
Sessions Guide
/ ForgeRock Access Management 7.0.2

Latest update: 7.0.2

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2019-2021 ForgeRock AS.

Abstract

Guide to understanding and configuring sessions in AM.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... iv
1. Introducing Sessions ... 1

CTS-Based Sessions ... 2
Client-Based Sessions .. 2
In-Memory Sessions .. 4

2. Choosing Where to Store Sessions .. 5
3. Session Cookies and Session Security ... 8
4. Configuring CTS-Based Sessions ... 10
5. Configuring Client-Based Sessions .. 12
6. Configuring In-Memory Authentication Sessions .. 16
7. Managing Sessions (Console) .. 17
8. Managing Sessions (REST) .. 19

Obtaining Information About Sessions Using REST ... 19
Validating Sessions Using REST .. 20
Refreshing CTS-Based Sessions Using REST ... 21
Invalidating Sessions Using REST ... 22
Getting and Setting Session Properties Using REST .. 23

9. Session Upgrade ... 26
Glossary ... 39

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. iv

Overview
This guide covers concepts and implementation procedures that will help you manage sessions in
your AM environment.

This guide is written for administrators that are configuring AM's authentication and authorization
components.

Quick Start

Introducing Sessions

Learn about the different types of
sessions in AM and their characteristics.

The Session Cookie

Learn about the session cookie, and why
you must secure it from malicious users.

Comparing Sessions

Decide where sessions should be stored in each realm
based on your needs and the session characteristics.

Session Upgrade

Discover how AM performs step-up authentication.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing Sessions
A session in AM is a token that represents a usually interactive exchange of information between AM
and a user or identity.

AM creates an authentication session to track the user's authentication progress through an
authentication chain or tree. Once the user has authenticated, AM creates a session to manage the
user's or entity's access to resources.

AM session-related services are stateless unless otherwise indicated; they do not hold any session
information local to the AM instances. Instead, they store session information either in the CTS token
store or on the client. This architecture allows you to scale your AM infrastructure horizontally since
any server in the deployment can satisfy any session's request.

Sessions have different characteristics depending on where AM stores the sessions. Session storage
location is configured at the realm level. The following table illustrates where AM can store sessions:

Session Storage Location

 In the CTS Token Store On the Client In AM's Memory
Authentication Sessions a a (Default in new

installations)
 b (Default after
upgrade)

Sessions (Default)
aAuthentication trees only.
b Available for authentication trees and authentication chains.

Tip

Session storage location can be heterogeneous within the same AM deployment to suit the requirements of
each of your realms.

Related information:

• "CTS-Based Sessions"

• "Client-Based Sessions"

• "In-Memory Sessions"

Introducing Sessions
CTS-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 2

CTS-Based Sessions
CTS-based sessions reside in the CTS token store and can be cached in memory on one or more AM
servers to improve system performance 1 . If the session request is redirected to an AM server that
does not have the session cached, that server must retrieve the session from the CTS token store.

AM sends a reference to the session to the client, but the reference does not contain any of the
session state information. AM can modify a session during its lifetime without changing the client's
reference to the session.

• CTS-Based Authentication Sessions Specifics

CTS-based authentication sessions are supported for authentication trees only.

During authentication, the session reference is returned to the client after a call to the
 authenticate endpoint and stored in the authId object of the JSON response.

AM maintains the authenticating user's session in the CTS token store. After the authentication
flow has completed, if the realm to which the user has authenticated is configured for client-based
sessions, AM returns session state to the client and deletes the CTS-based session.

Authentication session whitelisting is an optional feature that maintains a list of in-progress
authentication sessions and their progress in the authentication flow to protect against replay
attacks. For more information, see "Configuring Authentication Session Whitelisting" in the
Security Guide.

• CTS-Based Sessions

Once the user is authenticated, the session reference is known as an SSO token. For browser
clients, AM sets a cookie in the browser that contains the session reference. For REST clients, AM
returns the session reference in response to calls to the authentication endpoint.

