
These topics provide guidance and best practices for developing and maintaining

authentication nodes in AM.

For information on con�guring and using authentication trees, see Authentication nodes

and trees.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

Node development



Learn how

authentication nodes

de�ne actions taken

during authentication.

About authentication

nodes

✓

Discover the

prerequisites for

building and

customizing

authentication nodes.

Prepare your

environment



Internationalize the text

in your nodes.

Translate nodes



Find out how to build

and install

authentication nodes

for use in

authentication trees.

Build and install nodes



1 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html
https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/about-nodes.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/preparing-for-nodes.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/i18n-nodes.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/build-install-nodes.html

Authentication trees (also referred to as intelligent authentication) provide �ne-grained

authentication by allowing multiple paths and decision points throughout the

authentication �ow.

Authentication trees are made up of authentication nodes, which de�ne actions taken

during authentication, similar to authentication modules in chains.

You can create complex yet customer-friendly authentication experiences by linking

nodes together, creating loops, and nesting nodes within a tree, as follows:

Figure 1. Example authentication tree

Nodes are designed to have a single responsibility. Where appropriate, they should be

loosely coupled with other nodes, enabling reuse in multiple situations.

For example, if a newly written node requires a username value, it should not collect it

itself, but rely on another node, namely the Username Collector node.

There are two broad node types: collector nodes and decision nodes.

Collector nodes capture data from a user during the authentication process. This data is

often captured by a callback that is rendered in the UI as a text �eld, drop-down list, or

other form component.

Examples of collector nodes include the Username Collector node and Password

Collector node.

Authentication nodes

Node types

Collector nodes

2 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-password-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-password-collector

Collector nodes can perform basic processing of the collected data, before making it

available to subsequent nodes in the authentication tree.

The Choice Collector node provides a drop-down list, populated with options de�ned

when the tree is created, or edited.

Not all collector nodes use callbacks. For example, the Zero Page Login Collector node

retrieves a username and password value from the request headers, if present.

Decision nodes do the following:

Retrieve the state produced by one or more nodes.

Perform some processing on that state.

Optionally, store some derived information in the shared state.

Provide one or more outcomes, depending on the result.

Decision nodes

3 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-choice-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-zero-page-login-collector

The simplest decision node returns a boolean outcome - true , or false .

Complex nodes may have additional outcomes. For example, the LDAP Decision node

provides the additional outcomes Locked, Expired, and Cancelled. The tree administrator

decides what to do with each outcome; for example, the True outcome is often routed

to a Success node, or to additional nodes for further authentication.

In the following example tree, two collector nodes are connected before a Data Store

Decision node. The node then uses the credentials to authenticate the user against the

identity stores con�gured for the realm. In this instance, an unsuccessful login attempt

leads directly to failure; the user must restart the process from scratch.

A more user-friendly approach might route unsuccessful attempts to a Retry Limit

Decision node. In the following example, unsuccessful authentication attempts at the

Data Store Decision node stage are routed into a Retry Limit Decision node. Depending

on how many retries have been con�gured, the node either retries or rejects the new

login attempt. Rejected attempts lead to a locked account.

NOTE

4 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-ldap-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-retry-limit-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-retry-limit-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-retry-limit-decision

Authentication modules contain multiple states, with the associated inputs and outputs

of each state resulting in either callbacks returned to the user, or state changes inside

either AM or at a third party service.

States within a module either collect input from the user or process it. For example, a

module can collect the username and the password from the user, then authenticate

the user against the data store. When �nished, the module decides whether to return a

boolean success or failure �ag.

The outcome of an authentication module can only be success or failure. Any branching

or looping must be handled within the module. An authentication mechanism is

implemented in full within a single module, rather than across multiple modules.

Therefore, authentication modules can become large - handling multiple steps within

the �ow of an authentication journey.

Authentication nodes, however, can have an arbitrary number of outcomes that do not

need to represent success or failure. Branching and looping are handled by connecting

nodes within the tree and are fully controlled by the tree administrator, rather than the

node developer. Nodes are often considerably smaller in terms of code size, and are

responsible for handling a single step within the authentication �ow. For example, an

individual node could capture user input, another could make a decision based on

available state, and another could invoke an external API.

Nodes expose this approach to the tree administrator. Unlike modules, where the

journey through the module’s states is de�ned by the module’s developer, a journey

through a collection of nodes may be di�erent for each user.

Node developers should be aware of the expectations for a node to deliver a limited

amount of speci�c functionality, which tree administrators can connect together in a

variety of ways.

Key di�erentiators:

Nodes are responsible for a single step of the authentication �ow. Modules are

responsible for an entire authentication mechanism.

Nodes can have prerequisite stages

Some Decision nodes are only applicable when used in conjunction with other

nodes. For example, the Persistent Cookie Decision node looks for a persistent

cookie that has been set in the request, typically by the Set Persistent Cookie node.

The OTP Collector Decision node, which is both a collector and a decision node,

only works when used in conjunction with a one-time password generated by a

HOTP Generator node.

NOTE

Compare nodes and modules

5 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-persistent-cookie-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-persistent-cookie
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-otp-collector-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-hotp-generator

Tree administrators control the branching, looping, and sequencing of steps by

linking nodes together. Module developers set these state transitions within the

module itself.

Nodes are stateless; instances of node objects are not retained between HTTP

requests, and all state captured must be saved to the authentication session’s

shared state. Modules store state within the module object.

Node con�guration is handled with annotations. Modules use XML.

Nodes are easier to test due to their smaller code size and their speci�c

functionality.

The ease of transitioning from a module to a node depends on the amount of

functionality provided in the module. As nodes are more �ne-grained than modules,

split the functionality of the module into individual nodes which can then work together

to provide functionality similar to the module, but in a more �exible manner.

An example of this approach was applied to the one-time password nodes, which were

developed from the HOTP authentication module. The module performs the following

duties:

1. Generates one-time passwords.

2. Sends one-time passwords by using SMS messaging.

3. Sends one-time passwords by using SMTP.

4. Collects and veri�es the one-time password.

The four distinct functions are encapsulated into separate nodes, allowing greater

control over the one-time password process.

For example, a tree administrator who is only interested in sending one-time passwords

by using SMS messages can omit the SMTP node. Separating out the decision

functionality means that it can be combined with another decision node, or simply

routed to an alternative authentication process.

Some authentication modules delegate their functionality to utility classes in AM, which

simpli�es the process of creating a similarly functioning node.

For example, the LDAP authentication module and LDAP Decision node share the

LDAPAuthUtils class for LDAP authentication. In cases where such utility classes do

not exist, consider extracting the common functionality used by the module into such a

class, so that it can be more easily used by nodes. For information on sharing

con�guration, see Share con�guration between nodes.

Convert modules to nodes

Restrict a node’s functionality

6 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-ldap-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-class.html#sharing-node-config

To determine the functionality of a node, reduce the node’s responsibility to its core

purpose, while ensuring it performs su�cient tasks to be useful as a step in an

authentication journey.

Before you create a set of nodes, assess the level of granularity the nodes should

produce. For example, a customer’s environment may require a series of utility nodes

which, on their own, do not perform authentication actions, but have multiple use cases

in many authentication journeys. In this case, you can create nodes that take values

from the shared state and save it to the user’s pro�le.

Individual nodes can respond to a variety of inputs and outputs, and return di�erent

sets of callbacks to the user without leaving the node. (This is similar to the state

mechanism used by modules.)

The following guidelines help a node developer determine the best point at which to

split a node into multiple instances:

If a node’s process method takes input from the user, and immediately processes it.

Consider splitting the functionality over two nodes. A collector node returns

callbacks to the user, and stores the response in the shared state. A decision node

uses the inputs collected so far in the tree to determine the next course of action.

A node that takes input from the user and makes a decision should only be

designed as a single node if there is no possible additional use for the data

gathered, other than making that speci�c decision.

If a processing stage in a node is duplicated in other nodes.

In this case, take the repeating stage out and place it in its own node. Connect this

node appropriately to each of the other nodes.

If multiple nodes contain the same step in processing, such as returning a set of

callbacks to ask the user for a set of data before processing it in di�erent ways, the

common functionality should be pulled out into its own node.

If a single function within the node has obvious use cases in other authentication

journeys.

In this case, the functionality should be written into a single, reusable node. For

example, in multi-factor authentication, a mechanism for reporting a lost device is

applicable to many node types, such as mobile push, OATH, and others.

This page explains the prerequisites for building custom authentication nodes, and

shows how to use either a Maven archetype, or the samples provided with AM, to set up

a project for building nodes.

Prepare for development

TIP

7 / 57

1. Make sure your Backstage account is part of a subscription:

In a browser, go to the Backstage website and sign on or register for an

account.

Con�rm or request your account is added to a subscription. Learn more in

Getting access to product support in the Knowledge Base.

2. Install Apache Maven 3.2.5 or later, and Oracle JDK or OpenJDK version 11 or later.

3. Con�gure Maven to be able to access the proprietary repositories by adding your

Backstage credentials to the Maven settings.xml �le. Learn more in How do I

access the proprietary protected Maven repositories? .

