
These topics are written for administrators that are comfortable securing web

applications. Although the topics lay out a comprehensive list of actions to take, security

is a very broad subject, and every environment is di�erent; readers are expected to do

their own research and complement the information found in these topics.

These topics do not provide guidance on securing speci�c AM features, such as OAuth

2.0 or SAML v2.0. You will �nd this information in the topics dedicated to those features.

When you deploy AM, you must ensure that your environment is built and con�gured

with security in mind. This includes:

The network infrastructure.

The operating system.

The container where AM runs.

The Java installation and the cryptography settings.

The clients and applications that will connect to AM.

The CTS store, identity stores, and any other application stores.

AM’s own con�guration.

Security

☁

Tips for securing your

network infrastructure.

Network

About the AM audit

logging service.

Audit logging

AM cryptographic keys,

keystores, and secret

stores.

Certi�cates and keys

How to protect the

session cookie from

Protect the session

cookie from hijacking

1 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-communications.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logging.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-cookies.html

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

This list does not intend to show you best practices in network and system

administration. Rather, it suggests a number of security mechanisms that you can

expand upon.

Keep up to date on patches

Security vulnerabilities are the reason why you should keep your operating systems,

web and application servers, and any other application in your environment up to

date. Knowledge of vulnerabilities spread fast across malicious users, who would not

hesitate in trying to exploit them.

Ping Identity maintains a list of security advisories you should follow. You should also

follow similar lists from all your vendors.

Keep up to date on cryptographic methods and algorithms

Di�erent algorithms and methods are discovered and tested over time, and

communities of experts decide which are the most secure for di�erent uses. Do not

use outdated algorithms such as RSA for generating your keys.

Turn o� unnecessary features

The more features you have turned on, the more features you need to secure, patch,

and audit. If something is not being used, disable it or uninstall it.

Limit access to the servers hosting AM

A large part of protecting your environment is making sure only authorized people

can access your servers and applications through the appropriate network, using the

appropriate ports, and presenting strong-enough credentials.

Ensure users connect through SSL / TLS to the systems and audit system access

periodically.

For a list of ports used in AM by default, see Ports used.

Enforce security

malicious users.

General security considerations

2 / 207

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
https://backstage.forgerock.com/knowledge/advisories/feed/AWxfnseig-tyvndie93SE
https://backstage.forgerock.com/knowledge/advisories/feed/AWxfnseig-tyvndie93SE
https://backstage.forgerock.com/knowledge/advisories/feed/AWxfnseig-tyvndie93SE
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/am-ports-used.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-cookies.html

Do not expect your users to follow security practices on their own; enforce security

when possible by requiring secure connections, password resets, and strong

authentication methods.

Audit Access and Changes

Audit logs record all events that have happened. Some applications store them with

their engine logs, some others use speci�c �les or send the information to a di�erent

server for archiving. Operating systems have audit logs as well, to detect

unauthorized login attempts and changes to the software.

AM has its own audit logging service that adheres to the log structure common

across the ForgeRock Identity Platform.

It is extremely important to keep your AM instances safe from both internal and external

attacks. This can be a challenge when you cannot control who connects to your

instances.

For example, a client could send unprotected credentials in an HTTP Authorization

header. Even if AM were to reject the request, the credentials would already be leaked to

any eavesdroppers.

The best way to protect your environment is to enforce the use of secure HTTPS

communication.

The following table summarizes best practices about network security in AM

environments:

Task Resources

Enforce secure connections

Secure connections between AM and the

rest of your platform, whether it is DS

servers or your applications.

Secure HTTP and LDAP connections

Use a reverse proxy

Con�gure AM behind a reverse proxy.

This will protect AM against DoS attacks

and restrict access to AM and its

endpoints to networks you trust.

Con�gure AM behind a reverse proxy

Secure network communication

3 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secure-connections.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/reverse-proxy.html

Task Resources

Con�gure CORS �lters

Con�gure a CORS �lter such that only

your trusted clients and applications can

make cross-domain calls to your AM

instances.

Con�gure CORS support

Adjust AM’s cookie domain

Con�gure AM cookie domain so that AM

communicates with the hosts in the

required domains and sub-domains.

Change the cookie domain

Learn about the CSRF protection �lter

for REST endpoints

By default, AM protects its /json

endpoints using a header �lter.

Protect against CSRF attacks

Both HTTPS and LDAPS secure connections are based on the transport layer security

protocol (TLS), which depends on digital certi�cates (also called public key certi�cates).

Digital certi�cates are for sharing public keys used for signing and encryption, and they

include information such as the public key, the owner of such key, and a digital signature

created by the issuer of the certi�cate.

In client-server environments, the server provides a certi�cate that proves that the

content it serves is as intended and has not been modi�ed by malicious users. In some

environments, however, the client is also required to present its own certi�cate; this is

what is called mutual TLS (or mTLS).

In order to begin the TLS handshake, the actor receiving the certi�cate must know and

trust the issuer of the certi�cate. This happens by default for certi�cates issued by a

certi�cate authority (CA), but never for self-signed certi�cates. This means that, if you

decide to have self-signed certi�cates, you must share them across the servers and

applications that need to communicate in your environment.

Secure HTTP and LDAP connections

Be mindful of security breaches and vulnerabilities that happen across the world,

and ensure your environment is not using outdated insecure protocols, such as SSL

3.0, TLS 1.0, and others.

TIP

4 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cors-support.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/changing-cookie-domain.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/rest-CSRF.html

Con�gure the container where AM runs for HTTPS to prevent communication over

insecure HTTP. This includes HTTPS communication between AM and web/Java agents,

and AM and your applications, or AM and any other member of the ForgeRock Identity

Platform.

Note that con�guring AM for HTTPS is the �rst step; you need to also con�gure the

web/Java agent, your applications, and any other member of the ForgeRock Identity

Platform for HTTPS, too.

HTTPS connections happen at container level, encapsulated in the TLS protocol. This

means AM itself is not involved in checking or sending certi�cates. The same is true for

web and Java agents.

Some advanced AM features, however, require AM to be able to validate certi�cates

without the mediation of the container. For more information about those features, see

AM features that use keys.

To secure communications to AM, con�gure the container for HTTPS connections and

install AM using the https protocol and the appropriate secure port. Follow the steps in

Installation to prepare your environment and install AM.

You can also recon�gure your instances to use HTTPS. Learn more in How do I enable

SSL in PingAM for an existing installation? .

To control the protocols used for outbound HTTPS connections, con�gure the -

Dhttps.protocols JVM setting in the container where AM runs. For details, see Security

Settings

Con�gure AM and the identity and data stores that connect to it to enforce secure

communication, either using LDAPS or StartTLS. This includes communication between

AM and the CTS store, between AM and the application stores, and between AM and the

identity stores.

Secure directory server connections check certi�cates stored in the truststore of the

container where AM runs. This procedure assumes you are using Apache Tomcat and a

DS instance. Refer to your container and directory server documentation for more

information.

1. Con�gure your stores to enforce secure communication, if they do not already.

Con�gure the AM container for HTTPS connections

Secure Directory Server communication

Con�gure AM to trust Directory Server certi�cates

5 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/preface.html
https://support.pingidentity.com/s/article/How-do-I-enable-SSL-in-PingAM-for-an-existing-installation
https://support.pingidentity.com/s/article/How-do-I-enable-SSL-in-PingAM-for-an-existing-installation
https://support.pingidentity.com/s/article/How-do-I-enable-SSL-in-PingAM-for-an-existing-installation
https://support.pingidentity.com/s/article/How-do-I-enable-SSL-in-PingAM-for-an-existing-installation
file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/prepare-java.html#tuning-security
file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/prepare-java.html#tuning-security

For DS instances, see Require LDAPS in the DS documentation.

2. On the DS host, export the DS CA certi�cate.

DS uses a deployment ID and password to generate a CA key pair. Learn more

in Deployment IDs.

Use the dskeymgr command to export the CA certi�cate:

Copy the ca-cert.pem �le to an accessible location on the AM host.

3. Import the DS certi�cate into the AM truststore:

You are now ready to con�gure AM to use secure connections to the directory

server.

1. Make a backup of your environment, as explained in Back up con�gurations.

2. Ensure your stores are ready for secure connections, and that AM can trust the

certi�cates of the directory servers. Failure to do so may cause several problems,

such as the amAdmin user being unable to log in, or AM being unable to start up.

Try the change �rst in test or development environments.

DS 7 or later is con�gured to require secure connections by default; therefore,

you might have already con�gured some of your stores to use secure

connections during the AM installation process.

NOTE

$ /path/to/opendj/bin/dskeymgr \

export-ca-cert \

--deploymentId $DEPLOYMENT_ID \

--deploymentIdPassword password \

--outputFile /path/to/ca-cert.pem

$ keytool \

-importcert \

-file /path/to/ca-cert.pem \

-keystore /path/to/openam/security/keystores/truststore

Secure Directory Server communication

TIP

6 / 207

file:///pingds/7.2/security-guide/connections.html#require-ldaps
file:///pingds/7.2/security-guide/pki.html#about-deployment-ids
file:///home/pptruser/Downloads/build/site/pingam/7.2/maintenance-guide/backup-restore.html

3. Specify the TLS protocol(s) AM will use for outbound LDAPS connections by

con�guring the -Dorg.forgerock.openam.ldap.secure.protocol.version JVM

setting in the container where AM runs.

For example:

For details, see Security Settings

4. To con�gure identity stores:

In the AM admin UI, go to Realms > Realm Name > Identity Stores > Store

Name > Server Settings.

In the LDAP Connection Mode drop-down list, choose LDAPS.

Click Save Changes.

Perform these steps on every realm as necessary.

5. To con�gure LDAPS for the external CTS store:

In the AM admin UI, go to Deployment > Servers > Server Name > CTS >

External Store Con�guration.

Enable the SSL/TLS Enabled option.

Click Save Changes.

6. To con�gure the con�guration store:

Go to Deployment > Servers > Server Name > Directory Con�guration >

Server.

On the Connection type drown-down list, choose SSL.

Click Save Changes.

Perform these steps on every server as necessary.

7. To con�gure external policy and application stores:

Go to Con�gure > Global Service > External Data Stores > Secondary

Con�gurations > Store Name.

Enable the Use SSL option.

Certi�cate hostname validation is strict. AM checks that the hostname in the

LDAP server certi�cate matches the hostname of the directory server, and DS

checks that the server it is trying to connect to has a certi�cate that matches its

hostname.

TIP

-

Dorg.forgerock.openam.ldap.secure.protocol.version=TLSv1.2,TLS

v1.3

7 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/prepare-java.html#tuning-security

Click Save Changes.

Perform these steps for each store on every realm as necessary.

8. To con�gure external UMA stores:

Go to Deployment > Servers > Server Name > UMA > External UMA store.

Enable the SSL/TLS Enabled option.

Click Save Changes.

Perform these steps for each store as necessary.

9. When using clients, ensure you make LDAP calls through the LDAPS port and that

the client has access to the store certi�cate.

Otherwise, the LDAP server will not be able to validate the connection.

For DS stores, you should also specify the keystore �le containing the store

certi�cate, and its password. For example:

Di�erent commands may require di�erent options. Di�erent keystore types, too.

For more information, see the Directory Services Tools Reference .

Reverse proxies (such as ForgeRock Identity Gateway) are proxy servers that sit between

clients and application servers. Their main function is to act on behalf of the application

server, forwarding resources to the client as if they were the application server itself.

Modern reverse proxies provide additional functionality such as load balancing,

compression, SSL termination, web acceleration, and �rewall capabilities.

Con�guring a reverse proxy in front of your AM instances provides the following security

bene�ts:

Protecting AM servers from denial of service attacks.

A reverse proxy will terminate incoming connections and reopen them against the

AM servers, e�ectively masking the AM IP addresses. This makes it more di�cult for

attackers to launch DoS attacks against them. A �rewall can prevent direct access to

the AM servers.

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePasswordFile /path/to/opendj/config/keystore.pin \

Con�gure AM behind a reverse proxy

8 / 207

file:///pingds/7.2/tools-reference/

SSL termination/SSL o�oading.

Since reverse proxies terminate incoming connections to AM, they also decrypt the

HTTPS requests and pass them unencrypted to the container where AM runs.

This has several bene�ts, such as removing the need to install certi�cates in the

containers, which simpli�es the management of SSL/TLS.

Depending on your environment, though, you may decide to con�gure SSL/TLS

between AM and the reverse proxy, or con�gure the proxy to pass-through the SSL

tra�c to the container where AM runs.

This guide, and the examples in other AM guides default to AM being con�gured to

use HTTPS communication.

Unique point of access to AM.

Con�guring a reverse proxy in front of AM creates a channel between the public

network and the internal network.

Since all communication to AM needs to come from the reverse proxy, you can, for

example, restrict access to a set of trusted networks. You can �ne-tune the access

restrictions for each request and apply rate-limiting and load balancing such that a

possible attack does not bring down your whole infrastructure.

Protecting endpoints

In the same way that you can restrict access to trusted networks, you can also

restrict access to any endpoint AM is exposing.

AM exposes a number of internal administration endpoints, such as the

/sessionservice endpoint. You must ensure those are not reachable over the

Internet.

For a list of internal endpoints that you should protect, see Service endpoints.

Regarding feature endpoints, AM makes endpoints accessible the moment an

administrator creates a service. For example, the OAuth 2.0 endpoints are not

available by default, but con�guring an instance of the OAuth 2.0 provider service in

a realm will make the endpoints available for that realm.

You must ensure you are exposing the correct endpoints to the Internet.

Recommending how to set up your network infrastructure is beyond the scope of this

document. There are too many permutations that are valid use cases; for example,

some environments may deploy a reverse proxy for its load balancing capabilities

instead of dedicated, hardware-based load balancers. More complex deployments may

have multiple layers of �rewalls, load balancers, and reverse proxies.

The following �gure is an example of a possible con�guration:

9 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/endpoints-reference.html

Figure 1. Exposing only the reverse proxy to the internet

The following table summarizes the high-level tasks required to con�gure AM when it is

behind a proxy:

Task Resources

Con�gure the proxy’s details

Con�gure AM or the container where it

runs to route outbound tra�c through

the proxy.

Con�gure AM for outbound

communication

Con�gure the Base URL service

Services con�gure their endpoints based

on AM’s URL. The Base URL service

remaps the endpoints of the services that

require it to the proxy’s URL.

Con�gure the Base URL source service

Clients from di�erent networks connect to AM to use its functionality. These clients

initiate communication with AM and the container where it runs. However, when AM

Con�gure AM for outbound communication

10 / 207

acts as a client to a third-party application, it makes outbound calls outside its container

to retrieve information or services.

When AM is behind a proxy, you must route AM’s client through the proxy. To do so,

provide the proxy’s details to AM and the container where it runs:

1. Set the relevant proxy JVM options in the container where AM runs.

-Dhttps.proxyHost

IP address or hostname of the proxy server. For example,

proxy.example.com .

-Dhttps.proxyPort

Port number of the proxy server. For example, 8443 .

-Dhttp.nonProxyHosts

A pipe-separated (|) list of IP addresses or hostnames that should be

reached directly, bypassing the proxy con�guration. For example,

localhost|internal.example.com .

Use wildcards (*) at the beginning or the end of the address or hostname.

For example, *.example.com or internal* .

-Dhttp.proxyHost

IP address or hostname of the proxy server. For example,

proxy.example.com .

-Dhttp.proxyPort

Port number of the proxy server. For example, 8080 .

-Dhttp.nonProxyHosts

A pipe-separated (|) list of IP addresses or hostnames that should be

reached directly, bypassing the proxy con�guration. For example,

localhost|internal.example.com .

Use wildcards (*) at the beginning or the end of the address or hostname.

For example, *.example.com or internal* .

For example, set the properties in the JAVA_OPTS variable of the

$CATALINA_BASE/bin/setenv.sh Apache Tomcat �le.

2. Check whether your proxy requires authentication:

a. If the proxy requires authentication:

In the org.forgerock.openam.httpclienthandler.system.proxy.uri

advanced server property, con�gure the URI of the proxy.

HTTPS options

HTTP options

11 / 207

The URI must be in the format scheme://hostname:port .

For example, https://myproxy.example.com:443 .

In the

org.forgerock.openam.httpclienthandler.system.proxy.username

and the

org.forgerock.openam.httpclienthandler.system.proxy.password

advanced server properties, con�gure the proxy’s credentials.

In the

org.forgerock.openam.httpclienthandler.system.nonProxyHosts

advanced server property, provide one or more target hosts for which

resulting HTTP client requests should not be proxied.

The list must comma-separated, for example

`localhost,127.,.example.com] .

Con�guring these properties lets features using ForgeRock’s ClientHandler

code use the proxy settings de�ned in the advanced server properties.

b. If the proxy does not require authentication:

Set the

org.forgerock.openam.httpclienthandler.system.proxy.enabled

advanced server property to true .

Con�guring this property lets features using ForgeRock’s ClientHandler

code use the JVM proxy settings.

For more information about the advanced server properties, see Advanced Properties.

To con�gure advanced server properties for all the instances of the AM

environment, in the AM admin UI, go to Con�gure > Server Defaults >

Advanced.

To con�gure advanced server properties for a particular instance, go to

Deployment > Servers > Server Name > Advanced.

To con�gure advanced server properties for a particular instance, go to

Deployment > Servers > Server Name > Advanced.

If the property you want to add or edit is already con�gured, click on the pencil (✏)

button to edit it. When you are �nished, click on the tick (✓) button.

Click Save Changes.

How do I con�gure advanced server properties?

TIP

12 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/deployment-configuration-reference.html#server-advanced

In many deployments, AM determines the base URL of a provider using the incoming

HTTP request. However, there are often cases when the base URL of a provider cannot

be determined from the incoming request alone, especially if the provider is behind a

proxying application. For example, if an AM instance is part of a site where the external

connection is over SSL but the request to the AM instance is over plain HTTP, AM will

have di�culty reconstructing the base URL of the provider.

In these cases, AM supports a provider service that lets you con�gure a realm to obtain

the base URL, including the protocol, for components that need to return a URL to the

client.

1. In the AM admin UI, go to Realms > Realm Name > Services, and click Add a

Service.

2. Click Base URL Source, and click Create. Leave the �elds empty.

3. For Base URL Source, choose one of the following options:

You can tune the connection factory behavior of the features that use ForgeRock’s

ClientHandler code. For example, the scripting engine, or the social provider

authentication nodes.

The following advanced server properties control di�erent aspects of the

connection factory:

org.forgerock.openam.httpclienthandler.system.clients.connecti

on.timeout

org.forgerock.openam.httpclienthandler.system.clients.max.conn

ections

org.forgerock.openam.httpclienthandler.system.clients.pool.tt

l

org.forgerock.openam.httpclienthandler.system.clients.response

.timeout

org.forgerock.openam.httpclienthandler.system.clients.retry.fa

iled.requests.enabled

org.forgerock.openam.httpclienthandler.system.clients.reuse.co

nnections.enabled

They have sensible defaults con�gured, but if you need to change them, see

Advanced Properties.

TIP

Client connection handler properties

Con�gure the Base URL source service

13 / 207

file:///pingam/7.2/reference/deployment-configuration-reference.html#server-advanced

Base URL source options

Option Description

Extension class Click the Extension class to return a

base URL from a provided

HttpServletRequest object. In the

Extension class name �eld, enter

org.forgerock.openam.services.base

url.BaseURLProvider.

Fixed value Click Fixed value to enter a speci�c

base URL value. In the Fixed value

base URL �eld, enter the base URL.

Forwarded header Click Forwarded header to retrieve

the base URL from the Forwarded

header �eld in the HTTP request. The

Forwarded HTTP header �eld is

standardized and speci�ed in RFC 7239

.

Host/protocol from incoming request

(default)

Click Host/protocol from incoming

request to get the hostname, server

name, and port from the HTTP request.

X-Forwarded-* headers Click X-Forwarded-* headers to use

non-standard header �elds, such as X-

Forwarded-For , X-Forwarded-By ,

and X-Forwarded-Proto .

4. In the Context path, enter the context path for the base URL.

If provided, the base URL includes the deployment context path appended to the

calculated URL. For example, /openam .

5. Click Finish to save your con�guration.

Cross-origin resource sharing (CORS) allows requests to be made across domains from

user agents.

To con�gure CORS support in AM, use the global CORS service UI, or use the /global-

config/services/CorsService REST endpoint.

Con�gure CORS support

14 / 207

https://datatracker.ietf.org/doc/html/rfc7239
https://datatracker.ietf.org/doc/html/rfc7239
https://datatracker.ietf.org/doc/html/rfc7239
https://datatracker.ietf.org/doc/html/rfc7239

The con�gurations you create with either method are combined to form the entire set of

rules for resource sharing. The CORS service also collects the values of the JavaScript

Origins property in each OAuth 2.0 client con�gured, and adds them to the list of

accepted origins.

Any changes you make to CORS con�gurations, using either the UI or REST, take e�ect

immediately without requiring a restart.

You can use the UI to add multiple CORS con�gurations to AM, which are combined and

used to ensure that only your trusted clients and applications can access your AM

instance’s resources.

For example, you could use the REST endpoint to add a base con�guration, allowing a

broad set of headers, and then add a stricter con�guration; for example, for your OAuth

2.0 clients.

To enable CORS globally, go to Con�gure > Global Services > CORS Service >

Con�guration, and enable the Enable the CORS �lter property.

If this property is not enabled, no CORS headers are added to any responses from AM,

and CORS is disabled.

To add a CORS con�guration, go to Con�gure > Global Services > CORS Service >

Secondary Con�gurations, and click Add a Secondary Con�guration.

The initial page contains the following properties:

Name

Ensure that customers allowlist all headers for CORS and OAuth 2.0 client

integration with AM.

For details, refer to Authentication session allowlisting.

NOTE

In previous AM releases, you con�gured CORS �lters in the deployment descriptor

�le (web.xml). This method of con�guring CORS is not supported, from AM version

7 onwards.

NOTE

Con�gure CORS in the UI

Enable the CORS �lter

Add a CORS con�guration

15 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-register-client.html#javascript-origins
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-register-client.html#javascript-origins
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/auth-session-whitelist.html

Provide a descriptive name for the con�guration to make management of multiple

rules easier.

Accepted Origins

Add the origins allowed when making CORS requests to AM. Wildcards are not

supported; each value should be an exact match for the origin of the CORS request.

The CORS service automatically collects the values of the JavaScript Origins

property in each OAuth 2.0 client con�gured, and adds them to an internal list of

accepted origins. You do not need to add them manually, unless you plan to use non-

standard headers. Refer to JavaScript Origins for details.

Accepted Methods

Add the HTTP methods allowed when making CORS requests to AM. The list is

included in pre-�ight responses, in the Access-Control-Allow-Methods header.

The method names are case-sensitive, ensure they are entered in all uppercase

characters.

Accepted Headers

Add the request header names allowed when making CORS requests to AM. The list

is included in pre-�ight responses, in the Access-Control-Allow-Headers header.

The header names are case-insensitive.

By default, the following simple headers are explicitly accepted:

Cache-Control

Content-Language

Expires

Last-Modified

Pragma

If you do not specify values for this element, the presence of any header in the CORS

request, other than the simple headers listed above, will cause the request to be

rejected.

Headers commonly used when accessing an AM server include the following:

During development, you may not be using FQDNs as the origin of a CORS

request; for example, when you are using the file:// protocol locally.

If so, you can add these non-FQDN origins to the list; for example, file:// and

null .

TIP

What are the commonly used headers?

16 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-register-client.html#javascript-origins

Commonly used headers

Header Information

iPlanetDirectoryPro Used for session information.

X-OpenAM-Username

X-OpenAM-Password

Used to pass credentials in REST calls

that use the HTTP POST method.

Accept-API-Version Used to request a speci�c AM endpoint

version.

Content-Type Required for cross-origin calls to AM

REST API endpoints.

If-Match

If-None-Match

Used to ensure the correct version of a

resource will be a�ected when making a

REST call, for example when updating an

UMA resource.

Exposed Headers

Add the response header names that AM returns in the Access-Control-Expose-

Headers header.

The header names are case-insensitive.

User agents can make use of any headers that are listed in this property, as well as

the simple response headers, which are as follows:

Cache-Control

Content-Language

Expires

Last-Modified

Pragma

Content-Type

User agents must �lter out all other response headers.

Example:

17 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/about-sessions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-api-versioning.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-api-versioning.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/uma-guide/uma-resource-sets.html#to-update-an-uma-resource-set
file:///home/pptruser/Downloads/build/site/pingam/7.2/uma-guide/uma-resource-sets.html#to-update-an-uma-resource-set

After you have completed the initial form �elds, click Create.

The main CORS con�guration page has the following additional properties:

Enable the CORS �lter

Speci�es whether the values speci�ed in this CORS con�guration instance will be

active.

Max Age

The maximum length of time, in seconds, that the browser is allowed to cache the

pre-�ight response. The value is included in pre-�ight responses, in the Access-

Control-Max-Age header.

Allow Credentials

Whether to allow requests with credentials in either HTTP cookies or HTTP

authentication information.

Enable this property if you send Authorization headers as part of the CORS

requests, or need to include information in cookies when making requests.

When enabled, AM sets the Access-Control-Allow-Credentials: true header.

Delete a CORS con�guration

18 / 207

To delete a CORS con�guration, go to Con�gure > Global Services > CORS Service >

Secondary Con�gurations. Then, �nd the con�guration to delete and click its Delete

button.

You can use the endpoint to add multiple CORS con�gurations to AM, which are

combined and used to ensure that only your trusted clients and applications can access

your AM instance’s resources.

For example, you could use the REST endpoint to add a base con�guration, allowing a

broad set of headers, and then add a stricter con�guration; for example, for your OAuth

2.0 clients.

These examples demonstrate managing a CORS con�guration by using REST:

To add a new CORS con�guration, send an HTTP POST request, with the create action

to the /global-config/services/CorsService/configuration endpoint.

The payload of the request must contain the CORS con�guration:

enabled

Speci�es whether the values speci�ed in the CORS con�guration instance will be

active (true), or not (false).

acceptedOrigins

You can disable a CORS con�guration, and enable it again later, by choosing the

rule and toggling the Enable the CORS �lter property.

TIP

Con�gure CORS over REST

For information about the /global-config/services/CorsService endpoint,

refer to the API Explorer available in the AM admin UI.

TIP

Add a CORS con�guration

You will require the SSO token of an administrative user; for example, amAdmin .

For information on obtaining an SSO token over REST, refer to Authenticate over

REST.

NOTE

At least one instance must be enabled for AM to enforce CORS.

NOTE

19 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/about-api-explorer.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html

A comma-separated list of the origins allowed when making CORS requests to AM.

Wildcards are not supported; each value should be an exact match for the origin of

the CORS request.

Example:

The CORS service automatically collects the values of the JavaScript Origins

property in each OAuth 2.0 client con�gured, and adds them to an internal list of

accepted origins. You do not need to add them manually, unless you plan to use non-

standard headers. Refer to JavaScript Origins for details.

acceptedMethods

A list of HTTP methods allowed when making CORS requests to AM. The list is

included in pre-�ight responses, in the Access-Control-Allow-Methods header.

The method names are case-sensitive, ensure they are entered in all uppercase

characters.

Example:

{

"acceptedOrigins": [

"http://example.com",

"https://example.org:8433"

]

}

During development, you may not be using fully quali�ed domain names as the

origin of a CORS request; for example, you are using the file:// protocol

locally.

If so, you can add these non-FQDN origins to the list; for example,

http://example.com, https://example.org:8433, file://, null .

TIP

{

"acceptedMethods": [

"GET",

"POST",

"PUT",

"PATCH",

"OPTIONS",

"DELETE"

]

}

20 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-register-client.html#javascript-origins

acceptedHeaders

A list of request header names allowed when making CORS requests to AM. The list is

included in pre-�ight responses, in the Access-Control-Allow-Headers header.

The header names are case-insensitive.

Example:

By default, the following simple headers are explicitly accepted:

Cache-Control

Content-Language

Expires

Last-Modified

Pragma

If you do not specify values for this element, the presence of any header in the CORS

request, other than the simple headers listed above, will cause the request to be

rejected.

Headers commonly used when accessing an AM server include the following:

Commonly used headers

Header Information

iPlanetDirectoryPro Used for session information.

X-OpenAM-Username

X-OpenAM-Password

Used to pass credentials in REST calls

that use the HTTP POST method.

Accept-API-Version Used to request a speci�c endpoint

version.

{

"acceptedHeaders": [

"iPlanetDirectoryPro",

"X-OpenAM-Username",

"X-OpenAM-Password",

"Accept-API-Version",

"Content-Type",

"If-Match",

"If-None-Match"

]

}

What are the commonly used headers?

21 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/about-sessions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-api-versioning.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-api-versioning.html

Header Information

Content-Type Required for cross-origin calls to AM

REST API endpoints.

If-Match

If-None-Match

Used to ensure the correct version of a

resource will be a�ected when making a

REST call.

For an example, refer to Update an UMA

resource over REST.

exposedHeaders

A list of response header names that AM returns in the Access-Control-Expose-

Headers header.

The header names are case-insensitive.

User agents can make use of any headers that are listed in this property, as well as

the simple response headers, which are as follows:

Cache-Control

Content-Language

Expires

Last-Modified

Pragma

Content-Type

User agents must �lter out all other response headers.

Example:

maxAge

The maximum length of time, in seconds, that the browser is allowed to cache the

pre-�ight response. The value is included in pre-�ight responses, in the Access-

Control-Max-Age header.

{

"exposedHeaders": [

"Access-Control-Allow-Origin",

"Access-Control-Allow-Credentials",

"Set-Cookie"

]

}

22 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/uma-guide/uma-resource-sets.html#to-update-an-uma-resource-set
file:///home/pptruser/Downloads/build/site/pingam/7.2/uma-guide/uma-resource-sets.html#to-update-an-uma-resource-set

allowCredentials

Whether to allow requests with credentials in either HTTP cookies or HTTP

authentication information.

Set to true if you send Authorization headers as part of the CORS requests, or

need to include information in cookies when making requests.

When enabled, AM sets the Access-Control-Allow-Credentials: true header.

The following shows an example of con�guring CORS rules by using the /global-

config/services/CorsService endpoint:

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-Requested-With: XMLHttpRequest" \

--header 'Accept-API-Version: protocol=1.0,resource=1.0' \

--header "iplanetDirectoryPro: AQIC5w… 2NzEz*" \

--data '{

"enabled": true,

"acceptedOrigins": [

"http://localhost:8000",

"null",

"file://",

"https://example.org:8443"

],

"acceptedMethods": [

"POST",

"PUT",

"OPTIONS"

],

"acceptedHeaders": [

"iPlanetDirectoryPro",

"X-OpenAM-Username",

"X-OpenAM-Password",

"X-OpenIDM-Username",

"X-OpenIDM-Password",

"X-OpenIDM-NoSession",

"Accept",

"Accept-API-Version",

"Authorization",

"Cache-Control",

"Content-Type",

"If-Match",

"If-None-Match",

"X-Requested-With"

23 / 207

],

"exposedHeaders": [

"Access-Control-Allow-Origin",

"Access-Control-Allow-Credentials",

"WWW-Authenticate",

"Set-Cookie"

],

"maxAge": 1800,

"allowCredentials": true

}' \

https://openam.example.com:8443/openam/json/global-

config/services/CorsService/configuration?_action=create

{

"_id": "ef61e99c-6c83-4044-a1f5-71f472531b71",

"_rev": "-1255664842",

"maxAge": 1800,

"exposedHeaders": [

"Access-Control-Allow-Origin",

"Access-Control-Allow-Credentials",

"WWW-Authenticate",

"Set-Cookie"

],

"acceptedOrigins": [

"null",

"file://",

"https://example.org:8443",

"http://localhost:8000"

],

"acceptedMethods": [

"POST",

"OPTIONS",

"PUT"

],

"acceptedHeaders": [

"iPlanetDirectoryPro",

"X-OpenAM-Username",

"X-OpenAM-Password",

"X-OpenIDM-Username",

"X-OpenIDM-Password",

"X-OpenIDM-NoSession",

"Accept",

"Accept-API-Version",

"Authorization",

"Cache-Control",

"Content-Type",

24 / 207

https://openam.example.com:8443/openam/json/global-config/services/CorsService/configuration?_action=create
https://openam.example.com:8443/openam/json/global-config/services/CorsService/configuration?_action=create
https://openam.example.com:8443/openam/json/global-config/services/CorsService/configuration?_action=create
https://openam.example.com:8443/openam/json/global-config/services/CorsService/configuration?_action=create

On success, AM returns an HTTP 201 response code, and a representation of the CORS

settings, in JSON format. AM generates a UUID for the con�guration, returned as the

value of the _id property. You can use this ID value to update or delete the

con�guration with additional REST calls.

The new settings take e�ect immediately.

To delete a CORS con�guration, create an HTTP DELETE request to the /global-

config/services/CorsService REST endpoint.

Add the ID of the con�guration to delete to the URL.

The following shows an example of deleting CORS rules by using the /global-

config/services/CorsService endpoint:

"If-Match",

"If-None-Match",

"X-Requested-With"

],

"enabled": true,

"allowCredentials": true,

"_type": {

"_id": "CORSService",

"name": "CORS Service",

"collection": true

}

}

Delete a CORS con�guration

You will need the SSO token of an administrative user; for example, amAdmin .

For information on obtaining an SSO token by using REST, refer to Authenticate

over REST.

NOTE

$ curl \

--request DELETE \

--header "X-Requested-With: XMLHttpRequest" \

--header "iplanetDirectoryPro: AQIC5w… 2NzEz*" \

https://openam.example.com:8443/openam/json/global-

config/services/CorsService/ef61e99c-6c83-4044-a1f5-71f472531b71

{

"_id": "ef61e99c-6c83-4044-a1f5-71f472531b71",

"_rev": "-1255664842",

25 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html
https://openam.example.com:8443/openam/json/global-config/services/CorsService/ef61e99c-6c83-4044-a1f5-71f472531b71
https://openam.example.com:8443/openam/json/global-config/services/CorsService/ef61e99c-6c83-4044-a1f5-71f472531b71
https://openam.example.com:8443/openam/json/global-config/services/CorsService/ef61e99c-6c83-4044-a1f5-71f472531b71
https://openam.example.com:8443/openam/json/global-config/services/CorsService/ef61e99c-6c83-4044-a1f5-71f472531b71

On success, AM returns an HTTP 200 response code, and a representation of the CORS

settings that were deleted, in JSON format.