For more information about session cookies, see "Session Cookies and Session Security".

Related information:

• "Choosing Where to Store Sessions"

Client-Based Sessions
Client-based sessions are those where AM returns session state to the client after each request, and
require it to be passed in with the subsequent request.

1 For information about configuring AM with sticky load balancing, see "Load Balancers" in the Setup Guide.

Introducing Sessions
Client-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 3

Important

Some features are not supported in realms configured for client-based sessions. For more information, see
Limitations When Using Client-Based Sessions.

You should configure AM to sign and/or encrypt client-based sessions and authentication sessions for
security reasons. As decrypting and verifying the session may be an expensive operation to perform
on each request, AM caches 1 the decrypt sequence in memory to improve performance.

For more information about configuring client-based security, see "Configuring Client-Based Session
Security" in the Security Guide.

• Client-Based Authentication Sessions Specifics

Client-based authentication sessions are supported for authentication trees only, and are
configured by default in new installations.

During authentication, authentication session state is returned to the client after each call to the
 authenticate endpoint and stored in the authId object of the JSON response.

After the authentication flow has completed, if the realm to which the user has authenticated is
configured for CTS-based sessions, AM creates the user's session in the CTS token store. Then, AM
attempts to invalidate the client-based authentication session.

Storing authentication sessions on the client allows any AM server to handle the authentication
flow at any point in time without load balancing requirements.

Authentication session whitelisting is an optional feature that maintains a list of in-progress
authentication sessions and their progress in the authentication flow to protect against replay
attacks. For more information, see "Configuring Authentication Session Whitelisting" in the
Security Guide.

• Client-Based Sessions Specifics

For browser-based clients, AM sets a cookie in the browser that contains the session state. When
the browser transmits the cookie back to AM, AM decodes the session state from the cookie. For
REST-based clients, AM sends the cookie in a header. For more information about session cookies,
see "Session Cookies and Session Security".

Session blacklisting is an optional feature that maintains a list of logged out client-based sessions in
the CTS token store. For more information about session termination and session blacklisting, see
"Understanding Session Termination" in the Security Guide and "Configuring Client-Based Session
Blacklisting" in the Security Guide.

Related information:

• "Choosing Where to Store Sessions"

Introducing Sessions
In-Memory Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 4

In-Memory Sessions
In-memory sessions reside in AM's memory. AM sends clients a reference to the session, but the
reference does not contain any of the session state information.

• In-Memory Authentication Sessions Specifics

In-memory authentication sessions are the only configuration supported for authentication chains.
They are also configured by default for authentication trees after an upgrade.

During authentication, the authentication session reference is returned to the client after a call to
the authenticate endpoint and stored in the authId object of the JSON response.

AM maintains the user's authentication session in its memory. After the authentication flow has
completed, AM performs the following tasks:

• If the realm to which the user has authenticated is configured for CTS-based sessions, AM stores
the user's session in the CTS token store and deletes the authentication session from memory.

• If the realm to which the user has authenticated is configured for client-based sessions, AM
stores the user's session in a cookie on the user's browser and deletes the authentication session
from memory.

Authentication session whitelisting is an optional feature that maintains a list of in-progress
authentication sessions and their progress in the authentication flow to protect against replay
attacks. For more information, see "Configuring Authentication Session Whitelisting" in the
Security Guide.

Important

Deployments where AM stores authentication sessions in memory require sticky load balancing to route all
requests pertaining to a particular authentication flow to the same AM server. If a request reaches a different
AM server, the authentication flow will start anew.

Authentication chains only support storing authentication sessions in memory. ForgeRock recommends
switching to authentication trees with CTS-based or client-based authentication sessions.

For information about configuring AM with sticky load balancing, see "Load Balancers" in the Setup Guide.

