
OAuth 2.0 Guide
/ ForgeRock Access Management 7.0.2

Latest update: 7.0.2

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2021 ForgeRock AS.

Abstract

Guide showing you how to use OAuth 2.0 with ForgeRock® Access Management (AM).
ForgeRock Access Management provides intelligent authentication, authorization,
federation, and single sign-on functionality.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... v
1. AM as the Authorization Server .. 1

About Token Storage Location .. 4
2. AM as Client and Resource Server .. 8

Configuring AM as an Authorization Server and Client .. 9
3. Authorization Server Configuration ... 16

Configuring AM for Client-Based OAuth 2.0 Tokens ... 20
4. About Scopes .. 26

Customizing OAuth 2.0 Scope Handling .. 28
5. About Consent ... 35

Allowing Clients To Skip Consent .. 35
Allowing the OAuth 2.0 Provider to Save Consent ... 36
Allowing Users to Revoke Consent .. 37

6. The Remote Consent Service ... 39
7. Client Registration .. 55
8. OAuth 2.0 Client Authentication .. 76

Authenticating Clients Using Form Parameters ... 76
Authenticating Clients Using Authorization Headers .. 77
Authenticating Clients Using JWT Profiles ... 77
Authenticating Clients Using Mutual TLS .. 81

9. Proof-of-Possession .. 88
JWK-Based Proof-of-Possession .. 88
Certificate-Bound Proof-of-Possession .. 93

10. Refresh Tokens .. 103
11. Macaroons as Access and Refresh Tokens ... 106

Appending Caveats to Macaroons .. 108
Using OAuth 2.0 Endpoints with Macaroons .. 108
Macaroons and CTS-Based and Client-Based Tokens ... 108
Enabling Macaroons .. 108

12. OAuth 2.0 Grant Flows .. 110
Authorization Code Grant .. 112
Authorization Code Grant with PKCE .. 119
Implicit Grant .. 128
Resource Owner Password Credentials Grant .. 134
Client Credentials Grant .. 138
Device Flow ... 140
SAML v2.0 Profile for Authorization Grant .. 150
JWT Profile for OAuth 2.0 Authorization Grant .. 153

13. OAuth 2.0 Endpoints ... 159
/oauth2/authorize ... 159
/oauth2/bc-authorize .. 165
/oauth2/access_token ... 168
/oauth2/device/code ... 171
/oauth2/device/user .. 174

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iv

/oauth2/token/revoke ... 175
/oauth2/introspect .. 176
/json/token/macaroon ... 180
Legacy OAuth 2.0 endpoints .. 181

14. OAuth 2.0 Administration and Supporting REST Endpoints 189
/realm-config/agents/OAuth2Client ... 189
/users/user/oauth2/resources/sets .. 192
/users/user/oauth2/applications .. 193

15. Modifying the Content of Access Tokens ... 195
Preparing AM to Modify Access Tokens ... 196
Trying the Default Access Token Modification Script ... 198

Glossary ... 201

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. v

Overview
This guide covers concepts, configuration, and usage procedures for working with OAuth 2.0 and
ForgeRock Access Management.

Quick Start

AM as the Authorization Server

Learn about OAuth 2.0 and how
AM can take the role of the

authorization server, what is
supported, and the particulars

of AM's implementation.

Configure AM as an
authorization server

Configure AM as an OAuth
2.0 authorization server.

OAuth 2.0 Grant Flows

Discover the OAuth 2.0 flows and
how to implement them in AM.

OAuth 2.0 Endpoints

Learn about the different
endpoints AM exposes as an

OAuth 2.0 authorization server.

OAuth 2.0 Consent

Allow OAuth 2.0 clients to
skip consent, and users to
save and revoke consent.

OAuth 2.0 Scopes

Learn what scopes are, how to
configure them in AM, and how to
create a custom scope validator
tailored to your environment.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

AM as the Authorization Server

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 1

Chapter 1

AM as the Authorization Server
In the role of the authorization server, AM authenticates resource owners and obtains their
authorization in order to return access tokens to clients.

+ OAuth 2.0 Concepts

RFC 6749, The OAuth 2.0 Authorization Framework lets a third-party application obtain limited
access to a resource (usually user data), either on behalf of the resource owner, or in the
application's own behalf.

The main actors in the OAuth 2.0 authorization framework are the following:

OAuth 2.0 Framework Actors

Actor Description
Resource Owner (RO) The owner of the resources. For example, a user that has several photos stored in

a photo-sharing service.

The resource owner uses a user-agent, usually a web-browser, to communicate
with the client.

Client The third-party application that wants to obtain access to the resources. The client
makes requests on behalf of the resource owner and with their authorization. For
example, a printing service that needs to access the resource owner's photos to
print them.

AM can act as a client.
Authorization Server (AS) The authorization service that authenticates the resource owner and/or the client,

issues access tokens to the client, and tracks their validity. Access tokens prove
that the resource owner authorizes the client to act on their behalf over specific
resources during a limited amount of time.

AM can act as the authorization server.
Resource Server (RS) The service hosting the protected resources. For example, a photo-sharing

service. The resource server must be able to validate the tokens issued by the
authorization server.

A website protected by a web or a Java agent can act as the resource server.

The following sequence diagram demonstrates the basic OAuth 2.0 flow:

https://www.rfc-editor.org/info/rfc6749

AM as the Authorization Server

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 2

OAuth 2.0 Protocol Flow

Resource Owner

Resource Owner

Client

Client

Authorizat ion Server

Authorizat ion Server

Resource Server

Resource Server

1) Authorizat ion request

2) Authorizat ion grant

3) Authorizat ion grant

4) Access token

5) Access token

6) Protected resource

Before configuring OAuth 2.0 in your environment, ensure you are familiar with the OAuth 2.0
authorization framework and the RFCs, Internet-Drafts, and standards in the Reference that AM
supports relating to OAuth 2.0.

When using AM as the authorization server, you can register confidential or public clients in the AM
console, or clients can register themselves with AM dynamically. For more information, see "Client
Registration".

As the authorization server, AM supports the following:

Grant Types

• Authorization Code

• Implicit

• Resource Owner Password Credentials

• Client Credentials

• Device Flow

• SAML v2.0 Profile for Authorization Grant

• JWT Profile for OAuth 2.0 Authorization Grants

For more information, see "OAuth 2.0 Grant Flows".

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749

AM as the Authorization Server

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 3

Client Authentication Standards

• JWT Profile for OAuth 2.0 Client Authentication

• Mutual TLS

For more information, see "OAuth 2.0 Client Authentication".

Other OAuth 2.0 Standards

• JWT Proof-of-Possession

For more information, see "JWK-Based Proof-of-Possession".

• Certificate-based Proof-of-Possesion

For more information, see "Certificate-Bound Proof-of-Possession".

• User Managed Access (UMA) 2.0

For more information, see the ForgeRock Access Management UMA 2.0 Guide.

• OpenID Connect

For more information, see the ForgeRock Access Management OpenID Connect 1.0 Guide.

Tip

See the complete list with links to RFCs and Internet drafts in the Reference.

Moreover, AM as an authorization server supports the following capabilities:

• Remote consent services, which allows the consent-gathering part of an OAuth 2.0 flow to be
handed off to a separate service.

For more information, see "The Remote Consent Service".

• Dynamic Scopes, which allows customization of how scopes are granted to the client regardless of
the grant flow used. You can configure AM to grant scopes statically or dynamically:

• Statically (Default). You configure several OAuth 2.0 clients with different subsets of scopes and
resource owners are redirected to a specific client depending on the scopes required. As long
as the resource owner can authenticate and the client can deliver the same or a subset of the
requested scopes, AM issues the token with the scopes requested. Therefore, two different users
requesting scopes A and B to the same client will always receive scopes A and B.

• Dynamically. You configure an OAuth 2.0 client with a comprehensive list of scopes and resource
owners authenticate against it. When AM receives a request for scopes, AM's Authorization
Service grants or denies access scopes dynamically by evaluating authorization policies at

AM as the Authorization Server
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 4

runtime. Therefore, two different users requesting scopes A and B to the same client can receive
different scopes based on policy conditions.

For more information about granting scopes dynamically, see "About Authorization and Policy
Decisions" and "Dynamic OAuth 2.0 Authorization" in the Authorization Guide.

Security Considerations

OAuth 2.0 messages involve credentials and access tokens that allow the bearer to retrieve protected
resources. Therefore, do not let an attacker capture requests or responses. Protect the messages
going across the network.

RFC 6749 includes a number of Security Considerations, and also requires Transport Layer
Security (TLS) to protect sensitive messages. Make sure you read the section covering Security
Considerations, and that you can implement them in your deployment.

Also, especially when deploying a mix of other clients and resource servers, take into account the
points covered in the Internet-Draft, OAuth 2.0 Threat Model and Security Considerations, before
putting your service into production.

OAuth 2.0 Sample Mobile Applications

To try the capabilities of AM as an authorization server, you can download the sample mobile
application.

For access to the source code, see How do I access and build the sample code provided for AM (All
versions)? in the ForgeRock Knowledge Base.

Related information:

• "About Token Storage Location"

About Token Storage Location
AM OAuth 2.0-related services are stateless unless otherwise indicated; they do not hold any token
information local to the AM instances. Instead, they either store the OAuth 2.0/OpenID Connect
tokens in the CTS token store, or present them to the client. This architecture lets you scale your AM
infrastructure horizontally, since any server in the deployment can satisfy any token request.

OAuth 2.0 token storage location is a property of the OAuth 2.0 service, which is configured by realm.
You can configure each realm to store tokens in the CTS token store, or to hand the tokens to the
clients as required.

Both CTS-based and client-based token configurations support all OAuth 2.0 features present in
AM. Before you decide to keep CTS-based tokens or to configure client-based tokens, consider the
information in the following list:

https://www.rfc-editor.org/rfc/rfc6749.html#section-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel
https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

AM as the Authorization Server
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 5

CTS-Based OAuth 2.0 tokens (previously referred to as stateful tokens)

• The CTS token store is the authoritative source for the tokens. AM returns to the client a
reference to the token, but that reference does not contain any of the token information. In the
following example, the reference is stored in the access_token property:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

• CTS-based tokens are configured by default for all realms.

• Clients cannot access the tokens other than to introspect them, making tokens less vulnerable
to tampering attacks.

• AM does not cache CTS-based tokens in memory. Therefore, every time a client presents a
token ID in a request, AM checks if the token exists in the CTS token store (in case it has been
revoked) and, if available, retrieves its information.

Reading from and writing to the CTS token store incurs overhead for the CTS DS instances.

• If you need to add an additional layer of security for the stored tokens, consider one of the
following alternatives:

• Configure AM to encrypt the tokens before storing them in the CTS token store.

• Configure DS to encrypt the CTS token store data.

For more information about both options, see "Managing CTS Tokens" in the Core Token
Service Guide (CTS).

• Tokens can only be introspected using a call to the authorization server.

Client-Based OAuth 2.0 tokens (previously referred to as stateless tokens)

• AM returns the token to the client after successfully completing one of the grant flows. In the
following example, the token is stored in the access_token property:
{
 "access_token":"eyJ0eXAiOiJKV1QiLOT05FIiwiYWxnQY1lIjoxNTM5MDEzMzYyLsbSI6Ii8iLCj....",
 "scope":"write",
 "token_type":"Bearer",
 "expires_in":3599
}

A decoded access token produces JSON structures similar to the following:

AM as the Authorization Server
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 6

{
 typ: "JWT",
 zip: "NONE",
 alg: "HS256"
}
{
 sub: "myClient",
 cts: "OAUTH2_STATELESS_GRANT",
 auditTrackingId: "f20f4099-5248-4399-a7f0-2d54d4020099-108676",
 iss: "https://openam.example.com:8443/openam/oauth2",
 tokenName: "access_token",
 token_type: "Bearer",
 authGrantId: "1LUgI8zcDWqcfEnnLdZDnNqA2wc",
 aud: "myClient",
 nbf: 1539075967,
 grant_type: "client_credentials",
 scope: [
 "write"
],
 auth_time: 1539075967,
 realm: "/",
 exp: 1539079567,
 iat: 1539075967,
 expires_in: 3600,
 jti: "FTQT6eZkDhm6PHEaSthORoTLB80"
}
[signature]

• Token size may be a concern if tokens need to be sent in a header, since they are larger than
the token reference returned for CTS-based tokens.

The size of the client-based tokens also increases when you customize AM to store additional
attributes in the tokens. You are responsible for ensuring that the size of the token does not
exceed the maximum header size allowed by your end users' browsers.

• Can be configured by realm.

• Tokens are presented to the client after successfully completing an OAuth 2.0 grant flow.
Therefore, tokens are vulnerable to tampering attacks and you should configure AM to sign and
encrypt them.

• AM does not store the decrypt sequence of the token in memory, so decrypting and verifying
tokens incurs overhead for the AM instances.

• Token blacklisting is a feature that maintains a list of revoked tokens and authorization codes
stored in the CTS token store. This feature protects against replay attacks, and it is always
enabled for client-based tokens.

Every time a client presents a client-based token in a request, AM checks in the CTS token
store if the token has been blacklisted (revoked). If it has not, then AM decrypts it to retrieve its
information.

AM as the Authorization Server
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 7

Note

Client-based refresh tokens have corresponding entries in a CTS whitelist, rather than a blacklist.
When presenting a client-based refresh token, AM will check that a matching entry is found in the CTS
whitelist, and prevent reissue if the record does not exist.

Adding a client-based OAuth 2.0 token to the blacklist will also remove associated refresh tokens from
the whitelist.

• Clients can introspect the tokens without calling the authorization server. This can be
advantageous in global deployments where keeping the CTS token store replication in sync fast
enough to serve clients at any time by any server proves difficult.

For more information about configuring client-based OAuth 2.0, see "Configuring AM for Client-
Based OAuth 2.0 Tokens".

AM as Client and Resource Server

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 8

Chapter 2

AM as Client and Resource Server
When AM functions as an OAuth 2.0 client, it provides an session after successfully authenticating
the resource owner and obtaining authorization. This means the client can then access resources
protected by agents.

To configure AM as an OAuth 2.0 client, use OAuth 2.0/OpenID Connect nodes or modules as part of
the authentication journey.

The following sequence diagram shows how the client gains access to protected resources in the
scenario where AM functions as both authorization server and client:

OAuth 2.0 Client and Authorization Server

Resource Owner
User- Agent

Resource Owner
User- Agent

Client
AM OAuth 2.0 Auth Module

Client
AM OAuth 2.0 Auth Module

Authorizat ion Server

Authorizat ion Server

Resource Server
Protected with AM Agent

Resource Server
Protected with AM Agent

1) Redirect...

2) ...to AM OAuth 2.0 authorizat ion server

3) Authent icate, and confirm authorizat ion grant

4) Redirect...

5) ...with authorizat ion code to redirect_uri

6) Authent icate, request access token with
authorizat ion code, redirect_uri

7) If authorizat ion code is valid, return access token

8) Request user profile information with access token

9) If configured, map user to local ident ity

10) Redirect...

11) ...with SSO token to protected resource

12) If authorized by AM (not shown), return protected resource

As the OAuth 2.0 client functionality is implemented as an AM authentication module or nodes, you
do not need to deploy your own resource server implementation when using AM as an OAuth 2.0
client. Use web or Java agents or IG to protect resources.

AM as Client and Resource Server
Configuring AM as an Authorization Server and Client

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 9

Using Your Own Client and Resource Server

AM returns bearer tokens as described in RFC 6750, The OAuth 2.0 Authorization Framework:
Bearer Token Usage. Notice in the following example JSON response to an access token request that
AM returns a refresh token with the access token. The client can use the refresh token to get a new
access token as described in RFC 6749:
{
 "expires_in": 599,
 "token_type": "Bearer",
 "refresh_token": "f6dcf133-f00b-4943-a8d4-ee939fc1bf29",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
}

In addition to implementing your client, the resource server must also implement the logic for
handling access tokens. The resource server can use the /oauth2/introspect endpoint to determine
whether the access token is still valid, and to retrieve the scopes associated with the access token.
For an example of the values returned by the endpoint, see "/oauth2/introspect".

AM is designed to let you plug in your own scopes implementation if the default implementation does
not do what your deployment requires. See "Customizing OAuth 2.0 Scope Handling" for an example.

Related information:

• "Social Authentication" in the Authentication and Single Sign-On Guide

• "Configuring AM as an Authorization Server and Client"

Configuring AM as an Authorization Server and Client
This section takes a high-level look at how to set up AM both as an OAuth 2.0 authorization server
and also as an OAuth 2.0 client, in order to protect resources on a resource server by using an AM
web agent.

https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750

AM as Client and Resource Server
Configuring AM as an Authorization Server and Client

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 10

Authorization Server, Client, and Resource Server

The example in this section uses three servers, http://authz.example.com:8080/openam as the OAuth 2.0
authorization server, http://client.example.com:8080/openam as the OAuth 2.0 client, which also handles
policy, http://www.example.com:8080/ as the OAuth 2.0 resource server protected with an AM web agent
where the resources to protect are deployed in Apache Tomcat. The two AM servers communicate
using OAuth 2.0. The web agent on the resource server communicates with AM as agents normally
do, using AM specific requests. The resource server in this example does not need to support OAuth
2.0.

The high-level configuration steps are as follows:

1. On the AM server that you will configure to act as an OAuth 2.0 client, configure an agent profile,
and the policy used to protect the resources.

On the web server or application container that will act as an OAuth 2.0 resource server, install
and configure an AM web agent.

Make sure that you can access the resources when you log in through an authentication module
that you know is working, such as the default DataStore authentication module.

In this example, you would try to access http://www.example.com:8080/examples/. The web agent
should redirect you to the AM login page. After you log in successfully as a user with access rights
to the resource, AM should redirect you back to http://www.example.com:8080/examples/, and the web
agent should allow access.

AM as Client and Resource Server
Example: Protecting a Web Site With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 11

Fix any problems you have in accessing the resources before you try to set up access through an
OAuth 2.0 or OpenID Connect authentication module.

2. Configure one AM server as an OAuth 2.0 authorization service, which is described in
"Authorization Server Configuration".

3. Configure the other AM server, the one with the agent profile and policy, as an OAuth 2.0 client,
by setting up an OAuth 2.0 or OpenID Connect authentication module according to "Social
Authentication Modules" in the Authentication and Single Sign-On Guide.

4. On the authorization server, register the OAuth 2.0 or OpenID Connect authentication module as
an OAuth 2.0 client, which is described in "Client Registration".

5. Log out and access the protected resources to see the process in action.

Example: Protecting a Web Site With OAuth 2.0
This example pulls everything together (except security considerations), using AM servers both as the
OAuth 2.0 authorization server, and also as the OAuth 2.0 client, with an AM web or Java agent on
the resource server requesting policy decisions from AM as OAuth 2.0 client. In this way, any server
protected by an agent that is connected to an AM OAuth 2.0 client can act as an OAuth 2.0 resource
server:

1. On the AM server that will be configured as an OAuth 2.0 client, set up an AM web or Java agent
and policy in the Top Level Realm, /, to protect resources.

See the ForgeRock Web Agents User Guide or the ForgeRock Java Agents User Guide for
instructions on installing an agent. This example relies on the Tomcat Java agent, configured to
protect resources in Apache Tomcat (Tomcat) at http://www.example.com:8080/.

The policies for this example protect the Tomcat examples under http://www.example.com:8080/
examples/, allowing GET and POST operations by all authenticated users. For more information,
see "Dynamic OAuth 2.0 Authorization" in the Authorization Guide.

After setting up the web or Java agent and the policy, you can make sure everything is working by
attempting to access a protected resource, in this case, http://www.example.com:8080/examples/. The
agent should redirect you to AM to authenticate with the default authentication module, where
you can login as user demo password Ch4ng31t. After successful authentication, AM redirects your
browser back to the protected resource and the Java agent lets you get the protected resource, in
this case, the Tomcat examples top page.

Accessing the Apache Tomcat Examples

https://backstage.forgerock.com/docs/openam-web-policy-agents/5.5/web-agents-guide/
https://backstage.forgerock.com/docs/openam-jee-policy-agents/5.5/java-agents-guide/

AM as Client and Resource Server
Example: Protecting a Web Site With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 12

2. On the AM server to be configured as an OAuth 2.0 authorization server, configure AM's OAuth
2.0 authorization service as described in "Authorization Server Configuration".

The authorization endpoint to protect in this example is at http://authz.example.com:8080/openam/
oauth2/realms/root/authorize.

3. On the AM server to be configured as an OAuth 2.0 client, configure an AM OAuth 2.0 or OpenID
Connect social authentication module instance for the Top Level Realm:

Under Realms > Top Level Realm > Authentication > Modules, click Add Module. Name
the module OAuth2, and select the Social Auth OAuth2 type, then click Create. The module
configuration page appears. This page offers numerous options. The key settings for this example
are the following:

Client Id

This is the client identifier used to register your client with AM's authorization server, and
then used when your client must authenticate to AM.

Set this to myClientID for this example.

Client Secret

This is the client password used to register your client with AM's authorization server, and
then used when your client must authenticate to AM.

Set this to password for this example. Make sure you use strong passwords when you actually
deploy OAuth 2.0.

Authentication Endpoint URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/authorize.

This AM endpoint can take additional parameters. In particular, you must specify the realm if
the AM OAuth 2.0 provider is configured for a subrealm rather than for the Top Level Realm.

When making a REST API call, specify the realm in the path component of the endpoint. You
must specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each
realm in the hierarchy with the realms/ keyword. For example /realms/root/realms/customers/
realms/europe.

For example, if the OAuth 2.0 provider is configured for the realm customers within the Top
Level Realm, then use the following URL: http://authz.example.com:8080/openam/oauth2/realms/
root/realms/customers/authorize.

The /oauth2/authorize endpoint can also take module and service parameters. Use either as
described in "Authenticating (Browser)" in the Authentication and Single Sign-On Guide,
where module specifies the authentication module instance to use or service specifies the
authentication chain to use when authenticating the resource owner.

AM as Client and Resource Server
Example: Protecting a Web Site With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 13

Access Token Endpoint URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/access_token.

This AM endpoint can take additional parameters. In particular, you must specify the realm if
the AM OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm (/).

When making a REST API call, specify the realm in the path component of the endpoint. You
must specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each
realm in the hierarchy with the realms/ keyword. For example /realms/root/realms/customers/
realms/europe.

For example, if the OAuth 2.0 provider is configured for the realm /customers, then use the
following URL: http://authz.example.com:8080/openam/oauth2/realms/root/realms/customers/access_
token.

User Profile Service URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/tokeninfo.

Scope

In this example, cn.

The demo user has common name demo by default, so by setting this to cn|Read your user name,
AM can get the value of the attribute without the need to create additional identities, or to
update existing identities. The description, Read your user name, is shown to the resource owner
in the consent page.

Subject Property

In this example, cn.

Proxy URL

The client redirect URL, which in this example is http://client.example.com:8080/openam/oauth2c/
OAuthProxy.jsp.

Account Mapper

In this example, org.forgerock.openam.authentication.modules.common.mapping.JsonAttributeMapper.

Account Mapper Configuration

In this example, cn=cn.

Attribute Mapper

In this example, org.forgerock.openam.authentication.modules.common.mapping.JsonAttributeMapper.

AM as Client and Resource Server
Example: Protecting a Web Site With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 14

Attribute Mapper Configuration

In this example, cn=cn.

Create account if it does not exist

In this example, disable this functionality.

AM can create local accounts based on the account information returned by the authorization
server.

4. On the AM server configured to act as an OAuth 2.0 authorization server, register the Social Auth
OAuth2 authentication module as an OAuth 2.0 confidential client, which is described in "Client
Registration".

Under Realms > Top Level Realm > Applications > OAuth 2.0 > myClientID, adjust the following
settings:

Client type

In this example, confidential. AM protects its credentials as an OAuth 2.0 client.

Redirection URIs

In this example, http://client.example.com:8080/openam/oauth2c/OAuthProxy.jsp.

Scopes

In this example, cn.

5. Before you try it out, on the AM server configured to act as an OAuth 2.0 client, you must make
the following additional change to the configuration.

Your AM OAuth 2.0 client authentication module is not part of the default chain, and therefore AM
does not call it unless you specifically request the OAuth 2.0 client authentication module.

To cause the Java agent to request your OAuth 2.0 client authentication module explicitly,
navigate to your agent profile configuration, in this case Realms > Top Level Realm >
Applications > Agents > Java > Agent Name > AM Services > AM Login URL, and add http://
client.example.com:8080/openam/XUI/?realm=/&module=OAuth2, moving it to the top of the list.

Save your work.

This ensures that the Java agent directs the resource owner to AM with the instructions to
authenticate using the OAuth2 authentication module.

6. Try it out.

First, make sure you are logged out of AM. For example, by browsing to the logout URL, in this
case http://client.example.com:8080/openam/XUI/?realm=/#logout.

AM as Client and Resource Server
Example: Protecting a Web Site With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 15

Next attempt to access the protected resource, in this case http://www.example.com:8080/examples/.

If everything is set up properly, the Java agent redirects your browser to the login page of AM
with module=OAuth2 among other query string parameters. After you authenticate (for example, as
user demo, password Ch4ng31t), AM displays an authorization decision page.

Presenting Authorization Decision Page to Resource Owner

When you click Allow, the authorization service creates an SSO session, and redirects the client
back to the resource, thus letting the client access the protected resource. If you configured
an attribute on which to store the saved consent decision, and you choose to save the consent
decision for this authorization, then AM can use that saved decision to avoid prompting you
for authorization next time the client accesses the resource, but only ensure that you have
authenticated and have a valid session.

Successfully Accessing the Apache Tomcat Examples

Authorization Server Configuration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 16

Chapter 3

Authorization Server Configuration
Configure the OAuth2 Provider Service in a realm to expose the endpoints specified in "OAuth 2.0
Endpoints" and "OAuth 2.0 Administration and Supporting REST Endpoints".

To Configure the OAuth 2.0 Provider Service

1. In the AM console, go to Realms > Realm Name > Services, and click on the Add a Service
button.

2. From the drop-down menu, select the OAuth2 Provider service. Then, click the Create button
without filling any other field.

The OAuth 2.0 provider page appears.

3. Go to the Advanced tab.

4. Configure the Grant Types that clients will be able to use to request access, refresh, and ID
tokens.

+ Grant Types Reference

Implicit
SAML2
Refresh Token
Resource Owner Password Credentials
Client Credentials
Device Code
Authorization Code
Back Channel Request
UMA
JWT Bearer

Related information:

• "OAuth 2.0 Grant Flows"

• "OpenID Connect Grant Flows" in the OpenID Connect 1.0 Guide

Authorization Server Configuration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 17

• "The UMA Grant Flow" in the User-Managed Access (UMA) 2.0 Guide

5. Configure the Response Type Plugins you need in your environment based on the grant type flows
you will allow in your environment. Response plugins let the provider issue access tokens, ID
tokens, authorization codes, device codes, and others.

+ Response Type Plugin Reference

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
id_token|org.forgerock.openidconnect.IdTokenResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler
none|org.forgerock.oauth2.core.NoneResponseTypeHandler

• The id_token and none response types are used in OpenID Connect flows.

• The code response type is used in the authorization code grant flow.

• The device_code response type is used in the device grant flow.

• The token response type is used by all flows to issue access and refresh tokens.

6. (Optional) For configuration options, see "Additional Configuration".

Additional Configuration

The OAuth 2.0 provider is highly configurable:

• To access the OAuth 2.0 provider configuration in the AM console, navigate to Realms > Realm
Name > Services, and then select OAuth2 Provider.

• To adjust global defaults, in the AM console navigate to Configure > Global Services, and then click
OAuth2 Provider.

See the "OAuth2 Provider" in the Reference reference section for details on each of the fields in the
provider.

OAuth 2.0 Provider Configuration Options

Task Resources
Configure the authorization server to issue refresh tokens

Learn why refresh tokens are useful in your environment, how to
configure AM to issue them, and how to request them.

"Refresh Tokens"

Adjust the lifetimes of tokens and codes N/A.

Authorization Server Configuration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 18

Task Resources
If necessary, adjust the lifetimes for authorization codes (a
lifetime of 10 minutes or less is recommended in RFC 6749),
access tokens, and refresh tokens.

Configure them on the Core tab of the provider.
Configure a custom scope validator implementation

Keep the default scope implementation, whereby scopes are
taken to be resource owner profile attribute names, unless you
have a custom scope validator implementation.

If you have a custom scope validator implementation, copy it
to the AM classpath (for example, /path/to/tomcat/webapps/
openam/WEB-INF/lib/) and specify the class name in the Scope
Implementation Class field.

"Customizing OAuth 2.0 Scope Handling"

Configure the OAuth 2.0 service to provide scopes dynamically

The OAuth 2.0 provider can leverage the AM Authorization
service to grant or deny scopes dynamically.

"Dynamic OAuth 2.0 Authorization" in the
Authorization Guide

Configure a custom response plugin

To configure a custom response type plugin, put it on the AM
classpath, and then add the custom response types and the
plugin class names to the list of Response Type Plugins field, on
the Advanced tab.

N/A

Decide how scopes appear in the consent pages

To change how scopes appear, configure the Client Registration
Scope Whitelist field on the Advanced tab of the OAuth 2.0
provider.

Scopes may be entered as simple strings or pipe-separated
strings representing the internal scope name, locale, and
localized description. For example: read|en|Permission to view
 email messages in your account.

"About Scopes"

Decide how to manage consent

You can:

• Allow users to save consent so the OAuth 2.0 provider
remembers their consented scopes.

• Allow clients to skip consent so no consent page is displayed to
the resource owners.

• Allow clients to revoke consent.

"About Consent"

Configure a remote consent server "The Remote Consent Service"

https://www.rfc-editor.org/rfc/rfc6749.html#section-4.1.2

Authorization Server Configuration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 19

Task Resources
This is useful, for example, when your environment must hand off
the consent-gathering part of the OAuth 2.0 flows to a separate
service.
Configure the attribute AM uses to retrieve the user profile

This is useful, for example, in cases where the resource
owner should log in with their email address instead of with a
username.

"To Change the Attribute Used to Retrieve
the User Profile"

Configure client-based tokens

Configure client-based tokens so that clients can directly
introspect the tokens without making a call to AM.

"Configuring AM for Client-Based OAuth
2.0 Tokens"

Configure OpenID-Connect specific options

UMA providers also use these options.

