
This guide covers concepts, implementation procedures, and customization techniques

for working with the authorization features of ForgeRock Access Management.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

AM provides access management, which consists of:

Authorization



Learn how AM

determines access

according to policies.

Authorization



Define resources, and

protect them by

creating authorization

policies.

Create policies



Use transactional

authorization to require

additional

authorization.

What is transactional

authorization?



Learn how to grant

OAuth 2.0 scopes

dynamically.

Dynamic OAuth 2.0

Scopes



Authorization and policy decisions

1 / 151

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/what-is-authz-decision.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/policies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/transactional-authorization.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/oauth2-authorization.html

Authentication: determining who is trying to access a resource

Authorization: determining whether to grant or deny access to the resource

The decision to grant access depends on a number of factors:

the policies governing access

who is trying to gain access

possible additional conditions, such as whether the access needs to happen over a

secure channel or what time of day it is.

AM relies on policies to reach authorization decisions, such as whether to grant or deny

access to a resource, or to grant or deny OAuth 2.0 scopes.

Related Information: Dynamic OAuth 2.0 authorization

When you configure policy sets to protect resources, AM acts as the policy decision point

(PDP), whereas AM web and Java agents act as policy enforcement points (PEP). In other

words, an agent or other PEP takes responsibility only for enforcing a policy decision

rendered by AM. When you configured applications and their policies in AM, you used

AM as a policy administration point (PAP).

Concretely speaking, when a PEP requests a policy decision from AM, it specifies the

target resource(s), the policy set (default: iPlanetAMWebAgentService), and

information about the subject and the environment. AM as the PDP retrieves policies

within the specified policy set that apply to the target resource(s). AM then evaluates

those policies to make a decision based on the conditions matching those of the subject

and environment. When multiple policies apply for a particular resource, the default

logic for combining decisions is that the first evaluation resulting in a decision to deny

access takes precedence over all other evaluations. AM only allows access if all

applicable policies evaluate to a decision to allow access.

AM communicates the policy decision to the PEP. The concrete decision, applying policy

for a subject under the specified conditions, is called an entitlement.

The entitlement indicates the resource(s) it applies to, the actions permitted and denied

for each resource, and optionally, response attributes and advice.

Protect resources

2 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/oauth2-authorization.html

Realms

Policy Sets

Policies

Request

GET
http://www.example.com/hr/index.html
User: Demo
Time: 13:00

AMAgent

MyPolicy

Resources
http://www.example.com/hr/*

Actions
GET, POST

Subjects
All Authenticated Users

Conditions
Between 09:00 and 17:00

Response Attributes
givenName=Demo User

Response

{
"resource" : "http://www.example.com:80/hr/index.html",
"actions" : {

"POST" : true,
"GET" : true

},
"attributes" : {

"givenName" : ["Demo User"]
},
"advices" : {
}

}

Resource Types

URL

Patterns
://:*/*?*

Actions
POST
PATCH
GET
DELETE
OPTIONS
HEAD
PUT

Figure 1. Protecting Pages or Applications

When AM denies a request due to a failed condition, AM can send advice to the PEP, and

the PEP can then take remedial action. For instance, suppose a user comes to a website

after authenticating with an email address and password, which is configured as

authentication level 0. Had the user authenticated using a one-time password, the user

would have had authentication level 1 in their session. Yet, because they have

authentication level 0, they currently cannot access the desired page, as the policy

governing access requires authentication level 1. AM sends advice, prompting the PEP to

have the user re-authenticate using a one-time password, gaining authentication level 1,

and thus having AM grant access to the protected page.

AM has to match policies to resources to take policy decisions. For a policy to match, the

resource has to match one of the resource patterns defined in the policy. The user

making the request has to match a subject. Furthermore, at least one condition for each

condition type has to be satisfied.

If more than one policy matches, AM has to reconcile differences. When multiple policies

match, the order in which AM uses them to make a policy decision is not deterministic.

However, a deny decision overrides an allow decision and so, by default, once AM

reaches a deny decision, it stops checking further policies. If you want AM to continue

checking despite the deny decision, go to Configure > Global Services > Policy

Configuration, and enable Continue Evaluation on Deny Decision.

Consider the case where AM protects a user profile web page. An AM web agent

installed in the web server intercepts client requests to enforce policy. The policy says

that only authenticated users can access the page to view and to update their profiles.

When a user browses to the profile page, the AM agent intercepts the request. The

web agent notices that the request is to access a protected resource, but the request

is coming from a user who has not yet logged in and consequently has no

Policy decisions

Example

3 / 151

authorization to visit the page. The web agent therefore redirects the user’s browser

to AM to authenticate.

AM receives the redirected user, serving a login page that collects the user’s email and

password. With the email and password credentials, AM authenticates the user, and

creates a session for the user. AM then redirects the user to the web agent, which gets

the policy decision from AM for the page to access, and grants access to the page.

While the user has a valid session with AM, the user can go away to another page in

the browser, come back to the profile page, and gain access without having to enter

their email and password again.

Notice how AM and the web agent handle the access in the example. The website

developer can offer a profile page, but the website developer never has to manage

login, or handle who can access a page. As AM administrator, you can change

authentication and authorization independently of updates to the website. You might

need to agree with website developers on how AM identifies users, so web developers

can identify users by their own names when they log in. By using AM and web or Java

agents for authentication and authorization, your organization no longer needs to

update web applications when you want to add external access to your Intranet for

roaming users, open some of your sites to partners, only let managers access certain

pages of your HR website, or allow users already logged in to their desktops to visit

protected sites without having to type their credentials again.

Authorization policies let AM determine whether to grant a subject access to a resource.

A policy defines the following:

resources

The resource to which access is restricted, such as a web page, a mobile app, or a

boarding area in an airport.

actions

The verbs that describe what users can do to the resource, such as read a web page,

submit a web form, or access a boarding area.

subject conditions

Who the policy applies to, such as all authenticated users, only administrators, or

only passengers with valid tickets for planes leaving soon.

environment conditions

The circumstances under which the policy applies, such as only during work hours,

only when accessing from a specific IP address, or only when the flight is scheduled

to leave within the next four hours.

Policies

4 / 151

response attributes

Information that AM attaches to a response following a policy decision, such as a

name, email address, or frequent flyer status.

A policy can only be created as part of a policy set.

1. To add a policy using the AM admin UI, go to Realms > Realm Name >

Authorization > Policy Sets, and select the name of the policy set in which to

configure the policy.

2. To create a new policy, select Add a Policy.

3. In the Name field, enter a descriptive name for the policy.

4. To set the resources to which the policy applies, follow these steps:

Select a resource type from the Resource Type drop-down list.

The set of resource patterns within the selected resource type will populate the

Resources drop-down list.

Select a resource pattern from the Resources drop-down list.

Replace the asterisks with values to define the resources that the policy applies

to.

For details on specifying patterns for matching resources, refer to Specify

resource patterns with wildcards.

Policies in the UI

Do not use special characters in resource type, policy, or policy set names (for

example, "my+resource+type"). If you include special characters, AM returns

a 400 Bad Request error. This includes the following special characters: double

quotes ("), plus sign (+), comma (,), less than (<), equals (=), greater than

(>), backslash (\), forward slash (/), semicolon (;), and null (\u0000).

NOTE

5 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/policy-sets.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/resource-types.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/resource-types-ui.html#policy-patterns-wildcards
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/resource-types-ui.html#policy-patterns-wildcards

Figure 2. Editing Resource Patterns

The OAuth2 Scope resource type has the same resource patterns as the URL

resource type, and also the * pattern. Use the resource patterns that are most

relevant for the scopes in your environment.

Figure 3. Editing OAuth2 Scope Resource Type Resource Patterns

IMPORTANT

6 / 151

Select Add to save the resource.

The AM admin UI displays a page for your new policy. The Tab pages let you

modify the policy’s properties.

5. Repeat these steps to add all the resources to which your policy applies, and click

Create.

6. To configure the policy’s actions, select the Actions tab and perform the following:

From the Add an Action drop-down list, select each action that you want to

control with this policy.

Select whether to allow or deny the action on the resources specified earlier.

Figure 4. Allowing or Denying the Action for the Resource

When you have added all required actions, save your work.

Before testing your OAuth 2.0 policies, ensure your OAuth 2.0 service is

configured to interact with AM’s authorization service. Perform the

following steps:

i. Go to Realms > Realm Name > Services > OAuth2 Provider.

ii. Ensure that Use Policy Engine for Scope decisions is enabled.

For more information about testing OAuth 2.0 policies, see Dynamic

OAuth 2.0 authorization.

IMPORTANT

To remove a resource, click Delete.

TIP

7 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/oauth2-authorization.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/oauth2-authorization.html

7. On the Subjects and Environments tabs, define conditions by combining logical

operators with blocks of configured parameters. Conditions create a set of rules

that the policy uses to filter requests for resources.

Use drag and drop to nest logical operators at multiple levels to create complex rule

sets.

Valid drop points in which to drop a block are displayed with a grey horizontal bar.

Figure 5. Valid Drop Point

To define the subjects that the policy applies to, select the Subjects tab::

Select Add a Subject Condition, choose the type from the drop-down

menu, specify any required subject values, select the checkmark to the

right when done, and then drag the block into a valid drop point in the rule

set above.

8 / 151

Figure 6. Nesting subject conditions

Authenticated Users

Any user that has successfully authenticated with AM.

Users & Groups

A user or group as defined in the realm containing the policy. To

manage the identities and groups in a realm, go to Realms > Realm

Name > Identities.

Select one or more users or groups from the Identities or Groups

tabs, which display the identities and groups available within the

realm.

Subject conditions

9 / 151

To remove an entry, select the value, and then press Delete

(Windows/GNU/Linux) or Backspace (Mac OS X).

OpenID Connect/Jwt Claim

Validate a claim within a JSON Web Token (JWT).

Type the name of the claim to validate in the Claim Name field, for

example, sub , and the required value in the Claim Value field, and

then select the checkmark.

Repeat the step to enter additional claims.

The claim(s) will be part of the JWT payload together with the JWT

header and signature. The JWT is sent in the authorization header of

the bearer token.

This condition type only supports string equality comparisons, and is

case-sensitive.

Never Match

Never match any subject. Has the effect of disabling the policy, as it

will never match a subject.

If you do not set a subject condition, "Never Match" is the default. In

other words, you must set a subject condition for the policy to apply.

To match regardless of the subject, configure a subject condition that

is "Never Match" inside a logical Not block.

To add a logical operator, select the Add a Logical Operator button, choose

between All Of , Not , and Any Of from the drop-down list, and then

drag the block into a valid drop point in the rule set above.

Continue combining logical operators and subject conditions. To edit an

item, click Edit. To remove an item, click Delete. When complete, click

Save Changes.

To configure environment conditions in the policy, select the Environments

tab:

To add an environment condition, click Environment Condition, choose

the type from the drop-down list, specify any required parameters, and

drag the block into a drop point in a logical block above.

Active Session Time

Script is the only environmental condition available for OAuth 2.0

policies.

NOTE

Environment conditions

10 / 151

Make the policy test how long the user’s session has been active, as

specified in Max Session Time. To terminate the session if it has been

active for longer than the specified time, set Terminate Sessions to

True . The user will need to reauthenticate.

Authentication Level (greater than or equal to)

Make the policy test the minimum acceptable authentication level

specified in Authentication Level.

Authentication Level (less than or equal to)

Make the policy test the maximum acceptable authentication level

specified in Authentication Level.

Authentication by Module Instance

Make the policy test the authentication module used to authenticate,

specified in Authentication Scheme. Specify a timeout for application

authentication in Application Idle Timeout Scheme, and the name of

the application in Application Name.

Authentication by Service

Make the policy test the service that was used to authenticate the

user.

Authentication to a Realm

Make the policy test the realm to which the user authenticated.

A session can only belong to one realm, and session upgrade

between realms is not allowed.

Current Session Properties

Make the policy test property values set in the user’s session.

Set Ignore Value Case to True to make the test case-insensitive.

Specify one or more pairs of session properties and values using the

format property:value . For example, specify

clientType:genericHTML to test whether the value of the

clientType property is equal to genericHTML .

IPv4 Address/DNS Name

Make the policy test the IP version 4 address that the request

originated from.

The IP address is taken from the requestIp value of policy decision

requests. If this is not provided, the IP address stored in the SSO

token is used instead.

Specify a range of addresses to test against by entering four sets of

up to three digits, separated by periods (.) in both Start IP and End

11 / 151

IP.

If only one of these values is provided, it is used as a single IP

address to match.

Optionally, specify a DNS name in DNS Name to filter requests to

that domain.

IPv6 Address/DNS Name

Make the policy test the IP version 6 address that the request

originated from.

The IP address is taken from the requestIp value of policy decision

requests. If this is not provided, the IP address stored in the SSO

token is used instead.

Specify a range of addresses to test against by entering eight sets of

four hexadecimal characters, separated by a colon (:) in both Start

IP and End IP.

If only one of these values is provided, it is used as a single IP

address to match.

Optionally, specify a DNS name in DNS Name to filter requests to

those coming from the specified domain.

Use an asterisk (*) in the DNS name to match multiple subdomains.

For example, *.example.com applies to requests coming from

www.example.com , secure.example.com , or any other subdomain

of example.com .

Identity Membership

Make the policy apply if the UUID of the invocator is a member of at

least one of the AMIdentity objects specified in AM Identity Name.

Often used to filter requests on the identity of a Web Service Client

(WSC).

LDAP Filter Condition

Make the policy test whether the user’s entry can be found using the

LDAP search filter you specify in the directory configured for the

policy service. By default, this is the identity repository defined

during setup.

Java agents and web agents do not support the Identity

Membership environment condition. Instead, use the equivalent

Users & Groups subject condition.

NOTE

NOTE

12 / 151

OAuth2 Scope

Make the policy test whether an authorization request includes all

the specified OAuth 2.0 scopes.

Scope names must follow OAuth 2.0 scope syntax described in RFC

6749, Access Token Scope . As described in that section, separate

multiple scope strings with spaces, such as openid profile .

The scope strings match regardless of order in which they occur, so

openid profile is equivalent to profile openid .

The condition is also met when additional scope strings are provided

beyond those required to match the specified list. For example, if the

condition specifies openid profile , then openid profile email

also matches.

Resource/Environment/IP Address

Make the policy apply to a complex condition, such as whether the

user is making a request from the localhost, and has also

authenticated in a particular way.

Entries must take the form of an IF…​ELSE statement. The IF

statement can specify either IP to match the user’s IP address, or

dnsName to match their DNS name.

If the IF statement is true, the THEN statement must also be true

for the condition to be fulfilled. If not, relevant advice is returned in

the policy evaluation request.

The available parameters for the THEN statement are as follows:

module The module used to

authenticate the user. For

example, DataStore .

If you define a filter condition that uses LDAP accounts or

groups in a different identity repository, you must configure the

LDAP settings:

1. For global settings, go to Configure > Global Services, or,

for realm-based settings, go to Realms > Realm Name >

Services.

2. Select Policy Configuration to view and edit the LDAP

configuration.

NOTE



13 / 151

https://www.rfc-editor.org/rfc/rfc6749.html#section-3.3
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.3
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.3

service The service that was used to

authenticate the user.

authlevel The minimum required

authentication level.

role The role of the authenticated

user.

user The name of the authenticated

user.

redirectURL The URL the user was

redirected from.

realm The realm that was used to

authenticate the user.

The IP address can be IPv4, IPv6, or a hybrid of the two. Example: IF

IP=[127.0.0.1] THEN role=admins .

Script

Make the policy depend on the outcome of a JavaScript or Groovy

script executed at the time of the policy evaluation.

For information on scripting policy conditions, see Scripted policy

conditions.

Script is the only environmental condition available for OAuth 2.0

policies. Use scripts to capture the ClientId environmental

attribute.

Time (day, date, time, and timezone)

Make the policy test when the policy is evaluated.

The values for day, date and time must be set in pairs that comprise

a start and an end.

Figure 7. Create conditions that apply between a start and end date

andtime.

Transaction

14 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/scripted-policy-condition.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/scripted-policy-condition.html

Make the policy depend on the successful completion of a

transaction performed by the user.

Configure a transaction with an authentication strategy that asks the

user to reauthenticate before being allowed access to the resource.

Transactions support the following authentication strategies:

Authenticate to Chain : Specify the name of an

authentication chain the user must successfully complete to

access the protected resource.

Authenticate to Realm : Specify the full path of a realm in

which the user must successfully authenticate to access the

protected resource.

For example, /sales/internal .

Authenticate to Tree : Specify the name of an authentication

tree the user must successfully traverse to access the protected

resource.

Authenticate to Module : Specify the name of an

authentication module the user must successfully authenticate

against to access the protected resource.

Auth Level : Specify the minimum authentication level the

user must achieve to access the protected resource.

For more information on transactional authorization, see Transactional

authorization.

To add a logical operator, click Logical, choose between All Of , Not ,

and Any Of from the drop-down list, and drag the block into a valid drop

point in the rule set above.

Continue combining logical operators and environment conditions, and

when finished, select Save Changes.

8. You can add response attributes, retrieved from the user entry in the identity

repository, into the headers of the request at policy decision time (not available for

the OAuth2 Scope resource type). The web or Java agent for the protected

resources/applications or the protected resources/applications themselves retrieve

the policy response attributes to customize or personalize the application. Policy

response attributes come in two formats: subject attributes and static attributes.

If you specify a minimum authentication level, ensure there

are methods available to users to reach that level. If none

are found, the policy will return a 400 Bad request error

when attempting to complete the transaction.

NOTE

15 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/transactional-authorization.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/transactional-authorization.html

To configure response attributes in the policy, complete the following steps on the

Response attributes tab:

To add subject attributes, select them from the Subject attributes drop-down

list.

To remove an entry, select the value, and then press Delete

(Windows/GNU/Linux) or Backspace (Mac OS X).

To add a static attribute, specify the key-value pair for each static attribute.

Enter the Property Name and its corresponding Property Value in the fields,

and click Add (+) icon.

Continue adding subject and static attributes, and when finished, click Save

Changes.

Policies are realm-specific, so the URI for the policies API can contain a realm

component, such as /json/realms/root/realms/Realm Name/policies . If the realm

is not specified in the URI, the top level realm is used.

Policy resources are built from standard JSON objects and values (strings, numbers,

objects, arrays, true , false , and null).

To edit an entry, select the Edit icon in the row containing the attribute, or

select the row itself. To remove an entry, select the Delete icon in the row

containing the attribute.

NOTE

Policies over REST

Example

{

"name": "mypolicy",

"active": true,

"description": "My Policy.",

"applicationName": "iPlanetAMWebAgentService",

"actionValues": {

"POST": true,

"GET": true

},

"resources": [

"http://www.example.com:80/*",

"http://www.example.com:80/*?*"

],

"subject": {

16 / 151

The values for the fields shown in the example are explained below:

name

String matching the name in the URL (when creating the policy using HTTP PUT) or

in the body (when creating the policy using HTTP POST).

active

Boolean indicating whether AM considers the policy active for evaluation

purposes, defaults to false .

description

String describing the policy.

resources

List of the resource name pattern strings to which the policy applies. Must

conform to the pattern templates provided by the associated resource type.

applicationName

String containing the policy set name, such as "iPlanetAMWebAgentService" , or

"mypolicyset" .

"type": "AuthenticatedUsers"

},

"condition": {

"type": "SimpleTime",

"startTime": "09:00",

"endTime": "17:00",

"startDay": "mon",

"endDay": "fri",

"enforcementTimeZone": "GMT"

},

"resourceTypeUuid": "76656a38-5f8e-401b-83aa-4ccb74ce88d2",

"resourceAttributes": [

{

"type": "User",

"propertyName": "givenName",

"propertyValues": []

}

],

"lastModifiedBy":

"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedDate": "2015-05-11T17:39:09.393Z",

"createdBy":

"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate": "2015-05-11T17:37:24.556Z"

}

17 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-resource-types.html

actionValues

Set of string action names, each set to a boolean indicating whether the action is

allowed. Chosen from the available actions provided by the associated resource

type.

subject

Specifies the subject conditions to which the policy applies, where subjects can be

combined by using the built-in types "AND" , "OR" , and "NOT" , and where

subject implementations are pluggable.