• In-Memory Sessions Specifics

AM does not support in-memory sessions for authenticated users.

Related information:

• "Choosing Where to Store Sessions"

Choosing Where to Store Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 5

Chapter 2

Choosing Where to Store Sessions
You can configure authentication session storage location independently from session storage
location. For example, you could configure the same realm for client-based authentication sessions
and CTS-based sessions if it suits your environment.

AM stores CTS-based sessions in the CTS token store and caches sessions in server memory. If a
server with cached sessions fails, or if the load balancer in front of AM servers directs a request to a
server that does not have the user's session cached, the AM server retrieves the session from the CTS
token store, incurring performance overhead.

Choosing where to store sessions is an important decision you must make by realm. Consider the
information in the following tables before configuring sessions:

+ Advantages of CTS-Based Sessions

Advantage Applies to
Authentication
Sessions?

Applies to
Sessions?

Full Feature Support

CTS-based sessions support all AM features, such as CDSSO and quotas.
Client-based sessions do not. For information about restrictions on AM usage
with client-based sessions, see Limitations When Using Client-Based Sessions.

This advantage does not apply to authentication sessions, since they do not
provide features.

Session Information Is Not Resident In Browser Cookies

With CTS-based sessions, all the information about the session resides in CTS
and might be cached on one or more AM servers. With client-based sessions,
session information is held in browser cookies. This information could be very
long-lived.

+ Advantages of Client-Based Sessions

Advantage Applies to
Authentication
Sessions?

Applies to
Sessions?

Unlimited Horizontal Scalability for Session Infrastructure

Choosing Where to Store Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 6

Advantage Applies to
Authentication
Sessions?

Applies to
Sessions?

Client-based sessions provides unlimited horizontal scalability for your
sessions by storing the session state on the client as a signed and encrypted
JWT.

Overall performance on hosts using client-based sessions can be easily
improved by adding more hosts to the AM deployment.
Replication-Free Deployments

Global deployments may struggle to keep their CTS token store replication in
sync when distances are long and updates are frequent.

Client-based sessions are not constrained by the replication speed of the CTS
token store. Therefore, client-based sessions are usually more suitable for
deployments where a session can be serviced at any time by any server.

+ Advantages of In-Memory Sessions

Advantage Applies to
Authentication
Sessions?

Applies to
Sessions?

Faster Performance With Equivalent Host

AM servers configured for in-memory authentication sessions can validate
more sessions per second per host than those configured for client-based or
CTS-based authentication sessions.

Session Information Is Not Resident in Browser Cookies

Authentication session information resides in AM's memory and it is not
accessible to users. With client-based sessions, authentication session
information is held in browser cookies.

+ Impact of Storage Location for Authentication Sessions

 CTS-Based
Authentication Sessions

Client-Based
Authentication Sessions

In-Memory
Authentication Sessions

Authentication Method Authentication trees. Authentication trees. Authentication trees and
authentication chains.

Session Location Authoritative source:
CTS token store.
Sessions might also
be cached in AM's
memory for improved
performance.

On the client. In AM server's memory.

Choosing Where to Store Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 7

 CTS-Based
Authentication Sessions

Client-Based
Authentication Sessions

In-Memory
Authentication Sessions

Load Balancer
Requirements

None. Session stickiness
recommended for
performance.

None. Session stickiness
recommended for
performance.

Session stickiness.

Core Token Service
Usage

Authoritative source for
user sessions. Session
whitelisting, when
enabled.

Session whitelisting,
when enabled.

None.

Uninterrupted Session
Availability

No special configuration
required.

No special configuration
required.

Not available.

Session Security Sessions reside in the
CTS token store, and are
not accessible to users.

Sessions reside on the
client and should be
signed and encrypted.

Sessions reside in AM's
memory, and are not
accessible to users.

+ Impact of Storage Location for Sessions

 CTS-Based Sessions Client-Based Sessions
Hardware Higher I/O and memory

consumption.
Higher CPU consumption.