"OpenID Provider Configuration" in the
OpenID Connect 1.0 Guide

To Change the Attribute Used to Retrieve the User Profile

If you use an external identity repository where resource owners log in not with their user ID, but
instead with their mail address or some other profile attribute, you must configure AM authentication
to allow it.

For example, to configure AM so OAuth 2.0 resource owners can log in using their email address,
stored on the LDAP profile attribute, mail, perform the following steps:

1. On the OAuth2 provider Advanced tab, add the LDAP profile attribute to the User Profile
Attribute(s) the Resource Owner is Authenticated On list, and save your changes.

2. Navigate to Realms > Realm Name > Identity Stores > Identity Store Name > Authentication
Configuration.

3. Set the value of the Authentication Naming Attribute field to the LDAP attribute required. For
example, mail.

4. Create an LDAP authentication module or an LDAP decision node to use with the identity
repository.

In both cases, configure the following fields:

a. In the Attribute Used to Retrieve User Profile field, set the attribute to mail.

b. In the Attributes Used to Search for a User to be Authenticated list, add the mail attribute.

c. Save your changes.

5. Ensure the resource owners use the authentication tree or chain where you configured the LDAP
module or node.

Authorization Server Configuration
Configuring AM for Client-Based OAuth 2.0 Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 20

Specify the chain or tree by using one or more of the methods below. AM checks for the
configured value in the following order, using the first value found:

1. For a specific access token REST request.

Set the auth_chain parameter.

2. Individually for a realm, overriding the realm-level setting below.

Navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced, and set the
Password Grant Authentication Service property.

3. Individually for a realm.

Navigate to Realms > Realm Name > Authentication > Settings > Core, and set the
Organization Authentication Configuration property.

4. Globally, for all realms.

Navigate to Configure > Authentication > Core Attributes > Core, and set the Organization
Authentication Configuration property.

For more information, see Configure Sensible Default Authentication Services in the Security
Guide.

For more information about authentication trees and chains, see "Configuring AM for
Authentication" in the Authentication and Single Sign-On Guide.

Configuring AM for Client-Based OAuth 2.0 Tokens
When configured for client-based tokens, AM returns a token (instead of the token reference it
returns when configured for CTS-based tokens) to the client after successfully completing one of
the grant flows. For more information about client-based and CTS-based tokens, see "About Token
Storage Location".

To configure client-based tokens, perform the following tasks:

• Enable client-based tokens

• Configure client-based token blacklisting

• Configure AM to encrypt client-based tokens

• Configure AM to sign client-based tokens

Authorization Server Configuration
Enabling Client-Based OAuth 2.0 Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 21

Enabling Client-Based OAuth 2.0 Tokens

Perform the steps in the following procedure to configure AM to issue client-based access and refresh
tokens:

To Enable Client-Based OAuth 2.0 Tokens

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Realms > Realm Name > Services > OAuth2 Provider.

3. On the Core tab, enable Use Client-Based Access & Refresh Tokens.

4. (Optional) Enable Issue Refresh Tokens and/or Issue Refresh Tokens on Refreshing Access
Tokens.

5. Save your changes.

6. Configure client-based token blacklisting. For more information, see "Configuring Client-Based
OAuth 2.0 Token Blacklisting".

7. Configure either client-based token signature or client-based token encryption.

Token signature is enabled by default when client-based tokens are enabled. By default, token
signature is configured using a demo key that you must change in production environments.
Enabling token encryption disables token signing as encryption is performed using direct
symmetric encryption.

For more information, see "Configuring Client-Based OAuth 2.0 Token Encryption" and
"Configuring Client-Based OAuth 2.0 Token Digital Signatures".

Client-based access and refresh tokens are ready for use.

Configuring Client-Based OAuth 2.0 Token Blacklisting

AM provides a blacklisting feature that prevents client-based tokens from being reused if the
authorization code has been replayed or tokens have been revoked by either the client or resource
owner.

Note

Client-based refresh tokens have corresponding entries in a CTS whitelist, rather than a blacklist. When
presenting a client-based refresh token AM will check that a matching entry is found in the CTS whitelist, and
prevent reissue if the record does not exist.

Authorization Server Configuration
Configuring Client-Based OAuth 2.0 Token Blacklisting

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 22

Adding a client-based OAuth 2.0 token to the blacklist will also remove associated refresh tokens from the
whitelist.

To Configure Client-Based OAuth 2.0 Token Blacklisting

Perform the following steps to configure client-based token blacklisting:

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Configure > Global Services > Global > OAuth2 Provider.

3. Under Global Attributes, enter the number of blacklisted tokens in the Token Blacklisting Cache
Size field.

Token Blacklisting Cache Size determines the number of blacklisted tokens to cache in memory
to speed up blacklist checks. You can enter a number based on the estimated number of
token revocations that a client will issue (for example, when the user gives up access or an
administrator revokes a client's access).

Default: 10000

4. In the Blacklist Poll Interval field, enter the interval in seconds for AM to check for token blacklist
changes from the CTS data store.

The longer the polling interval, the more time a malicious user has to connect to other AM
servers in a cluster and make use of a stolen OAuth v2.0 access token. Shortening the polling
interval improves the security for revoked tokens but might incur a minimal decrease in overall
AM performance due to increased network activity.

Default: 60 seconds

5. In the Blacklist Purge Delay field, enter the length of time in minutes that blacklist tokens can
exist before being purged beyond their expiration time.

When client-based token blacklisting is enabled, AM tracks OAuth v2.0 access tokens over the
configured lifetime of those tokens plus the blacklist purge delay. For example, if the access
token lifetime is set to 6000 seconds and the blacklist purge delay is one minute, then AM tracks
the access token for 101 minutes. You can increase the blacklist purge delay if you expect system
clock skews in an AM server cluster to be greater than one minute. There is no need to increase
the blacklist purge delay for servers running a clock synchronization protocol, such as Network
Time Protocol.

Default: 1 minute

6. Click Save to apply your changes.

Authorization Server Configuration
Configuring Client-Based OAuth 2.0 Token Encryption

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 23

Configuring Client-Based OAuth 2.0 Token Encryption

To protect OAuth 2.0 client-based access and refresh tokens, AM supports encrypting their JWTs
using AES authenticated encryption. Since this encryption also protects the integrity of the JWT, you
only need to configure AM to sign OAuth 2.0 client-based tokens if token encryption is disabled.

To Enable Client-Based OAuth 2.0 Token Encryption

1. Navigate to Realms > Realm Name > Services > OAuth2 Provider.

2. On the Core tab, enable Use Client-Based Access & Refresh Tokens.

3. On the Advanced tab, enable Client-Based Token Encryption.

Note that the alias mapped to the algorithm is defined in the secret stores, as shown in the table
below:

+ Secret ID Mappings for Encrypting Client-Based OAuth 2.0 Tokens

The following table shows the secret ID mapping used to encrypt client-based access tokens:

Secret ID Default Alias Algorithms
am.services.oauth2.stateless.token.encryption directentest A128CBC-HS256

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

4. Save your changes.

Client-based OAuth 2.0 access and refresh tokens will now be encrypted.

Configuring Client-Based OAuth 2.0 Token Digital Signatures

AM supports digital signature algorithms that secure the integrity of client-based tokens.

Authorization Server Configuration
Configuring Client-Based OAuth 2.0 Token Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 24

Important

Client-based tokens must be signed and/or encrypted for security reasons. If your environment does not support
encrypting OAuth 2.0 tokens, you must configure signing to protect them against tampering.

AM exposes the public key to validate client-based token signatures in its JWK URI. See "/oauth2/
connect/jwk_uri" in the OpenID Connect 1.0 Guide.

To Configure the OAuth 2.0 Provider to Sign Client-Based Tokens

Perform the steps in this procedure to configure the OAuth 2.0 provider to sign client-based tokens:

1. Navigate to Realms > Realm Name > Services, and then click OAuth2 Provider.

2. On the Advanced tab, in the OAuth2 Token Signing Algorithm drop-down list, select the signing
algorithm to use for signing client-based tokens.

Note that the alias mapped to the algorithm is defined in the secret stores, as shown in the table
below:

+ Secret ID Mappings for Signing Client-Based OAuth 2.0 Tokens

The following table shows the secret ID mappings used to sign client-based access tokens:

Secret ID Default Alias Algorithms
am.services.oauth2.stateless.signing.ES256 es256test ES256
am.services.oauth2.stateless.signing.ES384 es384test ES384
am.services.oauth2.stateless.signing.ES512 es512test ES512
am.services.oauth2.stateless.signing.HMAC hmacsigningtest HS256

HS384
HS512

am.services.oauth2.stateless.signing.RSA rsajwtsigningkey PS256
PS384
PS512
RS256
RS384
RS512

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

Authorization Server Configuration
Configuring Client-Based OAuth 2.0 Token Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 25

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

3. Save your changes.

Client-based OAuth 2.0 access and refresh tokens will now be signed.

About Scopes

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 26

Chapter 4

About Scopes
OAuth 2.0 flows require scopes to limit the client's access to the resource owner's resources.

+ What Are Scopes?

Scopes are a way to restrict client access to the resource owner's resources, as defined in the
OAuth 2.0 Authorization Framework.

Scopes are not associated with data and, in practice, they are just concepts specified as strings
that the resource server must interpret in order to provide the required access or resources to the
client. The OAuth 2.0 framework does not define any particular value for scopes since they are
dependent on the architecture of your environment.

For example, a client may request the write scope, which the resource server may interpret as
that the client wants to save some new information in the user's account, such as images or
documents.

A client can request one or more scopes, which AM may display in the consent screen. If the
resource owner agrees to share access to their resources, scopes are included in the access token.

For security reasons, AM only accepts scopes preconfigured in the Scope(s) or in the Default Scope(s)
fields in the client profile (Realms > Realm Name > Applications > OAuth 2.0 > Clients > Client
Name > Core).

AM checks the requested scopes against the Scope(s) field of the client's profile. If the client requests
a scope that is not preconfigured, AM returns an error, such as Unknown/invalid scope(s).

If a client does not request any scopes, AM uses the scopes configured in the Default Scope(s) field of
the client's profile. If none are configured, AM uses those configured in the Default Scope(s) field of
the OAuth 2.0 provider.

If no scopes are configured by default, AM returns the No scope requested error. AM does not use the
default scopes in any other circumstance.

Tip

The Client Registration Scope Whitelist field of the OAuth 2.0 provider restricts the scopes a client can register
with. In that sense, it is used for OpenID Connect discovery and dynamic client registration only.

https://www.rfc-editor.org/info/rfc6749

About Scopes

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 27

You can use this field, however, to configure how AM presents the scopes in the AM consent screen. By default,
scopes are not configured to display in the consent screen. You can either disable the consent pages, or
configure the scopes for display as described below.

Since scope names are arbitrary, in some cases they would not be descriptive enough for the
resource owner to understand their purpose. In other cases, you may not want the resource owner to
see a particular scope because it is for internal uses only.

Configuring Scopes in the Consent Screen

You can configure the AM consent screen to show, for each scope, one of the following options:

The Scope Itself A Localized Description Neither the Scope nor a Description

Configure how scopes appear in the consent screen by client or by realm (in the OAuth 2.0 provider
service). For examples, see the Client Registration Scope Whitelist field in the provider's "Advanced"
reference section or the Scope(s) field in Core Properties.

Client level configuration overrides that at provider level.

Special Scopes

AM reserves the following special scopes that cannot be added during dynamic client registration:

am-introspect-all-tokens

Add this scope to the Scopes(s) field in a client profile to let the client introspect tokens issued to
other clients, as long as all clients are registered in the same realm.

For example:

1. Client A is registered in the /customers/NA realm, and it is issued a token there.

2. Client B is registered in the /customers realm. It cannot introspect Client A's token because
they are not in the same realm. Client B can only introspect tokens from other clients
registered in the /customers realm.

About Scopes
Customizing OAuth 2.0 Scope Handling

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 28

am-introspect-all-tokens-any-realm

Add this scope to the Scopes(s) field in a client profile to let the client introspect tokens issued
to other clients, as long as they are registered in the realm of the introspecting client, or in a
subrealm of it.

For example:

1. Client A is registered in the /customers/NA realm, and it is issued a token there.

2. Client B is registered in the /customers realm. It can introspect Client A's token because the /
customers/NA realm is a subrealm of the /customers realm.

Client B can introspect tokens for any client registered in the /customer realm, or any subrealm
of it.

For security reasons, give these scopes only to the clients that need them.

Related information:

• For examples of requesting scopes from the authorization server, see any of the grant flows in
"OAuth 2.0 Grant Flows".

• To create your own implementation of the scope handler, see "Customizing OAuth 2.0 Scope
Handling".

• To configure AM to grant scopes dynamically by evaluating authorization policies at runtime,
see "About Authorization and Policy Decisions" and "Dynamic OAuth 2.0 Authorization" in the
Authorization Guide.

Customizing OAuth 2.0 Scope Handling
RFC 6749, The OAuth 2.0 Authorization Framework, describes access token scopes as a set of case-
sensitive strings defined by the authorization server. Clients can request scopes, and resource owners
can authorize them.

The default scopes implementation in AM treats scopes as per RFC 7662, while the legacy /oauth2/
tokeninfo endpoint populates the scopes with profile attribute values. For example, if one of the
scopes is mail, AM sets mail to the resource owner's email address in the token information returned.

You can change the scope implementation behavior by writing your own scope validator plugin.
This section shows how to write a custom OAuth 2.0 scope validator plugin for use in an OAuth 2.0
provider (authorization server) configuration.

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7662

About Scopes
About the Scope Validator Plugin Sample

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 29

Tip

The default scope validator calls the script that lets AM modify the key pairs contained inside an access token
before issuing it. If you intend to use this functionality, you must incorporate this call into your custom scope
validator implementation.

About the Scope Validator Plugin Sample

A scope validator plugin implements the org.forgerock.oauth2.core.ScopeValidator interface. As
described in the API specification, the ScopeValidator interface has several methods that your plugin
overrides.

The following plugin, taken from the openam-scope-sample example, sets whether read and write
permissions were granted.
/*
 * The contents of this file are subject to the terms of the Common Development and
 * Distribution License (the License). You may not use this file except in compliance with the
 * License.
 *
 * You can obtain a copy of the License at legal/CDDLv1.0.txt. See the License for the
 * specific language governing permission and limitations under the License.
 *
 * When distributing Covered Software, include this CDDL Header Notice in each file and include
 * the License file at legal/CDDLv1.0.txt. If applicable, add the following below the CDDL
 * Header, with the fields enclosed by brackets [] replaced by your own identifying
 * information: "Portions copyright [year] [name of copyright owner]".
 *
 * Copyright 2014-2019 ForgeRock AS. All Rights Reserved
 */
package org.forgerock.openam.examples;

import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import org.forgerock.oauth2.core.AccessToken;
import org.forgerock.oauth2.core.ClientRegistration;
import org.forgerock.oauth2.core.OAuth2Request;
import org.forgerock.oauth2.core.ScopeValidator;
import org.forgerock.oauth2.core.Token;
import org.forgerock.oauth2.core.UserInfoClaims;
import org.forgerock.oauth2.core.exceptions.InvalidClientException;
import org.forgerock.oauth2.core.exceptions.ServerException;
import org.forgerock.oauth2.core.exceptions.UnauthorizedClientException;

/**
 * Custom scope validators implement the
 * {@link org.forgerock.oauth2.core.ScopeValidator} interface.
 *
 * <p>
 * This example sets read and write permissions according to the scopes set.
 * </p>
 *

../apidocs/org/forgerock/oauth2/core/ScopeValidator.html

About Scopes
About the Scope Validator Plugin Sample

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 30

 *
 *
 *
 * The {@code validateAuthorizationScope} method
 * adds default scopes, or any allowed scopes provided.
 *
 *
 *
 * The {@code validateAccessTokenScope} method
 * adds default scopes, or any allowed scopes provided.
 *
 *
 *
 * The {@code validateRefreshTokenScope} method
 * adds the scopes from the access token,
 * or any requested scopes provided that are also in the access token scopes.
 *
 *
 *
 * The {@code getUserInfo} method
 * populates scope values and sets the resource owner ID to return.
 *
 *
 *
 * The {@code evaluateScope} method
 * populates scope values to return.
 *
 *
 *
 * The {@code additionalDataToReturnFromAuthorizeEndpoint} method
 * returns no additional data (an empty Map).
 *
 *
 *
 * The {@code additionalDataToReturnFromTokenEndpoint} method
 * adds no additional data.
 *
 *
 *
 */
public class CustomScopeValidator implements ScopeValidator {
 @Override
 public Set<String> validateAuthorizationScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request oAuth2Request) throws ServerException {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateAccessTokenScope(
 ClientRegistration clientRegistration,

About Scopes
About the Scope Validator Plugin Sample

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 31

 Set<String> scope,
 OAuth2Request request) throws ServerException {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateRefreshTokenScope(
 ClientRegistration clientRegistration,
 Set<String> requestedScope,
 Set<String> tokenScope,
 OAuth2Request request) {
 if (requestedScope == null || requestedScope.isEmpty()) {
 return tokenScope;
 }

 Set<String> scopes = new HashSet<String>(tokenScope);
 scopes.retainAll(requestedScope);
 return scopes;
 }

 @Override
 public Set<String> validateBackChannelAuthorizationScope(
 ClientRegistration clientRegistration,
 Set<String> requestedScopes,
 OAuth2Request request) throws ServerException {

 if (requestedScopes == null || requestedScopes.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<>(clientRegistration.getAllowedScopes());
 scopes.retainAll(requestedScopes);
 return scopes;
 }

 /**
 * Set read and write permissions according to scope.
 *
 * @param token The access token presented for validation.
 * @return The map of read and write permissions,
 * with permissions set to {@code true} or {@code false},
 * as appropriate.
 */
 private Map<String,Object> mapScopes(AccessToken token) {
 Set<String> scopes = token.getScope();
 Map<String, Object> map = new HashMap<String, Object>();
 final String[] permissions = {"read", "write"};

 for (String scope : permissions) {
 if (scopes.contains(scope)) {
 map.put(scope, true);
 } else {

About Scopes
About the Scope Validator Plugin Sample

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 32

 map.put(scope, false);
 }
 }
 return map;
 }

 @Override
 public UserInfoClaims getUserInfo(
 ClientRegistration clientRegistration,
 AccessToken token,
 OAuth2Request request)
 throws UnauthorizedClientException {
 Map<String, Object> response = mapScopes(token);
 response.put("sub", token.getResourceOwnerId());
 UserInfoClaims userInfoClaims = new UserInfoClaims(response, null);
 return userInfoClaims;
 }

 @Override
 public Map<String, Object> evaluateScope(AccessToken token) {
 return mapScopes(token);
 }

 @Override
 public Map<String, String> additionalDataToReturnFromAuthorizeEndpoint(
 Map<String, Token> tokens,
 OAuth2Request request) {
 return new HashMap<String, String>(); // No special handling
 }

 @Override
 public void additionalDataToReturnFromTokenEndpoint(
 AccessToken token,
 OAuth2Request request)
 throws ServerException, InvalidClientException {
 // No special handling
 }

 @Override
 public void modifyAccessToken(AccessToken accessToken, OAuth2Request request) {
 }
}

For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for AM (All versions)? in the Knowledge Base.

Get a local clone so that you can try the sample on your system.

+ Files Included in the Sample

pom.xml

Apache Maven project file for the module

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

About Scopes
About the Scope Validator Plugin Sample

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 33

This file specifies how to build the sample scope validator plugin, and also specifies its
dependencies on AM components.

src/main/java/org/forgerock/openam/examples/CustomScopeValidator.java

Core class for the sample OAuth 2.0 scope validator plugin

See "About the Scope Validator Plugin Sample" for a listing.

After you successfully build the project, you find the openam-scope-sample-7.jar in the /path/to/openam-
samples-external/openam-scope-sample/target directory of the project.

Configuring an Instance to Use the Plugin

After building your plugin .jar file, copy the .jar file under WEB-INF/lib/ where you deployed AM.

Restart AM or the container in which it runs.

In the AM console, you can either configure a specific OAuth 2.0 provider to use your plugin, or
configure your plugin as the default for new OAuth 2.0 providers. In either case, you need the
class name of your plugin. The class name for the sample plugin is org.forgerock.openam.examples.
CustomScopeValidator.

• To configure a specific OAuth 2.0 provider to use your plugin, navigate to Realms > Realm Name
> Services, click OAuth2 Provider, and enter the class name of your scopes plugin to the Scope
Implementation Class field.

• To configure your plugin as the default for new OAuth 2.0 providers, add the class name of your
scopes plugin. Navigate to Configure > Global Services, click OAuth2 Provider, and set Scope
Implementation Class.

Trying the Sample Plugin

In order to try the sample plugin, make sure you have configured an OAuth 2.0 provider to use the
sample plugin. Also, set up an OAuth 2.0 client of the provider that takes scopes read and write.

Next try the provider as shown in the following example:

About Scopes
About the Scope Validator Plugin Sample

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 34

$ curl \
--request POST \
--data "grant_type=client_credentials \
&client_id=myClientID&client_secret=password&scope=read" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "scope": "read",
 "expires_in": 59,
 "token_type": "Bearer",
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

$ curl https://openam.example.com:8443/openam/oauth2/realms/root/tokeninfo\
?access_token=0d492486-11a7-4175-b116-2fc1cbff6d78
{
 "scope": [
 "read"
],
 "grant_type": "client_credentials",
 "realm": "/",
 "write": false,
 "read": true,
 "token_type": "Bearer",
 "expires_in": 24,
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

As seen in this example, the requested scope read is authorized, but the write scope has not been
authorized.

About Consent
Allowing Clients To Skip Consent

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 35

Chapter 5

About Consent
Many of the OAuth 2.0/OpenID Connect flows require the user to explicitly agree to provide the client
with access to their resources. This act of trust is one of the pillars of OAuth 2.0 and OpenID Connect.

Users grant consent based on scopes. In OAuth 2.0, scopes are a concept that limits the information
to share with the client or the actions the client can do with the user's data. In OpenID Connect,
scopes can be mapped to specific user data, too. For example, AM maps the profile scope to a
number of user profile attributes.

Note

AM has built-in consent pages in its UI, but you can hand off the consent-gathering part of the flow to a
separate service by configuring the "The Remote Consent Service".

By default, scopes are not configured to display in the consent pages. You can either disable the consent pages,
or manually add scopes for display in the OAuth 2.0 provider configuration in the Reference.

For OpenID Connect, customize claims for display in the provider configuration in the Reference or at the client
level.

AM let clients store the scopes to which the user has given consent to improve user experience.
This is useful, for example, to minimize customer interaction. In the same way, AM let users revoke
consent at any point in time.

In some circumstances, however, clients may need a mechanism to skip consent altogether; for
example, for trusted application-to-application or service-to-service interaction.

Tasks:

• "Allowing Clients To Skip Consent"

• "Allowing the OAuth 2.0 Provider to Save Consent"

• "Allowing Users to Revoke Consent"

Allowing Clients To Skip Consent
Companies that have internal applications that use OAuth 2.0 or OpenID Connect can allow clients to
skip consent and make consent confirmation optional so as not to disrupt their online experience.

About Consent
Allowing the OAuth 2.0 Provider to Save Consent

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 36

To Allow Clients To Skip Consent

Perform the following steps to configure the OAuth 2.0 service and an OAuth 2.0 client to skip
consent:

1. Log in to the AM console with an administrative user. For example, amAdmin.

2. Configure the OAuth 2.0 provider to allow clients to skip consent:

a. Navigate to Realms > Realm Name > Services > OAuth 2.0 provider > Consent.

b. Enable Allow Clients to Skip Consent.

c. Click Save Changes.

3. Configure the OAuth 2.0 client to skip consent:

a. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Advanced.

b. Enable Implied consent.

c. Save your changes.

AM will now treat the requests from this client as if the resource owner/end user has already
consented, and will not display consent pages during the flow.

Allowing the OAuth 2.0 Provider to Save Consent
Requesting resource owners/end users consent to sharing their data is extremely important.
However, that does not mean that your company needs to be asking for consent every time the user
wants to use your services.

To provide a better user experience, AM can store the scopes for which they have given consent in
their user profile.

When the client requests a scope combination, AM checks if the user has already consented each
scope within the combination. If AM can find the scopes across multiple saved consent entries, AM
will not require the user to consent. If part of the requested scope combination is not found in any
entry, AM will require the user to consent.

Consider an example where the user grants consent to the read scope on a first request and to the
email and profile scopes on a second request. AM will not require consent for a request for the read
and profile scopes.

About Consent
Allowing Users to Revoke Consent

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 37

Tip

To request the user to provide consent even if it is already saved, add the prompt=consent parameter to the
request.

Resource owners/end users can also revoke consent provided on requests for access tokens at any
given time. For more information, see "Allowing Users to Revoke Consent".

To Configure AM to Save Consent

Perform the following steps to configure AM to save consent:

1. Create a multi-valued string syntax attribute in your identity store to save consent entries. For
example, oauth2Consent.

To create the attribute and configure it in AM, see "To Update the Identity Repository for the
New Attribute" in the Setup Guide.

2. Log in to the AM console with an administrative user. For example, amAdmin.

3. Navigate to Realms > Realm Name > Services > OAuth 2.0 provider > Consent.

4. In the Saved Consent Attribute field, add the name of the attribute you created in the identity
store.

5. Save your changes.

AM will now save the consented scopes in the identity repository and will only request consent
when it cannot find the requested scopes.

Allowing Users to Revoke Consent
Users of OAuth 2.0 clients can manage their authorized applications on their user page in the AM
console. For example, the user logs in to the AM console as demo, and then clicks the Dashboard link
on the Profile page. In the Authorized Apps section, the users can view the client application and
the scopes they saved consent during requests for access tokens. Clicking the x button will remove
consent for those scopes.

About Consent
Allowing Users to Revoke Consent

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 38

OAuth 2.0 Self-Service

For information about the dashboard service, see "Implementing the Dashboard Service" in the Setup
Guide.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 39

Chapter 6

The Remote Consent Service
AM supports OAuth 2.0 remote consent services, which allow the consent-gathering part of an OAuth
2.0 flow to be handed off to a separate service.

A remote consent service renders a consent page, gathers the result, signs and encrypts the result,
and returns it to the authorization server.

During an OAuth 2.0 flow that requires user consent, AM can create a consent request JWT that
contains the necessary information to render a consent gathering page. It does not send the actual
values of the requested scopes.

+ Consent Request JWT Example and Properties

{
 "clientId": "myClient",
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "csrf": "gjeH2C43nFJwW+Ir1zL3hl8kux9oatSZRso7aCzI0vk=",
 "client_description": "",
 "aud": "rcs",
 "save_consent_enabled": true,
 "claims": {},
 "scopes": {
 "write": null
 },
 "exp": 1536229486,
 "iat": 1536229306,
 "client_name": "My Client",
 "consentApprovalRedirectUri": "https://openam.example.com:8443/openam/oauth2/authorize?
client_id=MyClient&response_type=code&redirect_uri=https://application.example.com:8443/
callback&scope=write&state=1234zy",
 "username": "demo"
}

iat

Specifies the creation time of the JWT.

iss

Specifies the name of the issuer - configured in the OAuth 2.0 Provider Service in AM.

aud

Specifies the name of the expected recipient of the JWT, in this case, the remote consent
service.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 40

exp

Specifies the expiration time of the JWT.

Use short expiration times, for example, 180 seconds, as the JWT is intended for use in
machine-to-machine interactions.

csrf

Specifies a unique string that must be returned in the response to help prevent cross-site
request forgery (CSRF) attacks.

AM generates this string from a hash of the user's session ID.

client_id

Specifies the ID of the OAuth 2.0 client making the request.

client_name

Specifies the display name of the OAuth 2.0 client making the request.

client_description

Specifies a description of the OAuth 2.0 client making the request.

username

Specifies the username of the logged-in user.

Tip

Ensure you encrypt the JWT if the username could be considered personally identifiable information.

scopes

Specifies the requested scopes.

claims

Specifies the claims the request is making.

Use the claims field for additional information to display on the remote consent page that
helps the user to determine if consent should be granted. For example, Open Banking OAuth
2.0 flows may include identifiers for a money transaction.

save_consent_enabled

Specifies whether to provide the user the option to save their consent decision.

If set to false, the value of the save_consent property in the consent response from the RCS
must also be false.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 41

consentApprovalRedirectUri

Specifies the URI to return the resource owner to after they have provided consent. The
response JWT must be sent as a consent_response form parameter in a POST operation to this
URI.

Acting as the authorization server, AM signs and encrypts the JWT.

The remote consent service decrypts the JWT, verifies the signature and other details, such as the
validity of the aud, iss and exp properties, and renders the consent page to the resource owner.

After the remote consent service gathers the user's consent, it creates a consent response JWT,
encrypts and signs the response, and returns it to AM for processing.

+ Consent Response JWT Example and Properties

{
"consent_response" : {
 "clientId": "myClient",
 "iss": "rcs",
 "csrf": "gjeH2C43nFJwW+Ir1zL3hl8kux9oatSZRso7aCzI0vk=",
 "client_description": "",
 "aud": "https://openam.example.com:8443/openam/oauth2",
 "save_consent": true,
 "claims": {},
 "scopes": "[write]",
 "exp": 1536229430,
 "iat": 1536229250,
 "client_name": "My Client",
 "consentApprovalRedirectUri": "https://openam.example.com:8443/openam/oauth2/authorize?
client_id=MyClient&response_type=code&redirect_uri=https://application.example.com:8443/
callback&scope=write&state=1234zy",
 "username": "demo",
 "decision": true
 },
}

iat

Specifies the creation time of the JWT.

iss

Specifies the name of the remote consent service.

Must match the value of the aud property received from AM.

aud

Specifies the name of the expected recipient of the JWT, in this case, AM acting as the AS.

Must match the value of the iss property received from AM.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 42

exp

Specifies the expiration time of the JWT.

Use short expiration times, for example, 180 seconds, as the JWT is intended for use in
machine-to-machine interactions.

decision

Specifies true if consent was provided, or false if consent was withheld.

client_id

Specifies the ID of the OAuth 2.0 client making the request, matching the value provided in
the request.

client_name

Specifies the display name of the OAuth 2.0 client making the request.

client_description

Specifies a description of the OAuth 2.0 client making the request.

scopes

Specifies an array of allowed scopes.

Must be equal to, or a subset of the array of scopes in the request.

save_consent

Specifies true if the user chose to save their consent decision, or false if they did not.

