
These topics cover concepts and implementation procedures to manage sessions in

your AM environment.

This information is written for administrators configuring AM’s authentication and

authorization components.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

Sessions



Learn about the

different types of

sessions in AM.

Introduction to

sessions



Discover how AM

performs step-up

authentication.

Session upgrade



Decide where sessions

should be stored in

each realm.

Compare sessions



Learn about the session

cookie, and why you

must secure it.

The session cookie



Introduction to sessions

1 / 41

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/about-sessions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-upgrade.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-use-cases.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-cookies.html

A session in AM is a token that represents a usually interactive exchange of

information between AM and a user or identity.

AM creates an authentication session to track the user’s authentication progress through

an authentication chain or tree. Once the user has authenticated, AM creates a session

to manage the user’s or entity’s access to resources.

AM session-related services are stateless unless otherwise indicated; they do not hold

any session information local to the AM instances.

Instead, they store session information either in the CTS token store or on the client.

This architecture allows you to scale your AM infrastructure horizontally since any server

in the deployment can satisfy any session’s request.

Sessions have different characteristics depending on where AM stores the sessions.

Session storage location is configured at the realm level. The following table illustrates

where AM can store sessions:

Session storage location

In the CTS token

store

On the client In AM’s memory

Authentication

sessions

✔ ✔ (Default in new

installations)

✔ (Default after

upgrade)

Sessions ✔ (Default) ✔ ✖

 Authentication trees only.

 Available for authentication trees and authentication chains.

Server-side sessions reside in the CTS token store and can be cached in memory on one

or more AM servers to improve system performance.

(1) (1) (2)

(1)

(2)

Session storage location can be heterogeneous within the same AM deployment to

suit the requirements of each of your realms.

TIP

Server-side sessions

For information about configuring AM with sticky load balancing, see Load

balancing.

TIP

2 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html

If the session request is redirected to an AM server that does not have the session

cached, that server must retrieve the session from the CTS token store.

AM sends a reference to the session to the client, but the reference does not contain any

of the session state information. AM can modify a session during its lifetime without

changing the client’s reference to the session.

Server-side authentication sessions

Server-side authentication sessions are supported for authentication trees only.

During authentication, the session reference is returned to the client after a call to

the authenticate endpoint and stored in the authId object of the JSON

response.

AM maintains the authenticating user’s session in the CTS token store. After the

authentication flow has completed, if the realm to which the user has authenticated

is configured for client-side sessions, AM returns session state to the client and

deletes the server-side session.

Authentication session allowlisting is an optional feature that maintains a list of in-

progress authentication sessions and their progress in the authentication flow to

protect against replay attacks. For more information, see Authentication session

allowlisting.

Server-side sessions

Once the user is authenticated, the session reference is known as an SSO token. For

browser clients, AM sets a cookie in the browser that contains the session

reference. For REST clients, AM returns the session reference in response to calls to

the authentication endpoint.

For more information about session cookies, see Session cookies and session

security.

Related information: Choose where to store sessions

For client-side sessions, AM returns the session state to the client after each request and

requires the session state to be passed in with the subsequent request.

Client-side sessions

Some features are not supported in realms configured for client-side sessions. For

more information, refer to Limitations of using client-side sessions.

IMPORTANT

3 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/auth-session-whitelist.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/auth-session-whitelist.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-use-cases.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/impl-client-based-sessions.html#session-state-client-based-limitations

For security reasons, configure AM to sign and/or encrypt client-side sessions and client-

side authentication sessions. Decrypting and verifying the session can be an expensive

operation to perform on each request. AM therefore caches the decrypt sequence in

memory to improve performance.

Find information about configuring client-side security in Client-side session security.

Client-side authentication sessions

Client-side authentication sessions are supported for authentication trees only, and

are configured by default in new installations.

During authentication, the authentication session state is returned to the client

after each call to the authenticate endpoint and stored in the authId object of

the JSON response.

If the realm the user authenticated to is configured for server-side sessions, AM

creates the user’s session in the CTS token store when the authentication flow

completes.

Storing authentication sessions on the client allows any AM server to handle the

authentication flow at any point in time without load balancing requirements.

Authentication session allowlisting is an optional feature that maintains a list of in-

progress authentication sessions and their progress in the authentication flow to

protect against replay attacks. Learn more in Authentication session allowlisting.

Client-side sessions

For browser-based clients, AM sets a cookie in the browser that contains the

session state. When the browser transmits the cookie back to AM, AM decodes the

session state from the cookie. For REST-based clients, AM sends the cookie in a

header. Find more information about session cookies in Session cookies and

session security.

Session denylisting is an optional feature that maintains a list of logged out client-

side sessions in the CTS token store. Find more information about session

termination and session denylisting in Session termination.

Find information about configuring AM with sticky load balancing in Load balancing.

TIP

IMPORTANT

4 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/auth-session-whitelist.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-session-termination.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html

Learn more in Choose where to store sessions.

In-memory sessions reside in AM’s memory. AM sends clients a reference to the session,

but the reference does not contain any of the session state information.

In-memory authentication sessions

In-memory authentication sessions are the only configuration supported for

authentication chains. They are also configured by default for authentication trees

after an upgrade.

During authentication, the authentication session reference is returned to the client

after a call to the authenticate endpoint and stored in the authId object of the

JSON response.

AM maintains the user’s authentication session in its memory. After the

authentication flow has completed, AM performs the following tasks:

If the realm to which the user has authenticated is configured for server-side

sessions, AM stores the user’s session in the CTS token store and deletes the

authentication session from memory.

If the realm to which the user has authenticated is configured for client-side

sessions, AM stores the user’s session in a cookie on the user’s browser and

deletes the authentication session from memory.

Authentication session allowlisting is an optional feature that maintains a list of in-

progress authentication sessions and their progress in the authentication flow to

protect against replay attacks. For more information, see Authentication session

allowlisting.

A user is granted a client-side authentication session while they are completing the

authentication tree. If session denylisting is enabled, this authentication session is

"logged out" when the tree is completed, to prevent replay attacks. This "logging

out" adds the authentication session to the session denylist for client-side sessions.

In the CTS store, this takes the form of a SESSION_BLACKLIST token that exists for

the life of the authentication session.

IMPORTANT

In-memory sessions

IMPORTANT

5 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-use-cases.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/auth-session-whitelist.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/auth-session-whitelist.html

In-memory sessions

AM does not support in-memory sessions for authenticated users.

Related information: Choose where to store sessions

AM manages active sessions, allowing single sign-on when authenticated users attempt

to access system resources in AM’s control.