Logical Hosts Variable or large number of hosts. Variable or large number of hosts.
Session Monitoring Available. Not available.
Session Location Authoritative source: CTS token

store. Sessions might also be
cached in AM's memory for
improved performance.

In a cookie in the client.

Load Balancer Requirements None. Session stickiness
recommended for performance.

None. Session stickiness
recommended for performance.

Uninterrupted Session Availability No special configuration required. No special configuration required.
Core Token Service Usage Authoritative source for user

sessions.
Provides session blacklisting for
logged out sessions.

Core Token Service Demand Heavier. Lighter.
Session Security Sessions reside in the CTS token

store, and are not accessible to
users.

Sessions should be signed and
encrypted. a

Cross-Domain Single Sign-On
Support

All AM capabilities supported. Web Agents and Java Agents:
Supported without restricted
tokens.

a Web Agents and Java Agents support either signing or encrypting client-based sessions, but not both. For more information,
see "Client-Based Session Security and Agents" in the Security Guide.

Session Cookies and Session Security

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 8

Chapter 3

Session Cookies and Session Security
Sessions require the user or client to be able to hold on to cookies. Cookies provided by AM's Session
Service may contain a JSON Web Token (JWT) with the session or just a reference to where the
session is stored.

AM issues a cookie to the user or entity regardless of the session location for client-based and CTS-
based sessions. By default, the cookie's name is iPlanetDirectoryPro. For sessions stored in the CTS
token store, the cookie contains a reference to the session in the CTS token store and several other
pieces of information. For sessions stored on the client, the iPlanetDirectoryPro cookie contains all the
information that would be held in the CTS token store.

Client-based session cookies are comprised of two parts. The first part of the cookie is identical to the
cookie used by CTS-based sessions, which ensures the compatibility of the cookies regardless of the
session location. The second part is a JSON Web Token (JWT), and it contains session information, as
illustrated below:

• iPlanetDirectoryPro cookie for CTS-based sessions:
AQIC...sswo.*AAJ...MA..*

• iPlanetDirectoryPro cookie for Client-based sessions:
AQIC...sswo.*AAJ...MA..*ey....................................fQ.

Note that the examples are not to scale. The size of the client-based session cookie increases when
you customize AM to store additional attributes in users' sessions. You are responsible for ensuring
that the size of the cookie does not exceed the maximum cookie size allowed by your end users'
browsers.

Since the session cookie is either a pointer to the actual user session or the session itself, you must
configure AM to secure the session cookie against hijacking, session tampering, and other security
concerns.

For example, terminating a session effectively logs the user or entity out of all realms, but the way
AM terminates sessions has security implications depending on where AM stores the sessions. You
can also configure the session time-to-live, idle timeout, the number of concurrent sessions for a user,
and others.

Related information:

• "Securing Sessions" in the Security Guide

• "Securing the Session Cookie" in the Security Guide

Session Cookies and Session Security

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 9

• What information is contained in the AM/OpenAM session cookie?

https://backstage.forgerock.com/knowledge/kb/article/a19829000#sessioncookieinfo

Configuring CTS-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 10

Chapter 4

Configuring CTS-Based Sessions
By default, AM configures the CTS token store schema in the AM configuration store. Before
configuring your AM deployment to use CTS-based sessions or authentication sessions, we
recommend you install and configure an external CTS token store. For more information, see Core
Token Service Guide (CTS).

CTS-based sessions and authentication sessions benefit from configuring sticky load balancing. For
more information, see "Load Balancers" in the Setup Guide.

To configure CTS-based sessions and authentication sessions, see the following procedures:

• To Configure CTS-Based Authentication Sessions

• To Configure CTS-Based Sessions

To Configure CTS-Based Authentication Sessions

Important

Configuring storage location for authentication sessions is only supported for authentication trees.
Authentication chains always store authentication sessions in AM's memory. For more information, see
"Introducing Sessions".