If save_consent_enabled was set to false in the request, save_consent must also be false.

consentApprovalRedirectUri

Specifies the URI to return the resource owner to after they have provided consent.

AM decrypts and verifies the signature of the consent response and other details, such as the validity
of the aud, iss and exp properties, and processes the response. For example, it may save the consent
decision if configured to do so.

Note

If the remote consent server compresses the consent response JWT, note that by default, AM rejects JWTs that
expand to a size larger than 32 KiB (32768 bytes). For more information, see "Controlling the Maximum Size of
Compressed JWTs" in the Security Guide.

Both AM and the remote consent service make the required public keys available from a jwk_uri URI,
enabling the signing and encryption between the two servers.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 43

Configuring a remote consent service requires completion of these high-level tasks:

Task Resources
Add the details of the remote consent service as an agent profile
in AM

You can configure a single remote consent service in a realm, by
adding the details to a Remote Consent Agent profile.

The profile defines properties for signing and encrypting the
consent request and consent response, redirect URI, and the jwk_
uri URI details of the remote consent service.

"To Configure AM to use a Remote
Consent Service"

Enable remote consent and specify the agent profile in AM's
OAuth 2.0 provider service.

"To Configure the OAuth 2.0 Provider to
Use a Remote Consent Agent Profile"

Configure the remote consent service with AM's jwk_uri URI
details

The remote consent service must be able to obtain from AM the
required signature and decryption keys.

N/A

Note

AM includes an example remote consent service. Do not use the example in production environments.

See "To Configure the AM Example Remote Consent Service".

To Configure AM to use a Remote Consent Service

To add the details of the remote consent service as an agent profile:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Applications > Remote Consent and select Add Remote Consent Agent.

3. Enter an Agent ID, for example, myRCSAgent, and then select Create.

4. (Optional) If you will be using an HMAC algorithm for signing the JWTs, enter the shared
symmetric key in the Remote Consent Service secret field.

This step is not required when using other algorithms.

5. Select the Remote Consent Agent, and then configure the properties as required.

+ Remote Consent Agent Properties

Group

Configure several remote consent agent profiles by assigning them to a group.

Default value: none

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 44

amster attribute: agentgroup

Remote Consent Service secret

If the remote consent agent needs to authenticate to AM, enter the password it will use.
Reenter the password in the Remote Consent Service secret (confirm) property.

amster attribute: userpassword

Redirect URL

Specify the URL to which the user should be redirected during the OAuth 2.0 flow to
obtain their consent.

The AM example remote consent service provides an /oauth2/consent path to obtain consent
from the user.

Example: https://rcs.example.com:8443/openam/oauth2/consent

amster attribute: remoteConsentRedirectUrl

Consent Request Signing Algorithm

Specify the algorithm used to sign the consent request JWT sent to the Remote Consent
Service.

The signing key used depends on the algorithm chosen. The relevant secret IDs and the
default signing key aliases are shown in the table below:

+ Secret ID Mappings for Signing Remote Consent Requests

The following table shows the secret ID mappings used to sign remote consent
requests:

Secret ID Default Alias Algorithms a

am.applications.agents.remote.consent.request.signing.ES256es256test ES256
am.applications.agents.remote.consent.request.signing.ES384es384test ES384
am.applications.agents.remote.consent.request.signing.ES512es512test ES512
am.applications.agents.remote.consent.request.signing.RSArsajwtsigningkey RS256

RS384
RS512
PS256
PS384
PS512

a If you select an HMAC algorithm for signing consent requests (HS256, HS384, or HS512), the value of the
Remote Consent Service secret property is used, instead of an entry from the secret stores.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 45

Since the HMAC secret is shared between AM and the remote consent client, a malicious user compromising
the client could potentially create tokens that AM would trust. Therefore, to protect against misuse, AM also
signs the token using a non-shared signing key configured in the am.services.oauth2.jwt.authenticity.
signing secret ID.

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for
demo and test purposes only. For production environments, replace the secrets as
required and create mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

Default value: RS256

amster attribute: remoteConsentRequestSigningAlgorithm

Enable consent request Encryption

Specify whether to encrypt the consent request JWT sent to the Remote Consent Service.

Default: true

amster attribute: remoteConsentRequestEncryptionEnabled

Consent request Encryption Algorithm

Specify the encryption algorithm used to encrypt the consent request JWT sent to the
Remote Consent Service.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and
MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• dir - Direct encryption with AES using the hashed client secret.

Default value: RSA-OAEP-256

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 46

amster attribute: remoteConsentRequestEncryptionAlgorithm

Consent request Encryption Method

Specify the encryption method used to encrypt the consent request JWT sent to the
Remote Consent Service.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated
encryption mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-
SHA-2 for integrity.

Default value: A128GCM

amster attribute: remoteConsentRequestEncryptionMethod

Consent response signing algorithm

Specify the algorithm used to verify a signed consent response JWT received from the
Remote Consent Service.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value: RS256

amster attribute: remoteConsentResponseSigningAlg

Consent response encryption algorithm

Specify the encryption algorithm used to decrypt the consent response JWT received from
the Remote Consent Service.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 47

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• dir - Direct encryption with AES using the hashed client secret.

The decryption key used depends on the algorithm chosen. The relevant secret IDs and
the default decryption key aliases are shown in the table below:

+ Secret ID Mappings for Decrypting Remote Consent Responses

The following table shows the secret ID mapping used to decrypt remote consent
responses:

Secret ID Default Alias Algorithmsa

am.services.oauth2.remote.consent.response.decryptiontest RSA-OAEP-256
a If you select an algorithm other than RSA-OAEP-256 for decrypting consent responses, the value of the
Remote Consent Service secret property is used, instead of an entry from the secret stores.

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for
demo and test purposes only. For production environments, replace the secrets as
required and create mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Security Guide.

Default value: RSA-OAEP-256

amster attribute: remoteConsentResponseEncryptionAlgorithm

Consent response encryption method

Specify the encryption method used to decrypt the consent response JWT received from
the Remote Consent Service.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated
encryption mode.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 48

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-
SHA-2 for integrity.

Default value: A128GCM

amster attribute: remoteConsentResponseEncryptionMethod

Public key selector

Specify whether the remote consent service provides its public keys using a JWKs_URI, or
manually in JWKs format.

If JWKs is selected, you must enter the keys in the Json Web Key property. Otherwise
complete the JWKs URI-related properties.

Default: JWKs_URI

amster attribute: remoteConsentRedirectUrl

Json Web Key URI

Specify the URI from which AM can obtain the Remote Consent Service's public keys.

The AM example remote consent service provides an /oauth2/consent/jwk_uri path to
provide the public keys.

Example: http://rcs.example.com:8080/openam/oauth2/consent/jwk_uri

amster attribute: jwksUri

JWKs URI content cache timeout in ms

Specify the amount of time, in milliseconds, that the content of the JWKs' URI is cached
for before being refreshed. Caching the content avoids fetching it for every token
encryption or validation.

Default: 3600000

amster attribute: com.forgerock.openam.oauth2provider.jwksCacheTimeout

JWKs URI content cache miss cache time

Specify the amount of time, in milliseconds, that AM waits before fetching the URI's
content again when a key ID (kid) is not in the JWKs that are already cached.

For example, if a request comes in with a kid that is not in the cached JWKs, AM checks
the value of JWKs' URI content cache miss cache time. If the amount of time specified in
this property has already passed since the last time AM fetched the JWKs, AM fetches
them again. Otherwise, the request is rejected.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 49

Use this property as a rate limit to prevent denial-of-service attacks against the URI.

Default: 60000

amster attribute: com.forgerock.openam.oauth2provider.jwkStoreCacheMissCacheTime

Json Web Key

If the Public key selector: property is set to JWKs, specify the Remote Consent Service's
public keys, in JSON Web Key format.

Example:
{
 "keys": [
 {
 "kty": "RSA",
 "kid": "RemA6Gw0...LzsJ5zG3E=",
 "use": "enc",
 "alg": "RSA-OAEP-256",
 "n": "AL4kjz74rDo3VQ3Wx...nhch4qJRGt2QnCF7M0",
 "e": "AQAB"
 },
 {
 "kty": "RSA",
 "kid": "wUy3ifIIaL...eM1rP1QM=",
 "use": "sig",
 "alg": "RS256",
 "n": "ANdIhkOZeSHagT9Ze...ciOACVuGUoNTzztlCUk",
 "e": "AQAB"
 }
]
}

amster attribute: jwkSet

Consent Request Time Limit

Specify the amount of time, in seconds, for which the consent request JWT sent to the
Remote Consent Service should be considered valid.

Default: 180

amster attribute: requestTimeLimit

6. Save your changes.

The Remote Consent Agent profile is now available for selection in the OAuth 2.0 provider. See
"To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 50

To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile

To add the details of the Remote Consent Agent profile to an OAuth 2.0 provider service:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Services, and then select OAuth2 Provider.

3. On the Consent tab:

a. Select Enable Remote Consent.

b. In the Remote Consent Service ID drop-down list, select the Agent ID of the Remote Consent
Agent. For example, myRCSAgent.

4. (Optional) If required, modify the supported signing and encryption methods and algorithms
used for the consent request and consent response JSON web tokens.

For more information on the available properties, see "Consent" in the Reference.

+ Example

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 51

Configuring RCS in an OAuth 2.0 Provider

5. Save your changes.

OAuth 2.0 flows by any client in the realm will now use the remote consent service. OAuth 2.0
clients in other realms are unaffected.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 52

To Configure the AM Example Remote Consent Service

AM includes an example Remote Consent Service to demonstrate and test AM's remote consent
feature.

Note

The Remote Consent Service in AM is not intended for use in production environments, since the encryption
and signing algorithms are not configurable. It serves as an example of configuring AM to use a custom remote
consent service.

The following example uses two instances of AM:

• One instance that acts as the authorization server. For example, https://openam.example.com:8443/
openam.

• One instance that acts as the example remote consent service. For example, https://rcs.exampe.
com:8443/openam.

Perform the following steps to configure your environment:

1. Log in to the instance that acts as the example remote consent service with an administrative
user, for example, amAdmin.

2. Navigate to Realms > Realm Name > Services, and then select Add a Service.

3. From the Choose a service type drop-down list, select Remote Consent Service.

4. Perform the following steps to configure the Remote Consent Service:

a. In Client Name, enter the Agent ID given to the Remote Consent Agent profile in AM.

In this example, enter myRCSAgent.

b. In Signing Key Alias, enter the alias of key that will sign the consent response. Ensure the
selected key matches the supported signing methods and algorithms configured for the
remote consent service in the OAuth 2.0 provider in AM.

For this example, enter rsajwtsigningkey. This test key alias will work with the default signing
settings, and is provided by default in AM's default key store.

c. In Encryption Key Alias, enter the alias of key that will encrypt the consent response. Ensure
the selected key matches the supported encryption methods and algorithms configured for
the remote consent service in the OAuth 2.0 provider in AM.

For this example, enter test. This test key alias will work with the default encryption settings,
and is provided by default in AM's default key store.

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 53

d. In Authorization Server jwk_uri, enter the URI where the remote consent service can obtain
the keys that the instance acting as the authorization service uses to sign and encrypt the
consent request.

For this example, enter https://openam.example.com:8443/openam/oauth2/connect/jwk_uri.

e. Select Create.

f. Verify the configuration. For more information about the available properties, see "Remote
Consent Service" in the Reference.

5. Log in to the instance acting as the authorization server as an administrative user, for example,
amAdmin.

6. Configure a remote consent service agent by performing the steps in "To Configure AM to use a
Remote Consent Service".

Note

The example remote consent service provides an /oauth2/consent/jwk_uri path to provide its public keys to
the authorization server. In this example, configure https://rcs.example.com:8443/openam/oauth2/consent/
jwk_uri in the Json Web Key URI field.

7. Configure the authorization server to use the remote consent service agent by performing the
steps in "To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

8. Test your configuration.

Performing an OAuth 2.0 flow on the AM instance that is acting as the authorization server will
redirect the user to the second instance when user consent is required:

The Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 54

Example Remote Consent Service

Note that the fr-dark-theme has been applied to AM instance acting as the remote consent service
for the purpose of this demonstration.

For more information on customizing the user interface, see the UI Customization Guide.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 55

Chapter 7

Client Registration
You can register OAuth 2.0/OpenID Connect clients with the AM OAuth 2.0 authorization service by
creating and configuring a client profile. When creating a client profile, you must provide at least the
client identifier and client secret.

Alternatively, you can register a client dynamically in the OpenID Connect 1.0 Guide. AM supports
open registration, registration with an access token, and registration including a secure software
statement issued by a software publisher.

You can also create an OAuth 2.0 client profile group. OAuth 2.0 clients within a group can specify
one or more properties that inherit their values from the group, allowing configuration of multiple
OAuth 2.0 clients simultaneously. For more information, see "To Configure a Client Profile Group".

To Create and Configure a Client Profile

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0 > Clients.

2. Click Add Client, and then provide the Client ID, Client secret, Redirection URIs, Scope(s), and
Default Scope(s).

Finally, click Create to create the profile.

3. Adjust the configuration as needed using the inline help for hints and the following
documentation:

+ Core Properties

Group

Set this field if you have configured an OAuth 2.0 client group.

Status

Specify whether the client profile is active for use or inactive.

Client secret

Specify the client secret as described by RFC 6749 in the section, Client Password.

https://www.rfc-editor.org/rfc/rfc6749.html#section-2.3.1

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 56

For OAuth 2.0/OpenID Connect 1.0 clients, AM uses the client password as the client
shared secret key when signing the contents of the request parameter with HMAC-based
algorithms, such as HS256.

Client type

Specify the client type.

Confidential clients can maintain the confidentiality of their credentials, such as a web
application running on a server where its credentials are protected. Public clients run
the risk of exposing their passwords to a host or user agent, such as a JavaScript client
running in a browser.

Allow wildcard ports in redirection URIs

Specify whether AM allows the use of wildcards (* characters) in the redirection URI port
to match one or more ports.

The URL configured in the redirection URI must be either localhost, 127.0.01, or ::1. For
example, http://localhost:*/, https://127.0.0.1:80*/, or https://[::1]:*443/.

Enable this setting, for example, for desktop apps that start a web server on a random
free port during the OAuth 2.0 flow.

Redirection URIs

Specify client redirection endpoint URIs as described by RFC 6749 in the section,
Redirection Endpoint. AM's OAuth 2.0 authorization service redirects the resource
owner's user-agent back to this endpoint during the authorization code grant process. If
your client has more than one redirection URI, then it must specify the redirection URI to
use in the authorization request.

Redirection URI values must NOT contain a fragment (#) and must be an exact match.
Wildcards are only considered special characters for ports when the Allow wildcard ports
in redirection URIs option is enabled.

OpenID Connect clients require redirection URIs.

Scope(s)

Specify scopes that are to be presented to the resource owner when the resource owner is
asked to authorize client access to protected resources.

The openid scope is required for OpenID Connect clients. It indicates that the client is
making an OpenID Connect request to the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-
separated string in the format: scope|locale|localized description. For example, read|en|
Permission to view email messages.

https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1.2
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1.2

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 57

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_
US_WIN. If the locale and pipe is omitted, the localized description is displayed to all users
having undefined locales. If the localized description is omitted, nothing is displayed to all
users. For example, a scope of read| would allow the client to use the read scope but would
not display it to the user when requested.

AM reserves special scopes to let clients introspect tokens issued to other clients. For
more information, see "Special Scopes".

For more information about scopes and default scopes, and how AM uses them, see
"About Scopes".

Default Scope(s)

Scopes that AM uses when the client does not request any during a grant flow.

Specify scopes in scope or scope|locale|localized description format.

Scopes defined in this property take the same format as those defined in Scope(s).

For more information about scopes and default scopes, and how AM uses them, see
"About Scopes".

Client Name

Specify a human-readable name for the client.

Authorization Code Lifetime (seconds)

Specify the time in seconds for an authorization code to be valid. If this field is set to zero,
the authorization code lifetime of the OAuth2 provider is used.

Default: 0

Refresh Token Lifetime (seconds)

Specify the time in seconds for a refresh token to be valid. If this field is set to zero, the
refresh token lifetime of the OAuth2 provider is used. If the field is set to -1, the token will
never expire.

Default: 0

Access Token Lifetime (seconds)

Specify the time in seconds for an access token to be valid. If this field is set to zero, the
access token lifetime of the OAuth2 provider is used.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 58

Default: 0

+ Advanced Properties

Display name

Specify a client name to display to the resource owner when the resource owner is
asked to authorize client access to protected resources. Valid formats include name or
locale|localized name .

The Display name can be entered as a single string or as a pipe-separated string for locale
and localized name, for example, en|My Example Company.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_
WIN. If the locale is omitted, the name is displayed to all users having undefined locales.

Display description

Specify a client description to display to the resource owner when the resource owner is
asked to authorize client access to protected resources. Valid formats include description
or locale|localized description.

The Display description can be entered as a single string or as a pipe-separated string for
locale and localized name, for example, en|The company intranet is requesting the following
 access permission.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_
WIN. If the locale is omitted, the name is displayed to all users having undefined locales.

JavaScript Origins

Specify the origin URLs that the client allows to make cross-origin resource sharing
(CORS) requests to AM.

For example, you might add the URL of a resource server being protected by an app that
uses the ForgeRock SDKs, so that it can access the OAuth 2.0 endpoints from a different
domain than AM.

Wildcards are not supported; each value should be an exact match for the origin of the
CORS request.

The global CORS service collects the value of this property from each OAuth 2.0 client,
and combines it with its own configuration. For more information, see "Configuring CORS
Support" in the Security Guide.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 59

Request uris

Specify request_uri values that a dynamic client would pre-register.

URIs must be pre-registered in this field before the client can request them in the request_
uri parameter.

Grant Types

Specify the set of OAuth 2.0 grant flows allowed for this client. The following flows are
available:

• Authorization Code

• Back Channel Request

• Implicit

• Resource Owner Password Credentials

• Client Credentials

• Refresh Token

• UMA

• Device Code

• SAML2

When registering clients dynamically, if no grant types are specified in the registration
request, then the default Authorization Code grant type is assumed, and configured in the
client.

Any grant types selected in a client must also be enabled in the OAuth 2.0 provider
service. See "OAuth2 Provider" in the Reference.

Default: Authorization Code

Response Types

Specify the response types that the client uses. The response type value specifies the flow
that determine how the ID token and access token are returned to the client. For more
information, see OAuth 2.0 Multiple Response Type Encoding Practices.

By default, the following response types are available:

• code. Specifies that the client application requests an authorization code grant.

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 60

• token. Specifies that the client application requests an implicit grant type and requests a
token from the API.

• id_token. Specifies that the client application requests an ID token.

• code token. Specifies that the client application requests an access token, access token
type, and an authorization code.

• token id_token. Specifies that the client application requests an access token, access
token type, and an ID token.

• code id_token. Specifies that the client application requests an authorization code and an
ID token.

• code token id_token. Specifies that the client application requests an authorization code,
access token, access token type, and an ID token.

Contacts

Specify the email addresses of users who administer the client.

Token Endpoint Authentication Method

Specify the authentication method with which a client authenticates to AM (as an
authorization server) at the token endpoint. The authentication method applies to OIDC
requests with scope openid.

• client_secret_basic. Clients authenticate with AM (as an authorization server) using the
HTTP Basic authentication scheme after receiving a client_secret value.

• client_secret_post. Clients authenticate with AM (as an authorization server) by including
the client credentials in the request body after receiving a client_secret value.

• private_key_jwt. Clients sign a JSON web token (JWT) with a registered public key.

• tls_client_auth. Clients use a CA-signed certificate for mutual TLS authentication.

• self_signed_tls_client_auth. Clients use a self-signed certificate for mutual TLS
authentication.

For more information, see "OAuth 2.0 Client Authentication", and Client Authentication in
the OpenID Connect Core 1.0 incorporating errata set 1 specification.

Sector Identifier URI

Specify the host component of this URI, which is used in the computation of pairwise
subject identifiers.

https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 61

Subject Type

Specify the subject identifier type, which is a locally unique identifier that will be
consumed by the client. Select one of two options:

• public. Provides the same sub (subject) value to all clients.

• pairwise. Provides a different sub (subject) value to each client.

Access Token

Specify the registration_access_token value that you provide when registering the client,
and then subsequently when reading or updating the client profile.

Client URI

Specify the URI containing further information about this client. The URI is displayed as a
link in user-facing pages, such as consent pages.

The URI can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/informacion.html|es

Logo URI

Specify the URI of a logo for the client. The logo is displayed in user-facing pages, such as
consent pages.

The logo can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/imagen.png|es

Privacy Policy URI

Specify the URI containing the client's privacy policy documentation. The URI is displayed
as a link in user-facing pages, such as consent pages.

The URI can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/legal.html|es

Implied Consent

Enable the implied consent feature. When enabled, the resource owner will not be asked
for consent during authorization flows. The OAuth2 Provider must also be configured to
allow clients to skip consent.

OAuth 2.0 Mix-Up Mitigation enabled

Enable OAuth 2.0 mix-up mitigation on the authorization server side.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 62

Enable this setting only if this OAuth 2.0 client supports the OAuth 2.0 Mix-Up Mitigation
draft, otherwise AM will fail to validate access token requests received from this client.

+ OpenID Connect Properties

Claim(s)

Specify one or more claim name translations that will override those specified for the
authentication session. Claims are values that are presented to the user to inform them
what data is being made available to the client.

Claims can be in entered as simple strings, such as name, email, profile, or sub, or as a pipe-
separated string in the format: scope|locale|localized description. For example, name|en|Full
 name of user.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_
US_WIN. If the locale and pipe is omitted, the localized description is displayed to all users
having undefined locales. If the localized description is omitted, nothing is displayed to all
users. For example, a claim of name| would allow the client to use the name claim but would
not display it to the user when requested.

If a value is not given, the value is computed from the OAuth2 provider.

Post Logout Redirect URIs

Specify one or more allowable URIs to which the user-agent can be redirected to after the
client logout process.

Client Session URI

Specify the relying party (client) URI to which the OpenID Connect Provider sends session
changed notification messages using the HTML 5 postMessage API.

Default Max Age

Specify the maximum time in seconds that a user can be authenticated. If the user last
authenticated earlier than this value, then the user must be authenticated again. If
specified, the request parameter max_age overrides this setting.

Minimum value: 1.

Default: 600

Default Max Age Enabled

Enable the default max age feature.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mix-up-mitigation-01
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mix-up-mitigation-01

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 63

Default ACR values

Default Authentication Context Class Reference values.

Specify strings that will be requested as Voluntary Claims by default in all incoming
requests.

Values specified in the acr_values request parameter or an individual acr claim request
override these default values.

OpenID Connect JWT Token Lifetime (seconds)

Specify the time in seconds for a JWT to be valid. If this field is set to zero, the JWT token
lifetime of the OAuth2 provider is used.

Default: 0

+ Signing and Encryption Properties

AM returns an error if the administrator tries to save a client profile configuration containing
an unsupported signing or encryption algorithm on a client.

For example, upon saving the configuration, AM will return an error if there is a typo on an
algorithm, or a symmetric signing or encryption algorithm is configured on a public client:
these algorithms are derived from the client's secret, which public clients do not have.

Clients registering dynamically must also send supported algorithms as part of their
configuration, or AM will reject the registration request.

Different features support different algorithms. Refer to the documentation or the UI for more
information.

Json Web Key URI

Specify the URI that contains the client's public keys in JSON web key format.

When the client authenticates to AM using the private_key_jwt method, AM checks this
field to find the public key to validate the JWT.

JWKs URI content cache timeout in ms

Specify the amount of time, in milliseconds, that the content of the JWKs' URI is cached
for before being refreshed. Caching the content avoids fetching it for every token
encryption or validation.

Default: 3600000

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 64

JWKs URI content cache miss cache time

Specify the amount of time, in milliseconds, that AM waits before fetching the URI's
content again when a key ID (kid) is not in the JWKs that are already cached.

For example, if a request comes in with a kid that is not in the cached JWKs, AM checks
the value of JWKs' URI content cache miss cache time. If the amount of time specified in
this property has already passed since the last time AM fetched the JWKs, AM fetches
them again. Otherwise, the request is rejected.

Use this property as a rate limit to prevent denial-of-service attacks against the URI.

Default: 60000

Token Endpoint Authentication Signing Algorithm

Specify the JWS algorithm that must be used for signing JWTs used to authenticate the
client at the Token Endpoint.

JWTs that are not signed with the selected algorithm in token requests from the client
using the private_key_jwt or client_secret_jwt authentication methods will be rejected.

Default: RS256

Json Web Key

Raw JSON web key value containing the client's public keys.

ID Token Signing Algorithm

Specify the signing algorithm that the ID token must be signed with.

Enable ID Token Encryption

Enable ID token encryption using the specified ID token encryption algorithm.

ID Token Encryption Algorithm

Specify the algorithm that the ID token must be encrypted with.

Default value: RSA1_5 (RSAES-PKCS1-V1_5).

ID Token Encryption Method

Specify the method that the ID token must be encrypted with.

Default value: A128CBC-HS256.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 65

Client ID Token Public Encryption Key

Specify the Base64-encoded public key for encrypting ID tokens.

Client JWT Bearer Public Key Certificate

Specify the base64-encoded X509 certificate in PEM format. The certificate is never used
during the signing process, but is used to obtain the client's JWT bearer public key. The
client uses the private key to sign client authentication and access token request JWTs,
while AM uses the public key for verification.

The following is an example of the certificate:

-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLj.....
-----END CERTIFICATE-----

You can generate a new key pair alias by using the Java keytool command. Follow the
steps in "To Create Key Aliases in an Existing Keystore" in the Security Guide.

+ How Do I Export a Certificate in PEM Format?

$ keytool \
-list \
-alias myAlias \
-rfc \
-storetype JCEKS \
-keystore myKeystore.jceks \
-keypass myKeypass \
-storepass myStorepass

Alias name: myAlias
Creation date: Oct 27, 2020
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLj.....
-----END CERTIFICATE-----

For more information, see "Authenticating Clients Using JWT Profiles".

mTLS Self-Signed Certificate

Specify the base64-encoded X.509 certificate in PEM format that clients can use to
authenticate to the access_token endpoint during mutual TLS authentication.

Only applies when clients use self-signed certificates to authenticate.

For more information, see "Mutual TLS Using Self-Signed X.509 Certificates"

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 66

mTLS Subject DN

Specify the distinguished name that must exactly match the subject field in the client
certificate used for mutual TLS authentication. For example, CN=myOauth2Client.

Only applies when clients use CA-signed certificates to authenticate.

For more information, see "Mutual TLS Using Public Key Infrastructure".

Use Certificate-Bound Access Tokens

Specify that access tokens issued to this client should be bound to the X.509 certificate it
uses to authenticate to the access_token endpoint.

If enabled, AM adds a confirmation key labeled x5t#S256 to all access tokens. The
confirmation key contains the SHA-256 hash of the client's certificate.

For more information, see "Certificate-Bound Proof-of-Possession"

Public key selector

Select the format of the public keys for JWT profile client authentication, ID token
encryption, and mTLS self-signed certificate authentication. Valid formats are:

• JWKs_URI

Configure a URI that exposes the client public keys in the Json Web Key URI field, and
ensure the following related properties have sensible values for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWKs

Enter a JWK Set containing one or more keys in the Json Web Key field. For example:
{
 "keys": [
 {
 "kty": "RSA",
 "n": ...
 },
 ...
]
}

• X509

Enter a key object or a single certificate in one of the following fields, depending on the
feature you are configuring:

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 67

• (ID token encryption) Client ID Token Public Encryption Key. Requires an RSA public
key object in X.509 PEM format. For example:
-----BEGIN PUBLIC KEY-----
......
-----END PUBLIC KEY-----

• (JWT client authentication) Client JWT Bearer Public Key. Requires a X.509 certificate
in PEM format. For example:
-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

• (mTLS client authentication) mTLS Self-Signed Certificate. Requires a X.509
certificate in PEM format. For example:
-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

Default: JWKs_URI

User info response format.

Specify the output format from the UserInfo endpoint.

The supported output formats are as follows:

• User info JSON response format.

• User info encrypted JWT response format.

• User info signed JWT response format.

• User info signed then encrypted response format.

For more information on the output format of the UserInfo Response, see Successful
UserInfo Response in the OpenID Connect Core 1.0 incorporating errata set 1
specification.

Default: User info JSON response format.

User info signed response algorithm

Specify the JSON Web Signature (JWS) algorithm for signing UserInfo Responses. If
specified, the response will be JSON Web Token (JWT) serialized, and signed using JWS.

The default, if omitted, is for the UserInfo Response to return the claims as a UTF-8-
encoded JSON object using the application/json content type.

https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse
https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 68

User info encrypted response algorithm

Specify the JSON Web Encryption (JWE) algorithm for encrypting UserInfo Responses.

If both signing and encryption are requested, the response will be signed then encrypted,
with the result being a nested JWT.

The default, if omitted, is that no encryption is performed.

User info encrypted response encryption algorithm

Specify the JWE encryption method for encrypting UserInfo Responses. If specified, you
must also specify an encryption algorithm in the User info encrypted response algorithm
property.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated
encryption mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-
SHA-2 for integrity.

Default: A128CBC-HS256

Request parameter signing algorithm

Specify the JWS algorithm for signing the request parameter.

Must match one of the values configured in the Request parameter Signing Algorithms
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect" in
the Reference.

Request parameter encryption algorithm

Specify the algorithm for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Algorithms
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect" in
the Reference.

Request parameter encryption method

Specify the method for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Methods
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect" in
the Reference.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 69

Default: A128CBC-HS256

Token introspection response format

Specifies the format of the token introspection response. The possible values for this
property are:

• JSON response format

• Signed JWT response format

• Signed then encrypted JWT response format

Even if the client has configured the response to be JSON-formatted, it can request a
signed JWT by adding the "Accept: application/jwt" header to the request. However, when
a client that is configured to use either of the JWT-formatted responses requests a JSON
response, AM returns an error. For an example, see "/oauth2/introspect".

The JWT response format follows the JWT Response for OAuth Token Introspection
Internet Draft.

For related signing and encryption algorithms, see the following properties:

• Token introspection response signing algorithm

• Token introspection response encryption algorithm

• Token introspection response encryption method

Default: JSON response format

Token introspection response signing algorithm

Specifies the algorithm used to sign the token introspection response when it is formatted
as a signed JWT.

Must match a value configured in the Token Introspection Response Signing Algorithms
Supported property of the OAuth2 Provider service. See "Advanced OpenID Connect" in
the Reference.