"maxAge": 1800,

"exposedHeaders": [

"Access-Control-Allow-Origin",

"Access-Control-Allow-Credentials",

"WWW-Authenticate",

"Set-Cookie"

],

"acceptedOrigins": [

"null",

"file://",

"https://example.org:8443",

"http://localhost:8000"

],

"acceptedMethods": [

"POST",

"OPTIONS",

"PUT"

],

"acceptedHeaders": [

"iPlanetDirectoryPro",

"X-OpenAM-Username",

"X-OpenAM-Password",

"X-OpenIDM-Username",

"X-OpenIDM-Password",

"X-OpenIDM-NoSession",

"Accept",

"Accept-API-Version",

"Authorization",

"Cache-Control",

"Content-Type",

"If-Match",

"If-None-Match",

"X-Requested-With"

],

"enabled": true,

"allowCredentials": true,

"_type": {

"_id": "CORSService",

"name": "CORS Service",

"collection": true

}

}

26 / 207

The changes to the CORS settings take e�ect immediately.

Con�gure AM’s cookie domain to ensure only users and entities from trusted domains

can be authenticated.

By default, the AM installer sets the cookie domain based on the fully quali�ed

hostname of the server on which it installs AM, such as openam.example.com .

After installation, you may want to change the cookie domain to example.com so AM

can communicate with any host in the sub-domain.

1. In the AM admin UI, go to Con�gure > Global Services > Platform > Cookie

Domain.

2. In the Cookie Domain �eld, set the list of domains into which AM should write

cookies. Consider the following points:

Con�gure as many cookie domains as your environment requires. For example,

for the realms con�gured with DNS aliases. (For more information, see Realms.)

Browsers ignore any cookies that do not match the current domain to ensure

the correct one is used.

If you do not specify any cookie domain, AM uses the fully quali�ed name of

the server, which implies that a host cookie is set rather than a domain cookie.

When con�guring AM for Cross-Domain Single Sign-On (CDSSO), you must

protect your AM deployment against cookie hijacking by setting a host cookie

rather than a domain cookie. For more information, see Restrict tokens for

CDSSO session cookies.

Do not con�gure a top-level domain as your cookie domain because browsers

will reject them. Top-level domains are browser-speci�c. For example, Firefox

considers special domains like Amazon’s web service (for example, ap-

southeast-2.compute.amazonaws.com) to be a top-level domain. (For a list of

e�ective top-level domains, see

https://publicsu�x.org/list/e�ective_tld_names.dat .)

Do not con�gure the cookie domain such that it starts with a dot (.)

character. For example, con�gure example.com instead of .example.com .

If you are using Wild�y as the AM web container with multiple cookie domains,

you must set the advanced server property,

com.sun.identity.authentication.setCookieToAllDomains , to false .

Set this property in the AM admin UI, under Con�gure > Server Defaults >

Advanced.

3. Save your changes.

Change the cookie domain

27 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/am-realms.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cdsso-cookie-hijacking-protection.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cdsso-cookie-hijacking-protection.html
https://publicsuffix.org/list/effective_tld_names.dat
https://publicsuffix.org/list/effective_tld_names.dat
https://publicsuffix.org/list/effective_tld_names.dat

4. Restart AM or the container where it runs.

AM includes a global �lter to harden protection against cross-site request forgery (CSRF)

attacks. The �lter applies to all REST endpoints under json/ . It requires that all

requests, other than GET, HEAD, or OPTIONS, include at least one of the following

headers:

X-Requested-With

This header is often sent by Javascript frameworks, and the UI already sends it on all

requests.

Accept-API-Version

This header speci�es which version of the REST API to use. Use this header in your

requests to ensure future changes to the API do not a�ect your clients.

For more information about API versioning, see REST API versions.

Failure to include at least one of the headers causes the REST request to fail with a 403

Forbidden error, even if the SSO token is valid.

To disable the CSRF �lter, go to Con�gure > Global Services > REST APIs and turn o�

Enable CSRF Protection.

The json/ endpoint is not vulnerable to CSRF attacks when the �lter is disabled,

because it requires the Content-Type: application/json header, which currently

triggers the same protection in browsers. This might change in the future, however, so it

is advisable to enable the CSRF �lter.

Some deployments might need only one administrator, for example, deployments

whose con�guration never changes in production. If your deployment requires more

than one administrative user, however, it makes sense to limit what individual

administrators can do.

This approach not only reduces the risk of accidental or intentional abuse of power, but

also allows you to split the work between di�erent teams and to audit con�guration

Protect against CSRF attacks

The CSRF �lter applies only when the request includes the SSO token in the session

cookie (iPlanetDirectoryPro by default).

NOTE

Secure administrative access

28 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/rest-api-versioning.html

changes.

Securing administration in AM can be summed up as follows:

Understanding the amAdmin user and learning how to delegate realm privileges to

groups of users.

Securing access to the AM admin UI, and to the tools that you can use to con�gure

AM: Amster and the ssoadm command.

When you install AM, the amAdmin administrative account is created. This user has

unrestricted access to the AM con�guration, including creating new users and

augmenting their list of administrative privileges.

The amAdmin account cannot be deleted because it is hard-coded in the source code of

several �les. The amAdmin user is de�ned in AM’s con�guration, so it is always available

to AM even in the event that the identity stores become unavailable. Because it is not an

identity, de�ned in an identity store, it cannot use any capabilities that require a user

pro�le, such as device match or push noti�cations.

The com.sun.identity.authentication.super.user advanced server property

de�nes the DN of the amAdmin user. You can change this property to the DN of a

regular user that exists in any identity store con�gured in AM.

Changing the name of the amAdmin user might, however, a�ect the functionality of

those �les where the user name is hard-coded.

Secure the amAdmin user with a strong password and restrict its use as much as

possible; delegate realm administration privileges to regular users instead.

This covers how to change the password of the top-level administrator amAdmin , when:

AM is con�gured using an external con�guration store.

See Change the amAdmin password (external con�guration store).

AM is con�gured for evaluation and is using the embedded DS server as the

con�guration store.

See Change the amAdmin password (embedded con�guration store).

The amAdmin user

Change the amAdmin password (UI)

TIP

29 / 207

If AM is con�gured to use an external con�guration store, follows these steps to change

the amAdmin password:

1. In the AM admin UI, click on the user avatar () in the top right corner.

2. Click Change Password.

3. Enter the current password in the Current password �eld.

4. Enter the new password in the New password and Con�rm new password �elds.

5. Save your work.

If your deployment has multiple AM servers, the new password replicates across all

servers.

1. Back up your deployment as described in Back up con�gurations.

2. In the AM admin UI, click on the user avatar () in the top right corner.

3. Click Change Password.

4. Enter the current password in the Current password �eld.

5. Enter the new password in the New password and Con�rm new password �elds.

6. Click Save Changes.

When AM is con�gured to use the embedded DS server for the con�guration store,

you must change the passwords of the uid=admin user to match the new

amAdmin password.

7. Change the uid=admin account’s bind password in the AM con�guration as

follows:

Change the password for the con�guration store binding:

Go to Deployment > Servers > Server Name > Directory Con�guration.

Enter the new bind password, which is the new amAdmin password, and

click Save Changes.

For a di�erent way to change the amAdmin user’s password, regardless of how the

con�guration store is con�gured, see Change the amAdmin password using a

secret store).

TIP

Change the amAdmin password (external con�guration store)

Change the amAdmin password (embedded con�guration store)

NOTE

30 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/maintenance-guide/backup-restore.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-administration.html#amadmin-password-secret-store
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-administration.html#amadmin-password-secret-store

(Optional) If you use the embedded DS server as a data store, change the

following bind passwords:

Go to Realms > Realm Name > Identity Stores > embedded:

Enter the new bind password, which is the new amAdmin password,

and click Save Changes.

Make this change in every AM realm that uses the embedded DS as an

identity store.

Go to Realms > Realm Name > Services > Policy Con�guration:

Enter the new bind password, which is the new amAdmin password,

and click Save Changes.

Make this change in every AM realm that uses the embedded DS as a

data store.

Go to Realms > Realm Name > Authentication > Modules, and click

LDAP:

Enter the new bind password, which is the new amAdmin password,

and save your changes.

Make this change in every AM realm that uses the embedded DS as a

data store.

8. To change the uid=admin and the global administrator passwords in the

embedded DS, see Forgotten superuser password in the DS documentation.

Another way to change the password of the amAdmin user is to use a special secret

store.

Changing the bind password of the con�guration store updates the

configstorepwd alias in the AM keystore �le the next time AM

starts.

NOTE

Change the amAdmin password (secret store)

This secret store is not visible in the AM admin UI. If you supply the amAdmin

password using secrets, you cannot change the password using the AM admin

UI unless you remove the secret con�guration.

If you remove the secret con�guration, the amAdmin password reverts to what

it was before you con�gured the secrets.

The password of the amAdmin user stored in a secret must be salted and

hashed. Encryption is optional, but highly recommended.

IMPORTANT

31 / 207

file:///pingds/7.2/maintenance-guide/troubleshooting.html#troubleshoot-reset-admin-passwords

You can provide the password of the amAdmin user in di�erent secrets, as shown in the

following procedure:

1. Salt and hash the new password of the amAdmin user.

You can use a script similar to the following one. Review the comments to

understand the salt and hash requirements:

Store the amAdmin password in a secret

#!/usr/bin/env python3

import getpass

import os

import sys

import struct

import hashlib

import base64

if os.isatty(0):

pwd = getpass.getpass()

cnf = getpass.getpass('Confirm: ')

else:

pwd = sys.stdin.buffer.readline().decode('utf-8').strip()

cnf = pwd

if pwd != cnf:

sys.exit("Password and confirmation don't match")

Create some random bytes as the salt

salt = os.urandom(20)

Hash the salt and the new password with a SHA-512 function

h = hashlib.sha512()

h.update(salt)

h.update(pwd.encode('utf-8'))

hash = h.digest()

Concatenate the salt length as a single byte, the raw salt,

and the hashed password

packed = struct.pack("B20s64s", 20, salt, hash)

Generate the final hashed string

outform = "{SSHA-512}" +

32 / 207

2. Decide whether to encrypt the hashed string, and how to do it:

Encrypt with the AM encryption password

i. Log in to the AM admin UI with an administrative user.

For example, amAdmin .

ii. Go to https://openam.example.com/openam/encode.jsp , and paste

the �nal hashed string in the �eld.

Optionally, you can use the ampassword command to encrypt the

password. See Set up administration tools and ampassword.

iii. Go to Con�gure > Server Defaults > Advanced.

iv. Set the

org.forgerock.openam.secrets.special.user.passwords.format

advanced server property to ENCRYPTED_PLAIN .

Encrypt with a secret stored in the Google Cloud KMS

You need a Google Cloud Platform account that has a project. The project

must have:

A key ring containing the secrets that you will use to encrypt the hash of

the password of the amAdmin user.

The key ring can be con�gured in any Google Cloud location.

A service account that AM will use to connect to the project.

Refer to the Google Key Management Service documentation and Google’s

Getting Started with Authentication for more information.

To con�gure AM to connect to the Google Cloud KMS with the service

account, see Con�gure Google service account credentials.

i. Check if you already have a Google Cloud KMS secret for decrypting.

Go to Con�gure > Server Defaults > Advanced, and check if the

org.forgerock.openam.secrets.googlekms.decryptionkey

advanced server property is con�gured.

If it is, you do not need to create another key.

If the property is not con�gured, log in to your Google Cloud dashboard

and create a secret of one of the following types in the key ring of your

choosing:

base64.b64encode(packed).decode('ascii')

print(outform)

Prerequisites

33 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/install-openam-admin-tools.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/ampassword-1.html
https://cloud.google.com/kms/docs
https://cloud.google.com/kms/docs
https://cloud.google.com/kms/docs
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#configuring-google-api-credentials

Symmetric encrypt/decrypt

Asymmetric decrypt

ii. Use the secret you identi�ed or created in the previous step to encrypt the

hashed string.

You can use the gcloud tool included in Google Cloud’s SDK to encrypt it.

The tool creates a binary �le with the encrypted secret, but AM does not

support secrets in binary format. To work around this, base64-encode the

encrypted secret. For example:

iii. In the AM admin UI, go to Con�gure > Server Defaults > Advanced.

iv. (Optional) If unset, set the

org.forgerock.openam.secrets.googlekms.decryptionkey

advanced server property to the fully quali�ed resource ID of the Google

Cloud KMS secret that you used to encrypt the hash string. For example:

For information about how to �nd the key ID, see Object Hierarchy in the

Google Cloud KMS documentation.

v. Set the

org.forgerock.openam.secrets.special.user.passwords.format

advanced server property to GOOGLE_KMS_ENCRYPTED .

Leave the hashed string unencrypted

i. In the AM admin UI, go to Con�gure > Server Defaults > Advanced.

ii. Set the

org.forgerock.openam.secrets.special.user.passwords.format

gcloud kms encrypt \

--plaintext-file=./amadmin_password_hashed_string.txt \

--ciphertext-file=- \

--project=my_project_ID \

--location=my_location \

--keyring=my_keyring_for_AM \

--key=my_key_for_decrypting_secrets_in_AM \| base64 >

encrypted_hash_of_amadmin_password.enc

projects/my_project_ID/locations/my_location/keyRings/m

y_keyring_for_AM/cryptoKeys/my_key_for_decrypting_secre

ts_in_AM

Ensure that the password is randomly generated and has high entropy

before continuing.

CAUTION

34 / 207

https://cloud.google.com/kms/docs/object-hierarchy#key_resource_id
https://cloud.google.com/kms/docs/object-hierarchy#key_resource_id
https://cloud.google.com/kms/docs/object-hierarchy#key_resource_id

advanced server property to PLAIN .

3. Map the encrypted output to the secret ID that you will use. Perform one of the

following:

Save the encrypted password to a �le in the special secret store directory:

Store the encrypted password in an operating system variable called

PASSWORD_AMADMIN , and make sure it is available to the user running the

container where AM runs. For example, add it to the user’s bash.profile �le.

Store the encrypted password in a Java system variable called

password.amadmin , and make sure it is available to the container where AM

runs.

For example, if using Apache Tomcat, add it to

$CATALINA_BASE/bin/setenv.sh as follows:

The amAdmin user can change any setting in AM’s con�guration, but giving that power

to each of your administrative users is not ideal.

If you cannot access the AM admin UI, you can instead add the required

property to the CATALINA_OPTS variable. For example, for Apache Tomcat,

add the following to the $CATALINA_BASE/bin/setenv.sh �le:

TIP

export CATALINA_OPTS="$CATALINA_OPTS -

Dorg.forgerock.openam.secrets.special.user.passwords.format=PLAIN"

$ echo -n amadmin_salted_encrypted_pass >

/path/to/openam/security/secrets/userpasswords/password.am

admin

The default location of the special secret store is

/path/to/openam/security/secrets/userpasswords . To change it,

con�gure the

org.forgerock.openam.secrets.special.user.passwords.dir

advanced server property.

TIP

export password.amadmin="y3GVzNP5Z3$EXZQHX75aRE!8FjN"

Delegate privileges

35 / 207

In AM, you do not create administrative users. You create regular users and delegate

realm administration privileges to a group they belong to. For example, you can create a

group of users that are only allowed to make REST calls to endpoints in a speci�c realm,

or a group of users that have full administrative privileges for a particular realm.

This approach of splitting responsibilities lowers the risk of accidental or intentional

abuse.

Because users with delegated administration privileges are regular users in the identity

store, they can use any form of multi-factor authentication.

You can also delegate other kinds of privileges, such as making REST calls to realms for

policy evaluation, modifying policies, and more.

The following table describes privileges that you can assign in the AM admin UI or by

using the ssoadm add-privileges command:

Privileges

Privilege as it appears in

the AM admin UI

Privilege name to use

with the ssoadm add-

privileges command

Notes

Read and write access to

all realm and policy

properties

Realm Admin Assign this privilege to

administrators in order to

let them modify or read

any part of an AM realm.

Use this privilege when

you do not require

granularity in your

delegation model. All

other AM privileges are

included with this

privilege. Administrators

using the AM admin UI

must have this privilege.

Read and write access to

all con�gured agents

Agent Admin Provides access to

centralized agent

con�guration; subset of

the RealmAdmin

privilege.

Read and write access to

all log �les

Log Admin Subset of the Realm

Admin privilege.

Realm privileges available for delegation

36 / 207

Privilege as it appears in

the AM admin UI

Privilege name to use

with the ssoadm add-

privileges command

Notes

Read access to all log �les Log Read Subset of the Realm

Admin privilege.

Write access to all log �les Log Write Subset of the

RealmAdmin privilege.

Read and write access to

all federation metadata

con�gurations

Federation Admin Subset of the Realm

Admin privilege.

REST calls for reading

realms

Realm Read Access Subset of the Realm

Admin privilege.

Read and write access

only for policy properties,

including REST calls

Policy Admin Assign this privilege to

policy administrators in

order to let them modify

or read any part of the

AM policy con�guration.

This privilege lets an

administrator modify or

read all policy

components: policies,

applications, subject

types, condition types,

subject attributes, and

decision combiners. All

other AM privileges that

a�ect policy components

are included with this

privilege. Subset of the

Realm Admin privilege.

REST calls for policy

evaluation

Entitlement Rest

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

policies

Privilege Rest Read

Access

Subset of the Realm

Admin and Policy

Admin privileges.

37 / 207

Privilege as it appears in

the AM admin UI

Privilege name to use

with the ssoadm add-

privileges command

Notes

REST calls for managing

policies

Privilege Rest

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

policy applications

Application Read

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for modifying

policy applications

Application Modify

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

policy resource types

Resource Type Read

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for modifying

policy resource types

Resource Type Modify

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

policy application types

Application Types

Read Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

environment conditions

Condition Types Read

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

subject conditions

Subject Types Read

Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

decision combiners

Decision Combiners

Read Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for reading

subject attributes

Subject Attributes

Read Access

Subset of the Realm

Admin and Policy

Admin privileges.

REST calls for modifying

session properties

Session Property

Modify Access

Subset of the Realm

Admin and Policy

Admin privileges.

38 / 207

These steps describe how to create a user and assign administrative privileges using the

AM admin UI. You can also delegate privileges over REST. Learn more in How do I add

privileges to identity groups in PingAM? .

1. Go to the realm for which you want to delegate privileges.

For example, go to Realms > Top Level Realm.

2. Go to Identities > Groups and click the name of the group to which you intend to

grant access.

If you do not have a group yet, create one.

The All Authenticated Identities virtual group lets you assign privileges to any

identity that has a valid session in AM. Use it with caution, since not every identity

authenticates to AM by using strong authentication.

3. Choose the administrative privileges to delegate for the realm:

a. To grant users in the group access to the AM admin UI for the realm, click

Realm Admin.

Administrators can use the AM admin UI as follows:

Delegated administrators with the Realm Admin privilege can access full

administration console functionality within the realms they can administer.

Users with lesser privileges, such as the Policy Admin privilege, can not

access the AM admin UI, but can use REST to create and manage the

functionality for which they have privileges.

Both the top-level administrator (such as amAdmin) and delegated

administrators in the Top Level Realm with the Realm Admin privilege

have access to full console functionality in all realms and can access AM’s

global con�guration.

b. To grant users in the group access to REST endpoints, choose the required

privileges from the list.

For information about the available AM privileges, see Realm privileges available for

delegation.

4. Click Save Changes.

To enable delegated subrealm administrators to invalidate sessions, you must add an

attribute to their entry in the data store, as described in the following procedure:

Delegating administrative privileges in the Top Level Realm allows members of

the group full access to the AM instance. Administration privileges in any other

realm allows the group to access administrative functionality only in that

realm, and any child realms.

IMPORTANT

39 / 207

https://support.pingidentity.com/s/article/How-do-I-add-privileges-to-identity-groups-in-PingAM
https://support.pingidentity.com/s/article/How-do-I-add-privileges-to-identity-groups-in-PingAM
https://support.pingidentity.com/s/article/How-do-I-add-privileges-to-identity-groups-in-PingAM
https://support.pingidentity.com/s/article/How-do-I-add-privileges-to-identity-groups-in-PingAM

1. Create an LDIF �le that modi�es the distinguished name entry of the subrealm

administrator, adds the iplanet-am-session-destroy-sessions attribute, and

sets its value to the subrealm’s DN.

In the following example, the delegated administrator is named subRealmAdmin

and the subrealm is called mySubRealm :

2. Run the ldapmodify command included with DS to apply the LDIF �le to the user

data store.

For example:

The delegated realm administrator will now be able to invalidate sessions created in

the subrealm.

Let delegated subrealm administrators invalidate sessions

dn: uid=subrealmadmin,ou=people,dc=openam,dc=forgerock,dc=org

changetype: modify

add: objectClass

objectClass: iplanet-am-session-service

-

add: iplanet-am-session-destroy-sessions

iplanet-am-session-destroy-sessions:

o=mysubrealm,ou=services,dc=openam,dc=forgerock,

dc=org

All values in the LDIF must be in lowercase, even if the subrealm or

administrator name is not.

NOTE

$ /path/to/opendj/bin/ldapmodify \

--hostname 'id.example.com' \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePasswordFile /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword str0ngAdm1nPa55word \

/path/to/ldif.file

Processing MODIFY request for

uid=subrealmadmin,ou=people,dc=openam,dc=forgerock,dc=org

MODIFY operation successful for DN

uid=subrealmadmin,ou=people,dc=openam,dc=forgerock,dc=org

40 / 207

If you want to create agent pro�les when installing web or Java agents, then you need

the credentials of an AM user who can read and write agent pro�les.

You can use the AM administrator account when creating agent pro�les. If you delegate

web or Java agent installation, then you might not want to share AM administrator

credentials with everyone who installs agents.

Follow these steps to create agent administrator users for a realm:

1. In the AM admin UI, go to Realms > Realm Name > Identities.

2. On the Groups tab, click Add Group and create a group for agent administrators.

3. On the Privileges tab, choose Realm Admin.

4. Click Save Changes.

5. Go to Realms > Realm Name > Identities.

On the Identities tab, create as many agent administrator users as needed.

6. For each agent administrator user, edit the user pro�le.

On the Groups tab of the user pro�le, add the user to agent pro�le administrator

group.

7. Click Save Changes.

8. Provide each system administrator who installs web or Java agents with their agent

administrator credentials.

When installing Java agents with the --custom-install option, the system

administrator can choose the option to create the pro�le during installation, and

then provide the agent administrator user name and the path to a read-only �le

containing the agent administrator password. For silent installs, you can add the --

acceptLicense option to auto-accept the software license agreement.

AM provides end-user pages, located at openam/XUI , and an administration UI, located

at openam/ui-admin .

Consider the following points to secure the AM admin UI:

Limit access to the AM admin UI.

For example, allow access to the console URI only to inbound connections from a

speci�c network, or create a denylist or an allowlist with the endpoints the console

uses. Learn more in How do I remove admin UI access in PingAM? .

Delegate agent pro�le creation

Secure access to the admin UIs

41 / 207

https://support.pingidentity.com/s/article/How-do-I-remove-admin-UI-access-in-PingAM
https://support.pingidentity.com/s/article/How-do-I-remove-admin-UI-access-in-PingAM
https://support.pingidentity.com/s/article/How-do-I-remove-admin-UI-access-in-PingAM

Ensure administrative users present su�ciently strong credentials when logging in

to the AM administrative console.

By default, users that log to the console make use of the chain or tree con�gured in

the Organization Authentication Con�guration property for the realm. To locate this

property, go to Realms > Realm Name > Authentication > Settings > Core.

Ensure that you change the default for all realms, including the Top Level Realm.

AM provides the following administrative tools that you can use instead of the

administrative console to con�gure AM: Amster and ssoadm .

Do not install the tools on the same server as AM, so that administrators do not require

a local system account on that server.

Also, make sure you create a username/password tree speci�cally for tools, so that you

can track it easily in your logs.

Review the following information to secure access to the tools:

By default, users logging in through Amster or ssoadm use the chain or tree

con�gured in the Administrator Authentication Con�guration property for the

realm.

To locate this property, go to Realms > Realm Name > Authentication > Settings >

Core.

Amster:

If the administrative users connect to AM using interactive login, ensure that

they present su�ciently strong credentials.

If the administrative users connect to AM using private key connections, make

sure that you create your own keys and share them with AM.

For more information, see the Amster User Guide.

ssoadm

Ensure that your administrative users present su�ciently strong credentials.

The API Explorer is enabled by default. For security reasons, it is strongly

recommended that you disable it in production environments.

To disable the API Explorer, go to Con�gure > Global Services > REST APIs, and

select Disabled in the API Descriptors drop-down list.

CAUTION

Secure access to the admin tools

42 / 207

https://backstage.forgerock.com/docs/amster/7.2/user-guide/amster-connecting.html#private-login
file:///home/pptruser/Downloads/build/site/pingam/7.2/REST-guide/about-api-explorer.html

The ssoadm command requires that you provide the password of the

administrative user stored in cleartext in a �le.

Ensure the �le is read-only for its owner.

The AM installation process creates the Top Level Realm (/), which contains AM default

con�guration data. This realm cannot be deleted or renamed, since it is the root of the

realm hierarchy in AM.

Consider the following list of security best practices related to realms:

Disable module-based authentication

Module-based authentication lets users authenticate using the module=module-

name login parameter, therefore bypassing multi-factor authentication if multiple

modules are con�gured in a chain with the same authLevel .

To disable module-based authentication, go to Realms > Realm Name >

Authentication > Settings > Security, and clear the Module Based Authentication

check box.

Create strong authentication trees

Ensure your users log in to AM using sensible authentication trees, such as trees that

enforce multi-factor authentication.

Con�gure sensible default authentication services

By default, users that log in to the console make use of the chain or tree con�gured

in the Organization Authentication Con�guration property for the realm. To

locate this property, go to Realms > Realm Name > Authentication > Settings >

Core.

Be extra careful when setting your default authentication tree or chain.

If you leave the default authentication service as the ldapService chain, users can

still post their username and password to the authentication endpoint to retrieve a

session, regardless of the services con�gured for authentication.

For example, consider a deployment where you disable module-based

authentication but retain the default authentication chain, ldapService . If you set

up two-factor authentication, your users can still access their accounts without

performing the correct two-factor authentication chain login sequence by using the

default ldapService chain.

When you are ready to go to production, set the default authentication tree or chain

to your most secure tree or chain. Don’t leave it set to ldapService .

Secure realms

43 / 207

Ensure that you change the default for all realms, including the Top Level Realm.

Prevent access to the Top Level Realm

If most of your privileged accounts reside in the Top Level Realm, consider blocking

authentication endpoints that allow access to the Top Level Realm.

Learn more in Best practice for blocking the top level realm in a proxy for PingAM .

When you install AM for evaluation, using the embedded DS server, a demo user is

created. This is a regular account with no administrative permissions and is intended for

test and demo purposes. You should remove this user from production environments.

To remove the demo account, go to Realms > Top Level Realm > Identities, choose the

demo account, and click Delete.

Encryption lets you protect sensitive data, encoding it in such a way that only authorized

parties can access it.

Signing allows the receiver of a piece of data to validate the sender’s identity, and

ensures that the data has not been tampered with.

AM depends on signing and encryption to protect network communication and to keep

data con�dential and unalterable. In turn, signing and encryption depend on keys or

secrets, which are generated using cryptographic algorithms.

AM uses the following methods to store keys or secrets:

The AM keystore. The default AM keystore is used by certain features, and during

AM startup.

It can be con�gured globally, so its con�guration is shared by all AM instances in a

deployment, or per individual server.

AM secret stores. Secret stores are repositories for cryptographic keys and

credentials. They can be con�gured globally, or per realm.

Secret stores can be JVM system properties, key aliases stored in keystores or

HSMs, or �les stored in �lesystems or secret volumes.

The demo user

Secrets, certi�cates, and keys

IMPORTANT

44 / 207

https://support.pingidentity.com/s/article/Best-practice-for-blocking-the-top-level-realm-in-a-proxy-for-PingAM
https://support.pingidentity.com/s/article/Best-practice-for-blocking-the-top-level-realm-in-a-proxy-for-PingAM
https://support.pingidentity.com/s/article/Best-practice-for-blocking-the-top-level-realm-in-a-proxy-for-PingAM

During installation, AM creates a JKS and a JCEKS keystore, with several self-signed

certi�cates that are used for demo and test purposes.

The AM keystore and the default keystore-type secret store use the JCEKS keystore. The

JKS keystore is not used by default, and can be safely deleted.

Do not use the default keys, keystores, and secret stores in production

environments.

This table lists the contents of the default keystores, generated when AM starts up.

JCEKS JKS

Used by default in AM? Yes No

Default path /path/to/openam/secur

ity/keystores/keystore

.jceks

/path/to/openam/secur

ity/keystores/keystore

.jks

Where is its password

stored?

/path/to/openam/secur

ity/secrets/default/.s

torepass

/path/to/openam/secur

ity/secrets/default/.s

torepass

Most AM features now use the secrets API (secret stores). Using the traditional

AM keystore for these features is not supported. You can, however, de�ne the

AM keystore in a secret store, and continue to use the keys inside it.

IMPORTANT

Default keystores and secret stores

Default JCEKS and JKS keystores

(1)

(2)

45 / 207

JCEKS JKS

Which test aliases does it

contain?

es256test (ECDSA key)

es384test (ECDSA key)

es512test (ECDSA key)

hmacsigningtest

(Symmetric HMAC key)

directenctest

(Symmetric Direct AES

encryption key)

rsajwtsigningkey

(Asymmetric RSA key)

selfserviceenctest

(Asymmetric RSA key)

selfservicesigntest

(Symmetric secret signing

key)

test (Asymmetric RSA

key)

test (Asymmetric RSA

key)

Which password strings

does it contain?

configstorepwd

dsameuserpwd

None

Where is the private key

password �le?

/path/to/openam/secur

ity/secrets/default/.k

eypass

/path/to/openam/secur

ity/secrets/default/.k

eypass

 New AM installations use the JCEKS keystore as the default keystore.

 The password of the JCEKS and JKS keystores is a random-generated string stored in

cleartext.

 The value of the configstorepwd is a string. It is the password of the con�guration

store, which is accessed during AM startup.

 The value of the dsameuserpwd is a string. It is the password of a reserved service

account, which is accessed during AM startup.

 The default password for all the key aliases in the JCEKS and JKS keystores is

changeit , stored in cleartext.

default-keystore . This keystore-type secret store is mapped to the default JCEKS

keystore.

It contains secret ID mappings for several of the AM features that use keys.

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

Default secret stores

46 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secret-id-mappings

default-password-store . This �lesystem-type secret store is mapped to

/path/to/openam/security/secrets/encrypted

It provides the passwords to open the default-keystore secret store:

The storepass �le contains the encrypted password of the keystore.

The entrypass �le contains the encrypted password of the keys inside the

keystore.

The default keystores and secret stores are su�cient for testing and demonstrating AM

features.

For production and pre-production environments, con�gure the keystores and secret

stores that your environment needs, before you con�gure the AM features that use

them.

These password �les look similar to those of the default JCEKS keystore, but,

while the password �les for the JCEKS keystore are in cleartext, the password

�les for the default secret store are encrypted with AM’s encryption key.

Take into account that the keystore �le is the same. Therefore, if you change

the passwords for the JCEKS keystore, you must also change them in the

default secret store.

NOTE

Con�gure keystores and secret stores

Keystores and secret stores in production

47 / 207

After install Default
Secret Stores

Default JCEKS Keystore,
as AM Keystore and
Bootstrap Keystore

Step 1 Delete

Step 2

Create
and configure

AM Keystore,
and Bootstrap

Keystore
Delete

Create and configure
as required

Secret Stores

File System
Volume Secret

Stores

Other Secret
Stores

Keystore A Keystore B Keystore C

Password
Files

Password
Files

Password
Files

Other Secrets Other Secrets

related related related

Other Secrets

Step 3 Configure the Required Aliases and Secret ID Mappings in
AM

Default JKS
Keystore

1. Create a new keystore to use as the AM keystore. Delete the default keystores

and the default secret stores.

AM will use the new keystore to start up.

Con�gure di�erent keys for di�erent features, when possible.

2. Create separate secret stores for each AM feature you are using.

For example, create one for SAML v2.0 secrets, and a di�erent one for OAuth 2.0

secrets.

Use di�erent passwords for keystores and secret stores. This will reduce the risk

of compromised keys or secrets, if a malicious user is able to gain access to one

of the passwords.

Keystore secret stores need, at least, another secret store to provide the

password of the keystore, and the password for the keys. For example, a �le

system volume secret store.

3. Con�gure AM features to use your custom key aliases and secrets.

The following table guides you through the tasks you need to perform to con�gure the

keys and secrets AM requires:

48 / 207

Task Resources

Understand AM’s secret needs

Review the list of features that use keys

in AM, and their possible keystore and

secrets con�gurations.

AM features that use keys

Create and con�gure a new AM

keystore

Create and con�gure a new AM keystore,

that will also serve as the AM bootstrap

keystore. Delete the default keystores

and secret stores.

The AM keystore

Create secrets, as needed

Create as many keystores, key aliases,

and/or secrets as required in your

environment, based on the information

you learned when you reviewed the list

on the �rst task. You will con�gure them

in AM in the next steps.

Keys and secrets protect the credentials,

tokens, and other sensitive information

that your environment needs to send and

receive. Therefore, ensure that keys and

secrets are protected and only shared

when required. This may result in

con�guring multiple keystores and/or

secret stores for di�erent features.

Do not reuse passwords among

keystores or secret stores. This will

reduce the risk of compromised keys or

secrets, if a malicious user is able to gain

access to one of the passwords.

Key aliases and passwords

Con�gure secret stores in AM

Create new secret stores to map the new

keys you created in previous tasks, for

example, those for the OAuth 2.0

providers.