If you want to use the archetype to create a project for custom authentication

nodes, you also need access to the forgerock-private-releases repository.

Ensure your settings.xml �le contains a pro�le similar to the following:

For information about customizing post-authentication hooks for a tree, see Create

post-authentication hooks for trees.

TIP

Prepare an environment for building custom authentication nodes





To verify the installed versions, run the mvn --version command:

TIP

$ mvn --version

Maven home: /usr/local/Cellar/maven/3.6.0/libexec

Java version: 11.0.4, vendor: AdoptOpenJDK, runtime:

/Library/Java/JavaVirtualMachines/adoptopenjdk-11.jdk/Contents/Home

Default locale: en_US, platform encoding: UTF-8

OS name: "mac os x", version: "10.16", arch: "x86_64", family: "mac"



<profiles>

<profile>

<id>forgerock</id>

<repositories>

<repository>

<id>forgerock-private-releases</id>

<url>https://maven.forgerock.org:443/artifactory/private-

releases</url>

<releases>

<enabled>true</enabled>

<checksumPolicy>fail</checksumPolicy>

</releases>

8 / 57

https://backstage.forgerock.com/
https://backstage.forgerock.com/
https://backstage.forgerock.com/
https://support.pingidentity.com/s/article/Getting-access-to-product-support
https://support.pingidentity.com/s/article/Getting-access-to-product-support
https://support.pingidentity.com/s/article/Getting-access-to-product-support
https://support.pingidentity.com/s/article/How-do-I-access-the-proprietary-Maven-repositories
https://support.pingidentity.com/s/article/How-do-I-access-the-proprietary-Maven-repositories
https://support.pingidentity.com/s/article/How-do-I-access-the-proprietary-Maven-repositories
https://support.pingidentity.com/s/article/How-do-I-access-the-proprietary-Maven-repositories
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html#post-authn-plugins-treehook
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html#post-authn-plugins-treehook

ForgeRock provides a Maven archetype that creates a starter project, suitable for

building an authentication node. You can also download the projects used to build the

authentication nodes included with AM and modify those to match your requirements.

Complete either of the following steps to set up or download a Maven project to build

custom authentication nodes:

1. To use the ForgeRock auth-tree-node-archetype archetype to generate a starter

Maven project:

In a terminal window, go to a folder where you’ll create the new Maven project.

For example:

Run the mvn archetype:generate command, providing the following

information:

groupId

A domain name that you control, used for identifying the project.

artifactId

The name of the JAR created by the project, without version information.

Also the name of the folder created to store the project.

version

The version assigned to the project.

package

<snapshots>

<enabled>false</enabled>

<checksumPolicy>warn</checksumPolicy>

</snapshots>

</repository>

</repositories>

</profile>

</profiles>

<activeProfiles>

<activeProfile>forgerock</activeProfile>

</activeProfiles>

Set up a Maven project to build custom authentication nodes

Complete the steps in Prepare an environment for building custom authentication

nodes before proceeding.

NOTE

$ cd ~/Repositories

9 / 57

The package name in which your custom authentication node classes are

generated.

authNodeName

The name of the custom authentication node, also used in the generated

README.md �le and for class �le names.

For example:

AM stores installed nodes with a reference generated from the node’s

class name. An installed node registered through a plugin is stored

with the name returned as a result of calling

Class.getSimpleName() .

AM doesn’t protect installed node names. The most recently installed

node with a speci�c name will overwrite any previous installation of

that node (including the nodes that are provided with AM by default).

You must therefore choose a unique name for your custom node, and

make sure the name isn’t already used for an existing node.

IMPORTANT

$ mvn archetype:generate \

-DgroupId=com.example \

-DartifactId=customAuthNode \

-Dversion=1.0.0-SNAPSHOT \

-Dpackage=com.example.customAuthNode \

-DauthNodeName=myCustomAuthNode \

-DarchetypeGroupId=org.forgerock.am \

-DarchetypeArtifactId=auth-tree-node-archetype \

-DarchetypeVersion=7.2.0 \

-DinteractiveMode=false

[INFO] Project created from Archetype in dir:

/Users/ForgeRock/Repositories/customAuthNode

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 1.397 s

[INFO] Finished at: 2018-01-18T15:45:06+00:00

[INFO] Final Memory: 16M/491M

[INFO] ---

10 / 57

A new custom authentication node project is created; for example, in the

/Users/ForgeRock/Repositories/customAuthNode folder.

Figure 2. Node project created by using the archetype

2. To download the project containing the default AM authentication nodes from the

am-external repository:

Clone the am-external repository:

Check out the release/7.2.0 branch:

The AM authentication nodes project is located in the am-external/openam-

auth-trees/auth-nodes/ folder.

Example

$ git clone https://github.com/ForgeRock/am-external.git

$ cd am-external

$ git checkout releases/7.2.0

Example

11 / 57

https://github.com/ForgeRock/am-external.git
https://github.com/ForgeRock/am-external.git
https://github.com/ForgeRock/am-external.git

Figure 3. Node Project Cloned from ForgeRock

When you con�gure a project for creating custom nodes, consider the following points:

Your node may be deployed into a di�erent AM version to that which you compiled

against.

ForgeRock endeavours to make nodes from previous product versions binary

compatible with subsequent product versions, so a node built against AM 6 APIs

may be deployed in an AM 7.2.0 instance.

Other custom nodes may depend on your node, which may be being built against a

di�erent version of the AM APIs.

Other custom nodes, or AM itself, may be using the same libraries as your node; for

example, Guava or Apache Commons, and so on. This may cause version con�icts.

To help protect against some of these issues, consider the following recommendations:

Mark all ForgeRock product dependencies as provided in your build system

con�guration.

Repackage all non-internal, non-ForgeRock dependencies inside your own .jar

�le. Repackaged dependencies will not clash with a di�erent version of the same

library from another source.

Tips for custom authentication node projects

If you are using Maven, use the maven-shade-plugin to repackage

dependencies.

TIP



12 / 57

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/

pom.xml

Apache Maven project �le for the custom authentication node.

This �le speci�es how to build the custom authentication node, and also speci�es

its dependencies on AM components.

The following is an example pom.xml �le from a node project:

Files contained in the Maven project

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupId>

<artifactId>example-node-plugin</artifactId>

<version>1.0.0</version>

<dependencyManagement>

<dependencies>

<dependency>

<groupId>org.forgerock.am</groupId>

<artifactId>openam-bom</artifactId>

<version>7.2.0-SNAPSHOT</version>

<scope>import</scope>

</dependency>

</dependencies>

</dependencyManagement>

<dependencies>

<dependency>

<groupId>org.forgerock.am</groupId>

<artifactId>auth-node-api</artifactId>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.forgerock.am</groupId>

<artifactId>openam-annotations</artifactId>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>com.google.guava</groupId>

<artifactId>guava</artifactId>

<version>26.0-jre</version>

</dependency>

</dependencies>

13 / 57

authNodeName.java

Core class for the custom authentication node. See Node class.

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<configuration>

<shadedArtifactAttached>false</shadedArtifactAttached>

<createDependencyReducedPom>true</createDependencyReducedPom>

<relocations>

<relocation>

<pattern>com.google</pattern>

<shadedPattern>com.example.node.guava</shadedPattern>

</relocation>

</relocations>

<filters>

<filter>

<artifact>com.google.guava:guava</artifact>

<excludes>

<exclude>META-INF/**</exclude>

</excludes>

</filter>

</filters>

<transformers>

<transformer

implementation="org.apache.maven.plugins.shade.resource.Manif

estResourceTransformer">

<manifestEntries>

<Import-

Package>javax.annotation;resolution:=optional,sun.misc;resolu

tion:=optional</Import-Package>

</manifestEntries>

</transformer>

</transformers>

</configuration>

</plugin>

</plugins>

</build>

</project>

14 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-class.html

authNodeNamePlugin.java

Plugin class for the custom authentication node. See Plugin class.

authNodeName.properties

Properties �le containing the localized strings displayed by the custom

authentication node. See Internationalization.

You must include a nodeDescription property in your node to ensure that it

appears in the authentication tree designer. AM uses the nodeDescription

property value as the name of your node.

The authNodeName re�ects the name of your authentication node. For example, the

ForgeRock auth-tree-node-archetype for Maven uses myCustomAuthNode as the

authNodeName.

In Java terms, an authentication node is a class that implements the Node interface,

org.forgerock.openam.auth.node.api.Node .

The Node class may access and modify the persisted state that is shared between the

nodes within a tree, and may request input by using callbacks. The class also de�nes the

possible exit paths from the node.

The class is annotated with org.forgerock.openam.auth.node.api.Node.Metadata .

The annotation has two main attributes - configClass and outcomeProvider .

Typically, the configClass attribute is an inner interface in the node implementation

class.