AM ensures that user sessions are terminated when a configured timeout is reached, or

when AM users perform actions that cause session termination. Session termination

effectively logs the user out of all systems protected by AM.

With server-side sessions, AM terminates sessions in four situations:

When a user explicitly logs out.

When an administrator monitoring sessions explicitly terminates a session.

When a session exceeds the maximum time-to-live.

When a user is idle for longer than the maximum session idle time.

Under these circumstances, AM responds by removing server-side sessions from the

CTS token store and from AM server memory caches. With the user’s session no longer

present in CTS, AM forces the user to reauthenticate during subsequent attempts to

access resources protected by AM.

When a user explicitly logs out of AM, AM also attempts to invalidate the

iPlanetDirectoryPro cookie in users' browsers by sending a Set-Cookie header

with an invalid session ID and a cookie expiration time that is in the past. In the case of

administrator session termination and session timeout, AM cannot invalidate the

iPlanetDirectoryPro cookie until the next time the user accesses AM.

Deployments where AM stores authentication sessions in memory require

sticky load balancing to route all requests pertaining to a particular

authentication flow to the same AM server. If a request reaches a different AM

server, the authentication flow will start anew.

Authentication chains only support storing authentication sessions in memory.

ForgeRock recommends switching to authentication trees with server-side or

client-side authentication sessions.

For information about configuring AM with sticky load balancing, see Load

balancing.

IMPORTANT

Session termination

6 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-use-cases.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html

Session termination differs for client-side sessions. Since client-side sessions are not

maintained in the CTS token store, administrators cannot monitor or terminate them.

Because AM does not modify the iPlanetDirectoryPro cookie for client-side sessions

after authentication, the session idle time is not maintained in the cookie. Therefore, AM

does not automatically terminate client-side sessions that have exceeded the idle

timeout.

As with server-side sessions, AM attempts to invalidate the iPlanetDirectoryPro

cookie from a user’s browser when the user logs out. When the maximum session time

is exceeded, AM also attempts to invalidate the iPlanetDirectoryPro cookie in the

user’s browser the next time the user accesses AM.

It is important to understand that AM cannot guarantee cookie invalidation. For

example, the HTTP response containing the Set-Cookie header might be lost. This is

not an issue for server-side sessions, because a logged out session no longer exists in

the CTS token store, and a user who attempts to access AM after previously logging out

will be forced to reauthenticate.

However, the lack of a guarantee of cookie invalidation is an issue for deployments with

client-side sessions. It could be possible for a logged out user to have an

iPlanetDirectoryPro cookie. AM could not determine that the user previously logged

out. Therefore, AM supports a feature that takes additional action when users log out of

client-side sessions. AM can maintain a list of logged out client-side sessions in a session

denylist in the CTS token store. Whenever users attempt to access AM with client-side

sessions, AM checks the session denylist to validate that the user has not, in fact, logged

out.

Since AM does not modify client-side session cookies once they are stored in the end

user’s browser, and client-side sessions contain, among others, the session maximum

time-to-live, it is imperative to protected them against tampering. See Client-side session

security for more information.

When configuring the maximum session time-to-live, you must balance security and user

experience. Depending on your application, it may be acceptable for your users to log in

once a month. Financial applications, for example, tend to expire their sessions in less

than an hour.

The longer a session is valid, the larger the window during which a malicious user could

impersonate a user if they were able to hijack a session cookie.

1. In the AM admin UI, go to Realms > Realm Name > Services > Session > Dynamic

Attributes.

Note that you can also change maximum session time settings globally for the AM

site at Configure > Sessions > Dynamic Attributes.

Configure maximum session time-to-live

7 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html

2. In the Maximum Session Time field, set a value suitable for your environment.

3. Save your changes.

Consider a user with a valid session navigating through pages or making changes to the

configuration. If for any reason they leave their desk and their computer remains open,

a malicious user could take the opportunity to impersonate them.

Session idle timeout can help mitigate those situations, by logging out users after a

specified duration of inactivity. Session idle timeout can only be used in realms

configured for server-side sessions.

1. In the AM admin UI, go to Realms > Realm Name > Services > Session > Dynamic

Attributes.

Note that you can also change idle timeout settings globally for the AM site by

navigating to Configure > Sessions > Dynamic Attributes.

2. On the Maximum Time Idle property, configure a value suitable for your

environment.

3. Save your changes.

Session denylisting ensures that users who have logged out of client-side sessions

cannot achieve single sign-on without reauthenticating to AM. Session denylisting does

not apply to authentication sessions.

1. Make sure that you deployed the Core Token Service during AM installation.

The session denylist is stored in the Core Token Service’s token store.

2. Go to Configure > Global Services, click Session, and locate the Client-Side

Sessions tab.

3. Select the Enable Session Denylisting option to enable session denylisting for

client-side sessions.

When you configure one or more AM realms for client-side sessions, you should

enable session denylisting in order to track session logouts across multiple AM

servers.

Changing the value of this property takes effect immediately.

4. Configure the Session Denylist Cache Size property.

AM maintains a cache of logged out client-side sessions. The cache size should be

around the number of logouts expected in the maximum session time. Change the

Configure server-side session idle timeout

Configure client-side session denylisting

8 / 41

default value of 10,000 when the expected number of logouts during the maximum

session time is an order of magnitude greater than 10,000. An underconfigured

session denylist cache causes AM to read denylist entries from the Core Token

Service store instead of obtaining them from cache, which results in a small

performance degradation.

Changing the value of this property takes effect immediately.

5. Configure the Denylist Poll Interval property.

AM polls the Core Token service for changes to logged out sessions if session

denylisting is enabled. By default, the polling interval is 60 seconds. The longer the

polling interval, the more time a malicious user has to connect to other AM servers

in a cluster and make use of a stolen session cookie. Shortening the polling interval

improves the security for logged out sessions, but might incur a minimal decrease

in overall AM performance due to increased network activity.

Changing the value of this property does not take effect until you restart AM.

6. Configure the Denylist Purge Delay property.

When session denylisting is enabled, AM tracks each logged out session for the

maximum session time plus the denylist purge delay. For example, if a session has a

maximum time of 120 minutes and the denylist purge delay is one minute, then AM

tracks the session for 121 minutes. Increase the denylist purge delay if you expect

system clock skews in a cluster of AM servers to be greater than one minute. There

is no need to increase the denylist purge delay for servers running a clock

synchronization protocol, such as Network Time Protocol.

Changing the value of this property does not take effect until you restart AM.

7. Click Save Changes.

For detailed information about session service configuration attributes, see the entries

for Session.

You can configure authentication session storage location independently from session

storage location. For example, you could configure the same realm for client-side

Enabling or disabling the session denyist, or altering the cache size, takes effect

immediately.

Changes to any other session denylist properties do not take effect until you

restart AM.

IMPORTANT

Choose where to store sessions

9 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-session

authentication sessions and server-side sessions if it suits your environment.

AM stores server-side sessions in the CTS token store and caches sessions in server

memory. If a server with cached sessions fails, or if the load balancer in front of AM

servers directs a request to a server that does not have the user’s session cached, the

AM server retrieves the session from the CTS token store, incurring performance

overhead.

Choosing where to store sessions is an important decision you must make by realm.

Consider the information in the following tables before configuring sessions:

Advantage Applies to authentication

sessions?

Applies to sessions?

Full feature support

Server-side sessions

support all AM features,

such as CDSSO and

quotas. Client-side

sessions do not. For

information about

restrictions on AM usage

with client-side sessions,

see Limitations of client-

side sessions.

This advantage does not

apply to authentication

sessions, since they do

not provide features.

— ✔

Advantages of server-side sessions

10 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/impl-client-based-sessions.html#session-state-client-based-limitations
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/impl-client-based-sessions.html#session-state-client-based-limitations

Advantage Applies to authentication

sessions?

Applies to sessions?

Session information is

not resident in browser

cookies

With server-side sessions,

all the information about

the session resides in CTS

and might be cached on

one or more AM servers.

With client-side sessions,

session information is

held in browser cookies.

This information could be

very long-lived.

✔ ✔

Advantage Applies to authentication

sessions?

Applies to sessions?

Unlimited horizontal

scalability for session

infrastructure

Client-side sessions

provides unlimited

horizontal scalability for

your sessions by storing

the session state on the

client as a signed and

encrypted JWT.

Overall performance on

hosts using client-side

sessions can be easily

improved by adding more

hosts to the AM

deployment.

✔ ✔

Advantages of client-side sessions

11 / 41

Advantage Applies to authentication

sessions?

Applies to sessions?

Replication-free

deployments

Global deployments may

struggle to keep their CTS

token store replication in

sync when distances are

long and updates are

frequent.

Client-side sessions are

not constrained by the

replication speed of the

CTS token store.

Therefore, client-side

sessions are usually more

suitable for deployments

where a session can be

serviced at any time by

any server.

✔ ✔

Advantage Applies to

Authentication Sessions?

Applies to Sessions?

Faster performance with

equivalent host

AM servers configured for

in-memory authentication

sessions can validate

more sessions per second

per host than those

configured for client-side

or server-side

authentication sessions.

✔ ✖

Advantages of in-memory sessions

12 / 41

Advantage Applies to

Authentication Sessions?

Applies to Sessions?

Session information is

not resident in browser

cookies

Authentication session

information resides in

AM’s memory and it is not

accessible to users. With

client-side sessions,

authentication session

information is held in

browser cookies.

✔ ✖

Server-side

authentication

sessions

Client-side

authentication

sessions

In-memory

authentication

sessions

Authentication

method

Authentication

trees.

Authentication

trees.

Authentication

trees and

authentication

chains.

Session location Authoritative

source: CTS token

store. Sessions

might also be

cached in AM’s

memory for

improved

performance.

On the client. In AM server’s

memory.

Load balancer

requirements

None. Session

stickiness

recommended for

performance.

None. Session

stickiness

recommended for

performance.

Session stickiness.

Core token

service usage

Authoritative

source for user

sessions. Session

allowlisting, when

enabled.

Session

allowlisting, when

enabled.

None.

Impact of storage location for authentication sessions

13 / 41

Server-side

authentication

sessions

Client-side

authentication

sessions

In-memory

authentication

sessions

Uninterrupted

session

availability

No special

configuration

required.

No special

configuration

required.

Not available.

Session security Sessions reside in

the CTS token

store, and are not

accessible to

users.

Sessions reside on

the client and

should be signed

and encrypted.

Sessions reside in

AM’s memory, and

are not accessible

to users.

Server-side Sessions Client-side Sessions

Hardware Higher I/O and memory

consumption.

Higher CPU consumption.

Logical hosts Variable or large number

of hosts.

Variable or large number

of hosts.

Session monitoring Available. Not available.

Session location Authoritative source: CTS

token store. Sessions

might also be cached in

AM’s memory for

improved performance.

In a cookie in the client.

Load balancer

requirements

None. Session stickiness

recommended for

performance.

None. Session stickiness

recommended for

performance.

Uninterrupted session

availability

No special configuration

required.

No special configuration

required.

Core token service usage Authoritative source for

user sessions.

Provides session

denylisting for logged out

sessions.

Core token service

demand

Heavier. Lighter.

Impact of storage location for sessions

14 / 41

Server-side Sessions Client-side Sessions

Session security Sessions reside in the CTS

token store, and are not

accessible to users.

Sessions should be signed

and encrypted.

Cross-domain single

sign-on support

All AM capabilities

supported.

Web agents and Java

agents: Supported

without restricted tokens.

 Web agents and Java agents support either signing or encrypting client-side

sessions, but not both. For more information, see Client-side session security and

agents.

Sessions require the user or client to be able to hold on to cookies. Cookies provided by

AM’s Session Service may contain a JSON Web Token (JWT) with the session or just a

reference to where the session is stored.

AM issues a cookie to the user or entity regardless of the session location for client-side

and server-side sessions. By default, the cookie’s name is iPlanetDirectoryPro . For

sessions stored in the CTS token store, the cookie contains a reference to the session in

the CTS token store and several other pieces of information. For sessions stored on the

client, the iPlanetDirectoryPro cookie contains all the information that would be

held in the CTS token store.

Client-side session cookies are comprised of two parts. The first part of the cookie is

identical to the cookie used by server-side sessions, which ensures the compatibility of

the cookies regardless of the session location. The second part is a JSON Web Token

(JWT), and it contains session information, as illustrated below:

iPlanetDirectoryPro cookie for server-side sessions:

iPlanetDirectoryPro cookie for client-side sessions:

Note that the examples are not to scale. The size of the client-side session cookie

increases when you customize AM to store additional attributes in users' sessions. You

(1)

(1)

Session cookies and session security

AQIC...sswo.*AAJ...MA..*

AQIC...sswo.*AAJ...MA..*ey....................................

fQ.

15 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html#policy_agent5_client-based
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html#policy_agent5_client-based

are responsible for ensuring that the size of the cookie does not exceed the maximum

cookie size allowed by your end users' browsers.

Since the session cookie is either a pointer to the actual user session or the session

itself, you must configure AM to secure the session cookie against hijacking, session

tampering, and other security concerns.

For example, terminating a session effectively logs the user or entity out of all realms,

but the way AM terminates sessions has security implications depending on where AM

stores the sessions. You can also configure the session time-to-live, idle timeout, the

number of concurrent sessions for a user, and others.

Related information:

Secure sessions

Secure session cookies

What information is contained in the AM session cookie?

By default, AM configures the CTS token store schema in the AM configuration store.

Before configuring your AM deployment to use server-side sessions or authentication

sessions, we recommend you install and configure an external CTS token store. For

more information, see Core Token Service (CTS).

Server-side sessions and authentication sessions benefit from configuring sticky load

balancing. For more information, see Load balancing.

1. In the AM admin UI, go to Realms > Realm Name > Authentication > Settings >

Trees.

2. From the Authentication session state management scheme drop-down list,

select CTS .

3. In the Max duration (minutes) field, enter the maximum life of the authentication

session in minutes.

4. Save your changes.



Configure server-side sessions

Configure server-side authentication sessions

Configuring storage location for authentication sessions is only supported for

authentication trees. Authentication chains always store authentication sessions in

AM’s memory. For more information, see Introduction to sessions.

IMPORTANT

16 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-sessions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/securing-cookies.html
https://support.pingidentity.com/s/article/FAQ-Cookies-in-PingAM#sessioncookieinfo
https://support.pingidentity.com/s/article/FAQ-Cookies-in-PingAM#sessioncookieinfo
https://support.pingidentity.com/s/article/FAQ-Cookies-in-PingAM#sessioncookieinfo
file:///home/pptruser/Downloads/build/site/pingam/7.2/cts-guide/preface.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/about-sessions.html

5. Go to Configure > Authentication > Core > Security.

6. In the Organization Authentication Signing Secret field, enter a base64-encoded

HMAC secret that AM uses to sign the JWT that is passed back and forth between

the client and AM during the authentication process. The secret must be at least

128-bits in length.

7. Save your changes.

1. In the AM admin UI, go to Realms > Realm Name > Authentication > Settings >

General.

2. Ensure the Use Client-Side Sessions check box is not selected.

3. Save your changes.

4. Verify that AM creates a server-side session when non-administrative users

authenticate to the realm. Perform the following steps:

Authenticate to AM as a non-administrative user in the realm you enabled for

server-side sessions.

In a different browser, authenticate to AM as an administrative user. For

example, amAdmin .

Go to Realms > Realm Name > Sessions.

Verify that a session is present for the non-administrative user.

Client-side sessions require additional setup in your environment to keep the sessions

safe, and to ensure both the browser and the web server where AM runs can manage

large cookies. Additionally, some of the AM features cannot be used with client-side

sessions. Review the following list before configuring client-side sessions:

Planning for client-side sessions

Ensure the trust store used by AM has the necessary certificates installed:

A certificate is required for encrypting JWTs containing client-side sessions.

If you are using RS256 signing, then a certificate is required to sign JWTs.

(HMAC signing uses a shared secret.)

The same certificates must be stored on all servers participating in an AM site. For

more information about managing certificates for AM, see Secrets, certificates, and

keys.

Ensure that your users' browsers can accommodate larger session cookie sizes

required by client-side sessions. For more information about session cookie sizes,

Configure server-side sessions

Configure client-side sessions

17 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/secrets-certs-keys.html

see Session cookies and session security.

Ensure that the AM web container can accommodate an HTTP header that is 16K in

size or greater. When using Apache Tomcat as the AM web container, configure the

server.xml file’s maxHttpHeaderSize property to 16384 or higher.

Ensure that your deployment does not require any of the capabilities specified in

the list of limitations that apply to client-side sessions.

Client-side sessions cannot use the following functionality:

Session quotas

Session idle timeout

Cross-domain single sign-on with restricted tokens (web agents and Java

agents)

Session signing and encryption (web agents and Java agents)

Uncompressed sessions (web agents and Java agents)

SAML v2.0 single logout using the SOAP binding

SNMP session monitoring

Session management using the AM admin UI

Session notification

Refresh token grace period

1. In the AM admin UI, go to Realms > Realm Name > Authentication > Settings >

Trees.

2. From the Authentication session state management scheme drop-down list,

select JWT .

3. In the Max duration (minutes) field, enter the maximum life of the authentication

session in minutes.

4. Save your changes.

5. Go to Configure > Authentication > Core > Security.

6. In the Organization Authentication Signing Secret field, enter a base64-encoded

HMAC secret that AM uses to sign the JWT that is passed back and forth between

Limitations of client-side sessions

Configure client-side authentication sessions

Configuring storage location for authentication sessions is only supported for

authentication trees. Authentication chains always store authentication sessions in

AM’s memory. For more information, see Introduction to sessions.

IMPORTANT

18 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-cookies.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-quotas.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-session-termination.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/enable-cdsso-cookie-hijacking-protection.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html#policy_agent5_client-based
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html#policy_agent5_client-based
file:///home/pptruser/Downloads/build/site/pingam/7.2/saml2-guide/saml2-configuration.html#saml2-and-session-state
file:///home/pptruser/Downloads/build/site/pingam/7.2/maintenance-guide/sec-maint-debug-logging.html#snmp-sessions
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/managing-sessions-console.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-session
file:///home/pptruser/Downloads/build/site/pingam/7.2/oauth2-guide/oauth2-refresh-tokens.html#refresh-token-grace-period
file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/about-sessions.html

the client and AM during the authentication process. The secret must be at least

128-bits in length.

7. Save your changes.

8. Protect your client-side authentication sessions.

See Client-side session security.

1. In the AM admin UI, go to Realms > Realm Name > Authentication > Settings >

General.

2. Select the Use Client-Side Sessions check box.

3. Save your changes.

4. Protect your client-side sessions. See Client-side session security.

5. Verify that AM creates a client-side session when non-administrative users

authenticate to the realm.

Perform the following steps:

Authenticate to the AM admin UI as the top-level administrator (by default, the

amAdmin user). Note that sessions for the top-level administrator are always

stored in the CTS token store.

Go to Realms > Realm Name > Sessions.

Verify that a session is present for the amAdmin user.

In your browser, examine the AM cookie, named iPlanetDirectoryPro by

default. Copy and paste the cookie’s value into a text file and note its size.

Start up a private browser session that will not have access to the

iPlanetDirectoryPro cookie for the amAdmin user:

In Chrome, open an incognito window.

In Microsoft Edge, start InPrivate browsing.

In Firefox, open a new private window.

In Safari, open a new private window.

Authenticate to AM as a non-administrative user in the realm for which you

enabled client-side sessions. Be sure not to authenticate as the amAdmin user

this time.

In your browser, examine the iPlanetDirectoryPro cookie. Copy and paste

the cookie’s value into a second text file and note its size. The size of the client-

side session cookie’s value should be considerably larger than the size of the

cookie used by the server-side session for the amAdmin user. If the cookie is

not larger, you have not enabled client-side sessions correctly.

Configure client-side sessions

19 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/security-guide/session-state-configure-cookie-security.html

Return to the original browser window in which the AM admin UI appears.

Refresh the window containing the Sessions page.

Verify that a session still appears for the amAdmin user, but that no session

appears for the non-administrative user in the realm with client-side sessions

enabled.

Authentication chains always store authentication sessions in AM’s memory. Perform

the steps in the following procedure only for realms that configure authentication trees:

1. Ensure you have configured AM for sticky load balancing.

For more information, see Load balancing.

2. In the AM admin UI, go to Realms > Realm Name > Authentication > Settings >

Trees.

3. From the Authentication session state management scheme drop-down list,

select In-Memory .

4. In the Max duration (minutes) field, enter the maximum life of the authentication

session in minutes.

5. Save your changes.

6. Go to Configure > Authentication > Core > Security.

7. In the Organization Authentication Signing Secret field, enter a base64-encoded

HMAC secret that AM uses to sign the JWT that is passed back and forth between

the client and AM during the authentication process. The secret must be, at least,

128-bits in length.

8. Save your changes.

The AM admin UI lets the administrator view and manage active server-side user

sessions by realm by going to Realms > Realm Name > Sessions.

Configure in-memory authentication sessions

Manage sessions in the UI

20 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/setup-guide/configure-lb.html

Figure 1. Sessions Page

To search for active sessions, enter a username in the search box. AM retrieves the

sessions for the user and displays them within a table. If no active server-side session is

found, AM displays a session not found message.

You can end any sessions—except the current amAdmin user’s session—by selecting it

and clicking the Invalidate Selected button. As a result, the user has to authenticate

again.

AM provides REST APIs under /json/sessions for the following use cases:

To get information about a session, send an HTTP POST request to the

/json/sessions/ endpoint, using the getSessionInfo action. This endpoint returns

information about the session token provided in the iPlanetDirectoryPro header by

default. To get information about a different session token, include it in the POST body

as the value of the tokenId parameter.

Deleting a user does not automatically remove any of the user’s server-side

sessions. After deleting a user, check for any sessions for the user and remove

them on the Sessions page.

IMPORTANT

Use the REST API for advanced functionality regarding sessions.

TIP

Manage sessions over REST

Get information about sessions over REST

NOTE

21 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html

The following example shows an administrative user passing their session token in the

iPlanetDirectoryPro header, and the session token of the demo user as the

tokenId parameter:

The getSessionInfo action does not refresh the session idle timeout. To obtain

session information about a server-side session and also reset the idle timeout, use the

getSessionInfoAndResetIdleTime endpoint, as follows. You cannot reset the idle

timeout of client-side sessions.

For information about how to retrieve custom session properties:

If you are using authentication modules, see How do I retrieve user attributes

from a session using the REST API? in the ForgeRock Knowledge Base.

For authentication trees, use the Scripted Decision node to retrieve user

attributes and session properties, or the Set Session Properties node for

session properties only.

NOTE



$ curl \

--request POST \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=4.0" \

--header "Content-type: application/json" \

--data '{ "tokenId": "BXCCq…​NX*1*" }' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=getSessionInfo

{

"username": "demo",

"universalId":

"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",

"realm": "/",

"latestAccessTime": "2020-02-21T14:31:18Z",

"maxIdleExpirationTime": "2020-02-21T15:01:18Z",

"maxSessionExpirationTime": "2020-02-21T16:29:56Z",

"properties": {

"AMCtxId": "aba7b4f3-16ff-4680-b06a-d7ba237d3730-91932"

}

}



$ curl \

--request POST \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=4.0, protocol=1.0" \

--header "Content-type: application/json" \

22 / 41

https://backstage.forgerock.com/knowledge/kb/article/a72365672
https://backstage.forgerock.com/knowledge/kb/article/a72365672
https://backstage.forgerock.com/knowledge/kb/article/a72365672
https://backstage.forgerock.com/knowledge/kb/article/a72365672
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-scripted-decision
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-set-session-properties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfo
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfo
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfo
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfo

To check over REST whether a session token is valid, perform an HTTP POST to the

/json/sessions/ endpoint using the validate action. Provide the session token in

the POST data as the value of the tokenId parameter. You must also provide the

session token of an administrative user in the iPlanetDirectoryPro header.

If you don’t specify the tokenId parameter, the session in the iPlanetDirectoryPro

header is validated instead.

The following example shows an administrative user, such as amAdmin , validating a

session token for the demo user:

--data '{ "tokenId": "BXCCq…​NX*1*" }' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=getSessionInfoAndResetIdleTime

{

"username": "demo",

"universalId":

"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",

"realm": "/",

"latestAccessTime": "2020-02-21T14:32:49Z",

"maxIdleExpirationTime": "2020-02-21T15:02:49Z",

"maxSessionExpirationTime": "2020-02-21T16:29:56Z",

"properties": {

"AMCtxId": "aba7b4f3-16ff-4680-b06a-d7ba237d3730-91932"

}

}



To return the AMCtxId property in the session query response as in this example,

you must set AMCtxId in the Session Properties to return for session

queries setting, under Realms > Realm Name > Services > Session Property

Whitelist Service.

NOTE

Validate sessions over REST

$ curl \

--request POST \

--header "Content-type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=2.1, protocol=1.0" \

--data '{ "tokenId": "BXCCq…​NX*1*" }' \

https://openam.example.com:8443/openam/json/realms/root/sessions?

_action=validate

23 / 41

https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfoAndResetIdleTime
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfoAndResetIdleTime
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfoAndResetIdleTime
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfoAndResetIdleTime
https://openam.example.com:8443/openam/json/realms/root/sessions?_action=validate
https://openam.example.com:8443/openam/json/realms/root/sessions?_action=validate
https://openam.example.com:8443/openam/json/realms/root/sessions?_action=validate
https://openam.example.com:8443/openam/json/realms/root/sessions?_action=validate

If the session token is valid, the user ID and its realm is returned:

By default, validating a session resets the session’s idle time, which triggers a write

operation to the Core Token Service token store. To avoid this, perform a call using the

validate&refresh=false action.