AM supports the following signing algorithms:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response-03
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response-03

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 70

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

• RS384 - RSASSA-PKCS-v1_5 using SHA-384.

• RS512 - RSASSA-PKCS-v1_5 using SHA-512.

• EdDSA - EdDSA with SHA-512.

The signing key used depends on the algorithm chosen. The relevant secret IDs and the
default signing key aliases are shown in the table below:

+ Secret ID Mappings for Signing OpenID Connect Tokens

The following table shows the secret ID mapping used to sign OpenID Connect ID
tokens:

Secret ID Default Alias Algorithms a

am.services.oauth2.oidc.signing.ES256 es256test ES256
am.services.oauth2.oidc.signing.ES384 es384test ES384
am.services.oauth2.oidc.signing.ES512 es512test ES512
am.services.oauth2.oidc.signing.RSA rsajwtsigningkey PS256

PS384
PS512
RS256
RS384
RS512

am.services.oauth2.oidc.signing.EDDSA EdDSA with SHA-512
a The following applies to confidential clients only:

If you select an HMAC algorithm for signing ID tokens (HS256, HS384, or HS512), the Client Secret property
value in the OAuth 2.0 Client is used as the HMAC secret instead of an entry from the secret stores.

Since the HMAC secret is shared between AM and the client, a malicious user compromising the client could
potentially create tokens that AM would trust. Therefore, to protect against misuse, AM also signs the token
using a non-shared signing key configured in the am.services.oauth2.jwt.authenticity.signing secret
ID.

Default: RS256

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 71

Token introspection response encryption algorithm

Specifies the algorithm used to encrypt the token introspection response when it is
formatted as a signed then encrypted JWT.

Must match a value configured in the Token Introspection Response Encryption
Algorithms Supported property of the OAuth2 Provider service. See See "Advanced
OpenID Connect" in the Reference.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and
MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• dir - Direct encryption with AES using the hashed client secret.

• ECDH-ES - Elliptic Curve Diffie-Hellman

• ECDH-ES+A128KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 128-bit key.

• ECDH-ES+A192KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 192-bit key.

• ECDH-ES+A256KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 256-bit key.

The algorithms that are not specified as being derived from the client secret use the
client's public keys. For more information, see the Public key selector property.

Default: RSA-OAEP-256

Token introspection response encryption method

Specifies the encryption method used to encrypt the token introspection response when it
is formatted as a signed then encrypted JWT.

Must match a value configured in the Token Introspection Response Encryption Methods
Supported property of the OAuth2 Provider service. See See "Advanced OpenID Connect"
in the Reference.

AM supports the following encryption methods:

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 72

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated
encryption mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with
HMAC-SHA-2 for integrity.

Default: A128CBC-HS256

+ UMA Properties

Client Redirection URIs

Note

This property is for future use, and not currently active.

Specify one or more allowable URIs to which the client can be redirected after the UMA
claims collection process. The URIs must not contain a fragment (#).

If multiple URIs are registered, the client MUST specify the redirection URI to be
redirected to following approval.

Some of the configuration of the clients will depend on the configuration of the authorization
server, and the type of client you are registering.

+ Configuration Tips

Some basic points you must decide on are:

• Is the client public or confidential?

• What is its redirection URI?

• Which scopes does it need?

• What's the name this client will show as in the UI pages?

• Which grant types the client can use to request tokens?

• Which tokens can this client request?

• In the case of an OpenID Connect client:

• If the client is confidential, which authentication method will it use?

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 73

• Which claims does the client need?

4. When finished, save your work.

To Configure a Client Profile Group

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0.

• To create a new OAuth 2.0 client profile group:

On the Groups tab, select Add Group, and then provide the Group ID. Finally, select Create.

• To configure a OAuth 2.0 client profile group:

On the Groups tab, select the group to configure.

2. Adjust the configuration as needed. See "To Create and Configure a Client Profile".

3. When finished, save your work.

If the group is assigned to one or more OAuth 2.0 client profiles, changes to inherited properties
in the group are also applied to the client profile.

To assign a group to an OAuth 2.0 client profile, see "To Assign a Group to a Client Profile and
Inherit Properties".

To Assign a Group to a Client Profile and Inherit Properties

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0. On the
Clients tab, select the client ID to which a group is to be assigned.

2. On the Core tab, select the group to assign to the client from the Group drop-down.

Warning

Adding or changing an assigned group will refresh the settings page. Unsaved property values will be lost.

The inheritance (padlock) icons appear next to properties that support inheriting their value from
the assigned group. Not all properties can inherit their value, such as, the Client secret property.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 74

OAuth 2.0 Client Profile Group Inheritance

3. Inherit a property value from the group by selecting the inheritance button (the open padlock
icon) next to the property.

The value will be inherited from the group and the field will be locked.

Note

If you change the group, properties with inheritance enabled will inherit the value from the new group.

Client Registration

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 75

If you remove the group, inherited property values are written to the OAuth 2.0 client profile, and become
editable.

4. When finished, save your work.

OAuth 2.0 Client Authentication
Authenticating Clients Using Form Parameters

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 76

Chapter 8

OAuth 2.0 Client Authentication
AM can authenticate OAuth 2.0/OpenID Connect clients by using the following methods:

• "Authenticating Clients Using Form Parameters"

• "Authenticating Clients Using Authorization Headers"

• "Authenticating Clients Using JWT Profiles"

• "Authenticating Clients Using Mutual TLS"

Confidential clients holding a secret or a JWT bearer token assertion can authenticate with the
authorization server using any of the above methods.

While confidential clients must always authenticate in one of the ways described in this section,
public clients are not required to authenticate, because their information is intended to be public or
they are used over insecure channels, so their secret could be easily snooped.

Important

OAuth 2.0 and OpenID Connect clients can use the same authentication methods. However, OpenID Connect
clients must specify the method they are using in their client profiles.

See "OpenID Connect Client Authentication" in the OpenID Connect 1.0 Guide.

Authenticating Clients Using Form Parameters
Clients that have a client secret can send the client ID in the client_id form parameter and the secret
in the client_secret form parameter in the body of the request. For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
...

This is the simplest way to authenticate to any of the OAuth 2.0 endpoints, and the most insecure,
since the client credentials are exposed. Ensure that communication with the authorization server
happens over a secure protocol to protect the secret, and use this method in production only if the
other methods are not available for your client.

OAuth 2.0 Client Authentication
Authenticating Clients Using Authorization Headers

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 77

Tip

OpenID Connect clients must also specify the authentication method they are using in their client profiles. See
"OpenID Connect Client Authentication" in the OpenID Connect 1.0 Guide.

Authenticating Clients Using Authorization Headers
Clients that have a client secret can send the client ID and the secret in a basic authorization header
with the base64-encoded value of client_id:client_secret. For example:
$ curl \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--request POST \
...

Note

If the client ID or client secret contains characters that have special meaning in URL-encoded strings, such as
percent (%) or plus (+) characters, you must first URL-encode the string before combining them with the colon
character and base64-encoding the result. URL-encoding characters that do not have special meaning in URL-
encoded strings will still work, but is unnecessary.

For example, for a client named example.com with a client secret of s=cr%t:

1. URL-encode the client secret value and combine with the colon character. For example: example.com:s%3Dcr
%25t.

Note that you should not URL-encode the separating colon character.

2. Base64-encode the entire string to obtain the basic authorization header. For example,
ZXhhbXBsZS5jb206cyUzRGNyJTI1dA==

Ensure that communication with the authorization server happens over a secure protocol to help
protect the credentials.

Tip

OpenID Connect clients must also specify the authentication method they are using in their client profiles. See
"OpenID Connect Client Authentication" in the OpenID Connect 1.0 Guide.

Authenticating Clients Using JWT Profiles
Clients can send a signed JWT to the authorization server as credentials instead of the client ID
and/or secret, as per (RFC 7523) JWT Profile for OAuth 2.0 Client Authentication and Authorization
Grants. The authorization server must be able to validate the JWT to authenticate the client.

https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523

OAuth 2.0 Client Authentication
Authenticating Clients Using JWT Profiles

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 78

The following diagram demonstrates the JWT Bearer client authentication flow:

JWT Bearer Client Authentication

Client can be Issuer

Client

Client

Issuer

Issuer

AM
Authorizat ion Server

AM
Authorizat ion Server

1) Request JWT

2) JWT (signed)

3) POST with client_assert ion and client_assert ion_type

4) Validate JWT

5) Response (for example, with an access token)

The steps in the diagram are described below:

1. The client requests a JWT from the issuer.

Tip

Clients usually generate their own JWTs before starting the OAuth 2.0/OpenID Connect flow, but they can
delegate the task to a specific service in your environment if required. AM cannot generate JWTs for this
purpose.

2. The issuer returns a signed JWT to the client. The JWT must contain, at least, the following claims
in the payload:

• iss. Specifies the unique identifier of the JWT issuer. This could also be the client, or a third
party.

• sub. Specifies the principal who is the subject of the JWT. Must be set to the client ID.

OAuth 2.0 Client Authentication
Authenticating Clients Using JWT Profiles

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 79

• aud. Specifies the authorization server that is the intended audience of the JWT. Must be set to
the authorization server's token endpoint. For example, https://openam.example.com:8443/openam/
oauth2/realms/root/access_token.

• exp. Specifies the expiration time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT
 expiration time is unreasonable error message.

• jti. Specifies a random, unique identifier for the JWT.

This claim is required if the client requests the openid scope, and optional otherwise.

For more information about the JWT, read the RFC 7523 standard.

The JWT issuer must digitally sign the JWT or have a Message Authentication Code (MAC) applied
by the issuer. When the issuer is also the client, the client can sign the JWT by using a private key.

AM ignores keys specified in JWT headers, such as jku and jwe. Regardless of who issues the JWT,
you must configure the public key or HMAC secret in the client profile so AM can validate it:

+ Configuring Certificates Represented as PEM Files

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Signing and
Encryption.

b. In the Client JWT Bearer Public Key field, enter the public certificate. For example:
-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLjAN...
-----END CERTIFICATE-----

You can only enter one certificate.

c. In the Public key selector drop-down list, select X509.

+ Configuring Public Keys in JWK Format

You can either enter the JWK Set in the client profile, or store the JWK Set in a URI that
exposes it to AM:

• To store the JWK Set in the client profile:

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Signing and
Encryption.

b. In the Json Web Key field, enter the JWK Set. For example:

https://www.rfc-editor.org/rfc/rfc7523.html#section-3

OAuth 2.0 Client Authentication
Authenticating Clients Using JWT Profiles

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 80

{
 "keys": [
 {
 "alg": "RSA-OAEP-256",
 "kty": "RSA",
 "use": "sig",
 "kid": "RemA6Gw0...LzsJ5zG3E=",
 "n": "AL4kjz74rDo3VQ3Wx...nhch4qJRGt2QnCF7M0",
 "e": "AQAB"
 }
]
}

Enter a JWK Set with multiple JWKs if you plan to rotate certificates.

c. In the Public key selector drop-down list, select JWKs.

• To store the JWK Set in a URI:

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Signing and
Encryption.

b. In the Json Web Key URI field, configure the URI that exposes the JWK Set. Ensure that
the following related properties have sensible values for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

Store a JWK Set with multiple JWKs if you plan to rotate certificates.

c. In the Public key selector drop-down list, select JWKs_URI.

+ Configuring HMAC Secrets

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Core.

b. In the Client secret field, enter the HMAC secret. For more information about the lenght of
the secret, see the Symmetric Key Entropy section of the OpenID Connect specification.

https://openid.net/specs/openid-connect-core-1_0.html#SymmetricKeyEntropy

OAuth 2.0 Client Authentication
Authenticating Clients Using Mutual TLS

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 81

You can only enter one HMAC secret.

Tip

OpenID Connect clients must also specify the authentication method they are using in their client profiles.
See "OpenID Connect Client Authentication" in the OpenID Connect 1.0 Guide.

3. The client includes the JWT and a client assertion type in the call to the OAuth 2.0 endpoint in the
following parameters:

• client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer

• client_assertion=my_JWT

For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer"
--data "client_assertion=eyAiYWxnIjogIlJTMjU2IiB9.eyAic3ViIjogImp3..."
...

4. The authorization server validates the JWT with the public key stored in the client profile.

5. The authorization server issues a response to the client. This response may include, for example,
an access token.

A sample Java-based client to test the JWT token bearer flow is provided.

For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for AM (All versions)? in the Knowledge Base.

Authenticating Clients Using Mutual TLS
Clients can authenticate to AM by using mutual TLS (or mTLS) and X.509 certificates that are either
self-signed, or that use public key infrastructure (PKI), as per version 12 of the draft OAuth 2.0
Mutual TLS Client Authentication and Certificate Bound Access Tokens specification.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12

OAuth 2.0 Client Authentication
Mutual TLS Using Public Key Infrastructure

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 82

Tip

AM also supports the Certificate Bound Access Tokens part of the specification. For more information, see
"Certificate-Bound Proof-of-Possession".

Mutual TLS Using Public Key Infrastructure

This method of authenticating OAuth 2.0 clients requires that the certificate presented by the client
contains a subject distinguished name that matches exactly a value specified in the client profile in
AM.

The Certificate Authority specified in the chain must also be trusted by AM. You can configure secret
mappings with secret ID am.services.oauth2.tls.client.cert.authentication to specify which certificate
authorities AM trusts.

To Configure AM for Mutual TLS Using Public Key Infrastructure

Follow the steps in this procedure to configure AM to support mutual TLS using PKI.

1. If you have not already done so, create an OAuth 2.0 client profile in AM.

For more information, see "Client Registration".

2. Setup a secret store in the same realm as the OAuth 2.0 client. AM maintains the details of
trusted certificate authorities in this secret store.

You can use an existing secret store, or create a new store, as follows:

a. In the administration console, navigate to Realms > Realm Name > Secret Stores, and then
click Add Secret Store.

b. Enter an ID for the secret store (for example, TrustStore), select the store type, complete the
required fields, and then click Create.

Note

You may need to configure the credentials for accessing the new store in one of the other configured
secret stores.

For more information on configuring secret stores, see "Configuring Secrets, Certificates, and Keys" in
the Security Guide.

3. Import the certificates belonging to the certificate authorities you want the instance of AM to
trust.

4. Map the aliases of the imported certificates to the am.services.oauth2.tls.client.cert.authentication
secret ID:

OAuth 2.0 Client Authentication
Mutual TLS Using Public Key Infrastructure

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 83

a. In the administration console, navigate to Realms > Realm Name > Secret Stores > Store
Name > Mappings, and then click Add Mapping.

b. In the Secret ID field, select am.services.oauth2.tls.client.cert.authentication.

c. In the Aliases field, enter the aliases of the imported CA certificate to trust, and then click the
Add Alias () button.

d. Repeat the previous step to add the aliases of all the CA certificates to trust, and then click
Create.

5. Add the subject distinguished name that must appear in the client certificate to be able to
authenticate:

a. In the administration console, navigate to Realms > Realm Name > Applications > OAuth 2.0
> Agent Name > Signing and Encryption.

b. In the mTLS Subject DN field, enter the distinguished name that must exactly match the
subject field in the client certificate. For example, CN=myOauth2Client.

Note

If this field is left empty, the default value that must be found in a CA-signed client certificate is
CN=Client ID. For example, CN=myMTLSClient.

c. Save your changes.

6. (Optional) Configure the OAuth 2.0 provider to check whether the certificates presented by the
authenticating clients have been revoked:

a. Go to Realms > Realm Name > Services > OAuth2 Provider > Advanced.

b. Enable Check TLS Certificate Revocation Status.

c. (Optional) In the OCSP Responder URI field, enter the URI of the online certificate status
protocol responder service. AM will use this service to check the certificates.

If not specified, AM determines the appropriate URI from the certificate.

d. (Optional) In the OCSP Responder Certificate field, enter the PEM-encoded certificate that
AM will use to verify all OCSP responses.

If not specified, AM determines the appropriate certificate from the trusted CA certificates
configured in the am.services.oauth2.tls.client.cert.authentication secret ID.

AM is now configured to accept CA-signed client certificate for authentication. For information on
how to present the certificates when authenticating, see "Providing Client Certificates to AM".

OAuth 2.0 Client Authentication
Mutual TLS Using Self-Signed X.509 Certificates

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 84

Mutual TLS Using Self-Signed X.509 Certificates

This method of authenticating OAuth 2.0 clients requires that the self-signed X.509 certificate
presented by the client matches exactly a certificate specified in the client profile in AM.

You can specify the expected self-signed X.509 certificate in the client profile using one of the
following methods:

1. JSON Web Key Set (JWKS)

Specify the X.509 certificates in the X.509 Certificate Chain (x5c) attribute of the one or more
JSON Web Keys specified in the set.

2. JSON Web Key Set URI (JWKS_uri)

AM periodically retrieves the JWKS from the specified URI, and uses the certificates provided in
the X.509 Certificate Chain (x5c) attribute to verify the client certificate.

3. X.509

Add content of the X.509 certificate as-is into the client profile.

Unlike the other methods, only a single certificate can be specified using this method.

To Configure AM for Mutual TLS Using Self-Signed X.509 Certificates

Follow the steps in this procedure to configure AM to support mutual TLS using self-signed
certificates.

1. If you have not already done so, create an OAuth 2.0 client profile in AM.

For more information, see "Client Registration".

2. To provide the X.509 certificates the client will use to authenticate, navigate to Applications >
OAuth 2.0 > Agent Name > Signing and Encryption, and then perform one of the following steps:

• To use a JSON Web Key Set (JWKS) to specify the certificates:

a. Set the Public key selector property to JWKs.

b. Enter the contents of the JWKS in the Json Web Key property.

• To use a JSON Web Key Set URI (JWKS_uri) to specify the certificates:

a. Set the Public key selector property to JWKs_uri.

b. Enter the JWKS URI in the Json Web Key URI property.

• To use the contents of an X.509 certificate:

OAuth 2.0 Client Authentication
Providing Client Certificates to AM

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 85

a. Set the Public key selector property to X509.

b. In the mTLS Self-Signed Certificate field, enter the content of the X.509 certificate, which
must be in PEM format.

Tip

You can choose to include or exclude the -----BEGIN CERTIFICATE----- and -----END CERTIFICATE--
--- labels.

Tip

OpenID Connect clients must also specify the authentication method they are using in their client profiles.
See "OpenID Connect Client Authentication" in the OpenID Connect 1.0 Guide.

3. Save your changes.

AM is now configured to accept self-signed client certificate for authentication. For information on
how to present the certificates when authenticating, see"Providing Client Certificates to AM".

Providing Client Certificates to AM

The client can provide its certificate to AM by using either of methods below.

Important

You must configure the web container in which AM runs to use TLS connections, and to request and accept
client certificates.

Consult the documentation for your web container to determine the appropriate actions to take.

1. Standard TLS Client Certificate Authentication

The client provides its certificates in the standard servlet client certificate attribute.

This is the preferred method, as the web container will verify that the client authenticated the
TLS session with the private key associated with the certificate.

After configuring AM to accept client certificates, the client can authenticate to the OAuth 2.0
access_token endpoint using one of the X.509 certificates registered in the client.

Any of the OAuth 2.0 grant flows that makes a call to the access_token endpoint can authenticate
clients using X.509 certificates. The following example uses grant_type=client_credentials, and
attaches the client certificates to the request:

OAuth 2.0 Client Authentication
Providing Client Certificates to AM

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 86

$ curl --request POST \
--data "client_id=myClient" \
--data "grant_type=client_credentials" \
--data "scope=write" \
--data "response_type=token" \
--cert "myClientCertificate.pem" \
--key "myClientCertificate.key.pem" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

2. Trusted Headers

AM receives the certificates in a configured, trusted HTTP header.

This method is intended for cases where TLS is being terminated at a reverse proxy or load
balancer, and therefore the container in which AM runs is not directly able to authenticate the
client.

You must configure the proxy or load balancer to:

a. Forward the certificate to AM in the trusted header.

AM supports receiving certificates in the following formats:

• Raw PEM-encoded.

• PEM-encoded first, then URL-encoded, for compatibility with the NGINX $ssl_client_escaped_
cert variable.

• PEM-encoded first, URL-encoded next, and then included as a field in a multi-field trusted
header, for compatibility with the Envoy x-forwarded-client-cert headers.

To specify the format of the trusted header, go to Realms > Realm Name > Services > OAuth2
Provider > Advanced, and choose the appropriate value in the TLS Client Certificate Header
Format drop-down list:

• Use URLENCODED_PEM for raw PEM and NGINX-like URL-encoded formats.

• Use X_FORWARDED_CLIENT_CERT for the Envoy-like format.

b. Strip the trusted header from any incoming requests. This is because AM has no way of
authenticating the contents of this header, and so would trust whatever is present.

To specify the name of the trusted header, in the administration console, navigate to Realms
> Realm Name > Services > OAuth2 Provider > Advanced, and enter the header name in the
Trusted TLS Client Certificate Header property.

OAuth 2.0 Client Authentication
Providing Client Certificates to AM

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 87

Tip

It is recommended to specify a strong, random name for the trusted header. A misconfigured proxy or load
balancer could let an attacker send malicious header values. A trusted header name that is difficult to guess
makes this type of attack more difficult.

Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 88

Chapter 9

Proof-of-Possession
Proof-of-possession is a means of ensuring that the client sending a request to the resource server is
in possession of a particular cryptographic key. In other words, it is a way of proving the identity of
the client.

Configure proof-of-possession to control which clients access your resources, or to mitigate against
token theft; a malicious user with an access token must also present the cryptographic key to access
the resources.

AM supports the following proof-of-possession methods:

JWK-Based Proof-of-Possession

Certificate-Based Proof-of-Possession

JWK-Based Proof-of-Possession
To implement JWK-based proof-of-possession, the client includes a JWK when making a request to
the authorization server for an access token as per Proof-of-Possession Key Semantics for JSON Web
Tokens (JWTs) spec. The JWK consists of the public key of a key pair generated by the client.

When the client presents the access token to a resource server, the resource server can
cryptographically confirm proof-of-possession of the token by using the associated JWK to form a
challenge-response interaction with the client.

+ JWK-Based Proof-of-Possession Flow

https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800

Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 89

OAuth 2.0 JWK-Based Proof-of-Possession Flow

Client

Client Resource Server

AM
Authorizat ion Server

AM
Authorizat ion Server

Obtain Access Token

1) Request access token and include a JWK

2) Return JWT with embedded JWK (client- based) or access token ID (CTS- based)

Access a Resource

3) Present JWT / access token ID Resource Server

If CTS- based...

4) Introspect access
token ID to acquire JWK

Challenge- Response

5) Create a challenge
using the JWK

6) Issue challenge

7) Solve the challenge using the private key

8) Issue response

Validate response and
allow or deny access
to the resource.

The steps in the diagram are described below:

1. The client requests an access token using any of the OAuth 2.0 grant flows, and includes a
JWK in the request.

Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 90

This JWK consists of the public key of a key pair generated by the client.

2. The authorization server returns the access token to the client:

• If the authorization server is configured for CTS-based OAuth 2.0, it stores the JWK with the
access token in the CTS token store and provides the client with the access token ID.

• If the authorization server is configured for client-based OAuth 2.0, the access token is a
JWT that contains the JWK embedded in it.

3. The client requests access to the protected resources from the resource server.

4. The resource server recovers the JWK associated with the access token:

• If the resource server receives an access token ID (CTS-based OAuth 2.0), it introspects the
access token ID to recover the JWK from the authorization's server CTS token store.

• If the resource server receives an access token JWT (client-based OAuth 2.0), it already has
access to the JWK, which is embedded.

5. The resource server creates a challenge using the JWK. Usually, these challenges are
messages or nonces that have been encrypted with the JWK.

6. The resource server sends the challenge to the client.

7. The client solves the challenge using the private key of its key pair.

8. The client sends the response to the challenge to the resource server.

9. The resource server validates the response and allows access to the resource.

To use JWK-based proof-of-possession by associating a JWK with an OAuth 2.0 access token, perform
the following steps:

To Obtain an Access Token Using JWK-Based Proof-of-Possession

1. Generate a JSON web key pair for the OAuth 2.0 client.

AM supports both RSA and elliptic curve (EC) key types. For testing purposes, you can use an
online JSON web key generator, such as https://mkjwk.org/, to generate a key pair in JWK format.
Be sure to store the full key pair, including the private key, in a secure location that is accessible
by your OAuth 2.0 client.

Your OAuth 2.0 client should never reveal the private key.

2. Represent the public key of the key pair in JWK format. For example:

https://mkjwk.org/

Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 91

{
 "jwk":{
 "alg":"RS256",
 "e":"AQAB",
 "n":"xea7Tb7rbQ4ZrHNKrg...QFXtJ-didSTtXWCWU1Qrcj0hnDjvkuUFWoSQ_7Q",
 "kty":"RSA",
 "use":"enc",
 "kid":"myPublicJSONWebKey"
 }
}

Note

The jwe and jku formats are not supported, the public key must be represented in jwk format.

3. Base64-encode the JWK. For example:

ew0KICAgICJKV0siOiB7DQogICAgICAgICJhbGciOiAiUlMyNTYiLA0KICAgICAgICAiZSI6IC
JBUUFCIiwNDQogICAgICAgICJraWQiOiAibXlQdWJsaWNKU09OV2ViS2V5Ig0KICAgIH0NCn0=

4. The client includes the base64-encoded JWK as the value of the cnf_key parameter in the request
to the authorization server for an access token.

For example, in the Client Credentials grant, the client makes a POST call to the authorization
server's token endpoint specifying, at least, the following parameters:

• grant_type=client_credentials

• cnf_key=your_base64-encoded-JWK

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "OAuth 2.0 Client Authentication".

For example:
$ curl \
--request POST \
--data "grant_type=client_credentials"\
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "cnf_key=ew0KICAgICJKV0siOiB7DQogICAgICAgICJhb
 GciOiAiUlMyNTYiLA0KICAgICAgICAiZSI6IC
 JBUUFCIiwNDQogICAgICAgICJraWQiOiAibXl
 QdWJsaWNKU09OV2ViS2V5Ig0KICAgIH0NCn0=" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 92

For more information about how to use the different OAuth 2.0 grant flows, see "OAuth 2.0 Grant
Flows".

The authorization server returns the access token:

• If the authorization server is configured to use CTS-based OAuth 2.0 tokens, the response will
include an access token ID in the access_token property, which identifies the access token data
stored on the server. For example:
{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If the authorization server is configured to use client-based OAuth 2.0 tokens, the response will
be a JSON web token in the access_token, which has the JWK embedded within. The following
example has shortened the access token for display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

5. The client now requests access to the protected resources from the resource server.

If CTS-based OAuth 2.0 tokens are enabled, the resource server can make a POST request to
the /oauth2/introspect endpoint to acquire the public key. The public key from the original JWK is
returned in the cnf element:

Proof-of-Possession
Certificate-Bound Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 93

$ curl \
--request POST \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--data "token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04" \
"https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active": true,
 "scope": "profile",
 "client_id": "myClient",
 "user_id": "myClient",
 "username": "myClient",
 "token_type": "access_token",
 "exp": 1477666348,
 "sub": "myClient",
 "iss": "https://openam.example.com:8443/openam/oauth2/realms/root",
 "cnf": {
 "jwk": {
 "alg": "RS256",
 "e": "AQAB",
 "n": "xea7Tb7rbQ4ZrHNKrg...QFXtJ-didSTtXWCWU1Qrcj0hnDjvkuUFWoSQ_7Q",
 "kty": "RSA",
 "use": "enc",
 "kid": "myPublicJSONWebKey"
 },
 "auth_level": 0
 }
}

6. The resource server should now use the public key to cryptographically confirm proof-of-
possession of the token by the presenter; for example, with a challenge-response interaction.

Successful completion of the challenge-response means that the client must possess the private
key that matches the public key presented in the original request, and access to resources can be
granted.

Certificate-Bound Proof-of-Possession
AM supports associating an X.509 certificate with an access token to support proof-of-possession
interactions, as per version 12 of the OAuth 2.0 Mutual TLS Client Authentication and Certificate
Bound Access Tokens internet-draft.

This ensures that only the client in possession of the private key corresponding to the certificate can
use the bearer token to access protected resources.

Since the resource server validates the hash contained in the access token as proof-of-possession
against the client's certificate, clients must use the certificate used to request the bearer token when
accessing the protected resources. Moreover, this implies that access tokens are invalidated when
clients update their certificates.

+ Certificate-Bound Proof-of-Possession Flow

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12

Proof-of-Possession
Certificate-Bound Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 94

OAuth 2.0 Certificate-Bound Proof-of-Possession Flow

Client

Client Resource Server

AM
Authorizat ion Server

AM
Authorizat ion Server

Obtain Access Token

1) Request access token over mTLS

2) Embed client cert if icate hash
into access token

3) Return access token as JWT (client- based)
or access token ID (CTS- based)

Access a Resource

4) Present JWT / access token ID with
embedded cert if icate hash over TLS

Resource Server

If CTS- based...

5)
Introspect access
token ID to validate x5t#S256 hash
against client 's TLS cert if icate

If Client- based...

6) Read x5t#S256 hash from the access token
to validate it against client 's TLS cert if icate

7) Allow access to protected resource

The steps in the diagram are described below:

1. The client, communicating over TLS, requests an access token using an OAuth 2.0 grant flow.

Note

The Implicit Grant flow does not support certificate-bound proof-of-possession. For more information,
see the OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens internet-
draft.

2. The authorization server returns the access token to the client with the client's certificate hash
embedded:

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12

Proof-of-Possession
Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 95

• If the authorization server is configured for CTS-based OAuth 2.0, the authorization server
stores the certificate hash with the access token in the CTS token store and provides the
client with the access token ID.

• If the authorization server is configured for client-based OAuth 2.0, the access token is a
JWT that contains the certificate hash embedded in it.

The hash of the client's certificate is stored in the cnf confirmation key of the type x5t#S256,
which contains the base64URL-encoded SHA-256 hash of the DER-encoding of the full X.509
certificate.

3. The client, communicating over mTLS, requests access to the protected resources from the
resource server.

4. The resource server validates the client's certificate with the certificate hash contained in the
access token:

• If the authorization server is configured for CTS-based OAuth 2.0, the resource server
calls the OAuth 2.0 introspect endpoint with the access token to recover the cnf claim that
contains the certificate's hash.

• If the authorization server is configured for client-based OAuth 2.0, the resource server
recovers the cnf claim that contains the certificate's hash from the access token JWT.