For simple use cases, the abstract implementations of the node interface,

org.forgerock.openam.auth.node.api.SingleOutcomeNode and

org.forgerock.openam.auth.node.api.AbstractDecisionNode , have their own

outcome providers that can be used. For more complex use cases you can provide your

own implementation.

The sections that follow describe the Node class.

The annotation speci�es the outcome provider and con�guration class. The outcome

provider can use the default SingleOutcomeNode or MultipleOutcomeNode , or a

custom OutcomeProvider can be created and referenced from the annotation.

See the Choice Collector node for an example of a custom outcome provider.

Node class

Annotation

15 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/plugin-class.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/i18n-nodes.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-choice-collector

These are optional.

The con�g interface de�nes the con�guration data for a node. A node cannot have state,

but it can have con�guration data.

Note that you do not need to provide the implementation class for the Config interface

you de�ne. AM will create these automatically, as required.

An example is the Account Lockout node. The node can be con�gured to lock or unlock

the users' account, based on it’s con�guration.

Con�guration is per-node. Di�erent nodes of the same type in the same tree have their

own con�guration.

The config interface con�gures values using methods. To provide no default value to

the tree administrator, provide the method’s signature but not the implementation. To

provide a default value to the tree administrator, mark the method as default and

provide both a method and a value. For example:

The Config above would resemble the following in the tree designer view:

Private constants

Config

public interface Config {

//This will have no default value for the UI

@Attribute(order = 10)

String noDefaultAttribute();

//This will default to the value LOCK.

@Attribute(order = 20)

default LockStatus lockAction() {

return LockStatus.LOCK;

}

}

16 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-account-lockout

The @Attribute annotation is required. It can be con�gured with an order value, which

determines the position of the attribute in the UI, and with validators, to validate the

values being set.

In the example above, a custom enum called LockStatus is returned. The options are

displayed to the user automatically.

Dependencies should be injected by using Guice as this makes it easier to unit test your

node. For example, you should accept the config as a parameter.

You may also wish to obtain AM core classes, such as CoreWrapper , instances of third-

party dependencies, or your own types.

The process method takes a TreeContext parameter, does some processing, and

returns an Action object.

Constructor

@Inject

public AccountLockoutNode(CoreWrapper coreWrapper, @Assisted

Config config)

throws NodeProcessException {

this.coreWrapper = coreWrapper;

this.config = config;

}

process method

17 / 57

An action encapsulates changes to state and �ow control. The TreeContext parameter

is used to access the request, callbacks, shared state and other input.

The process method is where state is retrieved and stored. The returning Action can

be a response of callback to the user, an update of state, or a choice of outcome.

The choice of outcome in a simple decision node would be true or false , resulting in

the authentication tree �ow moving from the current node to a node at the relevant

connection.

These are optional.

This is optional.

The following example is the SetSessionPropertiesNode class, taken from the Set

Session Properties node:

Private methods

Custom outcome provider

Example implementation

package org.forgerock.openam.auth.nodes;

import java.util.Map;

import javax.inject.Inject;

import org.forgerock.openam.annotations.sm.Attribute;

import org.forgerock.openam.auth.node.api.Action;

import org.forgerock.openam.auth.node.api.Node;

import org.forgerock.openam.auth.node.api.SingleOutcomeNode;

import org.forgerock.openam.auth.node.api.TreeContext;

import

org.forgerock.openam.auth.nodes.validators.SessionPropertyValidato

r;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.google.inject.assistedinject.Assisted;

/**

* A node which contributes a configurable set of properties to be

added to the user's session, if/when it is created.

18 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-session-properties
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-session-properties

*/

@Node.Metadata(outcomeProvider =

SingleOutcomeNode.OutcomeProvider.class,

configClass = SetSessionPropertiesNode.Config.class) 1

public class SetSessionPropertiesNode extends SingleOutcomeNode {

2

/**

* Configuration for the node.

*/

public interface Config { 3

/**

* A map of property name to value.

* @return a map of properties.

*/

@Attribute(order = 100, validators =

SessionPropertyValidator.class)

Map<String, String> properties();

}

private final Config config;

private final Logger logger =

LoggerFactory.getLogger("amAuth");

/**

* Constructs a new SetSessionPropertiesNode instance.

* @param config Node configuration.

*/

@Inject 4

public SetSessionPropertiesNode(@Assisted Config config) {

this.config = config;

}

@Override

public Action process(TreeContext context) { 5

logger.debug("SetSessionPropertiesNode started");

Action.ActionBuilder actionBuilder = goToNext();

config.properties().entrySet().forEach(property -> {

actionBuilder.putSessionProperty(property.getKey(),

property.getValue());

logger.debug("set session property {}", property);

});

return actionBuilder.build();

}

}

19 / 57

1 The @Node.Metadata annotation. See Metadata annotation.

2 Implementing the Node interface. See Node interface.

3 Implementing the Config interface. See Con�g interface.

4 Injecting the Node instance. See Inject objects into a node instance.

5 Creating an Action instance. See Action class.

The annotation speci�es the outcome provider and con�g class, and optional con�g

validator class.

outcomeProvider

The class name that the node uses to set up the possible outcomes.

The SingleOutcomeNode and AbstractDecisionNode base classes provide

suitable outcome provider classes for those node types. You can create a custom

outcome provider for other circumstances.

For example, the following is the custom outcome provider from the LDAP Decision

node, which has True , False , Locked , Cancelled , and Expired exit paths:

Metadata annotation

/**

* Defines the possible outcomes from this Ldap node.

*/

public static class LdapOutcomeProvider implements

OutcomeProvider {

@Override

public List<Outcome> getOutcomes(PreferredLocales locales,

JsonValue nodeAttributes) {

ResourceBundle bundle =

locales.getBundleInPreferredLocale(LdapDecisionNode.BUNDLE,

LdapOutcomeProvider.class.getClassLoader());

return ImmutableList.of(

new Outcome(LdapOutcome.TRUE.name(),

bundle.getString("trueOutcome")),

new Outcome(LdapOutcome.FALSE.name(),

bundle.getString("falseOutcome")),

new Outcome(LdapOutcome.LOCKED.name(),

bundle.getString("lockedOutcome")),

new Outcome(LdapOutcome.CANCELLED.name(),

bundle.getString("cancelledOutcome")),

new Outcome(LdapOutcome.EXPIRED.name(),

bundle.getString("expiredOutcome")));

20 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-metadata.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-node.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-config.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-inject.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-action.html

configClass

The class name that contains the con�guration of any attributes requested by the

node when using it as part of a tree.

For more information, See Con�g interface.

configValidator

An optional class name used to validate the provided con�guration.

tags

An optional list of tags which help to categorize the node when using the tree

designer view.

Tags are made up of one or more text strings that let users �nd the node more easily

when designing trees. For example, you could include common pseudonyms for the

functionality the node provides, such as mfa for a node that provides multi-factor

authentication functionality.

The tree designer view organizes nodes into a number of categories, based on the

presence of certain tag values, as described in the table below:

Authentication Node Tag Categories

Icon Category Tag Example Nodes

 Basic

Authentication

"basic

authentication

"

Data Store

Decision node

Username

Collector node

 MFA "mfa" Push Sender node

WebAuthn

Authentication

node

⚖ Risk "risk" Account Lockout

node

CAPTCHA node

 Behavioral "behavioral" N/A

 Contextual "contextual" Cookie Presence

Decision node

Set Persistent

Cookie node

}

}

21 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-config.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-push-sender
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-webauthn-auth
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-webauthn-auth
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-webauthn-auth
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-account-lockout
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-account-lockout
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-captcha
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-cookie-presence-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-cookie-presence-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-persistent-cookie
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-persistent-cookie

Icon Category Tag Example Nodes

 Federation "federation" OAuth 2.0 node

OpenID Connect

node

Social Facebook

node

Social Google

node

 Identity

Management

"identity

management"

Anonymous User

Mapping node

 Utilities "utilities" Choice Collector

node

Polling Wait node

Scripted Decision

node

For example, the following is the @Node.Metadata annotation from the Set Session

Properties node:

For more information on the @Node.Metadata annotation, see the Node.Metadata

annotation type in the AM Public API Javadoc.

The code for an authentication node must implement the Node interface.

AM provides base classes you can extend to implement the Node interface, depending

on the type of custom authentication node you are creating. The available base classes

are as follows:

SingleOutcomeNode

Used in nodes that only have a single exit path.

Nodes which are not tagged with one of the previous tags appear in an ■

Uncategorized section.

NOTE

@Node.Metadata(outcomeProvider =

AbstractSocialAuthLoginNode.SocialAuthOutcomeProvider.class,

configClass = SocialFacebookNode.FacebookOAuth2Config.class,

tags = {"social", "federation"})

Node interface

22 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-oauth2
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-oidc
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-oidc
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-social-facebook
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-social-facebook
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-social-google
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-social-google
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-anonymous-user-mapping
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-anonymous-user-mapping
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-choice-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-choice-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-polling-wait
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-scripted-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-scripted-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-session-properties
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-session-properties
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/Node.Metadata.html

The Modify Auth Level node is an example of a node that uses the

SingleOutcomeNode base class.