To reset the idle time of a server-side session using REST, perform an HTTP POST to the

/json/sessions/ endpoint, using the refresh action. The endpoint will refresh the

session token provided in the iPlanetDirectoryPro header by default. To refresh a

different session token, include it in the POST body as the value of the tokenId query

parameter.

The following example shows an administrative user passing their session token in the

iPlanetDirectoryPro header, and the session token of the demo user as the

tokenId parameter:

On success, AM resets the idle time for the server-side session, and returns timeout

details of the session.

{

"valid":true,

"sessionUid":"209331b0-6d31-4740-8d5f-740286f6e69f-326295",

"uid":"demo",

"realm":"/"

}

Refresh server-side sessions over REST

$ curl \

--request POST \

--header 'Content-Type: application/json' \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

--data '{ "tokenId": "BXCCq…​NX*1*" }' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=refresh

{

"uid": "demo",

"realm": "/",

"idletime": 17,

"maxidletime": 30,

"maxsessiontime": 120,

"maxtime": 7106

}



24 / 41

https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=refresh
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=refresh
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=refresh
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=refresh

Resetting a server-side session’s idle time triggers a write operation to the Core Token

Service token store. Therefore, to avoid the overhead of write operations to the token

store, be careful to use the refresh action only if you want to reset a server-side

session’s idle time. Because AM does not monitor idle time for client-side sessions, do

not use the tokenId of a client-side session when refreshing a session’s idle time.

To invalidate a session, perform an HTTP POST to the /json/sessions/ endpoint using

the logout action. The endpoint will invalidate the session token provided in the

iPlanetDirectoryPro header:

On success, AM invalidates the session and returns a success message.

If the token is not valid and cannot be invalidated an error message is returned:

To invalidate a different session token, include it in the POST body as the value of the

tokenId parameter.

For example, the following command shows an administrative user passing their session

token in the iPlanetDirectoryPro header, and the session token of the demo user as

the tokenId parameter:

Invalidate sessions over REST

$ curl \

--request POST \

--header "Content-type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=logout

{

"result": "Successfully logged out"

}



{

"result": "Token has expired"

}

$ curl \

--request POST \

--header "Content-type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

--data '{ "tokenId": "BXCCq…​NX*1*" }' \

25 / 41

https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout

AM lets you read and update properties on users' sessions using REST API calls.

Before you can perform operations on session properties using the REST API, you must

first define the properties you want to set in the session property allowlist service

configuration. For information on allowlisting session properties, see Session Property

Whitelist service.

You can use REST API calls for the following purposes:

To retrieve the names of the properties that you can read or update. This is the

same set of properties configured in the Session Property Whitelist Service.

To read property values.

To update property values.

Session state affects the ability to set and delete properties as follows:

You can set and delete properties on a server-side session at any time during the

session’s lifetime.

You can only set and update properties on a client-side session during the

authentication process, before the user receives the session token from AM. For

example, you could set or delete properties on a client-side session from within a

post-authentication plugin.

Differentiate the user who performs the operation on session properties from the

session affected by the operation as follows:

Specify the session token of the user performing the operation on session

properties in the iPlanetDirectoryPro header.

Specify the session token of the user whose session is to be read or modified as the

tokenId parameter in the body of the REST API call.

Omit the tokenId parameter from the body of the REST API call if the session of

the user performing the operation is the same session that you want to read or

modify.

The following examples assume that you configured a property named LoginLocation

in the Session Property Whitelist Service configuration.

"https://openam.example.com:8443/openam/json/realms/root/sessions/

?_action=logout"

{

"result": "Successfully logged out"

}

Get and set session properties using REST

26 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-amsessionpropertywhitelist
file:///home/pptruser/Downloads/build/site/pingam/7.2/reference/global-services-configuration.html#global-amsessionpropertywhitelist

To retrieve the names of the properties you can get or set, and their values, perform an

an HTTP POST to the sessions endpoint, /json/sessions/ , using the

getSessionProperties action:

To set the value of a session property, perform an HTTP POST to the sessions endpoint,

/json/sessions/ , using the updateSessionProperties action. If no tokenId

parameter is present in the body of the REST API call, the session affected by the

operation is the session specified in the iPlanetDirectoryPro header:

You can set multiple properties in a single REST API call by specifying a set of fields and

their values in the JSON data. For example:

To set the value of a session property on another user’s session, specify the session

token of the user performing the updateSessionProperties action in

iPlanetDirectoryPro , and specify the session token to be modified in the POST body

as the value of the tokenId parameter:

$ curl \

--request POST \

--header "Content-type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

--data '{ "tokenId": "BXCCq…​NX*1*" }' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=getSessionProperties

{

"LoginLocation": ""

}



$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

--data '{"LoginLocation":"40.748440, -73.984559"}' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=updateSessionProperties

{

"LoginLocation": "40.748440, -73.984559"

}



--data '{"property1":"value1", "property2":"value2"}'

27 / 41

https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties

If the user attempting to modify the session does not have sufficient access privileges,

the preceding examples result in a 403 Forbidden error.

You cannot set properties internal to AM sessions. If you try to modify an internal

property in a REST API call, a 403 Forbidden error is returned. For example:

For a list of the default session properties, see Session properties.

Sessions can be upgraded to provide access to sensitive resources.

Consider a website for a University. Some resources, such as courses and degree

catalogs, are free for anyone to see and therefore, do not need to be protected. The

University also provides the students with a portal they can use to see their grades. This

portal is protected with a policy that requires users to authenticate. To pay tuition,

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

--data '{"LoginLocation": "40.748440, -73.984559", "tokenId":

"BXCCq…​NX*1*"}' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=updateSessionProperties

{

"LoginLocation": "40.748440, -73.984559"

}



$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQICS…​NzEz*" \

--header "Accept-API-Version: resource=3.1, protocol=1.0" \

--data '{"AuthLevel":"5", "tokenId": "BXCCq…​NX*1*"}' \

https://openam.example.com:8443/openam/json/realms/root/sessions/?

_action=updateSessionProperties

{

"code": 403,

"reason": "Forbidden",

"message": "Forbidden"

}



Session upgrade

28 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-trees.html#session-properties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties

students are required to present additional credentials to increase their authentication

level and gain access to these functions.

Allowing authenticated users to provide additional credentials to access sensitive

resources is called session upgrade. Session upgrade is AM’s mechanism to perform step-

up authentication.

An authenticated user being redirected to a URL that has the ForceAuth

parameter set to true . For example,

https://openam.example.com:8443/openam/XUI/?

realm=/alpha&ForceAuth=true#login

In this case, the user is asked to reauthenticate to the default authentication

service in the alpha realm.

When a new session is created, the old session should no longer be valid. For

client-side sessions, invalidating the old session depends on the value of the

Enable Session Denylisting configuration option. If this option is false (default),

then both the old and new sessions are considered valid after the session

upgrade. If this option is true , the old session is no longer valid

An authenticated user trying to access a resource protected by a web or Java

agent, or a custom policy enforcement point (PEP). In this case, AM sends the

agent or PEP an advice that the user must perform one of the following actions:

Authenticate at an authentication level greater than the current level

Authenticate to a specific service

Authenticate to a specific module

The flow of the session upgrade during policy evaluation is as follows:

1. An authenticated user tries to access a resource.

2. The PEP, for example a web or Java agent, sends the request to AM for an

authorization decision.

3. AM returns an authorization decision that denies access to the resource, and

returns an advice indicating that the user must present additional credentials

to access the resource.

4. The policy enforcement point sends the user back to AM for session

upgrade.

5. The user provides additional credentials. For example, they may provide a

one-time password, swipe their phone screen, or use face recognition.

6. AM authenticates the user.

7. The user can now access the sensitive resource.

What triggers a session upgrade?

Session upgrade outcomes

29 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/sessions-guide/session-state-session-termination.html#session-state-configure-denylist

Successful. AM performs one of the following actions depending on the type of

session configured for the realm:

If the realm is configured for server-side sessions, the resulting action

depends on the mechanism used to perform session upgrade:

When using the ForceAuth parameter:

(Authentication trees only) AM issues new session tokens to users on

reauthentication, even if the current session already meets the

security requirements.

(Authentication chains only) AM does not issue new session tokens

on reauthentication, regardless of the security level they are

authenticating to. Instead, it updates the session token with the

new authentication information, if required.

When using advices, AM copies the session properties to a new session

and hands the client a new session token to replace the original one.

The new session reflects the successful authentication to a higher level.

If the realm is configured for client-side sessions, AM hands the client a new

session token to replace the original one. The new session reflects the

successful authentication to a higher level.

Unsuccessful. AM leaves the user session as it was before the attempt at

stronger authentication. If session upgrade fails because the login page times out,

AM redirects the user’s browser to the success URL from the last successful

authentication.

Configure a policy enforcement point (PEP), for example, a web or Java agent, that

enforces AM policies on a website or application.

AM web and Java agents handle session upgrade without additional configuration

because the agents are built to handle AM’s advices. If you build your own PEPs,

however, you must take advices and session upgrade into consideration.

Web Agents documentation.

Java Agents documentation.

Request policy decisions over REST (For RESTful PEPs).

Anonymous sessions can also be upgraded to non-anonymous sessions by using

the Anonymous Session Upgrade node.

TIP

Session upgrade prerequisites

Resources

30 / 41

file:///web-agents/5.10
file:///java-agents/5.10
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/auth-node-configuration-hints.html#auth-node-anonymous-session-upgrade

Configure an authorization policy to protect a resource protected by the Java or web

agent, or a RESTful PEP.

The following policy allows GET and POST access to the *://*:*/sample/*

resource to any authenticated user:

Figure 2. Authorization Policy Example

1. Configure an authentication tree or chain to validate users' credentials during

session upgrade.

Authentication trees and chains do not require additional configuration to perform

session upgrade. However, because session upgrade is a mechanism that can be

used to grant users access to sensitive information, you should consider configuring

a strong authentication method such as multi-factor authentication. Also, consider

how long-lived sessions in your environment are. For example, if users should only

have access to the protected resource to perform an operation, such as check the

balance of an account, consider implementing transactional authorization instead.

For information about configuring authentication trees and chains, refer to

Authentication and SSO.

2. Configure at least one of the following environment conditions in the authentication

policy that you created as part of the prerequisites:

Example

Configure the environment for session upgrade

Authentication Level (greater than or equal to) (authentication modules only)

31 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/transactional-authorization.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/preface.html

Use this condition to present a list of authentication modules that provide a

greater or equal authentication level to the one specified in the condition. The

user selects their service of choice if multiple services are able to meet the criteria

of the condition. For example, the following policy requires a module that

provides authentication level 3 or greater:

Figure 3. Session upgrade by authentication level

Use this condition to specify the chains or authentication trees to which the user

needs to use to authenticate. For example, the following policy requires the user

to log in with the Example tree:

For more information about configuring the authentication level by

authentication module, refer to Authentication levels for chains.

TIP

Authentication by Service

32 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/about-authentication-modules-and-chains.html#about-authentication-levels

Figure 4. Session upgrade by service

Note that the names of the authentication trees and chains are case-sensitive.

Use this condition to enforce that a user has gone through a specific

authentication module. For example, the following policy requires the user to log

in with the DataStore module:

Figure 5. Session upgrade by module instance

Authentication by Module Instance (authentication modules only)

NOTE

33 / 41

3. Test session upgrade:

To test session upgrade with a browser, refer to Perform session upgrade with

a browser.

To test session upgrade using REST, refer to Perform session upgrade over

REST.

To upgrade a session using a browser, perform the following steps:

1. Ensure you have performed the tasks in Session upgrade prerequisites and

Configure the environment for session upgrade.

2. In a browser, go to your protected resource.

For example, http://www.example.com:9090/sample .

The agent redirects the browser to the AM login screen.

3. Authenticate to AM as the demo user.

AM requires additional credentials to grant access to the resource. For example, if

you set the policy environment condition to Authentication by Service and

Example , you will be required to log in again as the demo user.

4. Authenticate as the demo user.

Note that providing credentials for a different user will fail.

You can now access the protected resource.

To upgrade a session using REST, perform the following steps:

1. Ensure you have performed the tasks in Session upgrade prerequisites and

Configure the environment for session upgrade.

2. Log in with an administrative user that has permission to evaluate policies, such as

amAdmin .

The examples show simple policy conditions. For more information about

configuring policies and environment conditions, refer to Policies.

NOTE

Perform session upgrade with a browser

Perform session upgrade over REST

This example uses composite advice with an authentication level condition,

which only applies to authentication chains.

NOTE

34 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/policies.html

For example:

3. Log in with the user that should access the resources.

For example, log in as the demo user:

4. Request a policy decision from AM for a protected resource, in this case,

http://openam.example.com:9090/sample .

The iPlanetDirectoryPro header sets the SSO token for the administrative user,

and the subject element of the payload sets the SSO token for the demo user:

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: amadmin" \

--header "X-OpenAM-Password: password" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM2…​",

"successUrl":"/openam/console",

"realm":"/alpha"

}

You can also assign privileges to a user to evaluate policies.