Secret stores

49 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/am-keystore.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/configuring-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html

Task Resources

Make keystores and secret stores

available to all AM instances

Keystores and secret stores must be

available in the same location across all

AM instances.

This step might mean mounting a

�lesystem with the required �les across

the instances, installing cryptographic

cards, and so on.

Con�gure key aliases and secrets in AM

Change the default key aliases and

secrets to the new ones you have

created.

Change default key aliases

Map and rotate secrets

Features that require secrets for signing or encryption can use one of the following

mechanisms:

The AM keystore, con�gured at Con�gure > Server Defaults > Security > Key

Store.

The secrets API (secret stores).

Certain features require secret stores, and some support either secret mechanism. This

list outlines which features can use which secret mechanism:

Features that only use the AM keystore

Persistent cookie nodes (authentication trees)

Requires a key pair alias for encryption. For more information, see Set Persistent

Cookie node.

User self-service

Requires a JCEKS keystore with a key pair alias for encryption and a key alias for

signing.

For more information, see Create a user self-service service instance.

Amster

Requires an sms.transport.key key alias to export and import encrypted

passwords.

AM features that use keys

50 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/change-signing-key.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-persistent-cookie
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-persistent-cookie
file:///home/pptruser/Downloads/build/site/pingam/7.2/user-self-service-guide/configuring-uss.html#create-uss-service

For more information, see the Amster documentation.

IDM user self-registration

Requires copying signing and encryption keys from IDM into the AM keystore.

For more information, see Delegate user self-registration to IDM.

Features that use secret stores

Client-side sessions

Require keys or secrets for signing and encrypting client-side sessions and

authentication sessions.

For more information, see Client-side session security.

Authentication trees

Requires a key alias to encrypt values stored in the authentication tree’s secure

state.

For more information, see Store values in a tree’s node states.

OAuth 2.0 providers

Require a key alias for signing client-side tokens and OpenID Connect ID tokens.

Also require a key alias for encryption of client-side OAuth 2.0 access and

refresh tokens.

For more information, see Con�gure client-side OAuth 2.0 token encryption.

Web and Java agents

Web agents and Java agents communicate with AM using a built-in OAuth 2.0

provider, con�gured globally in AM. This communication requires a key alias for

signing tokens.

Learn more in the Web Agents User Guide and the Java Agents User Guide.

Remote Consent service

Requires a key alias for signing consent responses, and another key alias for

encrypting consent responses.

For more information, see Remote consent.

SAML v2.0 federation

Requires key pairs for signing and encrypting messages, responses, and

assertions; for example, a key to encrypt the JWT stored in the local storage of

supported browsers.

You might also require a key to sign exported metadata.

51 / 207

https://backstage.forgerock.com/docs/amster/7.2/user-guide/amster-transport-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/user-self-service-guide/configuring-user-self-registration.html#configure-user-self-registration-idm
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/auth-nodes/core-action.html#store-values-in-transient-state
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/stateless-oauth2.html#configure-client-side-signatures
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/managing-jwk_uri.html#oauth2-oidc-digital-signatures
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/stateless-oauth2.html#oauth2-client-side-encryption
file:///web-agents/5.10/user-guide
file:///java-agents/5.10/user-guide
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-remote-consent.html

For more information, see Sign and encrypt messages. For a list of the secret ID

mappings, see Secret ID default mappings.

Persistent Cookie module (authentication chains)

Requires a key pair alias for encryption.

For more information, see Persistent Cookie module.

Features that support di�erent keystore con�gurations

ForgeRock Authenticator (OATH), ForgeRock Authenticator (PUSH) modules,

and the WebAuthn Pro�le Encryption service

Support con�guring a di�erent keystore to encrypt device pro�les. Also support

keystore types that are not available to other features.

For more information, see Multi-factor authentication.

AM’s startup (bootstrap) process

Requires two password strings. ForgeRock recommends that you use the AM

keystore as the bootstrap keystore, but you can con�gure a di�erent bootstrap

keystore, provided:

You keep the password strings updated.

You overwrite the boot.json �le before AM starts up.

For more information, see Replace the AM keystore.

Features that require di�erent keystore con�gurations

Java fedlets

Require a keystore containing a key pair to sign and verify XML assertions and to

encrypt and decrypt SAML assertions. Keystore and key information are

con�gurable in the FederationConfig.properties �le. For more information,

see Con�gure Java fedlet properties.

Security token service

Requires a JKS keystore for encrypting SAML v2.0 and OpenID Connect tokens.

Does not require �les to store the keystore password or the key aliases'

passwords.

For more information, see Con�gure STS instances.

CSV audit logging handler

Requires a keystore for tamper-proo�ng. Does not require a �le to store the

keystore password; the password is con�gured in the AM admin UI. For more

information, see Con�gure CSV audit event handlers.

52 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/saml2-guide/saml2-encryption.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secret-id-mappings
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/configure-authn-modules-hints.html#persistent-cookie
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-introduction-authn.html#about-mfa
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/am-keystore.html#proc-bootstrap-keystore
file:///home/pptruser/Downloads/build/site/pingam/7.2/saml2-guide/create-configure-fedlet.html#unconfigured-fedlet-properties
file:///home/pptruser/Downloads/build/site/pingam/7.2/sts-guide/sts-using-console.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/implementing-audit.html#configuring-csv-audit-event-handlers

AM provides a JCEKS keystore by default, containing several test-only key aliases. For

production deployments, you should create a new keystore with your own key aliases.

Before you start, note the following points about the AM keystore:

Di�erent AM features support di�erent keystore con�gurations. Some features do

not use the default keystore to store their key aliases. For more information, see

AM features that use keys.

Key aliases are not migrated from one keystore to another. You must prepare a new

keystore before you con�gure it, then migrate the required key aliases manually.

If you make any changes to the keystore, such as adding or removing keys or

changing key or keystore passwords, you must restart AM.

The AM keystore provides the secrets required by several features, but it also lets AM

start up.

The AM startup process checks a �le (/path/to/openam/config/boot.json), for the

bootstrap settings. These settings include the path to a keystore �le, and the �les

containing the keystore and key passwords. For example:

The AM keystore

Replace the AM keystore

About the bootstrap keystore

{

"instance" : "http://am.example.com:8080/am",

"dsameUser" : "cn=dsameuser,ou=DSAME

Users,dc=openam,dc=forgerock,dc=org",

"keystores" : {

"default" : {

"keyStorePasswordFile" :

"/path/to/am/security/secrets/default/.storepass",

"keyPasswordFile" :

"/path/to/am/security/secrets/default/.keypass",

"keyStoreType" : "JCEKS",

"keyStoreFile" :

"/path/to/am/security/keystores/keystore.jceks"

}

},

"configStoreList" : [{

"baseDN" : "dc=openam,dc=forgerock,dc=org",

"dirManagerDN" : "cn=Directory Manager",

53 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html

AM looks for the following aliases inside the default keystore, speci�ed in the

boot.json �le:

con�gstorepwd

An alias for the password of the AM con�guration store. The alias is password-

protected, with the password speci�ed by default in the

/path/to/openam/security/secrets/default/.keypass �le.

To update the value of this alias, go to Deployment > Servers > Server Name >

Directory Con�guration, and modify the con�guration store bind password.

Every time you change the bind alias, AM modi�es the content of the key alias in

the keystore �le.

dsameuserpwd

An alias for the password of a special user required at AM startup time. The alias is

password-protected, with the password speci�ed by default in the

/path/to/openam/security/secrets/default/.keypass �le.

These strings cannot be created manually. AM recreates them in a new keystore after

a successful start.

To change the bootstrap keystore, you must con�gure a new AM keystore, and restart

AM while the old keystore is still accessible. The startup process does the following:

uses the original keystore to boot up

writes the password strings in the new keystore

rewrites the boot.json �le.

Follow these steps to create a new keystore containing the password strings that AM

needs to start up, and con�gure it as the new AM keystore:

1. Ensure that AM is running, and that you can access the AM admin UI as an

administrative user.

2. Create a new keystore in any writable directory. This directory must be the same for

all AM instances in the site, for example, /path/to/openam/security/keystores .

3. Obtain a new key from your certi�cate authority and add it to the new keystore, or

generate a new self-signed key in the new keystore.

This example creates a self-signed key alias in a new keystore �le,

am_keystore.jceks , with a new asymmetric RSA key alias, newkey .

"ldapHost" : "am.example.com",

"ldapPort" : 50636,

"ldapProtocol" : "ldaps"

}]

}

NOTE

54 / 207

Take note of the passwords you entered.

4. Store the keystore passwords in cleartext in a writable directory.

This directory should be the same for all AM instances in the site, for example,

/path/to/openam/security/secrets/default .

For example:

Use echo -n to avoid inserting hidden trailing newline characters. Even if the

keytool command is able to use the password in the �le, AM might not be able to

open the keystore or the key aliases.

5. Make sure that the password �les have read-only permission for their owner. For

example:

6. Con�gure the new keystore as the AM keystore in the site.

Follow the steps in Change AM keystore properties.

When AM starts successfully, the new keystore contains the password strings that

AM uses to start up. You can delete the default JCEKS keystore now. The default

In production environments, you should use the strongest algorithm you can.

NOTE

$ keytool \

-genkeypair \

-alias newkey \

-keyalg RSA \

-keysize 2048 \

-validity 730 \

-storetype JCEKS \

-dname 'CN=newkey' \

-keystore am_keystore.jceks

Enter keystore password:

Reenter new password:

Enter key password for <newkey>

(RETURN if same as keystore password):

Reenter new password:

$ echo -n newstorepassword > .am_keystore_storepass

$ echo -n newkeypassword > .am_keystore_keypass

$ chmod 400 .am_keystore_storepass

$ chmod 400 .am_keystore_keypass

55 / 207

secret stores also use the JCEKS keystore. You can also delete them now.

1. In the AM admin UI, go to Con�gure > Server Defaults > Security > Key Store.

2. Enter the keystore �le name and path in the Keystore File �eld.

For example, /path/to/openam/security/keystores/am_keystore.jceks .

3. Enter the Keystore Type.

For example JKS , JCEKS , PKCS11 , or PKCS12 .

4. In the Keystore Password File �eld, enter the location of the keystore password

�le.

For example,

/path/to/openam/security/secrets/default/.am_keystore_storepass .

5. In the Private Key Password File �eld, enter the location of the private key

password �le.

For example,

/path/to/openam/security/secrets/default/.am_keystore_keypass .

6. Click Save Changes.

At this point, AM still holds the old keystore con�guration in memory, and cannot

use key aliases contained in the new keystore.

7. If you need to change key aliases in the AM con�guration, decide whether to change

them before or after restarting the AM instances in the next step.

If you are using client-side sessions, ensure the signing key exists in the new

keystore. You can check the con�guration for client-side sessions by going to

Realms > Realm Name > Authentication > Settings > Security.

To con�gure the rest of the features that need key aliases before or after the

restart, see Change default key aliases.

8. Make the new keystore �les available in the same location to all the instances in the

site.

This step may mean mounting a �lesystem with the required �les across the

instances, copying the �les across instances, and others.

9. Restart the AM instance or instances.

The new default keystore and its keys are ready to use.

Change AM keystore properties

56 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/change-signing-key.html

You might need to create new key aliases because you are using additional AM features,

or because you are installing a new environment. In either case, consider these points:

First, review the list of AM features to understand which features use the AM

keystore and which ones do not.

For more information, see AM features that use keys.

Avoid sharing certi�cates between features when possible, even if this means you

need to con�gure multiple di�erent keystores or secret stores.

Make sure keystores, key aliases, and certi�cates are maintained on every instance;

in a site environment, every instance has its own keystore �les.

Make sure keystores and secret stores are in the same location across all instances

in the site.

The following table lists the tasks related to managing key aliases in your environment:

Task Resources

Create a new key alias in an existing

keystore or in a new keystore.

Create key aliases

Copy key aliases between keystores; for

example, when con�guring IDM’s

provisioning.

Copy key aliases between keystores

Change key alias passwords. Change key alias passwords

Change keystore passwords. Change keystore passwords

Several AM features require key aliases for signing and encryption. AM provides default

key aliases for all features, but you should create new key aliases in production.

You can create key aliases in a new keystore that will be con�gured later as the AM

keystore, or you can create key aliases in the existing AM keystore:

Create a keystore and key aliases for keystore-type secret stores

Create key aliases in an existing keystore

Create self-service key aliases

Key aliases and passwords

Create key aliases

57 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html

These instructions are for keystore-type secret stores. To create a new AM keystore, see

The AM keystore instead.

1. Obtain a new key from your certi�cate authority and add it to a new keystore, or

generate a self-signed key in a new keystore.

This example creates an assymetric key pair and self-signed certi�cate, with alias

newkey in a new keystore �le named keystoreA.jceks . The RSA algorithm is

used to generate the key pair.

Take note of the passwords. You need to make them available within another secret

store; for example, by using a �le system volume secret store, as shown below:

Go to the directory that the �lesystem volume secret store will point to.

For example, /path/to/openam/security/secrets/mydir .

You can use di�erent methods to encode the content of the �les. Consider

creating a directory for each encoding method you plan to use.

Create two �les, one for the keystore password, and another for the password

of the keys inside the keystore.

The �les will contain the encoded passwords expected by the �le system secret

volume store.

Create a keystore and key aliases for keystore-type secret stores

In production environments you should use the strongest possible algorithm.

NOTE

$ cd /path/to/openam/security/keystores/

$ keytool \

-genkeypair \

-alias newkey \

-keyalg RSA \

-keysize 2048 \

-validity 730 \

-storetype JCEKS \

-dname 'CN=newkey' \

-keystore keystoreA.jceks

Enter keystore password:

Reenter new password:

Enter key password for <newkey> (RETURN if same as keystore

password):

Reenter new password:

58 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/am-keystore.html

For example, if you chose Base64 encoded as the encoding, you must base64-

encode the passwords, and then add them to their respective �les.

For example:

Make sure the password �les have read-only permission for their owner.

For example:

2. Create any other keys and keystores required by your environment by repeating the

steps in this procedure and/or following the steps in Create key aliases in an

existing keystore.

3. Ensure that password �les and keystores are maintained on every instance in your

environment. Every AM instance has its own keystores and password �les.

4. Con�gure the keystore in a keystore-type secret store.

See Keystore secret stores.

To con�gure the �le system secret store too, see File system secret volumes.

Perform the following steps to create new key aliases in an existing keystore. For

example, the AM keystore:

1. Change directories to the keystore location, for example,

/path/to/openam/security/keystores/ .

2. Acquire a new key from your certi�cate authority, or generate a new self-signed key.

When you create or import a new key, the keytool command adds the new alias

to the speci�ed keystore if it exists, or creates a new keystore if it does not exist.

This example creates a self-signed key alias in the AM keystore,

am_keystore.jceks , with a new asymmetric RSA key alias called mynewkey .

$ echo -n bmV3c3RvcmVwYXNzd29yZA== > keystoreA_storepass

$ echo -n bmV3a2V5cGFzc3dvcmQ= > keystoreA_keypass

Use echo -n to avoid inserting hidden trailing newline characters. Even if

the keytool command is able to use the password in the �le, AM may

not be able to open the keystore or the key aliases.

IMPORTANT

$ chmod 400 keystoreA_storepass

$ chmod 400 keystoreA_keypass

Create key aliases in an existing keystore

59 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#keystores-secret-store
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#file-system-secret-volumes

Note than in production environments you should use the strongest algorithm you

can use.

Remember:

The contents of the password �les of the AM keystore are in cleartext.

The contents of the password �les in a �le system volume secret store are not

in cleartext by default. This means that you need to decode them before you

can use them in the keytool command.

3. Ensure that password �les and keystores are maintained on every instance in your

environment.

Every AM instance has its own keystores and password �les.

4. (AM keystore) Restart the AM instances a�ected by the con�guration changes to use

the new key aliases.

5. Con�gure the new key aliases in AM.

For a list of features that use key aliases and links to their relevant sections, see AM

features that use keys.

User self-service requires a key pair for encryption and a signing secret key to be

available in the AM keystore before con�guring any of its features. Follow the steps in

this procedure to create new key aliases for the user self-service features in the AM

keystore:

1. Acquire a new key from your certi�cate authority, or generate new self-signed keys.

$ cd /path/to/openam/security/keystores/

$ keytool \

-genkeypair \

-alias mynewkey \

-keyalg RSA \

-keysize 2048 \

-validity 730 \

-storetype JCEKS \

-dname 'CN=mynewkey' \

-keystore am_keystore.jceks

Enter keystore password: Enter the password in the

.keystore_storepass file.

Enter key password for <mynewkey> (RETURN if same as keystore

password): Enter the password in the .keystore_keypass file.

Reenter new password: Enter the password in the

.keystore_keypass file.

Create self-service key aliases

60 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/features-with-keys.html

The password of the new keys for the user self-service features must match the

passwords of those keys already present in the keystore, and con�gured in the

/path/to/openam/security/secrets/default/.am_keystore_keypass �le.

This example generates a self-signed key for encryption and a new signing secret

key in the am_keystore.jceks keystore, but you could also import CA-provided

keys to the keystore.

Create the new self-signed encryption key alias:

Create the new signing secret key alias:

$ cd /path/to/openam/security/keystores/

$ keytool \

-genkeypair \

-alias newenckey \

-keyalg RSA \

-keysize 2048 \

-validity 730 \

-storetype JCEKS \

-dname 'CN=newenckey' \

-keystore am_keystore.jceks

Enter keystore password: Enter the password in the

.am_keystore_storepass file.

Enter key password for <newenckey> (RETURN if same as

keystore password): Enter the password in the

.am_keystore_keypass file.

Reenter new password: Enter the password in the

.am_keystore_keypass file.

$ cd /path/to/openam/security/keystores/

$ keytool \

-genseckey \

-alias newsigkey \

-keyalg HmacSHA256 \

-keysize 256 \

-storetype JCEKS \

-keystore am_keystore.jceks

Enter keystore password: Enter the password in the

.am_keystore_storepass file.

Enter key password for <newsigkey> (RETURN if same as

keystore password): Enter the password in the

.am_keystore_keypass file.

Reenter new password: Enter the password in the

.am_keystore_keypass file.

61 / 207

2. Ensure that password �les and keystores are maintained on every instance in your

environment.

Every AM instance has its own keystores and password �les.

3. Restart the AM instances a�ected by the con�guration changes.

4. Con�gure user self-service to use the new keys.

For instructions, see Create a user self-service instance.

Some AM features require access to the key aliases used by other components of the

ForgeRock Identity Platform. For example, the IDM Provisioning feature requires access

to the key aliases that IDM uses to sign and encrypt data.

This section covers copying key aliases from the keystore of a ForgeRock Identity

Platform component to AM’s default keystore.

1. Use the keytool command to export the required key from the source keystore

into a temporary keystore:

This command exports the myKeyAlias key alias, speci�ed by the srcalias

argument, to a temporary keystore �le

/path/to/openidm/security/temp_keystore.jceks . The store and key

password is set to myT3mPK3yP4ssword . You need to use the temporary passwords

when importing to the AM instance.

2. Move the temporary keystore �le created in the previous step, in this example

temp_keystore.jceks , to the �lesystem of the target AM server.

3. On the target AM server, import the key alias into the AM keystore:

Copy key aliases between keystores

$ keytool -importkeystore -srcstoretype jceks -srcalias

"myKeyAlias" \

-deststoretype jceks -destalias "myKeyAlias" \

-srckeystore "/path/to/openidm/security/keystore.jceks" \

-destkeystore "/path/to/openidm/security/temp_keystore.jceks"

\

-srckeypass "changeit" \

-srcstorepass "changeit" \

-destkeypass "myT3mPK3yP4ssword" \

-deststorepass "myT3mPK3yP4ssword"

$ keytool -importkeystore -srcstoretype jceks -srcalias

"myKeyAlias" \

-deststoretype jceks -destalias "myKeyAlias" \

62 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/user-self-service-guide/configuring-uss.html#create-uss-service

This command imports the key alias from the temporary temp_keystore.jceks

keystore �le, which was copied from the IDM instance, into the AM keystore. The

command also sets the passwords to match those used by the default AM keystore.

4. Repeat the previous steps to copy any additional key aliases from the source

keystore to the destination keystore.

5. Restart the AM instance for the key change to take e�ect.

The AM instance will now be able to correctly encrypt, decrypt, sign or verify data

and share it with the source ForgeRock Identity Platform component.

Decrypting a key alias in a keystore requires a password. This password is initially

speci�ed when you generate the key, or when you import the key into a keystore, but

you might need to update the password at a later time.

1. Back up your keystore and password �les.

2. Depending on the location of the key alias whose password you are changing,

perform one of the following steps:

a. To change the password that opens the AM keystore:

Replace the old password in the .am_keystore_keypass �le with the new

one:

-srckeystore

"/path/to/openam/security/keystores/temp_keystore.jceks" \

-destkeystore

"/path/to/openam/security/keystores/am_keystore.jceks" \

-srckeypass "myT3mPK3yP4ssword" \

-srcstorepass "myT3mPK3yP4ssword" \

-destkeypass:file

"/path/to/openam/security/secrets/default/.am_keystore_keypass

" \

-deststorepass:file

"/path/to/openam/security/secrets/default/.am_keystore_storepa

ss"

Change key alias passwords

$ echo -n newpassword >

/path/to/openam/security/secrets/default/.am_keystore_keyp

ass

IMPORTANT

63 / 207

b. To change the password that opens a secret store:

Replace the old password in the secret containing it with the new one. If the

secret is a �le in a �le system volume secret store, ensure that the new

password is encoded appropriately.

For example, for base64-encoded passwords, use the following command:

c. To change a password value used to decrypt a PEM-formatted secret:

Encode the new password using the

https://openam.example.com:8443/openam/encode.jsp page, and write the

result to a �le system secret or environment variable that uses the

am.global.services.secret.pem.decryption secret ID:

3. Depending on the location of the secret, perform one of the following steps to

update the secret’s password to match the value you con�gured in the previous

step:

a. To change the password of key aliases in the AM Keystore:

Use the keytool command to change the password of each of the key aliases,

for example:

Use echo -n to avoid inserting hidden trailing newline characters. Even if

the keytool command can use the password in the �le, AM may not be

able to use the key aliases if there are hidden, trailing, newline characters

in the password �le.

IMPORTANT

$ echo -n bmV3a2V5cGFzc3dvcmQ= > keystoreA_keypass

File system secret Environment variable

$ echo -n AQICmX1ntZv3XETMgDo+0zFynC8UMGJgop+K >

am.global.services.secret.pem.decryption

$ keytool -keypasswd -storetype JCEKS -keystore

/path/to/openam/security/keystores/am_keystore.jceks -

alias mykey

Enter keystore password: Enter the password in the

.am_keystore_storepass file

New key password for <mykey> Enter the password in the

.am_keystore_keypass file

64 / 207

Remember to change the passwords of the configstorepwd and the

dsameuserpwd aliases. Failure to do so will render AM unbootable.

b. To change the password of key aliases in a secret store:

Use the keytool command to change the password of each of the key aliases,

for example:

Secrets in �le system volume secret stores are, by default:

Secrets in �le system volume secret stores are, by default, not in cleartext. You

need to decode them before using them with the keytool command.

Re-enter new key password for <mykey> Enter the password

in the .am_keystore_keypass file

You can list the keys and password strings contained in the AM keystore

using this command:

TIP

$ keytool -list -storetype JCEKS -keystore

/path/to/openam/security/keystores/am_keystore.jceks

$ keytool -keypasswd -storetype JCEKS -keystore

/path/to/openam/security/keystores/keystoreA.jceks -alias

mykey

Enter keystore password: Enter the password in the

keystoreA_storepass file

New key password for <mykey> Enter the password in the

keystoreA_keypass file

Re-enter new key password for <mykey> Enter the password

in the keystoreA_keypass file Remember

$ `keytool -keypasswd -storetype JCEKS -keystore

/path/to/openam/security/keystores/keystoreA.jceks -alias

mykey

Enter keystore password: Enter the password in the

keystoreA_storepass file

New key password for <mykey> Enter the password in the

keystoreA_keypass file

Re-enter new key password for <mykey> Enter the password

in the keystoreA_keypass file

TIP

65 / 207

c. To change the password of a PEM-formatted secret:

Use the openssl command to open, and then export the secret alias with a

new password:

When completed, overwrite the original PEM �le with the replacement, for

example:

4. If you also need to change the keystore password, see Change keystore passwords.

5. Ensure that password �les and keystores are maintained on every instance in your

environment.

Every AM instance has its own keystores and password �les.

6. (AM keystore) Restart the AM instances a�ected by the con�guration changes.

Decrypting and viewing the contents of a keystore requires a password. This password is

speci�ed by the user at the time the keystore is created, but you might need to update

the password at a later time.

1. (AM keystore) Replace the old password in the .am_keystore_storepass �le with

the new one:

You can list the keys and password strings contained in a secret store

using this command:

TIP

$ keytool -list -storetype JCEKS -keystore

/path/to/openam/security/keystores/keystoreA.jceks

$ openssl rsa -aes256 -in originalkey.pem -out

new_password_key.pem

Enter pass phrase for originalkey.pem: Enter the original

password

writing RSA key

Enter PEM pass phrase: Enter the new password

Verifying - Enter PEM pass phrase: Re-enter new password

The algorithm you specify must match the input PEM �le.

IMPORTANT

$ mv new_password_key.pem originalkey.pem

Change keystore passwords

66 / 207

2. (Secret stores) Replace the old password in the secret containing it with the new

one.

If the secret is a �le in a �le system volume secret store, ensure that the new

password is encoded appropriately.

For example, base64-encode the password, and add it to the �le:

3. Change the password of the keystore:

4. If you also need to change the key aliases' password, see Change keystore

passwords.

5. Ensure that password �les and keystores are maintained on every instance in your

environment.

Each AM instance has its own keystores and password �les.

6. (AM keystore only) Restart the AM instance or instances a�ected by the

con�guration changes.

$ echo -n newpassword >

/path/to/openam/security/secrets/default/.am_keystore_storepas

s

Use echo -n to avoid inserting hidden trailing newline characters. Even if the

keytool command is able to use the password in the �le, AM may not be able

to use the key aliases if there are hidden trailing newline characters in the

password �le.

IMPORTANT

$ echo -n bmV3c3RvcmVwYXNzd29yZA== > keystoreA_storepass

AM keystore Secret stores

$ keytool -storepasswd -storetype JCEKS -keystore

/path/to/openam/security/keystores/am_keystore.jceks

Enter keystore password: Enter the password in the

.am_keystore_storepass file.

New keystore password: Enter the new password.

Re-enter new keystore password:

Secret stores

67 / 207

Secret stores are repositories for cryptographic keys and credentials. You can con�gure

secret stores globally or per realm. Secrets in a global secret store are visible to realms,

unless the realm has its own secret store with the same secrets de�ned.

Because secrets must be shared by all AM servers in a site, a good practice is to keep

them all under the same directory or mount point, for example,

/path/to/openam/security/secrets .

AM supports the following secret store types:

Environment and system property secret stores

Keystore secret stores

You can use a number of di�erent keystore formats, including JCEKS, JKS, PKCS11,

and PKCS12.

File system secret volumes

Secrets can be stored as �les in de�ned folders. For example, in a cloud deployment

you could mount a secret volume that AM can access.

Hardware Security Modules (HSM) secret stores

Secrets can be retrieved from hardware security modules, either locally or over the

network.

Google Cloud Key Management Service (KMS) secret stores

Google Secret Manager (GSM) secret stores

Custom secret stores

Tasks to configure secret stores

Task Resources

Understand how AM resolves secrets

Secrets are �rst resolved at the realm

level, and then globally.

How AM resolves secrets

A default AM installation includes a keystore-type secret store and a �lesystem

secret store. These are provided for testing and demonstration purposes only. In

production environments, you should create your own secret stores.

IMPORTANT

68 / 207

Task Resources

Con�gure secret stores

Con�gure as many secret stores as your

environment needs.

Environment and system property

secret stores

Keystore secret stores

File system secret volumes

Hardware Security Modules (HSM)

secret stores

Google Cloud Key Management

Service (KMS) secret stores

Google Secret Manager (GSM) secret

stores

Map secret IDs to secrets

A number of AM features require the use

of secrets for signing and encryption. For

each requirement, AM has a secret ID.

You can create active aliases in keystore

and HSM secret stores.

Map and rotate secrets

Most secret stores are con�gured globally, (at Con�gure > Secret Stores), or per realm

(at Realms > Realm Name > Secret Stores).

Secrets derived from environment or system properties are con�gured globally, in a

special, persistent secret store.

When resolving secrets, AM searches secret stores in the following order:

1. Any secret store con�gured for the realm, regardless of type.

2. Any secret store con�gured globally, regardless of type.

If AM cannot �nd an alias, it logs an error. The operation being attempted (for example,

signing a client-side session token) will then fail.

How AM resolves secrets

CAUTION

69 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html

A global instance of the environment and system property secret store is con�gured by

default.

Secrets in the environment and system property secret store are derived from the

following:

system properties with the same key as the secret value name (for example,

am.services.oauth2.stateless.token.encryption)

environment variables with keys that have the secret value name in upper case, and

separated by underscores (for example,

AM_SERVICES_OAUTH2_STATELESS_TOKEN_ENCRYPTION).

AM con�gures this secret store each time it starts up. Restart AM, or the container

where it runs, if you add or change secret mappings.

Only the secrets format can be con�gured for the environment and system property

secret store. Secrets in this store cannot be rotated, retired (deleted), or removed.

1. In the AM admin UI, go to Con�gure > Secret Stores > Environment and System

Property Secrets Store.

2. From the Value format drop-down list, choose one of the following:

Plain Text: the secret is provided in UTF-8 encoded text.

Base64 encoded: the secret is provided in Base64 encoded binary values.

Encrypted text: the plain text secrets are encrypted using AM’s encryption

key, found at Deployment > Servers > Security > Encryption.

Encrypted Base64 encoded: the Base64 encoded binary values are encrypted

using AM’s encryption key.

Encrypted HMAC key: the Base64 encoded binary representation of the

HMAC key is encrypted using AM’s encryption key.

Map each secret ID once across the secret stores con�gured for the realm, or

globally. For example, in a realm with two secret stores con�gured (a keystore

secret store and an HSM secret store) the

am.services.oauth2.jwt.authenticity.signing secret ID is mapped only in

the keystore secret store and not in the HSM secret store.

CAUTION

Environment and system property secret stores

Con�gure the environment and system property secret store

Secrets supported by the environment and system property secret store

70 / 207

Base64 encoded HMAC key: the Base64 encoded binary representation of

the HMAC key.

Encrypted with Google KMS: the secrets are encrypted with a secret stored in

the Google Cloud KMS, then base64-encoded.

See Use Google Cloud KMS secrets to decrypt AM secrets.

Google KMS-encrypted HMAC key: the HMAC key is encrypted with a secret

stored in the Google Cloud KMS, then base64-encoded.

See Use Google Cloud KMS secrets to decrypt AM secrets.

PEM encoded certi�cate or key: the Privacy Enhanced Mail (PEM) formatted

certi�cate or key. Commonly used by tools such as OpenSSL, and a large

percentage of certi�cate authorities.

See Import PEM-formatted keys.

ForgeRock recommends that you use PEM-formatted secrets.

3. Click Save.

A keystore secret store is a secret store that maps to a keystore �le, for example, a JKS,

JCEKS, PKCS11, or PKCS12 �le.

Keystore secret stores can be con�gured at a global or realm level:

1. To create a global secret store, go to Con�gure > Secret Stores.

To create a realm-speci�c secret store, go to Realms > Realm Name > Secret

Stores.

2. Click Add Secret Store.

3. Enter the Secret Store ID.

4. From the Store Type drop-down list, choose Keystore.

5. Enter the keystore �le to use.

This �le must be available to all AM instances, for example, by storing it on a shared

�lesystem, or by copying and maintaining the �le across instances.

Keystore secret stores

During installation or after an upgrade from a version of AM earlier than 6.5, AM

creates a number of secret stores. You can use them as an example to con�gure

your own secret stores. For more information, see Secrets, certi�cates, and keys.

TIP

Create a keystore secret store

71 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#KMS-secret-stores-for-encrypting-secrets
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#KMS-secret-stores-for-encrypting-secrets
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/using-pem-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html

6. Click Create.

1. To con�gure a global keystore, go to Con�gure > Secret Stores.

To con�gure a realm keystore, go to Realms > Realm Name > Secret Stores.

2. Choose the store you want to modify.

3. Enter the keystore �le name in the File �eld.

4. Enter the Keystore Type, for example JKS , JCEKS , PKCS11 , or PKCS12 .

The speci�ed keystore type must be supported by, and con�gured in, the local Java

runtime environment.

5. Set the Provider name.

If left blank, the JRE default is used.

6. In the Store password secret ID �eld, enter the secret ID from which AM will

resolve the password to the keystore, or none if the password is blank.

For example, storepass .

AM resolves this secret ID using the other secret stores con�gured; for example,

from a �le system secret volume mapped to the directory where the �le containing

the password is stored, or from an HSM secret store.

For more information, see How AM resolves secrets.

7. In the Entry password secret ID �eld, enter the secret ID from which AM will

resolve the password to the keys stored in the keystore, or none if the password is

blank.

For example, entrypass .

AM resolves this secret ID using the other secret stores con�gured; for example,

from a �le system secret volume mapped to the directory where the �le containing

the password is stored, or from an HSM secret store.

For more information, see How AM resolves secrets.

8. Set the Key lease expiry time in minutes.

9. Click Save.

A �le system secret volume maps to a directory storing �les that contain secrets—one

secret per �le. For a given secret value, �le system secret volumes will look for a �le with

Con�gure a keystore secret store

File system secret volumes

72 / 207

the same name as the secret value name, and read its contents using the con�gured

value format.

File system secret volumes can be con�gured globally, or per realm.

1. To con�gure a global �le system secret volume, go to Con�gure > Secret Stores.

To con�gure a realm �le system secret volume, go to Realms > Realm Name >

Secret Stores.

2. Click Add Secret Store.

3. Enter the Secret Store ID.

4. From the Store Type drop-down list, choose File System Secret Volumes.

5. Enter the name of the directory that contains the secret �les.

This directory must be available to all AM instances, for example, by converting it to

a shared �lesystem, or by creating and maintaining it and its �les across instances.