For more information, see the SingleOutcomeNode class in the AMPublic API Javadoc.

AbstractDecisionNode

Used in nodes that have a boolean-type exit path. For example, true or false, yes or

no, or allow or deny.

The Data Store Decision node is an example of a node that uses the

AbstractDecisionNode base class.

For more information, see the AbstractDecisionNode class in the AMPublic API

Javadoc.

Implement the Node interface yourself if your custom node exit paths do not match the

scenarios outlined above.

For more information, see the Node interface in the AMPublic API Javadoc.

The Config interface of a node contains the con�guration values required by a

particular node instance.

Note that you do not need to write a class that implements the interface you de�ne, AM

will create it automatically, as required.

De�ne the properties the node will use in the Config interface, by using the

@Attribute annotation. The @Attribute annotation speci�es the order of the

properties in the tree designer view as well as providing a way to specify additional

validators.

Example:

Con�g interface

public interface Config {

@Attribute(order = 1)

String domain(); 1

@Attribute(order = 2, validators =

RequiredValueValidator.class)

boolean isVerificationRequired(); 2

@Attribute(order = 3, validators =

RequiredValueValidator.class)

@Password

23 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-modify-auth-level
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/SingleOutcomeNode.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/AbstractDecisionNode.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/Node.html

1 The domain attribute is a string-typed value which can be provided in the tree

designer view by the tree administrator. It can be read in the process method by

using a reference to the config interface; for example, config.domain() .

2 A boolean attribute with an additional parameter, validators , containing a

reference to a validation class. In this case, a value is required to be provided by the

tree administrator.

3 Use the Password annotation to mask the input characters and encrypt the value of

the attribute.

4 A custom enum attribute. This provides type safety and negates the misuse of

Strings as generic type-unsafe value holders. The UI will correctly handle the enum

and only let the tree administrator chose from the de�ned enum values.

The de�ned properties appear as con�gurable options in the tree designer view when

adding a node of the relevant type. For example, the con�guration for the Scripted

Decision node appears as follows:

Note that attribute names are used when localizing the node’s text, see

Internationalization.

For more information, see the Con�g annotation type and the Attribute annotation type

in the AM Public API Javadoc.

char[] clientSecret(); 3

@Attribute(order = 4)

default YourCustomEnum action() {

return YourCustomEnum.LockScreen; 4

};

}

Share con�guration between nodes

24 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/sm/annotations/adapters/Password.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-scripted-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-scripted-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/i18n-nodes.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/annotations/sm/Config.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/annotations/sm/Attribute.html

You can share con�guration between nodes that have common properties. For example,

a number of your nodes may call out to an external service that requires a username,

password, IP address, and port setting.

Rather than repeat the same con�guration in each of these nodes, you can create a

shared, auxiliary service to hold the common properties in one of your nodes, and

reference that service from multiple other nodes.

The following sections explain how to create this auxiliary service and reference it in

your nodes. Also covered is how to run more than one instance of an auxiliary service if

required, and how to obtain the con�guration from services built-in to AM.

You can create a shared auxiliary service in the con�guration interface de�ned as part of

a node. Annotate the service with the

org.forgerock.openam.annotations.sm.Config annotation to describe how the

service functions.

Specify the scope of the service, either GLOBAL or REALM , as shown below:

You can also specify other features of the service, such as whether the service is a

singleton in its scope, or if it can have multiple instances. For information about

supporting multiple instances, see Allow multiple instances of an auxiliary service.

To access the shared auxiliary service, add

org.forgerock.openam.sm.AnnotatedServiceRegistry to the @Inject -annotated

constructor of the node.

Obtain the instance using the get instance methods on that class, for example:

When developing a custom authentication node that references a shared auxiliary

service, it can be useful for the node to be able to remove and reinstall the auxiliary

Create a shared auxiliary service

@Config(scope = Config.Scope.REALM)

public interface MyAuxService {

@Attribute(order = 1)

String serviceUrl();

}

Reference a shared auxiliary service instance

serviceRegistry.getRealmSingleton(MyAuxService.class, realm)

Reinstall a shared auxiliary service instance

25 / 57

service during upgrade, so that any existing con�guration is cleared.

In the upgrade function of your plugin class, use the following example code to remove

and reinstall a service:

For more information on upgrading custom authentication nodes, see Upgrade nodes

and change node con�guration.

To enable con�guration of multiple instances of the auxiliary service in either the same

realm or at a global level, set the collection attribute to true in the Config

annotation.

You can present the names of the instances of the service as a drop-down menu to the

tree administrator.

To be able to present the names, make sure the service instance exposes its id , as

follows:

Change the nodes that will be using a service instance to store the id it uses, and

implement choiceValuesClass as shown below:

public void upgrade(String fromVersion) throws PluginException {

SSOToken adminToken =

AccessController.doPrivileged(AdminTokenAction.getInstance());

if (fromVersion.equals(PluginTools.DEVELOPMENT_VERSION)) {

ServiceManager sm = new ServiceManager(adminToken);

if (sm.getServiceNames().contains("MyAuxService")) {

sm.removeService("MyAuxService", "1.0");

}

pluginTools.install(MyAuxService.class);

}

}

Allow multiple instances of an auxiliary service

@Config(scope = Config.Scope.REALM, collection = true)

public interface MyAuxService {

@Id

String id();

@Attribute(order = 1)

String serviceUrl();

}

26 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/node-upgrade.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/node-upgrade.html

public class MyCustomNode implements Node {

public interface Config {

@Attribute(order = 1, choiceValuesClass =

ExternalServiceValues.class)

String serviceId();

}

public static class ExternalServiceValues extends ChoiceValues

{

@Override

public Map<String, String> getChoiceValues() {

return getChoiceValues(null);

}

@Override

public Map<String, String> getChoiceValues(Map envParams) {

String realmName = "/";

if (envParams != null) {

realmName = (String)

envParams.getOrDefault(Constants.ORGANIZATION_NAME, "/");

}

try {

return

InjectorHolder.getInstance(AnnotatedServiceRegistry.class)

.getRealmInstances(MyAuxService.class,

Realms.of(realmName))

.stream()

.collect(Collectors.toMap(MyAuxService::id,

MyAuxService::id));

} catch (SSOException | SMSException |

RealmLookupException e) {

LoggerFactory.getLogger("amAuth").error("Couldn't

load realm {}", realmName, e);

throw new IllegalStateException("Couldn't load

realm that was passed", e);

}

}

}

// ...

}

Get con�guration of built-in services

27 / 57

You can obtain con�guration from services built-in to AM. For example, you might want

to access the Email Service con�guration to obtain the SMTP settings for the realm.

AM services are de�ned by two methods:

1. Most services are de�ned by using an annotated interface.

2. Legacy services that are de�ned by using an XML �le.

See the following sections for information on obtaining the con�guration from services

de�ned with either of the two methods.

To obtain the con�guration from a service that uses an annotated interface, add

org.forgerock.openam.sm.AnnotatedServiceRegistry to your Guice constructor. If

the con�guration is realm-based, include the realm in the constructor, as follows:

Obtain an instance of the service using one of the get methods of

AnnotatedServiceRegistry in the constructor.

If the calls you make depend on input from elsewhere in the tree you can add

AnnotatedServiceRegistry to the process method. Note that the following

example assumes that a previous node has stored the ID of the AM service to use in

shared state:

Get con�guration from an annotated service

public class MyCustomNode extends SingleOutcomeNode {

private final AnnotatedServiceRegistry serviceRegistry;

private final Realm realm;

@Inject

public MyCustomNode(@Assisted Realm realm,

AnnotatedServiceRegistry serviceRegistry) {

this.realm = realm;

this.serviceRegistry = serviceRegistry;

}

// ...

}

public Action process(TreeContext context) throws

NodeProcessException {

String serviceId = context.getState.get("myAuxServiceId");

MyAuxService instance =

serviceRegistry.getRealmInstance(MyAuxService.class, realm,

serviceId);

28 / 57

To obtain an instance of the con�guration from a legacy service, use the APIs in the

com.sun.identity.sm package.

For example, to obtain the con�guration values from a realm instance of a service, use

ServiceConfigManager as follows:

However, to obtain the con�guration values from a global instance of a service, use

ServiceSchemaManager as follows:

A node instance is constructed every time that node is reached in a tree, and is

discarded as soon as it has been used to process the state once.

This model is di�erent to authentication modules, which are instantiated once for each

end-user authentication process, and then all authentication interactions for the life of

the authentication process address the same instance in the same JVM.

Modules can store state in the module instance. However, state stored in a node will be

lost when the node’s process method is complete. To make state available for other

nodes in the tree, nodes must either return the state to the user or store it in the shared

state.

AM uses Google’s Guice dependency injection framework for authentication nodes. AM

uses Guice to manage most of its object life-cycles. You can use just-in-time bindings

from the constructor to inject an object from Guice.

// ...