TIP

$ curl \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: demo" \

--header "X-OpenAM-Password: Ch4ng31t" \

--header "Accept-API-Version: resource=2.0, protocol=1.0" \

'https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/authenticate'

{

"tokenId":"AQIC5wM…​TU3OQ*",

"successUrl":"/openam/console",

"realm":"/alpha"

}

$ curl --request POST \

--header "Content-Type: application/json" \

35 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/scripted-policy-condition.html#proc-scripted-pol-privilege

AM returns an advice, which means that the user must present additional

credentials to access that resource.

For more information about requesting policy decisions, refer to Request policy

decisions over REST.

5. Format the advice as XML, without spaces or line breaks.

The following example is spaced and tabulated for readability purposes only:

--header "iPlanetDirectoryPro: AQIC5wM2…​" \

--header "Accept-API-Version:protocol=1.0,resource=2.1" \

--data '{

"resources": [

"http://www.example.com:9090/sample"

],

"application": "iPlanetAMWebAgentService",

"subject": { "ssoToken": "AQIC5wM…​TU3OQ*"}

}' \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies?_action=evaluate"

[

{

"resource":"http://www.example.com:9090/sample",

"actions":{

},

"attributes":{

},

"advices":{

"AuthLevelConditionAdvice":[

"3"

]

},

"ttl":9223372036854775807

}

]

<Advices>

<AttributeValuePair>

<Attribute name="AuthLevelConditionAdvice"/>

<Value>3</Value>

</AttributeValuePair>

</Advices>

NOTE

36 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html
file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html

6. URL-encode the XML advice.

For example:

%3CAdvices%3E%3CAttributeValuePair%3E%3CAttribute%20name%3D%22AuthLe

velConditionAdvice%22%2F%3E%3CValue%3E3%3C%2FValue%3E%3C%2FAttribute

ValuePair%3E%3C%2FAdvices%3E .

Ensure there are no spaces between tags when URL-encoding the advice.

7. Call AM’s authenticate endpoint to request information about the advice.

Use the following details:

Add the following URL parameters:

authIndexType=composite_advice

authIndexValue=URL-encoded-Advice

Set the iPlanetDirectoryPro cookie as the SSO token for the demo user.

For example:

The example shows the XML render of a single advice. Depending on the

conditions configured in the policy, the advice may contain several lines. For

more information about advices, refer to Policy decision advice.

NOTE

$ curl --request POST \

--header "Content-Type: application/json" \

--cookie "iPlanetDirectoryPro=AQIC5wM…​TU3OQ*" \

--header "Accept-API-Version: protocol=1.0,resource=2.1" \

'https://openam.example.com:8443/openam/json/realms/root/r

ealms/alpha/authenticate?

authIndexType=composite_advice&authIndexValue=%3CAdvices%3

E%3CAttributeValuePair%3E…​'

{

"authId":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdXRoSW5

kZ…​",

"template":"",

"stage":"DataStore1",

"header":"Sign in",

"callbacks":[

{

"type":"NameCallback",

"output":[

{

"name":"prompt",

"value":"User Name:"

37 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authorization-guide/rest-api-authz-policy-decisions.html#rest-api-authz-policy-decision-advice

AM returns information about how the user can authenticate in a callback; in

this case, providing a username and password. For a list of possible callbacks,

and more information about the /json/authenticate endpoint, refer to

Authenticate over REST.

8. Call AM’s authenticate endpoint to provide the required callback information.

Use the following details:

Add the following URL query parameters:

authIndexType=composite_advice

authIndexValue=URL-encoded-Advice

Set the iPlanetDirectoryPro cookie as the SSO token for the demo user.

Send as data the complete payload AM returned in the previous step, ensuring

you provide the requested callback information.

In this example, provide the username and password for the demo user in the

input objects, as follows:

}

],

"input":[

{

"name":"IDToken1",

"value":""

}

]

},

{

"type":"PasswordCallback",

"output":[

{

"name":"prompt",

"value":"Password:"

}

],

"input":[

{

"name":"IDToken2",

"value":""

}

]

}

]

}

38 / 41

file:///home/pptruser/Downloads/build/site/pingam/7.2/authentication-guide/authn-rest.html

$ curl --request POST \

--header 'Content-Type: application/json' \

--header "Accept-API-Version:

protocol=1.0,resource=2.1" \

--cookie "iPlanetDirectoryPro=AQIC5wM…​TU3OQ*" \

--data '{

"authId":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdXRoSW5

kZ…​",

"template":"",

"stage":"DataStore1",

"header":"Sign in",

"callbacks":[

{

"type":"NameCallback",

"output":[

{

"name":"prompt",

"value":"User Name:"

}

],

"input":[

{

"name":"IDToken1",

"value":"demo"

}

]

},

{

"type":"PasswordCallback",

"output":[

{

"name":"prompt",

"value":"Password:"

}

],

"input":[

{

"name":"IDToken2",

"value":"Ch4ng31t"

}

]

}

]

}

39 / 41

Note that AM returns a new SSO token for the demo user.

9. Request a new policy decision from AM for the protected resource.

The iPlanetDirectoryPro header sets the SSO token for the administrative user,

and the subject element of the payload sets the new SSO token for the demo user:

}' \

'https://openam.example.com:8443/openam/json/realms/root/r

ealms/alpha/authenticate?

authIndexType=composite_advice&authIndexValue=%3CAdvices%3

E%3CAttributeValuePair%3E…​'

{

"tokenId":"wpU01SaTq4X2x…​NDVFMAAlMxAAA.*",

"successUrl":"/openam/console",

"realm":"/alpha"

}

$ curl --request POST \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: AQIC5wM2…​" \

--header "Accept-API-Version:protocol=1.0,resource=2.1" \

--data '{

"resources":[

"http://www.example.com:9090/sample"

],

"application":"iPlanetAMWebAgentService",

"subject":{

"ssoToken":"wpU01SaTq4X2x…​NDVFMAAlMxAAA.*"

}

}' \

"https://openam.example.com:8443/openam/json/realms/root/realm

s/alpha/policies/policies?_action=evaluate"

[

{

"resource":"http://www.example.com:9090/sample",

"actions":{

"POST":true,

"GET":true

},

"attributes":{

},

"advices":{

40 / 41

AM returns that demo can perform POST and GET operations on the resource.

Was this helpful?

Copyright © 2010-2025 ForgeRock, all rights reserved.

},

"ttl":9223372036854775807

}

]

41 / 41