Subjects are shown as JSON objects with type set to the name of the

implementation (using a short name for all registered subject implementations),

and other fields, depending on the implementation. The subject types registered

by default include the following:

"AuthenticatedUsers" , meaning any user that has successfully

authenticated to AM.

"Identity" to specify one or more users from an AM identity repository:

Action values can also be expressed as numeric values. When using numeric

values, use the value 0 for false and use any non-zero numeric value for

true .

TIP

{

"type": "AuthenticatedUsers"

}

The AuthenticatedUsers subject condition does not take into account

the realm to which a user authenticated. Any user that has authenticated

successfully to any realm passes this subject condition.

To test whether a user has authenticated successfully to a specific realm,

add the AuthenticateToRealm environment condition.

WARNING

{

"type": "Identity",

"subjectValues": [

"uid=scarter,ou=People,dc=example,dc=com",

"uid=ahall,ou=People,dc=example,dc=com"

]

}

18 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-resource-types.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-resource-types.html

You can also use the "Identity" subject type to specify one or more groups

from an identity repository:

"JwtClaim" to specify a claim in a user’s JSON web token (JWT).

"NONE" , meaning never match any subject. The result is not that access is

denied, but rather that the policy itself does not match and therefore cannot

be evaluated in order to allow access.

The following example defines the subject either as the user Sam Carter from an

AM identity repository, or as a user with a JWT claim with a subject claim with the

value scarter :

{

"type": "Identity",

"subjectValues": [

"cn=HR Managers,ou=Groups,dc=example,dc=com"

]

}

{

"type": "JwtClaim",

"claimName": "sub",

"claimValue": "scarter"

}

{

"subject": {

"type": "OR",

"subjects": [{

"type": "Identity",

"subjectValues": [

"uid=scarter,ou=People,dc=example,dc=com"

]

},

{

"type": "JwtClaim",

"claimName": "sub",

"claimValue": "scarter"

}

]

}

}

19 / 151

To read a single subject type description, or to list all the available subject types, see

Manage subject condition types.

condition

Conditions are shown as JSON objects with "type" set to the name of the

implementation (using a short name for all registered condition implementations),

and other fields depending on the implementation. The condition types registered

by default include the following.

"AMIdentityMembership" to specify a list of AM users and groups.

"AuthLevel" to specify the authentication level.

"AuthScheme" to specify the authentication module used to authenticate,

the policy set name, and a timeout for authentication.

"AuthenticateToRealm" to specify the realm to which the user

authenticated.

{

"type": "AMIdentityMembership",

"amIdentityName": [

"id=scarter,ou=People,dc=example,dc=com"

]

}

Java agents and web agents do not support the AMIdentityMembership

environment condition. Instead, use the equivalent Identity subject

condition.

NOTE

{

"type": "AuthLevel",

"authLevel": 2

}

{

"type": "AuthScheme",

"authScheme": [

"DataStore"

],

"applicationName": "iPlanetAMWebAgentService",

"applicationIdleTimeout": 10

}

20 / 151

"AuthenticateToService" to specify the authentication tree or chain that

was used to authenticate.

"IPv4" or "IPv6" to specify an IP address range from which the request

originated.

You can also use the "IPv4" and "IPv6" conditions with the "dnsName"

field to specify domain names from which the request originated. Omit

"startIp" and "endIp" when using "dnsName" .

"LDAPFilter" to specify an LDAP search filter. The user’s entry is tested

against the search filter in the directory configured in the Policy Configuration

Service.

"LEAuthLevel" to specify a maximum acceptable authentication level.

{

"type": "AuthenticateToRealm",

"authenticateToRealm": "MyRealm"

}

{

"type": "AuthenticateToService",

"authenticateToService": "MyAuthnTree"

}

{

"type": "IPv4",

"startIp": "127.0.0.1",

"endIp": "127.0.0.255"

}

{

"type": "IPv4",

"dnsName": [

"*.example.com"

]

}

{

"type": "LDAPFilter",

"ldapFilter": "(&(c=US)(preferredLanguage=en-us))"

}

21 / 151

"OAuth2Scope" to specify a list of attributes that must be present in the user

profile.

"ResourceEnvIP" to specify a complex condition such as whether the user is

making a request from a given host and has authenticated with a given

authentication level. For example:

Entries must take the form of one or more IF…​ELSE statements. If the IF

statement is true, the THEN statement must also be true for the condition to

be fulfilled. The IF statement can specify an IP to match the user’s IP address,

or a dnsName to match their DNS name. The IP address can be IPv4 or IPv6

format, or a hybrid of the two, and can include wildcard characters.

The available parameters for the THEN statement are as follows:

module The module used to authenticate

the user. For example, DataStore .

service The service that was used to

authenticate the user.

authlevel The minimum required

authentication level.

{

"type": "LEAuthLevel",

"authLevel": 2

}

{

"type": "OAuth2Scope",

"requiredScopes": [

"name",

"address",

"email"

]

}

{

"type": "ResourceEnvIP",

"resourceEnvIPConditionValue": [

"IF IP=[127.168.10.*] THEN authlevel=4"

]

}

22 / 151

role The role of the authenticated user.

user The name of the authenticated user.

redirectURL The URL the user was redirected

from.

realm The realm that was used to

authenticate the user.

"Session" to specify how long the user’s session has been active, and to

terminate the session if it is too old, forcing the user to reauthenticate.

Note that AM terminates client-side sessions only if session denylisting is in

effect. For more information about session denylisting, see Session

termination.

"SessionProperty" to specify attributes set in the user’s session.

"SimpleTime" to specify a time range, where "type" is the only required

field.

{

"type": "Session",

"maxSessionTime": "10",

"terminateSession": false

}

{

"type": "SessionProperty",

"ignoreValueCase": true,

"properties": {

"CharSet": [

"UTF-8"

],

"clientType": [

"genericHTML"

]

}

}

{

"type": "SimpleTime",

"startTime": "07:00",

"endTime": "19:00",

"startDay": "mon",

23 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-session-termination.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-session-termination.html

The following example defines the condition as neither Saturday or Sunday,

nor certain client IP addresses.

To read a single condition type description, or to list all the available condition

types, see Manage environment condition types.

resourceTypeUuid

The UUIDs of the resource type associated with the policy.

resourceAttributes

List of attributes to return, with decisions. These attributes are known as response

attributes, and do not apply to OAuth2 Scope resource types.

The response attribute provider is pluggable. The default implementation provides

for statically defined attributes and for attributes retrieved from user profiles.

Attributes are shown as JSON objects: type is set to the name of the

implementation (by default "Static" for statically defined attributes or

"User" for attributes from the user profile) propertyName is set to the

attribute names. For static attributes, "propertyValues" holds the attribute

"endDay": "fri",

"startDate": "2015:01:01",

"endDate": "2015:12:31",

"enforcementTimeZone": "GMT+0:00"

}

{

"type": "NOT",

"condition": {

"type": "OR",

"conditions": [

{

"type": "SimpleTime",

"startDay": "sat",

"endDay": "sun",

"enforcementTimeZone": "GMT+8:00"

},

{

"type": "IPv4",

"startIp": "192.168.0.1",

"endIp": "192.168.0.255"

}

]

}

}

24 / 151

values. For user attributes, "propertyValues" is not used; the property values

are determined at evaluation time.

createdBy

A string containing the universal identifier DN of the subject that created the

policy.

creationDate

An integer containing the creation date and time, in number of seconds since the

Unix epoch (1970-01-01T00:00:00Z).

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently

updated the policy.

If the policy has not been modified since it was created, this will be the same value

as createdBy .

lastModifiedDate

An integer containing the last modified date and time, in number of seconds since

the Unix epoch (1970-01-01T00:00:00Z).

If the policy has not been modified since it was created, this will be the same value

as creationDate .

Before making a REST API call to request manage a policy component, make sure that

you have:

Authenticated successfully to AM as a user with sufficient privileges to make the

REST API call.

Obtained the session token returned after successful authentication.

When making a REST API call, specify the realm in the path component of the endpoint.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm.

Prefix each realm in the hierarchy with the realms/ keyword. For example,

/realms/root/realms/customers/realms/europe .

You must also pass the session token in the HTTP header. For more information about

the AM session token and its use in REST API calls, see Session token after

authentication.

Use REST calls to list all the policies in a realm, or to find policies that explicitly apply to a

given user or group.

Query policies

List all policies in a realm

25 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html

1. To list all the policies in a realm, send an HTTP GET request to the

/json/realms/root/realms/Realm Name/policies endpoint, with a

_queryFilter parameter set to true .

The iPlanetDirectoryPro header is required and should contain the SSO token

of an administrative user, such as amAdmin , who has access to perform the

operation.

If the realm is not specified in the URL, AM returns policies in the top level

realm.

NOTE

$ curl \

--header "iPlanetDirectoryPro: AQIC5w…​" \

--header "Accept-API-Version: resource=1.0, protocol=2.1" \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies?_queryFilter=true"

{

"result":[

{

"name":"example",

"active":true,

"description":"Example Policy",

"applicationName":"iPlanetAMWebAgentService",

"actionValues":{

"POST":false,

"GET":true

},

"resources":[

"http://www.example.com:80/",

"http://www.example.com:80/?*"

],

"subject":{

"type":"Identity",

"subjectValues":[

"uid=demo,ou=People,dc=example,dc=com"

]

},

"resourceTypeUuid":"12345a67-8f0b-123c-45de-

6fab78cd01e4",

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc

=org",

"lastModifiedDate":"2015-05-11T14:48:08.711Z",

26 / 151

Additional query strings can be specified to alter the returned results. For more

information, see Query.

Field Supported operators

name Equals (eq)

description Equals (eq)

applicationName Equals (eq)

createdBy Equals (eq)

creationDate Equals (eq), Greater than or equal to

(ge), Greater than (gt), Less than or

equal to (le), Less than (lt)

lastModifiedBy Equals (eq)

lastModifiedDate Equals (eq), Greater than or equal to

(ge), Greater than (gt), Less than or

equal to (le), Less than (lt)

 The implementation of eq for this date field does not use regular expression

pattern matching.

You can query policies that explicitly reference a given subject by providing the universal

ID (UID) of either a user or group. AM returns any policies that explicitly apply to the user

or group as part of a subject condition.

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org"

,

"creationDate":"2015-05-11T14:48:08.711Z"

}

],

"resultCount":1,

"pagedResultsCookie":null,

"remainingPagedResults":0

}

Supported _queryFilter fields and operators

(1)

(1)

(1)

Query policies in a realm by user or group

TIP

27 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query

The following caveats apply to querying policies by user or group:

Group membership is not considered. For example, querying policies for a specific

user will not return policies that only use groups in their subject conditions, even if

the user is a member of any of those groups.

Wildcards are not supported, only exact matches.

Only policies with a subject condition type of Identity are queried—environment

conditions are not queried. The Identity subject condition type is labeled as Users

& Groups in the policy editor in the AM admin UI.

Policies with subject conditions that only contain the user or group in a logical NOT

operator are not returned.

To query policies by user or group:

1. Send an HTTP GET request to the /json/realms/root/realms/Realm

Name/policies endpoint, with a _queryId parameter set to

queryByIdentityUid , and a uid parameter containing the universal ID of the

user or group:

You can obtain the universal ID for a user or group by using REST.

See Read an identity.

TIP

$ curl \

--get \

--header "iPlanetDirectoryPro: AQIC5w…​" \

--header "Accept-API-Version: resource=1.0" \

--data "_queryId=queryByIdentityUid" \

--data

"uid=id=demo,ou=user,o=myrealm,ou=services,dc=openam,dc=forger

ock,dc=org" \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies"

{

"result":[

{

"name":"mySubRealmPolicy",

"active":true,

"description":"",

"resources":[

"://:*/?",

"://:*/*"

],

"applicationName":"iPlanetAMWebAgentService",

28 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/sec-rest-realm-rest.html#rest-api-read-identity

The iPlanetDirectoryPro header is required and should contain the SSO token

of an administrative user, such as amAdmin , who has access to perform the

operation.

"actionValues":{

"POST":true,

"PATCH":true,

"GET":true,

"DELETE":true,

"OPTIONS":true,

"PUT":true,

"HEAD":true

},

"subject":{

"type":"Identity",

"subjectValues":[

"id=demo,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,

dc=org"

]

},

"resourceTypeUuid":"76656a38-5f8e-401b-83aa-

4ccb74ce88d2",

"lastModifiedBy":"id=amAdmin,ou=user,dc=openam,dc=forgerock,dc

=org",

"lastModifiedDate":"2016-05-05T08:45:35.716Z",

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org"

,

"creationDate":"2016-05-03T13:45:38.137Z"

}

],

"resultCount":1,

"pagedResultsCookie":null,

"totalPagedResultsPolicy":"NONE",

"totalPagedResults":-1,

"remainingPagedResults":0

}

If the realm is not specified in the URL, AM searches the top level realm.

NOTE

Read a specific policy

29 / 151

To read an individual policy in a realm, send an HTTP GET request to the

/json/realms/root/realms/Realm Name/policies endpoint, and specify the policy

name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies/example"

{

"result": [

{

"name": "example",

"active": true,

"description": "Example Policy",

"applicationName": "iPlanetAMWebAgentService",

"actionValues": {

"POST": false,

"GET": true

},

"resources": [

"http://www.example.com:80/",

"http://www.example.com:80/?*"

],

"subject": {

"type": "Identity",

"subjectValues": [

"uid=demo,ou=People,dc=example,dc=com"

]

},

"resourceTypeUuid": "12345a67-8f0b-123c-45de-

6fab78cd01e4",

"lastModifiedBy":

"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedDate": "2015-05-11T14:48:08.711Z",

"createdBy":

"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate": "2015-05-11T14:48:08.711Z"

}

],

30 / 151

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To create a policy in a realm, send an HTTP POST request to the

/json/realms/root/realms/Realm Name/policies endpoint, with an _action

parameter set to create . Include a JSON representation of the policy in the POST data.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Do not use special characters in resource type, policy, or policy set names (for example,

"my+resource+type"). If you include special characters, AM returns a 400 Bad Request

error. This includes the following special characters: double quotes ("), plus sign (+),

comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash

(/), semicolon (;), and null (\u0000).

"resultCount": 1,

"pagedResultsCookie": null,

"remainingPagedResults": 0

}

Create policies

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

Before testing your OAuth 2.0 policies, ensure your OAuth 2.0 service is configured

to interact with AM’s authorization service. Perform the following steps:

Go to Realms > Realm Name > Services > OAuth2 Provider.

Ensure that Use Policy Engine for Scope decisions is enabled.

For more information about testing OAuth 2.0 policies, see Dynamic OAuth 2.0

authorization.

IMPORTANT

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

--data '{

"name": "mypolicy",

"active": true,

31 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/oauth2-authorization.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/oauth2-authorization.html

"description": "My Policy.",

"applicationName": "iPlanetAMWebAgentService",

"actionValues": {

"POST": false,

"GET": true

},

"resources": [

"http://www.example.com:80/",

"http://www.example.com:80/?"

],

"subject": {

"type": "Identity",

"subjectValues": [

"uid=demo,ou=People,dc=example,dc=com"

]

},

"resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4"

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies?_action=create"

{

"name":"mypolicy",

"active":true,

"description":"My Policy.",

"applicationName":"iPlanetAMWebAgentService",

"actionValues":{

"POST":false,

"GET":true

},

"resources":[

"http://www.example.com:80/",

"http://www.example.com:80/?"

],

"subject":{

"type":"Identity",

"subjectValues":[

"uid=demo,ou=People,dc=example,dc=com"

]

},

"resourceTypeUuid":"12345a67-8f0b-123c-45de-6fab78cd01e4",

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"lastModifiedDate":"2015-05-11T14:48:08.711Z",

32 / 151

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To update an individual policy in a realm, send an HTTP PUT request to the

/json/realms/root/realms/Realm Name/policies endpoint, and specify the policy

name in the URL. Include a JSON representation of the updated policy in the PUT data.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Do not use special characters in resource type, policy, or policy set names (for example,

"my+resource+type"). If you include special characters, AM returns a 400 Bad Request

error. This includes the following special characters: double quotes ("), plus sign (+),

comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash

(/), semicolon (;), and null (\u0000).

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate":"2015-05-11T14:48:08.711Z"

}

Update policies

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--request PUT \

--header "iPlanetDirectoryPro: AQIC5w…​" \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=1.0" \

--data '{

"name": "myupdatedpolicy",

"active": true,

"description": "My Updated Policy.",

"resources": [

"http://www.example.com:80/",

"http://www.example.com:80/?*"

],

"actionValues": {

"POST": true,

"GET": true

},

"subject": {

"type": "Identity",

33 / 151

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To delete an individual policy in a realm, send an HTTP DELETE request to the

/json/realms/root/realms/Realm Name/policies endpoint, and specify the policy

name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

To copy or move an individual policy, send an HTTP POST request to the

/json/realms/root/realms/Realm Name/policies/policyName endpoint as

follows:

Specify the _action=copy or _action=move URL parameter.

Specify the realm in which the input policy resides in the URL. If the realm is not

specified in the URL, AM copies or moves a policy from the top level realm.

Specify the policy to be copied or moved in the URL.

"subjectValues": [

"uid=scarter,ou=People,dc=example,dc=com",

"uid=bjenson,ou=People,dc=example,dc=com"

]

},

"resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4"

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies/mypolicy"

Delete policies

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--header "iPlanetDirectoryPro: AQIC5w…​" \

--header "Accept-API-Version: resource=2.1" \

--request DELETE \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies/myupdatedpolicy"

Copy and move policies

34 / 151

Specify the SSO token of an administrative user who has access to perform the

operation in the iPlanetDirectoryPro header.

Object Property Description

to name The name of the output

policy.

Required unless you are

copying or moving a

policy to a different realm

and you want the output

policy to have the same

name as the input policy.

to application The policy set in which to

place the output policy.

Required when copying or

moving a policy to a

different policy set.

to realm The realm in which to

place the output policy. If

not specified, AM copies

or moves the policy within

the realm identified in the

URL.

Required when copying or

moving a policy to a

different realm.

to resourceType The UUID of the output

policy’s resource type.

Required when copying or

moving a policy to a

different realm.

The follow example copies the policy myPolicy to myNewPolicy . The output policy is

placed in the alpha realm, in the same policy set as the input policy:

JSON input data for copying or moving individual policies

$ curl \

--header "iPlanetDirectoryPro: AQIC5w…​" \

35 / 151

The following example moves a policy named myPolicy in the myRealm realm to

myMovedPolicy in the myOtherRealm realm. The output policy is placed in the

iPlanetAMWebAgentService policy set, which is the policy set in which the input policy

is located.

The realm myOtherRealm must be configured as follows for the example to run

successfully:

It must have a resource type that has the same resources as the resource type

configured for the myPolicy policy.

It must have a policy set named iPlanetAMWebAgentService .

--header "Accept-API-Version: resource=2.1" \

--request DELETE \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies/myupdatedpolicy"

{}

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5w…​" \

--header "Accept-API-Version: resource=2.1" \

--data '{

"to": {

"name": "myMovedPolicy",

"realm": "/myOtherRealm",

"resourceType: "616b3d02-7a8d-4422-b6a7-174f62afd065"

}

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies/myPolicy?_action=move"

{

"name":"myMovedPolicy",

"active":true,

"description":"",

"actionValues":{},

"applicationName":"iPlanetAMWebAgentService",

"resources":["://:*/*"],

"subject":{"type":"NONE"},

"resourceTypeUuid":"616b3d02-7a8d-4422-b6a7-174f62afd065",

"lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",

"lastModifiedDate":"2015-12-21T19:32:59.502Z",

"createdBy":"id=amadmin,ou=user,dc=example,dc=com",

36 / 151

To copy and move multiple policies—all the policies in a policy set—in a single operation,

send an HTTP POST request to the /json/realms/root/realms/Realm

Name/policies endpoint as follows:

Specify the _action=copy or _action=move URL parameter.

Specify the realm in which the input policies reside as part of the URL. If no realm is

specified in the URL, AM copies or moves policies within the top level realm.

Specify the SSO token of an administrative user who has access to perform the

operation in the iPlanetDirectoryPro header.