6. Click Create.

1. To con�gure a global �le system secret volume, go to Con�gure > Secret Stores.

To con�gure a realm-speci�c �le system secret volume, go to Realms > Realm

Name > Secret Stores.

2. Choose the store you want to modify.

3. Enter the directory name in the Directory �eld.

4. Enter a su�x to add to the name of each secret in the File su�x �eld.

For example, .txt .

5. From the Value format drop-down list, choose one of the following:

Plain Text: the secret is provided in UTF-8 encoded text.

Base64 encoded: the secret is provided in Base64 encoded binary values.

During installation or after an upgrade from a version of AM earlier than 6.5, AM

deploys a number of secret stores. You can use them as an example to con�gure

your own secret stores. For more information, see Secrets, certi�cates, and keys.

TIP

Create a �le system secret volume

Con�gure a �le system secret volume

Secrets supported by the �le system secret volume

73 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html

Encrypted text: the plain text secrets are encrypted using AM’s encryption

key, found at Deployment > Servers > Security > Encryption.

Encrypted Base64 encoded: the Base64 encoded binary values are encrypted

using AM’s encryption key.

Encrypted HMAC key: the Base64 encoded binary representation of the

HMAC key is encrypted using AM’s encryption key.

Base64 encoded HMAC key: the Base64 encoded binary representation of

the HMAC key.

Encrypted with Google KMS: the secrets are encrypted with a secret stored in

the Google Cloud KMS, then base64-encoded.

See Use Google Cloud KMS secrets to decrypt AM secrets.

Google KMS-encrypted HMAC key: the HMAC key is encrypted with a secret

stored in the Google Cloud KMS, then base64-encoded.

See Use Google Cloud KMS secrets to decrypt AM secrets.

PEM encoded certi�cate or key: the Privacy Enhanced Mail (PEM) formatted

certi�cate or key. Commonly used by tools such as OpenSSL, and a large

percentage of certi�cate authorities.

See Import PEM-formatted keys.

ForgeRock recommends that you use PEM-formatted secrets.

6. Click Save.

You can now map secret IDs to �les stored in the secret store directory. See Map

�les in �le system secret volumes.

An HSM secret store maps to a hardware security module. To con�gure an HSM secret

store, you need a secret ID that can provide the PIN or password for the HSM.

Alternatively, create an extension that provides a Guice binding for a custom PKCS11

java.security.Provider to obtain the keystore.

HSM secret stores can be con�gured globally or per realm:

1. To create a global HSM secret store, go to Con�gure > Secret Stores.

To create a realm-speci�c HSM secret store, go to Realms > Realm Name > Secret

Stores.

2. Click Add Secret Store.

Hardware Security Modules (HSM) secret stores

Create an HSM secret store

74 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#KMS-secret-stores-for-encrypting-secrets
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#KMS-secret-stores-for-encrypting-secrets
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/using-pem-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#creating-mappings-FS
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#creating-mappings-FS

3. Enter the Secret Store ID.

4. From the Store Type drop-down list, choose HSM.

5. Enter the Con�guration File containing the initialization con�guration for the HSM.

6. In the Provider Guice Key Name �eld, enter the name of a Guice key that can be

used to obtain an initialized provider from which the HSM keystore can be obtained.

7. In the HSM PIN/password secret ID �eld, enter the secret ID from which HSM’s PIN

or password can be obtained.

AM resolves this secret ID using the other secret stores con�gured.

For example, a �le system secret volume secret store mapped to the directory

where the �le containing the password is stored, or a keystore secret store. For

more information, see How AM resolves secrets.

8. Click Create.

1. To con�gure a global HSM secret store store, go to Con�gure > Secret Stores.

To con�gure a realm-speci�c HSM secret store, go to Realms > Realm Name >

Secret Stores.

2. Choose the store you want to modify.

3. In the Con�guration File �eld, enter the name of the �le containing initialization

con�guration for the HSM.

4. In the Provider Guice Key Name �eld, enter the name of a Guice key that can be

used to obtain an initialized provider from which the HSM keystore can be obtained.

5. In the HSM PIN/password secret ID �eld, enter the secret ID from which HSM’s PIN

or password can be obtained.

AM resolves this secret ID using the other secret stores con�gured.

For example, a �le system secret volume secret store mapped to the directory

where the �le containing the password is stored, or a keystore secret store. For

more information, see How AM resolves secrets.

6. Set the Key lease expiry time in minutes.

7. Click Save.

You can con�gure AM to retrieve secrets from the Google Cloud KMS. Support includes:

Mapping Google Cloud KMS secrets to secret IDs used for signing and veri�cation

purposes. Using Google Cloud KMS secrets as mappings for encryption and

Con�gure an HSM secret store

Google Cloud Key Management Service (KMS) secret stores

75 / 207

decryption secret IDs is not supported.

For example, mapping a Google Cloud KMS secret to the

am.services.oauth2.oidc.signing.RSA secret ID is supported because it is a

secret ID used for signing OAuth 2.0 tokens. Mapping a Google Cloud KMS secret to

the am.services.oauth2.oidc.decryption.RSA1.5 secret ID is not supported

because it is used for decrypting OpenID Connect parameters.

SHA256WithRSA (RS256)

SHA512WithRSA (RS512)

SHA256WithRSAAndMGF1 (PS256)

SHA512WithRSAAndMGF1 (PS512)

SHA256WithECDSA (ES256)

SHA384WithECDSA (ES384)

Using a Google Cloud KMS secret to decrypt secrets loaded using other secret

stores, or to decrypt the hashed password of the amAdmin user.

Prerequisites

You need a Google Cloud Platform account that has a project. The project must have:

A key ring containing the secrets that AM will use. It can be con�gured in any Google

Cloud location.

A service account that AM will use to connect to the project.

For more information, see the Google Key Management Service documentation and

Google’s Getting started with authentication .

In a Google Cloud environment, AM uses Google’s Java SDK to communicate with the

Google Cloud KMS directly. This means that, as long as your Google Cloud environment

has a default service account, AM will use it automatically.

Supported signing algorithms for Google Cloud KMS secrets

Signing tokens with Google Cloud KMS secrets is not a fast operation. For every

signature request, AM makes an API call to the Google Cloud KMS to perform

the signature operation.

Test the time it would take in your environment to sign tokens under stress

conditions to determine if the delay is acceptable. We recommend that you use

Google Cloud KMS secrets in environments with a low volume of signatures

and high volume of veri�cations, since AM performs the veri�cation locally.

CAUTION

Con�gure Google service account credentials

76 / 207

https://cloud.google.com/kms/docs
https://cloud.google.com/kms/docs
https://cloud.google.com/kms/docs
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started

If you do not have a default service account or do not want to use it for this purpose, or

if you are using Google Cloud KMS secret stores in a non-Google Cloud environment,

you must con�gure the path to the credentials in an environment variable so that AM

can use them:

1. Log in to your Google Cloud Platform Account.

2. Download the credentials �le for the Google service account that AM will use to

connect to the project, and store it in the server where AM runs.

3. Set up the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path

of the credentials.

Ensure that the variable is available to the container where AM runs.

For example, add the environment variable to the setenv.sh �le of your Apache

Tomcat installation:

4. Restart the container where AM runs.

5. Perform the steps in this procedure on each of the servers where AM runs.

Google KMS secret stores can be con�gured at a global or realm level:

1. To create on a global level, go to Con�gure > Secret Stores.

To create on a realm level, go to Realms > Realm Name > Secret Stores.

2. Click Add Secret Store.

3. Enter the Secret Store ID.

4. From the Store Type drop-down list, choose Google KMS.

5. In the Project �eld, enter the Google Cloud Platform project that contains the key

ring with the secrets.

At the time of this writing, you can �nd your projects by logging in to your Google

Cloud Platform dashboard.

6. Con�gure the following �elds related to the key ring.

At the time of this writing, you can �nd the required information by logging in to the

Google Cloud Platform dashboard, choosing your project, and then going to

Security > Cryptographic Keys.

In the Location �eld, enter the location of the key ring.

export GOOGLE_APPLICATION_CREDENTIALS="/path/to/Tomcat/Google-

service-account-credentials-for-AM.json"

Create KMS Secret Stores

77 / 207

In the Key Ring �eld, enter the name of the key ring containing the secrets that

AM should use.

7. Click Create.

8. Con�gure the size of the public key cache and its duration as required in your

environment.

When AM signs data with a secret stored in the Google Cloud KMS, it makes

an API call to the Google Cloud KMS to perform the signature operation.

When AM needs to verify a signature, it retrieves the public key from the

Google Cloud KMS and veri�es the signature locally. The cache prevents AM

from retrieving the public key every time, and therefore, speeds the

veri�cation process.

The cache lives in AM’s heap, and is created on each of the AM instances for

each of the Google Cloud KMS secret stores. You should leave the default

settings, unless you have a large number of keys in a key chain.

Setting a long cache timeout might be more e�cient, because AM does not

need to contact the Google Cloud KMS to retrieve public keys very often.

Note, however, that AM will not detect if you have marked a key as expired in

the Google Cloud KMS until the cache expires.

You can use a Google Cloud KMS secret to decrypt secrets stored in AM secret stores as

they are read from the �lesystem, environment variables, or system properties.

You can also use the same secret to decrypt the hashed password of the amAdmin user.

See Change the amAdmin password (secret store).

This procedure assumes that the encrypted secrets will be stored in a �lesystem, and

therefore, con�gured in AM in a �le system volume secret store:

1. Check if you already have a Google Cloud KMS secret for decrypting.

Go to Con�gure > Server Defaults > Advanced, and check if the

org.forgerock.openam.secrets.googlekms.decryptionkey advanced server

property is con�gured.

If it is, you do not need to create another key.

Notes about the public key cache

Use Google Cloud KMS secrets to decrypt AM secrets

You can only con�gure one Google Cloud KMS secret for decrypting secrets in the

AM site.

IMPORTANT

78 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-administration.html#amadmin-password-secret-store

If the property is not con�gured, log in to your Google Cloud dashboard and create

a secret of one of the following types in the key ring of your choosing:

Symmetric encrypt/decrypt

Asymmetric decrypt

2. Use the secret you identi�ed or created in the previous step to encrypt the secrets

that AM will use.

You can use the gcloud tool included in Google Cloud’s SDK to encrypt the secrets.

The tool creates a binary �le with the encrypted secret, but AM does not support

secrets in binary format. To work around this, base64-encode the encrypted secret.

For example:

3. Rename the �les containing the secrets so that they map to the required secret IDs.

Use the tables in Secret ID default mappings for guidance.

For example, to create a mapping for the Web and Java agents' OAuth 2.0 provider,

rename the �le containing the relevant secret to a �le called

am.global.services.oauth2.oidc.agent.idtoken.signing .

Depending on the con�guration of the secret store, you may be able to add a su�x

to the �le name, such as .enc .

4. Share the encrypted secrets with the AM servers.

This may mean, for example, copying the encrypted �les to the same directory in

every AM server, or mounting a directory in every AM server that is shared across

the instances.

5. In the AM admin UI, go to Con�gure > Server Defaults > Advanced.

6. If unset, set the org.forgerock.openam.secrets.googlekms.decryptionkey

advanced server property to the fully quali�ed resource ID of the Google Cloud KMS

secret that you used in the previous step.

For example:

gcloud kms encrypt \

--plaintext-file=./secret.txt \

--ciphertext-file=- \

--project=my_project_ID \

--location=my_location \

--keyring=my_keyring_for_AM \

--key=my_key_for_decrypting_secrets_in_AM | base64 >

secret.enc

79 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secret-id-mappings

For information about how to �nd the key ID, see Object hierarchy in the Google

Cloud KMS documentation.

7. Con�gure the �le system volume secret store that points to the directory containing

the encrypted secrets.

See Con�gure a �le system secret volume.

You can con�gure AM to retrieve secrets from the Google Cloud Secret Manager (GSM).

Prerequisites

You need a Google Cloud Platform account that has a project. The project must have:

An instance of Secret Manager that contains the secrets you want AM to use.

Plan ahead how you will name the secrets, and in which format they will be:

Each Google GSM secret store can be mapped to one type of secret. ForgeRock

recommends that you use PEM-formatted secrets in GSM to make the

con�guration easier to maintain.

For more information on how to create PEM secrets compatible with AM, see

Import PEM-formatted keys.

By default, AM let all realms access all the secrets related to a GSM instance.

However, you can con�gure lists of patterns to match the GSM secrets that a

realm, or a list of realms, can access.

For example, if you pre�x the secrets for the employees realm with emp. , you

can con�gure a pattern in AM, such as emp.* , to match them for that realm.

This is also useful to separate secrets by type, if you are not using PEM secrets.

A Google Cloud Compute Engine default service account, (only if AM runs in Google

Cloud), or a service account.

You can create di�erent realm and pattern maps with the same account, if needed.

Con�guring Secret Manager

Compute Engine default service account

Getting started with authentication

projects/my_project_ID/locations/my_location/keyRings/my_keyri

ng_for_AM/cryptoKeys/my_key_for_decrypting_secrets_in_AM

Google Secret Manager (GSM) secret stores

Related Google Documentation

80 / 207

https://cloud.google.com/kms/docs/object-hierarchy#key_resource_id
https://cloud.google.com/kms/docs/object-hierarchy#key_resource_id
https://cloud.google.com/kms/docs/object-hierarchy#key_resource_id
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/using-pem-keys.html
https://cloud.google.com/secret-manager/docs/configuring-secret-manager
https://cloud.google.com/secret-manager/docs/configuring-secret-manager
https://cloud.google.com/secret-manager/docs/configuring-secret-manager
https://cloud.google.com/compute/docs/access/service-accounts#default_service_account
https://cloud.google.com/compute/docs/access/service-accounts#default_service_account
https://cloud.google.com/compute/docs/access/service-accounts#default_service_account
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started

Before con�guring the Google GSM secret store, review the con�guration of the Google

service accounts in AM and make changes as required:

1. Go to Con�gure > Global Services > Google Cloud Platform Service Accounts.

The Service page displays a secondary con�guration named default . AM is

precon�gured to use a Google Cloud Compute Engine default service account.

This default account is also con�gured to let all realms access all the secrets related

to a GSM instance.

If you are not using a Google Cloud Compute Engine default service account, you

can delete this con�guration. Alternatively, you can recon�gure it, or create a new

con�guration.

The Google Cloud Platform Service Accounts service lets you map Google service

accounts with realms. It also lets you con�gure patterns of secrets allowed and

disallowed for a particular map of account and realms.

For example, you can create several secondary con�gurations that use the same

Google account, but that map di�erent realms to di�erent secrets.

2. Decide whether you will recon�gure the default secondary con�guration, or if you

will create a new one to add a new service account.

a. If you decided to create a new secondary con�guration to add a new service

account, click Add a Secondary Con�guration.

Name it, and leave the rest of the �elds empty. You will con�gure them later.

b. If you decided to recon�gure the default secondary con�guration, click on it.

3. On the secondary Con�guration page, determine whether you need to con�gure

the Credentials Secret ID �eld:

On a Google Cloud environment, AM uses Google’s Java SDK to communicate with

Google Secret Manager directly. This means that, as long as your Google Cloud

environment has a Cloud Compute Engine default service account, AM will use it

automatically. In this case, leave the Credentials Secret ID �eld blank.

If you do not have a Cloud Compute Engine default service account or do not want

to use it for this purpose, or if you are using Google GSM secret stores in a non-

Google Cloud environment, you must con�gure AM to pick up the service account’s

credentials.

To do so, con�gure a �le system volume secret store to provide the account’s

credentials to AM.

Con�gure service accounts for GSM

Why is it useful to have several secondary con�gurations?

81 / 207

Next, enter the secret ID mapped to the account’s credentials in the Credentials

Secret ID �eld.

a. Log in to your Google Cloud Platform Account.

b. Download the credentials JSON �le for the Google service account that AM

will use to connect to the project.

Note that this procedure uses �le system secret stores to provide the

account’s secret to AM, but you can use any other suitable secret store.

c. Ensure that the �le name only contains alphanumeric characters and period

(.) characters.

For example, GSM.123.json .

Other characters, such as hyphens (-), are not supported in the �le name.

d. Make the JSON �le or its contents available across the AM environment.

This may mean, for example, mounting the same directory across di�erent

servers, copying the �le across to the same location in each server, or

con�guring it as a Kubernetes secret.

e. Create a �le system secret store that points to the directory containing the

JSON �le.

Ensure that you con�gure it as follows:

Directory = /path/to/JSON/File

File Su�x = .json

File Format = Plain text

f. Save your changes.

g. In the Credentials Secret ID �eld, enter the name of the JSON �le that

contains the secret, without the extension.

For example, for a �le named GSM.123.json , you would enter GSM.123 .

4. In the Allowed Realms �eld, con�gure a list of realms allowed to use this service

account.

Enter a list of realms and subrealms, such as / /realm1 /realm2/subrealm1

/realm3 , or use the wildcard (*) character to allow all realms in the deployment to

use the account.

Note that you need to press the enter key after each item on the list.

5. In the Allowed Secret Names �eld, enter a list of patterns to match the GSM

secrets that the con�gured realms can access.

Map credentials to a �le system secret store

82 / 207

Use the wildcard (*) character to match portions of the secret names.

For example, alpha* , or alpha*123 .

Note that you need to press the enter key after each item on the list.

6. In the Disallowed Secret Names �eld, enter a list of patterns to match the GSM

secrets that the con�gured realms cannot access, if required.

Use the wildcard (*) character to match portions of the secret names.

For example, development* , or secure*abc .

Note that you need to press the enter key after each item on the list.

GSM Secret Stores can be con�gured at a global and realm level:

1. To create on a global level, go to Con�gure > Secret Stores.

To create on a realm level, go to Realms > Realm Name > Secret Stores.

Secrets mapped in a global secret store are available in every realm.

2. Choose Add Secret Store.

3. Enter the Secret Store ID.

4. From the Store Type drop-down list, choose Google Secret Manager.

5. In the Project �eld, enter the Google Cloud Platform project that contains the

Secret Manager instance.

At the time of this writing, you can �nd your projects by logging in to your Google

Cloud Platform dashboard.

Click Create.

6. In the GCP Service Account ID �eld, enter the name of a Google Cloud Platform

Service Accounts service secondary con�guration.

For example, default .

For more information, see Con�gure service accounts for GSM.

7. In the Secret Format �eld, enter the format of the secrets to extract from Google

Secret Manager.

For a secret to be accessed, it must match a pattern in the Allowed Secret

Names �eld, and no patterns in the Disallowed Secret Names �eld.

TIP

Create a GSM secret store

83 / 207

Plain Text: the secret is provided in UTF-8 encoded text.

Base64 encoded: the secret is provided in Base64 encoded binary values.

Encrypted text: the plain text secrets are encrypted using AM’s encryption

key, found at Deployment > Servers > Security > Encryption.

Encrypted Base64 encoded: the Base64 encoded binary values are encrypted

using AM’s encryption key.

Encrypted HMAC key: the Base64 encoded binary representation of the

HMAC key is encrypted using AM’s encryption key.

Base64 encoded HMAC key: the Base64 encoded binary representation of

the HMAC key.

Encrypted with Google KMS: the secrets are encrypted with a secret stored in

the Google Cloud KMS, then base64-encoded.

See Use Google Cloud KMS secrets to decrypt AM secrets.

Google KMS-encrypted HMAC key: the HMAC key is encrypted with a secret

stored in the Google Cloud KMS, then base64-encoded.

See Use Google Cloud KMS secrets to decrypt AM secrets.

PEM encoded certi�cate or key: the Privacy Enhanced Mail (PEM) formatted

certi�cate or key. Commonly used by tools such as OpenSSL, and a large

percentage of certi�cate authorities.

See Import PEM-formatted keys.

Con�gure a Google GSM secret store for each type of secret that you want to map.

ForgeRock recommends that you use PEM secrets to store your secrets.

8. In the Expiry Time �eld, enter the maximum time, in seconds, that AM will cache a

value retrieved from Google Secret Manager.

Setting a long cache timeout may be more e�cient, since AM does not need to

contact Google Secret Manager to retrieve secrets that often, but AM will not detect

if you have marked a secret as expired in Google Secret Manager until the cache

expires.

9. Save your changes.

Now you are ready to map secret IDs.

If you are creating custom components or plugins, you can implement the SecretStore

interface to create a custom secret store backend.

Secrets supported by the GSM secret store

Custom secret stores

84 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#KMS-secret-stores-for-encrypting-secrets
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#KMS-secret-stores-for-encrypting-secrets
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/using-pem-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/secrets/SecretStore.html

Provide the con�guration for your secret store type using one of the following

subclasses:

SimpleSecretStoreProvider

LockedSecretStoreProvider

Then, pass this class to the installSecretStoreTypes method in your plugin.

AM supports loading certi�cates, keys, and secrets in PEM format in the following

secret stores:

The environment and system property secret store

File system secret volumes secret stores

Google GSM secret stores

1. Create or obtain PEM-formatted secrets.

Standard PEM-formatted secrets

Elliptic Curve and RSA private keys, in OpenSSL and PKCS#8 formats.

Elliptic Curve and RSA public keys, in OpenSSL and X.509 formats.

ForgeRock non-standard PEM-formatted secrets

AES and HMAC secrets.

UTF-8-encoded generic secrets, such as passwords and API keys.

You may obtain standard PEM-formatted secrets from your CA authority, or you can

create your own �les using, for example, the openssl utility. Standard PEM-

formatted private keys can also be password-encrypted using the openssl utility.

To create non-standard PEM-formatted secrets, perform the following steps:

To create AES or HMAC secrets, create a string of random bytes to work as

cryptographic material, and base64-encode it.

For example:

To create generic secrets, base64-encode the secret or key.

For example:

Import PEM-formatted keys

Supported PEM formats

$ head -c32 /dev/urandom | base64 > myEncodedSecret.txt

85 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/secrets/SimpleSecretStoreProvider.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/secrets/LockedSecretStoreProvider.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/_attachments/apidocs/org/forgerock/openam/plugins/PluginTools.html#installSecretsStoreType(java.lang.Class)
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc7468
https://datatracker.ietf.org/doc/html/rfc7468
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#property-secret-store
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#file-system-secret-volumes
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#google-GSM-secret-stores

Open the �le with the secret and wrap it in PEM labels, such as the following:

Encrypt the contents of the non-standard PEM-formatted �le using the

https://openam.example.com:8443/openam/encode.jsp page, and save it

to a �le.

The encryption process will create a string that is not PEM-formatted: do not

add the PEM labels again. When AM reads the secret from the secret store that

you will con�gure in the following step, it will decrypt it automatically and use it

as a PEM secret.

2. Save the secret in the relevant place:

a. For �le system secret volume stores, copy the �le with the secret to the

location de�ned as the source of the store.

For information on the �le name to use, see Map �les in �le system secret

volumes secret stores.

b. For the environment and system property secrets store, add the contents of

the �le to an environment variable, or Java system property.

For information on the variable or property name to use, see Environment and

system property secret store.

c. For Google GSM secret stores, add the contents of the �le to a GSM secret.

For information on the secret name to use, see Google GSM secret stores.

$ base64 myDecodedSecret.txt > myEncodedSecret.txt

HMAC Secrets AES Secrets Generic Secrets

-----BEGIN HMAC SECRET KEY-----

Base64-encoded cryptographic material

-----END HMAC SECRET KEY-----

TIP

86 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#creating-mappings-FS
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#creating-mappings-FS
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#property-secret-store
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#property-secret-store
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html#google-GSM-secret-stores

3. If the standard PEM-formatted secret is password-encrypted, make the password

available to AM as follows:

Encode the password using the

https://openam.example.com:8443/openam/encode.jsp page.

Write the result to a �le system secret, or environment variable, that must use

the am.global.services.secret.pem.decryption secret ID:

Make the password available to AM in either the environment and system

property secrets store or a �le system secret volumes secret store, depending

on how you created the secret in the previous step.

You can concatenate the contents of several related PEM-formatted �les

in a single GSM secret; for example, a private key and its associated

certi�cate chain. AM will correctly extract the di�erent components.

Concatenate keys and multiple certi�cates in a PEM �le in order, such

that the following certi�cate directly certi�es the one preceding it:

TIP

Example

-----BEGIN RSA PRIVATE KEY-----

The Private Key: domain_name.key

-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----

The Primary SSL certificate: domain_name.crt

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

The Intermediate certificate: CA_cert.crt

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

The Root certificate: Root.crt

-----END CERTIFICATE-----

File system secret Environment variable

$ echo -n AQICmX1ntZv3XETMgDo+0zFynC8UMGJgop+K >

am.global.services.secret.pem.decryption

IMPORTANT

87 / 207

4. Con�gure AM to use the new PEM-formatted certi�cate or key.

See Map and rotate secrets.

Several AM features require secrets for signing and encryption. For each requirement,

AM has a speci�c secret ID.

To provide AM with the correct secret, map one or more aliases from the secret stores

you con�gure to each of the secret IDs. These mappings let you specify the active

secrets, and rotate them when they expire or become compromised. For a list of secret

IDs and their default mappings, see Secret ID default mappings.

AM uses active secrets for signature generation, encryption, veri�cation, and decryption.

AM uses non-active secrets for signature veri�cation and decryption. For example, if you

map several aliases for signing OAuth 2.0 client-side tokens, new tokens are signed with

the active secret, and incoming tokens are veri�ed against both the active and the non-

active secrets.

You can rotate a non-active secret to become an active secret (while the old secret

remains valid). You can also retire a secret if it’s no longer considered secure.

1. To map secrets in a global secret store, go to Con�gure > Secret Stores.

To map secrets in a realm-speci�c secret store, go to Realms > Realm Name >

Secret Stores.

2. Click the store that contains the secrets you want to map.

3. On the Mappings tab, click Add Mapping.

4. From the Secret ID drop-down list, choose the secret ID that you want to associate

with an alias.

AM only checks global stores for the passwords used to decrypt PEM-

formatted �les. The PEM-formatted secret can be con�gured and used in

any realm, but the decryption password must be available in a global

store.

Con�gure global stores by navigating to Con�gure > Secret Stores.

IMPORTANT

Map and rotate secrets

Only one secret can be active for a speci�c secret label mapping.

NOTE

Map secrets in keystore, HSM, or Google KMS/GSM secret stores

88 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html

For information about the di�erent secret ID mappings, Secret ID default mappings.

5. Enter any Alias and click the add (+) icon.

You can add as many aliases as necessary. The �rst alias in the list determines the

active secret. Active secrets are used for signature generation and encryption. Non-

active secrets are used for signature veri�cation and decryption.

6. Drag and drop to change the order of aliases, and set the active secret.

7. If a secret is considered no longer secure, retire it by clicking the delete (×) icon.

8. When you have completed the mappings, click Create.

File system secret volumes do not allow rotating or retiring secrets through mappings

like other stores do.

To map secret IDs to �les, follow these steps:

1. In the directory con�gured as the secret store, for example, /openam/secrets ,

create the required �les to store your secrets. Use the tables in Secret ID default

mappings for guidance.

For example, to create a mapping for the Web and Java agents' OAuth 2.0 provider,

create a �le called am.global.services.oauth2.oidc.agent.idtoken.signing .

You can also create mappings for secret store-speci�c secrets, such as the keystore

secret store password, the keystore secret store entry password, or the HSM guice

key. These mappings do not require speci�c secret IDs. For example, you can create

a �le called mykeystorepassword , and then con�gure it in the Store password

secret ID �eld of your keystore secret store.

When you con�gure mappings for a Google KMS or a Google GSM secret store,

map only one secret for each secret ID and manage key rotation in the Google

Cloud KMS key ring, or in Google Secret Manager.

TIP

Map �les in �le system secret volumes

The name of a secret ID—and therefore the �le names given to �le system

secrets—must include only alphanumeric characters and periods (.). The

names cannot start or end with periods, or have more than one period in a

row.

Depending on the con�guration of the secret store, you may be able to add a

su�x to the �le name, such as .txt .

IMPORTANT

89 / 207

2. Store the relevant secret value in each �le.

The format of the secret value depends on the con�guration of the secret store. For

example, if you have con�gured File Format to be Encrypted text , you must

encode the secret value with AM’s encryption key.

Use the https://openam.example.com:8443/openam/encode.jsp page to

encode the secret, then add the encoded value to the secret �le.

The following groups contain the secret IDs used by the AM features, and their default

mappings, if any. Expand the categories for additional information about where or how

the mappings are used.

The following table shows the secret ID in which you can store the password used to

decrypt password-encrypted PEM �les.

Encode the password using the

https://openam.example.com:8443/openam/encode.jsp page.

Secret ID Default alias Algorithms

am.global.services.se

cret.pem.decryption

Encode using

encode.jsp

The following table shows the secret ID mapping to use when encrypting client-side

sessions:

How do I encode secrets with AM’s encryption key?

Secrets must not contain trailing newline characters. If you are using the echo

command to add secrets to a �le, append the -n option. For example:

IMPORTANT

$ echo -n AQICmX1ntZv3XETMgDo+0zFynC8UMGJgop+K >

am.global.services.oauth2.oidc.agent.idtoken.signing

Secret ID default mappings

General

Secret ID for PEM decryption password

Secret ID mappings for encrypting client-side sessions

90 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/client-based-sessions.html

Secret ID Default alias Algorithms

am.global.services.se

ssion.clientbased.enc

ryption

test RS256

To use AES-based encryption algorithms, con�gure the secret in the Encryption

Symmetric AES Key �eld in Con�gure > Global Services > Sessions > Advanced.

The following table shows the secret ID mapping to use when signing client-side

sessions:

Secret ID Default alias Algorithms

am.global.services.se

ssion.clientbased.sig

ning

rsajwtsigningkey RS256

ES256

ES384

ES512

To use HMAC-based signing algorithms, con�gure the secret in the Signing HMAC

Shared Secret �eld in Con�gure > Global Services > Sessions > Advanced.

The following table shows the secret ID mapping used to sign several OAuth 2.0 and

OpenID Connect-related JWTs:

Secret ID Default alias Algorithms

am.services.oauth2.jw

t.authenticity.signin

g

hmacsigningtest HS256

HS384

HS512

Secret ID mappings for signing client-side sessions

OAuth 2.0 and OpenID Connect as provider

Secret ID mappings for JWT authenticity signing

NOTE

91 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/client-based-sessions.html

This table shows the secret ID mapping used to encrypt client-side access tokens:

Secret ID Default alias Algorithms

am.services.oauth2.st

ateless.token.encrypt

ion

directenctest A128CBC-HS256

This table shows the secret ID mappings used to sign client-side access tokens:

Secret ID Default alias Algorithms

am.services.oauth2.st

ateless.signing.ES256

es256test ES256

am.services.oauth2.st

ateless.signing.ES384

es384test ES384

am.services.oauth2.st

ateless.signing.ES512

es512test ES512

am.services.oauth2.st

ateless.signing.HMAC

hmacsigningtest HS256

HS384

HS512

am.services.oauth2.st

ateless.signing.RSA

rsajwtsigningkey PS256

PS384

PS512

RS256

RS384

RS512

This key is used to sign the following tokens and requests:

OpenID Connect tokens for web and Java agents.

OpenID Connect tokens that are signed with an HMAC algorithm.

Macaroon access and refresh tokens.

Consent requests to remote consent agents that are signed with an HMAC

algorithm.

NOTE

Secret ID mappings for encrypting client-side OAuth 2.0 tokens

Secret ID mappings for signing client-side OAuth 2.0 tokens

Secret ID mappings for signing remote consent requests

92 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/stateless-stateful-tokens.html#client-side-tokens
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/stateless-stateful-tokens.html#client-side-tokens

The following table shows the secret ID mappings used to sign remote consent

requests:

Secret ID Default alias Algorithms

am.applications.agent

s.remote.consent.requ

est.signing.ES256

es256test ES256

am.applications.agent

s.remote.consent.requ

est.signing.ES384

es384test ES384

am.applications.agent

s.remote.consent.requ

est.signing.ES512

es512test ES512

am.applications.agent

s.remote.consent.requ

est.signing.RSA

rsajwtsigningkey RS256

RS384

RS512

PS256

PS384

PS512

 If you select an HMAC algorithm for signing consent requests (HS256, HS384, or

HS512), the value of the Remote Consent Service secret property is used, instead of an

entry from the secret stores.

Since the HMAC secret is shared between AM and the remote consent client, a

malicious user compromising the client could potentially create tokens that AM would

trust. Therefore, to protect against misuse, AM also signs the token using a non-

shared signing key con�gured in the

am.services.oauth2.jwt.authenticity.signing secret ID.

The following table shows the secret ID mapping used to decrypt remote consent

responses:

Secret ID Default alias Algorithms

am.services.oauth2.re

mote.consent.response

.decryption

test RSA-OAEP-256

 If you select an algorithm other than RSA-OAEP-256 for decrypting consent

responses, the value of the Remote Consent Service secret property is used, instead

(1)

(1)

Secret ID mappings for decrypting remote consent responses

(1)

(1)

93 / 207

of an entry from the secret stores.

The following table shows the secret ID mappings used for the example Remote

Consent service:

Secret ID Default alias Algorithms

am.services.oauth2.re

mote.consent.response

.signing.RSA

rsajwtsigningkey RS256

RSA (at least 2048 bits)

am.services.oauth2.re

mote.consent.request.

encryption

selfserviceenctest RSA-OAEP-256

RSA (at least 2048 bits)

The following table shows the secret ID mapping used to decrypt OpenID Connect

request parameters:

Secret ID Default alias Algorithms

am.services.oauth2.oi

dc.decryption.RSA1.5

test RSA with PKCS#1 v1.5

padding

am.services.oauth2.oi

dc.decryption.RSA.OAE

P

test RSA with OAEP with SHA-1

and MGF-1

am.services.oauth2.oi

dc.decryption.RSA.OAE

P.256

test RSA with OAEP with SHA-

256 and MGF-1

 The following applies to con�dential clients only:

If you select an AES algorithm (A128KW, A192KW, or A256KW) or the direct encryption

algorithm (dir), the value of the Client Secret �eld in the OAuth 2.0 Client is used as the

secret instead of an entry from the secret stores.

The following signing and encryption algorithms use the Client Secret �eld to store the

secret:

Signing ID tokens with an HMAC algorithm

Encrypting ID tokens with AES or direct encryption

Encrypting parameters with AES or direct encryption

Secret ID mappings for the OAuth 2.0 example Remote Consent service

Secret ID mappings for decrypting OpenID Connect request parameters

(1)

(1)

94 / 207

Store only one secret in the Client Secret �eld; AM will use di�erent mechanisms to

sign and encrypt depending on the algorithm, as explained in the OpenID Connect

Core 1.0 errata set 1 speci�cation.

The following table shows the secret ID mapping used to sign OpenID Connect ID

tokens and backchannel logout tokens:

Secret ID Default alias Algorithms

am.services.oauth2.oi

dc.signing.ES256

es256test ES256

am.services.oauth2.oi

dc.signing.ES384

es384test ES384

am.services.oauth2.oi

dc.signing.ES512

es512test ES512

am.services.oauth2.oi

dc.signing.RSA

rsajwtsigningkey PS256

PS384

PS512

RS256

RS384

RS512

am.services.oauth2.oi

dc.signing.EDDSA

EdDSA with SHA-512

 The following applies to con�dential clients only:

If you select an HMAC algorithm for signing ID tokens (HS256, HS384, or HS512), the

Client Secret property value in the OAuth 2.0 Client is used as the HMAC secret

instead of an entry from the secret stores.

Since the HMAC secret is shared between AM and the client, a malicious user

compromising the client could potentially create tokens that AM would trust.

Therefore, to protect against misuse, AM also signs the token using a non-shared

signing key con�gured in the am.services.oauth2.jwt.authenticity.signing

secret ID.

The following table shows the secret ID mapping used to store the CA certi�cates AM

should trust during mTLS client authentication:

Secret ID mappings for signing OpenID Connect tokens

(1)

(1)

Secret ID mappings for CA certi�cates used in mTLS client authentication

95 / 207

Secret ID Default alias Algorithms

am.services.oauth2.tl

s.client.cert.authent

ication

The following table shows the secret ID mapping to support decryption of ID tokens

and userinfo endpoint data in JWT format when AM is con�gured as a relying party

of the Social Identity Provider Service:

Secret ID Default alias Algorithms

am.services.oauth2.oi

dc.rp.idtoken.encrypt

ion

test

The public key is exposed in the /oauth2/connect/rp/jwk_uri.

For more information about the algorithms supported, and how to con�gure this

secret ID mapping, see Social authentication.

The following table shows the secret ID mapping that AM uses to sign JWTs and

objects when con�gured as a relying party of the Social Identity Provider Service:

Secret ID Default alias Algorithms

am.services.oauth2.oi

dc.rp.jwt.authenticit

y.signing

rsajwtsigningkey

The public key is exposed in the /oauth2/connect/rp/jwk_uri.

For more information about the algorithms supported, and how to con�gure this

secret ID mapping, see Social authentication.

The following table shows the secret ID mapping used to store CA or self-signed

certi�cates AM uses for mTLS client authentication when con�gured as a relying party

of the Social Identity Provider service:

OAuth 2.0 and OpenID Connect as client/relying party of the Social Identity

Provider service

Secret ID mappings for decrypting ID tokens

Secret ID mappings for signing JWTs and objects

Secret ID mappings for CA certi�cates used in mTLS client authentication

96 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/managing-rp-jwk_uri.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/social-registration.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/managing-rp-jwk_uri.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/social-registration.html

Secret ID Default alias Algorithms

am.services.oauth2.tl

s.client.cert.authent

ication

The public key is exposed in the /oauth2/connect/rp/jwk_uri.

For more information about the algorithms supported, and how to con�gure this

secret ID mapping, see Social authentication.

The following table shows the secret ID mapping used sign the JWTs provided to web

and Java agents:

Secret ID Default alias Algorithms

am.global.services.oa

uth2.oidc.agent.idtok

en.signing

rsajwtsigningkey RS256

RS384

RS512

The following table shows the secret ID mappings used to encrypt and then sign

persistent cookies:

Secret ID Default alias Algorithms

am.default.authentica

tion.modules.persiste

ntcookie.encryption

test RSA (at least 2048 bits)

am.default.authentica

tion.modules.persiste

ntcookie.signing

hmacsigningtest HS256

For each instance of a persistent cookie module available in a realm, there is a

dynamic secret ID associated with that module con�guration instance.

For example, in a single realm you can have a Persistent Cookie module instance with

the name helloworld, and a separate Persistent Cookie module instance with the name

Web agents and Java agents

Secret ID mappings for the agents' OAuth 2.0 provider

Authentication

Secret ID mappings for persistent cookies

97 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/managing-rp-jwk_uri.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/social-registration.html

hellomars.

The following secret ID mappings could be used to encrypt and then sign persistent

cookies:

Secret ID Default alias

am.authentication.modules.persis

tentcookie.helloworld.encryption

helloworld

am.authentication.modules.persis

tentcookie.helloworld.signing

hmacsigninghelloworld

am.authentication.modules.persis

tentcookie.hellomars.encryption

hellomars

am.authentication.modules.persis

tentcookie.hellomars.signing

hmacsigninghellomars

AM will attempt to look up the secrets with the Persistent Cookie module instance

name. If unsuccessful, AM will look up the secrets using the default secret ID.

The following table shows the secret ID mapping used to encrypt sensitive data stored

in the secure state of an authentication tree:

Secret ID Default alias Algorithms

am.authn.trees.transi

entstate.encryption

directenctest AES 256-bit

The following table shows the secret ID mapping used to encrypt the JWTs SAML v2.0

creates in session storage:

Secret ID Default alias Algorithms

am.global.services.sa

ml2.client.storage.jw

t.encryption

directenctest A256GCM

The following table shows the secret ID mappings used to sign SAML v2.0 metadata:

Secret ID mappings for encrypting authentication trees' secure state data

SAML v2.0

Secret ID mappings for encrypting SAML v2.0 session storage JWTs

Secret ID mappings for signing SAML v2.0 metadata

98 / 207

Secret ID Default alias Algorithms

am.services.saml2.met

adata.signing.RSA

rsajwtsigningkey RSA SHA-256

The following table shows the secret ID mappings used to sign and encrypt SAML v2.0

elements:

Secret ID Default alias Algorithms

am.default.applicatio

ns.federation.entity.

providers.saml2.idp.e

ncryption

test RSA with PKCS#1 v1.5

padding

RSA with OAEP

am.default.applicatio

ns.federation.entity.

providers.saml2.idp.s

igning

rsajwtsigningkey RSA SHA-1

ECDSA SHA-256

ECDSA SHA-384

ECDSA SHA-512

RSA SHA-256

RSA SHA-384

RSA SHA-512

DSA SHA-256

am.default.applicatio

ns.federation.entity.

providers.saml2.sp.en

cryption

test RSA with PKCS#1 v1.5

padding

RSA with OAEP

am.default.applicatio

ns.federation.entity.

providers.saml2.sp.si

gning

rsajwtsigningkey RSA SHA-1

ECDSA SHA-256

ECDSA SHA-384

ECDSA SHA-512

RSA SHA-256

RSA SHA-384

RSA SHA-512

DSA SHA-256

 This algorithm is for compatibility purposes only, and its use should be avoided.

You can specify a custom secret ID identi�er for each hosted SAML v2.0 entity

provider in a realm, which creates new secret IDs. These secret IDs can be unique to

the provider, or shared by multiple providers.

Secret ID mappings for SAML v2.0 signing and encryption

(1)

(1)

(1)

99 / 207

For example, you could add a custom secret ID identi�er named mySamlSecrets to a

hosted identity provider.

AM dynamically creates the following secret IDs, which the hosted identity provider

uses for signing and encryption:

am.applications.federation.entity.providers.saml2.mySamlSecrets.si

gning

am.applications.federation.entity.providers.saml2.mySamlSecrets.en

cryption

AM will attempt to look up the secrets with the custom secret ID identi�er. If

unsuccessful, AM will look up the secrets using the default secret IDs.

The following table shows the secret ID mapping that the IoT service uses when

con�gured as a trusted OAuth 2.0 JWT issuer:

Secret ID Default alias Algorithms

am.services.iot.jwt.i

ssuer.signing

hmacsigningtest HS256

The following table shows the secret ID mapping for the CA certi�cate that the

Register Thing node uses to verify the X.509 digital certi�cate included in the proof-of-

possession JWT:

Secret ID Default alias Algorithms

am.services.iot.cert.

verification

For demo and test purposes, AM includes demo key aliases for several features. You can

keep the demo key aliases con�gured for features you aren’t using, or you can remove

them from your production environment.

When possible, the following list includes the Global Services or Server Default paths

where the demo key aliases are con�gured. If you have already con�gured any of the

IoT

Secret ID mappings for the IoT trusted JWT issuer

Secret ID mappings for IoT certi�cate veri�cation

Change default key aliases

100 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-register-thing
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html#about-default-keystores

features in a realm, ensure that the key alias is replaced in the realm con�guration as

well.

To replace the default key aliases:

1. Create the required key aliases following the tasks in Key aliases and passwords.

2. Change the default key aliases:

Web agents and Java agents

Agents use the secret labels speci�ed in the Web Agents Installation Guide and

the Java Agents Installation Guide.

Persistent Cookie module

To change the default mapping for the Persistent Cookie module, go to Realms

> Realm Name > Authentication > Settings > Security. Replace the test key

alias in the Persistent Cookie Encryption Certi�cate Alias �eld with the alias

you created for persistent cookies in your secret stores.

For more information about the secret ID mappings used by this feature, see

Secret ID mappings for persistent cookies.

OAuth 2.0 and OpenID Connect providers

See the list of secret IDs and their defaults here and here.

SAML v2.0 hosted providers

See the list of secret IDs and their defaults here.

Client-side sessions

Go to Con�gure > Global Services > Session > Client-Side Sessions. Replace

the test key alias in the Signing RSA/ECDSA Certi�cate Alias �eld and in the

Encryption RSA Certi�cate Alias �eld.

User self-service

Go to Realms > Realm Name > Services > User Self-Service. Populate the

values of the Encryption Key Pair Alias and the Signing Secret Key Alias

properties.

Note that the name of the demo keys shows with a gray color; that does not

mean the �elds are �lled in.

Authentication trees

Authentication trees use the secret ID speci�ed in Secret ID mappings for

encrypting authentication trees' secure state data.

Ensure that this secret ID is always mapped to an existing, resolvable secret

or key alias, or authentication trees may not work as expected.

IMPORTANT

101 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/configuring-keys.html
file:///web-agents/5.10/installation-guide/pre-installation.html#configuring-agent-communication
file:///java-agents/5.10/installation-guide/pre-installation.html#configuring-agent-communication
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secrets-persistent-cookie
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#oauth2-default-secret-IDs
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#oidc-social-registration-secret-IDs
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#saml2-default-secret-IDs
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secrets-authn-trees-transient-encryption
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secrets-authn-trees-transient-encryption

IoT

The IoT Service uses the secret IDs speci�ed in Secret ID mappings for the IoT

trusted JWT issuer.

After authenticating an end user, AM stores their session (for client-side sessions), or a

pointer to their session (for server-side sessions), in a cookie in the end user’s browser.

HTTPS communication already helps to keep cookies secure since the encrypted

communication cannot be eavesdropped. However, there are other ways a malicious

user can hijack a cookie. For example, cross-site scripting (XSS) and cross-site tracing

(XST) involve injecting HTML or JavaScript on a legitimate website. By using JavaScript

code, the malicious user can steal the cookie directly from the browser.

The following table summarizes the tasks you need to perform to protect session

cookies:

Task Resources

Con�gure the HttpOnly �ag

This �ag ensures that the session cookie

is transmitted over an HTTP or HTTPS

channel only, protecting your

environment against most XSS attacks.

HttpOnly session cookies

Con�gure the secure �ag

This �ag ensures the session cookie is

only transmitted over HTTPS channels

such that the session cookie is not

carried over insecure HTTP redirections.

Secure cookies by default

Choose a session cookie name

Change the name of the session cookie

from the default of

iPlanetDirectoryPro .

Change the session cookie name

Secure session cookies

102 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secrets-am-services-iot-jwt-issuer-signing
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-mapping.html#secrets-am-services-iot-jwt-issuer-signing
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/sec-rest-httponly.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/configuring-secure-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/change-name-of-SSO-cookie.html

Task Resources

Restrict CDSSO tokens to protect them

against hijacking

By default, AM provides a CDSSO tokens

valid for the appropriated realms. Restrict

tokens so that AM issues di�erent tokens

for di�erent realms.

Restrict tokens for CDSSO session

cookies

Use host-only cookies

Because host-only cookies are more

secure than domain cookies, you should

use host-only cookies unless you have a

good business case for using domain

cookies.

Cookie Domains

Whether you use HTTP or HTTPS, �ag your cookies as HttpOnly , which means they are

transmitted only over HTTP or HTTPS protocols. This setting alone already prevents most

XSS attacks, since HttpOnly cookies cannot be transmitted using JavaScript.

Client-side sessions are more vulnerable to hijacking, since they contain all the

session information. To con�gure additional security measures, see Client-side

session security.

TIP

HttpOnly session cookies

When a client makes a call to the /json/authenticate endpoint appending a

valid SSO token, if HttpOnly cookies are enabled, then AM returns an empty

tokenId �eld.

For example:

IMPORTANT

{

"tokenId":"",

"successUrl":"/openam/console",

"realm":"/alpha"

}

Con�gure the httpOnly �ag

103 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cdsso-cookie-hijacking-protection.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cdsso-cookie-hijacking-protection.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#cookie-domains
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html

1. In the AM admin UI, go to Con�gure > Server Defaults > Advanced.

2. Set the com.sun.identity.cookie.httponly advanced server property to true ,

and save your changes.

You must make this change in all the AM instances in the site.

3. Restart AM or the container where it runs.

When using HTTPS, mark all your cookies as secure, which means they are only

transmitted over HTTPS protocols.

This �ag is useful for sites that allow both HTTPS and HTTP tra�c, since it protects from

HTTP redirection carrying session cookies across unencrypted connections.

1. In the AM admin UI, go to Con�gure > Server Defaults > Security > Cookie.

2. Enable the Secure Cookie option.

3. Click Save Changes.

4. Restart AM or the container where it runs.

By default, the session cookie name is iPlanetDirectoryPro .

You must change this value to something unique in your environment that does not give

away its contents. Do not use names such as sessionCookie .

1. In the AM admin UI, go to Con�gure > Server Defaults > Security > Cookie.

2. Change the name in the Cookie Name �eld.

3. Click Save Changes.

4. Restart AM or the container where it runs.

Regardless of the value of the com.sun.identity.cookie.httponly

property, AM upgrades cookies to secure cookies (except the amlbcookie

cookie) when requests arrive over a secure channel.

NOTE

Secure cookies by default

Change the session cookie name

If you change the name of the cookie on a production system, you are invalidating

the sessions of any user that still had a valid cookie.

CAUTION

104 / 207

Note that Web agents need to know the name of the session cookie. You must change

this con�guration when you change the name of the session cookie in AM. For more

information, check the com.sun.identity.agents.config.cookie.name property in

the ForgeRock Web Agents Reference.

When the session cookie is a cross-domain single-sign on (CDSSO) cookie, meaning that

it is valid across several domains, the damage a malicious user can cause is increased.

A malicious user who steals a CDSSO cookie can potentially use it to access any realms

that session has logged into, which may span multiple domains. For example, a token

stolen from myapp.example.com could be used to access payroll.internal.com or

any other protected domain in the same realm. Cookie hijacking protection restricts

cookies to the fully quali�ed domain name (FQDN) of the host where they are issued,

such as openam-server.example.com and server-with-agent.example.com , using

CDSSO to handle authentication and authorization.

For CDSSO with cookie hijacking protection, when a client successfully authenticates, AM

issues the master SSO token cookie for its FQDN. AM issues restricted token cookies for

the other FQDNs where the web or Java agents reside. The client ends up with cookies

having di�erent session identi�ers for di�erent FQDNs, and the AM server stores the

correlation between the master SSO token and restricted tokens, such that the client

only has one master session internally in AM.

To protect against cookie hijacking, you restrict the AM server domain to the server

where AM runs. This sets the domain of the SSO token cookie to the host running the

AM server that issued the token. You also enable use of a unique SSO token cookie. For

your Java agents, you enable use of the unique SSO token cookie in the agent

con�guration.

1. In the AM admin UI, go to Con�gure > Global Services > Platform.

Remove all domains from the Cookies Domains list.

Click Save Changes.

2. Go to Con�gure > Server Defaults > Advanced.

Restrict tokens for CDSSO session cookies

Client-side sessions do not support restricted tokens. Therefore, web agents and

Java agents in a realm con�gured for client-side sessions are not protected against

cookie hijacking. ForgeRock recommends using web or Java agents with server-side

sessions.

IMPORTANT

Enable restricted tokens

105 / 207

file:///web-agents/5.10/properties-reference/com.sun.identity.agents.config.cookie.name.html

3. Set the com.sun.identity.enableUniqueSSOTokenCookie advanced property to

true .

4. Click Save Changes.

5. Restart AM or the container in which it runs for the con�guration changes to take

e�ect.

Although the session cookie is the most important cookie to keep track of when securing

AM, there are other points you must consider, such as:

Which cookie are you using for sticky load balancing?

By default, AM creates the amlbcookie cookie and sets it to the ID of the instance

that �rst responded to a request. You should change the name of this cookie to

something unique in your environment.

Which other cookies, relevant for your environment, interact with AM or are sent to

AM as part of a chain of requests?

The following table summarizes the tasks and information to review to manage cookie

security that is not strictly related to the session cookie:

Task Resources

Enable support for SameSite rules

Con�gure AM to apply SameSite rules,

such that you can declare that your

cookies are restricted to a �rst-party or a

same-site context.

SameSite cookie rules

Review the secure cookie �lter

AM provides a �lter that upgrades

cookies to secure cookies if the

conditions are met.

Secure cookie �lter

Change the name of the sticky load

balancing cookie

Name the cookie something relevant and

unique for your environment.

Change the sticky load balancing cookie

name

Additional cookie security

106 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-samesite-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secure-cookie-filter.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/change-amlbcookie-name.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/change-amlbcookie-name.html

For additional cookie security, enable support for applying SameSite cookie rules, as

described in the internet-draft Cookies: HTTP State Management Mechanism .

You can con�gure the AM server to apply SameSite cookie rules by navigating to

Con�gure > Server Defaults > Advanced, and setting the

com.sun.identity.cookie.samesite property’s value to one of the following:

strict

Requests originating from di�erent sites will not have cookies sent with them.

When this mode is enabled, any AM functionality that relies on requests being

redirected back to the AM instance may not operate correctly. For example, OAuth

2.0 �ows and SAML federation may not operate correctly if AM cannot access the

required cookies.

lax

Cookies received from di�erent sites cannot be accessed, unless the request is using

a top-level request, and uses a "safe" HTTP method, such as GET, HEAD, OPTIONS, or

TRACE.

off

No restrictions on the domain of cookies is applied. This is the default setting.

You must disable SameSite support if any of the following is true:

You have set Access-Control-Allow-Credentials=true in your CORS

con�guration.

For more information on con�guring CORS in AM, see Con�gure CORS support.

You are using SAML HTTP-POST bindings.

For example, IDP-initiated single logout (SLO) functionality will not operate

correctly if SameSite support is enabled, as the iPlanetDirectoryPro cookie

would not be accessible in cross-domain POST requests. For more information

on SAML single logout, see Implement SSO and SLO.

SameSite cookie rules

Modern browsers only allow disabling SameSite if the cookie is marked as

Secure . If you need to handle cross-site requests with cookies, you should move

to HTTPS-only environment.

CAUTION

Secure cookie �lter

107 / 207

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-02#section-5.3.7
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-02#section-5.3.7
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-02#section-5.3.7
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cors-support.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/saml2-guide/saml2-sso-slo.html

As part of the support that AM provides for SameSite cookies, the deployment

descriptor �le web.xml includes a �lter that �ags cookies as secure if any of the

following is true:

The request comes in through a connection marked as secure.

For example, because you have marked an HTTP connector as secure in Tomcat.

The request comes in through an HTTPS connector.

Automatically promoting cookies to secure ensures that the functionality continues to

work with the SameSite changes, because you can only opt out of SameSite if a

cookie is marked as secure.

1. To exclude cookies from the �lter, edit the

/path/to/tomcat/webapps/openam/WEB-INF/web.xml �le and search for the

SecureCookieFilter �lter.

2. Add any cookies you want to exclude to the list.

For example:

3. Restart AM or the container where it runs for the changes to take e�ect.

By default, the sticky load balancing cookie name is amlbcookie . Change this value to

something that is unique in your environment, and con�gure the name of the cookie in

Exclude cookies from the �lter

...

<param-name>excludes</param-name>

<param-value>

myCookie1

myStickyCookie

myCookie2

</param-value>

...

To ensure that non-secure requests are load-balanced correctly, the

amlbcookie cookie is already excluded by default. If you are using a custom

cookie for sticky load balancing, you may want to add it to the list of excluded

cookies.

TIP

Change the sticky load balancing cookie name

108 / 207

your load balancers to achieve session stickiness.

Perform the following steps to change the name of the cookie:

1. Go to Con�gure > Server Defaults > Advanced.

2. Change the value of the com.iplanet.am.lbcookie.name advanced server

property to the new cookie name.

By default, AM sets the value of the load balancing cookie to the ID of the instance

that �rst responded to a request. You can change it, but we recommend that you

keep this con�guration when using web agents.

For more information, see Load balancing.

3. Restart AM or the container where it runs.

Cookie hijacking is not the only danger to sessions. Consider the following non-

exhaustive list of scenarios that can result in a compromised account:

End users entering their data in a malicious website thinking it is the authentic one.

End users leaving their computers unattended while their session is open.

End users logging in from completely di�erent locations or devices than their usual.

The following table summarizes the tasks you need to perform to keep sessions secure:

Task Resources

Settings related to session termination

Understand session termination, and

con�gure the session time-to-live and idle

timeout.

Ensuring sessions expire within a

reasonable time helps you protect your

environment against impersonation

attacks.

Session termination

Lock accounts after failed login

attempts

Con�gure account lockout to protect your

environment against brute-force or

dictionary attacks.

Account lockout

Secure sessions

109 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-session-termination.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/account-lockout.html

Task Resources

Limit the number of active user

sessions

Prevent users from logging in from more

than two devices as a time, for example.

This helps you mitigate against cases

where user accounts have been

compromised.

Session quotas

Protect client-side sessions

AM o�ers additional security measures to

protect client-side sessions. They are

more vulnerable to hijacking than server-

side sessions because they contain all the

session information in them.

Client-side session security

Protect authentication sessions

Con�gure authentication session

allowlisting to protect these sessions

against replay attacks.

Client-side session security

AM manages active sessions, allowing single sign-on when authenticated users attempt

to access system resources in AM’s control.

AM ensures that user sessions are terminated when a con�gured timeout is reached, or

when AM users perform actions that cause session termination. Session termination

e�ectively logs the user out of all systems protected by AM.

With server-side sessions, AM terminates sessions in four situations:

When a user explicitly logs out.

When an administrator monitoring sessions explicitly terminates a session.

When a session exceeds the maximum time-to-live.

When a user is idle for longer than the maximum session idle time.

Under these circumstances, AM responds by removing server-side sessions from the

CTS token store and from AM server memory caches. With the user’s session no longer

present in CTS, AM forces the user to reauthenticate during subsequent attempts to

access resources protected by AM.

Session termination

110 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-quotas.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html

When a user explicitly logs out of AM, AM also attempts to invalidate the

iPlanetDirectoryPro cookie in users' browsers by sending a Set-Cookie header

with an invalid session ID and a cookie expiration time that is in the past. In the case of

administrator session termination and session timeout, AM cannot invalidate the

iPlanetDirectoryPro cookie until the next time the user accesses AM.

Session termination di�ers for client-side sessions. Since client-side sessions are not

maintained in the CTS token store, administrators cannot monitor or terminate them.

Because AM does not modify the iPlanetDirectoryPro cookie for client-side sessions

after authentication, the session idle time is not maintained in the cookie. Therefore, AM

does not automatically terminate client-side sessions that have exceeded the idle

timeout.

As with server-side sessions, AM attempts to invalidate the iPlanetDirectoryPro

cookie from a user’s browser when the user logs out. When the maximum session time

is exceeded, AM also attempts to invalidate the iPlanetDirectoryPro cookie in the

user’s browser the next time the user accesses AM.

It is important to understand that AM cannot guarantee cookie invalidation. For

example, the HTTP response containing the Set-Cookie header might be lost. This is

not an issue for server-side sessions, because a logged out session no longer exists in

the CTS token store, and a user who attempts to access AM after previously logging out

will be forced to reauthenticate.

However, the lack of a guarantee of cookie invalidation is an issue for deployments with

client-side sessions. It could be possible for a logged out user to have an

iPlanetDirectoryPro cookie. AM could not determine that the user previously logged

out. Therefore, AM supports a feature that takes additional action when users log out of

client-side sessions. AM can maintain a list of logged out client-side sessions in a session

denylist in the CTS token store. Whenever users attempt to access AM with client-side

sessions, AM checks the session denylist to validate that the user has not, in fact, logged

out.

Since AM does not modify client-side session cookies once they are stored in the end

user’s browser, and client-side sessions contain, among others, the session maximum

time-to-live, it is imperative to protected them against tampering. See Client-side session

security for more information.

When con�guring the maximum session time-to-live, you must balance security and user

experience. Depending on your application, it may be acceptable for your users to log in

once a month. Financial applications, for example, tend to expire their sessions in less

than an hour.

The longer a session is valid, the larger the window during which a malicious user could

impersonate a user if they were able to hijack a session cookie.

Con�gure maximum session time-to-live

111 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html

1. In the AM admin UI, go to Realms > Realm Name > Services > Session > Dynamic

Attributes.

Note that you can also change maximum session time settings globally for the AM

site at Con�gure > Sessions > Dynamic Attributes.

2. In the Maximum Session Time �eld, set a value suitable for your environment.

3. Save your changes.

Consider a user with a valid session navigating through pages or making changes to the

con�guration. If for any reason they leave their desk and their computer remains open,

a malicious user could take the opportunity to impersonate them.

Session idle timeout can help mitigate those situations, by logging out users after a

speci�ed duration of inactivity. Session idle timeout can only be used in realms

con�gured for server-side sessions.

1. In the AM admin UI, go to Realms > Realm Name > Services > Session > Dynamic

Attributes.

Note that you can also change idle timeout settings globally for the AM site by

navigating to Con�gure > Sessions > Dynamic Attributes.

2. On the Maximum Time Idle property, con�gure a value suitable for your

environment.

3. Save your changes.

Session denylisting ensures that users who have logged out of client-side sessions

cannot achieve single sign-on without reauthenticating to AM. Session denylisting does

not apply to authentication sessions.

1. Make sure that you deployed the Core Token Service during AM installation.

The session denylist is stored in the Core Token Service’s token store.

2. Go to Con�gure > Global Services, click Session, and locate the Client-Side

Sessions tab.

3. Select the Enable Session Denylisting option to enable session denylisting for

client-side sessions.

When you con�gure one or more AM realms for client-side sessions, you should

enable session denylisting in order to track session logouts across multiple AM

servers.

Con�gure server-side session idle timeout

Con�gure client-side session denylisting

112 / 207

Changing the value of this property takes e�ect immediately.

4. Con�gure the Session Denylist Cache Size property.

AM maintains a cache of logged out client-side sessions. The cache size should be

around the number of logouts expected in the maximum session time. Change the

default value of 10,000 when the expected number of logouts during the maximum

session time is an order of magnitude greater than 10,000. An undercon�gured

session denylist cache causes AM to read denylist entries from the Core Token

Service store instead of obtaining them from cache, which results in a small

performance degradation.

Changing the value of this property takes e�ect immediately.

5. Con�gure the Denylist Poll Interval property.

AM polls the Core Token service for changes to logged out sessions if session

denylisting is enabled. By default, the polling interval is 60 seconds. The longer the

polling interval, the more time a malicious user has to connect to other AM servers

in a cluster and make use of a stolen session cookie. Shortening the polling interval

improves the security for logged out sessions, but might incur a minimal decrease

in overall AM performance due to increased network activity.

Changing the value of this property does not take e�ect until you restart AM.

6. Con�gure the Denylist Purge Delay property.

When session denylisting is enabled, AM tracks each logged out session for the

maximum session time plus the denylist purge delay. For example, if a session has a

maximum time of 120 minutes and the denylist purge delay is one minute, then AM

tracks the session for 121 minutes. Increase the denylist purge delay if you expect

system clock skews in a cluster of AM servers to be greater than one minute. There

is no need to increase the denylist purge delay for servers running a clock

synchronization protocol, such as Network Time Protocol.

Changing the value of this property does not take e�ect until you restart AM.

7. Click Save Changes.

For detailed information about session service con�guration attributes, see the entries

for Session.

Enabling or disabling the session denyist, or altering the cache size, takes e�ect

immediately.

Changes to any other session denylist properties do not take e�ect until you

restart AM.

IMPORTANT

113 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-session

Account lockout is a security mechanism that locks a user account after repeated failed

login attempts. It is used to slow down brute-force attacks, and to compensate for weak

password policies.

Most deployments use the identity store’s password policy to control account lockout. If

this is not an option in your deployment, con�gure account lockout, as explained in this

section.

You can con�gure account lockout in one of the following ways:

Persistent lockout

Persistent (physical) lockout locks the user’s account inde�nitely, until unlocked by an

administrator. This is the default type of account lockout.

For persistent lockout, AM sets the user account status to inactive in the user

pro�le, and tracks failed authentication attempts by writing to the user repository.

Persistent lockout works independently of account lockout mechanisms in the

underlying directory server that serves as the user data store.

Duration lockout

Duration lockout locks the user account for a speci�ed duration, keeping track of the

locked state either in memory or in the data store. Duration lockout is released when

AM restarts.

Unlike persistent lockout, the user account status remains active for duration

lockout.

The default con�guration is to record invalid authentication attempts in the data

store. This avoids the need for sticky load balancing. If you choose to store the count

of invalid attempts in memory, the counter applies to the current AM instance only.

1. Con�gure account lockout:

Account lockout

Failed login attempts during the transactional authorization �ow do not increment

account lockout counters.

If login failures are stored in AM’s memory, this may result in user accounts not

being locked out, even after multiple login failures. To avoid this issue, rather

implement persistent lockout.

NOTE

Con�gure account lockout

114 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/transactional-authorization.html

In the AM admin UI, go to Realms > Realm Name > Authentication > Settings

> Account Lockout.

Enable lockout by checking Login Failure Lockout Mode, then set the number

of attempts and the lockout interval.

You can also opt to warn users after several consecutive failures.

To save account login failures to the data store, enable Store Invalid Attempts

in Data Store. This setting is necessary when using server-side or client-side

authentication sessions. If you do not set this, users might not be locked out,

even after multiple login failures.

When you store the count of failed attempts in the data store, other AM servers

accessing the user data store can also see that count.

If AM is con�gured to send mail, you can set up email noti�cation of lockouts to

an administrator. To con�gure AM to send mail, go to Con�gure > Server

Defaults > General > Mail Server.

2. Con�gure persistent lockout:

For persistent lockout, AM sets the value of the user’s inetuserstatus pro�le

attribute to inactive . You can specify an additional attribute to update on

lockout.

You can also de�ne a custom attribute to store the number of failed

authentication attempts.

3. Con�gure duration lockout:

Set the lockout duration to a positive value to enable duration lockout.

Optionally, con�gure a multipier to increase the lockout duration on each

successive lockout.

Enable the Store Invalid Attempts in Data Store property so that lockout

attempts are not stored in memory, but persisted in the repository, and

applied across all AM instances.

Set Invalid Attempts Data Attribute Name to the default attribute

sunAMAuthInvalidAttemptsData to prevent invalid attempts from being

stored only in memory.

For more information, see Con�gure realm authentication properties.

TIP

115 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/core-module-conf-hints.html

For speci�c information on how authentication trees handle account lockout, see

Account lockout for trees.

To customize the messages shown to end users when their accounts are locked, follow

these steps:

1. Locate the openam-core-7.2.0.jar �le in the WEB-INF/lib/ folder where AM is

deployed.

2. Extract the amAuth.properties �le.

3. Change the value of the �eld that controls the lockout message:

a. If you are using an authentication tree, change the value of the lockOut �eld,

for example:

b. If you are using an authentication chain, change the value of the 112 �eld, for

example:

4. Copy the amended amAuth.properties �le to the WEB-INF/classes/ folder

where AM is deployed.

5. When a user whose account is locked attempts to authenticate, the custom lockout

message is displayed:

To unlock a user’s account:

Locate the user under Realms > Realm Name > Identities.

Choose the user you want to unlock.

Set their User Status property to Active.

Click Save.

TIP

Customize account lockout messages

lockOut=Your example.com account has been locked. Please

contact your support agent.|user_inactive.jsp

112=Your example.com account has been locked. Please

contact your support agent.|user_inactive.jsp

116 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html#account-lockout-trees

AM lets you limit the number of active sessions for a user by setting session quotas. Use

this feature, for example, to prevent a user from logging in from more than two devices

at once, mitigating scenarios where user passwords may have been compromised.

AM’s support for session quotas requires server-side sessions.

The session quota applies to all sessions opened for the same user (as represented by

the user’s universal identi�er). To con�gure session quotas and exhaustion in AM,

perform the following steps:

1. In the AM admin UI, go to Con�gure > Global Services > Sessions > Session

Quotas.

2. From the Enable Quota Constraints drop-down menu, choose ON .

3. On the Set Resulting behavior if session quota exhausted property, set one of

the following values:

DENY_ACCESS

Deny access, preventing the user from creating an additional session.

DESTROY_NEXT_EXPIRING

Remove the next session to expire, and create a new session for the user. The

next session to expire is the session with the minimum time left until expiration.

This is the default setting.

DESTROY_OLDEST_SESSION

Remove the oldest session, and create a new session for the user.

DESTROY_OLD_SESSIONS

Remove all existing sessions, and create a new session for the user.

If none of these session quota exhaustion actions �t your deployment, you can

implement a custom session quota exhaustion action. For an example, see

Customize server-side session quota exhaustion actions.

4. Go to Realms > Realm Name > Services > Session.

5. On the Set Active User Sessions property, con�gure the maximum number of

concurrent sessions a user can have.

Note that you can also change this setting globally for the AM site in Con�gure >

Sessions > Dynamic Attributes.

6. Click Save Changes.

Session quotas

Con�gure session quotas and exhaustion actions

117 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/custom-quota-exhaustion-action.html

AM can issue server-side sessions, which contain a reference to the real session stored in

the CTS store, or client-side sessions, which contain all the information that would be

held in the CTS store.

While both types are susceptible to cookie hijacking, client-side sessions are even more

vulnerable, since they contain all the information for the session. Therefore, the

malicious user could tamper with the session data to their bene�t.

When using client-side sessions and client-side authentication sessions, you should

con�gure AM to sign and/or encrypt the JWT containing session information:

JWT signing

AM veri�es that the JWT is authentic by validating a signature con�gured in the

Session Service. AM thwarts attackers who might attempt to tamper with the

contents of the JWT or its signature, or who might attempt to sign the JWT with an

incorrect signature.

JWT encryption

Knowledgeable users can easily decode JWTs. Because an AM session or

authentication session contains information that might be considered sensitive,

encrypting the JWT that contains it protects its contents, ensuring opaqueness.

Encrypting the JWT prevents man-in-the-middle attacks that could log the state of

every AM session. Encryption also ensures that end users are unable to access the

information in their AM session.

Client-side sessions and client-side authentication sessions share the same

encryption and signing con�guration.

Con�gure a JWT signature to prevent malicious tampering of client-side session and

authentication session JWTs.

Perform the following steps to con�gure the JWT signature:

1. Go to Con�gure > Global Services > Session > Client-Side Sessions.

Client-side session security

To ensure that the client-side session cookie size does not surpass the browser

supported size, web agents and Java agents do not support both signing and

encrypting the session cookie.

For more information, see Client-side session security and agents.

IMPORTANT

Con�gure the JWT signature

118 / 207

2. From the Signing Algorithm Type drop-down menu, choose a suitable algorithm

for your environment.

The default value is HS256 .

3. Con�gure a secret relevant to the algorithm you chose:

If you speci�ed an HMAC signing algorithm, change the value in the Signing

HMAC Shared Secret �eld if you do not want to use the generated default

value.

Click Save Changes.

If you speci�ed the RS256 signing algorithm, or any of the elliptic curve

algorithms, con�gure a suitable secret in the

am.global.services.session.clientbased.signing secret ID. You can

only con�gure this secret at a global level.

For more information about con�guring secrets, see Secret stores.

Do not sign the JWT if you plan to encrypt it with the Direct AES Encryption

algorithm, because the signature will be redundant. To disable JWT signing,

perform the following steps:

a. Go to Con�gure > Server Defaults > Advanced.

b. Set the

org.forgerock.openam.session.stateless.signing.allownone

property to true .

To con�gure advanced server properties for all instances of the AM

environment, go to Con�gure > Server Defaults > Advanced in

the AM admin UI.

To con�gure advanced server properties for a particular instance,

go to Deployment > Servers > Server Name > Advanced.

If the property you want to add or edit is already con�gured, click on the

pencil (✏) button to edit it. When you are �nished, click on the tick (✓)

button.

Click Save Changes.

c. Go to Con�gure > Global Services > Session > Client-Side Sessions.

d. From the Signing Algorithm Type drop-down list, choose NONE .

e. Click Save Changes.

NOTE

How do I configure advanced server properties?

119 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html

For detailed information about Session Service con�guration attributes, see the entries

for Session.

Con�gure JWT encryption to prevent man-in-the-middle attackers from accessing users'

session details, and to prevent end users from examining the content in the JWT.

Perform the following steps to encrypt the JWT:

1. Go to Global Services > Session > Client-Side Sessions.

2. From the Encryption Algorithm drop-down list, choose a suitable algorithm.

3. If you chose the RSA algorithm, perform the following steps:

Con�gure a suitable secret in the

am.global.services.session.clientbased.encryption secret ID.

You can only con�gure this secret at a global level.

For more information about con�guring secrets, see Secret stores.

Con�gure one of the following paddings in the

org.forgerock.openam.session.stateless.rsa.padding advanced server

property:

RSA1_5. RSA with PKCS#1 v1.5 padding.

RSA-OAEP. RSA with OAEP and SHA-1.

RSA-OAEP-256. RSA with OAEP padding and SHA-256.

The default is RSA-OAEP-256 .

To con�gure advanced server properties for all instances of the AM

environment, go to Con�gure > Server Defaults > Advanced in the AM

admin UI.

To con�gure advanced server properties for a particular instance, go to

Deployment > Servers > Server Name > Advanced.

If the property you want to add or edit is already con�gured, click on the pencil (

✏) button to edit it. When you are �nished, click on the tick (✓) button.

Click Save Changes.

4. If you chose the AES KeyWrapping or Direct AES Encryption algorithms, perform

the following steps:

If you do not want to use the generated default value, enter a base64-encoded

random key in the Encryption Symmetric AES Key �eld:

Con�gure JWT encryption

How do I configure advanced server properties?

120 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-session
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secret-stores.html

For direct encryption with AES-GCM, or for AES-KeyWrap with any content

encryption method, the secret must be 128, 192, or 256 bits long.

For direct encryption with AES-CBC-HMAC, the secret must be 256, 384, or

512 bits long.

5. Click Save Changes.

For the underlying content encryption method, con�gure one of the following

encryption methods in the

org.forgerock.openam.session.stateless.encryption.method

advanced server property:

A128CBC-HS256. AES 128-bit in CBC mode with HMAC-SHA-256-128 hash

(HS256 truncated to 128 bits)

A192CBC-HS384. AES 192-bit in CBC mode with HMAC-SHA-384-192 hash

(HS384 truncated to 192 bits)

A256CBC-HS512. AES 256-bit in CBC mode with HMAC-SHA-512-256 hash

(HS512 truncated to 256 bits)

A128GCM. AES 128-bit in GCM mode

A192GCM. AES 192-bit in GCM mode

A256GCM. AES 256-bit in GCM mode

The default is A128CBC-HS256 .

To con�gure advanced server properties for all instances of the AM

environment, go to Con�gure > Server Defaults > Advanced in the AM

admin UI.

To con�gure advanced server properties for a particular instance, go to

Deployment > Servers > Server Name > Advanced.

If the property you want to add or edit is already con�gured, click on the pencil (

✏) button to edit it. When you are �nished, click on the tick (✓) button.

Click Save Changes.

6. To compress the session state, choose De�ate Compression from the

Compression Algorithm drop-down list.

How do I configure advanced server properties?

When set to De�ate compression, this option may lead to a possible

vulnerability with session state information leakage. Because the session token

compression depends on the data in the session, an attacker can vary one part

of the session (for example, the username or some other property) and then

deduce some secret parts of the session state by examining how the session

compresses. You should evaluate this threat depending on your use cases

before enabling compression and encryption together.

WARNING

121 / 207

By default, AM rejects compressed session JWTs that expand to a size larger than 32

KiB (32768 bytes). For more information, see Control the size of compressed JWTs.

For detailed information about Session Service con�guration attributes, see the entries

for Session.

To ensure that the client-side session cookie size does not surpass the browser

supported size, web agents and Java agents do not support both signing and encrypting

the session cookie. To con�gure agents with client-side sessions, implement one of the

following con�gurations:

Con�gure signing and compression:

a. Enable HS256 signing for the client-side session cookie.

For more information, see Con�gure the JWT signature.

b. Enable compression. Go to Con�gure > Global Services > Session > Client-

Side Sessions and choose De�ate Compression from the Compression

Algorithm drop-down list.

Con�gure encryption and compression:

a. Set the org.forgerock.openam.session.stateless.signing.allownone

advanced server property to true for all the instances in the environment.

To con�gure advanced server properties for all instances of the AM

environment, go to Con�gure > Server Defaults > Advanced in the AM

admin UI.

To con�gure advanced server properties for a particular instance, go to

Deployment > Servers > Server Name > Advanced.

If the property you want to add or edit is already con�gured, click on the pencil (

✏) button to edit it. When you are �nished, click on the tick (✓) button.

Click Save Changes.

a. Disable signing for the client-side session cookie. Go to Con�gure > Global

Services > Session > Client-Side Sessions and choose NONE from the Signing

Algorithm Type drop-down list.

b. Enable Direct AES Encryption.

For more information, see Con�gure JWT encryption.

c. Enable compression. Go to Con�gure > Global Services > Session > Client-

Side Sessions and choose De�ate Compression from the Compression

Algorithm drop-down list.

Client-side session security and agents

How do I configure advanced server properties?

122 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/control-maximum-size-decompressed-JWT.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-session

Failure to set up client-side sessions correctly may cause unexpected errors when

accessing a protected resource, such as blank pages and redirection loops.

Client-side sessions do not support restricted tokens. Therefore, web agents and Java

agents con�gured in a realm con�gured for client-side sessions are not protected

against cookie hijacking. ForgeRock recommends using web or Java agents with server-

side sessions.

Enable authentication session allowlisting to protect authentication sessions from replay

attacks.

When authentication session allowlisting is enabled, AM generates a key-value pair for

each authentication session and stores it for the length of the authentication �ow in the

following ways:

For client-side authentication sessions, AM stores the key-value pair in the CTS

token store.

For server-side authentication sessions, AM creates the key-value pair as a session

property in the authentication session.

For in-memory sessions, AM creates the key-value pair as a session property in the

authentication session.

Each time the authentication �ow reaches an authentication node, AM modi�es the

value of the stored key-value pair and sends it to the user or client that it is

authenticating. The next request to AM to continue the authentication �ow must contain

the key-value pair and must match the value expected by AM.

If the authenticating user or client cannot provide the key-value pair with the values AM

expects, AM would not continue the authentication �ow, therefore protecting the

authentication �ow against malicious users wanting to rewind the authentication �ow to

a previous node.

Perform the following steps to con�gure authentication session allowlisting:

1. Go to Realms > Realm Name > Authentication > Settings > Trees.

2. Choose Enable Allowlisting.

3. Click Save.

Authentication session allowlisting

Con�gure authentication session allowlisting

123 / 207

AM receives requests from multiple sources and for di�erent purposes, such as

authentication requests, RESTful requests to the endpoints, and POST requests that

might include a lot of data.

Containers usually have settings to mitigate against denial of service (DoS) attacks that

POST large amounts of form data to your applications. Refer to your container

documentation for more information about their settings, and how they can protect AM.

These settings, however, do not protect AM from receiving large amounts of POST data

from other sources.

The following table summarizes the steps AM takes to protect against being overloaded,

and how to adjust default values:

Task Resources

Control the maximum size of

decompressed JWTs

By default, AM rejects JWTs that expand

to a size larger than 32 KiB (32768 bytes)

when decrypted.

Control the size of compressed JWTs

Limit the size of the request body

By default, AM rejects incoming requests

whose body is larger than 1 MB (1048576

bytes) in size.

Limit the size of the request body

A number of AM features accept JWTs to receive information. Some examples are:

Remote consent, when it receives consent responses.

The OAuth 2.0/OpenID Connect authorization service, when:

OpenID Connect clients send request parameters as a JWT instead of as HTTP

parameters.

OpenID Connect clients register dynamically using software statements.

The Authentication service, when con�gured to issue client-side sessions.

Secure requests

Control the size of compressed JWTs

124 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/control-maximum-size-decompressed-JWT.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/limit-request-body-size.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-remote-consent.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-client-endpoints.html#the-request-parameter
file:///home/pptruser/Downloads/build/site/pingam/7.2/oidc1-guide/oauth2-dynamic-client-registration.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/impl-client-based-sessions.html

The JWTs that AM receives can be signed and/or encrypted. Sometimes, larger JWTs are

compressed to improve delivery speeds to AM.

Decompressing a JWT makes it expand in size. By default, AM rejects any JWT that

expands to more than 32 KiB (32768 bytes), and throws an exception with a message

similar to JWT payload decompressed to larger than maximum allowed size .

Ensure that the JWTs your clients send to AM are smaller than 32 KiB before

compression.

Alteratively, increase the 32 KiB value to a reasonable limit. Take into account that AM

performs decryption and decompression operations in its heap, and that you do not

want to allow very large JWTs to, potentially, leave AM out of memory.

If you need to change the default value, perform the following steps:

1. Con�gure the

org.forgerock.json.jose.jwe.compression.max.decompressed.size.bytes

Java system property on the container where AM runs.

For example, edit the setenv.sh �le of the Apache Tomcat instance, and set the

property with the new size in bytes:

2. Restart the container for the changes to make e�ect.

HTTP requests are not limited by the speci�cation. Rather, the method used limits the

amount of data that a client can send. The GET and DELETE methods, for example, are

limited by the size of the URL. The POST method is not. Instead, browsers and

application servers limit the amount of data a request can send to your applications.

Ensure that the amount of data that reaches your applications and AM is not large

enough to overwhelm them.

Application servers usually can mitigate against denial of service (DoS) attacks that POST

large amounts of form data, but AM endpoints may receive large amounts of POST data

in di�erent ways, such as in JSON, JWT, or JWK formats.

By default, AM rejects incoming requests with a body larger than 1 MB (1048576 bytes)

in size. It also returns an HTTP 413 error response, and logs a message similar to the

following:

JAVA_OPTS="$JAVA_OPTS -

Dorg.forgerock.json.jose.jwe.compression.max.decompressed.size

.bytes=40960"

Limit the size of the request body

125 / 207

ERROR: Request Content-Length exceeds maximum allowed , if the content’s

length was speci�ed in the request.

ERROR: Counted request entity size exceeds maximum allowed , if the

content’s length was not speci�ed.

To change the default value, perform the following steps:

1. Change the value of the

org.forgerock.openam.request.max.bytes.entity.size advanced server

property to the new size, in bytes.

The property is hot-swappable. You do not need to restart AM for the changes to

take e�ect.

To con�gure advanced server properties for all instances of the AM environment,

go to Con�gure > Server Defaults > Advanced in the AM admin UI.

To con�gure advanced server properties for a particular instance, go to

Deployment > Servers > Server Name > Advanced.

If the property you want to add or edit is already con�gured, click on the pencil (✏)

button to edit it. When you are �nished, click on the tick (✓) button.

Click Save Changes.

AM provides authentication and authorization capabilities, but it requires a policy

enforcement point (PEP) intercepting tra�c to the applications.

ForgeRock o�ers Java agents, web agents, and IG as PEPs to enforce what AM decides in

a way that is unobtrusive to the user.

ForgeRock Identity Gateway and the AM web and Java agents can both enforce policy,

redirecting users to authenticate when necessary, and controlling access to protected

resources. IG runs as a self-contained reverse proxy located between the users and the

protected applications. Web and Java agents are installed into the servers where

applications run, intercepting requests in that context.

Use IG to protect access to applications not suited for a web or Java agent, for example,

those applications deployed on operating systems or web servers or containers not

supported by the agents.

How do I con�gure advanced server properties?

Protect applications

Identity Gateway or AM web and Java agents?

126 / 207

file:///pinggateway/7.2

Web and Java agents have the advantage of sitting within your existing server

infrastructure. Once you have agents installed into the servers with web applications or

sites to protect, then you can manage their con�gurations centrally from AM.

For organizations with both servers on which you can install web and Java agents and

applications that you must protect without touching the server, you can use agents on

the former and IG for the latter.

For more information about agents, see the ForgeRock Web agents documentation, or

the ForgeRock Java agents documentation.

For more information about IG, see the ForgeRock Identity Gateway documentation.

AM supports a Common REST-based audit logging service that captures key auditing

events, critical for system security, troubleshooting, and regulatory compliance.

Audit logs gather operational information about events that occur within an AM

deployment. They track processes and security data, such as authentication

mechanisms, system access, user and administrator activity, error messages, and

con�guration changes.

The audit logging service uses a structured message format that adheres to a consistent

log structure across the ForgeRock Identity Platform. This common structure allows

correlation between log messages of the di�erent Platform components, if the

transaction IDs are trusted. For more information, see Trust transaction headers.

The following topics explain how AM audit logging works, and how to implement it:

Audit logging

Although the ForgeRock Directory Services JSON logger is enabled by default,

ForgeRock transaction IDs are not trusted by default. You must set trust-

transaction-ids:true to correlate DS log messages with AM log messages. For

more information, see Log LDAP Access to Files > JSON Format in the DS

documentation.

IMPORTANT

127 / 207

file:///web-agents/5.10
file:///java-agents/5.10
file:///pinggateway/7.2
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/implementing-audit.html#configuring-trusttransactionheader-system-property
file:///pingds/7.2/logging-guide/ldap-access.html#log-common-audit-ldap-json

Task Resources

Discover AM’s audit logging service

AM auditing service provides a rich set of

features to help you capture events that

are critical for system security,

troubleshooting, and regulatory

compliance.

See Audit logging service.

Con�gure AM to log audit events

Decide how to implement your audit

login service, either globally or by realm,

and con�gure audit login handlers to

store audit events into �les, databases, or

other stores.

See Implement audit logging.

Audit log reference

Check the format of the �les, the names

of the events, and more.

See Audit logging reference.

AM writes log messages generated from audit events triggered by its instances, web or

Java agents, the ssoadm tool, and connected ForgeRock Identity Platform

implementations.

AM’s audit logging service provides a versatile and rich feature set as follows:

Global and realm-based log con�guration

You can con�gure audit logging globally, which ensures that all realms inherit your

global log settings. You can also con�gure audit logging by realm, which allows you to

set di�erent log settings for each realm.

Audit event handlers

The audit logging service supports a variety of audit event handlers that allow you to

write logs to di�erent types of data stores. You can �nd a list of event handlers

available in AM in Con�guring audit event handlers.

Audit event bu�ering

By default, AM writes each log message separately as they are generated. AM

supports message bu�ering, a type of batch processing, that stores log messages in

memory and �ushes the bu�er after a precon�gured time interval or after a certain

number of log messages reaches the con�gured threshold value.

Audit logging service

128 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/implementing-audit.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/sec-maint-audit-ref.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/implementing-audit.html#configuring-audit-event-handlers

Tamper-evident logging

For the CSV audit event handler, you can digitally sign audits to enable the detection

of tampering.

Log rotation and retention policies

AM rotates JSON and CSV audit logs when it reaches a speci�ed maximum size. You

can also con�gure a time-based rotation policy, which disables the max-size rotation

policy and implements log rotation based on a precon�gured time sequence. AM

also provides the option to disable log rotation completely for these �le types. AM

does not support external log rotation for JSON and CSV audit logs.

For Syslog, JDBC, and JMS handlers, AM does not control log rotation and retention

as they are handled by each respective service.

Allowlist and denylist support

The audit logging service supports allowlist and denylist-�ltering to show or hide

sensitive values or �elds in logs, such as HTTP headers, query parameters, cookies,

pro�le attributes, or the entire �eld value.

Reverse DNS lookup

The audit logging service supports a reverse DNS lookup feature for network

troubleshooting purposes. Reverse DNS lookup is disabled by default as it enacts a

performance hit in operation throughput.

AM integrates log messages based on four di�erent audit topics. A topic is a category of

audit log event that has an associated one-to-one mapping to a schema type. Topics can

be broadly categorized as access details, system activity, authentication operations, and

con�guration changes. The following table shows the basic event topics and associated

audit log �les for AM’s default audit logging con�guration, which uses a JSON audit event

handler:

Audit Log Topics

Event topic File name Description

Access access.audit.json Captures who, what,

when, and output for

every access request.

Audit log topics

129 / 207

Event topic File name Description

Activity activity.audit.json Captures state changes to

objects that have been

created, updated, or

deleted by end users (that

is, non-administrators).

Session, user pro�le, and

device pro�le changes are

captured in the logs.

Authentication authentication.audit.

json

Captures when and how a

subject is authenticated

and related events.

Con�guration config.audit.json Captures con�guration

changes to the product

with a timestamp and by

whom. Note that the

userId indicating the

subject who made the

con�guration change is

not captured in the

config.audit.json but

can be tracked using the

transactionId in the

access.audit.json .

Web and Java agents log audit events for security, troubleshooting, and regulatory

compliance. You can store web or Java agent audit event logs in the following ways:

Remotely. Log audit events to the audit event handler con�gured in the AM realm.

Locally. Log audit events to a �le in the web or Java agent installation directory.

Learn more in the Web Agents Maintenance Guide and the Java Agents Maintenance

Guide.

When you implement the audit logging service, decide whether you require speci�c

audit systems per realm, or if a global con�guration suits your deployment. Next,

Audit logging in web and Java agents

Implement audit logging

130 / 207

file:///web-agents/5.10/maintenance-guide/auditing.html
file:///java-agents/5.10/maintenance-guide/auditing.html
file:///java-agents/5.10/maintenance-guide/auditing.html

determine which event handlers suit your needs from those supported by AM. Refer to

the following sections for more information:

Con�gure audit logging

Con�gure audit event handlers

Trust transaction headers, to con�gure the propagation of transaction IDs across

the ForgeRock Identity Platform.

AM’s default audit event handler is the JSON audit event handler, which comes

con�gured and enabled for the global audit logging service. The global con�guration is

used to control audit logging in realms that do not have the audit logging service added

to them. AM also supports con�guring an audit logging service on a per-realm basis.

The JSON audit event handler stores its JSON log �les under

/path/to/openam/var/audit/ .

To modify the global audit logging con�guration, refer to Global audit logging.

To override the global audit logging con�guration for a realm, refer to Realm-

speci�c audit logging.

1. In the AM admin UI, go to Con�gure > Global Services > Audit Logging.

2. Con�gure the following options on the Global Attributes tab:

Activate Audit logging to start the audit logging feature.

In the Field whitelist �lters and Field blacklist �lters lists, enter any values

to include (allowlist) or exclude (denylist) from the audit event logs.

AM has a prede�ned allowlist that only records values that do not contain

sensitive information. Use the �lters to override the built-in list, or to hide

additional values that you do not want recorded.

Con�gure audit logging

Global audit logging

IMPORTANT

131 / 207

For information about the �elds that appear in the default allowlist, refer to

Audit log default allowlist.

To specify an additional �eld or value to be allowlisted, or denylisted, add a

value using a JSON pointer-like syntax that starts with the event topic (access ,

activity , authentication , or config), followed by the �eld name, or the

path to the value in the �eld.

The lists allow two types of �ltering:

Filter �elds in events.

You may be interested in capturing, or hiding, HTTP headers, query

parameters, or potentially sensitive data like passwords in the access logs.

For example, you might want to �lter out surnames by hiding the sn �eld

from activity events. To do so, add the following pointers to the Field

blacklist �lters list:

Filter speci�c values in �elds that store key-value pairs as JSON, such as the

HTTP headers, query parameters, and cookies.

For example, to include the Accept-Language value in the

http.request.headers �eld in access events, add the following pointer to

the Field whitelist �lters list:

Click Save Changes.

For information on con�guring audit logging properties, refer to Audit logging.

The audit logging service lets you suppress the output of certain event

types, because logging them can impact performance. These event types

are not logged by default, regardless of the con�guration of the �lter lists.

The �lter lists will only apply to these event topics if logging is enabled for

them.

For more information, see

org.forgerock.openam.audit.identity.activity.events.blacklis

t in Advanced properties.

IMPORTANT

/activity/before/sn

/activity/after/sn

/access/http/request/headers/accept-language

132 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/sec-maint-audit-ref.html#audit-log-whitelist
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-audit
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/deployment-configuration-reference.html#server-advanced

3. On the Secondary Con�gurations tab, you can edit the con�guration of the Global

JSON Handler and create new audit event handlers.

For more information, refer to Con�gure audit event handlers.

You can con�gure the audit logging service for realms, allowing you to con�gure realm-

speci�c log locations and handler types.

When the audit logging service is added to a realm, it inherits the con�guration de�ned

under Con�gure > Global Services > Audit Logging > Realm Defaults. Properties

con�gured explicitly in the realm-level service override the realm defaults.

To con�gure the audit logging service in a realm, perform the following steps:

1. Go to Realms > Realm Name > Services.

2. Click Add a Service.

3. From the Choose a service type drop-down list, choose Audit Logging.

4. Click Create.

On the Audit Logging Service page, con�gure the Audit Logging Service as

follows:

a. Ensure audit logging is Enabled.

In the Field whitelist �lters and Field blacklist �lters lists, enter any values

to include (allowlist) or exclude (denylist) from the audit event logs.

AM has a prede�ned allowlist that only records values that do not contain

sensitive information. Use the �lters to override the built-in list, or to hide

additional values that you do not want recorded.

For information about the �elds that appear in the default allowlist, refer to

Audit log default allowlist.

Realm-speci�c audit logging

The audit logging service lets you suppress the output of certain event

types, because logging them can impact performance. These event types

are not logged by default, regardless of the con�guration of the �lter lists.

The �lter lists will only apply to these event topics if logging is enabled for

them.

For more information, see

org.forgerock.openam.audit.identity.activity.events.blacklis

t in Advanced properties.

IMPORTANT

133 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/sec-maint-audit-ref.html#audit-log-whitelist
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/deployment-configuration-reference.html#server-advanced

To specify an additional �eld or value to be allowlisted, or denylisted, add a

value using a JSON pointer-like syntax that starts with the event topic (access ,

activity , authentication , or config), followed by the �eld name, or the

path to the value in the �eld.

The lists allow two types of �ltering:

Filter �elds in events.

You may be interested in capturing, or hiding, HTTP headers, query

parameters, or potentially sensitive data like passwords in the access logs.

For example, you might want to �lter out surnames by hiding the sn �eld

from activity events. To do so, add the following pointers to the Field

blacklist �lters list:

Filter speci�c values in �elds that store key-value pairs as JSON, such as the

HTTP headers, query parameters, and cookies.

For example, to include the Accept-Language value in the

http.request.headers �eld in access events, add the following pointer to

the Field whitelist �lters list:

b. Click Save.

For information on con�guring audit logging properties, refer to Audit logging.

5. On the Secondary Con�gurations tab, choose Add a Secondary Con�guration.

Choose an event handler from the list.

For more information about supported event handlers and how to con�gure then,

refer to Con�gure audit event handlers.

AM supports the following types of audit event handlers:

Audit Event Handlers

Audit Event Handler Type Publishes to How to Con�gure

JSON JSON �les JSON audit event handler

/activity/before/sn

/activity/after/sn

/access/http/request/headers/accept-language

Con�gure audit event handlers

134 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-audit

Audit Event Handler Type Publishes to How to Con�gure

CSV CSV �les CSV audit event handler

Syslog The syslog daemon Syslog audit event handler

JDBC A relational database JDBC Audit Event Handler

JMS JMS topics JMS Audit Event Handler

1. In the AM admin UI, determine whether to create the event handler in a realm or

use the default global event handler, then take one of the following actions:

To create the event handler in the global con�guration, go to Con�gure >

Global Services > Audit Logging.

Note that the JSON audit event handler is already con�gured in the global

con�guration. Click it to change its properties.

To create the event handler in a realm, go to Realms > Realm Name > Services

> Audit Logging.

2. On the Secondary Con�gurations tab, click Global JSON Handler or the Edit icon

on the right if present. If no handler is present, click Add a Secondary

Con�guration, and choose JSON.

3. On the New JSON con�guration page, enter a name for the event handler. For

example, JSON Audit Event Handler .

4. (Optional) In the Rotation Times �eld, enter a time duration after midnight to

trigger �le rotation, in seconds. For example, you can provide a value of 3600 to

trigger rotation at 1:00 AM. Negative durations are not supported.

5. Click Create.

After the JSON audit event handler is created, several con�guration tabs appear. To

con�gure the event handler, perform the following steps:

6. On the General Handler Con�guration tab, enable the event handler and

con�gure the topics for your audit logs:

Choose Enabled to activate the event handler, if disabled.

Choose the audit log topics for your audit logs.

Click Save Changes.

7. On the JSON Con�guration tab, con�gure JSON options:

Override the default location of your logs if necessary, and save your changes.

The default value is %BASE_DIR%/%SERVER_URI%/log/ .

JSON audit event handler

IMPORTANT

135 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html#audit-log-topics

Enable ElasticSearch JSON Format Compatible to direct AM to generate JSON

formats that are compatible with the ElasticSearch format.

In the File Rotation Retention Check Interval �eld, edit the time interval

(seconds) to check the time-base �le rotation policies.

Click Save Changes.

8. On the File Rotation tab, con�gure how �les are rotated when they reach a

speci�ed �le size or time interval:

Enable Rotation Enabled to activate �le rotation. If �le rotation is disabled, AM

ignores log rotation and appends to the same �le.

In the Maximum File Size �eld, enter the maximum size of an audit �le before

rotation.

(Optional). In the File Rotation Pre�x �eld, enter an arbitrary string that will be

pre�xed to every audit log to identify it. This parameter is used when time-

based or size-based rotation is enabled.

In the File Rotation Su�x �eld, enter a timestamp su�x based on the Java

SimpleDateFormat that will be added to every audit log. This parameter is used

when time-based or size-based log rotation is enabled. The default value is -

yyyy.MM.dd-kk.mm.ss .

In the Rotation Interval �eld, enter a time interval to trigger audit log �le

rotation in seconds. A negative or zero value disables this feature.

(Optional) In the Rotation Times �eld, enter a time duration after midnight to

trigger �le rotation, in seconds. For example, you can provide a value of 3600

to trigger rotation at 1:00 AM. Negative durations are not supported.

Click Save Changes.

9. On the File Retention tab, con�gure how long log �les should be retained in your

system:

In the Maximum Number of Historical Files �eld, enter a number for allowed

backup audit �les. A value of -1 indicates an unlimited number of �les and

disables the pruning of old history �les.

In the Maximum Disk Space �eld, enter the maximum amount of disk space

that the audit �les can use. A negative or zero value indicates that this policy is

disabled.

In the Minimum Free Space Required �eld, enter the minimum amount of

disk space required to store audit �les. A negative or zero value indicates that

this policy is disabled.

Make sure to con�gure a di�erent log directory for each JSON audit event

handler instance. If two instances are writing to the same �le, it can

interfere with log rotation and tamper-evident logs.

IMPORTANT

136 / 207

Click Save Changes.

10. On the Bu�ering tab, con�gure whether log events should be bu�ered in memory

before they are written to the JSON �le:

In the Batch Size �eld, enter the maximum number of audit log events that can

be bu�ered.

In the Write interval �eld, enter the time interval in milliseconds at which

bu�ered events are written to a �le.

Click Save Changes.

1. In the AM admin UI, determine whether to create the event handler in a realm or

use the default global event handler, then take one of the following actions:

To create the event handler in the global con�guration, go to Con�gure >

Global Services > Audit Logging.

Note that the CSV audit event handler is already con�gured in the global

con�guration. Click its name to change its properties.

To create the event handler in a realm, go to Realms > Realm Name > Services

> Audit Logging.

2. On the Secondary Con�gurations tab, click Add a Secondary Con�guration.

Choose CVS from the list.

On the New CVS page, enter the basic con�guration for the new handler by

performing the following actions:

3. Enter a name for the event handler. For example, CSV Audit Event Handler .

4. (Optional) In the Rotation Times �eld, enter a time duration after midnight to

trigger �le rotation, in seconds. For example, you can provide a value of 3600 to

trigger rotation at 1:00 AM. Negative durations are not supported.

5. Enable or disable the Bu�ering option.

6. Click Create.

After the CSV audit event handler is created, several con�guration tabs appear. To

con�gure the event handler, perform the following steps:

7. On the General Handler Con�guration tab, enable the event handler and

con�gure the topics for your audit logs:

CSV audit event handler

Due to the security concerns of opening CSV �les with Excel, OpenO�ce, and other

spreadsheet programs, it is recommended that you open CSV �les with alternative

software, such as a text editor.

IMPORTANT

137 / 207

Click Enabled to activate the event handler, if disabled.

Choose the audit log topics for your audit logs.

Click Save.

8. On the CSV Con�guration tab, override the default location of your logs if

necessary, and click Save Changes. The default value is

%BASE_DIR%/%SERVER_URI%/log/ .

9. On the File Rotation tab, con�gure how �les are rotated when they reach a

speci�ed �le size or time interval:

Click Rotation Enabled to activate �le rotation. If �le rotation is disabled, AM

ignores log rotation and appends to the same �le.

In the Maximum File Size �eld, enter the maximum size of an audit �le before

rotation.

(Optional). In the File Rotation Pre�x �eld, enter an arbitrary string that will be

pre�xed to every audit log to identify it. This parameter is used when time-

based or size-based rotation is enabled.

In the File Rotation Su�x �eld, enter a timestamp su�x based on the Java

SimpleDateFormat that will be added to every audit log. This parameter is used

when time-based or size-based log rotation is enabled. The default value is -

yyyy.MM.dd-kk.mm.ss .

In the Rotation Interval �eld, enter a time interval to trigger audit log �le

rotation in seconds. A negative or zero value disables this feature.

(Optional) In the Rotation Times �eld, enter a time duration after midnight to

trigger �le rotation, in seconds. For example, you can provide a value of 3600

to trigger rotation at 1:00 AM. Negative durations are not supported.

Click Save Changes.

10. On the File Retention tab, con�gure how long log �les should be retained in your

system:

In the Maximum Number of Historical Files �eld, enter a number for allowed

backup audit �les. A value of -1 indicates an unlimited number of �les and

disables the pruning of old history �les.

In the Maximum Disk Space �eld, enter the maximum amount of disk space

that the audit �les can use. A negative or zero value indicates that this policy is

disabled.

Con�gure a di�erent log directory for each CVS audit event handler instance. If

two instances are writing to the same �le, it can interfere with log rotation and

tamper-evident logs.

IMPORTANT

138 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html#audit-log-topics

In the Minimum Free Space Required �eld, enter the minimum amount of

disk space required to store audit �les. A negative or zero value indicates that

this policy is disabled.

Click Save Changes.

11. On the Bu�ering tab, con�gure whether log events should be bu�ered in memory

before they are written to the CSV �le:

Click Bu�ering Enabled to activate bu�ering.

When bu�ering is enabled, all audit events are put into an in-memory bu�er

(one per handled topic), so that the original thread that generated the event

can ful�ll the requested operation, rather than wait for I/O to complete. A

dedicated thread (one per handled topic) constantly pulls events from the

bu�er in batches and writes them to the CSV �le. If the bu�er becomes empty,

the dedicated thread goes to sleep until a new item gets added. The default

bu�er size is 5000 bytes.

Enable the Flush Each Event Immediately option to write all bu�ered events

before �ushing.

When the dedicated thread accesses the bu�er, it copies the contents to an

array to reduce contention, and then iterates through the array to write to the

CSV �le. The bytes written to the �le can be bu�ered again in Java classes and

the underlying operating system.

When the Flush Each Event Immediately option is enabled, AM �ushes the

bytes after each event is written. If the feature is disabled (default), the Java

classes and underlying operation system determine when to �ush the bytes.

Click Save Changes.

12. On the Tamper Evident Con�guration tab, con�gure whether to detect audit log

tampering:

Click Is Enabled to activate the tamper evident feature for CSV logs.

When tamper evident logging is enabled, AM generates an HMAC digest for

each audit log event and inserts it into each audit log entry. The digest detects

any addition or modi�cation to an entry.

AM also supports another level of tamper evident security by periodically

adding a signature entry to a new line in each CSV �le. The entry signs the

preceding block of events, so that veri�cation can establish if any of these

blocks have been added, removed, or edited by some user.

In the Certi�cate Store Location �eld, enter the location of the keystore AM

will use to sign the CSV logs, by default

%BASE_DIR%/%SERVER_URI%/Logger.jks .

The recommended approach is to create two keystores:

139 / 207

A keystore for AM to use. This keystore is con�gured in the Certi�cate

Store Location �eld and must contain a signing key pair called

signature and an HMAC key called password .

A keystore for the veri�cation tool. This keystore must contain the HMAC

password key, and the public key of the signature key pair.

You can use a simple script to create your keystores, for example: create-

keystore.sh.

In the Certi�cate Store Password �eld, enter the password of the keystore.

In the Signature Interval �eld, enter a value in seconds for AM to generate

and add a new signature to the audit log entry.

Click Save Changes.

To verify that rotated logs have not been tampered with, perform the following

steps:

Download the AM-SSOAdminTools-5.1.3.27.zip �le from the ForgeRock

BackStage website.

Install the administration tools.

Use the verifyarchive tool to verify rotated log �les as follows:

In this example, the tool checks �les with a su�x of the type yyyy.MM.dd-

HH.mm.ss using their counterparts with su�x .keystore . For example,

the tool checks the tamper-evident-access-csv-2019.01.12-

12.04.33 �le against the tamper-evident-access-csv-2019.01.12-

12.04.33.keystore �le. The .keystore �le contains the HMAC digest

the tool uses to validate the signature of the logs.

The tool returns PASS or FAIL alongside the names of the �les that have

been tested. For example:

$ /path/to/AM-SSOAdminTools-

5.1.3.27/openam/bin/verifyarchive \

--archive /path/to/openam/var/audit/ \

--topic access \

--suffix -yyyy.MM.dd-HH.mm.ss \

--keystore /path/to/keystore-verifier.jks \

--password password

PASS tamper-evident-access-csv-2019.01.12-12.04.33

FAIL tamper-evident-access-csv-2019.01.12-12.05.20

The HMac at row 2 is not correct.

TIP

140 / 207

root:attachment$create-keystore.sh
root:attachment$create-keystore.sh
https://backstage.forgerock.com/downloads/AM
https://backstage.forgerock.com/downloads/AM
https://backstage.forgerock.com/downloads/AM
https://backstage.forgerock.com/downloads/AM
file:///home/pptruser/Downloads/build/site/pingam/7.2/install-guide/install-openam-admin-tools.html#proc-install-openam-admin-tools

AM can publish audit events to a syslog server, which is based on a widely-used logging

protocol. You can con�gure your syslog settings on the AM admin UI.

1. In the AM admin UI, determine whether to create the event handler in a realm or

use the default global event handler, then take one of the following actions:

To create the event handler in the global con�guration, go to Con�gure >

Global Services > Audit Logging.

To create the event handler in a realm, go to Realms > Realm Name > Services

> Audit Logging.

2. On the Secondary Con�gurations tab, click Add a Secondary Con�guration.

Choose Syslog from the list.

On the New Syslog page, enter the basic con�guration for the new handler by

performing the following actions:

3. Enter a name for the event handler. For example, Syslog Audit Event Handler .

4. In the Server hostname �eld, enter the hostname or IP address of the receiving

syslog server.

5. In the Server port �eld, enter the port of the receiving syslog server.

6. In the Connection timeout �eld, enter the number of seconds to connect to the

syslog server. If the server has not responded in the speci�ed time, a connection

timeout occurs.

7. Enable or disable the Bu�ering option.

8. Click Create.

After the syslog audit event handler is created, several con�guration tabs appear.

To con�gure the event handler, perform the following steps:

9. On the General Handler Con�guration tab, enable the event handler and

con�gure the topics for your audit logs:

Click Enabled to activate the event handler, if disabled.

Choose the audit log topics for your audit logs.

Click Save Changes.

10. On the Audit Event Handler Factory tab, keep the default class name for the audit

event handler.

11. On the Syslog Con�guration tab, con�gure the main syslog event handler

properties:

Run the tool without any parameters to access the online help.

TIP

Syslog audit event handler

141 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html#audit-log-topics

In the Server hostname �eld, enter the hostname or IP address of the

receiving syslog server.

In the Server port �eld, enter the port of the receiving syslog server.

In the Connection timeout �eld, enter the number of seconds to connect to

the syslog server. If the server has not responded in the speci�ed time, a

connection timeout occurs.

From the Transport Protocol drop-down list, choose TCP or UDP.

Choose the facility.

A syslog message includes a PRI �eld that is calculated from the facility and

severity values. All topics set the severity to INFORMATIONAL but you can

choose the facility from the Facility drop-down list:

Syslog Facilities

Facility Description

AUTH Security or authorization messages

AUTHPRIV Security or authorization messages

CLOCKD Clock daemon

CRON Scheduling daemon

DAEMON System daemons

FTP FTP daemon

KERN Kernel messages

LOCAL0 Local use 0 (local0)

LOCAL1 Local use 1 (local1)

LOCAL2 Local use 2 (local2)

LOCAL3 Local use 3 (local3)

LOCAL4 Local use 4 (local4)

LOCAL5 Local use 5 (local5)

LOCAL6 Local use 6 (local6)

LOCAL7 Local use 7 (local7)

LOGALERT Log alert

142 / 207

Facility Description

LOGAUDT Log audit

LPR Line printer subsystem

MAIL Mail system

NEWS Network news subsystem

NTP Network time protocol

SYSLOG Internal messages generated by

syslogd

USER User-level messages

UUCP Unix-to-unix-copy (UUCP) subsystem

Click Save Changes.

12. On the Bu�ering tab, con�gure whether you want bu�ering or not:

Click Bu�ering Enabled to activate it.

When bu�ering is enabled, all audit events that get generated are formatted as

syslog messages and put into a queue. A dedicated thread constantly pulls

events from the queue in batches and transmits them to the syslog server. If

the queue becomes empty, the dedicated thread goes to sleep until a new item

gets added. The default queue size is 5000 .

Click Save Changes.

You can con�gure AM to write audit logs to Oracle, MySQL, PostgreSQL, or other JDBC

databases. AM writes audit log records to the following tables: am_auditaccess ,

am_auditactivity , am_auditauthentication , and am_auditconfig . For more

information on the JDBC table formats for each of the logs, refer to JDBC audit log tables.

Before con�guring the JDBC audit event handler, you must perform several steps to

allow AM to log to the database:

1. Create tables in the relational database in which you will write the audit logs. The

SQL for Oracle, PostgreSQL, and MySQL table creation is in the audit.sql �le

under /path/to/tomcat/webapps/openam/WEB-INF/template/sql/db-type .

JDBC Audit Event Handler

Prepare for JDBC audit logging

143 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/sec-maint-audit-ref.html#jdbc-audit-log-tables

If you are using a di�erent relational database, tailor one of the provided

audit.sql �les to conform to your database’s SQL syntax.

2. JDBC audit logging requires a database user with read and write privileges for the

audit tables. Do one of the following:

Identify an existing database user and grant that user privileges for the audit

tables.

Create a new database user with read and write privileges for the audit tables.

3. Obtain the JDBC driver from your database vendor. Place the JDBC driver .zip or

.jar �le in the container’s WEB-INF/lib classpath.

For example, place the JDBC driver in /path/to/tomcat/webapps/openam/WEB-

INF/lib if you use Apache Tomcat.

The following procedure describes how to con�gure a JDBC audit event handler. Perform

the following steps after you have created audit log tables in your database and installed

the JDBC driver in the AM web container:

1. In the AM admin UI, determine whether to create the event handler in a realm or

use the default global event handler, then take one of the following actions:

To create the event handler in the global con�guration, go to Con�gure >

Global Services > Audit Logging.

To create the event handler in a realm, go to Realms > Realm Name > Services

> Audit Logging.

2. On the Secondary Con�gurations tab, click Add a Secondary Con�guration.

Choose JDBC from the list.

Enter the basic con�guration for the new handler by performing the following

actions:.

3. Enter a name for the event handler. For example, JDBC Audit Event Handler .

4. In the JDBC Database URL �eld, enter the URL for your database server. For

example, jdbc:oracle:thin:@//host.example.com:1521/ORCL .

5. In the JDBC Driver �eld, enter the classname of the driver to connect to the

database. For example:

a. oracle.jdbc.driver.OracleDriver - for Oracle databases

b. com.mysql.jdbc.Driver - for MySQL databases

c. org.postgresql.Driver - for PostgreSQL databases

6. In the Database Username �eld, enter the username to authenticate to the

database server.

Con�gure a JDBC audit event handler

144 / 207

This user must have read and write privileges for the audit tables.

7. In the Database Password �eld, enter the password used to authenticate to the

database server.

8. Enable or disable the Bu�ering option.

9. Click Create.

After the JDBC audit event handler is created, several con�guration tabs appear. To

con�gure the event handler, perform the following steps:

10. On the General Handler Con�guration tab, enable the handler and con�gure the

topics for your audit logs:

Click Enabled to activate the event handler, if disabled.

Choose the audit log topics for your audit logs.

Click Save.

11. On the Audit Event Handler Factory tab, enter the fully-quali�ed class name of

your custom JDBC audit event handler and save your changes.

12. On the Database Con�guration tab, con�gure the main JDBC event handler

properties:

From the Database Type drop-down list, choose the audit database type. The

default value is Oracle .

In the JDBC Database URL �eld, enter the URL for your database server. For

example, jdbc:oracle:thin:@//host.example.com:1521/ORCL .

In the JDBC Driver �eld, enter the classname of the driver to connect to the

database. For example:

i. oracle.jdbc.driver.OracleDriver - for Oracle databases

ii. com.mysql.jdbc.Driver - for MySQL databases

iii. org.postgresql.Driver - for PostgreSQL databases

In the Database Username �eld, enter the username to authenticate to the

database server.

This user must have read and write privileges for the audit tables.

In the Database Password �eld, enter the password used to authenticate to

the database server.

In the Connection Timeout �eld, enter the maximum wait time before failing

the connection.

In the Maximum Connection Idle Timeout �eld, enter the maximum idle time

in seconds before the connection is closed.

In the Maximum Connection Time �eld, enter the maximum time in seconds

for a connection to stay open.

145 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html#audit-log-topics

In the Minimum Idle Connections �eld, enter the minimum number of idle

connections allowed in the connection pool.

In the Maximum Connections �eld, enter the maximum number of

connections in the connection pools.

Click Save.

13. On the Bu�ering tab, con�gure the bu�ering settings:

Click Bu�ering Enabled to start audit event bu�ering.

In the Bu�er Size �eld, set the size of the event bu�er queue where events

should queue up before being written to the database.

If the queue reaches full capacity, the process will block until a write occurs.

In the Write Interval �eld, set the interval in seconds in which bu�ered events

are written to the database.

In the Writer Threads �eld, set the number of threads used to write the

bu�ered events.

In the Max Batched Events �eld, set the maximum number of batched

statements the database can support per connection.

Click Save Changes.

AM supports audit logging to a JMS message broker. JMS is a Java API for sending

messages between clients using a publish and subscribe model as follows:

AM audit logging to JMS requires that the JMS message broker supports using JNDI

to locate a JMS connection factory. Refer to your JMS message broker

documentation to verify that you can make connections to your broker by using

JNDI before attempting to implement an AM JMS audit handler.

AM acts as a JMS publisher client, publishing JMS messages containing audit events

to a JMS topic.

AM and JMS use the term topic di�erently. An AM audit topic is a category of audit

log event that has an associated one-to-one mapping to a schema type. A JMS topic

is a distribution mechanism for publishing messages delivered to multiple

subscribers.

A JMS subscriber client, which is not part of the AM software and must be

developed and deployed separately from AM, subscribes to the JMS topic to which

AM publishes audit events. The client then receives the audit events over JMS and

processes them as desired.

Before con�guring the JMS audit event handler, you must perform several steps to allow

AM to publish audit events as a JMS client:

JMS Audit Event Handler

146 / 207

1. Obtain JNDI connection properties that AM requires to connect to your JMS

message broker. The speci�c connection properties vary depending on the broker.

Refer to your JMS message broker documentation for details.

For example, connecting to an Apache ActiveMQ message broker requires the

following properties:

Example Apache ActiveMQ JNDI Connection Properties

Property Name Example Value

java.naming.factory.initial org.apache.activemq.jndi.Active

MQInitialContextFactory

java.naming.provider.url tcp://localhost:61616

topic.audit audit

2. Obtain the JNDI lookup name of the JMS connection factory for your JMS message

broker.

For example, for Apache ActiveMQ, the JNDI lookup name is ConnectionFactory .

3. Obtain the JMS client .jar �le from your JMS message broker vendor. Add the

.jar �le to AM’s classpath by placing it in the WEB-INF/lib directory.

For example, place the JMS client .jar �le in

/path/to/tomcat/webapps/openam/WEB-INF/lib if you use Apache Tomcat.

The following procedure describes how to con�gure a JMS audit event handler.

If your JMS message broker requires an SSL connection, you might need to perform

additional, broker-dependent con�guration tasks. For example, you might need to

import a broker certi�cate into the AM keystore, or provide additional JNDI context

properties.

Refer to your JMS message broker documentation for speci�c requirements for making

SSL connections to your broker, and implement them as needed in addition to the steps

in the following procedure.

Perform the following steps after you have installed the JMS client .jar �le in the AM

web container:

1. In the AM admin UI, determine whether to create the event handler in a realm or

use the default global event handler, then take one of the following actions:

Prepare for JMS audit logging

Con�gure a JMS audit event handler

147 / 207

To create the event handler in the global con�guration, go to Con�gure >

Global Services > Audit Logging.

To create the event handler in a realm, go to Realms > Realm Name > Services

> Audit Logging.

2. On the Secondary Con�gurations tab, click Add a Secondary Con�guration.

Choose JMS from the list.

3. On the New JMS Con�guration page, enter the basic con�guration for the new

handler by performing the following actions:

4. Enter a name for the event handler. For example, JMS Audit Event Handler .

5. Click Create.

After the JMS audit event handler is created, several con�guration tabs appear. To

con�gure the event handler, perform the following steps:

6. On the General Handler Con�guration tab, enable the handler and con�gure the

topics for your audit logs:

Click Enabled to activate the event handler, if disabled.

Choose the audit log topics for your audit logs.

Click Save Changes.

7. On the Audit Event Handler Factory tab, keep the default class name for the audit

event handler.

8. On the JMS Con�guration tab, con�gure the main JMS event handler properties:

From the Delivery Mode drop-down list, choose the JMS delivery mode.

With persistent delivery, the JMS provider ensures that messages are not lost in

transit in case of a provider failure by logging messages to storage when they

are sent. Therefore, persistent delivery mode guarantees JMS message delivery,

while non-persistent mode provides better performance.

The default delivery mode is NON_PERSISTENT delivery. Therefore, if your

deployment requires delivery of every audit event to JMS subscriber clients, be

sure to set the con�guration to PERSISTENT delivery.

From the Session Mode drop-down list, choose the default setting, AUTO ,

unless your JMS broker implementation requires otherwise. Refer to your

broker documentation for more information.

Specify properties that AM will use to connect to your JMS message broker as

key-value pairs in the JNDI Context Properties �eld.

AM is con�gured for the audit JNDI lookup name and JMS topic, but you can

modify or delete this con�guration, or add new key-value pairs. To add new

key-value pairs, �ll the Key and Value �elds and click Add.

148 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logs.html#audit-log-topics

In the JMS Topic Name �eld, enter the name of the JMS topic to which AM will

publish messages containing audit events.

Subscriber clients that process AM audit events must subscribe to this topic.

In the JMS Connection Factory Name �eld, specify the JNDI lookup name of

the JMS connection factory.

Click Save Changes.

9. On the Batch Events tab, con�gure how log events should be batched before they

are published to the JMS message broker:

In the Capacity �eld, specify the maximum capacity of the publishing queue.

Execution is blocked if the queue size reaches capacity.

In the Max Batched �eld, specify the maximum number of events to be

delivered when AM publishes the events to the JMS message broker.

In the Writing Interval �eld, specify the interval (in seconds) between

transmissions to JMS.

Click Save Changes.

AM supports the propagation of the transaction ID across the ForgeRock platform, such

as from DS or IDM to AM, using the HTTP header X-ForgeRock-TransactionId . The

X-ForgeRock-TransactionId header is automatically set in all outgoing HTTP calls

from one ForgeRock product to another. You can also set this header from your own

applications or scripts calling into the ForgeRock platform.

By default, the org.forgerock.http.TrustTransactionHeader system property is

set to false , so that a malicious actor cannot �ood the system with requests using the

same transaction ID header to hide their tracks. Setting

org.forgerock.http.TrustTransactionHeader to true trusts any incoming X-

ForgeRock-TransactionId headers.

1. In the AM admin UI, go to Con�gure > Server Defaults > Advanced and scroll to

the bottom of the list.

2. In the PROPERTY NAME column, add

org.forgerock.http.TrustTransactionHeader . In the corresponding

PROPERTY VALUE column, enter true.

3. Click + to add the property and save your work.

Your AM instance will now accept incoming X-ForgeRock-TransactionId

headers, which can be tracked in the audit logs.

4. Repeat this procedure for all servers that require this property.

Trust transaction headers

149 / 207

:page-aliases:con�guring-legacy-audit-logging-svc

To con�gure the legacy logging service, go to Con�gure > Global Services > Logging.

For more information on the con�guration, refer to the audit logging reference.

By default, AM audit logs are written to �les in the instance’s con�guration directory,

such as $HOME/openam/log/ .

AM sends messages to di�erent log �les, each named after the service logging the

message, with two di�erent types log �les per service: .access and .error . Thus, the

current log �les for the authentication service are named amAuthentication.access

and amAuthentication.error .

For details, see Log �les and messages.

AM supports sending audit log messages to a syslog server for collation.

You can enable syslog audit logging by using the AM admin UI, or the ssoadm

command.

1. In the AM admin UI, go to Con�gure > Global Services > Logging.

2. On the Syslog tab, con�gure the following settings as appropriate for your syslog

server, and save your changes:

Syslog server host

Syslog server port

Syslog server protocol

Syslog facility

Syslog connection timeout

For information on these settings, see Logging.

Legacy logging service (deprecated)

This service is deprecated and will be removed in a future AM release. You should

use the audit logging service instead.

IMPORTANT

Log to �at �les

Log to a syslog server

Syslog logging (UI)

150 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-audit
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/log-messages.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-logging
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/audit-logging.html

3. On the General tab, set the Logging Type drop-down list to Syslog , and save your

changes.

1. Create a text �le, for example, MySyslogServerSettings.txt , containing the

settings used when audit logging to a syslog server:

2. Use the following ssoadm command to con�gure audit logging to a syslog server:

This reference section covers other information relating to securing an AM instance. For

the global services reference, see Global services con�guration.

For reference about… See…

Audit logging

Learn more about the log format of the

di�erent �les and tables used by the

audit logging service.

Audit logging reference

Syslog logging (ssoadm)

iplanet-am-logging-syslog-port=514

iplanet-am-logging-syslog-protocol=UDP

iplanet-am-logging-type=Syslog

iplanet-am-logging-syslog-connection-timeout=30

iplanet-am-logging-syslog-host=localhost

iplanet-am-logging-syslog-facility=local5

$ ssoadm \

set-attr-defs \

--adminid

uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt \

--servicename iPlanetAMLoggingService \

--schematype Global \

--datafile MySyslogServerSettings.txt

Schema attribute defaults were set.

Reference

151 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/sec-maint-audit-ref.html

For reference about… See…

Session

Learn how to customize server-side

session quota exhaust actions.

Customize server-side session quota

exhaustion actions

AM writes log messages generated from audit events triggered by its components,

instances, and other ForgeRock-based stack products.

This section presents the audit log format for each topic-based �le, event names, and

audit constants used in its log messages.

Schema property Description

_id Speci�es a universally unique identi�er

(UUID) for the message object, such as

a568d4fe-d655-49a8-8290-

bfc02095bec9-491 .

timestamp Speci�es the timestamp when AM logged

the message, in UTC format to

millisecond precision: yyyy-MM-

ddTHH:mm:ss.msZ . For example: 2015-

11-14T00:16:04.653Z

eventName Speci�es the name of the audit event. For

example, AM-ACCESS-ATTEMPT and AM-

ACCESS-OUTCOME . For a list of audit event

names, see Audit log events.

Audit logging reference

Audit log format

Access log format

152 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/custom-quota-exhaustion-action.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/custom-quota-exhaustion-action.html

Schema property Description

transactionId Speci�es the UUID of the transaction,

which identi�es an external request when

it comes into the system boundary. Any

events generated while handling that

request will be assigned that transaction

ID, so that you may see the same

transaction ID even for di�erent audit

event topics. For example, 9c9e8d5c-

2941-4e61-9c3c-8a990088e801 .

AM supports a feature where trusted AM

deployment with multiple instances,

components, and ForgeRock stack

products can propagate the transaction

ID through each call across the stack. AM

reads the X-ForgeRock-TransactionId

HTTP header and appends an integer to

the transaction ID. Note that this feature

is disabled by default. When enabled, this

feature should �lter the X-ForgeRock-

TransactionId HTTP header for

connections from untrusted sources.

user.id Speci�es the universal identi�er for

authenticated users. For example,

id=scarter,ou=user,o=shop,ou=serv

ices,dc=example,dc=com .

153 / 207

Schema property Description

trackingIds Speci�es a unique random string

generated as an alias for each AM session

ID and OAuth 2.0 token. In releases prior

to OpenAM 13.0.0, the contextId log

property used a random string as an alias

for the session ID. The trackingIds

property also uses an alias when

referring to session IDs, for example, [

"45b17894529cf74301"] .

OpenAM 13.0.0 extended this property to

handle OAuth 2.0 tokens. In this case,

whenever AM generates an access or

grant token, it also generates unique

random value and logs it as an alias. In

this way, it is possible to trace back an

access token back to its originating grant

token, trace the grant token back to the

session in which it was created, and then

trace how the session was authenticated.

An example of a trackingIds property

in an OAuth 2.0/OpenID Connect 1.0

environment is:

["1979edf68543ead001",

"8878e51a-f2aa-464f-b1cc-

b12fd6daa415", "3df9a5c3-

8d1e-4ee3-93d6-b9bbe58163bc"

]

server.ip Speci�es the IP address of the AM server.

For example, 127.0.0.1 .

server.port Speci�es the port number used by the

AM server. For example, 8080 .

client.host Speci�es the client hostname. This �eld is

only populated if reverse DNS lookup is

enabled.

client.ip Speci�es the client IP address.

client.port Speci�es the client port number.

154 / 207

Schema property Description

authorizationId.roles Speci�es the list of roles for the

authorized user.

authorizationId.component Speci�es the component part of the

authorized ID, such as

request.protocol Speci�es the protocol associated with the

request operation. Possible values:

CREST and PLL .

request.operation Speci�es the request operation. For

Common REST operations, possible

values are: READ , ACTION , QUERY .

For PLL operations, possible values are:

LoginIndex , SubmitRequirements ,

GetSession ,

REQUEST_ADD_POLICY_LISTENER .

request.detail Speci�es the detailed information about

the request operation. For example:

{"action":"idFromSession"}

{"action":"validateGoto"}

{"action":"validate"}

{"action":"logout"}

{"action":"schema"}

{"action":"template"}

http.method Speci�es the HTTP method requested by

the client. For example, GET , POST ,

PUT .

http.path Speci�es the path of the HTTP request.

For example,

https://openam.example.com:8443/o

penam/json/realms/root/authenticat

e .

155 / 207

Schema property Description

http.queryParameters Speci�es the HTTP query parameter

string. For example:

{ "_action": [

"idFromSession"] }

{ "_queryFilter": ["true"]

}

{ "_action": ["validate"] }

{ "_action": ["logout"] }

{ "realm": ["/shop"] }

{ "_action": ["validateGoto"

] }

156 / 207

Schema property Description

http.request.headers Speci�es the HTTP header for the

request. For example:

{

"accept":[

"application/json,

text/javascript, */*; q=0.01"

],

"Accept-API-Version":[

"protocol=1.0"

],

"accept-encoding":[

"gzip, deflate"

],

"accept-language":[

"en-US;q=1,en;q=0.9"

],

"cache-control":[

"no-cache"

],

"connection":[

"Keep-Alive"

],

"content-length":[

"0"

],

"host":[

"forgerock-

am.openrock.org"

],

"pragma":[

"no-cache"

],

"referer":[

"https://forgerock-

am.openrock.org/openam/XUI/"

],

"user-agent":[

"Mozilla/5.0 (X11; Linux

x86_64; rv:31.0) Gecko/20100101

Firefox/31.0"

],

"x-nosession":[

"true"

],

157 / 207

Schema property Description

http.request.cookies Speci�es a JSON map of key-value pairs

and appears as its own property to allow

for denylisting �elds or values.

http.response.cookies Not used in AM.

response.status Speci�es the response status of the

request. For example, SUCCESS ,

FAILURE , or null.

response.statusCode Speci�es the response status code,

depending on the protocol. For Common

REST, HTTP failure codes are displayed

but not HTTP success codes. For PLL

endpoints, PLL error codes are displayed.

response.detail Speci�es the message associated with

response.statusCode . For example,

the response.statusCode of 401 has a

response.detail of { "reason":

"Unauthorized" } .

response.elapsedTime Speci�es the time to execute the access

event, usually in millisecond precision.

response.elapsedTimeUnits Speci�es the elapsed time units of the

response. For example, MILLISECONDS .

component Speci�es the AM service utilized. For

example, Server Info , Users ,

Config , Session , Authentication ,

Policy , OAuth , Web Policy Agent , or

Java Policy Agent .

"x-requested-with":[

"XMLHttpRequest"

],

"x-username":[

"anonymous"

]

}

158 / 207

Schema property Description

realm Speci�es the realm where the operation

occurred. For example, the Top Level

Realm ("/“) or the sub-realm name

(”/shop").

Property Description

_id Speci�es a universally unique identi�er

(UUID) for the message object, such as

a568d4fe-d655-49a8-8290-

bfc02095bec9-487 .

timestamp Speci�es the timestamp when AM logged

the message, in UTC format to

millisecond precision: yyyy-MM-

ddTHH:mm:ss.msZ . For example: 2015-

11-14T00:16:04.652Z

eventName Speci�es the name of the audit event. For

example, AM-SESSION_CREATED , AM-

SESSION-LOGGED_OUT , AM-IDENTITY-

CHANGE . For a list of audit event names,

see Audit log events.

transactionId Speci�es the UUID of the transaction,

which identi�es an external request when

it comes into the system boundary. Any

events generated while handling that

request will be assigned that transaction

ID, so that you may see the same

transaction ID for same even for di�erent

audit event topics. For example,

9c9e8d5c-2941-4e61-9c3c-

8a990088e801 .

user.id Speci�es the universal identi�er for

authenticated users. For example,

id=scarter,ou=user,o=shop,ou=serv

ices,dc=example,dc=com .

Activity log format

159 / 207

Property Description

trackingIds Speci�es an array containing a random

context ID that identi�es the session and

a random string generated from an

OAuth 2.0/OpenID Connect 1.0 �ow that

could track an access token ID or an

grant token ID. For example, [

"45b17894529cf74301"] .

runAs Speci�es the user to run the activity as.

May be used in delegated administration.

For example,

id=dsameuser,ou=user,dc=example,d

c=com .

objectId Speci�es the identi�er of an object that

has been created, updated, or deleted.

For logging sessions, the session

trackingId is used in this �eld. For

example, ["45b17894529cf74301"]

operation Speci�es the state change operation

invoked: CREATE , MODIFY , or DELETE .

before Not used.

after Not used.

changedFields Not used.

revision Not used.

component Speci�es the AM service utilized. For

example, Session or Self-Service .

realm Speci�es the realm where the operation

occurred. For example, the Top Level

Realm ("/“) or the sub-realm name

(”/shop").

Authentication log format

160 / 207

Property Description

_id Speci�es a universally unique identi�er

(UUID) for the message object, such as

a568d4fe-d655-49a8-8290-

bfc02095bec9-485 .

timestamp Speci�es the timestamp when AM logged

the message, in UTC format to

millisecond precision: yyyy-MM-

ddTHH:mm:ss.msZ . For example: 2015-

11-14T00:16:04.640Z

eventName Speci�es the name of the audit event. For

example, AM-LOGOUT and AM-LOGIN-

MODULE-COMPLETED . For a list of audit

event names, see Audit log events.

transactionId Speci�es the UUID of the transaction,

which identi�es an external request when

it comes into the system boundary. Any

events generated while handling that

request will be assigned that transaction

ID, so that you may see the same

transaction ID for same even for di�erent

audit event topics. For example,

9c9e8d5c-2941-4e61-9c3c-

8a990088e801 .

user.id Speci�es the universal identi�er for

authenticated users. For example,

id=scarter,ou=user,o=shop,ou=serv

ices,dc=example,dc=com .

trackingIds Speci�es an array containing a unique

random context ID. For example:

For OAuth 2.0/OpenID Connect

�ows, it identi�es the session and a

random string generated that can

track an access token ID or a grant

token ID.

For authentication trees, it identi�es

an authentication tree �ow.

161 / 207

Property Description

result Depending on the event being logged,

speci�es the outcome of:

A single authentication module

within a chain

The result for an authentication tree

Possible values are SUCCESSFUL or

FAILED .

principal Speci�es the array of accounts used to

authenticate, such as ["amadmin"]

and ["scarter"] .

context Not used

162 / 207

Property Description

entries Speci�es the JSON representation of the

details of an authentication module,

chain, tree or node. AM creates an event

as each module or node completes and a

�nal event at the end of the chain or tree.

Examples:

{

"entries":[

{

"moduleId":"DataStore",

"info":{

"moduleClass":"DataStore",

"ipAddress":"127.0.0.1",

"moduleName":"DataStore",

"authLevel":"0"

}

}

]

}

{

"entries":[

{

"info":{

"nodeOutcome":"true",

"treeName":"Example",

"displayName":"Data

Store Decision",

"nodeType":"DataStoreDecisionNo

de",

"nodeId":"e5ec495a-

2ae2-4eca-8afb-9781dea04170",

"authLevel":"0"

}

}

163 / 207

Property Description

component Speci�es the AM service utilized. For

example, Authentication .

realm Speci�es the realm where the operation

occurred. For example, the Top Level

Realm ("/“) or the sub-realm name

(”/shop").

Property Description

_id Speci�es a universally unique identi�er

(UUID) for the message object. For

example, 6a568d4fe-d655-49a8-8290-

bfc02095bec9-843 .

timestamp Speci�es the timestamp when AM logged

the message, in UTC format to

millisecond precision: yyyy-MM-

ddTHH:mm:ss.msZ . For example, 2015-

11-14T00:21:03.490Z

eventName Speci�es the name of the audit event. For

example, AM-CONFIG-CHANGE . For a list

of audit event names, see Audit log

events.

transactionId Speci�es the UUID of the transaction,

which identi�es an external request when

it comes into the system boundary. Any

events generated while handling that

request will be assigned that transaction

ID, so that you may see the same

transaction ID for di�erent audit event

topics. For example, 301d1a6e-67f9-

4e45-bfeb-5e4047a8b432 .

]

}

Con�g log format

164 / 207

Property Description

user.id Not used.

You can determine the value for this �eld

by linking to the access event using the

same transactionId .

trackingIds Not used.

runAs Speci�es the user to run the activity as.

May be used in delegated administration.

For example,

uid=amAdmin,ou=People,dc=example,

dc=com .

objectId Speci�es the identi�er of a system object

that has been created, modi�ed, or

deleted. For example,

ou=SamuelTwo,ou=default,ou=Organi

zationConfig,ou=1.0,

ou=iPlanetAMAuthSAML2Service,ou=se

rvices,o=shop,ou=services,dc=examp

le,dc=com .

operation Speci�es the state change operation

invoked: CREATE , MODIFY , or DELETE .

165 / 207

Property Description

before Speci�es the JSON representation of the

object prior to the activity. For example:

{

"sunsmspriority":[

"0"

],

"objectclass":[

"top",

"sunServiceComponent",

"organizationalUnit"

],

"ou":[

"SamuelTwo"

],

"sunserviceID":[

"serverconfig"

]

}

166 / 207

Property Description

after Speci�es the JSON representation of the

object after the activity. For example:

changedFields Speci�es the �elds that were changed.

For example, ["sunKeyValue"] .