}

Get con�guration from a legacy service

ServiceConfigManager scm = new

ServiceConfigManager("legacyServiceName", token);

ServiceConfig sc = scm.getOrganizationConfig(realm.asPath(),

null);

final Map<String, Set<String>> configMap = sc.getAttributes();

ServiceSchemaManager ssm = new

ServiceSchemaManager("legacyServiceName", getAdminToken());

Map<String, Set<String>> configMap =

ssm.getGlobalSchema().getAttributeDefaults();

Inject objects into a node instance

29 / 57

The following node-speci�c instances are available from Guice:

@Assisted Realm

The realm that the node is in.

@Assisted UUID

The unique ID of the node instance.

@Assisted AuthTree

The tree that this node is being processed as part of.

<T> @Assisted T

The con�guration object that is an instance of the interface speci�ed in the

configClass metadata parameter.

The following example is the injection used by the Account Lockout node:

For more information, see the Inject annotation type and the Assisted annotation

type in the Google Guice Javadoc.

You can use Guice injection to cache information in a node by annotating the object that

contains the cache with the @Singleton annotation, for example:

Any other objects in AM that are managed by Guice can also be obtained from

within the constructor.

TIP

@Inject

public AccountLockoutNode(CoreWrapper coreWrapper, @Assisted

Config config)

throws NodeProcessException {

this.coreWrapper = coreWrapper;

this.config = config;

}

 

Use a cache

@Node.Metadata(

outcomeProvider = SingleOutcomeNode.OutcomeProvider.class,

configClass = MyCustomNode.Config.class)

public class MyCustomNode extends SingleOutcomeNode {

public interface Config {

String url();

}

30 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-account-lockout
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/Inject.html
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/Inject.html
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/Inject.html
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/assistedinject/Assisted.html
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/assistedinject/Assisted.html
https://google.github.io/guice/api-docs/latest/javadoc/index.html?com/google/inject/assistedinject/Assisted.html

If just-in-time bindings are not su�cient for your use case, you can add your own Guice

module into the injector con�guration by implementing your own

com.google.inject.Module and registering it using the service loader mechanism.

For example:

private final Config config;

private final MyCustomNodeCache cache;

@Inject

public MyCustomNode(@Assisted Config config, MyCustomNodeCache

cache) {

this.config = config;

this.cache = cache;

}

@Override

public Action process(TreeContext context) {

CachedThing thing = cache.getThing(config.url());

// implement node logic here

}

}

@Singleton

class MyCustomNodeCache {

private final LoadingCache<String, CachedThing> cache =

CacheBuilder.newBuilder()

.build(CacheLoader.from(url -> read(url)));

public CachedThing get(String url) {

return cache.get(url);

}

private CachedThing read(String url) {

// Access resource and construct

}

}

Custom Guice bindings

// com/example/MyCustomModule.java

public class MyCustomModule extends AbstractModule {

@Override

protected void configure() {

31 / 57

The MyCustomModule object will then be automatically con�gured as part of the injector

creation.

The Node class returns an Action instance from its process() method.

The Action class encapsulates changes to authentication tree state and �ow control.

For example, the following implementation demonstrates an authentication level

decision:

For more information, refer to the Action class in the AM Public API Javadoc.

The Action class uses the following �elds:

bind(Thing.class).to(MyThing.class);

// and so on

}

}

// META-INF/services/com.google.inject.Module

// See https://docs.oracle.com/javase/tutorial/ext/basics/spi.html

com.example.MyCustomModule

Action class

@Override

public Action process(TreeContext context) throws

NodeProcessException {

NodeState state = context.getStateFor(this);

if (!state.isDefined(AUTH_LEVEL)) {

throw new NodeProcessException("Auth level is required");

}

JsonValue authLevel = state.get(AUTH_LEVEL);

boolean authLevelSufficient =

!authLevel.isNull()

&& authLevel.asInteger() >= config.authLevelRequirement();

return goTo(authLevelSufficient).build();

}

Action �elds and methods

32 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/Action.html

Fields Description

callbacks A list of the callbacks requested by the node. This list may be

null .

errorMessage A custom error message string included in the response JSON if

the authentication tree reaches the Failure authentication

node.

Each node in a tree can replace or update the error message

string as the user traverses through the authentication tree.

If required, your custom node or custom UI must localize the

error string.

lockoutMessage A custom lockout message string included in the response JSON

when the user is locked out.

If required, your custom node or custom UI must localize the

error string.

outcome The result of the node.

returnPropertie

s

A map of properties returned to the client.

Use withReturnProperty(String key, Object value) to

add a property to the map.

sessionHooks The list of classes implementing the TreeHook interface that

run after a successful login.

sessionProperti

es

A map of properties added to the �nal session if the

authentication tree completes successfully.

Use putSessionProperty(String key, String value) and

removeSessionProperty(String key) to add or remove

entries from the map.

sharedState and

transientState

State that AM shares between nodes through the tree context

—the properties set so far by nodes in the tree.

Refer to Store values in shared tree state.

suspensionHandl

er

The handler class to invoke when the authentication framework

suspends authentication.

webhooks The list of webhooks that run after logout.

The Action class provides the following methods:

33 / 57

Methods Description

goTo Specify the exit path to take, and move on to the next

node in the tree.

For example:

send Send the speci�ed callbacks to the user for them to

interact with.

For example, the Username Collector node uses the

following code to send the NameCallback callback to

the user to request the USERNAME value:

sendingCallbacks Returns true if the action is a request for input from the

user.

suspend Suspends the authentication tree, and lets the user

resume it from the point it was suspended.

For example, the following call is taken from the Email

Suspend node:

Use the SuspensionHandler interface for handling the

suspension request.

The inner class ActionBuilder provides the following methods for constructing the

Action object and setting action-related properties:

Methods Description

addNodeType Add a node type to the session properties and shared

state. Replace any existing shared state with the

speci�ed TreeContext’s shared state.

return goTo(false).build();

return send(new

NameCallback(bundle.getString("callback.use

rname"))).build();

return suspend(resumeURI ->

createSuspendOutcome(context, resumeURI,

recipient, templateObject)).build();

34 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-email-suspend
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-email-suspend
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/SuspensionHandler.html

Methods Description

addSessionHook

addSessionHooks

Add one or more session hook classes for AM to run

after a successful login.

addWebhook

addWebhooks

Add one or more webhook names to the list of

webhooks.

build Creates and returns an Action instance providing the

mandatory �elds are set.

putSessionProperty Add a new session property.

removeSessionProperty Remove the speci�ed session property.

replaceSharedState Replace the current shared state with the speci�ed

shared state.

replaceTransientState Replace the current transient state with the speci�ed

transient state.

withDescription Set a description for this action.

withErrorMessage Set a custom message for when the authentication tree

reaches the failure node.

withHeader Set a header for this action.

withIdentifiedIdentit

y

Add an identity, authenticated or not, that is con�rmed

to exist in an identity store. Specify the username and

identity type or an AMIdentity object.

Use this method to record the type of identi�ed user. If

the advanced server property,

org.forgerock.am.auth.trees.authenticate.iden

tified.identity is set to true, AM uses the stored

identi�ed identities to decide which user to log in.

This lets the authentication tree engine correctly resolve

identities that have the same username.

For more information, refer to advanced server

properties.

withLockoutMessage Set a custom message for when the user is locked out.

withReturnProperty Add a property to the list that is returned to the client.

35 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/deployment-configuration-reference.html#org.forgerock.am.auth.trees.authenticate.identified.identity
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/deployment-configuration-reference.html#org.forgerock.am.auth.trees.authenticate.identified.identity

Methods Description

withStage Set a stage name to return to the client to aid the

rendering of the UI. The property is only sent if the node

also sends callbacks.

withUniversalId Deprecated.

Use withIdentifiedIdentity instead.

Tree state exists for the lifetime of the authentication session. Once tree execution is

complete, the authentication session is terminated and a user session is created. The

purpose of tree state is to hold state between the nodes.

A good example is the Username Collector node, which gets the user name from the

user and stores it the shared tree state. Later, the Data Store Decision node can pull this

value from shared tree state and use it to authenticate the user.

Authentication sessions when using chains and modules are stateful - the AM server that

starts the authentication �ow must not change. A load balancer cookie is set on the

responses to the user to ensure the same AM server is used.

In contrast, authentication trees can be made stateless, so that any AM instance in a

deployment can continue the authentication session.

For more information on con�guring sessions, see Sessions.

Always store the authentication state in the NodeState object that AM lets you access

from the TreeContext object passed to the node’s action() method. AM ensures

that the node state is made available to downstream nodes:

Store non-sensitive information with the NodeState.putShared() method.

Store sensitive information, such as passwords, with the

NodeState.putTransient() method.

AM encrypts the transient state with the key that has the

am.authn.trees.transientstate.encryption secret ID. Downstream

consumers, such as IDM user self-service nodes, must have the same key to decrypt

and read it.