Object Property Description

from application The policy set in which

the input policies are

located.

Required.

to application The policy set in which to

store output policies.

Required when copying or

moving policies to a

different policy set.

to realm The realm in which to

store output policies.

Required when copying or

moving policies to a

different realm.

to namePostfix A value appended to

output policy names in

order to prevent name

clashes.

Required.

"creationDate":"2015-12-21T19:32:59.502Z"

}

JSON input data for copying or moving multiple policies

37 / 151

Object Property Description

resourceTypeMapping Varies One or more resource

types mappings, where

the left side of the

mapping specifies the

UUID of a resource type

used by the input policies,

and the right side of the

mapping specifies the

UUID of a resource type

used by the output

policies. The two resource

types should have the

same resource patterns.

Required when copying or

moving policies to a

different realm.

The following example copies all the policies in the iPlanetAMWebAgentService policy

set in the myRealm realm to the iPlanetAMWebAgentService policy set in the

myOtherRealm realm, appending the string -copy to the output policy names.

The realm myOtherRealm must be configured as follows for the example to run

successfully:

It must have a resource type that maps to the ccb50c1a-206d-4946-9106-

4164e8f2b35b resource type. The two resource types should have the same

resource patterns.

It must have a policy set named iPlanetAMWebAgentService .

The JSON output shows that a single policy is copied. The policy myNewPolicy is copied

to realm myOtherRealm . The copied policy receives the name myOtherRealm-copy :

$ url \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5w…​" \

--header "Accept-API-Version: resource=2.1" \

--data '{

"from":{

"application":"iPlanetAMWebAgentService"

},

"to":{

38 / 151

Environment condition types describe the JSON representation of environment

conditions that you can use in policy definitions.

AM provides the conditiontypes REST endpoint for the following:

Query environment condition types

Read a specific environment condition type

Environment condition types are server-wide, and do not differ by realm. Hence the URI

for the condition types API does not contain a realm component, but is

/json/conditiontypes .

Script is the only environmental condition available for OAuth 2.0 policies. Use scripts

to capture the ClientId environmental attribute.

Environment condition types are represented in JSON and take the following form.

Environment condition types are built from standard JSON objects and values (strings,

numbers, objects, arrays, true , false , and null).

"realm":"/myOtherRealm",

"namePostfix":"-copy"

},

"resourceTypeMapping":{

"ccb50c1a-206d-4946-9106-4164e8f2b35b":"616b3d02-7a8d-

4422-b6a7-174f62afd065"

}

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies?_action=copy"

{

"name":"myNewPolicy-copy",

"active":true,

"description":"",

"actionValues":{},

"applicationName":"iPlanetAMWebAgentService",

"resources":["://:*/*"],"subject":{"type":"NONE"},

"resourceTypeUuid":"616b3d02-7a8d-4422-b6a7-174f62afd065",

"lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",

"lastModifiedDate":"2015-12-21T20:01:42.410Z",

"createdBy":"id=amadmin,ou=user,dc=example,dc=com",

"creationDate":"2015-12-21T20:01:42.410Z"

}

Manage environment condition types

39 / 151

Notice that the environment condition type has a title, a "logical" field that indicates

whether the type is a logical operator or takes a predicate, and a configuration

specification. The configuration specification in this case indicates that an IPv4

environment condition has two properties, "startIp" and "endIp", that each take a single

string value, and a third property, "dnsName," that takes an array of string values. In

other words, a concrete IP environment condition specification without a DNS name

constraint could be represented in a policy definition as in the following example:

The configuration is what differs the most across environment condition types. The NOT

condition, for example, takes a single condition object as the body of its configuration.

{

"title": "IPv4",

"logical": false,

"config": {

"type": "object",

"properties": {

"startIp": {

"type": "string"

},

"endIp": {

"type": "string"

},

"dnsName": {

"type": "array",

"items": {

"type": "string"

}

}

}

}

}

{

"type": "IPv4",

"startIp": "127.0.0.1",

"endIp": "127.0.0.255"

}

{

"title" : "NOT",

"logical" : true,

"config" : {

"type" : "object",

40 / 151

The concrete NOT condition therefore takes the following form.

The OR condition takes an array of conditions.

A corresponding concrete OR condition thus takes the following form.

"properties" : {

"condition" : {

"type" : "object",

"properties" : {

}

}

}

}

}

{

"type": "NOT",

"condition": {

...

}

}

{

"title" : "OR",

"logical" : true,

"config" : {

"type" : "object",

"properties" : {

"conditions" : {

"type" : "array",

"items" : {

"type" : "any"

}

}

}

}

}

{

"type": "OR",

"conditions": [

{

...

41 / 151

To list all environment condition types, send an HTTP GET request to the

/json/conditiontypes endpoint, with a _queryFilter parameter set to true .

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

},

{

...

},

...

]

}

Query environment condition types

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0, protocol=2.1" \

https://openam.example.com:8443/openam/json/realms/root/conditiont

ypes?_queryFilter=true

{

"result" : [

{

"title": "IPv4",

}

"logical": false,

"config": {

"type": "object",

"properties": {

"startIp": {

"type": "string"

},

"endIp": {

"type": "string"

},

"dnsName": {

"type": "array",

"items": {

"type": "string"

}

}

}

}



42 / 151

https://openam.example.com:8443/openam/json/realms/root/conditiontypes?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/conditiontypes?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/conditiontypes?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/conditiontypes?_queryFilter=true

Additional query strings can be specified to alter the returned results. For more

information, see Query.

To read an individual environment condition type, send an HTTP GET request to the

/json/conditiontypes endpoint, and specify the environment condition type name in

the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

},

{

"title": "NOT",

"logical": true,

"config": {

"type": "object",

"properties": {

"condition": {

"type": "object",

"properties": { }

}

}

}

},

{…​},

{…​},

{…​}

],

"resultCount" : 18,

"pagedResultsCookie" : null,

"remainingPagedResults" : 0

}

Read a specific environment condition type

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

https://openam.example.com:8443/openam/json/realms/root/conditiont

ypes/IPv4

{

"title":"IPv4",

"logical":false,

"config":{

"type":"object",



43 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query
https://openam.example.com:8443/openam/json/realms/root/conditiontypes/IPv4
https://openam.example.com:8443/openam/json/realms/root/conditiontypes/IPv4
https://openam.example.com:8443/openam/json/realms/root/conditiontypes/IPv4
https://openam.example.com:8443/openam/json/realms/root/conditiontypes/IPv4

Subject condition types describe the JSON representation of subject conditions that you

can use in policy definitions.

AM provides the subjecttypes REST endpoint for the following:

Query subject condition types

Read a specific subject condition types

Environment condition types are server-wide, and do not differ by realm. Hence the URI

for the condition types API does not contain a realm component, but is

/json/subjecttypes .

Subject condition types are represented in JSON and take the following form. Subject

condition types are built from standard JSON objects and values (strings, numbers,

objects, arrays, true , false , and null).

"properties":{

"startIp":{

"type":"string"

},

"endIp":{

"type":"string"

},

"dnsName":{

"type":"array",

"items":{

"type":"string"

}

}

}

}

}

Manage subject condition types

{

"title" : "Identity",

"logical" : false,

"config" : {

"type" : "object",

"properties" : {

"subjectValues" : {

"type" : "array",

"items" : {

"type" : "string"

44 / 151

Notice that the subject type has a title, a "logical" field that indicates whether the type is

a logical operator or takes a predicate, and a configuration specification. The

configuration specification in this case indicates that an Identity subject condition has

one property, "subjectValues", which takes an array of string values. In other words, a

concrete Identity subject condition specification is represented in a policy definition as in

the following example:

The configuration is what differs the most across subject condition types. The AND

condition, for example, takes an array of subject condition objects as the body of its

configuration.

The concrete AND subject condition therefore takes the following form.

}

}

}

}

}

{

"type": "Identity",

"subjectValues": [

"uid=scarter,ou=People,dc=example,dc=com"

]

}

{

"title" : "AND",

"logical" : true,

"config" : {

"type" : "object",

"properties" : {

"subjects" : {

"type" : "array",

"items" : {

"type" : "any"

}

}

}

}

}

{

"type": "AND",

45 / 151

To list all environment condition types, send an HTTP GET request to the

/json/subjecttypes endpoint, with a _queryFilter parameter set to true .

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

"subject": [

{...},

{...},

{...},

{...}

]

}

Query subject condition types

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

https://openam.example.com:8443/openam/json/realms/root/subjecttyp

es?_queryFilter=true

{

"result" : [

{

"title": "JwtClaim"

}

"logical": false,

"config": {

"type": "object",

"properties": {

"claimName": {

"type": "string"

},

"claimValue": {

"type": "string"

}

}

}

},

{

"title": "NOT",

"logical": true,

"config": {

"type": "object",



46 / 151

https://openam.example.com:8443/openam/json/realms/root/subjecttypes?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/subjecttypes?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/subjecttypes?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/subjecttypes?_queryFilter=true

Additional query strings can be specified to alter the returned results. For more

information, see Query.

To read an individual subject condition type, send an HTTP GET request to the

/json/subjecttypes endpoint, and specify the subject condition type name in the

URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

"properties": {

"subject": {

"type": "object",

"properties": { }

}

}

}

},

{…​},

{…​},

{…​}

],

"resultCount" : 5,

"pagedResultsCookie" : null,

"remainingPagedResults" : 0

}

Read a specific subject condition types

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

https://openam.example.com:8443/openam/json/realms/root/subjecttyp

es/Identity

{

"title" : "Identity",

"logical" : false,

"config" : {

"type" : "object",

"properties" : {

"subjectValues" : {

"type" : "array",

"items" : {

"type" : "string"

}



47 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query
https://openam.example.com:8443/openam/json/realms/root/subjecttypes/Identity
https://openam.example.com:8443/openam/json/realms/root/subjecttypes/Identity
https://openam.example.com:8443/openam/json/realms/root/subjecttypes/Identity
https://openam.example.com:8443/openam/json/realms/root/subjecttypes/Identity

When you define a policy subject condition, the condition can depend on values of

subject attributes stored in a user’s profile. The list of possible subject attributes that

you can use depends on the LDAP User Attributes configured for the identity store

where AM looks up the user’s profile.

AM provides the subjectattributes REST endpoint for Query subject attributes.

Subject attributes derive from the list of LDAP user attributes configured for the identity

store. For more information, see Identity stores.

To list all subject attributes, send an HTTP GET request to the

/json/subjectattributes endpoint, with a _queryFilter parameter set to true .

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

}

}

}

Manage subject attributes

Query subject attributes

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

https://openam.example.com:8443/openam/json/realms/root/subjectatt

ributes/?_queryFilter=true

{

"result" : [

"sunIdentityServerPPInformalName",

"sunIdentityServerPPFacadeGreetSound",

"uid",

"manager",

"sunIdentityServerPPCommonNameMN",

"sunIdentityServerPPLegalIdentityGender",

"preferredLocale",

"…​",

"…​",

"…​"

],

"resultCount": 87,

"pagedResultsCookie": null,



48 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/setting-up-identity-stores.html
https://openam.example.com:8443/openam/json/realms/root/subjectattributes/?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/subjectattributes/?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/subjectattributes/?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/subjectattributes/?_queryFilter=true

Note that no pagination cookie is set and the subject attribute names are all returned as

part of the "result" array.

Decision combiners describe how to resolve policy decisions when multiple policies

apply.

AM provides the decisioncombiners REST endpoint for the following:

Query decision combiners

Read a specific decision combiner

Decision combiners are server-wide, and do not differ by realm. Hence the URI for the

condition types API does not contain a realm component, but is

/json/decisioncombiners .

To list all decision combiners, send an HTTP GET request to the

/json/decisioncombiners endpoint, with a _queryFilter parameter set to true .

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

"remainingPagedResults": 0

}

Manage decision combiners

Query decision combiners

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0, protocol=2.1" \

https://openam.example.com:8443/openam/json/realms/root/realms/alp

ha/decisioncombiners?_queryFilter=true

{

"result":[

{

"title":"DenyOverride"

}

],

"resultCount":1,

"pagedResultsCookie":null,

"remainingPagedResults":0

}



49 / 151

https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners?_queryFilter=true
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners?_queryFilter=true

Additional query strings can be specified to alter the returned results. For more

information, see Query.

To view an individual decision combiner, send an HTTP GET on its resource.

To read an individual decision combiner, send an HTTP GET request to the

/json/decisioncombiners endpoint, and specify the decision combiner name in the

URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Resource types define a template for the resources that policies apply to, and the

actions that can be performed on those resources.

AM needs a policy to decide whether a user can access a resource. When you configure a

policy, you also configure a resource (or a pattern to match several resources) that the

policy applies to, and the actions that the policy allows or denies.

Resource types are templates that you can define once and reuse in several policies. For

example, you could create a template that always allows PUT and POST operations from

your internal network.

AM includes two resource types by default: URL and OAuth2 Scope . These default

resource types are sufficient for most environments.

URL resource type

The URL resource type acts as a template for protecting web pages or applications.

It contains resource patterns, such as *://*:*/*?* , that can be more specific when

Read a specific decision combiner

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

https://openam.example.com:8443/openam/json/realms/root/realms/alp

ha/decisioncombiners/DenyOverride

{

"title" : "DenyOverride"

}



Resource types

Default resource types

50 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners/DenyOverride
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners/DenyOverride
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners/DenyOverride
https://openam.example.com:8443/openam/json/realms/root/realms/alpha/decisioncombiners/DenyOverride

used in the policy.

This resource type supports the following actions:

GET

POST

PUT

HEAD

PATCH

DELETE

OPTIONS

For example, an application for Example.com’s HR service might contain resource

types that constrain all policies to apply to URL resource types under

http*://example.com/hr* and http*://example.com/hr*?* , and only allow

HTTP GET and POST actions.

AM also includes a resource type to protect REST endpoints, with patterns including

https://*:*/*?* and the CRUDPAQ actions:

CREATE

READ

UPDATE

DELETE

PATCH

ACTION

QUERY

OAuth2 Scope resource type

The OAuth2 Scope resource type acts as a template for granting or denying OAuth

2.0 scopes. It contains a string-based scope pattern, * , and two URL-based scope

patterns, such as *://*:*/*?* . The resource supports the GRANT action, which can

be allowed or denied.

1. In the AM admin UI, go to Realms > Realm Name > Authorization > Resource

Types.

To create a new resource type, select New Resource Type.

To modify an existing resource type, select the resource type name.

To delete an existing resource type, in the row containing the resource type,

click Delete.

You can only delete resource types that are not being used by policy sets or

policies. Trying to delete a resource type that is in use returns an HTTP 409

Resource types in the UI

51 / 151

Conflict status code.

Remove the resource type from any associated policy sets or policies to be able

to delete it.

2. Provide a name for the resource type, and optionally, a description.

Do not use special characters in resource type, policy, or policy set names (for

example, "my+resource+type"). If you include special characters, AM returns a

400 Bad Request error. This includes the following special characters: double

quotes ("), plus sign (+), comma (,), less than (<), equals (=), greater than (>),

backslash (\), forward slash (/), semicolon (;), and null (\u0000).

3. To define resource patterns that policies using this resource type can expand upon,

follow the steps below:

In the Add a new pattern box, enter a pattern with optional wildcards that the

policies will use as a template.

Resource patterns can specify an individual URL or resource name to protect.

Alternatively, a resource pattern can match URLs or resource names by using

wildcards.

The wildcards you can use are * and -*- .

These wildcards can be used throughout resource patterns to match

URLs or resource names. For a resource pattern used to match URLs,

wildcards can be employed to match the scheme, host, port, path, and

query string of a resource.

When used within the path segment of a resource, the wildcard *

matches multiple path segments.

For example, http://www.example.com/* matches

http://www.example.com/ ,

http://www.example.com/index.html , and also

http://www.example.com/company/images/logo.png .

When used within the path segment of a resource, the wildcard -

*- will only match a single path segment.

For example, http://www.example.com/-*- matches

http://www.example.com/index.html , but does not match

http://www.example.com/company/resource.html or

http://www.example.com/company/images/logo.png .

Wildcards do not match ? . You must explicitly add patterns to match

URLs with query strings.

When matching URLs sent from a web or Java agent, an asterisk (*)

used at the end of a pattern after a ? character matches one or

Specify resource patterns with wildcards

52 / 151

more characters, not zero or more characters.

For example, http://www.example.com/*?* matches

http://www.example.com/users?_action=create , but not

http://www.example.com/users? .

To match everything under http://www.example.com/ specify

three patterns, one for http://www.example.com/* , one for

http://www.example.com/*? , and one for

http://www.example.com/*?* .

When matching resources by using the policies?

_action=evaluate REST endpoint, an asterisk (*) used at the end

of a pattern after a ? character matches zero or more characters.

For example, http://www.example.com/*?* matches

http://www.example.com/users?_action=create , as well as

http://www.example.com/users? .

To match everything under http://www.example.com/ specify

two patterns, one for http://www.example.com/* , one for

http://www.example.com/*?* .

When defining patterns to match URLs with query strings, AM sorts the

query string field-value pairs alphabetically by field name when

normalizing URLs before checking whether a policy matches. Therefore

the query string ?

subject=SPBnfm+t5PlP+ISyQhVlplE22A8=&action=get is equivalent

to the query string ?

action=get&subject=SPBnfm+t5PlP+ISyQhVlplE22A8= .

Duplicate slashes (/) are not considered part of the resource name to

match. A trailing slash is considered by AM as part of the resource

name.

For example, http://www.example.com//path/ , and

http://www.example.com/path// are treated in the same way.

http://www.example.com/path , and

http://www.example.com/path/ are considered two distinct

resources.

Wildcards can be used to match protocols, host names, and port

numbers.

For example, *://*:*/* matches

http://www.example.com:80/index.html ,

https://www.example.com:443/index.html , and

http://www.example.net:8080/index.html .

53 / 151

When a port number is not explicitly specified, then the default port

number is implied. Therefore, http://www.example.com/* is the

same as http://www.example.com:80/* , and

https://www.example.com/* is the same as

https://www.example.com:443/* .

Wildcards cannot be escaped.

Do not mix * and -*- in the same pattern.

To match a resource that uses non-ASCII characters, percent-encode the

resource when creating the rule.

For example, to match resources under an Internationalized Resource

Identifier (IRI), such as http://www.example.com/forstå , specify the

following percent-encoded pattern:

By default, comparisons are not case-sensitive. The delimiter, wildcards

and case-sensitivity are configurable. To see examples of other

configurations, in the AM admin UI, go to Configure > Global Services >

Policy Configuration, and scroll to Resource Comparator.

Select the Add Pattern…​ button to confirm the pattern.

4. To define the actions that policies using this resource type can allow or deny, follow

the steps below:

In the Add a new action…​ box, enter an action related to the types of

resources being described, and then select Add Action.

Select either Allow or Deny as the default state for the action.

To remove an action, select the Delete icon.

5. Continue adding the patterns and actions that your resource type requires.

http://www.example.com:80/forst%C3%A5/*

To remove a pattern, select the Delete icon.

TIP

54 / 151

Figure 8. Configuring Resource Types in the UI

6. Select Create Resource Type to save a new resource type or Save Changes to save

modifications to an existing resource type.

You can manage resource types over REST at the resourcetypes endpoint.

Resource types are realm-specific. The URI for the resource types API can therefore

contain a realm component, for example,

json/realms/root/realms/alpha/resourcetypes . If the realm is not specified in the

URI, the top level realm is used.

Resource types take the form of standard JSON objects and values (strings, numbers,

objects, sets, arrays, true , false , and null). Each resource type has a unique,

system-generated UUID, which must be used when modifying existing resource types.

Renaming a resource type does not affect the UUID.

Resource types over REST

Example

{

"uuid": "12345a67-8f0b-123c-45de-6fab78cd01e2",

"name": "URL",

55 / 151

A resource type object can include the following fields:

uuid

String matching the unique identifier AM generated for the resource type when

created.

name

The name provided for the resource type.

description

An optional text string to help identify the resource type.

patterns

An array of resource patterns specifying individual URLs or resource names to

protect.