{

"sunKeyValue":[

"forgerock-am-auth-saml2-

auth-level=0",

"forgerock-am-auth-saml2-

meta-alias=/sp",

"forgerock-am-auth-saml2-

entity-name=http://",

"forgerock-am-auth-saml2-

authn-context-decl-ref=",

"forgerock-am-auth-saml2-

force-authn=none",

"forgerock-am-auth-saml2-

is-passive=none",

"forgerock-am-auth-saml2-

login-chain=",

"forgerock-am-auth-saml2-

auth-comparison=none",

"forgerock-am-auth-saml2-

req-binding=

urn:oasis:names:tc:SAML:2.0:bin

dings:HTTP-Redirect",

"forgerock-am-auth-saml2-

binding=

urn:oasis:names:tc:SAML:2.0:bin

dings:HTTP-Artifact",

"forgerock-am-auth-saml2-

authn-context-class-ref=",

"forgerock-am-auth-saml2-

slo-relay=http://",

"forgerock-am-auth-saml2-

allow-create=false",

"forgerock-am-auth-saml2-

name-id-format=

urn:oasis:names:tc:SAML:2.0:nam

eid-format:persistent"

]

}

167 / 207

Property Description

revision Not used.

component Not used.

realm Speci�es the realm where the operation

occurred. For example, the Top Level

Realm ("/“) or the sub-realm name

(”/shop").

This table summarizes the prede�ned events for each topic:

Topic Event name Event description

access AM-ACCESS_ATTEMPT When AM starts handling an HTTP

request.

access AM-ACCESS-OUTCOME When AM �nishes handling an HTTP

request.

activity AM-BACK-CHANNEL-

LOGOUT

Event for an OIDC back-channel logout.

activity AM-SELFSERVICE-

REGISTRATION-

COMPLETED

When the self-service registration

process is complete.

activity AM-SELFSERVICE-

PASSWORDCHANGE-

COMPLETED

When the self-service password reset

process is complete.

activity AM-SESSION-CREATED When an SSO session is created.

activity AM-SESSION-DESTROYED When an SSO session is destroyed.

activity AM-SESSION-

IDLE_TIME_OUT

When an SSO session has been inactive

for longer than con�gured idle timeout

duration.

activity AM-SESSION-LOGGED_OUT Event for the explicit logout of an SSO

session.

activity AM-SESSION-

MAX_TIMED_OUT

When an SSO session exceeds the

maximum con�gured lifetime.

Audit log events

168 / 207

Topic Event name Event description

activity AM-SESSION-

PROPERTY_CHANGED

When an SSO session property changes.

activity AM-IDENTITY-CHANGE When an identity is updated, such as a

change to an attribute.

activity AM-GROUP-CHANGE When a group is changed.

activity AM-TOKEN-EXCHANGE Event for an OAuth 2.0 token exchange.

authentic

ation

AM-LOGOUT Event for an authentication process

logout.

authentic

ation

AM-LOGIN-COMPLETED Event for the successful or failed

completion of an authentication chain

login.

authentic

ation

AM-LOGIN-MODULE-

COMPLETED

Event for the successful or failed

completion of an authentication module

login.

authentic

ation

AM-NODE-LOGIN-

COMPLETED

Event for the successful or failed

completion of an authentication node

login.

authentic

ation

AM-TREE-LOGIN-

COMPLETED

Event for the successful or failed

completion of an authentication tree

login.

config AM-CONFIG-CHANGE When the AM con�guration is updated.

This table lists the prede�ned audit event components that make up log messages:

Event component AM component, service, or feature

AM agents Web and Java agents

Audit Auditing service

Authentication Authentication service

Batch Batch service

Audit log components

169 / 207

Event component AM component, service, or feature

Config Con�guration

CTS Core Token Service

Dashboard Dashboard service

Devices Trusted devices

Groups Groups component

Oath Mobile authentication

OAuth OAuth 2.0, OpenID Connect 1.0, and UMA

Policy Policies

Push Push Noti�cation service

Radius RADIUS server

Realms Realms and sub-realms

Record Recording service

SAML2 SAML v2.0

Script Scripting service

Self-Service User Self-Service service

Server Info Server information service

Session Session service

ssoadm ssoadm command

STS Secure Token Service: REST and SOAP

Things Internet of Things component

Users Users component

This table lists the prede�ned audit event authentication failure reasons:

Audit log failure reasons

170 / 207

Failure Description

ACCOUNT_EXPIRED User account has expired.

AUTH_TYPE_DENIED Authentication type is denied.

INVALID_LEVEL Level-based authentication: Invalid

authentication level.

INVALID_PASSWORD Invalid credentials entered.

INVALID_REALM Realm does not exist.

LOCKED_OUT Maximum number of failure attempts

exceeded. User is locked out.

LOGIN_FAILED Incorrect/invalid credentials presented.

LOGIN_TIMEOUT Login timed out.

MAX_SESSION_REACHED Limit for maximum number of allowed

sessions has been reached.

MODULE_DENIED Authentication module is denied.

NO_CONFIG Authentication chain does not exist.

NO_USER_PROFILE No user pro�le found for this user.

REALM_INACTIVE Realm is not active.

SESSION_CREATE_ERROR Cannot create a session.

USER_INACTIVE User is not active.

USER_NOT_FOUND Role-based authentication: user does not

belong to this role.

USERID_NOT_FOUND The user ID was not found.

When an object is passed in an audit event, it might contain information that should not

be logged. By default, the AM uses an allowlist to specify which �elds of the event

appear.

The following �elds appear on the default allowlist. This lists speci�es each �eld by its

JSON path. If an allowlisted �eld contains an object, then listing the �eld means the

Audit log default allowlist

171 / 207

whole object is allowlisted:

/_id

/client

/eventName

/http/request/headers/accept

/http/request/headers/accept-api-version

/http/request/headers/content-type

/http/request/headers/host

/http/request/headers/user-agent

/http/request/headers/x-forwarded-for

/http/request/headers/x-forwarded-host

/http/request/headers/x-forwarded-port

/http/request/headers/x-forwarded-proto

/http/request/headers/x-original-uri

/http/request/headers/x-real-ip

/http/request/headers/x-request-id

/http/request/headers/x-requested-with

/http/request/headers/x-scheme

/http/request/method

/http/request/path

/http/request/queryParameters/authIndexType

/http/request/queryParameters/authIndexValue

/http/request/queryParameters/composite_advice

/http/request/queryParameters/level

/http/request/queryParameters/module_instance

/http/request/queryParameters/resource

/http/request/queryParameters/role

/http/request/queryParameters/service

/http/request/queryParameters/user

/http/request/secure

/request

Default access log allowlist

172 / 207

/response

/server

/timestamp

/trackingIds

/transactionId

/userId

/_id

/after/assignedDashboard

/after/cn

/after/commonName

/after/givenName

/after/inetUserStatus

/after/iplanet-am-user-alias-list

/after/iplanet-am-user-login-status

/after/kbaInfoAttempts

/after/memberof

/after/o

/after/oath2faEnabled

/after/objectClass

/after/organizationName

/after/organizationUnitName

/after/ou

/after/push2faEnabled

/after/sn

/after/sunAMAuthInvalidAttemptsData

/after/surname

/after/uid

/after/uniqueMember

/after/userid

/before/assignedDashboard

/before/cn

Default activity log allowlist

173 / 207

/before/commonName

/before/givenName

/before/inetUserStatus

/before/iplanet-am-user-alias-list

/before/iplanet-am-user-login-status

/before/kbaInfoAttempts

/before/memberof

/before/o

/before/oath2faEnabled

/before/objectClass

/before/organizationName

/before/organizationUnitName

/before/ou

/before/push2faEnabled

/before/sn

/before/sunAMAuthInvalidAttemptsData

/before/surname

/before/uid

/before/uniqueMember

/before/userid

/changedFields

/component

/component

/eventName

/objectId

/operation

/realm

/realm

/revision

/runAs

/timestamp

/trackingIds

/transactionId

174 / 207

/userId

/

/_id

/changedFields

/component

/eventName

/objectId

/operation

/realm

/revision

/runAs

/timestamp

/trackingIds

/transactionId

/userId

AM writes audit events to relational databases using the JDBC audit event handler. This

section presents the columns for each audit table.

Column Datatype Description

id VARCHAR(56) NOT NULL Speci�es a universally

unique identi�er (UUID)

for the message object,

such as a568d4fe-d655-

49a8-8290-

bfc02095bec9-491 .

Default authentication log allowlist

Default config log allowlist

JDBC audit log tables

am_auditaccess

175 / 207

Column Datatype Description

timestamp_ VARCHAR(29) NULL Speci�es the timestamp

when AM logged the

message, in UTC format to

millisecond precision:

yyyy-MM-

ddTHH:mm:ss.msZ . For

example: 2015-11-

14T00:16:04.653Z

176 / 207

Column Datatype Description

transactionid VARCHAR(255) NULL Speci�es the UUID of the

transaction, which

identi�es an external

request when it comes

into the system boundary.

Any events generated

while handling that

request will be assigned

that transaction ID, so that

you may see the same

transaction ID for di�erent

audit event topics. For

example, 9c9e8d5c-

2941-4e61-9c3c-

8a990088e801 .

AM supports a feature

where a trusted AM

deployment with multiple

instances, components,

and ForgeRock products

can propagate a

transaction ID through

each call across the stack.

AM reads the X-

ForgeRock-

TransactionId HTTP

header and appends an

integer to the transaction

ID. Note that this feature is

disabled by default. When

enabled, this feature

should �lter the X-

ForgeRock-

TransactionId HTTP

header for connections

from untrusted sources.

177 / 207

Column Datatype Description

eventname VARCHAR(255) Speci�es the name of the

audit event. For example,

AM-ACCESS-ATTEMPT and

AM-ACCESS-OUTCOME . For

a list of audit event names,

see Audit log events.

userid VARCHAR(255) NULL Speci�es the universal

identi�er for the

authenticated user. For

example,

id=scarter,ou=user,o=

shop,ou=services,dc=ex

ample,dc=com .

trackingids MEDIUMTEXT Speci�es the tracking IDs

of the event, used by all

topics.

server_ip VARCHAR(40) Speci�es the IP address of

the AM server.

server_port VARCHAR(5) Speci�es the port number

used by the AM server. For

example, 8080 .

client_host VARCHAR(255) Speci�es the client

hostname. This column is

only populated if reverse

DNS lookup is enabled.

client_ip VARCHAR(40) Speci�es the client IP

address.

client_port VARCHAR(5) Speci�es the client port

number.

request_protocol VARCHAR(255) NULL Speci�es the protocol

associated with the

request operation.

Possible values: CREST

and PLL .

178 / 207

Column Datatype Description

request_operation VARCHAR(255) NULL Speci�es the request

operation.

For Common REST

operations, possible

values: READ , ACTION ,

QUERY .

For PLL operations,

possible values:

LoginIndex ,

SubmitRequirements ,

GetSession ,

REQUEST_ADD_POLICY_LI

STENER .

request_detail TEXT NULL Speci�es the detailed

information about the

request operation. For

example:

{"action":"idFrom

Session"}

{"action":"valida

teGoto"}

{"action":"valida

te"}

{"action":"logout

"}

{"action":"schema

"}

{"action":"templa

te"}

179 / 207

Column Datatype Description

http_request_secure BOOLEAN NULL Speci�es the HTTP method

requested by the client.

For example, trueT or

false . Note that false

does not mean the client

connection is insecure as

there may be a reverse

proxy terminating the

HTTPS connection.

http_request_method VARCHAR(7) NULL Speci�es the HTTP method

requested by the client.

For example, GET , POST ,

PUT .

http_request_path VARCHAR(255) NULL Speci�es the path of the

HTTP request. For

example,

https://openam.exampl

e.com:8443/openam/json

/realms/root/authentic

ate .

http_request_querypar

ameters

MEDIUMTEXT NULL Speci�es the HTTP query

parameter string. For

example:

{ "_action": [

"idFromSession"]

}

{ "_queryFilter":

["true"] }

{ "_action": [

"validate"] }

{ "_action": [

"logout"] }

{ "realm": [

"/shop"] }

{ "_action": [

"validateGoto"]

}

180 / 207

Column Datatype Description

http_request_headers MEDIUMTEXT NULL Speci�es the HTTP

headers for the request.

For example:

{

"accept":[

"application/json,

text/javascript,

/; q=0.01"

],

"Accept-API-

Version":[

"protocol=1.0"

],

"accept-

encoding":[

"gzip,

deflate"

],

"accept-

language":[

"en-

US;q=1,en;q=0.9"

],

"cache-control":

[

"no-cache"

],

"connection":[

"Keep-Alive"

],

"content-

length":[

"0"

],

"host":[

"forgerock-

am.openrock.org"

],

"pragma":[

"no-cache"

],

"referer":[

181 / 207

Column Datatype Description

"https://forgerock-

am.openrock.org/ope

nam/XUI/"

],

"user-agent":[

"Mozilla/5.0

(X11; Linux x86_64;

rv:31.0)

Gecko/20100101

Firefox/31.0"

],

"x-nosession":[

"true"

],

"x-requested-

with":[

"XMLHttpRequest"

],

"x-username":[

"anonymous"

]

}

182 / 207

Column Datatype Description

http_request_cookies MEDIUMTEXT NULL Speci�es a JSON map of

key-value pairs and

appears as its own

property to allow for

blacklisting �elds or

values. For example:

Note: line feeds and

truncated values in the

example are for readability

purposes.

http_response_headers MEDIUMTEXT NULL Captures the headers

returned by AM to the

client (that is, the inverse

of

http_request_headers).

Note that AM does not

currently populate this

�eld.

response_status VARCHAR(10) NULL Speci�es the response

status of the request. For

example, SUCCESS ,

FAILURE , ALLOWED ,

DENIED , or NULL .

"cookies":

"amlbcookie=01;

iPlanetDirectoryPro

=\"AQIC5wM2LY....*A

AJTSQACMfwT...*\";

iPlanetDirectoryPro

=eyJ0eXAiOiJK....ey

JzdWIiOiJkZ..."

183 / 207

Column Datatype Description

response_statuscode VARCHAR(255) NULL Speci�es the response

status code, depending on

the protocol.

For Common REST, HTTP

failure codes are displayed

but not HTTP success

codes.

For PLL endpoints, PLL

error codes are displayed.

response_detail TEXT NULL Speci�es the message

associated with the

response status code. For

example, a response

status code of 401 has a

response detail of {

"reason":

"Unauthorized" } .

response_elapsedtime VARCHAR(255) NULL Speci�es the time to

execute the access event,

usually in millisecond

precision.

response_elapsedtimeu

nits

VARCHAR(255) NULL Speci�es the elapsed time

units of the response. For

example, MILLISECONDS .

component VARCHAR(255) NULL Speci�es the AM service

utilized. For example,

Server Info , Users ,

Config , Session ,

Authentication ,

Policy , OAuth .

realm VARCHAR(255) NULL Speci�es the realm where

the operation occurred.

For example, the Top Level

Realm ("/“) or the

sub-realm name

(”/shop").

184 / 207

Column Datatype Description

id VARCHAR(56) NOT NULL Speci�es a universally

unique identi�er (UUID)

for the message object,

such as a568d4fe-d655-

49a8-8290-

bfc02095bec9-491 .

timestamp_ VARCHAR(29) NULL Speci�es the timestamp

when AM logged the

message, in UTC format to

millisecond precision:

yyyy-MM-

ddTHH:mm:ss.msZ . For

example: 2015-11-

14T00:16:04.653Z

am_auditauthentication

185 / 207

Column Datatype Description

transactionid VARCHAR(255) NULL Speci�es the UUID of the

transaction, which

identi�es an external

request when it comes

into the system boundary.

Any events generated

while handling that

request will be assigned

that transaction ID, so that

you may see the same

transaction ID for di�erent

audit event topics. For

example, 9c9e8d5c-

2941-4e61-9c3c-

8a990088e801 .

AM supports a feature

where a trusted AM

deployment with multiple

instances, components,

and ForgeRock products

can propagate a

transaction ID through

each call across the stack.

AM reads the X-

ForgeRock-

TransactionId HTTP

header and appends an

integer to the transaction

ID. Note that this feature is

disabled by default. When

enabled, this feature

should �lter the X-

ForgeRock-

TransactionId HTTP

header for connections

from untrusted sources.

186 / 207

Column Datatype Description

eventname VARCHAR(255) NULL Speci�es the name of the

audit event. For example, `

AM-LOGIN-MODULE-

COMPLETED` and AM-

LOGOUT . For a list of audit

event names, see Audit log

events.

userid VARCHAR(255) NULL Speci�es the universal

identi�er for authenticated

users. For example,

id=scarter,ou=user,o=

shop,ou=services,dc=ex

ample,dc=com .

trackingids MEDIUMTEXT Speci�es the tracking IDs

of the event, used by all

topics.

result VARCHAR(255) NULL Depending on the event

being logged, speci�es the

outcome of:

A single

authentication

module within a chain

The result for an

authentication tree

Possible values are

SUCCESSFUL or FAILED .

principals MEDIUMTEXT Speci�es the array of

accounts used to

authenticate, such as [

"amadmin"] and [

"scarter"] .

context MEDIUMTEXT Not used.

187 / 207

Column Datatype Description

entries MEDIUMTEXT Speci�es the JSON

representation of the

details of an

authentication module,

chain, tree or node. AM

creates an event as each

module or node completes

and a �nal event at the

end of the chain or tree.

For example:

{

"entries":[

{

"moduleId":"DataSto

re",

"info":{

"moduleClass":"Data

Store",

"ipAddress":"127.0.

0.1",

"moduleName":"DataS

tore",

"authLevel":"0"

}

}

]

}

{

"entries":[

{

"info":{

"nodeOutcome":"true

",

"treeName":"Example

",

188 / 207

Column Datatype Description

component VARCHAR(255) NULL Speci�es the AM service

utilized. For example,

Server Info , Users ,

Config , Session ,

Authentication ,

Policy , OAuth .

realm VARCHAR(255) NULL Speci�es the realm where

the operation occurred.

For example, the Top Level

Realm ("/“) or the

sub-realm name

(”/shop").

Column Datatype Description

id VARCHAR(56) NOT NULL Speci�es a universally

unique identi�er (UUID)

for the message object,

such as a568d4fe-d655-

49a8-8290-

bfc02095bec9-491 .

"displayName":"Data

Store Decision",

"nodeType":"DataSto

reDecisionNode",

"nodeId":"e5ec495a-

2ae2-4eca-8afb-

9781dea04170",

"authLevel":"0"

}

}

]

}

am_auditactivity

189 / 207

Column Datatype Description

timestamp_ VARCHAR(29) NOT NULL Speci�es the timestamp

when AM logged the

message, in UTC format to

millisecond precision:

yyyy-MM-

ddTHH:mm:ss.msZ . For

example: 2015-11-

14T00:16:04.653Z

190 / 207

Column Datatype Description

transactionid VARCHAR(255) NULL Speci�es the UUID of the

transaction, which

identi�es an external

request when it comes

into the system boundary.

Any events generated

while handling that

request will be assigned

that transaction ID, so that

you may see the same

transaction ID for di�erent

audit event topics. For

example, 9c9e8d5c-

2941-4e61-9c3c-

8a990088e801 .

AM supports a feature

where a trusted AM

deployment with multiple

instances, components,

and ForgeRock products

can propagate a

transaction ID through

each call across the stack.

AM reads the X-

ForgeRock-

TransactionId HTTP

header and appends an

integer to the transaction

ID. Note that this feature is

disabled by default. When

enabled, this feature

should �lter the X-

ForgeRock-

TransactionId HTTP

header for connections

from untrusted sources.

191 / 207

Column Datatype Description

eventname VARCHAR(255) NULL Speci�es the name of the

audit event. For example,

AM-SESSION-CREATED

and AM-SESSION-

DESTROYED . For a list of

audit event names, see

Audit log events.

userid VARCHAR(255) NULL Speci�es the universal

identi�er for authenticated

users. For example,

id=scarter,ou=user,o=

shop,ou=services,dc=ex

ample,dc=com .

trackingids MEDIUMTEXT Speci�es the tracking IDs

of the event, used by all

topics.

runas VARCHAR(255) NULL Speci�es the user to run

the activity as. May be

used in delegated

administration. For

example,

uid=amAdmin,ou=People

,dc=example,dc=com .

objectid VARCHAR(255) NULL Speci�es the identi�er of a

system object that has

been created, modi�ed, or

deleted. For example,

ou=SamuelTwo,ou=defau

lt,ou=OrganizationConf

ig,ou=1.0,

ou=iPlanetAMAuthSAML2S

ervice,ou=services,o=s

hop,ou=services,dc=exa

mple,dc=com .

operation VARCHAR(255) NULL Speci�es the state change

operation invoked:

CREATE , MODIFY , or

DELETE .

192 / 207

Column Datatype Description

beforeObject MEDIUMTEXT NULL Speci�es the JSON

representation of the

object prior to the activity.

For example:

{

"sunsmspriority":[

"0"

],

"objectclass":[

"top",

"sunServiceComponen

t",

"organizationalUnit

"

],

"ou":[

"SamuelTwo"

],

"sunserviceID":[

"serverconfig"

]

}

193 / 207

Column Datatype Description

afterObject MEDIUMTEXT NULL Speci�es the JSON

representation of the

object after the activity.

For example:

{

"sunKeyValue":[

"forgerock-

am-auth-saml2-auth-

level=0",

"forgerock-

am-auth-saml2-meta-

alias=/sp",

"forgerock-

am-auth-saml2-

entity-

name=http://",

"forgerock-

am-auth-saml2-

authn-context-decl-

ref=",

"forgerock-

am-auth-saml2-

force-authn=none",

"forgerock-

am-auth-saml2-is-

passive=none",

"forgerock-

am-auth-saml2-

login-chain=",

"forgerock-

am-auth-saml2-auth-

comparison=none",

"forgerock-

am-auth-saml2-req-

binding=

urn:oasis:names:tc:

SAML:2.0:bindings:H

TTP-Redirect",

"forgerock-

am-auth-saml2-

binding=

urn:oasis:names:tc:

SAML:2.0:bindings:H

TTP-Artifact",

194 / 207

Column Datatype Description

changedfields VARCHAR(255) NULL Speci�es the columns that

were changed. For

example, [

"sunKeyValue"] .

rev VARCHAR(255) NULL Not used.

component VARCHAR(255) NULL Speci�es the AM service

utilized. For example,

Server Info , Users ,

Config , Session ,

Authentication ,

Policy , OAuth .

realm VARCHAR(255) NULL Speci�es the realm where

the operation occurred.

For example, the Top Level

Realm ("/“) or the

sub-realm name

(”/shop").

"forgerock-

am-auth-saml2-

authn-context-

class-ref=",

"forgerock-

am-auth-saml2-slo-

relay=http://",

"forgerock-

am-auth-saml2-

allow-

create=false",

"forgerock-

am-auth-saml2-name-

id-format=

urn:oasis:names:tc:

SAML:2.0:nameid-

format:persistent"

]

}

am_auditcon�g

195 / 207

Column Datatype Description

id VARCHAR(56) NOT NULL Speci�es a universally

unique identi�er (UUID)

for the message object,

such as a568d4fe-d655-

49a8-8290-

bfc02095bec9-491 .

timestamp_ VARCHAR(29) NULL Speci�es the timestamp

when AM logged the

message, in UTC format to

millisecond precision:

yyyy-MM-

ddTHH:mm:ss.msZ . For

example: 2015-11-

14T00:16:04.653Z

196 / 207

Column Datatype Description

transactionid VARCHAR(255) NULL Speci�es the UUID of the

transaction, which

identi�es an external

request when it comes

into the system boundary.

Any events generated

while handling that

request will be assigned

that transaction ID, so that

you may see the same

transaction ID for di�erent

audit event topics. For

example, 9c9e8d5c-

2941-4e61-9c3c-

8a990088e801 .

AM supports a feature

where a trusted AM

deployment with multiple

instances, components,

and ForgeRock products

can propagate a

transaction ID through

each call across the stack.

AM reads the X-

ForgeRock-

TransactionId HTTP

header and appends an

integer to the transaction

ID. Note that this feature is

disabled by default. When

enabled, this feature

should �lter the X-

ForgeRock-

TransactionId HTTP

header for connections

from untrusted sources.

eventname VARCHAR(255) NULL Speci�es the name of the

audit event. For example,

AM-CONFIG-CHANGE . For a

list of audit event names,

see Audit log events.

197 / 207

Column Datatype Description

userid VARCHAR(255) NULL Speci�es the universal

identi�er for authenticated

users. For example,

id=scarter,ou=user,o=

shop,ou=services,dc=ex

ample,dc=com .

trackingids MEDIUMTEXT Speci�es the tracking IDs

of the event, used by all

topics.

runas VARCHAR(255) NULL Speci�es the user to run

the activity as. May be

used in delegated

administration. For

example,

uid=amAdmin,ou=People

,dc=example,dc=com .

objectid VARCHAR(255) NULL Speci�es the identi�er of a

system object that has

been created, modi�ed, or

deleted. For example,

ou=SamuelTwo,ou=defau

lt,ou=OrganizationConf

ig,ou=1.0,

ou=iPlanetAMAuthSAML2S

ervice,ou=services,o=s

hop,ou=services,dc=exa

mple,dc=com .

operation VARCHAR(255) NULL Speci�es the state change

operation invoked:

CREATE , MODIFY , or

DELETE .

198 / 207

Column Datatype Description

beforeObject MEDIUMTEXT NULL Speci�es the JSON

representation of the

object prior to the activity.

For example:

{

"sunsmspriority":[

"0"

],

"objectclass":[

"top",

"sunServiceComponen

t",

"organizationalUnit

"

],

"ou":[

"SamuelTwo"

],

"sunserviceID":[

"serverconfig"

]

}

199 / 207

Column Datatype Description

afterObject MEDIUMTEXT NULL Speci�es the JSON

representation of the

object after the activity.

For example:

{

"sunKeyValue":[

"forgerock-

am-auth-saml2-auth-

level=0",

"forgerock-

am-auth-saml2-meta-

alias=/sp",

"forgerock-

am-auth-saml2-

entity-

name=http://",

"forgerock-

am-auth-saml2-

authn-context-decl-

ref=",

"forgerock-

am-auth-saml2-

force-authn=none",

"forgerock-

am-auth-saml2-is-

passive=none",

"forgerock-

am-auth-saml2-

login-chain=",

"forgerock-

am-auth-saml2-auth-

comparison=none",

"forgerock-

am-auth-saml2-req-

binding=

urn:oasis:names:tc:

SAML:2.0:bindings:H

TTP-Redirect",

"forgerock-

am-auth-saml2-

binding=

urn:oasis:names:tc:

SAML:2.0:bindings:H

TTP-Artifact",

200 / 207

Column Datatype Description

changedfields VARCHAR(255) NULL Speci�es the columns that

were changed. For

example, [

"sunKeyValue"] .

rev VARCHAR(255) Not used.

component VARCHAR(255) NULL Speci�es the AM service

utilized. For example,

Server Info , Users ,

Config , Session ,

Authentication ,

Policy , OAuth .

realm VARCHAR(255) NULL Speci�es the realm where

the operation occurred.

For example, the Top Level

Realm ("/“) or the

sub-realm name

(”/shop").

"forgerock-

am-auth-saml2-

authn-context-

class-ref=",

"forgerock-

am-auth-saml2-slo-

relay=http://",

"forgerock-

am-auth-saml2-

allow-

create=false",

"forgerock-

am-auth-saml2-name-

id-format=

urn:oasis:names:tc:

SAML:2.0:nameid-

format:persistent"

]

}

Customize server-side session quota exhaustion actions

201 / 207

This page demonstrates a custom session quota exhaustion action plugin. AM calls a

session quota exhaustion action plugin when a user tries to open more server-side

sessions than their quota allows. Note that session quotas are not available for client-

side sessions.

You only need a custom session quota exhaustion action plugin if the built-in actions are

not �exible enough for your deployment. See Session quotas.

You build custom session quota exhaustion actions into a .jar that you then plug in to

AM. You must also add your new action to the Session service con�guration, and restart

AM in order to be able to con�gure it for your use.

Your custom session quota exhaustion action implements the

com.iplanet.dpro.session.service.QuotaExhaustionAction interface, overriding

the action method. The action method performs the action when the session quota

is met, and returns true only if the request for a new session should not be granted.

The example in this section simply removes the �rst session it �nds as the session quota

exhaustion action.

Create and install a custom session quota exhaustion action

/*

* The contents of this file are subject to the terms of the

Common Development and

* Distribution License (the License). You may not use this file

except in compliance with the

* License.

*

* You can obtain a copy of the License at legal/CDDLv1.0.txt. See

the License for the

* specific language governing permission and limitations under

the License.

*

* When distributing Covered Software, include this CDDL Header

Notice in each file and include

* the License file at legal/CDDLv1.0.txt. If applicable, add the

following below the CDDL

* Header, with the fields enclosed by brackets [] replaced by

your own identifying

* information: "Portions copyright [year] [name of copyright

owner]".

*

* Copyright 2012-2019 ForgeRock AS. All Rights Reserved

*/

202 / 207

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-quotas.html

package org.forgerock.openam.examples.quotaexhaustionaction;

import java.util.Map;

import javax.inject.Inject;

import org.forgerock.guice.core.InjectorHolder;

import org.forgerock.openam.session.Session;

import org.forgerock.openam.session.clientsdk.SessionCache;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import com.iplanet.dpro.session.SessionException;

import com.iplanet.dpro.session.SessionID;

import com.iplanet.dpro.session.service.QuotaExhaustionAction;

import com.iplanet.dpro.session.service.SessionService;

/**

* This is a sample {@link QuotaExhaustionAction} implementation,

* which randomly kills the first session it finds.

*/

public class SampleQuotaExhaustionAction implements

QuotaExhaustionAction {

private static Logger debug =

LoggerFactory.getLogger(SampleQuotaExhaustionAction.class);

private final SessionCache sessionCache;

private final SessionService sessionService;

public SampleQuotaExhaustionAction() {

this.sessionCache =

InjectorHolder.getInstance(SessionCache.class);

this.sessionService =

InjectorHolder.getInstance(SessionService.class);

}

@Inject

public SampleQuotaExhaustionAction(SessionCache sessionCache,

SessionService sessionService) {

this.sessionCache = sessionCache;

this.sessionService = sessionService;

}

/**

203 / 207

* Check if the session quota for a given user has been

exhausted and

* if so perform the necessary actions. This implementation

randomly

* destroys the first session it finds.

*

* @param is The InternalSession to be

activated.

* @param existingSessions All existing sessions that belong

to the same

* uuid (Map:sid->expiration_time).

* @return true If the session activation request should be

rejected,

* otherwise false.

*/

@Override

public boolean action(

Session is,

Map<String, Long> existingSessions, long

excessSessionCount) {

for (Map.Entry<String, Long> entry :

existingSessions.entrySet()) {

try {

// Get a Session from the cache based on the

session ID, and destroy it.

SessionID sessionId = new

SessionID(entry.getKey());

Session session =

sessionCache.getSession(sessionId);

sessionService.destroySession(session, sessionId);

// Only destroy the first session.

break;

} catch (SessionException se) {

if (debug.isDebugEnabled()) {

debug.debug("Failed to destroy existing

session.", se);

}

// In this case, deny the session activation

request.

return true;

}

}

return false;

}

}

204 / 207

If you have not already done so, download and build the sample code.

For information on downloading and building AM sample source code, see How do I

access and build the sample code provided for PingAM? in the Knowledge Base.

In the sources, you �nd the following �les:

pom.xml

Apache Maven project �le for the module

This �le speci�es how to build the sample plugin, and also speci�es its dependencies

on AM components and on the Servlet API.

src/main/java/org/forgerock/openam/examples/quotaexhaustionaction/Sa

mpleQuotaExhaustionAction.java

Core class for the sample quota exhaustion action plugin

Once built, copy the .jar to WEB-INF/lib/ where AM is deployed.

Using the ssoadm command, update the Session Service con�guration:

Extract amSession.properties and if necessary the localized versions of this �le from

openam-core-7.2.2.jar to WEB-INF/classes/ where AM is deployed. For example,

if AM is deployed under /path/to/tomcat/webapps/openam , then you could run the

following commands:

$ cp target/*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

$ ssoadm \

set-attr-choicevals \

--adminid uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt \

--servicename iPlanetAMSessionService \

--schematype Global \

--attributename iplanet-am-session-constraint-handler \

--add \

--choicevalues myKey=\

org.forgerock.openam.examples.quotaexhaustionaction.SampleQuotaExh

austionAction

Choice Values were set.

$ cd /path/to/tomcat/webapps/openam/WEB-INF/classes/

$ jar -xvf ../lib/openam-core-7.2.2.jar amSession.properties

inflated: amSession.properties

205 / 207

https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM
https://support.pingidentity.com/s/article/How-do-I-access-and-build-the-sample-code-provided-for-PingAM

Add the following line to amSession.properties :

Restart AM or the container in which it runs.

You can now use the new session quota exhaustion action. First, in the AM admin UI, go

to Con�gure > Global Services and click Session. Then scroll to Resulting behavior if

session quota exhausted, and choose an option.

Before moving to your test and production environments, be sure to add your .jar �le

and updates to amSession.properties into a custom .war �le that you can then

deploy. You must still update the Session service con�guration in order to use your

custom session quota exhaustion action.

List session quota exhaustion actions by using the ssoadm command:

Remove a session quota exhaustion action by using the ssoadm command:

myKey=Randomly Destroy Session

List session quota exhaustion actions

$ ssoadm \

get-attr-choicevals \

--adminid uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt \

--servicename iPlanetAMSessionService \

--schematype Global \

--attributename iplanet-am-session-constraint-handler

I18n Key Choice Value

------------------------- ---… ------------------------------------

choiceDestroyOldSession org… session.service.DestroyOldestAction

choiceDenyAccess org… session.service.DenyAccessAction

choiceDestroyNextExpiring org…

session.service.DestroyNextExpiringAction

choiceDestroyAll org… session.service.DestroyAllAction

myKey org… examples… SampleQuotaExhaustionAction

Remove a session quota exhaustion action

$ ssoadm \

remove-attr-choicevals \

--adminid uid=amAdmin,ou=People,dc=openam,dc=forgerock,dc=org \

--password-file /tmp/pwd.txt \

206 / 207

Was this helpful?

Copyright © 2010-2025 ForgeRock, all rights reserved.

--servicename iPlanetAMSessionService \

--schematype Global \

--attributename iplanet-am-session-constraint-handler \

--choicevalues \

org.forgerock.openam.examples.quotaexhaustionaction.SampleQuotaExh

austionAction

Choice Values were removed.

207 / 207

