versioned using revision numbers. A revision is specified in the resource’s

_rev field. Revisions make it possible to figure out whether to apply changes without

resource locking and without distributed transactions.

The Common REST APIs use the following verbs, sometimes referred to collectively as

CRUDPAQ . For details and HTTP-based examples of each, follow the links to the sections

for each verb.

The ForgeRock Common REST interface stability is classified as evolving.

NOTE

About ForgeRock Common REST

This page describes the full Common REST framework. Some platform component

products do not implement all Common REST behaviors exactly as described. For

details, refer to the product-specific examples and reference information.

NOTE

Common REST resources

Common REST verbs

2 / 33

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/sec-rest-realm-rest.html
file:///pingam/latest/release-notes/stability.html#interface-stability

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see Create.

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see Read.

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see Update.

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see Delete.

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see Patch.

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see Action.

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see Query.

Common REST parameters

3 / 33

Common REST reserved query string parameter names start with an underscore, _ .

Reserved query string parameters include, but are not limited to, the following names:

_action

_api

_crestapi

_fields

_mimeType

_pageSize

_pagedResultsCookie

_pagedResultsOffset

_prettyPrint

_queryExpression

_queryFilter

_queryId

_sortKeys

_totalPagedResultsPolicy

Continue reading for details about how to use each parameter.

The action verb is the main vehicle for extensions. For example, to create a new user

with HTTP POST rather than HTTP PUT, you might use /users?_action=create . A

server can define additional actions. For example, /tasks/1?_action=cancel .

A server can define stored queries to call by ID. For example, /groups?

_queryId=hasDeletedMembers . Stored queries can call for additional parameters. The

parameters are also passed in the query string. Which parameters are valid depends on

the stored query.

Common REST APIs often depend at least in part on runtime configuration. Many

Common REST endpoints therefore serve API descriptors at runtime. An API descriptor

documents the actual API as it is configured.

Some parameter values are not safe for URLs, so URL-encode parameter values as

necessary.

NOTE

Common REST extension points

Common REST API documentation

4 / 33

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification .

This API descriptor represents the API accessible over HTTP. It is suitable for use with

popular tools such as Swagger UI .

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the

transport protocol. It requires a client that understands Common REST, as it omits

many Common REST defaults.

To publish OpenAPI documentation

In production systems, developers expect stable, well-documented APIs. Rather

than retrieving API descriptors at runtime through Common REST, prepare final

versions, and publish them alongside the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for

your developers:

1. Configure the software to produce production-ready APIs.

In other words, configure the software as for production so that the APIs match

exactly.

2. Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json :

3. If necessary, edit the descriptor.

For example, add security definitions to describe the API protection.

4. Publish the descriptor using a tool such as Swagger UI .





Consider limiting access to API descriptors in production environments in order to

avoid unnecessary traffic.

To provide documentation in production environments, see To publish OpenAPI

documentation instead.

NOTE

$ curl -o myapi.json endpoint?_api



5 / 33

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui
https://github.com/swagger-api/swagger-ui

There are two ways to create a resource, HTTP POST or HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string

parameter _action=create , and the JSON resource as a payload. Accept a JSON

response. The server creates the identifier if not specified:

To create a resource using PUT, perform an HTTP PUT including the case-sensitive

identifier for the resource in the URL path, and the JSON resource as a payload. Use the

If-None-Match: * header. Accept a JSON response:

The _id and content of the resource depend on the server implementation. The server

is not required to use the _id that the client provides. The server response to the

request indicates the resource location as the value of the Location header.

If you include the If-None-Match header, you must use If-None-Match: * . In this

case, the request creates the object if it does not exist, and fails if the object does exist.

If you include any value other If-None-Match: * , the server returns an HTTP 400 Bad

Request error. For example, creating an object with If-None-Match: revision

returns a bad request error.

If you do not include If-None-Match: * , the request creates the object if it does not

exist, and updates the object if it does exist.

Parameters

_fields=field[,field…​]

Return only the specified fields in the body of the response.

Create

POST /users?_action=create HTTP/1.1

Host: example.com

Accept: application/json

Content-Length: ...

Content-Type: application/json

{ JSON resource }

PUT /users/some-id HTTP/1.1

Host: example.com

Accept: application/json

Content-Length: ...

Content-Type: application/json

If-None-Match: *

{ JSON resource }

6 / 33

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive

identifier (_id), and accept a JSON response:

Parameters

_fields=field[,field…​]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_mimeType=mime-type

Some resources have fields whose values are multi-media resources, such as a

profile photo.

If the feature is enabled for the endpoint, you can read a single field that is a multi-

media resource by specifying the field and mime-type.

In this case, the content type of the field value returned matches the mime-type that

you specify, and the body of the response is the multi-media resource.

Do not use the Accept header in this case. For example, Accept: image/png does

not work. Use the _mimeType query string parameter instead.

_prettyPrint=true

Format the body of the response.

To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id)

as the final element of the path to the resource, and the JSON resource as the payload.

Use the If-Match: _rev header to check that you are actually updating the version

Read

GET /users/some-id HTTP/1.1

Host: example.com

Accept: application/json

Update

7 / 33

you modified. Use If-Match: * if the version does not matter. Accept a JSON

response:

When updating a resource, include all the attributes to retain. Omitting an attribute in

the resource amounts to deleting the attribute unless it is not under the control of your

application. Attributes not under the control of your application include private and

read-only attributes. In addition, virtual attributes and relationship references might not

be under the control of your application.

Parameters

_fields=field[,field…​]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier

(_id) and accept a JSON response:

PUT /users/some-id HTTP/1.1

Host: example.com

Accept: application/json

Content-Length: ...

Content-Type: application/json

If-Match: _rev

{ JSON resource }

Product-specific implementations may differ. Not all products use the payload to

replace the state of the resource in its entirety. For example, attributes that are

omitted from the request payload to AM will not be deleted. Instead, you need to

specify the attribute and set the value to an empty array to delete the attribute

from the resource.

For more information, see the product-specific examples and reference

information.

NOTE

Delete

8 / 33

Parameters

_fields=field[,field…​]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

To patch a resource, send an HTTP PATCH request with the following parameters:

operation

field

value

from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON

PATCH file. If successful, you’ll see a JSON response similar to the following:

PATCH operations apply to three types of targets:

single-valued, such as an object, string, boolean, or number.

list semantics array, where the elements are ordered, and duplicates are allowed.

set semantics array, where the elements are not ordered, and duplicates are not

allowed.

ForgeRock PATCH supports multiple operations :

DELETE /users/some-id HTTP/1.1

Host: example.com

Accept: application/json

Patch

PATCH /users/some-id HTTP/1.1

Host: example.com

Accept: application/json

Content-Length: ...

Content-Type: application/json

If-Match: _rev

{ JSON array of patch operations }

9 / 33

The add operation ensures that the target field contains the value provided, creating

parent fields as necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the

value of the target. A single-valued field is an object , string , boolean , or number .

An add operation has different results on two standard types of arrays:

List semantic arrays: you can run any of these add operations on that type of

array:

If you add an array of values, the PATCH operation appends it to the existing

list of values.

If you add a single value, specify an ordinal element in the target array, or use

the {-} special index to add that value to the end of the list.

Set semantic arrays: The value included in the patch is merged with the existing set

of values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:

The following add operation includes the pineapple to the end of the list of fruits, as

indicated by the - at the end of the fruits array.

The following is the resulting resource:

You can add only one array element one at a time, as per the corresponding JSON Patch

specification . If you add an array of elements, for example:

Patch operation: add

{

"fruits" : ["orange", "apple"]

}

{

"operation" : "add",

"field" : "/fruits/-",

"value" : "pineapple"

}

{

"fruits" : ["orange", "apple", "pineapple"]

}



10 / 33

https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16
https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16
https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16
https://www.rfc-editor.org/rfc/rfc6902.html#appendix-A.16

The resulting resource would have the following invalid JSON structure:

The copy operation takes one or more existing values from the source field. It then adds

those same values on the target field. Once the values are known, it is equivalent to

performing an add operation on the target field.

The following copy operation takes the value from a field named mail , and then runs

a replace operation on the target field, another_mail .

If the source and target field values are arrays, the result depends on whether the array

has list semantics or set semantics, as described in Patch operation: add.

The increment operation changes the value or values of the target field by the amount

you specify. The value that you include must be one number, and may be positive or

negative. The value of the target field must accept numbers. The following increment

operation adds 1000 to the target value of /user/payment .

{

"operation" : "add",

"field" : "/fruits/-",

"value" : ["pineapple", "mango"]

}

{

"fruits" : ["orange", "apple", ["pineapple", "mango"]]

}

Patch operation: copy

[

{

"operation":"copy",

"from":"mail",

"field":"another_mail"

}

]

Patch operation: increment

[

{

"operation" : "increment",

"field" : "/user/payment",

11 / 33

Since the value of the increment is a single number, arrays do not apply.

The move operation removes existing values on the source field. It then adds those

same values on the target field. This is equivalent to a remove operation on the source,

followed by an add operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field,

surname , followed by a replace operation on the target field value, lastName . If the

target field does not exist, it is created:

To apply a move operation on an array, you need a compatible single-value, list

semantic array, or set semantic array on both the source and the target. For details, see

the criteria described in Patch operation: add.

The remove operation ensures that the target field no longer contains the value

provided. If the remove operation does not include a value, the operation removes the

field. The following remove deletes the value of the phoneNumber , along with the field.

If the object has more than one phoneNumber , those values are stored as an array.

A remove operation has different results on two standard types of arrays:

"value" : "1000"

}

]

Patch operation: move

[

{

"operation":"move",

"from":"surname",

"field":"lastName"

}

]

Patch operation: remove

[

{

"operation" : "remove",

"field" : "phoneNumber"

}

]

12 / 33

List semantic arrays: A remove operation deletes the specified element in the

array. For example, the following operation removes the first phone number, based

on its array index (zero-based):

Set semantic arrays: The list of values included in a patch are removed from the

existing array.

The replace operation removes any existing value(s) of the targeted field, and replaces

them with the provided value(s). It is essentially equivalent to a remove followed by a

add operation. If the arrays are used, the criteria is based on Patch operation: add.

However, indexed updates are not allowed, even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the

user, and then adds the new value of +1 408 555 9999 .

A PATCH replace operation on a list semantic array works as a PATCH remove operation.

The following example demonstrates how the effect of both operations. Start with the

following resource:

Apply the following operations on that resource:

[

{

"operation" : "remove",

"field" : "/phoneNumber/0"

}

]

Patch operation: replace

[

{

"operation" : "replace",

"field" : "/telephoneNumber",

"value" : "+1 408 555 9999"

}

]

{

"fruits" : ["apple", "orange", "kiwi", "lime"],

}

[

{

13 / 33

The PATCH operations are applied sequentially. The remove operation removes the first

member of that resource, based on its array index, (fruits/0), with the following

result:

The second PATCH operation, a replace , is applied on the second member

(fruits/1) of the intermediate resource, with the following result:

The transform operation changes the value of a field based on a script, or some other

data transformation command. The following transform operation takes the value

from the field named /objects , and applies the something.js script as shown:

"operation" : "remove",

"field" : "/fruits/0",

"value" : ""

},

{

"operation" : "replace",

"field" : "/fruits/1",

"value" : "pineapple"

}

]

[

{

"fruits" : ["orange", "kiwi", "lime"],

}

]

[

{

"fruits" : ["orange", "pineapple", "lime"],

}

]

Patch operation: transform

[

{

"operation" : "transform",

"field" : "/objects",

"value" : {

"script" : {

"type" : "text/javascript",

14 / 33

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that

the library you use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid

HTTP method. Instead, the method

HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException .

Parameters

_fields=field[,field…​]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

Actions are a means of extending Common REST APIs and are defined by the resource

provider, so the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in Create.

Parameters

In addition to these parameters, specific action implementations have their own

parameters:

_fields=field[,field…​]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_prettyPrint=true

Format the body of the response.

"file" : "something.js"

}

}

}

]

Patch operation limitations

Action

15 / 33

To query a resource collection (or resource container), perform an HTTP GET, and accept

a JSON response, including either a _queryExpression , _queryFilter , or _queryId

parameter. The parameters cannot be used together:

The server returns the result as a JSON object including a "results" array, and other

fields that depend on the parameters.

Parameters

_countOnly=true

Return a count of query results without returning the resources.

This parameter requires protocol version 2.2 or later.

_fields=field[,field…​]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":

{"child":"value"}} , parent/child refers to the "child":"value" .

If the field is left blank, the server returns all default values.

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression.

You must URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional

explanation:

Query

GET /users?_queryFilter=true HTTP/1.1

Host: example.com

Accept: application/json

Expr = OrExpr

OrExpr = AndExpr ('or' AndExpr) *

AndExpr = NotExpr ('and' NotExpr) *

NotExpr = '!' PrimaryExpr | PrimaryExpr

PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr |

LiteralExpr

ComparisonExpr = Pointer OpName JsonValue

PresenceExpr = Pointer 'pr'

LiteralExpr = 'true' | 'false'

Pointer = JSON pointer

OpName = 'eq' | # equal to

'co' | # contains

16 / 33

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object

Notation (JSON) Data Interchange Format . In particular, as described in section 7 of

the RFC, the escape character in strings is the backslash character. For example, to

match the identifier test\ , use _id eq 'test\\' . In the JSON resource, the \ is

escaped the same way: "_id":"test\\" .

When using a query filter in a URL, the filter expression is part of a query string

parameter. A query string parameter must be URL encoded, as described in RFC

3986: Uniform Resource Identifier (URI): Generic Syntax . For example, white space,

double quotes ("), parentheses, and exclamation characters must be URL encoded

in HTTP query strings. The following rules apply to URL query components:

ALPHA , DIGIT , and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax

Specifications :

As a result, a backslash escape character in a JsonValue component is percent-

encoded in the URL query string parameter as %5C . To encode the query filter

expression _id eq 'test\\' , use _id+eq+'test%5C%5C' , for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions, use json-pointer comparator json-value , where

the comparator is one of the following:

'sw' | # starts with

'lt' | # less than

'le' | # less than or equal to

'gt' | # greater than

'ge' | # greater than or equal to

STRING # extended operator

JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'

STRING = ASCII string not containing white-space

UTF8STRING = UTF-8 string possibly containing white-space





query = *(pchar / "/" / "?")

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

pct-encoded = "%" HEXDIG HEXDIG

sub-delims = "!" / "$" / "&" / "'" / "(" / ")"

/ "*" / "+" / "," / ";" / "="



ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

DIGIT = %x30-39 ; 0-9

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

17 / 33

https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc7159.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc3986.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html
https://www.rfc-editor.org/rfc/rfc5234.html

For presence, use json-pointer pr to match resources where the JSON pointer is

present, and the value it points to is not null .

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and , or , and ! (not), with parentheses,

(expression) , to group expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend

on the implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the

search results. The server returns the cookie in the JSON response as the value of

pagedResultsCookie .

In the request _pageSize must also be set and non-zero. You receive the cookie

value from the provider on the first request, and then supply the cookie value in

subsequent requests until the server returns a null cookie, meaning the final page

of results has been returned.

The _pagedResultsCookie parameter is supported when used with the

_queryFilter parameter. The _pagedResultsCookie parameter is not

guaranteed to work with the _queryExpression or _queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually

exclusive, and not to be used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the

first page to return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually

exclusive, and not to be used together.

_pageSize=integer

eq (equals)

co (contains)

sw (starts with)

lt (less than)

le (less than or equal to)

gt (greater than)

ge (greater than or equal to)

18 / 33

Return query results in pages of this size. After the initial request, use

_pagedResultsCookie or _pageResultsOffset to page through the results.

_prettyPrint=true

Format the body of the response.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the

"totalPagedResults" , in accordance with the totalPagedResultsPolicy , and

provides the value as part of the response.

The "totalPagedResults" is either an estimate of the total number of paged

results (_totalPagedResultsPolicy=ESTIMATE), or the exact total result count

(_totalPagedResultsPolicy=EXACT). If no count policy is specified in the query, or

if _totalPagedResultsPolicy=NONE , result counting is disabled, and the server

returns value of -1 for "totalPagedResults" .

_sortKeys=(|-)__field__[,(|-)field…​]

Sort the resources returned based on the specified field(s), either in + (ascending,

default) order, or in - (descending) order.

Because ascending order is the default, including the `` character in the query

is unnecessary. If you do include the `` character, it must be URL-encoded

as %2B , for example:

The _sortKeys parameter is not supported for predefined queries (_queryId).

When working with a Common REST API over HTTP, client applications should expect at

least these HTTP status codes. Not all servers necessarily return all status codes

identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

http://localhost:8080/api/users?

_queryFilter=true&_sortKeys=%2Bname/givenName

HTTP status codes

19 / 33

The read request included an If-None-Match header, and the value of the header

matched the revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or

protocol version that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again.

This can happen when resources expire for example.

412 Precondition Failed

The resource’s current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the

requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the

request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been

disabled, for example.

20 / 33

AM provides an online AM REST API reference that can be accessed through the AM

admin UI. The API Explorer displays the REST API endpoints that allow client applications

to access AM’s services.

The key features of the API Explorer are the following:

API versioning. The API Explorer displays the different API versions available

depending on your deployment.

Figure 1. API Explorer

Detailed information. The API Explorer provides an Expand Operations button for

each available CRUDPAQ method. Expand Operations displays implementation

notes, successful response class, headers, parameters, and response messages

with examples. For example, you can populate the requestPayload field with an

example value. If you select Model, you can view the schema for each parameter, as

follows:

Online REST API reference

The API Explorer is enabled by default. For security reasons, it is strongly

recommended that you disable it in production environments.

To disable the API Explorer, go to Configure > Global Services > REST APIs, and

select Disabled in the API Descriptors drop-down list.

CAUTION

21 / 33

Figure 2. API Explorer Request Payload

Try It Out. The API Explorer also provides a Try It Out feature that lets you send a

sample request to the endpoint, and view the possible responses.

22 / 33

Figure 3. API Explorer Detailed Information

Note the following when using the Try It Out feature:

The example payload values are auto-generated, and while they may be the

correct data type, their value may not be correct for the API to function

correctly. See the Model tab for a description of the required value, and

replace the example values before sending the REST request to AM.

Endpoints in the API Explorer are hard-coded to point to the top-level realm.

You must adjust either the domain, or the path in the request, to target a

different realm.

For more information, see Specify realms in REST API calls.

1. From the AM admin UI, you can access the API Explorer in one of two ways:

Point your browser to the following URL:

You can also click the help icon in the top-right corner, and click API Explorer.

Figure 4. API Explorer

REST API features are assigned version numbers.

Providing version numbers in the REST API helps ensure compatibility between releases.

The version number of a feature increases when AM introduces a non-backwards-

Access the API Explorer

https://openam.example.com:8443/openam/ui-

admin/#api/explorer/applications

REST API versions

23 / 33

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-realms.html

compatible change that affects clients making use of the feature.

AM provides versions for the following aspects of the REST API:

resource

Any changes to the structure or syntax of a returned response will incur a resource

version change. For example, changing errorMessage to message in a JSON

response.

protocol

Any changes to the methods used to make REST API calls will incur a protocol version

change. For example, changing _action to $action in the required parameters of

an API feature.

You can specify which version of the REST API to use by adding an Accept-API-

Version header to the request. The following example requests resource version 2.0

and protocol version 1.0:

You can configure the default behavior AM will take when a REST call doesn’t specify

explicit version information. Learn more in Configure versioning behavior.

To ensure your clients are always compatible with a newer version of AM, you

should always include resource versions in your REST calls.

Moreover, AM includes a CSRF filter for all the endpoints under /json that

requires that all requests other than GET, HEAD, or OPTIONS include, at least, one

of the following headers

X-Requested-With

Accept-API-Version

Learn more in Protect against CSRF attacks.

IMPORTANT

Specify REST API versions

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/authenticate'

24 / 33

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/rest-CSRF.html

Find information about the supported protocol and resource versions in the Online REST

API reference available in the AM admin UI.

The AM Release Notes page, Changes, describes any breaking changes between API

versions.

Configure how AM handles REST calls that don’t present an API version:

1. Log in as AM administrator, amAdmin .

2. Click Configure > Global Services, and click REST APIs.

3. In Default Version, select the required response to a REST API request that doesn’t

specify an explicit version:

The available options for default API version behavior are as follows:

Latest

The latest available supported version of the API is used.

This is the preset default for new installations of AM.

Oldest

The oldest available supported version of the API is used.

This is the preset default for upgraded AM instances.

None

No version will be used. When a client application calls a REST API without

specifying the version, AM returns an error, and the request fails.

4. Optionally, enable Warning Header to include warning messages in the headers of

responses to requests.

5. Save your work.

Supported REST API versions

Configure versioning behavior

The oldest supported version might not be the first that was released, as

API versions become deprecated or unsupported.

Learn more in Deprecated in the Release notes.

NOTE

Version messages

25 / 33

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/about-api-explorer.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/about-api-explorer.html
file:///pingam/latest/release-notes/changes.html
file:///pingam/latest/release-notes/deprecation.html

AM provides REST API version messages in the JSON response to a REST API call. You can

also configure AM to return version messages in the response headers.

Messages include:

Details of the REST API versions used to service a REST API call.

Warning messages if REST API version information is unspecified or is incorrect in a

REST API call.

The resource and protocol version used to service a REST API call are returned in

the Content-API-Version header, as shown below:

If the default REST API version behavior is set to None , and a REST API call doesn’t

include the Accept-API-Version header, or doesn’t specify a resource version, then

a 404 Not Found status code is returned. For example:

$ curl \

-i \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/authenticate'

HTTP/1.1 200 OK

Content-API-Version: protocol=1.0,resource=2.0

Server: Restlet-Framework/2.1.7

Content-Type: application/json;charset=UTF-8

{

"tokenId":"AQIC5wM…​TU3OQ*",

"successUrl":"/openam/console"

}

$ curl \

--header "Content-Type: application/json" \

--header "Accept-API-Version: protocol=1.0" \

https://openam.example.com:8443/openam/json/realms/root/serverinfo

/*

{

"code": 404,

"reason": "Not Found",

26 / 33

If a REST API call does include the Accept-API-Version header, but the specified

resource or protocol version doesn’t exist in AM, then a 404 Not Found status

code is returned. For example:

Realms can be specified in the following ways when making a REST API call to AM:

DNS alias

When making a REST API call, the DNS alias of a realm can be specified in the

subdomain and domain name components of the REST endpoint.

To list all users in the Top Level Realm use the DNS alias of the AM instance, for

example:

https://openam.example.com:8443/openam/json/users?_queryId=*

To list all users in a realm with DNS alias suppliers.example.com the REST

endpoint would be:

https://suppliers.example.com:8443/openam/json/users?_queryId=*

Path

"message": "Resource '*' not found"

}

$ curl \

--header "Content-Type: application/json" \

--header "Accept-API-Version: protocol=1.0, resource=999.0" \

https://openam.example.com:8443/openam/json/realms/root/serverinfo

/*

{

"code": 404,

"reason": "Not Found",

"message": "Resource '*' not found"

}

Find information on setting the default REST API version behavior in Specify REST

API versions.

TIP

Specify realms in REST API calls

27 / 33

When making a REST API call, specify the realm in the path component of the endpoint.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm.

Prefix each realm in the hierarchy with the realms/ keyword. For example,

/realms/root/realms/customers/realms/europe .

+ To authenticate a user in the Top Level Realm, use the root keyword. For example:

+ https://openam.example.com:8443/openam/json/realms/root/authenticate

+ To authenticate a user in a subrealm named alpha , the REST endpoint would be:

+

https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticat

e

+ If realms are specified using both the DNS alias and path methods, the path is used to

determine the realm.

+ For example, the following REST endpoint returns users in a realm named bravo , not

the realm with DNS alias suppliers.example.com :

https://suppliers.example.com:8443/openam/json/realms/root/realms/

bravo/users?_queryId=*

To authenticate to AM over REST, make an HTTP POST request to the

json/authenticate endpoint. You must specify the entire hierarchy of the realm,

starting at the Top Level Realm. Prefix each realm in the hierarchy with the realms/

keyword. For example, /realms/root/realms/customers/realms/europe .

For authentication journeys where providing a user name and password is enough, you

can log in to AM using a curl command similar to the following:





Authenticate to AM over REST

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/authenticate'

{

"tokenId": "AQIC5w…​NTcy*",

"successUrl": "/openam/console",

28 / 33

https://openam.example.com:8443/openam/json/realms/root/authenticate
https://openam.example.com:8443/openam/json/realms/root/authenticate
https://openam.example.com:8443/openam/json/realms/root/authenticate
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/authenticate

Note that the user name and password are sent in headers; this zero page login

mechanism works only for name/password authentication.

AM returns a tokenID object that applications can present as a cookie value for other

operations that require authentication. This object is called a session token.

In this example, AM uses the default authentication service configured for the realm.

You can override the default by specifying authentication services and other options in

the REST request. To support complex authentication journeys, such as multi-factor

authentication, AM implements callback mechanisms.

For more information about how to authenticate, log out, and use AM session tokens,

see Authenticate over REST.

REST API endpoints are discussed in detail in the following sections:

Authenticate over REST

How to use the AM REST APIs to authenticate to AM.

Policies over REST, Policy sets over REST, Resource types over REST, and Policy set

application types over REST

How to use the AM REST APIs for policy management.

Request policy decisions over REST

How to use the AM REST APIs for requesting authorization decisions from AM.

OAuth 2.0 endpoints

How to use OAuth 2.0-specific endpoints to request access and refresh tokens, as

well as introspecting and revoking them.

OAuth 2.0 administration REST endpoints

How to use perform OAuth 2.0 administrative tasks, such as register, read, and

delete clients.

OpenID Connect 1.0 endpoints

How to use OpenID Connect-specific endpoints to retrieve information about an

authenticated user, as well as validate ID tokens and check sessions.

Retrieve forgotten usernames, Reset forgotten passwords, and Register a user

How to use the AM REST APIs for user self-registration and forgotten password reset.

Configure realms over REST

"realm":"/alpha"

}

REST API endpoints

29 / 33

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-applications.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-resource-types.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-application-types.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-application-types.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-client-endpoints.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-admin-endpoints.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oidc-client-endpoints.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/user-self-service-guide/uss-forgotten-username.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/user-self-service-guide/uss-forgotten-password.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/user-self-service-guide/uss-registering-users.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/am-realms.html#sec-rest-realm-rest

How to use the AM REST APIs for managing AM identities and realms.

Manage scripts (REST)

How to use the AM REST APIs to manage AM scripts.

Capture troubleshooting information

How to use the AM REST APIs to record information that can help you troubleshoot

AM.

Consume REST STS instances and Query, validate, and cancel tokens

How to use the AM REST APIs to manage AM’s Security Token Service, which lets you

bridge identities across web and enterprise identity access management (IAM)

systems through its token transformation process.

AM supports two audit logging services: the Common REST-based Audit Logging service,

and the legacy Logging service, which is based on a Java SDK.

Both audit facilities log AM REST API calls.

AM logs information about all REST API calls to the access topic. For more information

about AM audit topics, see Audit log topics.

Locate specific REST endpoints in the http.path log file property.

AM logs information about REST API calls to two files:

Records accesses to a Common REST endpoint, regardless of whether the request

successfully reached the endpoint through policy authorization.

An amRest.access example is as follows:

REST API auditing

Common Audit Logging of REST API calls

Legacy Logging of REST API calls

This functionality is labeled as legacy.

NOTE

amRest.access

$ cat openam/var/audit/amRest.access

#Version: 1.0

30 / 33

file:///home/pptruser/Downloads/build/site/pingam/7.2/scripting-guide/manage-scripts-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/maintenance-guide/record-troubleshooting.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sts-guide/sts-consume-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sts-guide/sts-query-validate-cancel.html
file:///pingam/latest/release-notes/stability.html#interface-stability
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html#audit-log-topics
file:///pingam/latest/release-notes/stability.html#interface-stability

Records all Common REST authorization results regardless of success. If a request has

an entry in the amRest.access log, but no corresponding entry in amRest.authz ,

then that endpoint was not protected by an authorization filter and therefore the

request was granted access to the resource.

The amRest.authz file contains the Data field, which specifies the authorization

decision, resource, and type of action performed on that resource. The Data field has

the following syntax:

("GRANT"||"DENY") > "RESOURCE | ACTION"

GRANT > is prepended to the entry if the request was allowed.

DENY > is prepended to the entry if the request was not allowed.

RESOURCE is ResourceLocation | ResourceParameter, where:

ResourceLocation is the endpoint location (for example,

subrealm/applicationtypes).

ResourceParameter is the ID of the resource being touched (for example,

myApplicationType) if applicable.

Otherwise, this field is empty if touching the resource itself, such as in a query.

ACTION is ActionType | ActionParameter, where:

ActionType is CREATE||READ||UPDATE||DELETE||PATCH||ACTION||QUERY .

ActionParameter is one of the following depending on the ActionType:

For CREATE : the new resource ID

For READ : empty

#Fields: time Data LoginID ContextID IPAddr LogLevel Domain

LoggedBy MessageID ModuleName

NameID HostName

"2011-09-14 16:38:17" /home/user/openam/var/audit/

"cn=dsameuser,ou=DSAME Users,o=openam"

aa307b2dcb721d4201 "Not Available" INFO o=openam

"cn=dsameuser,ou=DSAME Users,o=openam"

LOG-1 amRest.access "Not Available" 192.168.56.2

"2011-09-14 16:38:17" "Hello World" id=bjensen,ou=user,o=openam

8a4025a2b3af291d01 "Not Available"

INFO o=openam id=amadmin,ou=user,o=openam "Not Available"

amRest.access "Not Available"

192.168.56.2

amRest.authz

31 / 33

For UPDATE : the revision of the resource to update

For DELETE : the revision of the resource to delete

For PATCH : the revision of the resource to patch

For ACTION : the actual action performed (for example, "forgotPassword")

For QUERY : the query ID if any

AM also provides additional information in its debug notifications for accesses to any

endpoint, depending on the message type (error, warning or message) including realm,

user, and result of the operation.

Was this helpful?

$ cat openam/var/audit/amRest.authz

#Version: 1.0

#Fields: time Data ContextID LoginID IPAddr LogLevel Domain

MessageID LoggedBy NameID

ModuleName HostName

"2014-09-16 14:17:28" /var/root/openam/var/audit/

7d3af9e799b6393301

"cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not

Available" INFO

dc=openam,dc=forgerock,dc=org LOG-1 "cn=dsameuser,ou=DSAME

Users,dc=openam,dc=forgerock,dc=org"

"Not Available" amRest.authz 10.0.1.5

"2014-09-16 15:56:12" GRANT ›

sessions|ACTION|logout|AdminOnlyFilter d3977a55a2ee18c201

id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available"

INFO dc=openam,dc=forgerock,dc=org

OAuth2Provider-2 "cn=dsameuser,ou=DSAME

Users,dc=openam,dc=forgerock,dc=org" "Not Available"

amRest.authz 127.0.0.1

"2014-09-16 15:56:40" GRANT ›

sessions|ACTION|logout|AdminOnlyFilter eedbc205bf51780001

id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available"

INFO dc=openam,dc=forgerock,dc=org

OAuth2Provider-2 "cn=dsameuser,ou=DSAME

Users,dc=openam,dc=forgerock,dc=org" "Not Available"

amRest.authz 127.0.0.1

32 / 33

Copyright © 2010-2025 ForgeRock, all rights reserved.

33 / 33