For more information on patterns in resource types and policies, refer to Specify

resource patterns with wildcards.

actions

Set of string action names, each set to a boolean indicating whether the action is

allowed.

createdBy

"description": "The built-in URL Resource Type available to

OpenAM Policies.",

"patterns": [

"*://*:*/*?*",

"*://*:*/*"

],

"actions": {

"POST": true,

"PATCH": true,

"GET": true,

"DELETE": true,

"OPTIONS": true,

"HEAD": true,

"PUT": true

},

"createdBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate": 1422892465848,

"lastModifiedBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedDate": 1422892465848

}

56 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/resource-types-ui.html#policy-patterns-wildcards
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/resource-types-ui.html#policy-patterns-wildcards

A string containing the universal identifier DN of the subject that created the

resource type.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently

updated the resource type.

If the resource type has not been modified since it was created, this will be the

same value as createdBy .

lastModifiedDate

An string containing the last modified date and time, in ISO 8601 format.

If the resource type has not been modified since it was created, this will be the

same value as creationDate .

Before making a REST API call to manage a resource type, make sure that you have:

Authenticated successfully to AM as a user with sufficient privileges to make the

REST API call.

Obtained the session token returned after successful authentication.

When making a REST API call, specify the realm in the path component of the endpoint.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm.

Prefix each realm in the hierarchy with the realms/ keyword. For example,

/realms/root/realms/customers/realms/europe .

You must also pass the session token in the HTTP header. For more information about

the AM session token and its use in REST API calls, see Session token after

authentication.

To list all the resource types in a realm, send an HTTP GET request to the

/json/realms/root/realms/Realm Name/resourcetypes endpoint, with

_queryFilter=true .

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Query resource types

If the realm is not specified in the URL, AM returns resource types in the top level

realm.

NOTE

57 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html

Additional query strings can be specified to alter the returned results. For more

information, see Query.

Field Supported operators

uuid Equals (eq), Contains (co), Starts with

(sw)

name Equals (eq), Contains (co), Starts with

(sw)

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/resourcetypes?_queryFilter=true"

{

"result":[

{

"uuid":"12345a67-8f0b-123c-45de-6fab78cd01e3",

"name":"LIGHTS",

"description":"",

"patterns":[

"light:///"

],

"actions":{

"switch_off":true,

"switch_on":true

},

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate":1431013059131,

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"lastModifiedDate":1431013069803

}

],

"resultCount":1,

"pagedResultsCookie":null,

"remainingPagedResults":0

}

Supported _queryFilter fields and operators

58 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query

Field Supported operators

description Equals (eq), Contains (co), Starts with

(sw)

patterns Equals (eq), Contains (co), Starts with

(sw)

actions Equals (eq), Contains (co), Starts with

(sw)

To read a specific resource type in a realm, send an HTTP GET request to the

/json/realms/root/realms/Realm Name/resourcetypes endpoint, specifying the

UUID in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Read a resource type

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e3"

{

"uuid":"12345a67-8f0b-123c-45de-6fab78cd01e3",

"name":"LIGHTS",

"description":"",

"patterns":[

"light:///"

],

"actions":{

"switch_off":true,

"switch_on":true

},

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate":1431013059131,

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

59 / 151

To create a resource type in a realm, send an HTTP POST request to the

/json/realms/root/realms/Realm Name/resourcetypes endpoint, with

_action=create . Include a JSON representation of the resource type in the POST data.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Do not use special characters in resource type, policy, or policy set names (for example,

"my+resource+type"). If you include special characters, AM returns a 400 Bad Request

error. This includes the following special characters: double quotes ("), plus sign (+),

comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash

(/), semicolon (;), and null (\u0000).

"lastModifiedDate":1431013069803

}

Create a resource type

If the realm is not specified in the URL, AM creates the resource type in the top level

realm.

NOTE

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

--data '{

"name":"My Resource Type",

"actions":{

"LEFT":true,

"RIGHT":true,

"UP":true,

"DOWN":true

},

"patterns":[

"http://device/location/"

]

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/resourcetypes/?_action=create"

{

"uuid":"12345a67-8f0b-123c-45de-6fab78cd01e4",

"name":"My Resource Type",

60 / 151

To update a specific resource type in a realm, send an HTTP PUT request to the

/json/realms/root/realms/Realm Name/resourcetypes endpoint, specifying the

UUID in both the URL and the PUT body. Include a JSON representation of the updated

resource type in the PUT data, alongside the UUID.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Do not use special characters in resource type, policy, or policy set names (for example,

"my+resource+type"). If you include special characters, AM returns a 400 Bad Request

error. This includes the following special characters: double quotes ("), plus sign (+),

comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash

(/), semicolon (;), and null (\u0000).

"description":null,

"patterns":[

"http://device/location/"

],

"actions":{

"RIGHT":true,

"DOWN":true,

"UP":true,

"LEFT":true

},

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate":1431099940616,

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"lastModifiedDate":1431099940616

}

Update a resource type

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--request PUT \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

--data '{

61 / 151

To delete a specific resource type in a realm, send an HTTP DELETE request to the

/json/realms/root/realms/Realm Name/resourcetypes endpoint, specifying the

UUID in the URL.

"name":"My Resource Type",

"uuid":"12345a67-8f0b-123c-45de-6fab78cd01e4"

"actions":{

"LEFT":true,

"RIGHT":true,

"UP":false,

"DOWN":false

},

"patterns":[

"http://device/location/"

]

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e4"

{

"uuid":"12345a67-8f0b-123c-45de-6fab78cd01e4",

"name":"My Resource Type",

"description":null,

"patterns":[

"http://device/location/"

],

"actions":{

"RIGHT":true,

"DOWN":true,

"UP":false,

"LEFT":false

},

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"creationDate":1431099940616,

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"lastModifiedDate":1637667798885

}

Delete a resource type

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

62 / 151

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

You can only delete resource types that are not being used by a policy set or policy. If

you attempt to delete a resource type that is in use, AM returns an HTTP 409 Conflict

status code, with a message such as:

Remove the resource type from any associated policy sets or policies before you delete

it.

A policy set groups together the policies that protect applications or sites with similar

characteristics; for example, applications that use the same resource type. Policy sets

prevent you from having to configure the identical parameters in numerous policies.

Essentially, a policy set provides a template for a number of similar policies.

By default, AM includes two policy sets: one for web and Java agents and one for

dynamic OAuth 2.0 policies.

Policy sets have templates, called application types. There are two application types

defined by default, which correspond to the default policy sets. You only configure

application types using the REST API. The default application types should work for most

use cases.

$ curl \

--request DELETE \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e4"

{}

{

"code": 409,

"reason": "Conflict",

"message": "Unable to remove resource type 12345a67-8f0b-123c-

45de-6fab78cd01e4 because it is

referenced in the policy model."

}

Policy sets

Default policy sets

63 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/resource-types.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-application-types.html

AM includes the following default policy sets:

The Default Policy Set, iPlanetAMWebAgentService , for web and Java agents.

You can create new policy sets for agents and configure them in the agent profile.

The Default OAuth2 Scopes Policy Set, oauth2Scopes , for the OAuth 2.0

service on the realm.

When you create or edit policy sets, consider the following points:

By default, web and Java agents request policy decisions in the Top Level Realm

from the policy set, iPlanetAMWebAgentService . If the realm and policy set differ

for your web or Java agent, specify the realm and policy set in the agent profile. AM

directs requests from the agent to the specified realm and policy set. This behavior

is backwards compatible with existing web and Java agents.

For information on setting the realm and policy set in the agent profile details, refer

to the ForgeRock web agents documentation or the ForgeRock Java agents

documentation.

AM only honors OAuth2 Scope resource type policies. Configure policies for your

OAuth 2.0 service in a custom policy set with OAuth2 Scope resource type policies,

or use the existing Default OAuth2 Scopes Policy Set.

AM creates a policy set containing a policy representing the resources and identities

specified by a resource owner using UMA 2.0 to share their registered resources.

These policies appear in the AM admin UI as read-only, and cannot be edited by

administrative users such as amAdmin . They can, however, be viewed and deleted.

Manage policy sets using the AM admin UI or the REST API:

Policy sets in the UI

Policy sets over REST

1. In the AM admin UI, go to Realms > Realm Name > Authorization > Policy Sets.

To create a new policy set, select New Policy Set.

To modify an existing policy set, select it from the table.

2. If creating a new policy, enter an ID for the policy set. This is a required parameter.

Once a policy set is created, you cannot change its ID .

3. If creating a new policy, enter a name for the policy set. The name is optional and is

for display purposes only.

Policy sets in the UI

64 / 151

file:///web-agents/5.10
file:///java-agents/5.10
file:///java-agents/5.10
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/policy-sets-ui.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-applications.html

Do not use special characters in resource type, policy, or policy set names (for

example, "my+resource+type"). If you include special characters, AM returns a

400 Bad Request error. This includes the following special characters: double

quotes ("), plus sign (+), comma (,), less than (<), equals (=), greater than (>),

backslash (\), forward slash (/), semicolon (;), and null (\u0000).

4. From the Resource Types drop-down list, select one or more resource types that

policies in this policy set will use.

To remove a resource type from the policy set, select the label, and delete.

5. Select Create to save the new policy set, or Save Changes to save modifications to

an existing policy set.

You can manage policy sets over REST at the applications endpoint.

Policy sets are realm-specific. The URI for the policy set API can therefore contain a

realm component, for example, /json/realms/root/realms/Realm

Name/applications . If the realm is not specified in the URI, the top level realm is used.

Policy sets take the form of standard JSON objects and values (strings, numbers, objects,

sets, arrays, true , false , and null).

Policy sets over REST

Example

{

"creationDate": 1431351677264,

"lastModifiedDate": 1431351677264,

"conditions": [

"AuthenticateToService",

"Script",

"AuthScheme",

"IPv6",

"SimpleTime",

"OAuth2Scope",

"IPv4",

"AuthenticateToRealm",

"OR",

"AMIdentityMembership",

"LDAPFilter",

"AuthLevel",

"SessionProperty",

"LEAuthLevel",

"Session",

65 / 151

A policy set object can include the following fields:

conditions

Condition types allowed in the context of this policy set.

For information on condition types, see Policies over REST and Manage

environment condition types.

applicationType

Name of the application type used as a template for this policy set.

subjects

Subject types allowed in the context of this policy set.

"NOT",

"AND",

"ResourceEnvIP"

],

"applicationType": "iPlanetAMWebAgentService",

"subjects": [

"JwtClaim",

"AuthenticatedUsers",

"Identity",

"NOT",

"AND",

"NONE",

"OR"

],

"entitlementCombiner": "DenyOverride",

"saveIndex": null,

"searchIndex": null,

"resourceComparator": null,

"resourceTypeUuids": [

"12345a67-8f0b-123c-45de-6fab78cd01e4"

],

"attributeNames": [],

"editable": true,

"createdBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"description": "The built-in Application used by {am_abbr}

Policy Agents.",

"realm": "/",

"name": "iPlanetAMWebAgentService"

}

66 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html#rest-api-authz-condition-types
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html#rest-api-authz-condition-types

For information on subject types, see Policies over REST and Manage subject

condition types.

entitlementCombiner

Name of the decision combiner, such as "DenyOverride" .

For more on decision combiners, see Manage decision combiners.

saveIndex

Class name of the implementation for creating indexes for resource names, such

as "com.sun.identity.entitlement.util.ResourceNameIndexGenerator" ,

for URL resource names.

searchIndex

Class name of the implementation for searching indexes for resource names, such

as "com.sun.identity.entitlement.util.ResourceNameSplitter" , for URL

resource names.

resourceComparator

Class name of the resource comparator implementation used in the context of this

policy set.

The following implementations are available:

"com.sun.identity.entitlement.ExactMatchResourceName"

"com.sun.identity.entitlement.PrefixResourceName"

"com.sun.identity.entitlement.RegExResourceName"

"com.sun.identity.entitlement.URLResourceName"

resourceTypeUuids

A list of the UUIDs of the resource types associated with the policy set.

attributeNames

A list of attribute names such as cn . The list is used to aid policy indexing and

lookup.

description

String describing the policy set.

realm

Name of the realm in which this policy set is defined. You must specify the realm in

the policy set JSON, even though it can be derived from the URL that is used when

creating the policy set.

name

String matching the name in the URL used when creating the policy set by HTTP

PUT, or in the body when creating the policy set by HTTP POST.

createdBy

67 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html#rest-api-authz-subject-types
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html#rest-api-authz-subject-types
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html#rest-api-authz-decision-combiners

A string containing the universal identifier DN of the subject that created the policy

set.

creationDate

An integer containing the creation date and time, in number of seconds since the

Unix epoch (1970-01-01T00:00:00Z).

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently

updated the policy set.

If the policy set has not been modified since it was created, this will be the same

value as createdBy .

lastModifiedDate

An integer containing the last modified date and time, in number of seconds since

the Unix epoch (1970-01-01T00:00:00Z).

If the policy set has not been modified since it was created, this will be the same

value as creationDate .

Before making a REST API call to request manage a policy component, make sure that

you have:

Authenticated successfully to AM as a user with sufficient privileges to make the

REST API call.

Obtained the session token returned after successful authentication.

When making a REST API call, specify the realm in the path component of the endpoint.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm.

Prefix each realm in the hierarchy with the realms/ keyword. For example,

/realms/root/realms/customers/realms/europe .

You must also pass the session token in the HTTP header. For more information about

the AM session token and its use in REST API calls, see Session token after

authentication.

To list all the policy sets in a realm, send an HTTP GET request to the

/json/realms/root/realms/Realm Name/applications endpoint, with

_queryFilter=true .

Query policy sets

If the realm is not specified in the URL, AM returns policy sets in the top level realm.

NOTE

68 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/applications?_queryFilter=true"

{

"result": [

{

"resourceComparator": null,

"saveIndex": null,

"searchIndex": null,

"applicationType": "iPlanetAMWebAgentService",

"entitlementCombiner": "DenyOverride",

"subjects": [

"AuthenticatedUsers",

"NOT",

"Identity",

"OR",

"AND",

"NONE",

"JwtClaim"

],

"attributeNames": [],

"editable": true,

"createdBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"name": "iPlanetAMWebAgentService",

"description": "The built-in Application used by OpenAM

Policy Agents.",

"conditions": [

"Script",

"AMIdentityMembership",

"IPv6",

"IPv4",

"SimpleTime",

"LEAuthLevel",

"LDAPFilter",

"AuthScheme",

"Session",

"AND",

"AuthenticateToRealm",

"ResourceEnvIP",

69 / 151

"OAuth2Scope",

"SessionProperty",

"OR",

"Transaction",

"NOT",

"AuthLevel",

"AuthenticateToService"

],

"creationDate": 1637661939155,

"lastModifiedBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedDate": 1637661939155,

"actions": {

"HEAD": true,

"DELETE": true,

"POST": true,

"GET": true,

"OPTIONS": true,

"PUT": true,

"PATCH": true

},

"resources": [

"://:*/",

"://:/?"

],

"realm": "/"

},

{

"resourceComparator": null,

"saveIndex": null,

"searchIndex": null,

"applicationType": "sunAMDelegationService",

"entitlementCombiner": "DenyOverride",

"subjects": [

"OR",

"AND",

"AuthenticatedUsers",

"NOT",

"Identity"

],

"attributeNames": [],

"editable": true,

"createdBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"name": "sunAMDelegationService",

70 / 151

"description": null,

"conditions": [],

"creationDate": 1637661944233,

"lastModifiedBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedDate": 1637661944233,

"actions": {

"READ": true,

"MODIFY": true,

"DELEGATE": true

},

"resources": [

"sms://:/",

"sms://:*/?"

],

"realm": "/"

},

{

"resourceComparator": null,

"saveIndex": null,

"searchIndex": null,

"applicationType": "iPlanetAMWebAgentService",

"entitlementCombiner": "DenyOverride",

"subjects": [

"AuthenticatedUsers",

"NOT",

"Identity",

"OR",

"AND",

"NONE",

"JwtClaim"

],

"attributeNames": [],

"editable": true,

"createdBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"name": "oauth2Scopes",

"description": "The built-in Application used by the OAuth2

scope authorization process.",

"conditions": [

"Script",

"AMIdentityMembership",

"IPv6",

"IPv4",

"SimpleTime",

71 / 151

Additional query strings can be specified to alter the returned results. For more

information, see Query.

Field Supported operators

name Equals (eq)

"LEAuthLevel",

"LDAPFilter",

"AuthScheme",

"Session",

"AND",

"AuthenticateToRealm",

"ResourceEnvIP",

"OAuth2Scope",

"SessionProperty",

"OR",

"Transaction",

"NOT",

"AuthLevel",

"AuthenticateToService"

],

"creationDate": 1637661944239,

"lastModifiedBy":

"id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedDate": 1637661944239,

"actions": {

"GRANT": true

},

"resources": [

"://:*/",

"://:/?",

"*"

],

"realm": "/"

}

],

"resultCount": 3,

"pagedResultsCookie": null,

"totalPagedResultsPolicy": "NONE",

"totalPagedResults": -1,

"remainingPagedResults": 0

}

Supported _queryFilter fields and operators

72 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query

Field Supported operators

description Equals (eq)

createdBy Equals (eq)

creationDate Equals (eq), Greater than or equal to

(ge), Greater than (gt), Less than or

equal to (le), Less than (lt)

lastModifiedBy Equals (eq)

lastModifiedDate Equals (eq), Greater than or equal to

(ge), Greater than (gt), Less than or

equal to (le), Less than (lt)

 The implementation of eq for this date field does not use regular expression

pattern matching.

To read a specific policy set in a realm, send an HTTP GET request to the

/json/realms/root/realms/Realm Name/applications endpoint, specifying the

policy set name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

(1)

(1)

(1)

Read a policy set

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/applications/mypolicyset"

{

"creationDate":1431360678810,

"lastModifiedDate":1431360678810,

"conditions":[

"AuthenticateToService",

"AuthScheme",

"IPv6",

"SimpleTime",

"OAuth2Scope",

73 / 151

"IPv4",

"AuthenticateToRealm",

"OR",

"AMIdentityMembership",

"LDAPFilter",

"SessionProperty",

"AuthLevel",

"LEAuthLevel",

"Session",

"NOT",

"AND",

"ResourceEnvIP"

],

"applicationType":"iPlanetAMWebAgentService",

"subjects":[

"JwtClaim",

"AuthenticatedUsers",

"Identity",

"NOT",

"AND",

"OR"

],

"entitlementCombiner":"DenyOverride",

"saveIndex":null,

"searchIndex":null,

"resourceComparator":"com.sun.identity.entitlement.URLResourceName

",

"resourceTypeUuids":[

"12345a67-8f0b-123c-45de-6fab78cd01e2"

],

"attributeNames":[

],

"editable":true,

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"description":"My example policy set.",

"realm":"/",

"name":"mypolicyset"

}

74 / 151

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To create a policy set in a realm, send an HTTP POST request to the

/json/realms/root/realms/Realm Name/applications endpoint, with

_action=create . Include a JSON representation of the policy set in the POST data.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Do not use special characters in resource type, policy, or policy set names (for example,

"my+resource+type"). If you include special characters, AM returns a 400 Bad Request

error. This includes the following special characters: double quotes ("), plus sign (+),

comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash

(/), semicolon (;), and null (\u0000).

Create a policy set

If the realm is not specified in the URL, AM creates the policy set in the top level

realm.