5. The resource server allows access to the protected resources.

To configure your environment for certificate-bound tokens, see the following sections:

• "Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured"

• "Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication"

Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

Clients can authenticate to the OAuth 2.0 endpoints by presenting X.509 self-signed or CA-signed
certificates as per version 12 of the OAuth 2.0 Mutual TLS Client Authentication and Certificate
Bound Access Tokens internet-draft.

Depending on the type of client, AM performs the following actions:

• Confidential clients. When clients present a certificate as the authentication method while making
a call to the token endpoint, AM authenticates the client and AM binds the certificate to the access
token.

• Public clients. When clients present a certificate while making a call to the token endpoint, AM
ignores the certificate for authentication purposes and binds the certificate to the access token.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12

Proof-of-Possession
Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 96

To Obtain Certificate-Bound Tokens When Authenticating with Mutual TLS

Perform the steps in the following procedure to obtain a certificate-bound access token when a client
authenticates using mutual TLS:

1. Ensure your environment enforces TLS between the authorization server and the clients,
and between the resource server and the clients. Self-signed and CA-signed certificates are
supported.

You must configure the container where AM runs to request and accept client certificates.

2. Configure AM as an OAuth 2.0 authorization server using the following information:

• You must enable the Support TLS Certificate-Bound Access Tokens switch (Realms > Realm
Name > Services > OAuth2 Provider > Advanced).

This property specifies whether AM should bind certificates to access tokens when clients
authenticate using TLS client certificates.

• If TLS is being terminated at a reverse proxy or load balancer, you must configure the Trusted
TLS Client Certificate Header property (Realms > Realm Name > Services > OAuth2 Provider
> Advanced) to hold the name of the HTTP header that will provide AM with the client
certificate.

For more information, see "Providing Client Certificates to AM".

3. Register an OAuth 2.0 client in AM. The following configuration will be used in the examples of
this procedure:

• Client ID: myClient

• Scopes: write

• Response Types: token

• Grant Types: Client Credentials

• You must enable the Use Certificate-Bound Access Tokens switch (Realms > Realm Name >
Applications > OAuth 2.0 > Client Name > Signing and Encryption).

This switch specifies whether AM should bind certificates to access tokens for this client when
the client authenticates to the token endpoint using a TLS client certificate. When disabled, AM
does not bind certificates to access tokens issued to the client even if the client presents a TLS
client certificate.

4. Configure the client for mutual TLS authentication. For more information, see "Authenticating
Clients Using Mutual TLS".

Proof-of-Possession
Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 97

5. The client makes a call to the token endpoint to request an access token, and includes its client
certificate in the call:
$ curl --request POST \
--cacert AMServer.cer \
--data "client_id=myClient" \
--data "grant_type=client_credentials" \
--data "scope=write" \
--data "response_type=token" \
--cert myClientCertificate.pem \
--key myClientCertificate.key.pem \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The authorization server returns the access token:

• If CTS-based OAuth 2.0 tokens are enabled, the response will include an access token ID in the
access_token property, which identifies the access token data stored on the server. For example:
{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If client-based OAuth 2.0 tokens are enabled, the response will be a JWT in the access_token,
which has the JWK embedded within. The following example has shortened the access token for
display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

6. The client requests access to the protected resources. The resource server validates the hash
contained in the access token against the certificate the client presents as part of the TLS
handshake.

The hash contained in the access token is stored in the cnf confirmation key of the type x5t#S256,
which contains the base64URL-encoded SHA-256 hash of the DER-encoding of the full X.509
certificate.

If CTS-based OAuth 2.0 tokens are enabled, the resource server can make a POST request to the
introspect endpoint to acquire the certificate's hash:

Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 98

$ curl \
--request POST \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--data "token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04" \
"https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
 {
 "active":true,
 "scope":"write",
 "client_id":"myClient",
 "user_id":"myClient",
 "username":"myClient",
 "token_type":"Bearer",
 "exp":1547079953,
 "sub":"myClient",
 "iss":"https://openam.example.com:8443/openam/oauth2",
 "cnf":{
 "x5t#S256":"m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 }
}

If client-based OAuth 2.0 tokens are enabled, the resource server can decode the JWT to access
the cnf key in the JWT's payload. For example:
{
 "sub": "myClient",
 "cts": "OAUTH2_STATELESS_GRANT",

 "cnf": {
 "x5t#S256": "m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 },
 "exp": 1547083590,
 "iat": 1547079990,
 "expires_in": 3600,
 "jti": "sLzkRiayAQKsrXN0Gu_vwFog3Rs"
}

Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

Clients can obtain a certificate-bound access token when making a call to the OAuth 2.0 endpoints as
long as they provide an X.509 client certificate in one of the following ways:

• Presenting a self-signed or CA-signed certificate as part of the TLS handshake with AM.

AM authenticates the clients using the specified credentials (for example, client ID and secret) and
binds the certificate to the access token.

Your environment must enforce TLS between the authorization server and the clients, and between
the resource server and the clients.

You must also configure the container where AM runs to request and accept client certificates.

• Providing a hash of the self-signed or CA-signed certificate in the cnf_key parameter as part of the
call to the OAuth 2.0 endpoint.

Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 99

This method uses capabilities already implemented in AM that are not part of the OAuth 2.0 Mutual
TLS Client Authentication and Certificate Bound Access Tokens internet-draft.

Use this option only if the client cannot authenticate its TLS connection to AM.

To Obtain Certificate-Bound Tokens Without Using Mutual TLS for Authentication

Perform the steps in the following procedure to obtain a certificate-bound access token when clients
are not authenticating with mutual TLS:

1. Configure AM as an OAuth 2.0 authorization server using the following information:

• You must enable the Support TLS Certificate-Bound Access Tokens switch (Realms > Realm
Name > Services > OAuth2 Provider > Advanced).

This property specifies whether AM should bind certificates to access tokens when clients
authenticate using TLS client certificates.

• If not using the cnf_key, and if TLS is being terminated at a reverse proxy or load balancer, you
must configure the Trusted TLS Client Certificate Header property (Realms > Realm Name >
Services > OAuth2 Provider > Advanced) to hold the name of the HTTP header that will provide
AM with the client certificate.

For more information, see "Providing Client Certificates to AM".

2. Register a client in AM. The following configuration will be used in the examples of this
procedure:

• Client ID: myClient

• Scopes: write

• Response Types: token

• Grant Types: Client Credentials

• For confidential clients, configure a secret. For example:

• Client Secret: forgerock

• You must enable the Use Certificate-Bound Access Tokens switch (Realms > Realm Name >
Applications > OAuth 2.0 > Client Name > Signing and Encryption).

This switch specifies whether AM should bind certificates to access tokens for this client when
the client authenticates to the token endpoint using a TLS client certificate. When disabled, AM
does not bind certificates to access tokens issued to the client even if the client presents a TLS
client certificate.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-mtls-12

Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 100

3. The client makes a call to the token endpoint to request an access token, and includes its client
certificate in the call:
$ curl --request POST \
--cacert AMServer.cer \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "grant_type=client_credentials" \
--data "scope=write" \
--data "response_type=token" \
--cert myClientCertificate.pem \
--key myClientCertificate.key.pem \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Tip

To use the cnf_key parameter, the client must perform the following additional steps:

• Calculate the SHA-256 hash of the DER-encoding of the full X.509 client certificate and base64URL-
encode it. For example:

m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0

• Store the certificate's hash in JSON format, as follows:

{"x5t#S256":"m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"}

• Base64-encode the JSON. For example:

eyJ4NXQjUzI1NiI6Im04VWNXQlNQTnRhS04xOVRkUjh6VUh2V1dPU0NTWDluc2E1dlU2ZnNjZDAifQ==

• Make a call to the token endpoint to request an access token, including the cnf_key parameter with the
certificate hash. Note that the client certificate is not included in any other way:

$ curl \
--request POST \
--data "grant_type=client_credentials"\
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "cnf_key=eyJ4NXQjUzI1NiI6Im04
 VWNXQlNQTnRhS04xOVRk
 Ujh6VUh2V1dPU0NTWDlu
 c2E1dlU2ZnNjZDAifQ==" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The authorization server returns the access token:

• If CTS-based OAuth 2.0 tokens are enabled, the response will include an access token ID in the
access_token property, which identifies the access token data stored on the server. For example:

Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 101

{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If client-based OAuth 2.0 tokens are enabled, the response will be a JSON web token in the
access_token, which has the certificate hash embedded within. The following example has
shortened the access token for display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

4. The client requests access to the protected resources from the resource server and the resource
server validates the hash contained in the access token against the certificate the client presents
as part of the TLS handshake.

The hash contained in the access token is stored in the cnf confirmation key of the type x5t#S256,
which contains the base64URL-encoded SHA-256 hash of the DER-encoding of the full X.509
certificate.

If CTS-based OAuth 2.0 tokens are enabled, the resource server can make a POST request to the
introspect endpoint to acquire the certificate's hash:
$ curl \
--request POST \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--data "token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04" \
"https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active":true,
 "scope":"write",
 "client_id":"myClient",
 "user_id":"myClient",
 "username":"myClient",
 "token_type":"Bearer",
 "exp":1547079953,
 "sub":"myClient",
 "iss":"https://openam.example.com:8443/openam/oauth2",
 "cnf":{
 "x5t#S256":"m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 }
}

If client-based OAuth 2.0 tokens are enabled, the resource server can decode the JWT to access
the cnf key in the JWT's payload. For example:

Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 102

{
 "sub": "myClient",
 "cts": "OAUTH2_STATELESS_GRANT",

 "cnf": {
 "x5t#S256": "m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 },
 "exp": 1547083590,
 "iat": 1547079990,
 "expires_in": 3600,
 "jti": "sLzkRiayAQKsrXN0Gu_vwFog3Rs"
}

Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 103

Chapter 10

Refresh Tokens
Refresh tokens (RFC 6749) are a type of token that can be used to obtain a new access token that
may have identical or narrower scopes than the original. AM can issue refresh tokens during every
OAuth 2.0/OpenID Connect grant flow except for the Implicit and the Client Credentials grant flows.

+ Why Are Refresh Tokens Useful?

Access tokens are short-lived because, if leaked, they grant potentially malicious users access to
the resource owner resources. However, clients may need to access the protected data for periods
of time that exceed the access token lifetime or when the resource owner is not available. In some
cases, it is unreasonable to ask for the resource owner's consent several times during the same
operation.

Refresh tokens solve this problem by letting clients ask for a new access token without further
interaction from the resource owner. While a potentially malicious user compromising an access
token has access to the resource owner resources, one that holds a refresh token also needs to
compromise the client ID and the client secret to be able to get an access token, since the client
needs to authenticate to the token endpoint to obtain an access token using the refresh token.

Refresh tokens are long-lived by default, and AM lets you configure the lifetime of the tokens in the
OAuth 2.0 Provider settings, or in each client. By default, the configuration of the OAuth 2.0 Provider
is used. For more information, see Advanced Properties and "OAuth2 Provider" in the Reference.

Refresh tokens can also be revoked. For more information, see "/oauth2/token/revoke").

Tasks:

• "To Configure AM to Issue Refresh Tokens"

• "To Refresh an Access Token"

To Configure AM to Issue Refresh Tokens

AM can issue refresh tokens during the following actions:

• When issuing an access token to the client after a successful OAuth 2.0 grant flow.

• When the client successfully uses a refresh token to obtain a new access token. Note that, when a
new refresh token is issued, the old refresh token is deactivated.

https://www.rfc-editor.org/info/rfc6749

Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 104

1. To enable AM to issue refresh tokens at the same time the access token is issued, navigate to
Realms > Realm Name > Services > OAuth2 Provider > Core, and enable Issue Refresh Tokens.

Note that you configure refresh tokens at realm level. Consider carefully the types of clients
registered to the realm before configuring AM to issue refresh tokens.

2. (Optional) To enable AM to also issue refresh tokens when refreshing access tokens, navigate to
Realms > Realm Name > Services > OAuth2 Provider > Core, and enable Issue Refresh Tokens
on Refreshing Access Tokens.

3. Save your changes.

4. To configure a client to use the Refresh Token grant flow perform the following steps:

a. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Advanced.

b. On the Grant Types field, add the Refresh Token grant type.

c. Save your changes.

To Refresh an Access Token

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the Top Level Realm with the following
configuration:

• Issue Refresh Tokens is enabled.

• Issue Refresh Tokens on Refreshing Access Tokens is enabled.

• The token plugin is configured in the Response Type Plugins field.

• The Refresh Token grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write read

• Response Types: token

• Grant Types: Authorization Code Refresh Token

Perform the steps in the procedure to refresh an access token:

1. The client obtains an access token and a refresh token using the Authorization Code Grant flow.
For more information, see "Authorization Code Grant".

Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 105

The example assumes the refresh token is qz1qx-9AYOkRp3AWcCZULvPitpM.

2. The client makes a POST call to the authorization's server token endpoint, specifying, at least, the
following parameters:

• grant_type=refresh_token

• refresh_token=your_refresh_token

For more information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "OAuth 2.0 Client Authentication".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=refresh_token" \
--data "refresh_token=qz1qx-9AYOkRp3AWcCZULvPitpM" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "scope=read" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token":"y-C_A1RKJIg-BUlKhp--kv5Iywk",
 "refresh_token":"qdqVnFJK8FjiQAjYMaBuUY6z_HU",
 "scope":"read",
 "token_type":"Bearer",
 "expires_in":3599
}

Note that the scope parameter is not required. By default, AM will issue an access token with the
same scopes of the original. This example is restricting the new access token to the read scope.

Also note that AM has issued a new refresh token; the original refresh token is now inactive.

Macaroons as Access and Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 106

Chapter 11

Macaroons as Access and Refresh Tokens
Macaroons are a type of bearer token that can be used when issuing OAuth 2.0 access and refresh
tokens. They can be used in place of regular access or refresh tokens, as they allow the sharing of a
single token with multiple clients and resource servers without compromising security.

The idea behind it is that, rather than issuing multiple access tokens with different scopes for a set
of clients, AM issues a macaroon access token with a broad scope to a client. The client then creates
as many macaroons as needed from the single macaroon access token, restricting their scopes as
required by using caveats. This is very useful, for example, in a microservice architecture where a
single client can delegate tasks to other services, with a limited set of capabilities or bound by certain
restrictions.

Caveats are restrictions placed on a macaroon that must be satisfied before using the token.
Meaning, for example, that if the expiry time is past, the token is invalid.

Caveats that can be satisfied locally are referred to as first-party caveats, and caveats satisfied by a
service external from AM are referred to as third-party caveats. Support for third-party caveats and
discharge macaroons in AM is evolving.

+ About Third-Party Caveats and Discharge Macaroons

Third-party caveats are those that require the client to use a service other than AM to get proof
that the condition specified by the caveat is satisfied. They are useful in situations where you
have services external to AM that can make additional authorization checks relevant to the access
token.

For example, consider a case where you have a service external to AM, akin to an IDP in a SAML
v2.0 architecture, that you can query to know if the user related to the access token belongs to a
particular user group.

The proof that the condition is satisfied is returned by the third party in a discharge macaroon,
and the client must present both the access token macaroon and the discharge macaroon to get
access to the resource.

The discharge macaroon can also have first-party caveats attached to it, such as expiry time. This
allows for flows where the access token macaroon is long-lived and the discharge macaroon is not,
which forces the client to acquire a new discharge macaroon to access the resource.

Caution

Any first-party caveats attached to the discharge macaroons will be treated as if they were caveats on
the access token itself. For example, if the discharge macaroon limits the expiry time to five minutes, the

https://backstage.forgerock.com/docs/am/latest/release-notes/stability.html#interface-stability

Macaroons as Access and Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 107

introspection response will list the expiry time of the access token as five minutes even if the access token
was valid for longer.

Another possible use case is related to transactional authorization. Consider a case where a
payment is tied to a unique transaction; you could create a macaroon access token containing
a third-party caveat that requires the client to obtain a one-time discharge macaroon from an
external transactional service.

A third-party caveat has the following parts:

• A hint describing where the client can find the third-party service, which is usually a URL.

• A unique secret key to sign discharge macaroons, known as the discharge key.

• An identifier for the third-party service to know which condition needs to be checked, and how
to recover the discharge key.

There is no standard format for the identifier part.

+ Which First-Party Caveats Does AM Support?

There is no standard format for caveats in Macaroons, so AM has adopted a JSON-based syntax
that mirrors the existing JWT-based token restrictions:

scope

Restricts the scope of the token. The returned scope will be the intersection of the original
token scope and any scope caveats.

exp

Restricts the expiry time of the token. The effective expiry time is the minimum of the original
expiry time and any expiry caveats added to the token. If you have appended more than one
exp caveat, the most restrictive one applies.

cnf

Binds the access token to a client certificate. This means that a client can be issued with a
regular access token and then can later bind it to their client certificate. You can only bind
one client certificate to the macaroon. Any attempt to bind a new certificate with subsequent
caveats is ignored.

aud

Restricts the audience of the token. The effective audience is the intersection of any audience
restriction and any aud caveats.

AM returns any other caveats in a caveats object on the JSON introspection response.

Macaroons as Access and Refresh Tokens
Appending Caveats to Macaroons

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 108

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Appending Caveats to Macaroons
You append caveats to a macaroon through a macaroon library of your choosing. AM provides the /
json/token/macaroon endpoint to add first-party caveats to a macaroon. You can also use this endpoint to
inspect the caveats already appended.

You can also add caveats to the macaroon before AM issues it using access token modification scripts.
AM can append third-party caveats by using access token modification scripts only.

Using OAuth 2.0 Endpoints with Macaroons
AM endpoints that support access tokens also support macaroons without further configuration.
Endpoints will reject macaroons whose caveats are not satisfied.

When dealing with macaroons containing third-party caveats, use the X-Discharge-Macaroon header to
pass a discharge macaroon.

Macaroons and CTS-Based and Client-Based Tokens
Macaroons are layered on top of the existing CTS-Based OAuth 2.0 tokens and Client-Based OAuth
2.0 tokens. When you enable macaroons, AM will issue one of the following:

• CTS-Based Macaroon Tokens: the access token is stored in the CTS, and macaroons are the tokens
issued to clients, where the identifier of the Macaroon is the pointer to the access token in the CTS.

• Client-Based Macaroon Tokens: the access token is a signed and/or encrypted JWT, which is then
wrapped in a Macaroon. Note that the resulting size of the token may impact your deployment. If
client storage is limited, such as when using browser cookies, the token may be too large to store.
Token size may also impact network performance.

Enabling Macaroons
Follow these steps to enable macaroons in the OAuth 2.0 Provider Service:

Macaroons as Access and Refresh Tokens
Enabling Macaroons

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 109

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Realms > Realm Name > Services > OAuth2 Provider.

3. On the Core tab, enable Use Macaroon Access and Refresh Tokens.

4. On the Advanced tab, select the Macaroon Token Format.

Note

It is recommended that you use the default V2. Configuring Macaroons to use the older token format V1 is
much less efficient. It should only be used when compatibility with older Macaroon libaries is required.

5. Set the OAuth2 Token Signing Algorithm to HS256, or higher.

6. Save your changes.

7. Ensure that the am.services.oauth2.jwt.authenticity.signing secret ID is mapped either in the realm,
or globally. AM uses this secret ID mapping to sign and verify macaroon access and refresh
tokens.

For information about secret stores, see "Configuring Secret Stores" in the Security Guide.

OAuth 2.0 Grant Flows

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 110

Chapter 12

OAuth 2.0 Grant Flows
This chapter describes the OAuth 2.0 flows that AM supports, and also provides the information
required to implement them. All the examples assume the realm is configured for CTS-based tokens,
however, the examples also apply to client-based tokens.

You should decide which flow is best for your environment based on the application that will be the
OAuth 2.0 client. The following table provides an overview of the flows AM supports and when they
should be used:

Deciding Which Flow to Use Depending on the OAuth 2.0 Client

Client Type Which Grant to
use?

Description

The client is a web application
running on a server. For example,
a .war application.

Authorization
Code

(RFC 6749) The authorization server uses the user-
agent, for example, the resource owner's browser, to
transport a code that is later exchanged for an access
token.

The client is a native application
or a single-page application
(SPA). For example, a desktop, a
mobile application, or a JavaScript
application.

Authorization
Code with
PKCE

Authorization Code with PKCE

(RFC 6749, RFC 7636) The authorization server uses
the user-agent, for example, the resource owner's
browser, to transport a code that is later exchanged for
an access token.

Since the client does not communicate securely with
the authorization server, the code may be intercepted
by malicious users. The implementation of the Proof
Key for Code Exchange (PKCE) standard mitigates
against those attacks.

The client is a SPA. For example, a
JavaScript application.

Implicit (RFC 6749) The authorization server gives the access
token to the user-agent so it can forward the token
to the client. Therefore, the access token might be
exposed to the user and other applications.

For security purposes, you should use the
Authorization Code grant with PKCE when possible.

The client is trusted with the
resource owner credentials. For
example, the resource owner's
operating system.

Resource
Owner
Password
Credentials

(RFC 6749) The resource owner provides their
credentials to the client, which uses them to obtain an
access token from the authorization server.

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749

OAuth 2.0 Grant Flows

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 111

Client Type Which Grant to
use?

Description

This flow should only be used if other flows are not
available.

The client is the resource owner,
or the client does not act on behalf
of the resource owner.

Client
Credentials

(RFC 6749) Similar to the Resource Owner Password
Credentials grant type, but the resource owner is not
part of the flow and the client accesses information
relevant to itself.

The client is an input-constrained
device. For example, a TV set.

Device Flow (OAuth 2.0 Device Flow for Browserless and Input
Constrained Devices) The resource owner authorizes
the client to access protected resources on their behalf
by using a different user-agent and entering a code
displayed on the client device.

The client has a SAML v2.0
trust relationship with the
resource owner. For example,
an application in an environment
where a SAML v2.0 ecosystem
coexists with an OAuth 2.0 one.

SAML v2.0
Profile

(RFC 7522) The client uses the resource owner's
SAML v2.0 assertion to obtain an access token from
the authorization server without interacting with the
resource owner again.

The client has a trust relationship
with the resource owner that is
specified as a JWT. For example,
an application in an environment
where a non-SAML v2.0 identity
ecosystem coexists with an OAuth
2.0 one.

JWT Bearer
Profile

(RFC 7523) The client uses a signed JWT to obtain an
access token from the authorization server without
interacting with the resource owner.

Tip

AM supports associating a confirmation key or a certificate with an access token to support proof-of-possession
interactions.

For more information, see "Certificate-Bound Proof-of-Possession" and "JWK-Based Proof-of-Possession".

ForgeRock OAuth 2.0 Grant Flows Collection

Use this collection of OAuth 2.0 grant flows to try out the OAuth 2.0 flows that AM supports. The
source for the REST calls, including the prerequisites needed to run the collection, is provided as a
downloadable JSON file collection. You can open the collection in an API tool such as Postman.

Follow these steps to import the JSON File into Postman:

• Open the following link: ForgeRock OAuth 2.0 Collection.

• Import the JSON file into Postman, using either of the following methods:

• Download the JSON file, and open it in Postman from the Import File tab.

https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/draft-ietf-oauth-device-flow/
https://datatracker.ietf.org/doc/draft-ietf-oauth-device-flow/
https://www.rfc-editor.org/info/rfc7522
https://www.rfc-editor.org/info/rfc7523

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 112

• Copy the link to the JSON file, and paste it in the Postman in the Import From Link tab.

Once the ForgeRock OAuth 2.0 Collection is open in Postman, you can run the OAuth 2.0 grant flows.

Note that this collection will make changes to your AM configuration. It contains calls which will
create the following:

• Subrealm called mySubRealm, under the top-level realm.

• OAuth 2.0 Provider service in the subrealm.

• Demo user called ForgeRockDemo.

• Confidential OAuth 2.0 client called forgerockDemoConfidentialClient in the subrealm..

• Public OAuth 2.0 client called forgerockDemoPublicClient in the subrealm.

For more information, see the documentation within the collection.

Authorization Code Grant
Endpoints

• /oauth2/authorize

• /oauth2/access_token

The Authorization Code grant is a two-step interactive process used when the client, for example, a
Java application running on a server, requires access to protected resources.

The Authorization Code grant is the most secure of all the OAuth 2.0 grants for the following reasons:

• It is a two-step process. The user must authenticate and authorize the client to see the resources
and the authorization server must validate the code again before issuing the access token.

• The authorization server delivers the access token directly to the client, usually over HTTPS. The
client secret is never exposed publicly, which protects confidential clients.

+ Authorization Code Grant Flow

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 113

OAuth 2.0 Authorization Code Grant Flow

Resource Owner
User- Agent

Resource Owner
User- Agent

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1) Redirect...

2) ...for authent icat ion

3) Authent icate resource owner and confirm resource access

4) If credent ials are valid, redirect...

5) ...with authorizat ion code to
redirect_uri

6) Authent icate, request access token
with authorizat ion code.

7) If authorizat ion code is valid,
return access token

8) Request resource with access token

9) Request token validat ion and information

10) If access token is valid, respond with information

11) If access token is valid, return protected resource

The steps in the diagram are described below:

1. The client, usually a web-based service, receives a request to access a protected resource. To
access the resources, the client requires authorization from the resource owner.

2. The client redirects the resource owner's user-agent to the authorization server.

3. The authorization server authenticates the resource owner, confirms resource access, and
gathers consent if not previously saved.

4. The authorization server redirects the resource owner's user agent to the client.

5. During the redirection process, the authorization server appends an authorization code.

6. The client receives the authorization code and authenticates to the authorization server to
exchange the code for an access token.

Note that this example assumes a confidential client. Public clients are not required to
authenticate.

7. If the authorization code is valid, the authorization server returns an access token (and a
refresh token, if configured) to the client.

8. The client requests access to the protected resources from the resource server.

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 114

9. The resource server contacts the authorization server to validate the access token.

10. The authorization server validates the token and responds to the resource server.

11. If the token is valid, the resource server allows the client to access the protected resources.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
access token:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant Flow"

• "To Exchange an Authorization Code for an Access Token"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the Top Level Realm. Ensure that:

• The code plugin is configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: code

• Grant Types: Authorization Code

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The client redirects the resource owner's user-agent to the authorization server's authorization
endpoint specifying, at least, the following form parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 115

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code \
&scope=write \
&state=abc123 \
&redirect_uri=https://www.example.com:443/callback

Note that the URL is split and spaces have been added for readability purposes and that the scope
and state parameters have been included. Scopes are not required, since they can be configured
by default in the authorization server and the client, and have been added only as an example.
The state parameter is added to protect against CSRF attacks.

2. The resource owner authenticates to the authorization server, for example, using the credentials
of the demo user. In this case, they log in using the default chain or tree configured for the realm.

After logging in, the authorization server presents the AM consent screen:

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 116

OAuth 2.0 Consent Screen

3. The resource owner selects the Allow button to grant consent for the write scope.

The authorization server redirects the resource owner to the URL specified in the redirect_uri
parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code the
authorization server has issued. For example:
http://www.example.com/?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&scope=write&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an Access Token" to
exchange the authorization code for an access token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the Top Level Realm. Ensure that:

• The code plugin is configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 117

For more information, see "Authorization Server Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: code

• Grant Types: Authorization Code

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an authorization code without using a browser:

1. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization endpoint, specifying the
SSO token of the demo in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 118

For example:
$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "scope=write" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "state=abc123" \
--data "decision=allow" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the scope and the state parameters have been included. Scopes are not required, since
they can be configured by default in the authorization server and the client, and have been added
only as an example. The state parameter is added to protect against CSRF attacks.

If the authorization server is able to authenticate the user and the client, it returns an HTTP 302
response with the authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&scope=write&iss=https
%3A%2F%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an Access Token" to exchange the
authorization code for an access token.

To Exchange an Authorization Code for an Access Token

Perform the steps in the following procedure to exchange an authorization code for an access token:

1. Ensure the client has obtained an authorization code by performing the steps in either "To Obtain
an Authorization Code Using a Browser in the Authorization Code Grant Flow" or "To Obtain an
Authorization Code Without Using a Browser in the Authorization Code Grant Flow".

2. The client creates a POST request to the token endpoint in the authorization server specifying, at
least, the following parameters:

• grant_type=authorization_code

• code=your_authorization_code

• redirect_uri=your_redirect_uri

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 119

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "OAuth 2.0 Client Authentication".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or the authorization server will not validate the code.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Refresh Tokens".

Authorization Code Grant with PKCE
Endpoints

• /oauth2/authorize

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 120

• /oauth2/access_token

The Authorization Code grant, when combined with the PKCE standard (RFC 7636), is used when the
client, usually a mobile or a JavaScript application, requires access to protected resources.

The flow is similar to the regular Authorization Code grant type, but the client must generate a code
that will be part of the communication between the client and the authorization server. This code
mitigates against interception attacks performed by malicious users.

Since communication between the client and the authorization server is not secure, clients are
usually public so their secrets do not get compromised. Also, browser-based clients making OAuth 2.0
requests to different domains must implement Cross-Origin Resource Sharing (CORS) calls to access
OAuth 2.0 resources in different domains.

The PKCE flow adds three parameters on top of those used for the Authorization code grant:

• code_verifier (form parameter). Contains a random string that correlates the authorization request
to the token request.

• code_challenge (query parameter). Contains a string derived from the code verifier that is sent in
the authorization request and that needs to be verified later with the code verifier.

• code_challenge_method (query parameter). Contains the method used to derive the code challenge.

+ Authorization Code Grant with PKCE Flow

OAuth 2.0 Authorization Code Grant with PKCE Flow

Resource Owner
User- Agent

Resource Owner
User- Agent

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1) Create code challenge and code verif ier.
Then, redirect...

2) ...for authent icat ion.

3) Authent icate resource owner and
confirm resource access

4) If credent ials are valid, store code_challenge
and code_challenge_method and redirect...

5) ...with authorizat ion code to redirect_uri.

6) Request access token with authorizat ion code,
redirect_uri, code_verif ier

7) If code_challenge and authorizat ion code are valid,
return access token

8) Request resource with access token

9) Request token validat ion and information

10) If access token is valid,
respond with information

11) If access token is valid,
return protected resource

https://www.rfc-editor.org/info/rfc7636

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 121

The steps in the diagram are described below:

1. The client receives a request to access a protected resource. To access the resources, the
client requires authorization from the resource owner. When using the PKCE standard, the
client must generate a unique code and a way to verify it, and append the code to the request
for the authorization code.