To ensure that the authentication �ow is not bloated with calls to encrypt/decrypt

data, and to ensure the authentication session size stays small, limit what you store

Store values in shared tree state

Store values in a tree’s node states

36 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/preface.html

with putTransient() . This is especially true when the realm is con�gured for

client-side authentication sessions.

Internally, AM distinguishes the following node state data:

Shared state, where nodes store non-sensitive information that needs to be

available during the authentication �ow.

You store this with the NodeState.putShared() method.

Transient state, where nodes store sensitive information that AM encrypts on round

trips to the client.

You store this with the NodeState.putTransient() method.

Secure state, where nodes store decrypted transient state.

For details, see NodeState.

To set node state values, get the NodeState using the

TreeContext.getStateFor(Node node) method. Then, use the

NodeState.putShared() and NodeState.putTransient() methods as described

above.

For example:

Get and set values stored in tree state

Set values in the tree state

// Setting values in NodeState

public Action process(TreeContext context) {

String username;

String password;

// ...

NodeState state = context.getStateFor(this);

state.putShared(USERNAME, username); // Non-sensitive

information

state.putTransient(PASSWORD, password); // Sensitive

information

if (!state.isDefined(OPTIONAL_NUMERIC)) { // Check before

updating

state.putShared(OPTIONAL_NUMERIC, 42);

}

goToNext().build();

}

37 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/auth/node/api/NodeState.html

To read node state values, use the NodeState.ifDefined(String key) and

NodeState.get(String key) methods.

For example:

The get(String key) method retrieves the state for the key from NodeState states

in the following order:

1. transient

2. secure

3. shared

For example, if the same property is stored in the transient and shared states, the

method returns the value of the property in the transient state �rst.

AM allows a node to read and write data to and from an identity’s pro�le. This is useful if

a node needs to store information more permanently than when using either the

authentication trees' NodeState , or the identity’s session.

Get values in the tree state

// Getting values from NodeState

public Action process(TreeContext context) {

NodeState state = context.getStateFor(this);

String username;

if (state.isDefined(USERNAME)) {

username = state.get(USERNAME);

} else {

throw new NodeProcessException("Username is required");

}

// ...

goToNext().build();

}

Access an identity’s pro�le

Any node which reads or writes to an identity’s pro�le must only occur in a tree

after the identity has been veri�ed. For example, as the �nal step in a tree, or

directly after a Data Store Decision node.

To store a veri�ed identity in the authentication session, call

ActionBuilder.withIdentifiedIdentity() . This ensures identities with the

same username are correctly resolved.

WARNING

38 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-data-store-decision

Use the IdUtils static class:

If AM is con�gured to search for the identity’s pro�le using a di�erent search attribute to

the default, provide the attributes as a third argument to the method.

To obtain the attributes you could request them in the con�guration of the node, or

obtain them from the realm’s authentication service con�guration.

The following example demonstrates how to obtain the user alias:

By combining these approaches, you can search for an identity by using the ID and

whichever con�gured attribute �eld(s) as necessary.

After obtaining the pro�le, use the AMIdentity#getAttribute(String name)

method.

Create a Map<String, Set<String>> structure of the attributes you wish to write, as

follows:

Read an identity’s pro�le

AMIdentity id = IdUtils.getIdentity(username, realm);

Wrap the method call in an instantiable class to ease testing.

TIP

public AMIdentity getIdentityFromSearchAlias(String username,

String realm) {

ServiceConfig serviceConfig = coreWrapper

.getServiceConfigManager(ISAuthConstants.AUTH_SERVICE_NAME,

AccessController.doPrivileged(AdminTokenAction.getInstance()))

.getOrganizationConfig(realm);

Set<String> realmAliasAttrs = serviceConfig.getAttributes()

.get(ISAuthConstants.AUTH_ALIAS_ATTR);

return IdUtils.getIdentity(username, realm, realmAliasAttrs);

}

Read attributes of an identity’s pro�le

Write a value into an identity’s pro�le

39 / 57

Nodes use callbacks to enable interaction with the authenticating user.

AM doesn’t support creating your own custom callbacks, but there are many existing

implementations available to you. Learn more in Supported callbacks.

Calling the getCallbacks(Class<t> callbackType) method on a TreeContext - the

sole argument to the process() method of a node - returns all callbacks of a particular

type for the most recent request from the current node. For example, calling

context.getCallbacks(PasswordCallback.class) returns a list of the

PasswordCallback callbacks displayed in the UI most recently.

Below is an example of multiple callbacks created by a node and passed to the UI:

Map<String, Set<String>> attrs = new HashMap<>();

attrs.put("attribute", Collections.singleton("value"));

user.setAttributes(attrs);

user.store();

Include callbacks

40 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-supported-callbacks.html

To process the responses to callbacks, you must know the order of the callbacks in the

list. You can �nd the position of the callbacks created by the current node by using the

constant properties for each callback position in the processing node.

If the callbacks were created in previous nodes, their positions must be stored in the

shared state before subsequent nodes can use them.

The following is the code that created the UI displayed in the previous image:

Note that the order of callbacks de�ned in code is preserved in the UI.

A node can provide JavaScript for execution on the client side browser.

For example, the following is a simple JavaScript script named hello-world.js :

Execute the script on the client by using the following code:

Variables can be injected using your favorite Java String utilities, such as

String.format(script, myValue) .

To retrieve the data back from the script, add HiddenValueCallback to the list of

callbacks sent to the user, as follows:

ImmutableList.of(

new TextOutputCallback(messageType, message.toUpperCase()),

new PasswordCallback(bundle.getString("oldPasswordCallback"),

false),

new PasswordCallback(bundle.getString("newPasswordCallback"),

false),

new

PasswordCallback(bundle.getString("confirmPasswordCallback"),

false),

confirmationCallback

);

Send and execute JavaScript in a callback

alert("Hello, World!");

String helloScript = getScriptAsString("hello-world.js");

ScriptTextOutputCallback scriptCallback = new

ScriptTextOutputCallback(helloScript);

ImmutableList<Callback> callbacks =

ImmutableList.of(scriptCallback);

return send(callbacks).build();

41 / 57

The JavaScript needs to add the required data to the HiddenValueCallback and

submit the form, for example:

In the process method of the node, retrieve the hidden callback as follows:

Authentication �ow can return to the same decision node by using two di�erent

methods.

The �rst method is to route the failure outcome through a Retry Limit Decision node.

This node can limit how many times a user can enter incorrect authentication details. In

these instances, the user is returned to re-enter their information; for example, back to

an earlier Username Collector node.

The second method involves routing directly back to the currently processing node. To

achieve this, use the Action.send() method, rather than Action.goTo() . The

Action.goTo method passes control onto the next node in the tree. The

Action.send() method takes a list of callbacks which you can construct in the current

node. The return value is an ActionBuilder , which can be used to create an Action ,

as follows:

A typical example of returning to the same node is a password change screen where the

user must enter their current password, new password, and new password

HiddenValueCallback hiddenValueCallback = new

HiddenValueCallback("myHiddenOutcome", "false");

document.getElementById('myHiddenOutcome').value = "client side

data";

document.getElementById("loginButton_0").click();

Optional<String> result =

context.getCallback(HiddenValueCallback.class)

.map(HiddenValueCallback::getValue)

.filter(scriptOutput -> !Strings.isNullOrEmpty(scriptOutput));

if (result.isPresent()) {

String myClientSideData = result.get();

}

Handle multiple visits to the same node

ActionBuilder action = Action.send(ImmutableList.of(new

ChoiceCallback(), new ConfirmationCallback()));

42 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-retry-limit-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector

con�rmation. The node that processes these callbacks needs to remain on the screen

and display an error message if any of the data entered by the user is incorrect. For

example, if the new password and password con�rmation do not match.

When a ConfirmationCallback is invoked on a screen that was produced by

Action.send() , it will always route back to the node that created it. Once the details

are valid, return an Action created using Action.goTo() and tree processing can

continue as normal.

This page covers error handling in authentication nodes, including how to report errors

to end users and tree administrators, as well as handling unrecoverable errors.

Authentication trees provide a number of ways to output error messages to the user.

The most common error to display is a message in the event of an unsuccessful

authentication. In an authentication tree, this occurs when the authentication process

terminates at the failure node:

By default, when a catastrophic error occurs during node processing, a

NodeProcessException exception should be thrown, which halts the authentication

journey immediately, and displays a generic error message. This may not be desirable,

as it could create a negative user experience.

Handle errors

Authentication errors

Unrecoverable errors

43 / 57

Instead, errors that occur during node processing should be caught within the

processing block of the node’s code, and the user should be routed to an erroneous

state outcome. It may be appropriate to have a single error outcome, multiple error

outcomes, or no error outcome at all, depending on the node.

It is valuable to store information about the cause of the error in the shared state, in

case a node further along the tree processes it. This information should include error

text to display to the user. If the shared state is used for this purpose, it is important to

document not only the meaning of the various outcomes, but also the keys used to store

information in the shared state.

You can display error messages to the tree administrator; for example, when a

con�guration property of a node is required, but not provided.