NOTE

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=2.1" \

--data '{

"name":"mypolicyset",

"resourceTypeUuids":[

"12345a67-8f0b-123c-45de-6fab78cd01e2"

],

"realm":"/",

"conditions":[

"AND",

"OR",

"NOT",

"AMIdentityMembership",

"AuthLevel",

"AuthScheme",

"AuthenticateToRealm",

"AuthenticateToService",

"IPv4",

"IPv6",

75 / 151

"LDAPFilter",

"LEAuthLevel",

"OAuth2Scope",

"ResourceEnvIP",

"Session",

"SessionProperty",

"SimpleTime"

],

"applicationType":"iPlanetAMWebAgentService",

"description":"My example policy set.",

"resourceComparator":"com.sun.identity.entitlement.URLResourceName

",

"subjects":[

"AND",

"OR",

"NOT",

"AuthenticatedUsers",

"Identity",

"JwtClaim"

],

"entitlementCombiner":"DenyOverride",

"saveIndex":null,

"searchIndex":null,

"attributeNames":[

]

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/applications/?_action=create"

{

"creationDate":1431360678810,

"lastModifiedDate":1431360678810,

"conditions":[

"AuthenticateToService",

"AuthScheme",

"IPv6",

"SimpleTime",

"OAuth2Scope",

"IPv4",

"AuthenticateToRealm",

"OR",

"AMIdentityMembership",

"LDAPFilter",

"SessionProperty",

76 / 151

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To update a specific policy set in a realm, send an HTTP PUT request to the

/json/realms/root/realms/Realm Name/applications endpoint, specifying the

"AuthLevel",

"LEAuthLevel",

"Session",

"NOT",

"AND",

"ResourceEnvIP"

],

"applicationType":"iPlanetAMWebAgentService",

"subjects":[

"JwtClaim",

"AuthenticatedUsers",

"Identity",

"NOT",

"AND",

"OR"

],

"entitlementCombiner":"DenyOverride",

"saveIndex":null,

"searchIndex":null,

"resourceComparator":"com.sun.identity.entitlement.URLResourceName

",

"resourceTypeUuids":[

"12345a67-8f0b-123c-45de-6fab78cd01e2"

],

"attributeNames":[],

"editable":true,

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"description":"My example policy set.",

"realm":"/",

"name":"mypolicyset"

}

Update a policy set

77 / 151

policy set name in the URL. Include a JSON representation of the updated policy set in

the PUT data.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Do not use special characters in resource type, policy, or policy set names (for example,

"my+resource+type"). If you include special characters, AM returns a 400 Bad Request

error. This includes the following special characters: double quotes ("), plus sign (+),

comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash

(/), semicolon (;), and null (\u0000).

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--request PUT \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.1" \

--data '{

"name":"myupdatedpolicyset",

"description":"My updated policy set - new name and fewer

allowable conditions/subjects.",

"conditions":[

"NOT",

"SimpleTime"

],

"subjects":[

"AND",

"OR",

"NOT",

"AuthenticatedUsers",

"Identity"

],

"applicationType":"iPlanetAMWebAgentService",

"entitlementCombiner":"DenyOverride",

"resourceTypeUuids":[

"76656a38-5f8e-401b-83aa-4ccb74ce88d2"

]

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/applications/mypolicyset"

{

"creationDate":1431362370739,

78 / 151

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To delete a specific policy set in a realm, send an HTTP DELETE request to the

/json/realms/root/realms/Realm Name/applications endpoint, specifying the

"lastModifiedDate":1431362390817,

"conditions":[

"NOT",

"SimpleTime"

],

"resourceComparator":"com.sun.identity.entitlement.URLResourceName

",

"resourceTypeUuids":[

"76656a38-5f8e-401b-83aa-4ccb74ce88d2"

],

"createdBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",

"lastModifiedBy":"id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org

",

"applicationType":"iPlanetAMWebAgentService",

"subjects":[

"AuthenticatedUsers",

"Identity",

"NOT",

"AND",

"OR"

],

"entitlementCombiner":"DenyOverride",

"saveIndex":null,

"searchIndex":null,

"attributeNames":[

],

"editable":true,

"description":"My updated policy set - new name and fewer

allowable conditions/subjects.",

"realm":"/",

"name":"myupdatedpolicyset"

}

Delete a policy set

79 / 151

policy set name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

Application types define how to compare resources and index policies. The default

application type, iPlanetAMWebAgentService , represents web resources. The policy

set for web and Java agents (also called iPlanetAMWebAgentService) is based on this

default application type.

The applicationtypes REST endpoint lets you do the following:

Query application types

Read a specific application type

Application types are configured per server, not per realm. Therefore, the URI for the

application types API does not include a realm component, and is simply

/json/applicationtypes .

Application types are represented in JSON format, for example:

If the realm is not specified in the URL, AM uses the top level realm.

NOTE

$ curl \

--request DELETE \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=2.1" \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/applications/myupdatedpolicyset"

Policy set application types over REST

{

"name": "iPlanetAMWebAgentService",

"actions": {

"POST": true,

"PATCH": true,

"GET": true,

"DELETE": true,

"OPTIONS": true,

"PUT": true,

"HEAD": true

80 / 151

An application type object includes the following information:

name

Name of the application type.

actions

Set of actions for that application type, each with a boolean value indicating whether

the action is allowed.

resourceComparator

The class name of the resource comparator implementation used in the context of

this application type.

The following implementations are available:

"com.sun.identity.entitlement.ExactMatchResourceName"

"com.sun.identity.entitlement.PrefixResourceName"

"com.sun.identity.entitlement.RegExResourceName"

"com.sun.identity.entitlement.URLResourceName"

saveIndex

Class name of the implementation for creating indexes for resource names, such as

"com.sun.identity.entitlement.util.ResourceNameIndexGenerator" , for

URL resource names.

searchIndex

Class name of the implementation for searching indexes for resource names, such as

"com.sun.identity.entitlement.util.ResourceNameSplitter" , for URL

resource names.

applicationClassName

Class name of the application type implementation, such as

"com.sun.identity.entitlement.Application" .

},

"resourceComparator":

"com.sun.identity.entitlement.URLResourceName",

"saveIndex":

"org.forgerock.openam.entitlement.indextree.TreeSaveIndex",

"searchIndex":

"org.forgerock.openam.entitlement.indextree.TreeSearchIndex",

"applicationClassName":

"com.sun.identity.entitlement.Application"

}

Query application types

81 / 151

To list all application types, send an HTTP GET request to the

/json/applicationtypes endpoint, with a _queryFilter parameter set to true .

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/applicationtypes?

_queryFilter=true"

{

"result": [

{

"_id": "umaApplicationType",

"applicationClassName":

"com.sun.identity.entitlement.Application",

"saveIndex": "org.forgerock.openam.uma.UmaPolicySaveIndex",

"searchIndex":

"org.forgerock.openam.uma.UmaPolicySearchIndex",

"resourceComparator":

"org.forgerock.openam.uma.UmaPolicyResourceMatcher",

"name": "umaApplicationType",

"actions": {}

},

{

"_id": "sunAMDelegationService",

"applicationClassName":

"com.sun.identity.entitlement.Application",

"saveIndex":

"com.sun.identity.entitlement.opensso.DelegationResourceNameIndexG

enerator",

"searchIndex":

"com.sun.identity.entitlement.opensso.DelegationResourceNameSplitt

er",

"resourceComparator":

"com.sun.identity.entitlement.RegExResourceName",

"name": "sunAMDelegationService",

"actions": {

"READ": true,

"MODIFY": true,

"DELEGATE": true

}

},

{

82 / 151

Use additional query strings to narrow down the results. For details, refer to Query.

To read an specific application type, send an HTTP GET request to the

/json/applicationtypes endpoint, specifying the application type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an

administrative user, such as amAdmin , who has access to perform the operation.

"_id": "iPlanetAMWebAgentService",

"applicationClassName":

"com.sun.identity.entitlement.Application",

"saveIndex":

"org.forgerock.openam.entitlement.indextree.TreeSaveIndex",

"searchIndex":

"org.forgerock.openam.entitlement.indextree.TreeSearchIndex",

"resourceComparator":

"com.sun.identity.entitlement.URLResourceName",

"name": "iPlanetAMWebAgentService",

"actions": {

"HEAD": true,

"DELETE": true,

"POST": true,

"GET": true,

"OPTIONS": true,

"PUT": true,

"PATCH": true

}

}

],

"resultCount": 3,

"pagedResultsCookie": null,

"totalPagedResultsPolicy": "NONE",

"totalPagedResults": -1,

"remainingPagedResults": 0

}

Read a specific application type

$ curl \

--header "iPlanetDirectoryPro: AQIC5…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/applicationtypes/iPla

netAMWebAgentService"

{

"_id": "iPlanetAMWebAgentService",

83 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-intro.html#about-crest-query

You can import and export policies to and from files.

You can use these files to back up policies, transfer policies between AM instances, or

store policy configuration in a version control system such as Git or Subversion.

AM supports exporting policies in JSON and eXtensible Access Control Markup Language

(XACML) Version 3.0 format.

Comparison of Policy Import/Export Formats

Feature Supported for JSON? Supported for XACML?

Can be imported/exported

from within the AM admin

UI?

No Yes

Can be imported/exported

on the command line,

using the ssoadm

command?

Yes Yes

Exports policies? Yes Yes

"_rev": "1664877005610",

"applicationClassName":

"com.sun.identity.entitlement.Application",

"saveIndex":

"org.forgerock.openam.entitlement.indextree.TreeSaveIndex",

"searchIndex":

"org.forgerock.openam.entitlement.indextree.TreeSearchIndex",

"resourceComparator":

"com.sun.identity.entitlement.URLResourceName",

"name": "iPlanetAMWebAgentService",

"actions": {

"HEAD": true,

"DELETE": true,

"POST": true,

"GET": true,

"OPTIONS": true,

"PUT": true,

"PATCH": true

}

}

Import and export policies



84 / 151

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Feature Supported for JSON? Supported for XACML?

Exports policy sets? Yes Partial

Exports resource types? Yes Partial

Creates an exact copy of

the original policy sets,

resource types, and

policies upon import?

Yes Partial

 Only the details of policy sets and resource types that are actually used within a policy

are exported to the XACML format. The full definition is not exported.

 Policy sets and resource types will be generated from the details in the XML, but may

not match the definitions of the originals. For example, the names are auto-generated.

Importing and exporting JSON:

Export policies in JSON format (ssoadm)

Import policies in JSON format (ssoadm)

Importing and exporting XACML:

Export to XACML

Import from XACML

1. Use the ssoadm policy-export command:

(1)

(2)

(1)

(2)

AM can only import XACML 3.0 files that were either created by an AM instance, or

that have had minor manual modifications, due to the reuse of some XACML 3.0

parameters for non-standard information.

NOTE

Export policies in JSON format (ssoadm)

$ ssoadm \

policy-export \

--realm "/" \

--servername "https://openam.example.com:8443/openam" \

--jsonfile "myPolicies.json" \

--adminid

uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt

{

85 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/xacml-export.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/xacml-import.html

If exporting from a subrealm, include the top level realm (/) in the --realm value.

For example, --realm "/myRealm" .

For more information on the syntax of this command, see ssoadm policy-export.

1. Use the ssoadm policy-import command:

If importing to a subrealm, include the top level realm (/) in the --realm value.

For example, --realm "/myRealm" .

For more information on the syntax of this command, see ssoadm policy-import.

"RESOURCE_TYPE" : 1,

"POLICY" : 1,

"APPLICATION" : 1

}

Import policies in JSON format (ssoadm)

$ ssoadm \

policy-import \

--realm "/myRealm" \

--servername "https://openam.example.com:8443/openam" \

--jsonfile "myPolicies.json" \

--adminid

uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt

{

"POLICY" : {

"CREATE_SUCCESS" : {

"count" : 1

}

},

"RESOURCE_TYPE" : {

"CREATE_SUCCESS" : {

"count" : 1

}

},

"APPLICATION" : {

"CREATE_SUCCESS" : {

"count" : 1

}

}

}

86 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/ssoadm-1.html#ssoadm-policy-export
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/ssoadm-1.html#ssoadm-policy-import

AM only exports a policy set that contains policy definitions. No other types can be

included in the policy set, such as sub-policy sets or rules.

AM XACML

Realm:<timestamp>

(yyyy.MM.dd.HH.mm.ss.SSS)

PolicySet ID

Current Time

(yyyy.MM.dd.HH.mm.ss.SSS)

Version

Deny Overrides Policy Combining Algorithm ID

No targets defined Target

When exporting AM policies to XACML 3.0 policy sets, AM maps its policies to XACML 3.0

policy elements.

AM Policy XACML Policy

Policy Name Policy ID

Description Description

Current Time

(yyyy.MM.dd.HH.mm.ss.SSS)

Version

xacml rule target entitlement excluded resource names

Rule Deny Overrides Rule Combining Algorithm ID

Any of:

Entitlement Subject

Resource Names

Policy Set Names

Action Values

Target

Export to XACML

Policy sets to XACML mappings

Policies to XACML mappings

87 / 151

AM Policy XACML Policy

Any of:

Policy Set Name

Entitlement Name

Privilege Created By

Privilege Modified By

Privilege Creation Date

Privilege Last Modification Date

Variable Definitions

Single Level Permit/Deny Actions

converted to Policy Rules

Rules

1. In the AM admin UI, go to Realms > Realm Name > Authorization > Policy Sets,

and click Export Policy Sets.

All policy sets, and the policies within will be exported in XACML format.

The export service is accessible at the /xacml/policies endpoint using an HTTP GET

request at the following endpoint for the root realm or a specific realm:

https://openam.example.com:8443/openam/xacml/policies

https://openam.example.com:8443/openam/xacml/realm/policies

Here, realm is the name of a specific realm.

1. Use the /xacml/policies endpoint to export the AM entitlement policies into

XACML 3.0 format.

XACML obligation is not supported. Also, only one XACML match is defined for

each privilege action, and only one XACML rule for each privilege action value.

NOTE

Export policies in XACML format (UI)

Export policies in XACML format (REST)

You can filter your XACML exports using query search filters. See Export policies in

XACML format with search filters (REST).

TIP

88 / 151

The following curl command exports the policies and returns the XACML response

(truncated for display purposes).

Note the following points about the search filters:

LDAP-based searches. The search filters follow the standard guidelines for LDAP

searches as they are applied to the entitlements index in the LDAP configuration

backend, located at:

ou=default,ou=OrganizationalConfig,ou=1.0,ou=sunEntitlementIndexes,

ou=services,dc=openam,dc=forgerock,dc=org .

Search filter format. You can specify a single search filter or multiple filters in the

HTTP URL parameters. The format for the search filter is as follows:

[attribute name][operator][attribute value]

If you specify multiple search filters, they are logically ANDed: the search results

meet the criteria specified in all the search filters.

$ curl \

--request GET \

--header "iPlanetDirectoryPro: AQIC5…​" \

"https://openam.example.com:8443/openam/xacml/policies"

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-

17"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-

combining-algorithm:deny-overrides"

Version="2014.10.08.21.59.39.231"

PolicySetId="/:2014.10.08.21.59.39.231">

<Target/>

<Policy

RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-

combining-algorithm:deny-overrides"

Version="2014.10.08.18.01.03.626"

PolicyId="Rockshop_Checkout_https://forgerock-

rockshop.openrock.org:443/wp-login.php*?*">

…​

Export policies in XACML format with search filters (REST)

XACML export search filter format

89 / 151

Element Description

Attribute Name The name of the attribute to be

searched for. The only permissible

values are: application (keyword

for policy set), createdby ,

lastmodifiedby , creationdate ,

lastmodifieddate , name ,

description .

Operator The type of comparison operation to

perform.

= Equals (text)

< Less Than or Equal To

(numerical)

> Greater Than or Equal To

(numerical)

Attribute Value The matching value. Asterisk

wildcards are supported.

1. Use the /xacml/policies endpoint to export the policies into XACML 3.0

format with a search filter.

This command only exports policies that were created by "amadmin".

2. You can also specify more than one search filter by logically ANDing the filters

as follows:

$ curl \

--request GET \

--header "iPlanetDirectoryPro: AQIC5…​" \

"https://openam.example.com:8443/openam/xacml/policies?

filter=createdby=amadmin"

$ curl \

--request GET \

--header "iPlanetDirectoryPro: AQIC5…​" \

"https://openam.example.com:8443/openam/xacml/policies?

filter=createdby=amadmin&filter=creationdate=135563832"

Export policies in XACML format (ssoadm)

90 / 151

1. Use the ssoadm list-xacml command:

For more information on the syntax of this command, see ssoadm list-xacml.

To test an import, AM provides a dry run feature that runs an import without saving the

changes to the database. The dry run feature provides a summary of the import so that

you can troubleshoot any potential mismatches prior to the actual import.

1. In the AM admin UI, go to Realms > Realm Name > Authorization > Policy Sets,

and click Import Policy Sets.

2. Browse to the XACML format file, select it, and click Open.

Any policy sets, and the policies within will be imported from the selected XACML

format file.

You can import a XACML policy using an HTTP POST request for the root realm or a

specific realm at the following endpoints:

https://openam.example.com:8443/openam/xacml/policies

https://openam.example.com:8443/openam/xacml/realm/policies

$ ssoadm \

list-xacml \

--realm "/" \

--adminid uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org

\

--password-file /tmp/pwd.txt

<?xml version="1.0" encoding="UTF-8"?>

<PolicySet

…​

Policy definitions were returned under realm, /.

Import from XACML

Import policies in XACML format (UI)

Policy sets and resource types will be generated from the details in the XACML

format file, but may not match the definitions of the originals, for example the

names are auto-generated.

NOTE

Import policies in XACML format (REST)

91 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/ssoadm-1.html#ssoadm-list-xacml

Here, realm is the name of a specific realm.

1. You can do a dry run using the dryrun=true query to test the import. The dry run

option outputs in JSON format and displays the status of each import policy, where

"U" indicates "Updated"; "A" for "Added". The dry run does not actually update to

the database. When you are ready for an actual import, you need to re-run the

command without the dryrun=true query.

2. Use the /xacml/policies endpoint to import a XACML policy:

$ curl \

--request POST \

--header "Content-Type: application/xml" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--data @xacml-policy.xml \

"https://openam.example.com:8443/openam/xacml/policies?

dryrun=true"

[

{

"status":"A",

"name":"aNewPolicy"

},

{

"status":"U",

"name":"anExistingPolicy"

},

{

"status":"U",

"name":"anotherExistingPolicy"

}

]

$ curl \

--request POST \

--header "Content-Type: application/xml" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--data @xacml-policy.xml \

"https://openam.example.com:8443/openam/xacml/policies"

TIP

92 / 151

Use the ssoadm create-xacml command:

For more information on the syntax of this command, see ssoadm create-xacml.

Once you have configured AM to determine whether to grant or deny access based on

the policies you created, you must configure your policy enforcement points (PEP) to use

AM.

The ForgeRock Identity Platform provides the following PEPs:

Web agents and Java agents, which are add-on components installed on the web

server or container serving your applications. They are tightly integrated with AM,

and serve exclusively as policy enforcement points.

Learn more in the Web Agents documentation or the Java Agents documentation.

ForgeRock Identity Gateway, which is a high-performance reverse proxy server that

can also function as a policy enforcement point.

Learn more in Policy enforcement in the Identity Gateway documentation.

The ForgeRock Identity Platform PEP’s intercept inbound client requests to access a

resource in your website or application. Then, based on internal rules, they may defer

You can import a XACML policy into a realm as follows:

TIP

$ curl \

--request POST \

--header "Content-Type: application/xml" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--data @xacml-policy.xml \"

"https://openam.example.com:8443/openam/xacml/realm/policies"

Import policies in XACML format (ssoadm)

$ ssoadm \

create-xacml \

--realm "/" \

--adminid uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt \

--xmlfile policy.xml

Policies were created under realm, /.

Request authorization from AM

93 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/ssoadm-1.html#ssoadm-create-xacml
file:///web-agents/5.10
file:///java-agents/5.10
file:///pinggateway/7.2/gateway-guide/pep.html

the request to AM for policy evaluation. Since they are tightly integrated with AM, you do

not need to add additional code to request policy evaluation or manage advices.

We recommend that you use the ForgeRock Identity Platform PEP’s. However, you can

code your own and make REST calls to AM to request policy evaluation.

Related information: Request policy decisions over REST

You can request policy decisions from AM over REST. AM evaluates requests based on

the context and the configured policies, and returns decisions that indicate what actions

are allowed or denied, as well as any attributes or advices for the specified resources.

Request policy evaluation at the /json/realms/root/realms/Realm Name/policies

endpoint.

When making a REST API call, specify the realm in the path component of the endpoint.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm.

Prefix each realm in the hierarchy with the realms/ keyword. For example,

/realms/root/realms/customers/realms/europe .

Before making a REST API call to manage a policy, you must have:

Authenticated successfully to AM as a user with sufficient privileges to make the

REST API call.

Obtained the session token returned after successful authentication.

When making the REST API call, pass the session token in the HTTP header. For more

information about the AM session token and its use in REST API calls, see Session token

after authentication.

To request decisions for specific resources, see Request policy decisions for a specific

resource.

To request decisions for a resource and all resources beneath it, see Request policy

decisions for a tree of resources.

To request policy decisions for specific resources, send a POST request to the policies

endpoint, with the evaluate action. For example:

Request policy decisions over REST

This section does not apply to OAuth 2.0 policies.

NOTE

Request policy decisions for a specific resource

94 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/rest-using-ssotokens.html

/json/realms/root/realms/Realm Name/policies?_action=evaluate .

When making a REST API call, specify the realm in the path component of the endpoint.

You must specify the entire hierarchy of the realm, starting at the Top Level Realm.

Prefix each realm in the hierarchy with the realms/ keyword. For example,

/realms/root/realms/customers/realms/europe .

The payload for the HTTP POST is a JSON object that specifies at least the resources, and

takes the following form.

The input fields are as follows:

resources

(Required) Specifies the list of resources for which to return decisions.

{

"resources": [

"resource1",

"resource2",

...,

"resourceN"

],

"application": "defaults to iPlanetAMWebAgentService if not

specified",

"subject": {

"ssoToken": "SSO token ID string",

"jwt": "JSON Web Token string",

"claims": {

"key": "value",

...

}

},

"environment": {

"optional key1": [

"value",

"another value",

...

],

"optional key2": [

"value",

"another value",

...

],

...

}

}

95 / 151

For example, when using the default policy set, "iPlanetAMWebAgentService" , you

can request decisions for resource URLs.

application

The name of the policy set. Defaults to "iPlanetAMWebAgentService" , if not

specified.

For more on policy sets, see Policy sets over REST.

subject

(Optional). Holds an object that represents the subject. If you do not specify the

subject, AM uses the SSO token ID of the subject making the request.

Specify one or more of the following keys. If you specify multiple keys, the subject

can have multiple associated principals, and you can use subject conditions

corresponding to any type in the request:

ssoToken

The value is the SSO token ID string for the subject, returned for example on

successful authentication as described in Authenticate over REST.

You can use an OpenID Connect ID token if the client that the token has been

issued for is authorized to use ID tokens as session tokens. For more information,

see Using ID Tokens as Session Tokens.

jwt

The value is a JWT string.

claims

{

"resources": [

"http://www.example.com/index.html",

"http://www.example.com/do?action=run"

]

}

If you pass the subject details as a JWT, AM does not attempt to validate the

JWT signature or the claims in the JWT. It is assumed that you have already

validated the JWT before calling the authorization endpoint.

For AM-issued ID Tokens, you can, instead, pass the ID Token as the value of

the ssoToken field (after adding your client to the Authorized SSO

Clients list). In this case, AM will validate the token. For more information,

see ID tokens as subjects in policy evaluation.

NOTE

96 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-applications.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oidc-additional-use-cases.html#idtokens-as-session-tokens
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oidc-additional-use-cases.html#idtokens-in-policy-decision

The value is an object (map) of JWT claims to their values. Any string is permitted,

but you must include the sub claim.

environment

(Optional). Holds a map of keys to lists of values.

If you do not specify the environment, the default is an empty map.

The following example requests policy decisions for two URL resources. The

iPlanetDirectoryPro header sets the SSO token for a user who has access to

perform the operation.

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.1" \

--header "iPlanetDirectoryPro: AQIC5…​" \

--data '{

"resources":[

"http://www.example.com/index.html",

"http://www.example.com/do?action=run"

],

"application":"iPlanetAMWebAgentService"

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies?_action=evaluate"

[

{

"resource":"http://www.example.com/do?action=run",

"actions":{

},

"attributes":{

},

"advices":{

"AuthLevelConditionAdvice":[

"3"

]

}

},

{

"resource":"http://www.example.com/index.html",

"actions":{

"POST":false,

"GET":true

97 / 151

In the JSON list of decisions returned for each resource, AM includes these fields.

resource

The resource specified in the request.

The decisions returned are not guaranteed to be in the same order as the requested

resources.

actions

A map of action name keys to Boolean values that indicate whether the action is

allowed (true) or denied (false) for the specified resource.

In the example, for resource http://www.example.com:80/index.html HTTP GET

is allowed, whereas HTTP POST is denied.

attributes

A map of attribute names to their values, if any response attributes are returned,

according to applicable policies.

In the example, the policy that applies to

http://www.example.com:80/index.html causes the value of the subject’s "cn"

profile attribute to be returned.

advices

A map of advice names to their values, if any advice is returned according to

applicable policies.

The advices field can provide hints about what AM requires to make an

authorization decision.

In the example, the policy that applies to http://www.example.com:80/do?

action=run requests that the subject be authenticated at an authentication level of

at least 3.

},

"attributes":{

"cn":[

"demo"

]

},

"advices":{

}

}

]

98 / 151

See Policy decision advice for details.

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

To request policy decisions for a resource, and all other resources in the subtree, send a

POST request to the policies endpoint, with the evaluateTree action. For example:

/json/realms/root/realms/Realm Name/policies?_action=evaluateTree

The payload for the HTTP POST is a JSON object that specifies at least the root resource,

and takes the following form.

{

"advices": {

"AuthLevelConditionAdvice": [

"3"

]

}

}

Request policy decisions for a tree of resources

{

"resource": "resource string",

"application": "defaults to iPlanetAMWebAgentService if not

specified",

"subject": {

"ssoToken": "SSO token ID string",

"jwt": "JSON Web Token string",

"claims": {

"key": "value",

...

}

},

"environment": {

"optional key1": [

"value",

"another value",

...

],

"optional key2": [

"value",

"another value",

99 / 151

The values for the fields shown above are explained below:

resource

(Required) Specifies the root resource for the decisions to return.

For example, when using the default policy set, "iPlanetAMWebAgentService" , you

can request decisions for resource URLs.

application

The name of the policy set. Defaults to "iPlanetAMWebAgentService" if not

specified.

For more on policy sets, see Policy sets over REST.

subject

(Optional) An object that represents the subject. You can specify one or more of the

following keys. If you specify multiple keys, the subject can have multiple associated

principals, and you can use subject conditions that correspond to any type in the

request.

ssoToken

The SSO token ID string for the subject, returned on successful authentication, as

described in Authenticate over REST.

jwt

The value is a JWT string.

...

],

...

}

}

{

"resource": "http://www.example.com/"

}

If you pass the subject details as a JWT, AM does not attempt to validate the

JWT signature or the claims in the JWT. It is assumed that you have already

validated the JWT before calling the authorization endpoint.

For AM-issued ID Tokens, you can, instead, pass the ID Token as the value of

the ssoToken field (after adding your client to the Authorized SSO Clients

list). In this case, AM will validate the token. For more information, see Using

ID Tokens as Subjects in Policy Decisions.

NOTE

100 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-applications.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oidc-additional-use-cases.html#idtokens-in-policy-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oidc-additional-use-cases.html#idtokens-in-policy-decision

claims

An object (map) of JWT claims to their values. If you do not specify the subject, AM

uses the SSO token ID of the subject making the request.

environment

(Optional) A map of keys to lists of values.

If you do not specify the environment, the default is an empty map.

The following example requests policy decisions for http://www.example.com/ . The

iPlanetDirectoryPro header sets the SSO token for a user who has access to

perform the operation. The subject takes the SSO token of the user who wants to access

a resource.

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5…​NDU1*" \

--header "Accept-API-Version: resource=1.0" \

--data '{

"resource": "http://www.example.com/",

"subject": { "ssoToken": "AQIC5…​zE4*" }

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies?_action=evaluateTree"

[

{

"resource":"http://www.example.com/",

"actions":{

"GET":true,

"OPTIONS":true,

"HEAD":true

},

"attributes":{

},

"advices":{

}

},

{

"resource":"http://www.example.com/",

"actions":{

"POST":false,

"PATCH":false,

"GET":true,

101 / 151

In the JSON list of decisions returned for each resource, AM includes these fields:

resource

A resource name whose root is the resource specified in the request.

"DELETE":true,

"OPTIONS":true,

"HEAD":true,

"PUT":true

},

"attributes":{

"myStaticAttr":[

"myStaticValue"

]

},

"advices":{

}

},

{

"resource":"http://www.example.com/?*",

"actions":{

"POST":false,

"PATCH":false,

"GET":false,

"DELETE":false,

"OPTIONS":true,

"HEAD":false,

"PUT":false

},

"attributes":{

},

"advices":{

"AuthLevelConditionAdvice":[

"3"

]

}

}

]

AM returns decisions not only for the specified resource, but also for matching

resource names in the tree whose root is the specified resource.

NOTE

102 / 151

The decisions returned are not guaranteed to be in the same order as the resources

were requested.

actions

A map of action name keys to Boolean values that indicate whether the action is

allowed (true) or denied (false) for the specified resource.

In the example, for matching resources with a query string only HTTP OPTIONS is

allowed according to the policies configured.

attributes

A map of attribute names to their values, if any response attributes are returned

according to applicable policies.

In the example, the policy that applies to http://www.example.com:80/* causes a

static attribute to be returned.

advices

A map of advice names to their values, if any advice is returned according to

applicable policies.

The advices field can provide hints regarding what AM needs, to make the

authorization decision.

In the example, the policy that applies to resources with a query string requests that

the subject be authenticated at an authentication level of at least 3.

Notice that with the advices field present, no advices appear in the JSON

response.

You can use the query string parameters _prettyPrint=true to make the output

easier to read, and _fields=field-name[,field-name…​] to limit the fields returned

in the output.

When AM returns a policy decision, the JSON for the decision can include an advices

field. This field contains hints for the policy enforcement point.

{

"advices": {

"AuthLevelConditionAdvice": ["3"]

}

}

Policy decision advice

103 / 151

The advices returned depend on policy conditions.

This section shows examples of the different types of policy decision advice and the

conditions that cause AM to return the advice.

"AuthLevel" and "LEAuthLevel" condition failures can result in an advice showing

the expected or maximum possible authentication level. For example, failure against the

following condition:

Leads to this advice:

An AuthScheme condition failure can result in an advice showing one or more required

authentication modules. For example, failure against the following condition:

Leads to this advice:

{

"advices": {

"type": [

"advice"

]

}

}

{

"type": "AuthLevel",

"authLevel": 2

}

{

"AuthLevelConditionAdvice": [

"2"

]

}

{

"type": "AuthScheme",

"authScheme": [

"HOTP"

],

"applicationName": "iPlanetAMWebAgentService",

"applicationIdleTimeout": 10

}

104 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policies.html

An AuthenticateToRealm condition failure can result in an advice showing the name

of the realm to which authentication is required. For example, failure against the

following condition:

Leads to this advice:

An AuthenticateToService condition failure can result in an advice showing the

name of the required authentication chain or tree. For example, failure against the

following condition:

Leads to this advice:

A ResourceEnvIP condition failure can result in an advice that indicates corrective

action to be taken. The advice varies, depending on what the condition tests. For

{

"AuthSchemeConditionAdvice": [

"HOTP"

]

}

{

"type": "AuthenticateToRealm",

"authenticateToRealm": "MyRealm"

}

{

"AuthenticateToRealmConditionAdvice": [

"/myRealm"

]

}

{

"type": "AuthenticateToService",

"authenticateToService": "MyAuthnChain"

}

{

"AuthenticateToServiceConditionAdvice": [

"MyAuthnChain"

]

}

105 / 151

example, failure against the following condition:

Leads to this advice:

Failure against a different type of ResourceEnvIP condition such as the following:

Leads to this advice:

A Session condition failure can result in an advice showing that access has been

denied because the user’s session has been active longer than allowed by the condition.

The advice will also show if the user’s session was terminated and reauthentication is

required. For example, failure against the following condition:

{

"type": "ResourceEnvIP",

"resourceEnvIPConditionValue": [

"IF IP=[127.0.0.12] THEN authlevel=4"

]

}

{

"AuthLevelConditionAdvice": [

"4"

]

}

{

"type": "ResourceEnvIP",

"resourceEnvIPConditionValue": [

"IF IP=[127.0.0.11] THEN service=MyAuthnChain"

]

}

{

"AuthenticateToServiceConditionAdvice": [

"MyAuthnChain"

]

}

{

"type": "Session",

"maxSessionTime": "10",

106 / 151

Leads to this advice:

When policy evaluation denials occur against the following conditions, AM does not

return any advice:

IPv4

IPv6

LDAPFilter

OAuth2Scope

SessionProperty

SimpleTime

When policy evaluation is requested for a nonexistent or inactive subject, AM returns an

HTTP 200 code and a response that contains no actions or advice. Access to the

resource is denied.

Transactional authorization requires a user to authorize every access to a resource. It is

part of an AM policy that grants single-use or one-shot access.

For example, a user might approve a financial transaction with a one-time password

(OTP) sent to their device, or respond to a push notification to confirm that they have

indeed signed on from an unexpected location.

Performing the additional action successfully grants access to the protected resource

but only once. Additional attempts to access the resource require the user to perform

the configured actions again.

Transactional authorization is implemented as an environment condition type in an

authorization policy, and affects the authorization decision.

"terminateSession": false

}

{

"SessionConditionAdvice": [

"deny"

]

}

Transactional authorization

IMPORTANT

107 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/what-is-authz-decision.html

The transactional authorization environment condition can be combined in policies

with the other conditions. For example, only requiring a push notification response

when access is attempted to the employees subrealm but outside usual working

hours, as shown below:

Figure 9. Combining With Other Environment Conditions

Related Information: Authorization and policy decisions

Transactional authorization is not designed to work with account lockout and does

not increment lockout counters. As such, don’t use transactional authorization with

authentication mechanisms that are susceptible to brute force attacks, such as

simple username/password authentication, or OTP authentication. Instead,

configure transactional authorization if you are using a strong authentication

mechanism, such as MFA: Push authentication, which is not susceptible to brute

force attacks. If you do use transactional authorization with an authentication

mechanism, such as OTP authentication, make sure that you manage rate-limiting

in some other way.

IMPORTANT

Example

108 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/what-is-authz-decision.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-mfa-about-push.html

The following diagram describes the sequence of events that occur when accessing a

resource that is protected by a REST application, and an AM policy containing a

transactional environment condition:

Authenticated User

Authenticated User

Protected Web Server
(REST App)

Protected Web Server
(REST App)

Access Management Server

Access Management Server

CTS

CTS

1) Access attempt

2) Evaluate policies Policy has transaction condition

Transaction

3) Create and store transaction token

Transaction state: CREATED

4) Return transaction ID in advices

Regular Session Upgrade Steps

5) Initiate authentication, include transaction ID

6) Modify transaction token state

Transaction state: IN_PROGRESS

7) Return callbacks for authentication

8) Render callbacks

9) Perform requested authentication

1 0) Return completed callbacks

1 1) Modify transaction token state

Transaction state: COMPLETED

1 2) Return existing token ID

1 3) Reevaluate policies, include transaction ID

1 4) Verify transaction token state

1 5)
Transaction state is COMPLETED
and transaction is authorized

Transaction state: DELETED

1 6) Allow single access

1 7) Access resource once

Figure 10. Accessing Resources with Transactional Authorization

The sequence of events for a transaction authorization is as follows:

1. An authenticated user attempts to access a resource that is protected by an AM

server.

2. The resource server contacts AM to evaluate the policies that apply.

The resource server can be protected with ForgeRock’s Web or Java Agents, which

support transactional authorization natively, or a custom application that uses

ForgeRock’s REST API as per the diagram to manage the transactional

authorization.

3. As the policy contains a transaction environment condition, AM creates a

transaction token in the Core Token Service (CTS) store. The initial transaction

token state is set to CREATED .

The transaction token contains information about the policy evaluation, including

the:

How does transactional authorization work?

109 / 151

Realm

Resource

Subject

Audit tracking ID

Authentication method

To protect against tampering, AM verifies that these details do not change and

match those in the incoming requests for the duration of the transaction.

The transaction token has a time-to-live (default 180 seconds) defined in the

Transaction Authentication Service. If the transaction is not completed in this time, the

token is deleted, and the flow will need to be restarted. Alter the default if the

transaction includes authentication actions that take more time to complete. For

example, using HOTP authentication for a one-time password over email.

The time-to-live can be configured globally, or per-realm. See Transaction

Authentication Service.

1. In the JSON response to the policy evaluation request, AM returns the transaction

ID—the unique ID of the newly created transaction token—in the

TransactionConditionAdvice array in the advices object:

2. As the JSON response to the evaluation does not grant any actions but does

contain advices, the REST application on the resource server extracts the

transaction ID and returns it to the authentication service to commence the

authentication.

The transaction ID is included in the TransactionConditionAdvice attribute

value pair in the composite advice query parameters sent as part of the request

for actions.

ForgeRock web and Java agents manage this interaction natively. For information

on using the REST API to handle advices elements in policy evaluations, see

{

"resource": "http://www.example.com:8000/index.html",

"actions": {},

"attributes": {},

"advices": {

"TransactionConditionAdvice": [

"7b8bfd4c-60fe-4271-928d-d09b94496f84"

]

},

"ttl": 0

}

110 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-transaction
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-transaction

Request policy decisions over REST.

3. AM extracts the transaction ID from the composite advice, verifies the

corresponding transaction token, and changes the state to IN_PROGRESS .

If the transaction ID is not in the expected state or does not exist, a 401

Unauthorized error is returned. For example:

4. AM responds with the callbacks necessary to satisfy any environment conditions.

5. The REST application renders the callbacks and presents them to the user.

6. The user completes the required actions.

For example, authenticates to the specified chain, or responds to the push

notification on their registered mobile device.

7. The REST app completes the callbacks and returns the result to AM.

8. AM verifies the transaction token, and changes the state to COMPLETED .

9. With the transaction now complete, AM returns the original token.

{

"code": 401,

"reason": "Unauthorized",

"message": "Unable to read transaction.",

"detail": {

"errorCode": "128"

}

}

The advices returned by transaction environment conditions have the lowest

precedence when compared to the other condition advices. End users will

have to complete the non-transactional condition advices before they can

complete the transactional condition advices.

NOTE

If the user is unable to complete the actions, AM returns an HTTP 200

message and the user is redirected to the protected resource. Policy

evaluation will fail since the transactional authorization process has failed.

To return an HTTP 401 message and redirect the user to the failure URL,

configure the

org.forgerock.openam.auth.transactionauth.returnErrorOnAuthFailure

advanced server property.

TIP

111 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/deployment-configuration-reference.html#adv-property-transactional-error

Note that the authentication performed as part of an authorization flow does not

behave exactly the same as a standard authentication. The differences are:

The user’s original session is not upgraded or altered in any way.

Failing the authentication during the authorization flow does not increment

account lockout counters.

10. The web or Java agent or custom application on the resource server can

reevaluate the policies applying to the protected resources again, but includes

the ID of the completed transaction as a value in the TxId array in the

environment object:

11. AM verifies the transaction was authorized and that the transaction token is in

the COMPLETED state.

12. If the transaction was completed successfully, authorization continues.

The transaction token is marked for deletion, so that it cannot be used to grant

more than a single access.

13. As the authentication required to complete the transaction was successful, AM

returns the result of the policy reevaluation.

For example, the following response grants the POST and GET actions to the

resource http://www.example.com:8000/index.html :

{

"resources" :

["http://www.example.com:8000/index.html"],

"application" : "iPlanetAMWebAgentService",

"subject" : {

"ssoToken" : "AQIC5w....*AJTMQAA*"

},

"environment": {

"TxId": ["7b8bfd4c-60fe-4271-928d-d09b94496f84"]

}

}

{

"resource": "http://www.example.com:8000/index.html",

"actions": {

"POST": true,

"GET": true

},

"attributes": {},

"advices": {},

112 / 151

14. The user is able to access the protected resource once.

Additional attempts to access a resource protected with a policy containing a

transactional environment condition require a new transaction to be completed.

To configure transactional authorization, first configure the chains or trees you need for

session upgrade, and then configure your policies.

The following procedures demonstrate an example that uses push notifications:

Create an authentication chain containing the ForgeRock Authenticator (PUSH)

Registration authentication module. Log in to that chain as the demo user and

register a mobile device using the ForgeRock Authenticator application.

See Create a chain for push registration and passwordless authentication and

Registering the ForgeRock Authenticator for multi-factor authentication.

Set up the Push Notification service in AM with valid credentials.

For information on provisioning the credentials required by the Push Notification

Service, see How To Configure Service Credentials (Push Auth, Docker) in Backstage

 in the ForgeRock Knowledge Base.

For detailed information about Push Notification Service properties, see Push

Notification Service.

Perform at least one of the following steps:

To use the AM admin UI for the demonstration, set up a web agent to protect

web resources. See the ForgeRock Web Agents documentation.

To use the AM REST API for the demonstration, create a user account that has

read access to the policy endpoints. By default, users do not have permissions

to access the policy evaluation endpoints directly. To allow access to the policy

REST endpoints, follow the steps in Add a user who can evaluate policies.

"ttl": 0

}

Successful transactional authorization responses set the time-to-live (ttl)

value to zero to ensure that the policy decision is not cached and cannot be

used more than once.

ForgeRock agents prior to version 5 do not support a time-to-live value of

zero and cannot be used for transactional authorization.

IMPORTANT

Prerequisites



113 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-mfa-chains-push.html#proc-authn-mfa-chain-push-passwordless
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-mfa-download-app.html#authn-mfa-register-device
https://backstage.forgerock.com/knowledge/backstagehelp/article/a92326771
https://backstage.forgerock.com/knowledge/backstagehelp/article/a92326771
https://backstage.forgerock.com/knowledge/backstagehelp/article/a92326771
https://backstage.forgerock.com/knowledge/backstagehelp/article/a92326771
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-pushnotification
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-pushnotification
file:///web-agents/5.10/
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/scripted-policy-condition.html#proc-scripted-pol-privilege

Perform the following steps to set up an authorization policy with a transaction

environment condition, which requires users to respond to a push notification message

on their registered mobile device to authorize access to a protected resource.

1. Add a ForgeRock Authenticator (Push) authentication module:

Log in as an AM administrator. For example, amAdmin .

Go to Realms > Top Level Realm > Authentication > Modules, and click Add

Module.

On the New Module page, name the module pushAuth , select ForgeRock

Authenticator (Push) as the module type, and click Create.

Alter the Login Message.

For example:

Select Save Changes.

2. Add the module to an authentication chain:

Go to Realms > Top Level Realm > Authentication > Chains, and click Add

Chain.

On the Add Chain page, name the chain pushAuthChain , and click Create.

On the Edit Chain tab, click Add a Module.

On the New Module dialog box, from the Select Module drop-down list, select

the push module you created in the earlier step; for example, pushAuth . From

the Select Criteria drop-down list, select Required, and click OK.

On the Edit Chain tab, click Save Changes.

3. Create an authorization policy as described in Policies.

Make the following changes to the policy:

Go to Realms > Top Level Realm > Authorization > Policy Sets > Default

Policy Set.

Prepare AM for transactional authorization with push notifications

Authorize {{user}} at {{issuer}}?

Ensure that there are not multiple policies which match the protected resource

that is being authorized. If multiple policies have a matching subject or

environment conditions with the protected resource, it may be incorrectly

authorized.

NOTE

114 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/policies.html

On the Default Policy Set page, select Authenticated users can get

Apache HTTP home page .

On the Environments tab, select Add an Environment Condition, and click

Transaction.

From the Authentication Strategy drop-down list, select Authenticate to

Chain.

In the Strategy Specifier field, enter the name of the push authorization chain

created earlier, for example, pushAuthChain .

Select the checkmark icon, and click Save Changes.

The resulting policy will resemble the following image:

4. Choose one of the following options to demo transactional authorization:

The value entered must exactly match the name of the chain. The value is

not validated by the UI, and an incorrect value will cause the authorization

to fail.

NOTE

Transaction Environment Condition in a Policy

115 / 151

To use the AM admin UI for the demonstration, proceed to the steps outlined

in Transactional authorization with a browser.

To use the AM REST API for the demonstration, proceed to the steps outlined in

Transactional authorization over REST.

1. In a web browser, go to a URL that is protected by the policy you edited in Prepare

AM for transactional authorization with push notifications, such as

http://www.example.com:8000/index.html .

The web agent will redirect the browser to the AM login screen.

2. Log in to AM as user demo with password Ch4ng31t .

AM will display the authenticator push page:

The mobile device that was registered to the demo user will receive a push

notification message:

3. On the registered mobile device, tap the notification.

The ForgeRock Authenticator app will open. Swipe the switch to authorize the

access attempt.

Transactional authorization with a browser

116 / 151

After authorizing the request in the ForgeRock Authenticator app, the authenticator

push page in the web browser redirects to the requested resource, completing the

transactional authorization.

Note that refreshing the protected page in the web browser at this point starts a

new transactional authorization flow, and send a new push notification.

1. Obtain a session token from AM for user demo with password Ch4ng31t :

Transactional authorization over REST

$ curl \

--request POST \

117 / 151

2. Request a policy evaluation with the tokenId from the previous step as the

subject, and a resource URL that is protected by the policy you edited in Prepare AM

for transactional authorization with push notifications, such as

http://www.example.com:8000/index.html .

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM…​TU3OQ*",

"successUrl":"/openam/console",

"realm":"/alpha"

}

The request requires authentication as a user with the privileges to access the

policy endpoints, for example by specifying the SSO token ID in the

iPlanetDirectoryPro cookie. See Authenticate over REST.

NOTE

$ curl \

--cookie "iPlanetDirectoryPro=AQIC5wM2L…​zEAAA.." \" \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.0" \

--data '{

"resources" : ["http://www.example.com:8000/index.html"],

"subject" : {

"ssoToken" : "AQIC5w…​NTcy"

},

"application": "iPlanetAMWebAgentService"

}' \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies/?_action=evaluate"

{

"resource": "http://www.example.com:8000/index.html",

"actions": {},

"attributes": {},

"advices": {

"TransactionConditionAdvice": [

"9dae2c80-fe7a-4a36-b57b-4fb1271b0687"

]

},

118 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html

AM returns an empty actions element, and a transaction ID in the

TransactionConditionAdvice property, because a transactional authorization is

required to access the resource.

3. Initiate authentication, and include the transaction ID in the composite advice.

Note that the steps used for performing a transactional authorization are identical

to performing a session upgrade. See Session upgrade.

The transaction ID returned in the previous step must be returned as composite

advice query parameters, wrapped in URL-encoded XML. The XML format is as

follows:

Use the SSO token of the demo user for this request.

Note that the following curl command URL-encodes the XML values, and the -G

parameter appends them as query string parameters to the URL:

"ttl": 0

}

Enter the name of your policy set in the application parameter if you are

not creating policies in the default, iPlanetAMWebAgentService .

TIP

<Advices>

<AttributeValuePair>

<Attribute name="TransactionConditionAdvice"/>

<Value>Transaction Id</Value>

</AttributeValuePair>

</Advices>

$ curl -get \

--cookie "iPlanetDirectoryPro=AQIC5w…​NTcy*" \" \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

--data-urlencode 'authIndexType=composite_advice' \

--data-urlencode 'authIndexValue=<Advices>

<AttributeValuePair>

<Attribute name="TransactionConditionAdvice"/>

<Value>9dae2c80-fe7a-4a36-b57b-4fb1271b0687</Value>

</AttributeValuePair>

</Advices>' \

'https://openam.example.com:8443/openam/json/realms/root/realm

119 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-upgrade.html

s/alpha/authenticate'

{

"authId": "eyJ0eXAiOi…​WLxJ-1d6ovYKHQ",

"template": "",

"stage": "AuthenticatorPush3",

"header": "Authenticator Push",

"callbacks": [

{

"type": "PollingWaitCallback",

"output": [

{

"name": "waitTime",

"value": "10000"

}

]

},

{

"type": "ConfirmationCallback",

"output": [

{

"name": "prompt",

"value": ""

},

{

"name": "messageType",

"value": 0

},

{

"name": "options",

"value": [

"Use Emergency Code"

]

},

{

"name": "optionType",

"value": -1

},

{

"name": "defaultOption",

"value": 0

}

],

"input": [

{

"name": "IDToken2",

120 / 151

At this point, the mobile device that was registered to the demo user will receive a

push notification message that they should authorize in the ForgeRock

Authenticator app.

4. Ensure that the time specified in the waitTime property in the callbacks has

passed, in this case at least 10 seconds, and then complete and return the

requested callbacks.

The value of the authId property must also be returned, as well as the URL-

encoded transaction ID.

Use the SSO token of the demo user for this request.

"value": 100

}

]

}

]

}

In this example, the required XML parameters have been URL-encoded and

added to the URL. The curl command is not able to use the --data-

urlencode option for query-string parameters and also send a JSON payload.

NOTE

$ curl \

--cookie "iPlanetDirectoryPro=AQIC5w…​NTcy*" \" \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

--data '{

"authId":"eyJ0eXAiOi…​WLxJ-1d6ovYKHQ",

"template":"",

"stage":"AuthenticatorPush3",

"header":"Authenticator Push",

"callbacks":[

{

"type":"PollingWaitCallback",

"output":[

{

"name":"waitTime",

"value":"10000"

}

]

},

{

121 / 151

"type":"ConfirmationCallback",

"output":[

{

"name":"prompt",

"value":""

},

{

"name":"messageType",

"value":0

},

{

"name":"options",

"value":[

"Use Emergency Code"

]

},

{

"name":"optionType",

"value":-1

},

{

"name":"defaultOption",

"value":0

}

],

"input":[

{

"name":"IDToken2",

"value":100

}

]

}

]

}' \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate\

?authIndexType=composite_advice\

&authIndexValue=%3CAdvices%3E%0A\

%3CAttributeValuePair%3E%0A%3CAttribute%20name%3D\

%22TransactionConditionAdvice%22%2F%3E%0A\

%3CValue%3E9dae2c80-fe7a-4a36-b57b-4fb1271b0687\

%3C%2FValue%3E%0A%3C%2FAttributeValuePair\

%3E%0A%3C%2FAdvices%3E"

{

"tokenId":"AQIC5w…​NTcy*",

122 / 151

If the callbacks were correctly completed, and the push notification was responded

to in the ForgeRock Authenticator app, AM returns the original tokenId value.

If the push notification has not yet been responded to in the ForgeRock

Authenticator app, AM will return the required callbacks again, as in the previous

step. Wait until the amount of time specified in the waitTime element has passed

and retry the request until the tokenId returns.

5. Reevaluate the policy, including the transaction ID as the value of a TxId property

in the environment element:

"successUrl":"http://www.example.com:8000/index.html",

"realm":"/alpha"

}

$ curl \

--cookie "iPlanetDirectoryPro=AQIC5wM2L…​zEAAA.." \" \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=1.0" \

--data '{

"resources" : ["http://www.example.com:8000/index.html"],

"subject" : {

"ssoToken" : "AQIC5w…​NTcy"

},

"environment": {

"TxId": ["9dae2c80-fe7a-4a36-b57b-4fb1271b0687"]

}

}' \

"https://openam.example.com:8443/openam/json/policies/?

_action=evaluate"

{

"resource":"http://www.example.com:8000/index.html",

"actions":{

"POST":true,

"GET":true

},

"attributes":{

},

"advices":{

},

"ttl":0

}

123 / 151

As the authentication required by the transaction was successful, the second policy

evaluation returns the POST and GET actions as defined in the policy.

Notice that the time-to-live (ttl) value of the policy evaluation result is set to 0 ,

meaning that the policy must not be cached. The policy only allows a single access

to the resource, which must be managed by the policy enforcement point.

Performing the policy evaluation again with the same subject and resource at this

point starts a new transactional authorization flow, requiring each of the steps

above to be repeated in order to access the protected resource each time.

You can configure AM to grant scopes statically or dynamically:

Statically (Default). You configure several OAuth 2.0 clients with different subsets of

scopes and resource owners are redirected to a specific client depending on the

scopes required. As long as the resource owner can authenticate and the client can

deliver the same or a subset of the requested scopes, AM issues the token with the

scopes requested. Therefore, two different users requesting scopes A and B to the

same client will always receive scopes A and B.

Dynamically. You configure an OAuth 2.0 client with a comprehensive list of scopes

and resource owners authenticate against it. When AM receives a request for

scopes, AM’s Authorization Service grants or denies access scopes dynamically by

evaluating authorization policies at runtime. Therefore, two different users

requesting scopes A and B to the same client can receive different scopes based on

policy conditions.

Consider the case of a company deployment that supports custom OAuth 2.0 clients

and internal applications. The use of the internal application is bound by the terms

and conditions specified by the company; therefore, the user does not need to

consent to provide with their user profile information (for example, the profile

scope).

To provide the internal application with the user profile automatically, the

administrator creates a policy that grants the profile scope to all requests made by

authenticated users using a particular OAuth 2.0 client.

Dynamic OAuth 2.0 authorization

Example use case

How does dynamic OAuth 2.0 authorization work?

124 / 151

Realms

Policy Sets

Policies

Request

$ curl \
--request POST \
--user "myClient:forgerock" \
--data "grant_type=password&username=demo&

password=forgerock&scope=profile+email" \
https://openam.example.com:8443/openam/oauth2/access_token

AMOAuth 2.0 Client

MyPolicy

Resources
profile

Actions
ALLOW

Subjects
All Authenticated Users

Conditions
Between 09:00 and 17:00

Response

{
"access_token":"bBHPAs6ycNWCbspk-IW6Cnu8uk0",
"scope":"profile",
"token_type":"Bearer",
"expires_in":3599

}

Resource Types

OAuth2 Scope

Patterns
*

Actions
GRANT

Figure 11. Granting or Denying OAuth2 2.0 Scopes Dynamically

When issuing access tokens, AM deduces consent status based on a policy result: an

allow policy result means consent is granted, while a deny result means it is denied.

If AM cannot deduce consent using a policy, for example, because none is defined, it is

down to the resource owner to decide whether to grant consent. Note that this is only

possible in flows where the resource owner interacts with the consent screen. If the

resource owner cannot interact with the consent screen, for example, during the

ROPC Grant flow, AM denies the scope.

Just like when granting scopes statically, AM only evaluates default scopes configured

in the OAuth 2.0 client profile when no scope is requested. AM follows the same rules

to deduce consent for both default and requested scopes.

When issuing refresh tokens, AM issues any scope that was previously consented to

either by policy or by the resource owner on the consent screen, unless it is explicitly

denied by a policy.

To understand which flows are interactive and which ones are not, see the examples

in OAuth 2.0 grant flows and OpenID Connect grant flows.

OAuth 2.0 authorization is implemented by using the OAuth2 Scope resource type.

Configure policies for your OAuth 2.0 service in a custom policy set with the OAuth2

Scope resource type, or use the default oauth2Scopes policy set.

Related information: Policies.

Writing policies for OAuth 2.0 may not be straightforward if your environment requires

complex conditions. The easiest way to test if your OAuth 2.0 policies are granting or

denying the scopes you expect before setting them in production is to configure AM as

an OAuth 2.0 client and authorization provider and request some tokens.

1. Configure an instance of the OAuth 2.0 provider.

Configure Access Management for the examples

125 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-implementing-flows.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oidc-implementing-flows.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/policies.html

See Authorization server configuration.

Ensure that:

Use Policy Engine for Scope Decisions is enabled.

Response Type Plugins is configured for token and id_token .

Grant Types is configured for Resource Owner Password Credentials and

Implicit .

2. Go to Realms > Realm Name > Applications > OAuth 2.0 and add a client.

Configure the client properties as follows:

Client ID: myClient

Client secret: forgerock

Redirection URIs: https://www.example.com:443/callback

Scope(s): profile email openid

Grant Types: Resource Owner Password Credentials

3. Go to Realms > Realm Name > Authorization > Policy Sets, and select Default

OAuth2 Scopes Policy Set.

4. Create a new policy as follows:

Name: myOAuth2Policy

Resource Type: OAuth2 Scope

Resources: Select the * resource pattern and replace it with email .

Once the policy is created, you will see the Summary tab.

5. On the Actions tab, add the GRANT action, and set the default state to Allow . Save

your changes.

6. On the Subjects tab, specify the subject condition All of…​Authenticated

Users . Save your changes.

7. If the demo user is not present in your environment, create it by performing the

following step:

Go to Realms > Realm Name > Identities, and add a new user called demo

with password Ch4ng31t .

This procedure shows how to test OAuth 2.0 policies with the ROPC Grant flow. In this

flow, the resource owner does not interact with the consent screen and cannot

therefore grant scopes.

1. Request an access token from AM by specifying:



Test OAuth 2.0 policies in a non-interactive flow

126 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-configure-authz.html
https://www.example.com/callback
https://www.example.com/callback
https://www.example.com/callback

The client name, myClient , and its password, forgerock .

The resource owner password credentials grant type, password .

The user and password to authenticate with, demo and Ch4ng31t .

The requested scopes, email and profile .

2. Review the JSON response.

It should be similar to the following:

Note how the requested scopes were email and profile , but the scope granted

was email , which matches the GRANT=Allow action defined in the policy.

This procedure shows how to test OAuth 2.0 policies with the OpenID Connect Implicit

Grant flow. In this flow, the end user can interact with the consent screen, and can

therefore grant scopes.

1. In a web browser, make a call to the oauth2/authorize endpoint with the

following parameters:

nonce=123

state=456

scope=openid+email+profile

response_type=id_token

$ curl \

--request POST \

--data "grant_type=password" \

--data "username=demo" \

--data "password=Ch4ng31t" \

--data "scope=profile email" \

--data "client_id=myClient" \

--data "client_secret=forgerock" \

"https://openam.example.com:8443/openam/oauth2/realms/root/rea

lms/alpha/access_token"

{

"access_token":"B78LPVHaycIrObh12Qps0n9ynYM",

"scope":"email",

"token_type":"Bearer",

"expires_in":3599

}

Test OAuth 2.0 policies in an interactive OpenID Connect flow

127 / 151

client_id=myClient

redirect_uri=https://www.example.com:443/callback

For example: https://openam.example.com:8443/openam/oauth2/authorize?

nonce=123&state=456&scope=openid+email+profile&response_type=id_toke

n&client_id=myClient&redirect_uri=https://www.example.com:443/callba

ck . You will be prompted to log in to AM.

2. Log in as the demo user.

You will be prompted to provide consent for the profile scope:

Figure 12. Requesting Consent for the Profile Scope

Notice that you are not prompted to provide consent for the email scope.

3. Allow the flow to continue.

4. Review the URL of the browser.

It should show something similar to:

http://example.com/#scope=openid%20profile%20email&id_token=eyJ0eXJK

V1Q…​8WK1eg&state=456 .

128 / 151

Notice that the email scope has been granted automatically.

If the authorization policy had been configured as GRANT=Deny , you still would

have not seen the email scope in the consent page, but the scope would not

appear in the URL of the browser.

In addition to the functionality provided by Accessing HTTP Services and Debug logging,

OAuth 2.0 policy condition scripts can access some environment properties relating to

the authorization request.

This information can then be returned as needed in the response to an authorization

request:

Authorization State Objects

Object Type Description

authorized Boolean Return true if the

authorization is currently

successful, or false if

authorization has failed.

Server-side scripts must

set a value for

authorized before

completing.

environment Map<String,

Set<String>>

Describe the environment

passed from the client

making the authorization

request.

For example, the following

shows an environment

map with a single entry:

OAuth 2.0 scopes policy script API functionality

"environment": {

"clientId": [

"MyOAuth2Client"

]

}

129 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/scripting-guide/scripting-api-global-http-client.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/scripting-guide/scripting-api-global-logger.html

The following JavaScript writes the ID of the OAuth 2.0 client to the debug log, and then

authorizes the request:

AM policies let you restrict access to resources based both on identity and group

membership, and also on a range of conditions including session age, authentication

chain or module used, authentication level, realm, session properties, IP address and

DNS name, user profile content, resource environment, date, day, time of day, and time

zone. Yet, some deployments require further distinctions for policy evaluation. This

section explains how to customize policy evaluation for deployments with particular

requirements not met by built-in AM functionality.

This page shows how to build and use a custom policy plugin that implements a custom

subject condition, a custom environment condition, and a custom resource attribute.

The AM policy framework lets you build plugins that extend subject conditions,

environment conditions, and resource attributes.