2. The client redirects the resource owner's user-agent to the authorization server.

3. The authorization server authenticates the resource owner, confirms resource access, and
gathers consent if not previously saved.

4. If the resource owner's credentials are valid, the authorization server stores the code
challenge and redirects the resource owner's user agent to the redirection URI.

5. During the redirection process, the authorization server appends an authorization code to the
request to the client.

6. The client receives the authorization code and calls the authorization server's token endpoint
to exchange the authorization code for an access token appending the verification code to the
request.

7. The authorization server verifies the code stored in memory using the validation code. It also
verifies the authorization code. If both codes are valid, the authorization server returns an
access token (and a refresh token, if configured) to the client.

8. The client requests access to the protected resources from the resource server.

9. The resource server contacts the authorization server to validate the access token.

10. The authorization server validates the token and responds to the resource server.

11. If the token is valid, the resource server allows the client to access the protected resources.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
access token:

• "To Generate a Code Verifier and a Code Challenge"

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow"

• "To Exchange an Authorization Code for an Access Token in the Authorization Code Grant Flow
with PKCE Flow"

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 122

To Generate a Code Verifier and a Code Challenge

The client application must be able to generate a code verifier and a code challenge. For details, see
the PKCE standard (RFC 7636). The information contained in this procedure is for example purposes
only:

1. The client generates the code challenge and the code verifier. Creating the challenge using a
SHA-256 algorithm is mandatory if the client supports it, as per the RFC 7636 standard.

The following is an example of a code verifier and code challenge written in JavaScript:
function base64URLEncode(words) {
 return CryptoJS.enc.Base64.stringify(words)
 .replace(/\+/g, '-')
 .replace(/\//g, '_')
 .replace(/=/g, '');
}
var verifier = base64URLEncode(CryptoJS.lib.WordArray.random(50));
var challenge = base64URLEncode(CryptoJS.SHA256(verifier));

This example generates values such as ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_
F4OduTI4 for the code verifier and j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y for the code challenge.
These values will be used in subsequent procedures.

The client is now ready to request an authorization code.

2. The client performs the steps in one of the following procedures to request an authorization code:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token and the code plugins are configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

The Code Verifier Parameter Required drop-down (Realms > Realm Name > Services > OAuth2
Provider > Advanced) specifies whether AM require clients to include a code verifier in their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down.

https://www.rfc-editor.org/info/rfc7636

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 123

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: code token

• Grant Types: Authorization Code

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The client redirects the resource owner's user-agent to the authorization server's authorization
endpoint specifying, at least, the following query parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• code_challenge=your_code_challenge

• code_challenge_method=S256

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code \
&scope=write \
&redirect_uri=https://www.example.com:443/callback \
&code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y \
&code_challenge_method=S256 \
&state=abc123

Note that the URL is split and spaces have been added for readability purposes and that the scope
and state parameters have been included. Scopes are not required, since they can be configured
by default in the authorization server and the client, and have been added only as an example.
The state parameter is added to protect against CSRF attacks.

2. The resource owner authenticates to the authorization server, for example, using the credentials
of the demo user. In this case, they log in using the default chain or tree configured for the realm.

After logging in, the authorization server presents the AM consent screen:

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 124

OAuth 2.0 Consent Screen

3. The resource owner selects the Allow button to grant consent for the write scope.

The authorization server redirects the resource owner to the URL specified in the redirect_uri
parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code the
authorization server has issued. For example:
http://www.example.com/?code=ZNSDo8LrsI2w-6NOCYKQgvDPqtg&scope=write&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an Access Token" to
exchange the authorization code for an access token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token and the code plugins are configured in the Response Type Plugins field.

• The Authorization Code grant type is configured in the Grant Types field.

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 125

The Code Verifier Parameter Required drop-down (Realms > Realm Name > Services > OAuth2
Provider > Advanced) specifies whether AM require clients to include a code verifier in their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: code token

• Grant Types: Authorization Code

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an authorization code:

1. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization endpoint specifying in a
cookie SSO token of the demo and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• decision=allow

• csrf=demo_user_SSO_token

• code_challenge=your_code_challenge

• code_challenge_method=S256

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 126

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "scope=write" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "state=abc123" \
--data "decision=allow" \
--data "code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y" \
--data "code_challenge_method=S256" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the scope and the state parameters have been included. Scopes are not required, since
they can be configured by default in the authorization server and the client, and have been added
only as an example. The state parameter is added to protect against CSRF attacks.

If the authorization server is able to authenticate the user and the client, it returns an HTTP 302
response with the authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: http://www.example.com?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&scope=write&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an Access Token in the
Authorization Code Grant Flow with PKCE Flow" to exchange the authorization code for an
access token.

To Exchange an Authorization Code for an Access Token in the Authorization Code Grant Flow
with PKCE Flow

Perform the steps in the following procedure to exchange an authorization code for an access token:

OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 127

1. Ensure the client has obtained an authorization code by performing the steps in either "To Obtain
an Authorization Code Using a Browser in the Authorization Code Grant with PKCE Flow" or "To
Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow".

2. The client creates a POST request to the token endpoint in the authorization server specifying, at
least, the following parameters:

• grant_type=authorization_code

• code=your_authorization_code

• client_id=your_client_id

• redirect_uri=your_redirect_uri

• code_verifier=your_code_verifier

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token". For information about private client authentication methods, see "OAuth
2.0 Client Authentication".

For example:
$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "code_verifier=ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_F4OduTI4" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or the authorization server will not validate the code.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 128

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Refresh Tokens".

Implicit Grant
Endpoints

• /oauth2/authorize

The Implicit grant is designed for public clients that run inside the resource owner's user-agent, for
example, JavaScript applications.

Since applications running in the user-agent are considered less trusted than applications running in
servers, the authorization server will never issue refresh tokens in this flow. Also, you must consider
the security impact of cross-site scripting (XSS) attacks that could leak the access token to other
systems, and implement Cross-Origin Resource Sharing (CORS) to make OAuth 2.0 requests to
different domains.

Due to the security implications of this flow, it is recommended to use the Authorization Code grant
with PKCE flow whenever possible.

+ Implicit Grant Flow

OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 129

OAuth 2.0 Implicit Grant Flow

Resource Owner
User- Agent

Resource Owner
User- Agent

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Web- Hosted Client Resource

Web- Hosted Client Resource

Resource Server

Resource Server

1) Redirect...

2) ...with client_id, scope, state, redirect_uri

3) Authent icate resource owner and
confirm resource access

4) Redirect with redirect_uri, access token in URI fragment...

5) ...to request redirect_uri without the fragment

6) Return web page with embedded script to ex tract access token

7) Execute script to retrieve access token

8) Return access token

9) Request resource with access token

10) Request access token validat ion and information

11) If access token is valid, respond with information

12) If access token is valid, return protected resource

The steps in the diagram are described below:

1. The client, usually a single-page application (SPA), receives a request to access a protected
resource. To access the resources, the client requires authorization from the resource owner.

2. The client redirects the resource owner's user-agent or opens a new frame to the AM
authorization service.

3. The authorization server authenticates the resource owner, confirms resource access, and
gathers consent if not previously saved.

4. If the resource owner's credentials are valid, the authorization server returns the access token
to the user-agent as part of the redirection URI.

5. Now, the client must extract the access token from the URI. In this example, the user-agent
follows the redirection to the web-hosted server that contains the protected resources without
the access token....

6. ...And the web-hosted server returns a web page with an embedded script to extract the
access token from the URI.

OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 130

In another possible scenario, the redirection URI is a dummy URI in the client, and the client
already has the logic in itself to extract the access token.

7. The user-agent executes the script and retrieves the access token.

8. The user-agent returns the access token to the client.

9. The client requests access to the protected resources presenting the access token to the
resource server.

10. The resource server contacts the authorization server to validate the access token.

11. The authorization server validates the token and responds to the resource server.

12. If the token is valid, the resource server allows the client to access the protected resources.

Perform the steps in the following procedures to obtain an access token:

• "To Obtain an Access Token Using a Browser in the Implicit Grant"

• "To Obtain an Access Token Without Using a Browser in the Implicit Grant"

To Obtain an Access Token Using a Browser in the Implicit Grant

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token plugin is configured in the Response Type Plugins field.

• The Implicit Grant grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: token

• Grant Types: Implicit

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an access token using the Implicit grant:

1. The client makes a GET call to the authorization server's authorization endpoint specifying, at
least, the following parameters:

OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 131

• client_id=your_client_id

• response_type=token

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=token \
&scope=write \
&redirect_uri=https://www.example.com:443/callback \
&state=abc123

Note that the URL is split for readability purposes and that the scope and state parameters
have been included. Scopes are not required, since they can be configured by default in the
authorization server and the client, and have been added only as an example. The state parameter
is added to protect against CSRF attacks. Also, the redirection URI was not specified, and the URI
defined in the client profile is used by default.

2. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. In this case, they log in using the default chain or tree configured for the realm.

After logging in, the authorization server presents the AM user interface consent screen:

OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 132

OAuth 2.0 Consent Screen

3. The resource owner selects the Allow button to grant consent for the write scope.

The authorization server redirects the resource owner to the URL specified in the redirect_uri
parameter.

4. Inspect the URL in the browser. It contains an access_token parameter with the access token the
authorization server has issued. For example:
https://www.example.com:443/callback#access_token=1i5IfaebiLnpyxFM4mcTSZSegb4&scope=write&redirect_uri
%3Dhttps%3A%2F%2Fwww.example.com%3A8443%2Fcallback&iss=https%3A%2F%2Fopenam.example.com
%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient

To Obtain an Access Token Without Using a Browser in the Implicit Grant

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token plugin is configured in the Response Type Plugins field.

• The Implicit Grant grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 133

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: token

• Grant Types: Implicit

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an access token using the Implicit grant:

1. The resource owner authenticates to the authorization server, for example, using the credentials
of the demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization endpoint, specifying the
SSO token of the demo in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=token

• decision=allow

• csrf=demo_user_SSO_token

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:

OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 134

curl --dump-header - \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--request POST \
--data "client_id=myClient" \
--data "response_type=token" \
--data "scope=write" \
--data "state=123abc" \
--data "decision=allow" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the scope and state parameters have been included. Scopes are not required, since they
can be configured by default in the authorization server and the client, and have been added only
as an example. The state parameter is added to protect against CSRF attacks.

If the authorization server is able to authenticate the user, it returns an HTTP 302 response with
the access token appended to the redirection URI:
1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Wed, 22 Aug 2018 11:19:54 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/
callback#access_token=PAsODWCvnb5W8uuBT12H62Rvmro&scope=write&redirect_uri%3Dhttps%3A%2F
%2Fwww.example.com%3A8443%2Fcallback&iss=https%3A%2F%2Fopenam.example.com%3A8443%2Fopenam
%2Foauth2&state=123abc&token_type=Bearer&expires_in=3599&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

In this case, the redirection URI was not specified in the command, and the URI defined in the
client profile is used by default.

Resource Owner Password Credentials Grant
Endpoints

• /oauth2/access_token

The Resource Owner Password Credentials (ROPC) grant flow lets the client use the resource owner's
user name and password to get an access token.

Since the resource owner shares their credentials with the client, this flow is deemed the most
insecure of the OAuth 2.0 flows. The resource owner's credentials can potentially be leaked or abused
by the client application, and the resource owner has no control over the authorization process.

You should implement the ROPC grant flow only if the resource owner has a trust relationship with
the client (such as the device operating system, or a highly privileged application).

OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 135

+ ROPC Grant Flow

OAuth 2.0 Resource Owner Password Credentials Grant Flow

Resource Owner

Resource Owner

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1) Provide user name, password

2) Authent icate

3) If credent ials are valid, return access token

4) Request resource with access token

5) Request access token validat ion and information

6) If access token is valid, respond with information

7) If access token is valid, return protected resource

The steps in the diagram are described below:

1. The resource owner provides the client with their username and password.

2. The client sends the resource owner's and its own credentials to the authorization server,
which authenticates the credentials and authorizes the resource owner's request.

3. If the credentials are valid, the authorization server returns an access token to the client.

4. The client requests access to the protected resources presenting the access token to the
resource server.

5. The resource server contacts the authorization server to validate the access token.

6. The authorization server validates the token and responds to the resource server.

7. If the token is valid, the resource server allows the client to access the protected resources.

Perform the following procedure to obtain an access token:

To Obtain an Access Token Using the ROPC Grant Flow

This procedure assumes the following configuration:

• An authentication service - a chain or tree - that is able to authenticate a username and password
combination, without requiring any UI-based interaction from the resource owner, is available.

For example, the ldapService chain (the default), or the Example tree.

OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 136

Specify the chain or tree by using one or more of the methods below. AM checks for the configured
value in the following order, using the first value found:

1. For a specific access token REST request.

Set the auth_chain parameter.

2. Individually for a realm, overriding the realm-level setting below.

Navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced, and set the
Password Grant Authentication Service property.

3. Individually for a realm.

Navigate to Realms > Realm Name > Authentication > Settings > Core, and set the
Organization Authentication Configuration property.

4. Globally, for all realms.

Navigate to Configure > Authentication > Core Attributes > Core, and set the Organization
Authentication Configuration property.

For more information, see Configure Sensible Default Authentication Services in the Security
Guide.

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token plugin is configured in the Response Type Plugins field.

• The Resource Owner Password Credentials grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: token

• Grant Types: Resource Owner Password Credentials

For more information, see "Client Registration".

Perform the following steps to obtain an access token using the ROPC grant flow:

1. The resource owner provides their credentials to the client. This is done outside the scope of this
procedure.

OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 137

2. The client creates a POST request to the authorization server's token endpoint specifying, at
least, the following parameters:

• username= your_resource_owner_username

• password= your_resource_owner_password

• grant_type=password

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "OAuth 2.0 Client Authentication".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=Ch4ng31t" \
--data "scope=write" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Note that the scope parameter has been included. Scopes are not required, since they can be
configured by default in the authorization server and the client, and have been added only as an
example.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

OAuth 2.0 Grant Flows
Client Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 138

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Refresh Tokens".

Client Credentials Grant
Endpoints

• /oauth2/access_token

The Client Credentials grant is used when the client is also the resource owner and it is accessing
its own data instead of acting in behalf of a user. For example, an application that needs access to a
protected resource to retrieve its own data to perform a task, or update its configuration, would use
the Client Credentials grant to acquire an access token.

The Client Credentials Grant flow supports confidential clients only.

+ Client Credentials Flow

OAuth 2.0 Client Credentials Grant Flow

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1) Authent icate, request access token from token endpoint

2) If credent ials are valid, return access token

3) Request resource with access token

4) Request access token validat ion and information

5) If access token is valid, respond with information

6) If access token is valid, return protected resource

The steps in the diagram are described below:

1. The client sends its credentials to the authorization server to get authenticated, and requests
an access token.

2. If the client credentials are valid, the authorization server returns an access token to the
client.

OAuth 2.0 Grant Flows
Client Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 139

3. The client requests access to the protected resources from the resource server.

4. The resource server contacts the authorization server to validate the access token.

5. The authorization server validates the token and responds to the resource server.

6. If the token is valid, the resource server allows the client to access the protected resources.

Perform the steps in the following procedure to obtain an access token:

To Obtain an Access Token Using the Client Credentials Grant

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token plugin is configured in the Response Type Plugins field.

• The Client Credentials grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: token

• Grant Types: Client Credentials

For more information, see "Client Registration".

Perform the steps in this procedure to obtain an access token using the Client Credentials grant:

• The client makes a POST call to the authorization server's token endpoint specifying, at least, the
following parameters:

• grant_type=client_credentials

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 140

• client_secret=your_client_secret

For more information, see "OAuth 2.0 Client Authentication".

If the OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=client_credentials" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Note that the scope parameter has been included. Scopes are not required, since they can be
configured by default in the authorization server and the client, and have been added only as an
example.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

Device Flow
Endpoints

• /oauth2/device/code

• /oauth2/device/user

• /oauth2/access_token

The Device Flow is designed for client devices that have limited user interfaces, such as a set-top box,
streaming radio, or a server process running on a headless operating system.

Rather than logging in by using the client device itself, you can authorize the client to access
protected resources on your behalf by logging in with a different user agent, such as an Internet
browser or smartphone, and entering a code displayed on the client device.

+ Device Flow

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 141

OAuth 2.0 Device Flow

Client
Device

Client
Device

AM
Authorizat ion Server

AM
Authorizat ion Server

User

1) Request device code

2) Return device code, user code, URL,
and interval

3) Provide user code to user

User

loop [Each Interval]

4) Poll for authorizat ion with device code

5) Return [403] authorizat ion_pending

6) Enter user code

7) Authent icate

8) Confirm user code

9) Approve client access

10) Return [200] access_token

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 142

The steps in the diagram are described below:

1. The client device requests a device code from AM.

2. AM returns a device code, a user code, a URL for entering the user code, and an interval, in
seconds.

3. The client device provides instructions to the user to enter the user code. The client may
choose an appropriate method to convey the instructions, for example, text instructions on
screen, or a QR code.

4. The client device begins to continuously poll AM to see if authorization has been completed.

5. If the user has not yet completed the authorization, AM returns an HTTP 403 status code, with
an authorization_pending message.

6. The user follows the instructions from the client device to enter the user code by using a
separate device.

7. If the user code is valid, AM redirects the resource owner for authentication.

8. Upon authentication, the user is prompted to confirm the user code. The page is pre-populated
with the one entered before.

9. The user can authorize the client device. The AM consent page also displays the requested
scopes, and their values.

Note

AM does not display the confirmation nor the consent pages if the user has a valid session when they
entered the code, and the client is allowed to skip consent.

This is also true if you perform the call using REST and pass the decision=allow parameter.

10. Upon authorization, AM responds to the client device's polling with an HTTP 200 status, and
an access token, giving the client device access to the requested resources.

The following procedures show how to use the OAuth 2.0 device flow endpoints:

• "To Obtain a User Code For the Device".

• "To Grant Consent with a User Code Using a Browser in the Device Flow".

• "To Grant Consent with a User Code Without Using a Browser in the Device Flow".

• "To Poll for Authorization in the OAuth 2.0 Device Flow".

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 143

To Obtain a User Code For the Device

Devices can display a user code and instructions for a user, which can be used on a separate client to
provide consent, allowing the device to access resources.

As user codes may be displayed on lower resolution devices, the list of possible characters used
has been optimized to reduce ambiguity. User codes consist of a random selection of eight of the
following characters:
234567ABCDEFGHIJKLMNOPQRSTVWXYZabcdefghijkmnopqrstvwxyz

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server. Ensure that:

• The token and the device_code plugins are configured in the Response Type Plugins field.

• The Device Code grant type is configured in the Grant Types field.

For more information, see "Authorization Server Configuration".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: device_code token

• Grant Types: Device Code

For more information, see "Client Registration".

Perform the following steps to request a user code in the OAuth 2.0 device flow:

1. The client creates a POST request to the /oauth2/device/code endpoint specifying, at least, the
following parameters:

• response_type=device_code

• client_id=your_client_ID

For information about the parameters supported by the /oauth2/device/code endpoint, see "/oauth2/
device/code". For information about private client authentication methods, see "OAuth 2.0 Client
Authentication".

For example:

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 144

$ curl \
--request POST \
--data "response_type=device_code" \
--data "client_id=myClient" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/device/code"
{
 "interval": 5,
 "device_code": "7a95a0a4-6f13-42e3-ac3e-d3d159c94c55...",
 "verification_uri": "https://openam.example.com:8443/openam/oauth2/device/user",
 "verification_url": "https://openam.example.com:8443/openam/oauth2/device/user",
 "user_code": "VAL12e0v",
 "expires_in": 300
}

On success, AM returns a verification URI (the verification_url output is included to support
earlier versions of the draft), and a user code to enter at that URL. AM also returns an interval, in
seconds, that the client device must wait for in between requests for an access token.

Tip

You can configure the returned values by navigating to Realms > Realm Name > Services > OAuth2
Provider > Device Flow.

2. The client device should now provide instructions to the user to enter the user code and grant
access to the OAuth 2.0 device. The client may choose an appropriate method to convey the
instructions, for example, text instructions on screen, or a QR code. Perform the steps in one of
the following procedures:

• To grant access to the client using a browser, see "To Grant Consent with a User Code Using a
Browser in the Device Flow".

• To grant access to the client without using a browser, see "To Grant Consent with a User Code
Without Using a Browser in the Device Flow".

3. The client device should also begin polling the authorization server for the access token using the
interval and device code information obtained in the previous step. For more information, see "To
Poll for Authorization in the OAuth 2.0 Device Flow".

To Grant Consent with a User Code Without Using a Browser in the Device Flow

OAuth 2.0 Device Flow requires that the user grants consent to allow the client device to access the
resources. The authorization server would then provide the client with an access token.

To grant consent with a user code without using a browser, perform the following steps:

1. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. For example:

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 145

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization device user endpoint
specifying in a cookie SSO token of the demo and, at least, the following parameters:

• user_code=resource_owner_user_code

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/device/user endpoint, see "/oauth2/
device/user".

The iPlanetDirectoryPro cookie is required and should contain the SSO token of the user granting
access to the client. For example:
$ curl \
--request POST \
--header "Cookie: iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "user_code=VAL12e0v" \
--data "decision=allow" \
--data "csrf=AQIC5wM...TU3OQ*" \
"https://openam.example.com:8443/openam/oauth2/realms/root/device/user"

The scope and the client_id parameters have not been included because the user code already
contains that information.

AM returns HTML containing a JavaScript fragment named pageData, with details of the result.

Successfully allowing or denying access returns:
pageData = {
 locale: "en_US",
 baseUrl : "https://openam.example.com:8443/openam/XUI/",
 realm : "/\",
 done: true
}

done: true means that the flow can now continue.

If the supplied user code has already been used, or is incorrect, AM returns the following:

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 146

pageData = {
 locale: "en_US",
 errorCode: "not_found",
 realm : "/\",
 baseUrl : "https://openam.example.com:8443/openam/XUI/"
 oauth2Data: {
 csrf: "ErFIk8pMraJ1rvKbloTgpp6b7GZ57kyk9HaIiKMVK3g=",
 userCode: "VAL12e0v",
 }
}

Important

As per Section 4.1.1 of the OAuth 2.0 authorization framework, it is required that the authorization server
legitimately obtains an authorization decision from the resource owner.

Any client using the endpoints to register consent is responsible for ensuring this requirement, AM cannot
assert that consent was given in these cases.

To Grant Consent with a User Code Using a Browser in the Device Flow

OAuth 2.0 Device Flow requires that the user grants consent to allow the client device to access the
resources. The authorization server would then provide the client with an access token.

To grant consent with a user code using a browser, perform the following steps:

1. The resource owner navigates to the verification URL acquired with the user code, for example,
https://openam.example.com:8443/openam/oauth2/device/user.

2. The resource owner logs in to the authorization server using, for example, the demo user
credentials.

3. The resource owner enters their user code:

https://www.rfc-editor.org/rfc/rfc6749.html#section-4.1.1

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 147

OAuth 2.0 User Code

Note

If the user is not logged in to AM when they provide the code, AM redirects them to the login page.

After authenticating successfully, the user is prompted to enter the code again. The user code is pre-
populated with the code they entered before.

4. The resource owner authorizes the device flow client by allowing the requested scopes:

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 148

OAuth 2.0 Consent Page

Note

If the client is allowed to skip consent, the user will not see this screen.

5. AM adds the OAuth 2.0 client to the user's profile page in the Authorized Apps section and
displays that the user is done with the flow:

OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 149

OAuth 2.0 Done Page

The device now can request an access token from AM.

To Poll for Authorization in the OAuth 2.0 Device Flow

The client device must poll the authorization server for an access token, since it cannot know whether
the resource owner has already given consent or not.

Perform the following steps to poll for an access token:

• On the client device, create a POST request to poll the /oauth2/access_token endpoint to request an
access token specifying, at least, the following parameters:

• client_id=your_client_id

• grant_type=urn:ietf:params:oauth:grant-type:device_code

• device_code=your_device_code

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

The client device must wait for the number of seconds previously provided as the value of interval
between polling AM for an access token. For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "grant_type=urn:ietf:params:oauth:grant-type:device_code" \
--data "device_code=7a95a0a4-6f13-42e3-ac3e-d3d159c94c55..." \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

OAuth 2.0 Grant Flows
SAML v2.0 Profile for Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 150

If the user has authorized the client device, an HTTP 200 status code is returned, with an access
token that can be used to request resources:
{
 "expires_in": 3599,
 "token_type": "Bearer",
 "access_token": "c1e9c8a4-6a6c-45b2-919c-335f2cec5a40"
}

If the user has not yet authorized the client device, an HTTP 403 status code is returned, with the
following error message:
{
 "error": "authorization_pending",
 "error_description": "The user has not yet completed authorization"
}

If the client device is polling faster than the specified interval, an HTTP 400 status code is
returned, with the following error message:
{
 "error": "slow_down",
 "error_description": "The polling interval has not elapsed since the last request"
}

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Refresh Tokens".

SAML v2.0 Profile for Authorization Grant
Endpoints

• /oauth2/access_token

The SAML v2.0 Profile for Authorization Grant is designed for environments that want to leverage the
REST-based services provided by AM's OAuth 2.0 support, while keeping their existing SAML v2.0
federation implementation.

Note

The RFC 7522 describes the means to use SAML v2.0 bearer assertions to request access tokens and to
authenticate OAuth 2.0 clients.

At present, AM implements the profile to request access tokens.

Consider the following requirements before implementing this flow:

https://www.rfc-editor.org/info/rfc7522

OAuth 2.0 Grant Flows
SAML v2.0 Profile for Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 151

• The client (the application the resource owner uses to start the flow) must inform the resource
owner that, by authenticating to the SAML v2.0 identity provider, the resource owner grants the
client access to the protected resources. AM does not present the resource owner with consent
pages.

This client must be able to consume the access token and handle errors as required.

• The OAuth 2.0 authorization service and SAML v2.0 service provider must be configured in the
same AM instance.

• The service provider must require that assertions are signed.

• The SAML v2.0 identity provider must issue signed assertions.

The assertion must contain the SAML v2.0 entity names, as follows:

• The issuer must be set to the identity provider's name. For example, https://idp.example.com:8443/
idp.

• The audience must be set to the service provider's name. For example, https://openam.example.
com:8443/openam.

• The identity provider and the service provider must belong to the same circle of trust.

• AM must be able to determine the resource owner from the name ID contained in the assertion.
Failure to determine the resource owner results in an error similar to:
{"error_description":"AM identity should not be null","error":"server_error"}

AM may fail to determine the resource owner if the assertion contains an opaque name ID during
transient federation. Because the opaque reference is never stored during a transient flow, the
OAuth 2.0 provider cannot determine the resource owner it relates to.

To work around this, configure an identity in the Transient User field of the SAML v2.0 service
provider. This will map all transient ID references to that identity.

• The OAuth 2.0 client is registered, at least, with the following configuration:

• Response Types: token

• Grant Types: SAML2

• The OAuth 2.0 provider is configured. Ensure that:

• The token plugin is configured in the Response Type Plugins field.

• The SAML2 grant type is configured in the Grant Types field.

The following diagram demonstrates the SAML v2.0 Profile for Authorization Grants:

OAuth 2.0 Grant Flows
SAML v2.0 Profile for Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 152

SAML v2.0 Profile for Authorization Grant Flow

Resource Owner
User- Agent

Resource Owner
User- Agent

Client

Client

SAML v2.0
Ident ity Provider

SAML v2.0
Ident ity Provider

AM OAuth 2.0 Authorizat ion Server
and

SAML v2.0 Service Provider

AM OAuth 2.0 Authorizat ion Server
and

SAML v2.0 Service Provider

OAuth 2.0
Resource Server

OAuth 2.0
Resource Server

1) Redirect....

2) ...for authent icat ion.

3) If credent ials are valid, redirect...

4) ...with signed SAML v2.0 assert ion to
Client

5) Authent icate, request access token
with assert ion

6) If assert ion is valid, return access token

7) Request resource with access token

8) Request token validat ion and information

9) If access token is valid, respond with information

10) Return protected resource

The steps in the diagram are described below:

1. The client requests the SAML v2.0 identity provider the SAML v2.0 assertion related to the
resource owner. Usually, this means the client redirects the resource owner to the identity
provider for authentication.

2. The SAML v2.0 identity provider returns the signed assertion to the client.

3. The client includes the assertion and a special grant type in the call to the OAuth 2.0 token
endpoint in the following parameters:

• grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer

• assertion=my_assertion

Note that the assertion must be first base64-encoded, and then URL encoded.

For example:

OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 153

$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data-urlencode "assertion=PHNhbWxwOl...ZT4" \
--data "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

4. The AM authorization server validates the assertion. If the assertion is valid, the authorization
server returns an access token to the client.

5. The client request access to the protected resources from the resource server.

6. The resource server contacts the authorization server to validate the access token.

7. The authorization server validates the token and responds to the resource server.

8. If the token is valid, the resource server allows the client to access the protected resources.

JWT Profile for OAuth 2.0 Authorization Grant
Endpoints

• /oauth2/access_token

The JWT Profile for OAuth 2.0 Authorization Grant is designed for environments that want to leverage
the REST-based services provided by AM's OAuth 2.0 framework while keeping their existing
authentication services, as long as the trust relationship can be expressed with a JWT bearer token.

Since the trust relationship is already established, this flow does not require the end user's
interaction.

Note

The RFC 7523 defines the use of JWT bearer tokens for both requesting access tokens as well as for client
authentication.

Read this section for information about requesting access tokens. To use JWTs for client authentication, see
"Authenticating Clients Using JWT Profiles".

As the authorization server, AM must validate the bearer JWT to issue the access token to the client.
To ensure that malicious clients cannot self-sign their own JWTs to acquire tokens, AM requires the
token issuer to be pre-registered in AM as an special type of agent.

+ JWT Bearer Profile for Authorization Grant Flow

https://www.rfc-editor.org/info/rfc7523

OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 154

JWT Bearer Profile for Authorization Grant
Client can be Issuer

Resource Owner
User- Agent

Resource Owner
User- Agent

Client

Client

Issuer

Issuer

Authorizat ion Server

Authorizat ion Server

Resource Server

Resource Server

1) Redirect....

2) ...for authent icat ion.

3) If credent ials are valid, redirect...

4) ...with signed bearer JWT to
Client

5) Request access token
with JWT

6) Validate JWT

7) Response with access token

8) Request resource with access token

9) Request token validat ion and information

10) If access token is valid, respond with information

11) If access token is valid, return protected resource

1. The client requests a JWT from the issuer. The client itself can be the issuer, in which case it
will create a JWT for itself before starting the OAuth 2.0 flow.