To automatically display an appropriate error message when required values are

missing, annotate your con�g property with @RequiredValueValidator , as follows:

To control the messages displayed on error, ensure there is a .properties �le under

src/main/resources/org.forgerock.openam.auth.nodes with the same name as

your node class. For more information, see Internationalization.

The plugin class is responsible for informing AM about the details of the customized

authentication node. There is little variation between the plugin class for each

authentication node, other than the version number and class names within.

Authentication nodes are installed into the product using the AM plugin framework. All

AM plugins are created by implementing org.forgerock.openam.plugins.AmPlugin

interface and registering it using the Java service architecture - placing a �le in META-

INF/services.

For plugins that provide authentication nodes there is an abstract implementation of the

AmPlugin interface named

org.forgerock.openam.auth.node.api.AbstractNodeAmPlugin .

The following is an example of the plugin class for an authentication node:

Con�guration errors

@Attribute(order = 300, validators =

{RequiredValueValidator.class})

Set<String> accountSearchBaseDn();

Plugin class

44 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/i18n-nodes.html

1 Name the plugin class after the core class, and append Plugin. For example,

MyCustomNodePlugin .

2 Provide a version number for the authentication node.

3 Ensure a call to the getNodesByVersion() function returns the core classes of the

authentication nodes to register. In this example the version is 1.0.0 , and there is

just one node being registered as that version.

AM plugins are noti�ed of the following events:

onInstall

The plugin has been found during AM startup, and is being installed for the �rst time.

It should create all the services and objects it needs.

onStartup(StartupType startupType)

The plugin is installed and is being started. Any dependency plugins can be relied on

as having been started.

The type of startup is provided:

FIRST_TIME_INSTALL . The AM instance has been installed for the �rst time.

FIRST_TIME_DEMO_INSTALL . The AM deployment has been installed for the

�rst time, using an embedded data store as the con�g and user stores.

NORMAL_STARTUP . The AM instance is starting from a previously installed state,

or is joining an already installed cluster.

onShutdown

The AM instance is in the process of shutting down cleanly. Any resources the plugin

is using should be released and cleaned up.

public class MyCustomNodePlugin extends AbstractNodeAmPlugin { 1

private static String currentVersion = "1.0.0"; 2

@Override

protected Map<String, Iterable<? extends Class<? extends Node>>>

getNodesByVersion() {

return Collections.singletonMap("1.0.0",

Collections.singletonList(MyCustomNode.class)); 3

}

@Override

public String getPluginVersion() {

return MyCustomNodePlugin.currentVersion;

}

}

45 / 57

upgrade(String fromVersion)

An existing version of the plugin is installed, and a new version has been found

during startup. The plugin should make any changes it needs to the services and

objects used in the previous version, and create all the services and objects required

by the new version.

The version of the plugin being upgraded is provided.

onAmUpgrade(String fromVersion, String toVersion)

An AM system upgrade is in progress. Any updates needed to accommodate the AM

upgrade should be made.

Plugin-speci�c upgrade should not be made here, as upgrade will be called

subsequently if the plugin version has also changed.

The AM version being upgraded from, and to, are provided.

The plugin is responsible for maintaining a version number for its content, which is used

for triggering appropriate events for installation and upgrade.

For more information, see amPlugin in the AM Public API Javadoc.

Over time, it may become necessary to change the schema of the con�guration for your

node.

When this happens, the changes must be propagated to the AM con�guration system.

To ensure an update of the AM con�guration, use either of the following methods,

depending on the stage of development:

In the development stage, give your nodes the special version number 0.0.0 . Any

AM con�guration created by nodes that have this special version number is wiped

on each restart of AM.

After moving to production and switching to semantic versioning, you must write

upgrade functions into the node to locate existing con�guration and convert it to

the new schema.

For information on upgrading schema in production mode, refer to Upgrade simple

node con�guration schema changes and Upgrade complex node con�guration

Upgrade nodes and change node con�guration

If you are using custom nodes with version 0.0.0 in trees, you must remove

them from the trees before restarting AM and reinsert them after the restart. If

you do not do this, the entire tree cannot be viewed in the UI after the restart.

IMPORTANT

46 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/plugins/AmPlugin.html

schema changes.

This section explains how to upgrade nodes with simple schema changes. For example,

changing an attribute to a compatible type.

When con�guration schema changes are simple, call the

PluginTools#upgradeAuthNode(Class) method in the upgrade method of your

plugin, as follows:

Examples of simple schema changes include:

Changing an attribute type to one that is backwards-compatible with any existing

values.

For example changing an integer to a string type, or T to Set<T> .

Adding a new attribute that has a default value de�ned.

For example:

This section explains how to upgrade nodes that are changing the con�guration schema

such that existing values would clash with the new schema. For example, changing an

attribute to an incompatible type.

Upgrade simple node con�guration schema changes

@Override

public void upgrade(String fromVersion) throws PluginException {

pluginTools.upgradeAuthNode(MyCustomNode.class);

}

public class MyCustomNode implements Node {

public interface Config {

@Attribute(order = 1)

String existingAttribute();

@Attribute(order = 2)

default Integer newAttribute() {

return 5;

}

}

// ...

}

Upgrade complex node con�guration schema changes

47 / 57

When con�guration schema changes are complex, use the API provided in the

com.sun.identity.sm package. In this example, version 1.0.0 of a node has the

following con�guration schema:

Version 2.0.0 of the node requires the user’s given name and family name separately,

rather than simply a name string. The con�g for version 2.0.0 is as follows:

To upgrade this example node con�guration, �nd all existing instances of con�guration

created by the version 1.0.0 node, �nd the current values for the name attribute, and

split it on the �rst space character to use in the two new attributes.

The following code shows how to upgrade the schema of this example node:

public interface Config {

@Attribute(order = 1)

String name();

}

public interface Config {

@Attribute(order = 1)

String givenName();

@Attribute(order = 2)

String familyName();

}

@Override

public void upgrade(String fromVersion) throws PluginException {

try {

SSOToken token = coreWrapper.getAdminToken();

String serviceName = MyCustomNode.class.getSimpleName();

ServiceConfigManager configManager = new

ServiceConfigManager(serviceName, token);

// Read all the values from all node in all the realms that

will need replacing

OrganizationConfigManager realmManager = new

OrganizationConfigManager(token, "/");

Set<String> realms = ImmutableSet.<String>builder()

.add("/")

.addAll(realmManager.getSubOrganizationNames("*", true))

.build();

Map<Pair<Realm, String>, String> oldValues = new HashMap<>();

for (String realm : realms) {

48 / 57

Internationalization (i18n) of content targets both the end user and the node

administrator. Messages sent to users and other UI can be internationalized.

Additionally, error messages and administrator-facing UI can be internationalized using

the same mechanism for better operator experience.

ServiceConfig container =

configManager.getOrganizationConfig(realm, null);

for (String nodeId : container.getSubConfigNames()) {

ServiceConfig nodeConfig = container.getSubConfig(nodeId);

String name =

nodeConfig.getAttributes().get("name").iterator().next();

oldValues.put(Pair.of(Realms.of(realm), nodeId), name);

}

}

// Do the upgrade of the schema

pluginTools.upgradeAuthNode(MyCustomNode.class);

// Remove the old value and set the new values

for (Map.Entry<Pair<Realm, String>, String> nameForUpdate :

oldValues.entrySet()) {

String realm = nameForUpdate.getKey().getFirst().asPath();

String nodeId = nameForUpdate.getKey().getSecond();

String name = nameForUpdate.getValue();

int spaceIndex = name.indexOf(" ");

ServiceConfig container =

configManager.getOrganizationConfig(realm, null);

ServiceConfig nodeConfig = container.getSubConfig(nodeId);

nodeConfig.removeAttribute("name");

nodeConfig.setAttributes(ImmutableMap.of(

"givenName", singleton(name.substring(0, spaceIndex)),

"familyName", singleton(name.substring(spaceIndex + 1))));

}

} catch (SSOException | SMSException | RealmLookupException e) {

throw new PluginException("Could not upgrade", e);

}

super.upgrade(fromVersion);

}

Internationalization

49 / 57

Internationalized nodes use the locale of the request to �nd the correct resource

bundle, with a default fallback if none is found.

1. Create a Java resource bundle under the resources folder in the Maven project for

your node.

The path and �lename must match that of the core class that will use the translated

text.

For example, the resource bundle for the Username Collector node is located in the

following path:

src/main/resources/org/forgerock/openam/auth/nodes/UsernameCollector

Node .

Figure 4. Example resource bundle

2. Add the properties and strings that the node will display to the user.

For example:

3. Create a .properties �le in the resource bundle for each language your node will

display.

Localize node UI text

callback.username=User Name

50 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector

The �lename must include the language identi�er, as per rfc5646 - Tags for

Identifying Languages .

For example, for French translations your .properties �le could be called

UsernameCollectorNode_fr.properties .