For information on downloading and building AM sample source code, see How do I

access and build the sample code provided for PingAM? in the Knowledge Base.

Get a local clone so that you can try the sample on your system. You will find the

relevant files under the /path/to/openam-samples-external/policy-evaluation-

plugin directory.

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample policy evaluation plugin, and also

specifies its dependencies on AM components.

src/main/java/org/forgerock/openam/examples/SampleAttributeType.ja

va

Extends the com.sun.identity.entitlement.ResourceAttribute interface,

and shows an implementation of a resource attribute provider to send an attribute

with the response.

logger.message("Client ID: " + environment.get("clientId"));

authorized=true;

Customize policy evaluation with a plug-in

Sample plugin



Files in the sample

130 / 151

https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM

src/main/java/org/forgerock/openam/examples/SampleConditionType.ja

va

Extends the com.sun.identity.entitlement.EntitlementCondition

interface, and shows an implementation of a condition that is the length of the

user name.

A condition influences whether the policy applies for a given access request. If the

condition is fulfilled, then AM includes the policy in the set of policies to evaluate in

order to respond to a policy decision request.

src/main/java/org/forgerock/openam/examples/SampleSubjectType.java

Extends the com.sun.identity.entitlement.EntitlementSubject interface,

and shows an implementation that defines a user to whom the policy applies.

A subject, like a condition, influences whether the policy applies. If the subject

matches in the context of a given access request, then the policy applies.

src/main/java/org/forgerock/openam/examples/SampleEntitlementModul

e.java

These files serve to register the plugin with AM.

The Java class, SampleEntitlementModule , implements the

org.forgerock.openam.entitlement.EntitlementModule interface. In the

sample, this class registers SampleAttribute , SampleCondition , and

SampleSubject .

The services file, org.forgerock.openam.entitlement.EntitlementModule ,

holds the fully qualified class name of the EntitlementModule that registers the

custom implementations. In this case,

org.forgerock.openam.entitlement.EntitlementModule .

For an explanation of service loading, see the ServiceLoader API specification.

1. If you haven’t already done so, download and build the samples.

For information on downloading and building AM sample source code, see How do I

access and build the sample code provided for PingAM? in the Knowledge Base.

2. When the build is complete, copy the policy-evaluation-plugin-7.2.2.jar file

to the WEB-INF/lib directory where you deployed AM:

3. Update the user UI to include the custom subject and environment conditions.

For details, refer to UI customization:



Build the sample plugin



$ cp target/*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

131 / 151

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
file:///home/pptruser/Downloads/build/site/pingam/7.2/ui-customization-guide/preface.html

Locate the line that contains the following text:

Insert the following text after the line you located in the previous step:

Locate the line that contains the following text:

Insert the following text after the line you located in the previous step:

4. If your UI supports multiple locales, change the translation.json files for those

locales, as needed.

5. Restart AM or the container in which it runs.

To use your custom policy in an existing policy set, you must update the policy set.

Update the iPlanetAMWebAgentService policy set in the top level realm of a fresh

installation.

1. Authenticate to AM as the amAdmin user:

"subjectTypes": {

"SampleSubject": {

"title": "Sample Subject",

"props": {

"name": "Name"

}

},

"conditionTypes": {

"SampleCondition": {

"title": "Sample Condition",

"props": {

"nameLength": "Minimum username length"

}

},

Add a custom policy to an existing policy set

You can’t update a policy set that already has policies configured. If policies are

configured for a policy set, you must first delete the policies, then update the policy

set.

NOTE

132 / 151

2. Update the iPlanetAMWebAgentService policy set by adding the SampleSubject

subject condition and the SampleCondition environment condition:

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: amadmin" \

--header "X-OpenAM-Password: password" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM2…​",

"successUrl":"/openam/console",

"realm":"/alpha"

}

$ curl \

--request PUT \

--header "iPlanetDirectoryPro: AQIC5wM2…​" \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=1.0" \

--data '{

"name": "iPlanetAMWebAgentService",

"conditions": [

"LEAuthLevel",

"Script",

"AuthenticateToService",

"SimpleTime",

"AMIdentityMembership",

"OR",

"IPv6",

"IPv4",

"SessionProperty",

"AuthScheme",

"AuthLevel",

"NOT",

"AuthenticateToRealm",

"AND",

"ResourceEnvIP",

"LDAPFilter",

"OAuth2Scope",

"Session",

"SampleCondition"

133 / 151

In the AM admin UI, add a policy to the iPlanetAMWebAgentService policy set in the

top level realm that allows HTTP GET access for URLs based on the template

http://www.example.com:80/* , and uses the custom subject and environment

conditions.

1. Create the policy with the following properties:

Sample Policy Properties

Property Value

Name Sample Policy

Resource Type URL

Resources Use the *://*:*/* resource template

to specify the resource

http://www.example.com:80/* .

Actions Allow GET

Subject Conditions Add a subject condition of type Sample

Subject and a name of demo so that

the demo user is the only user who can

access the resource.

],

"subjects": [

"NOT",

"OR",

"JwtClaim",

"AuthenticatedUsers",

"AND",

"Identity",

"NONE",

"SampleSubject"

],

"applicationType": "iPlanetAMWebAgentService",

"entitlementCombiner": "DenyOverride"

}'

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/applications/iPlanetAMWebAgentService"

Try the sample subject and environment conditions

134 / 151

Property Value

Environment Conditions Add an environment condition of type

Sample Condition and a minimum

username length of 4 so that only

users with a username length of 4

characters or greater can access the

resource.

2. With the policy in place, authenticate both as a user who can request policy

decisions and also as a user trying to access a resource.

Both of these calls return tokenId values for use in the policy decision request.

3. Use the administrator tokenId as the header of the policy decision request, and

the user tokenId as the subject ssoToken value.

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: amadmin" \

--header "X-OpenAM-Password: password" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM2…​",

"successUrl":"/openam/console",

"realm":"/alpha"

}

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM…​TU3OQ*",

"successUrl":"/openam/console",

"realm":"/alpha"

}

135 / 151

Notice that the actions returned from the policy evaluation call are set in

accordance with the policy.

The sample custom policy plugin can have AM return an attribute with the policy

decision. In order to make this work, list the resource type for the URL resource type to

obtain its UUID, and then update your policy to return a test attribute:

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.1" \

--header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw…​" \

--data '{

"subject":{

"ssoToken":"AQIC5wM2LY4Sfcy…​"

},

"resources":[

"http://www.example.com:80/index.html"

],

"application":"iPlanetAMWebAgentService"

}' \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies?_action=evaluate"

{

"resource": "http://www.example.com:80/index.html",

"actions": {

"GET": true

},

"attributes": {},

"advices": {}

}

Try the sample resource attributes

$ curl \

--request GET \

--header "iPlanetDirectoryPro: AQIC5wM2…​" \

--header "Accept-API-Version: resource=1.0" \

"https://openam.example.com:8443/openam/json/realms/root/resourcet

ypes?_queryFilter=name%20eq%20%22URL%22"

{

"result":[

{

"uuid":"URL-resource-type-UUID",

136 / 151

When you now request the same policy decision as before, AM returns the test

attribute that you configured in the policy.

"name":"URL",

"description":"The built-in URL Resource Type

available policies.",

"patterns":["://:*/","://:/?"],

…​

}

],

"resultCount":1,

"pagedResultsCookie":null,

"totalPagedResultsPolicy":"NONE",

"totalPagedResults":-1,f

"remainingPagedResults":0

}

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "Accept-API-Version: resource=2.1" \

--header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw…​" \

--data '{

"subject":{

"ssoToken":"AQIC5wM2LY4Sfcy…​"

},

"resources":[

"http://www.example.com:80/index.html"

],

"application":"iPlanetAMWebAgentService"

}' \

"https://openam.example.com:8443/openam/json/realms/root/realms/al

pha/policies?_action=evaluate"

{

"resource": "http://www.example.com/profile",

"actions": {

"GET": true

},

"attributes": {

"test": [

"sample"

]

},

137 / 151

After customizing your AM deployment to use policy evaluation plugins, inform ssoadm

users to add the jar file containing the plugins to the classpath before running policy

management subcommands.

To add a jar file to the ssoadm classpath, set the CLASSPATH environment variable

before running the ssoadm command:

You can use scripts to tailor the actions that AM takes as part of policy evaluation.

AM includes a sample policy condition script that demonstrates how to access a user’s

profile information, use that information in HTTP calls, and make a policy decision based

on the outcome.

To examine the contents of the sample policy condition script in the AM admin UI, go to

Realms > Top Level Realm > Scripts, and select Scripted Policy Condition.

Related information:

Scripting

Policy condition script API

AM requires a small amount of configuration before you can test the default policy

condition script. The default policy condition script requires that the subject of the policy

has an address in their profile. The script compares this address to the country in the

resource URL and to the country from which the request originated (determined by an

external GeoIP web service). The demo user also needs access to evaluate policies.

Add an address value to the demo user’s profile. The default policy condition script uses

the address when performing policy evaluation.

"advices": {}

}

Extend the ssoadm classpath

$ export CLASSPATH=/path/to/jarfile:$CLASSPATH

$ ssoadm …​

Scripted policy conditions

Prepare AM to use scripted policy conditions

Add an address for the demo user

138 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/scripting-guide/preface.html

1. Log in as an AM administrator, for example amAdmin .

2. Select Realms > Top Level Realm > Identities.

3. On the Identities tab, select the demo user.

4. In the Home Address field, enter a valid address.

For example:

5. Select Save Changes.

In this procedure, add a user to a group and assign the privilege required to perform

policy evaluation.

1. Log in as an AM administrator, for example amAdmin .

2. Select Realms > Top Level Realm > Identities.

3. Select Add Identity, enter an ID for the identity, such as restPolicyUser ,

complete the required fields, and click Create.

4. Return to Realms > Top Level Realm > Identities.

On the Groups tab, select Add Group. Enter an ID for the group, such as

policyEval , and click Create.

5. Return to Realms > Top Level Realm > Identities.

Select the user you created, for example, restPolicyUser .

Select the Groups tab.

In the Name box, select the group created in step 4, for example policyEval .

Click Save Changes.

6. Select Realms > Top Level Realm > Identities > Groups.

7. Select the group created in step 4, for example policyEval .

8. On the Privileges tab, select Policy Admin .

9. Click Save Changes.

These steps create a policy that uses the default policy condition script. You can then

perform policy evaluation to test the script.

1. Log in as an AM administrator, for example amAdmin .

201 Mission St, Suite 2900, San Francisco, CA 94105

Let a user evaluate policies

Create a policy that uses the default policy condition script

139 / 151

2. Select Realms > Top Level Realm > Authorization > Policy Sets.

3. On the Policy Sets page, select Default Policy Set .

4. On the Default Policy Set page, select Add a Policy.

5. Define the policy as follows:

Enter a name for the policy.

Define resources to which the policy applies:

Select URL from the Resource Type drop down list.

Select the resource pattern *://*:*/* from the Resources drop down

list.

Click Add.

The *://*:*/* resource appears in the Resources field.

Select Add Resource to add a second resource to the policy.

Select the resource pattern *://*:*/*?* from the Resources drop down

list.

Click Add.

The *://*:*/*?* resource appears along with the *://*:*/* resource

in the Resources field.

Click Create to create the policy.

Specify actions to which the policy applies:

Select the Actions tab.

Select GET from the Add an Action list.

The GET action appears in the list of actions. The default state for the GET

action is Allow.

140 / 151

Select Save Changes.

Configure identities to which the policy applies:

Select the Subjects tab.

Select the edit icon ().

Select Authenticated Users from the Type list.

Select the OK icon—the check mark.

Click Save Changes.

Configure environments in which the policy applies:

Select the Environments tab.

Select Add an Environment Condition.

Select Script from the Type list.

Select Scripted Policy Condition from the Script Name list.

Select the OK icon—the check mark.

141 / 151

Click Save Changes.

No additional configuration is required in the Response Attributes or Details

tabs.

To evaluate against a policy, you must first obtain an SSO token for the subject

performing the evaluation, in this case the demo user. You can then make a call to the

policies?_action=evaluate endpoint, including some environment information,

which the policy uses to make an authorization decision.

1. Obtain an SSO token for the demo user:

2. Obtain an SSO token for the user who has the privilege required to evaluate

policies.

Test the default policy condition script

Evaluate a policy

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM…​TU3OQ*",

"successUrl":"/openam/console",

"realm":"/alpha"

}

142 / 151

For example, restPolicyUser .

3. Send an evaluation request to the policies endpoint, providing the SSO token of

the restPolicyUser user as the value of the iPlanetDirectoryPro header.

In the JSON data, set the subject object to the SSO token of the demo user. In the

resources object, include a URL that resides on a server in the same country as

the address set for the demo user. In the environment object, include an IP

address that is also based in the same country as the user and the resource.

The example below uses the URL of a web site and an IP address located in the

United States:

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: restPolicyUser" \

--header "X-OpenAM-Password: myStrongPassword" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC8aF…​TA1OQ*",

"successUrl":"/openam/console",

"realm":"/alpha"

}

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC8aF…​TA1OQ*" \

--data '{

"resources":[

"https://www.us-site.com:8443/index.html"

],

"application":"iPlanetAMWebAgentService",

"subject":{

"ssoToken":"AQIC5wM…​TU3OQ*"

},

"environment":{

"IP":[

"38.99.39.210"

]

}

}' \

143 / 151

If the country in the subject’s profile matches the country determined from the

source IP in the environment and the country determined from the resource URL,

then AM returns a list of actions available. The script will also add an attribute to the

response called countryOfOrigin with the country as the value.

If the countries do not match, no actions are returned. In the following example, the

resource URL is based in France, while the IP and user’s address in the profile are

based in the United States:

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies?_action=evaluate"

{

"advices":{},

"ttl":9223372036854775807,

"resource":"https://www.us-site.com:8443/index.html",

"actions":{

"POST":true,

"GET":true

},

"attributes":{

"countryOfOrigin":[

"United States"

]

}

}

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC8aF…​TA1OQ*" \

--data '{

"resources":[

"https://www.france-site.com:8443/index.html"

],

"application":"iPlanetAMWebAgentService",

"subject":{

"ssoToken":"AQIC5wM…​TU3OQ*"

},

"environment":{

"IP":[

"38.99.39.210"

]

}

}' \

"https://openam.example.com:8443/openam/json/realms/root/realm

144 / 151

These steps show how to enable trace-level debug logging for scripted policy conditions,

so that logger output from the default policy condition script is recorded.

1. Log in as the AM administrator, amAdmin .

2. Go to the Logback.jsp page, for example:

https://openam.example.com:8443/openam/Logback.jsp .

3. In the Logger list, scroll to select the scripted policy decision logger; for example

scripts.POLICY_CONDITION.9de3eb62-f131-4fac-a294-7bd170fd4acb .

4. From the Level list, choose the debug level required. In this example, select Trace .

5. Click Apply.

Trace-level debug logging is now enabled for scripted policy conditions, with script

output appearing in the /path/to/openam/var/debug/Policy debug log file.

Changes made in the Logback.jsp page are not persisted after rebooting AM or

the container in which it runs.

For more information on configuring debug logging, see Debug logging.

s/alpha/policies?_action=evaluate"

{

"advices": {},

"ttl": 9223372036854775807,

"resource": "https://www.france-site.com:8443/index.html",

"actions": {},

"attributes": {}

}

Enable debug logging for scripted policy conditions

The script containing the debug output that you want to capture must have

executed at least once to create the logger.

The name of the scripted policy decision logger has the format:

scripts.POLICY_CONDITION.script-UUID .

IMPORTANT

145 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/maintenance-guide/debug-logging.html

In addition to the functionality provided by Accessing HTTP Services and Debug logging,

scripted policy condition scripts can access the authorization state of a request, the

information about a session, and the user profile’s data.

This information can be returned, in the response to an authorization request.

Server-side scripts can access the current authorization state through the following

objects:

Authorization State Objects

Object Type Description

authorized Boolean Return true if the

authorization is currently

successful, or false if

authorization has failed.

Server-side scripts must

set a value for

authorized before

completing.

Policy condition script API

If you use static methods within policy scripts, you must allowlist those scripts.

Otherwise, policy evaluation will fail with an exception (logged in the Entitlement

debug file) similar to the following:

IMPORTANT

java.lang.SecurityException: Access to Java class script-name is

prohibited.

Access authorization state

146 / 151

file:///home/pptruser/Downloads/build/site/pingam/7.2/scripting-guide/scripting-api-global-http-client.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/scripting-guide/scripting-api-global-logger.html

Object Type Description

environment Map<String,

Set<String>>

Describe the environment

passed from the client

making the authorization

request.

For example, the following

shows a simple

environment map with a

single entry:

resourceURI String Specify the URI of the

resource to which

authorization is being

requested.

username String Specify the user ID of the

subject that is requesting

authorization.

Server-side authorization scripts can access the profile data of the subject of the

authorization request, through the methods of the identity object.

Authorization Script Profile Data Methods

Method Parameters Return Type Description

"environment": {

"IP": [

"127.0.0.1"

]

}

Access profile data

To access a subject’s profile data, they must be logged in and their SSO token must

be available.

NOTE

147 / 151

Method Parameters Return Type Description

identity.getAtt

ribute

Attribute Name

(type: String)

Set Return the values

of the named

attribute for the

subject of the

authorization

request.

identity.setAtt

ribute

Attribute Name

(type: String)

Attribute

Values (type:

Array)

Void Set the named

attribute to the

values specified by

the attribute value

for the subject of

the authorization

request.

identity.addAtt

ribute

Attribute Name

(type: String)

Attribute Value

(type: String)

Void Add an attribute

value to the list of

attribute values

associated with the

attribute name for

the subject of the

authorization

request.

identity.store None Void Commit any

changes to the

identity repository.

Server-side authorization scripts can access session data of the subject of the

authorization request through the methods of the session object.

You must call

store()

otherwise

changes will

be lost when

the script

completes.

CAUTION

Access session data

NOTE

148 / 151

Authorization Script Session Methods

Method Parameters Return Type Description

session.getProp

erty

Property Name

(type: String)

String Retrieve properties

from the session

associated with the

subject of the

authorization

request. See the

table below for

example properties

and their values.

The following table demonstrates some of the session properties available to the

session.getProperty() method, and example values:

Get Session Data Example Keys and Values

Key Sample value

AMCtxId e370cca2-02d6-41f9-a244-

2b107206bd2a-122934

amlbcookie 01

authInstant 2018-04-04T09:19:05Z

AuthLevel 0

CharSet UTF-8

clientType genericHTML

FullLoginURL /openam/XUI/?realm=alpha#login/

Host 198.51.100.1

HostName openam.example.com

Locale en_US

Organization dc=openam,dc=forgerock,dc=org

To access the session data of the subject, they must be logged in and their SSO

token must be available.

NOTE

149 / 151

Key Sample value

Principal uid=amAdmin,ou=People,dc=openam,d

c=forgerock,dc=org

Principals amAdmin

Service ldapService

successURL /openam/console

sun.am.UniversalIdentifier uid=amAdmin,ou=People,dc=openam,d

c=forgerock,dc=org

UserId amAdmin

UserProfile Required

UserToken amAdmin

webhooks myWebHook

Server-side authorization scripts can return information in the response to an

authorization request.

Authorization Script Response Methods

Method Parameters Return Type Description

responseAttribu

tes.put

Attribute Name

(type: String)

Attribute

Values (type:

Array)

Void Add an attribute to

the response to the

authorization

request.

advice.put Advice Key (type:

String)

Advice Values

(type: Array)

Void Add advice key-

value pairs to the

response to a

failing

authorization

request.

Set authorization responses

150 / 151

Method Parameters Return Type Description

ttl TTL Value (type:

Integer)

Void Add a time-to-live

value, which is a

timestamp in

milliseconds to the

response to a

successful

authorization. After

the time-to-live

value the decision

is no longer valid.

If no value is set,

TTL Value defaults

to

Long.MAX_VALUE

(922337203685477

5807), which

means the decision

has no timeout,

and can live for as

long as the calling

client holds on to it.

In the case of

policy enforcement

points, they hold

onto the decision

for their configured

cache timeout.

Was this helpful?

Copyright © 2010-2025 ForgeRock, all rights reserved.

151 / 151