Regardless of who signs the JWT, the issuer must be pre-registered in AM as a trusted JWT
issuer. For more information, see "To Configure a Trusted JWT Issuer Agent".

2. The issuer returns a signed JWT to the client; JWTs with message authentication codes (MACs)
applied to them are not supported.

The JWT must contain, at least, the following claims in the payload:

• aud. Specifies a string or an array of strings that is the intended audience of the JWT. Must
be set to, or contain, the authorization server's token endpoint.

• exp. Specifies the expiration time of the JWT in Unix time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT
 expiration time is unreasonable error message.

• iss. Specifies the unique identifier of the JWT issuer. This could be the client or a third party.

The identifier must match the issuer field configured in the trusted JWT issuer agent.

OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 155

• sub. Specifies the principal who is the subject of the JWT. It must be a string that identifies
the resource owner.

Tip

You can configure the trusted JWT issuer agent to check a different claim for the principal. For
example, the preferred_userame from an ID token.

In this case, the JWT would contain both the sub and the preferred_username claims.

For more information, see "To Configure a Trusted JWT Issuer Agent".

The following is an example of the payload of a basic JWT:
{
 "aud": [
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token
],
 "iss": "https://www.example.com/issuer",
 "exp": 1555530663,
 "sub": "demo"
}

For an example of a JWT containing different claims as supported by the trusted JWT issuer
agent, see "To Configure a Trusted JWT Issuer Agent".

For more information about JWTs, see the RFC 7523 standard.

3. The client includes the JWT and a client assertion type in the call to the OAuth 2.0 endpoint in
the following parameters:

• grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer

• assertion=my_JWT

For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer" \
--data "assertion=eyAiYWxnIjogIlJTMjU2IiB9.eyAic3ViIjogImp3..."
--data "redirect_uri=http://www.example.com" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

https://www.rfc-editor.org/info/rfc7523

OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 156

For more information about client authentication methods, see "OAuth 2.0 Client
Authentication".

4. AM validates the JWT following the guidance specified in section 3 of the RFC7523 and also
performs the following additional checks:

a. Decodes the payload and compares the value of the iss claim with the value of the JWT
Issuer field in the list of trusted JWT issuer agents.

b. Validates the JWT signature either with the keys exposed on the trusted issue agent's JWK
URI, or with the keys configured in the JWK Set field of the agent.

If AM cannot validate the JWT it will return an error, such as JWT signature is invalid.

5. The authorization server issues an access token to the client.

6. The client requests access to the protected resources from the resource server.

7. The resource server contacts the authorization server to validate the access token.

8. The authorization server validates the token and responds to the resource server.

9. If the token is valid, the resource server allows the client to access the protected resources.

The following procedure demonstrates how to configure a trusted JWT issuer agent:

To Configure a Trusted JWT Issuer Agent

Perform the steps in this procedure to configure a trusted JWT issuer agent:

1. Log in to the AM console as an administrative user, for example, amAdmin.

2. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Trusted JWT Issuer.

3. Add a new trusted JWT issuer agent.

4. Complete the following fields to create the agent:

a. In the Agent ID field, give the trusted JWT issuer agent a name. For example, myJWTAgent.

b. In the JWT Issuer field, provide the URI of the JWT issuer. This URI must match the value of
the issuer (the iss claim) in the JWTs.

c. Select Create.

You are presented with a screen with additional information regarding the agent.

OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 157

5. Review the trusted JWT issuer agent information. You must, configure either the JWKs URI or the
JWK Set fields, as follows:

• JWKs URI: specifies a URI in the JWT issuer that exposes the verification keys AM will use to
validate the JWT signature. For example, http://www.example.com/issuer/jwk_uri.

If you configure this field, ensure the following properties are configured with sensible values
for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWK set: Specifies a JWK set containing the verification keys to validate the JWT signature. The
following is an example of an elliptic curve JWK set:
{
 "keys": [{
 "kty": "EC",
 "crv": "P-256",
 "x": "i-rdOmi5lC3pn3y5sTgYiLLFVFY7XxDLinWneHEaAXA",
 "y": "mxmqqauiq44INgyyPP2vATt3IkDL_6W5CAcfAMSZl8k",
 "kid": "signing_key",
 "x5c": [
 "MIIBSjCB76ADAgEC.....955PByPrflZkQOC/g=="]
 }]
}

For more information about the contents of the JWK set, see the JSON Web Key (JWK)
specification.

You can store more than one key in the JWK set. However, it is easier to implement key rotation
exposing the validation keys on the URI instead.

6. (Optional) Configure the following values to suit your environment:

• Consented Scopes Claim. The name of a JWT claim that indicates which scopes the resource
owner consented to. The claim in the JWT can contain either a JSON array or a space-separated
whitelist of scopes that the resource owner has consented to.

For example, if you configure the scp claim name in this field and the JWT contains the claim
"scp":"read", but you request both the read and write scopes, AM will only grant the read scope.

Leave this field blank to allow any scope.

The following are example JWTs containing a claim that specifies scopes:

https://www.rfc-editor.org/info/rfc7517

OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 158

{
 "aud": [
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token
],
 "iss": "https://www.example.com/issuer",
 "exp": 1555530663,
 "sub": "demo",
 "scope": ["read", "write"]
}

In this case, the scope claim is a JSON array of scopes.
{
 "aud": [
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token
],
 "iss": "https://www.example.com/issuer",
 "exp": 1555530663,
 "sub": "demo",
 "scp": "read write"
}

In this case, the scp claim is a space-separated list of scopes.

• Resource Owner Identity Claim. Claim in the JWT that identifies the resource owner in AM. By
default, the sub claim.

Note that even if you configure the trusted JWT issuer agent to verify a different claim, such as
the preferred_username claim, the sub claim must still exist in the JWT.

• Allowed Subjects. List of subjects this JWT issuer is allowed to provide consent for.

For example, if you configure the demo user in this field but the JWT subject value is demo2, AM
will not grant the access token.

Leave it blank to provide consent to any user.

7. Save your changes.

The trusted JWT issuer agent is ready for use.

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 159

Chapter 13

OAuth 2.0 Endpoints
When acting as an OAuth 2.0 authorization server, AM exposes the following endpoints:

OAuth 2.0 Endpoints

Endpoint Description
/oauth2/authorize Obtain consent and an authorization grant (RFC 6749 authorization

endpoint)
/oauth2/bc-authorize Initiate backchannel authorization (Backchannel flow endpoint)
/oauth2/access_token Obtain an access token (RFC 6749 token endpoint)
/oauth2/device/code Obtain a device code (Device flow endpoint)
/oauth2/device/user Obtain consent and authorization grant (Device flow endpoint)
/oauth2/token/revoke Revoke both access and refresh tokens (RFC 7009 endpoint)
/oauth2/introspect Retrieve metadata about a token, such as approved scopes and the

context in which the token was issued (RFC 7662 endpoint)
/json/token/macaroon Retrieve metadata about a macaroon, and add caveats.

Tip

As an OAuth 2.0/OpenID Connect provider, AM also exposes the following:

• OAuth 2.0 endpoints to perform administrative tasks, such as creating clients. For more information, see
"OAuth 2.0 Administration and Supporting REST Endpoints"

• OpenID Connect-specific endpoints. For more information, see "OpenID Connect 1.0 Endpoints" in the
OpenID Connect 1.0 Guide.

/oauth2/authorize
The /oauth2/authorize endpoint is the OAuth 2.0 authorization endpoint as defined in RFC 6749. Use
this endpoint to gather consent and authorization from the resource owner when using the following
flows:

• Authorization Code Grant (OAuth 2.0) | OpenID Connect)

https://www.rfc-editor.org/info/rfc6749

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 160

• Authorization Code Grant with PKCE (OAuth 2.0) | OpenID Connect)

• Implicit Grant (OAuth 2.0) | OpenID Connect)

You must compose the path to the authorize endpoint addressing the specific realm where the access
code will be issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/authorize.

The authorization endpoint supports the following parameters:

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

response_type

Specifies the type of response expected from the authorization server. Set this parameter to one
of the following values:

• code, to request an authorization code.

• token, to request an access token.

• id_token, to request an ID token.

• code token, to request an authorization code and an access token.

• token id_token, to request an access token and an ID token.

• code id_token, to request an authorization code and an ID token.

• code token id_token, to request an authorization code, an access token, and an ID token.

• none, to request AM not to issue any token or code in the request. Use this response type in
conjunction with the id_token_hint parameter only.

Required: Yes.

csrf

When interacting with the OAuth 2.0 consent page, this parameter helps prevent against Cross-
Site Request Forgery (CSRF) attacks.

The parameter duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO
token of the resource owner giving consent.

When using the AM consent pages, this parameter is set in the consent page once the resource
owner has authenticated, and it is sent to AM along with the consent.

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 161

When replacing AM consent pages with your own consent pages or when trying the flows without
a browser, you must set this parameter manually. For an example of a curl command, see the
Authorization Code Grant.

Required: Yes, unless you use the Remote Consent Service to gather consent.

code_challenge

Specifies a string derived from the code verifier that is sent in the authorization request during
the Authorization Code with PKCE grant flow.

Required: Yes, when requesting an authorization code during the Authorization Code with PKCE
grant flow.

code_challenge_method

Contains the method used to derive the code challenge. Possible values are plain and S256. When
unset, it defaults to plain.

Required: Yes, when requesting an authorization code during the Authorization Code with PKCE
grant flow and the code challenge was created using an SHA256 algorithm.

decision

Specifies whether the resource owner consents to the requested access. Set to allow to grant
consent. Any other value denies consent.

Required: Yes, unless consent is already saved for the scope.

redirect_uri

The URI to return the resource owner to after authorization is complete. If not set, the redirection
URI defaults to that configured in the client profile registered with AM.

Required: No.

response_mode

Set to form_post to return a self-submitting form that contains the code instead of redirecting to
the redirect URL with the code as a string parameter. For more information, see the OAuth 2.0
Form Post Response Mode spec.

Required: No.

scope

Specify the scopes linked to the permissions requested by the client from the resource owner. If
not specified, the default scopes specified in the client or the authorization server are requested.

Required: No.

https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 162

save_consent

Updates the resource owner's profile to avoid having to prompt the resource owner to grant
authorization when the client issues subsequent authorization requests.

Set this parameter to on to save the consent.

To save the consent, you must have configured the Saved Consent Attribute Name property with
a profile attribute in which to store the resource owner's consent decision.

For more information on setting this property in the OAuth2 Provider service, see "OAuth2
Provider" in the Reference.

Required: No.

service/module

Use either as described in "Authentication Parameters" in the Authentication and Single Sign-On
Guide, where module specifies the authentication module instance to use, or service specifies the
authentication tree or chain to use when authenticating the resource owner.

If not specified, the resource owner authenticates using the default chain or tree configured for
the realm.

Required: No.

state

Value to maintain state between the request and the callback. During authentication, the client
sends this parameter to the authorization server. The authorization server must send it back
unchanged in the response.

The application should use this value to ensure the response belongs to the user that initiated the
requests, which mitigates CSRF attacks.

The value of state is typically a base64-encoded string that contains user state and that is unique
to a user and their request.

Required: No, but it is strongly recommended.

acr_values

Authentication Context class Reference values used to communicate acceptable LoAs that users
must satisfy when authenticating to the OpenID provider.

For more information, see "Adding Authentication Requirements to ID Tokens" in the OpenID
Connect 1.0 Guide.

Required: No. OIDC flows only.

https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 163

claims

Specifies a JSON object containing specific attributes about users to be returned in the ID Token.

Required: No. OIDC flows only.

id_token_hint

ID token previously issued by AM that is passed as a hint about the end user's session with the
client. Using this parameter requires the response_type and prompt parameters to be set to none.

For more information about using the id_token_hint parameter, see "Retrieving Session State
without the Check Session Endpoint" in the OpenID Connect 1.0 Guide.

Required: No. OIDC flows only.

login_hint

String value that can be set to the ID the user uses to log in. For example, Bob or bob@example.com,
depending on how the authentication node or module is configured to search for users.

When provided as part of the OIDC Authentication Request, the login_hint is set as the value of a
cookie named oidcLoginHint, which is an HttpOnly cookie (only sent over HTTPS).

For more information, see "GSMA Mobile Connect" in the OpenID Connect 1.0 Guide.

Required: No. OIDC flows only.

nonce

String value that associates the client session with the ID token that also mitigates against replay
attacks. For more information, see the OpenID Connect 1.0 Guide.

Required: No. OIDC flows only.

prompt

A space-separated, case sensitive list of ASCII values that specifies whether AM should prompt
the end user for authentication and consent. Possible values are:

• none. AM does not display authentication or consent pages. Use with the id_token_hint and the
response_type=none parameters only.

• login. AM prompts the end user to authenticate to the default service of their realm, or to the
service provided in the service parameter.

If the user reauthenticates to a tree, AM destroys the original session and provides them with a
new one that reflects the new authentication journey.

If the user reauthenticates to a chain, AM updates the original session to reflect the new
authentication journey.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 164

Note

It is strongly recommended that users are required to authenticate using trees, not chains, when
prompt=login leads to reauthentication at the same level. This recreates the session and mitigates the
threat of session fixation attacks.

• consent. AM prompts the end user to grant consent, even if a consent response was previously
saved.

Required: No. OIDC flows only.

ui_locales

Specifies a space-separated list of the end user preferred languages for the user interface,
ordered by preference. For example, en fr-CA fr.

Required: No. OIDC flows only.

request

As per the OpenID Connect specification, this parameter specifies a base64url-encoded JWT
whose claims are the query parameters required for the OpenID Connect flow. This JWT is called
the request object.

You may send query string parameters and a request object in the same request to AM. This
is useful to keep sensitive information protected in the request object, and to ensure that
parameters whose value changes frequently, such as nonce and state, remain visible and mutable
across calls.

The value of the claims included in the request object supersede the value passed as query string
parameters, but some claims/parameters must be configured and sent in a certain manner for the
request to be valid. You must:

• Include the value of response_type and client_id as query string parameters, regardless of
whether they are included in the request object or not.

If they are included in the request object, their values must match those passed as query string
parameters.

• Include the openid scope as a query string parameter, regardless of whether it is included in the
request object or not.

The value of the scope claim may differ from that passed as a query parameter. This is useful
to protect application-related scopes inside the request object, yet allows AM to process the
request as part of an OpenID Connect flow.

You must follow these rules as well if you're passing the request object as a reference using the
request_uri parameter.

https://owasp.org/www-community/attacks/Session_fixation
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/bc-authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 165

The following is an example of a request object. Note that it includes the iss and aud JWT claims in
addition to the OpenID Connect claims:
{
 "iss": "myClient",
 "client_id": "myClient",
 "aud": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/myRealm",
 "redirect_uri": "https://www.example.com:8443",
 "scope" : "openid profile",
 "claims":
 {
 id_token":
 {
 "acr":
 {
 "essential": true,
 "values": ["example_tree1","example_tree2"]
 }
 }
 }
}

The JWT can be signed and/or encrypted, in which case you should always include the iss and
aud parameters in the JWT as shown in the example. However, AM ignores keys specified in JWT
headers, such as jku and jwe.

If you are compressing the JWT, note that by default, AM rejects JWTs that expand to a size
larger than 32 KiB (32768 bytes). For more information, see "Controlling the Maximum Size of
Compressed JWTs" in the Security Guide.

To retrieve a list of public keys clients can use to encrypt this JWT, make a request to the realm's
JWK URI endpoint in the OpenID Connect 1.0 Guide.

The following is an example call sending the request object as value:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize? \
&request=eyJhbGciOiJSUzI1NiIsImtpZCI6ImsyYmRjIn0.ew0KICJpc3MiOiAiczZCaGRSa3.... \
&client_id=myClient \
&scope=openid profile\
&response_type=code%20id_token \
&nonce=abc123 \
&state=123abc

Note that the URL is split for readability purposes.

Required: No. OIDC flows only.

/oauth2/bc-authorize
The /oauth2/bc-authorize endpoint is the backchannel authorization endpoint as used by OpenID
Connect Client Initiated Backchannel Authentication Flow - Core 1.0 draft-02. Use this endpoint to
initiate backchannel authorization with the resource owner when using the following flow:

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/bc-authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 166

• Backchannel Request Grant (OpenID Connect)

You must compose the path to the backchannel authorization endpoint addressing the specific realm
where the authorization request ID will be issued. For example, https://openam.example.com:8443/openam/
oauth2/realms/root/realms/subrealm1/bc-authorize.

The endpoint supports the following parameters:

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

client_secret

Specifies the password of the private client making the request. Do not use in conjunction with
the cnf_key parameter.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "OAuth 2.0 Client Authentication".

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

The endpoint requires a signed JWT that contains the following parameters:

aud

Specifies a string or an array of strings that is the intended audience of the JWT. Must be set to
the authorization server's OAuth 2.0 endpoint, for example:

OAuth 2.0 Endpoints
/oauth2/bc-authorize

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 167

"aud": "http://openam.example.com:8080/openam/oauth2"

exp

Specifies the expiration time of the JWT in Unix time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT expiration
 time is unreasonable error message.

iss

Specifies the unique identifier of the JWT issuer.

The identifier must match the client ID of the OAuth 2.0 client in AM, for example myCIBAClient.

login_hint

Specifies the principal who is the subject of the JWT. It should be a string that identifies the
resource owner.

Tip

You can provide a previously obtained ID token in a property named id_token_hint as the hint for
determining the resource owner, rather than a string.

scope

Specifies a space-separated list of the requested scopes. Must include the openid scope.

acr_values

Specifies an identifier that maps to the authentication mechanism AM uses to obtain
authorization from the end user.

binding_message

Specifies a message delivered to the user when obtaining authorization.

Should be a short (100 characters or fewer), description of the operation the end user is
authorizing, and should include an identifier to match the authorization request to the client that
initiated the request.

Note

If the binding message is sent using push notifications, the following additional limitations apply to the
value:

1. Must begin with a letter, number, or punctuation mark.

OAuth 2.0 Endpoints
/oauth2/access_token

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 168

2. Must not include line breaks or control characters.

For example:

Allow ExampleBank to transfer £50 from your 'Main' account to your 'Savings' account? (EB-0246326)

/oauth2/access_token
The /oauth2/access_token endpoint is the OAuth 2.0 token endpoint as defined in RFC 6749. Use this
endpoint to acquire an access or refresh token when using the following flows:

• Authorization Code Grant (OAuth 2.0) | OpenID Connect)

• Authorization Code Grant with PKCE (OAuth 2.0) | OpenID Connect)

• Client Credentials Grant (OAuth 2.0)

• Resource Owner Password Credentials Grant (OAuth 2.0)

• Device Flow (OAuth 2.0)

• SAML v2.0 Profile for Authorization Grant (OAuth 2.0)

You must compose the path to the token endpoint addressing the specific realm where the token will
be issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/token.

The token endpoint supports the following parameters:

grant_type

Specifies the type of grant to send to the authorization server to acquire an access token.

The following types are supported:

• password, for the Resource Owner Credentials grant flow.

• authorization_code, for the Authorization Code Grant (OAuth 2.0) | OpenID Connect) and
Authorization Code Grant with PKCE (OAuth 2.0) | OpenID Connect) grant flows.

• client_credentials, for the Client Credentials grant flow.

• urn:ietf:params:oauth:grant-type:device_code, for the Device Flow. An earlier specification, http://
oauth.net/grant_type/device/1.0, is also supported.

• urn:openid:params:grant-type:ciba, for the Client Initiated Backchannel Authentication (CIBA)
flow. For more information, see "Backchannel Request Grant" in the OpenID Connect 1.0 Guide.

https://www.rfc-editor.org/info/rfc6749

OAuth 2.0 Endpoints
/oauth2/access_token

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 169

• urn:ietf:params:oauth:grant-type:uma-ticket, for the UMA grant flow. For more information, see
"The UMA Grant Flow" in the User-Managed Access (UMA) 2.0 Guide.

• refresh_token, to refresh an access token. For more information, see "Refresh Tokens".

• urn:ietf:params:oauth:grant-type:saml2-bearer, for the SAML v2.0 Profile for Authorization grant.
For more information, see "SAML v2.0 Profile for Authorization Grant"

• urn:ietf:params:oauth:grant-type:jwt-bearer, for the JWT Profile for OAuth 2.0 Authorization grant.
For more information, see "JWT Profile for OAuth 2.0 Authorization Grant"

Required: Yes

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

client_secret

Specifies the secret of the client making the request. Do not use in conjunction with the cnf_key
parameter.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "OAuth 2.0 Client Authentication".

cnf_key

Specifies either a base64-encoded JWK used to support "JWK-Based Proof-of-Possession" or
a base64-encoded SHA-256 hash of the DER-encoding of a full X.509 certificate to support
"Certificate-Bound Proof-of-Possession".

Do not use in conjunction with the client_secret parameter.

Required: Yes, when using JWK proof-of-possession.

username

Specifies the username of the resource owner during the Resource Owner Credentials grant flow.

Required: Yes, when grant_type is set to password.

password

Specifies the password of the resource owner during the Resource Owner Credentials grant flow.

Required: Yes, when grant_type is set to password.

OAuth 2.0 Endpoints
/oauth2/access_token

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 170

code

Specifies the authorization code obtained during the Authorization Code grant and Authorization
Code with PKCE grant flows.

Required: Yes, when grant_type is set to authorization_code.

device_code

Specifies the device code obtained when requesting a user code during the Device flow.

Required: Yes, when grant_type is set to urn:ietf:params:oauth:grant-type:device_code.

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

assertion

Specifies a SAML v2.0 assertion. The assertion must be first base64-encoded, and then URL
encoded. For more information, see "SAML v2.0 Profile for Authorization Grant".

Required: Yes, when using the SAML v2.0 Profile for Authorization grant.

redirect_uri

The URI to return the resource owner to after authorization is complete. Must match the redirect_
uri configured in the client profile registered with AM, and the redirect_uri set when requesting
authorization.

The URI must be an absolute URI, and must not contain a fragment component. For example,
https://www.example.com:443/callback/.

OAuth 2.0 Endpoints
/oauth2/device/code

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 171

Required: Yes, when grant_type is set to authorization_code and it was included in the authorization
code grant, and during the Implicit grant.

code_verifier

Specifies a random string that correlates the authorization request to the token request in the
Authorization Code with PKCE grant flow.

Required: Yes, when requesting an access code in the Authorization Grant with PKCE flow.

scope

Specify the scopes linked to the permissions requested by the client from the resource owner. If
not specified, the default scopes specified in the client or the authorization server are requested.

Note that some grant flows, such as the Authorization Code grant, do not call the token endpoint
with the scope. The scope is already defined in the authorization code. For details, see the
specific grant flow documentation in "OAuth 2.0 Grant Flows".

Required: No.

auth_chain

Overrides the authentication tree or chain configured for the realm, and also the tree or
chain configured in the OAuth 2.0 service in the realm, when supporting the Resource Owner
Credentials grant flow.

By default, the Resource Owner Password Credentials grant flow uses the default authentication
tree or chain in the relevant realm.

The selected tree or chain must be configured for requiring username and password only, without
UI-based interaction from the resource owner. For example, using the ldapService chain or Example
tree. If this is not the case, the server returns an HTTP 500 error message.

Required: No.

refresh_token

Specifies the refresh token that will be used to refresh an access token.

For more information, see "Refresh Tokens".

Required: No, only when refreshing access tokens.

/oauth2/device/code
Device Flow endpoint as defined by the Internet-Draft OAuth 2.0 Device Flow. Client devices use this
endpoint to present a user code to the resource owner that can be exchanged for an access token in
the Device Flow (OAuth 2.0).

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-device-flow-03

OAuth 2.0 Endpoints
/oauth2/device/code

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 172

You must compose the path to the device code endpoint addressing the specific realm where the
user code will be issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/device/code.

The device code endpoint supports the following parameters:

response_type

Specifies the response expected from the authorization server. Set to device_code to obtain a user
code.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

state

Value to maintain state between the request and the callback. During authentication, the client
sends this parameter to the authorization server. The authorization server must send it back
unchanged in the response.

The application should use this value to ensure the response belongs to the user that initiated the
requests, which mitigates CSRF attacks.

The value of state is typically a base64-encoded string that contains user state and that is unique
to a user and their request.

Required: No, but it is strongly recommended.

scope

The scopes attached to the permissions requested from the resource owner by the client. If not
specified, the default scopes specified in the client or the authorization server are requested.

Required: Yes.

code_challenge

Specifies a string derived from the code verifier that is sent in the authorization request during
the Device with PKCE flow.

Required: Yes, when obtaining a user code in the Device with PKCE Flow.

code_challenge_method

Contains the method used to derive the code challenge. Possible values are plain and S256. When
unset, it defaults to plain.

OAuth 2.0 Endpoints
/oauth2/device/code

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 173

Required: Yes, when obtaining a user code in the Device with PKCE Flow.

nonce

String value that associates the client session with the ID Token that also mitigates against replay
attacks.

Required: No. OpenID Connect flows only.

acr_values

Authentication Context class Reference values used to communicate acceptable authentication
chains or trees.

For more information, see "Adding Authentication Requirements to ID Tokens" in the OpenID
Connect 1.0 Guide.

Required: No. OpenID Connect flows only.

prompt

A space-separated, case sensitive list of ASCII values that specifies whether AM should prompt
the end user for authentication and consent. Possible values are:

• none. AM does not display authentication or consent pages.

• login. AM prompts the end user to authenticate.

• consent. AM prompts the end user to grant consent.

Required: No. OpenID Connect flows only.

ui_locales

Specifies a space-separated list of the end user preferred languages for the user interface,
ordered by preference. For example, en fr-CA fr.

Required: No. OpenID Connect flows only.

login_hint

String value indicating the ID to use for login.

When provided as part of the OpenID Connect Authentication Request, the login_hint is set as
the value of a cookie named oidcLoginHint, which is an HttpOnly cookie (only sent over HTTPS).
Authentication modules can then retrieve the cookie's value.

For more information, see "GSMA Mobile Connect" in the OpenID Connect 1.0 Guide.

Required: No. OpenID Connect flows only.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/device/user

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 174

claims

Specifies a JSON object containing specific attributes about users to be returned in the ID Token.

Required: No. OpenID Connect flows only.

/oauth2/device/user
Device Flow AM-specific endpoint for user interaction. Client devices use this endpoint to exchange
a user code with consent from the resource owner to access the resources in the Device Flow (OAuth
2.0).

You must compose the path to the device user endpoint addressing the specific realm where consent
will be granted. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/
device/user.

The device user endpoint supports the following parameters:

user_code

Specify the scopes linked to the permissions requested by the client to the resource owner. If not
specified, the default scopes specified in the client or the authorization server are requested.

Required: Yes.

csrf

When interacting with the OAuth 2.0 consent page, this parameter helps prevent against Cross-
Site Request Forgery (CSRF) attacks.

The parameter duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO
token of the resource owner giving consent.

When using the AM consent pages, this parameter is set in the consent page once the resource
owner has authenticated, and it is sent to AM along with the consent.

When replacing AM consent pages with your own consent pages or when trying the flows without
a browser, you must set this parameter manually. For an example of a curl command, see the
Authorization Code Grant.

Required: Yes, for calls that are submitting consent response, unless you use the Remote Consent
Service to gather consent.

scope

Specify the scopes linked to the permissions requested by the client to the resource owner. If not
specified, the default scopes specified in the client or the authorization server are requested.

https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/token/revoke

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 175

Required: No.

decision

Specifies whether the resource owner consents to the requested access. Set to allow to grant
consent. Any other value denies consent.

Required: Yes, to submit consent on non-interactive calls, unless consent is already saved for the
scope.

save_consent

Updates the resource owner's profile to avoid having to prompt the resource owner to grant
authorization when the client issues subsequent authorization requests.

Set this parameter to on to save the consent.

To save the consent, you must have configured the Saved Consent Attribute Name property with
a profile attribute in which to store the resource owner's consent decision.

For more information on setting this property in the OAuth2 Provider service, see "OAuth2
Provider" in the Reference.

Required: No.

/oauth2/token/revoke
Endpoint defined in RFC7009 - Token Revocation, used to revoke both access and refresh tokens.

Revoking a refresh token also revokes any other associated tokens that were issued with the same
authorization grant. If a client has multiple access tokens for a single user that were obtained using
different authorization grants, the client would need to make multiple calls to the revoke token
endpoint to invalidate each token.

The revoke token endpoint supports the following parameters:

token

Specifies the token ID that will be revoked.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

https://www.rfc-editor.org/info/rfc7009

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 176

client_secret

Specifies the password of the private client making the request. Do not use in conjunction with
the cnf_key parameter.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "OAuth 2.0 Client Authentication".

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

You must compose the path to the revoke token endpoint addressing the specific realm where the
user code was issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/revoke.

The following is an example of how to revoke a given token:
$ curl --request POST \
--data "token=xS3UjtuXMu77iNzl2XibpeMlw1g" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/token/revoke"
 {}

/oauth2/introspect
Endpoint defined in RFC7662 - OAuth 2.0 Token Introspection, used to retrieve metadata about a
token, such as, approved scopes, the user that authorized the token, the expiry time, the UMA RPT,
or the proof-of-possession JWK.

As opposed to the /oauth2/tokeninfo endpoint, the /oauth2/introspect endpoint requires the client to
authenticate to the authorization server.

https://www.rfc-editor.org/info/rfc7662

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 177

Tip

To introspect macaroon access tokens containing third-party caveats, use the X-Discharge-Macaroon header to
pass the discharge macaroon.

The token introspection endpoint supports the following parameters:

token

Specifies the token ID.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: A form of credentials is required for confidential clients. However, the use of the
client_id parameter depends on the client authentication method used. For more information, see
"OAuth 2.0 Client Authentication".

client_secret

Specifies the secret of the client making the request.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "OAuth 2.0 Client Authentication".

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "OAuth 2.0 Client Authentication".

Required: Yes, when using the JWT bearer client authentication method.

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 178

You must compose the path to the introspect endpoint addressing the specific realm where the token
was issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/
introspect.

By default, and for security reasons, clients can only introspect their own tokens. To let a client
introspect access tokens issued to other clients, see "Special Scopes".

The following example shows AM returning token information:
$ curl \
--request POST \
--header "Authorization: Basic ZGVtbzpDaDRuZzMxdA==" \
--data "token=f9063e26-3a29-41ec-86de-1d0d68aa85e9" \
"https://openam.example.com:8443/openam/oauth2/introspect"
{
 "active": true,
 "scope": "write",
 "client_id": "myClient",
 "user_id": "demo",
 "username": "demo",
 "token_type": "Bearer",
 "exp": 1419356238,
 "sub": "demo",
 "iss": "https://openam.example.com:8443/openam/oauth2"
 "cnf": {
 "jwk": {
 "alg": "RS512",
 "e": "AQAB",
 "n": "k7qLlj...G2oucQ",
 "kty": "RSA",
 "use": "sig",
 "kid": "myJWK"
 },
 "auth_level": 0
 }
}

The introspection response, as specified in RFC7662, is a plain JSON object. However, AM also
supports the JWT Response for OAuth Token Introspection Internet Draft, which adds signed JWT or
signed then encrypted JWT responses.

To configure the response type, perform the following steps:

1. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Clients > Client Name >
Signing and Encryption.

2. In the Token introspection response format drop-down list, select the type of response required by
the client.

3. Configure the signing and/or encryption settings AM should use when returning introspection
responses to this particular client in the following properties:

• Token introspection response signing algorithm

• Token introspection response encryption algorithm

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-introspection-response-03

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 179

• Token introspection encrypted response encryption algorithm

For more information about these properties, see Signing and Encryption Properties.

Tip

Even if the client has configured the response to be JSON-formatted, it can request a signed JWT by adding the
"Accept: application/jwt" header to the request. For example:
$ curl \
--request POST \
--header "Accept: application/jwt" \
--header "Authorization: Basic ZGVtbzpDaDRuZzMxdA==" \
--data "token=f9063e26-3a29-41ec-86de-1d0d68aa85e9" \
"https://openam.example.com:8443/openam/oauth2/introspect"

However, when a client that is configured to use either of the JWT-formatted responses requests a JSON
response, AM returns an error.

The following is a list of the objects commonly returned by the token introspect endpoint:

active

Specifies whether the token is active (true) or not (false).

scope

Specifies a space-separated list of the scopes associated with the token.

client_id

Specifies the client that requested the token.

user_id

(Deprecated, defined in a previous draft of the spec) Specifies the user that authorized the token.

username

Specifies the user that authorized the token.

token_type

Specifies the type of token.

exp

Specifies the token expiration time in seconds since January 1 1970 UTC.

sub

Specifies the subject of the token.

OAuth 2.0 Endpoints
/json/token/macaroon

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 180

iss

Specifies the issuer of the token.

cnf

Specifies the confirmation key claim containing one of the following key types:

• jwk, which contains the decoded JSON web key (JWK) associated with the access token. For
more information, see the "JWK-Based Proof-of-Possession" flow.

• x5t#S256, which contains the base64-encoded SHA-256 hash of the DER-encoding of a full
X.509 certificate associated with the access token. For more information, see the "Certificate-
Bound Proof-of-Possession" flow.

macaroon

Specifies the macaroon validated by the token, including any caveats appended to the macaroon.

auth_level

(AM-specific extension property) Specifies the authentication level of the resource owner that
authenticated to authorize the token.

permissions

(UMA only). Specifies an array that contains the RPT token expiration time (exp), the resource
scopes of the token, and the resource ID.

/json/token/macaroon
AM's macaroon endpoint can be used to inspect and manipulate macaroons. Macaroons are designed
to be manipulated locally using a Macaroon library. This can be done securely by anybody in
possession of the Macaroon token without needing access to any keys at all.

AM's macaroon endpoint supports two actions:

• inspect: returns details about the macaroon.

• restrict: adds a new caveat to the macaroon, returning a new macaroon.

You must compose the path to the introspect endpoint addressing the specific realm where the
token was issued. For example, https://openam.example.com:8443/openam/json/realms/root/token/macaroon/?_
action=inspect.

The following example shows AM returning macaroon information:

OAuth 2.0 Endpoints
Legacy OAuth 2.0 endpoints

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 181

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "cache-control: no-cache" \
--data '{
 "macaroon":"AgEAAhtCRDFJSGhhLUktU21VbE5EQ0Y4MXVQRmlzUFUAAAYgnKhrEUFDwEwSPeTHwRSwTss7a4V0W68nL5Xw-
nnRhzQ"
 }' \
https://openam.example.com:8443/openam/json/token/macaroon?_action=inspect
 {
 "identifier": "1bmn1TQTONczbom-V2lCpaH4BUk",
 "location": "",
 "caveats": [
 {
 "type": "first-party",
 "identifier": {
 "scope": "openid profile"
 }
 }
],
 "signature": "kmVBwqpoi4nwakksk3b8KcSZvlYYmjCPdUTrFKFnhEY"
}

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Legacy OAuth 2.0 endpoints
AM exposes the following legacy endpoints:

OAuth 2.0 Administration Endpoints

Endpoint Description
/frrest/oauth2/token (Legacy) Retrieve metadata about a token, revoke both access and refresh tokens

(AM-specific endpoint, legacy)
/oauth2/tokeninfo (Legacy) Validate tokens and retrieve token metadata, such as scopes, to

determine how to respond to requests for protected resources (AM-
specific endpoint, legacy)

/frrest/oauth2/token (Legacy)

The AM-specific OAuth 2.0 token administration endpoint /frrest/oauth2/token lets administrators
read, list, and delete (revoke) OAuth 2.0 tokens. OAuth 2.0 clients can also manage their own tokens.

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 182

Important

The /frrest/oauth2/token endpoint is labeled as legacy and it does not work with client-based OAuth 2.0
tokens.

Use the following endpoints instead:

• /oauth2/introspect. Use this endpoint to retrieve metadata from OAuth 2.0 tokens.

• /oauth2/token/revoke. Use this endpoint to delete (revoke) specific OAuth 2.0 tokens.

• /users/user/oauth2/applications. Use this endpoint to list clients holding tokens granted by specific resource
owners, and for deleting tokens for a combination of a resource owner and client.

To list the contents of a specific token, perform an HTTP GET on /frrest/oauth2/token/token-id as in the
following example:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=Ch4ng31t" \
--data "scope=cn" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
}

$ curl \
--request GET \
--header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c
{
 "expireTime": [
 "1418818601396"
],
 "tokenName": [
 "access_token"
],
 "scope": [
 "cn"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "parent": [],
 "id": [
 "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
],

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 183

 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/"
],
 "userName": [
 "demo"
]
}

To list the tokens for the current user, perform an HTTP GET on /frrest/oauth2/token/?_queryId=access_
token, including in the SSO token of the current user in a header. The following example shows a
search for the demo user's access tokens:
$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 "https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=access_token"
{
 "result": [
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 184

 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To list a specific user's tokens, perform an HTTP GET on /frrest/oauth2/token/?_queryId=userName=string,
where string is the user, such as user.4. Include the SSO token of an administrative user, such as
amAdmin, in a header. For example:
$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 "https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=userName=user.4"
{
 "result": [
 {
 "_id": "2aaddde8-586b-4cb7-b431-eb86af57aabc",
 "_rev": "-549186065",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 185

 "myClientID"
],
 "parent": [],
 "refreshToken": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "id": [
 "2aaddde8-586b-4cb7-b431-eb86af57aabc"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-777"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_id": "5e1423a2-d2cd-40d5-8f54-5b695836cd44",
 "_rev": "1171292923",
 "tokenName": [
 "refresh_token"
],
 "expireTime": "Oct 18, 2016 10:51 AM",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myClientID"
],
 "authModules": [],
 "id": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-776"
],
 "redirectURI": [],
 "realm": [
 "/test"
],

OAuth 2.0 Endpoints
/oauth2/tokeninfo (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 186

 "userName": [
 "user.4"
],
 "acr": [],
 "display_name": "",
 "scopes": "openid"
 },
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To delete (revoke) a token, perform an HTTP DELETE on /frrest/oauth2/token/token-id, including the
SSO token of an administrative user, such as amAdmin, as in the following example:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=Ch4ng31t" \
--data "scope=cn" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
}

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 "https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
{
 "success": "true"
}

/oauth2/tokeninfo (Legacy)
AM-specific endpoint used to validate tokens and to retrieve information out of them, such as scopes,
the grant type used when issuing the token, or the token expiration time.

Tip

The /frrest/oauth2/tokeninfo endpoint is labeled as legacy.

To validate tokens and retrieve information with a spec-based endpoint, see /oauth2/introspect.

Resource servers —or any party having the token ID— can obtain token information through this
endpoint without authenticating.

OAuth 2.0 Endpoints
/oauth2/tokeninfo (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 187

The token information endpoint supports the following query parameter:

access_token

Specifies the token ID.

Required: Yes.

The following example shows AM issuing an access token, and then returning token information:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=Ch4ng31t" \
--data "scope=write" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

$ curl \
--request GET \
--header "Authorization: Bearer sbQZuveFumUDV5R1vVBl6QAGNB8" \
"https://openam.example.com:8443/openam/oauth2/tokeninfo"
{
 "access_token":"sbQZuveFumUDV5R1vVBl6QAGNB8",
 "grant_type":"password",
 "auth_level":0,
 "scope":[
 "write"
],
 "realm":"/",
 "token_type":"Bearer",
 "expires_in":2491,
 "write":"",
 "client_id":"myClient"
}

Note that AM returns a JSON object with the following properties:

access_token

Specifies the token ID.

grant_type

Specifies the OAuth 2.0 grant flow used to issue the token.

auth_level

Specifies the authentication level of the resource owner that authenticated to authorize the token.

OAuth 2.0 Endpoints
/oauth2/tokeninfo (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 188

scope

Specifies a JSON structure containing the scopes associated with the token.

realm

Specifies the realm from which the token was obtained.

token_type

Specifies the type of token.

expires_in

Specifies the expiration time in seconds.

client_id

Specifies the client that requested the token.

OAuth 2.0 Administration and Supporting REST Endpoints
/realm-config/agents/OAuth2Client

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 189

Chapter 14

OAuth 2.0 Administration and Supporting
REST Endpoints
AM exposes the following administration and supporting REST endpoints:

OAuth 2.0 Administration and Supporting Endpoints

Endpoint Description
/realm-config/agents/OAuth2Client Register, list, and delete OAuth 2.0 clients (AM specific-endpoint)
/users/user/oauth2/resources/sets Retrieve data for UMA resources registered to a particular user (AM-

specific endpoint)
/users/user/oauth2/applications List Oauth 2.0 clients holding active tokens granted by specific resource

owners, and delete tokens for a combination of resource owner and client
(AM-specific endpoint)

/realm-config/agents/OAuth2Client
AM-specific endpoint that lets AM and agent administrators create, list, and delete OAuth 2.0 clients.

Tip

Use the AM API Explorer for detailed information about the parameters supported by this endpoint, and to test
it against your deployed AM instance.

In the AM console, select the Help icon, and then navigate to API Explorer > /realm-config > /agents > /
OAuth2Client.

The following example shows how to create a basic OAuth 2.0 client named myClient in a subrealm of
the Top Level Realm named subrealm1. Note that you must provide the SSO token of an administrative
user as a header, and that the name of the client is appended to the URL:
$ curl \
 --request PUT \
 --header "Accept-API-Version: resource=1.0" \
 --header "Content-Type: application/json" \
 --header "Accept: application/json" \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
--data '{
 "coreOAuth2ClientConfig":{
 "agentgroup":"",

OAuth 2.0 Administration and Supporting REST Endpoints
/realm-config/agents/OAuth2Client

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 190

 "status":{
 "inherited":true,
 "value":"string"
 },
 "userpassword":"forgerock",
 "clientType":{
 "inherited":false,
 "value":"Confidential"
 },
 "redirectionUris":{
 "inherited":false,
 "value":[
 "https://www.example.com:443/callback"
]
 },
 "scopes":{
 "inherited":false,
 "value":[
 "write",
 "read"
]
 },
 "defaultScopes":{
 "inherited":true,
 "value":[
 "write"
]
 },
 "clientName":{
 "inherited":true,
 "value":[
 "My Test Client"
]
 }
 },
 "advancedOAuth2ClientConfig":{
 "name":{
 "inherited":false,
 "value":[
 null
]
 },
 "grantTypes":{
 "inherited":true,
 "value":[
 "authorization_code",
 "client_credentials"
]
 },
 "tokenEndpointAuthMethod":{
 "inherited":true,
 "value":"client_secret_basic"
 }
 }
}' \
"https://openam.example.com:8443/openam/json/realms/root/realms/subrealm1/realm-config/agents/
OAuth2Client/testClient"
{
 "_id":"testClient",

OAuth 2.0 Administration and Supporting REST Endpoints
/realm-config/agents/OAuth2Client

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 191

 "_rev":"-60716879",
 "advancedOAuth2ClientConfig":{
 "descriptions":{
 "inherited":false,
 "value":[

]
 },

...

 "clientType":{
 "inherited":false,
 "value":"Confidential"
 },
...
 "_type":{
 "_id":"OAuth2Client",
 "name":"OAuth2 Clients",
 "collection":true
 }
}

The following example shows how to delete an OAuth 2.0 client named myClient in a subrealm of the
Top Level Realm named subrealm1. Note that you must provide the SSO token of an administrative
user as a header, and that the name of the client is appended to the URL:
$ curl \
 --request DELETE \
 --header "Accept-API-Version: resource=1.0" \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 "https://openam.example.com:8443/openam/json/realms/root/realm-config/agents/OAuth2Client/myClient"
{
 "_id":"testClient",
 "_rev":"-60716879",
 "advancedOAuth2ClientConfig":{
 "descriptions":{
 "inherited":false,
 "value":[

]
 },

...

 "clientType":{
 "inherited":false,
 "value":"Confidential"
 },
...
 "_type":{
 "_id":"OAuth2Client",
 "name":"OAuth2 Clients",
 "collection":true
 }
}

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/resources/sets

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 192

You can use a similar PUT command to the one above to update an existing OAuth 2.0 client.
However, ensure that you include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute.

/users/user/oauth2/resources/sets
AM-specific endpoint for viewing and updating a resource registered to a particular user.

Tip

Use the AM API Explorer for detailed information about the parameters supported by this endpoint, and to test
it against your deployed AM instance.

In the AM console, select the Help icon, and then navigate to API Explorer > /users > /{user} > /oauth2 > /
resources > /sets.

To call the endpoint, you must compose the path to the realm where the resource is registered. For
example, https://openam.example.com:8443/openam/json/realms/root/realms/subRealm1/users/demo/oauth2/
resources/sets.

The following example shows how to read an OAuth 2.0 resource and related policy in the Top Level
Realm. Note that you must provide the SSO token of an administrative user or of the resource owner
as a header, and that the name of the resource owner (demo, in this example) is part of the URL:
$ curl \
--request GET \
--header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
"https://openam.example.com:8443/openam/json/realms/root/users/demo\
/oauth2/resources/sets/43225628-4c5b-4206-b7cc-5164da81decd0"
{
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/comment"
],
 "_id": "43225628-4c5b-4206-b7cc-5164da81decd0",
 "resourceServer": "UMA-Resource-Server",
 "name": "My Videos",
 "icon_uri": "http://www.example.com/icons/cinema.png",
 "policy": {
 "permissions": [
 {
 "subject": "user.1",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view"
]
 },
 {
 "subject": "user.2",
 "scopes": [
 "http://photoz.example.com/dev/scopes/comment",
 "http://photoz.example.com/dev/scopes/view"
]
 }

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/applications

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 193

]
 },
 "type": "http://www.example.com/rsets/videos"
}

Tip

You can specify the fields that are returned with the _fields query string filter. For example ?_fields=scopes,
 resourceServer, name

On success, an HTTP 200 OK status code is returned, with a JSON body representing the resource. If
a policy relating to the resource exists, a representation of the policy is also returned in the JSON.

If the specified resource does not exist, an HTTP 404 Not Found status code is returned, as follows:
{
 "code": 404,
 "reason": "Not Found",
 "message": "No resource set with id, bad-id-3e28-4c19-8a2b-36fc24c899df0, found."
}

If the SSO token used is not that of the resource owner or an administrator, an HTTP 403 Forbidden
status code is returned, as follows:
{
 "code": 403,
 "reason": "Forbidden",
 "message": "User, user.1, not authorized."
}

/users/user/oauth2/applications
AM-specific endpoint for listing clients holding tokens granted by specific resource owners, and for
deleting tokens for a combination of a resource owner and client.

Tip

Use the AM API Explorer for detailed information about the parameters supported by this endpoint, and to test
it against your deployed AM instance.

In the AM console, select the Help icon, and then navigate to API Explorer > /users > /{user} > /oauth2 > /
applications.

To call the endpoint, you must compose the path to the realm where the client is registered. For
example, https://openam.example.com:8443/openam/json/realms/root/realms/subrealm1/users/demo/oauth2/
applications.

The following example shows how to list all the clients holding tokens granted in the Top Level
Realm by the demo user. Note that you must provide the SSO token of an administrative user or of the
resource owner as a header, and that the name of the resource owner (demo) is part of the URL:

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/applications

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 194

$ curl --request GET \
--header "Accept-API-Version: resource=1.1" \
--header "iplanetDirectoryPro: Ua6fsH2vjgHqVY..." \
"https://openam.example.com:8443/openam/json/users/demo/oauth2/applications?_queryFilter=true"

On success, AM returns an HTTP 200 code and a JSON structure containing information about the
tokens, such as the client ID they belong to, the scopes they grants, and their expiration time:
{
 "result":[
 {
 "_id":"myClient",
 "_rev":"22274676",
 "name":null,
 "scopes":{
 "write":"write"
 },
 "expiryDateTime":"2018-11-14T10:48:55.395Z",
 "logoUri":null
 }
],
 "resultCount":1,
 "pagedResultsCookie":null,
 "totalPagedResultsPolicy":"NONE",
 "totalPagedResults":-1,
 "remainingPagedResults":-1

The following example shows how to delete all tokens held by the client myClient granted in the Top
Level Realm by the demo user. Note that you must provide the SSO token of an administrative user or
of the resource owner as a header, and that the name of the resource owner (demo) and the name of
the client (myClient) are part of the URL:
$ curl --request DELETE \
--header "Accept-API-Version: resource=1.1" \
--header "iplanetDirectoryPro: Ua6fsH2vjgHqVY..." \
"https://openam.example.com:8443/openam/json/users/demo/oauth2/applications/myClient"

On success, AM returns an HTTP 200 code and a JSON structure containing information about the
deleted tokens, such as the client ID they belonged to, the scopes they granted, and their expiration
time:
{
 "_id": "myClient",
 "_rev": "22274676",
 "name": null,
 "scopes": {
 "write": "write"
 },
 "expiryDateTime": "2018-11-14T10:48:55.395Z",
 "logoUri": null
}

Modifying the Content of Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 195

Chapter 15

Modifying the Content of Access Tokens
You can modify the key-value pairs contained within an OAuth 2.0 access token by using a script. For
example, you could make a REST call to an external service, and add or change a key-value pair in
the access token based on the response, before issuing the token to the resource owner.

Modification works for client-based and CTS-based access tokens, and are stored permanently in
either the issued JWT or in the CTS respectively. It also works when macaroons are used in place of
regular tokens, in which case, you can use scripts to both modify the key pairs in the token and/or to
add caveats.

Use access token modification scripts with the OAuth 2.0 default scope validator class.

AM includes an example script that demonstrates some of the functionality available. To examine the
contents of the example access token modification script, in the AM console navigate to Realms >
Top Level Realm > Scripts, and then select OAuth2 Access Token Modification Script.

For general information about scripting in AM, see Getting Started with Scripting.

For information about the API available for modifying access tokens with scripts, see the following:

• "Accessing HTTP Services" in the Getting Started with Scripting

• "Debug Logging" in the Getting Started with Scripting

• "AccessToken" interface in the AM 7.0.2 Public API Javadoc

• "AMIdentity" interface in the AM 7.0.2 Public API Javadoc

• "SSOToken" interface in the AM 7.0.2 Public API Javadoc

• "MacaroonToken" interface in the AM 7.0.2 Public API Javadoc

When issuing modified access tokens, consider the following important points:

• Removing or changing native properties may render the access token unreadable

AM requires that certain native properties are present in the access token in order to consider it
valid. Removing or modifying these properties may cause the OAuth 2.0 flows to break.

../apidocs/org/forgerock/oauth2/core/AccessToken.html
../apidocs/com/sun/identity/idm/AMIdentity.html
../apidocs/com/iplanet/sso/SSOToken.html
../apidocs/org/forgerock/openam/oauth2/token/macaroon/MacaroonToken.html

Modifying the Content of Access Tokens
Preparing AM to Modify Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 196

Tip

Native properties are marked in the AM 7.0.2 Public API Javadoc with a warning about loss of functionality if
they are edited or removed.

• Modifying access tokens affects the size of the client-based token or CTS entry

Changes made to OAuth 2.0 access tokens directly impacts the size of the CTS tokens when using
CTS-based tokens, or the size of the JSON web tokens (JWT) if client-based is enabled.

You must ensure that the token size remains within your client or user-agent size limits.

For more information, see "About Token Storage Location".

Preparing AM to Modify Access Tokens
AM requires a small amount of configuration before trying the default access token modification
script. The script requires that the authenticated user of the access token has an email address and
telephone number in their profile. The script adds the values of these fields to the access token.

Perform the steps in the following procedures to prepare AM for testing scripted modification of
OAuth 2.0 access tokens:

• "To Add an Email Address and Telephone Number to the Demo User"

• "To Modify the Default Access Token Modification Script"

• "To Configure AM to Issue Access Tokens Using the Default Access Token Modification Script"

To Add an Email Address and Telephone Number to the Demo User

In this procedure, add an email address and telephone number value to the demo user's profile. The
access token modification script injects the values provided into the OAuth 2.0 access token before it
is issued to the resource owner.

1. Log in as an AM administrator. For example amAdmin.

2. Select Realms > Top Level Realm > Identities.

3. On the Identities tab, select the demo user.

a. In Email Address, enter a valid address. For example:
demo.user@example.com

b. In Telephone Number, enter a value. For example:

../apidocs/org/forgerock/oauth2/core/AccessToken.html

Modifying the Content of Access Tokens
Preparing AM to Modify Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 197

+44 117 496 0228

4. Select Save Changes.

To Modify the Default Access Token Modification Script

In this procedure, uncomment functionality in the default access token modification script in order to
demonstrate how to modify access tokens.

1. Log in as an AM administrator. For example amAdmin.

2. Navigate to Realms > Top Level Realm > Scripts, and then click OAuth2 Access Token
Modification Script.

3. In the Script field:

a. Uncomment line 34 of the script, by surrounding the line with a pair of */ and /* strings:
*/
accessToken.setField("hello", "world")
/*

b. Uncomment lines 59 to 61 of the script, by surrounding them with a pair of */ and /* strings:
*/
def attributes = identity.getAttributes(["mail", "telephoneNumber"].toSet())
accessToken.setField("mail", attributes["mail"])
accessToken.setField("phone", attributes["telephoneNumber"])
/*

4. Select Save Changes.

To Configure AM to Issue Access Tokens Using the Default Access Token Modification Script

In this procedure, create an OAuth 2.0 provider that uses the default access token modification
script, as well as an OAuth 2.0 client. Obtaining an access token as the demo user can then be
performed to test the script functionality.

1. Log in as an AM administrator. For example amAdmin.

2. Create an OAuth 2.0 provider by performing the following steps:

a. Navigate to Realms > Top Level Realm > Configure OAuth Provider, and then click Configure
OAuth 2.0.

b. Keep the suggested settings, click Create, and then click OK.

The default setting for a new OAuth 2.0 provider is to use the default access token
modification script.

For information on OAuth 2.0 provider properties, see "OAuth2 Provider" in the Reference.

Modifying the Content of Access Tokens
Trying the Default Access Token Modification Script

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 198

3. Create an OAuth 2.0 client by performing the following steps:

a. Navigate to Realms > Top Level Realm > Applications > OAuth 2.0 > Clients, and then click
Add Client.

b. Enter the following values:

• Client ID: myClient

• Client secret: forgerock

• Redirection URIs: https://www.example.com:443/callback

• Scope(s): access|Access to your data

c. Click Create.

AM is now configured to issue access tokens using the default access token modification
script.

Trying the Default Access Token Modification Script
This section demonstrates obtaining an OAuth 2.0 access token which has been modified by a script.

First, we will use the Authorization Code Grant flow to authenticate with AM as the resource owner,
allow the client to access our profile data, and receive the authorization code.

In the second procedure, we will exchange the authorization code for an access token, which will
have been altered by the default access token modification script to include:

• The resource owner's telephone number and email address, taken from their profile in AM, which is
acting as the authorization server.

• A hello:world key-value pair.

In the final procedure, we will introspect the access token to verify that it does include the modified
values.

To Obtain an Authorization Code to Test Access Token Modification

1. In a web browser, navigate to the /oauth2/authorize endpoint, including the parameters and
values configured for the OAuth 2.0 client in the previous section.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize?
client_id=myClient&response_type=code&scope=access&state=abc123&redirect_uri=https://
www.example.com:443/callback

Modifying the Content of Access Tokens
Trying the Default Access Token Modification Script

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 199

The AM sign in page is displayed.

2. Log in as the demo user, with password Ch4ng31t.

The AM OAuth 2.0 consent page is displayed.

3. Review the scopes being requested, and then click Allow.

AM redirects the browser to the location specified in the redirect_uri parameter, https://www.
example.com:443/callback in this example, and appends a number of query parameters. For example:

4. Record the value of the code query parameter.

This is the authorization code and is exchanged for an access token in the next procedure.

To Exchange an Authorization Code for an Access Token to Test Access Token Modification

1. Create a POST request to the /oauth2/access_token endpoint, including the authorization code
obtained in the previous procedure, and the parameters and values configured for the OAuth 2.0
client earlier.

For example:
$ curl --request POST \
 --data "grant_type=authorization_code" \
 --data "code=tH_s2obVRt2_yB6x4OxH1J3eMkU" \
 --data "client_id=myClient" \
 --data "client_secret=forgerock" \
 --data "redirect_uri=https://www.example.com:443/callback" \
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "access",
 "token_type": "Bearer",
 "expires_in": 3599
}

2. Record the value of the access_token property.

This is the access token, the properties of which have been modified by the access token
modification script. Follow the steps in the next procedure to introspect the token to verify the
properties have been modified.

To Introspect an Access Token to Verify Access Token Modification

• Create a POST request to the /oauth2/introspect endpoint, including the access token obtained in
the previous procedure, and the credentials of the OAuth 2.0 client earlier.

Modifying the Content of Access Tokens
Trying the Default Access Token Modification Script

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 200

For example:
$ curl \
 --request POST \
 --data "client_id=myClient" \
 --data "client_secret=forgerock" \
 --data "token=sbQZuveFumUDV5R1vVBl6QAGNB8" \
 "https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active": true,
 "scope": "access",
 "client_id": "myClient",
 "user_id": "demo",
 "username": "demo",
 "token_type": "Bearer",
 "exp": 1556289970,
 "sub": "demo",
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "auth_level": 0,
 "auditTrackingId": "c6e22be7-6166-402b-9d72-a03134f08c22-8605",
 "hello": "world",
 "mail": [
 "demo.user@example.com"
],
 "phone": [
 "+44 117 496 0228"
]
}

Notice that the output includes a hello:world key-value pair, as well as mail and phone properties,
containing values taken from the user's profile data.

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 201

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 202

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 203

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 204

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IDP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 205

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

OAuth 2.0 Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 206

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	OAuth 2.0 Guide
	Table of Contents
	Overview
	Chapter 1. AM as the Authorization Server
	About Token Storage Location

	Chapter 2. AM as Client and Resource Server
	Configuring AM as an Authorization Server and Client
	Example: Protecting a Web Site With OAuth 2.0

	Chapter 3. Authorization Server Configuration
	Configuring AM for Client-Based OAuth 2.0 Tokens
	Enabling Client-Based OAuth 2.0 Tokens
	Configuring Client-Based OAuth 2.0 Token Blacklisting
	Configuring Client-Based OAuth 2.0 Token Encryption
	Configuring Client-Based OAuth 2.0 Token Digital Signatures

	Chapter 4. About Scopes
	Customizing OAuth 2.0 Scope Handling
	About the Scope Validator Plugin Sample
	Configuring an Instance to Use the Plugin
	Trying the Sample Plugin

	Chapter 5. About Consent
	Allowing Clients To Skip Consent
	Allowing the OAuth 2.0 Provider to Save Consent
	Allowing Users to Revoke Consent

	Chapter 6. The Remote Consent Service
	Chapter 7. Client Registration
	Chapter 8. OAuth 2.0 Client Authentication
	Authenticating Clients Using Form Parameters
	Authenticating Clients Using Authorization Headers
	Authenticating Clients Using JWT Profiles
	Authenticating Clients Using Mutual TLS
	Mutual TLS Using Public Key Infrastructure
	Mutual TLS Using Self-Signed X.509 Certificates
	Providing Client Certificates to AM

	Chapter 9. Proof-of-Possession
	JWK-Based Proof-of-Possession
	Certificate-Bound Proof-of-Possession
	Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured
	Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

	Chapter 10. Refresh Tokens
	Chapter 11. Macaroons as Access and Refresh Tokens
	Appending Caveats to Macaroons
	Using OAuth 2.0 Endpoints with Macaroons
	Macaroons and CTS-Based and Client-Based Tokens
	Enabling Macaroons

	Chapter 12. OAuth 2.0 Grant Flows
	Authorization Code Grant
	Authorization Code Grant with PKCE
	Implicit Grant
	Resource Owner Password Credentials Grant
	Client Credentials Grant
	Device Flow
	SAML v2.0 Profile for Authorization Grant
	JWT Profile for OAuth 2.0 Authorization Grant

	Chapter 13. OAuth 2.0 Endpoints
	/oauth2/authorize
	/oauth2/bc-authorize
	/oauth2/access_token
	/oauth2/device/code
	/oauth2/device/user
	/oauth2/token/revoke
	/oauth2/introspect
	/json/token/macaroon
	Legacy OAuth 2.0 endpoints
	/frrest/oauth2/token (Legacy)
	/oauth2/tokeninfo (Legacy)

	Chapter 14. OAuth 2.0 Administration and Supporting REST Endpoints
	/realm-config/agents/OAuth2Client
	/users/user/oauth2/resources/sets
	/users/user/oauth2/applications

	Chapter 15. Modifying the Content of Access Tokens
	Preparing AM to Modify Access Tokens
	Trying the Default Access Token Modification Script

	Glossary