4. Replicate the properties and translate the values in each .properties �les.

For example:

5. In the core class for your node, specify the path to the resource bundle from which

the node will retrieve the translated strings:

6. De�ne a reference to the bundle using the getBundleInPreferredLocale

function to enable retrieval of translated strings:

7. Use the getString function whenever you need to retrieve a translation from the

resource bundle:

This section explains how to build and install authentication nodes for use in

authentication trees.

1. Change to the root directory of the Maven project of the custom nodes.

For example:



callback.username=Nom d'utilisateur

private static final String BUNDLE =

"org/forgerock/openam/auth/nodes/UsernameCollectorNode";

ResourceBundle bundle =

context.request.locales.getBundleInPreferredLocale(

BUNDLE, getClass().getClassLoader());

return send(new

NameCallback(bundle.getString("callback.username"))).build();

Build and install nodes

Build and install a custom authentication node

$ cd /Users/Forgerock/Repositories/am-external/openam-auth-

51 / 57

https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646

2. Run the mvn clean package command.

The project will generate a .jar �le containing your custom nodes. For example,

auth-nodes-version.jar .

3. Include the custom .jar �le in the AM .war �le, as described in Customize the

AM WAR �le.

4. Restart AM for the new nodes to become available.

The custom authentication node is now available in the tree designer to add to

authentication trees:

Figure 5. Custom node in a tree

For more information on using the tree designer to manage authentication trees,

refer to Con�gure authentication trees.

For information on upgrading custom nodes, refer to Upgrade nodes and change node

con�guration.

trees/auth-nodes

Delete or overwrite older versions of the nodes .jar �le from the WEB-

INF/lib/ folder, to avoid clashes.

NOTE

If you are using custom nodes with version 0.0.0 in trees, you must remove

them from the trees before restarting AM and reinsert them after the restart. If

you do not do this, the entire tree cannot be viewed in the UI after the restart.

IMPORTANT

52 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/customize-openam.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/customize-openam.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html#configure-authentication-trees
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/node-upgrade.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/node-upgrade.html

This page covers post-installation tasks relating to authentication nodes, such as testing,

debugging, auditing, and performance monitoring.

You can test authentication nodes in numerous ways. For example, you can use unit

tests, functional tests, and perform exploratory or manual testing.

Authentication nodes are well suited to tests that have a high percentage of code

coverage. The low number of static dependencies means that unit testing of the node

class itself can occur, rather than simply the business logic classes, as was the case for

modules. Furthermore, as nodes should be signi�cantly smaller than modules, testing

iterations should be much shorter.

Your unit tests should aim for an appropriately high-level percentage of coverage of the

code. Unit testing becomes easier with nodes, as most of the business logic is de�ned by

the tree layout, rather than in the nodes themselves.

At minimum, the process(TreeContext context) method should be tested to ensure

that all appropriate code paths are triggered based on the existence, or lack of,

appropriate values in the shared state and callbacks.

The TreeContext class and contents have been designed to make sure they are simple

to use in unit tests, without the need to resort to mocking.

Functional tests involve deploying the node into an AM instance and testing it using the

authentication REST API. They should be written to cover all normal �ows through the

node.

All the appropriate code paths discovered through unit testing should be functionally

tested to ensure that helper, utility, and related mechanisms function as expected.

Additionally, functional tests will ensure that the business logic is correctly called and

processed as expected.

Maintain authentication nodes

Test nodes

Unit tests

Functional tests

Mocking expected services may be useful when functionally testing nodes that call

out to third-party services.

TIP

53 / 57

Manual testing should occur both during and after node development.

During development, it is expected a node developer will frequently load and reload

nodes to ensure they operate as expected, including con�guration and execution, as

well as any expected error conditions.

After development, manual testing should continue in an exploratory fashion. Simply

using a node numerous times can often highlight areas left unpolished, or particular

usability issues that may be missed by automated testing.

Add debug logging to your custom node to help administrators and support sta�

investigate any issues which may arise in production.

To add debug logging to a node, obtain a reference to the amAuth SLF4J Logger

instance.

For example, you can assign the logger to a private �eld as follows:

You can also use the SLF4J varargs methods to defer string concatenation to SLF4J.

This means string concatenation can be skipped if the con�gured logging level means

that your message will not be written.

The following example uses the debug level:

Manual testing

Debug nodes

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

// ...

private final Logger logger = LoggerFactory.getLogger("amAuth");

Consider the logging level you use; excessive use of the error or warning level

can cause debug logs to �ll, and can have a negative performance impact, if your

node is used frequently.

NOTE

logger.debug("authLevelSufficient {}", authLevelSufficient);

Audit logging

54 / 57

Audit logging helps administrators to investigate user and system behavior.

AM records all incoming calls as access events. Additionally, in order to capture further

details regarding authentication �ows, AM records an authentication audit event for

each node, and the tree outcome.

A node can provide extra data to be included in the standard audit event which is logged

when an authentication node completes.

AM logs an AM-NODE-LOGIN-COMPLETED audit event each time an authentication node

completes. To add extra information to this audit event, override the node interface

method getAuditEntryDetail .

For example, the Retry Limit Decision node overrides this method to record how many

retries remain:

When this node is processed, it results in an audit event similar to the following:

@Override

public JsonValue getAuditEntryDetail() {

return json(object(field("remainingRetries",

String.valueOf(retryLimitCount))));

}

{

"realm": "/",

"transactionId": "45453155-cf94-4e23-8ee9-ecdfc9f97e12-1785617",

"component": "Authentication",

"eventName": "AM-NODE-LOGIN-COMPLETED",

"entries": [

{

"info": {

"nodeOutcome": "Retry",

"treeName": "Example",

"displayName": "Retry Limit Decision",

"nodeType": "RetryLimitDecisionNode",

"nodeId": "bf010b6b-61f8-457e-80f3-c3678e5606d2",

"authLevel": "0",

"nodeExtraLogging": {

"remainingRetries": "2"

}

}

}

],

"timestamp": "2018-08-24T09:43:55.959Z",

"trackingIds": [

55 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-retry-limit-decision

The result of the getAuditEntryDetail method is stored in the nodeExtraLogging

�eld.

You can track authentication �ows which complete with success, failure, or timeout as

an outcome by using the metrics functionality built-in to AM.

For more information, see Monitor AM instances.

You can also use the following nodes in a tree to create custom metrics:

Meter node

Timer Start node

Timer Stop node

This page o�ers solutions to issues that may occur when developing authentication

nodes.

1. I installed my node in AM. Why doesn’t it appear in the authentication tree designer?

The authNodeName.properties �le for your node must include a

nodeDescription property to ensure that that your node appears in the

authentication tree designer.

AM uses the nodeDescription property value as the name of your node.

2. How do I get new attributes to appear in the node after the service has been loaded

once?

See Upgrade nodes and change node con�guration.

3. What type of exception should I throw so that the framework handles it gracefully?

To display a custom message to the user, exceptions must be handled inside the

node and an appropriate information callback returned.

For more information, see Handle errors.

4. Do I need multiple projects/jars for multiple nodes?

No - you can bundle multiple nodes into one plugin, which should be deployed in

one single .jar �le.

See Build and install nodes.

"45453155-cf94-4e23-8ee9-ecdfc9f97e12-1785618"

],

"_id": "45453155-cf94-4e23-8ee9-ecdfc9f97e12-1785622"

}

Monitor nodes

Troubleshoot node development

56 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/maintenance-guide/monitoring-am.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-meter
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-timer-start
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-timer-stop
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/node-upgrade.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-error-handling.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/build-install-nodes.html

5. What ForgeRock utilities exist for me to use to assist in the node building experience?

A number of utilities are available for use in your integrations and custom nodes.

See the AM Public API Javadoc.

6. Transient State vs Shared State - When should I use one or the other?

Transient state is used for secret values that should not persist.

See Store values in shared tree state.

7. If my service collects a username in a di�erent way from the Username Collector node,

where do I put the username from the framework to get the principal?

See Access an identity’s pro�le.

8. Where do I go for examples of authentication nodes?

There are many public examples of ForgeRock community nodes at

https://github.com/ForgeRock .

Examples of community nodes written by third parties can be found on the

Marketplace website.

For source access to the authentication nodes builtin to AM, see How do I access

and build the sample code provided for PingAM? in the Knowledge Base.

Was this helpful?

Copyright © 2010-2025 ForgeRock, all rights reserved.







57 / 57

file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-action.html#accessing-tree-state
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-username-collector
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-action.html#accessing-user-profile
https://github.com/ForgeRock
https://github.com/ForgeRock
https://github.com/ForgeRock
https://backstage.forgerock.com/marketplace/?t=FSdHWcZyspKpWLfWsRSAnMuH-duplrBx&sort=updateTimestamp
https://backstage.forgerock.com/marketplace/?t=FSdHWcZyspKpWLfWsRSAnMuH-duplrBx&sort=updateTimestamp
https://backstage.forgerock.com/marketplace/?t=FSdHWcZyspKpWLfWsRSAnMuH-duplrBx&sort=updateTimestamp
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM