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Realms > Realm Name > Authentication > Settings > Trees.

3. From the Authentication session state management scheme drop-down list, select CTS.

4. In the Max duration (minutes) field, enter the maximum life of the authentication session in
minutes.

5. Save your changes.

6. Navigate to Configure > Authentication > Core > Security.

7. In the Organization Authentication Signing Secret field, enter a base64-encoded HMAC secret
that AM uses to sign the JWT that is passed back and forth between the client and AM during the
authentication process. The secret must be at least 128-bits in length.

8. Save your changes.

Configuring CTS-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 11

To Configure CTS-Based Sessions

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Realms > Realm Name > Authentication > Settings > General.

3. Ensure the Use Client-based Sessions check box is not selected.

4. Save your changes.

5. Verify that AM creates a CTS-based session when non-administrative users authenticate to the
realm. Perform the following steps:

a. Authenticate to AM as a non-administrative user in the realm you enabled for CTS-based
sessions.

b. In a different browser, authenticate to AM as an administrative user. For example, amAdmin.

c. Navigate to Realms > Realm Name > Sessions.

d. Verify that a session is present for the non-administrative user.

Configuring Client-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 12

Chapter 5

Configuring Client-Based Sessions
Client-based sessions require additional setup in your environment to keep the sessions safe, and to
ensure both the browser and the web server where AM runs can manage large cookies. Additionally,
some of the AM features cannot be used with client-based sessions. Review the following list before
configuring client-based sessions:

Planning for Client-Based Sessions

• Ensure the trust store used by AM has the necessary certificates installed:

• A certificate is required for encrypting JWTs containing client-based sessions.

• If you are using RS256 signing, then a certificate is required to sign JWTs. (HMAC signing uses a
shared secret.)

The same certificates must be stored on all servers participating in an AM site.

For more information about managing certificates for AM, see "Configuring Secrets, Certificates,
and Keys" in the Security Guide.

• Ensure that your users' browsers can accommodate larger session cookie sizes required by client-
based sessions. For more information about session cookie sizes, see "Session Cookies and Session
Security".

• Ensure that the AM web container can accommodate an HTTP header that is 16K in size or greater.
When using Apache Tomcat as the AM web container, configure the server.xml file's maxHttpHeaderSize
property to 16384 or higher.

• Ensure that your deployment does not require any of the capabilities specified in the list of
limitations that apply to client-based sessions.

+ Limitations When Using Client-Based Sessions

Client-based sessions cannot use the following functionality:

• Session quotas. See "Configuring Session Quotas" in the Security Guide.

• Session idle timeout. See "Understanding Session Termination" in the Security Guide.

• Session upgrade with the ForceAuth parameter. See "Session Upgrade".

Configuring Client-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 13

• Cross-domain single sign-on with restricted tokens (Web Agents and Java Agents). See
"Enabling Restricted Tokens for CDSSO Session Cookies" in the Security Guide.

• Both session signing and encryption (Web Agents and Java Agents). See "Client-Based Session
Security and Agents" in the Security Guide.

• Uncompressed sessions (Web Agents and Java Agents). See "Client-Based Session Security and
Agents" in the Security Guide.

• SAML v2.0 single logout using the SOAP binding. See "Session State Considerations" in the
SAML v2.0 Guide.

• SNMP session monitoring. See "SNMP Monitoring for Sessions" in the Maintenance Guide.

• Session management by using the AM console. See "Managing Sessions (Console)".

• Session notification. See "Session" in the Reference.

To configure client-based sessions and authentication sessions, see the following procedures:

• To Configure Client-Based Authentication Sessions

• To Configure Client-Based Sessions

To Configure Client-Based Authentication Sessions

Important

Configuring storage location for authentication sessions is only supported for authentication trees.
Authentication chains always store authentication sessions in AM's memory. For more information, see
"Introducing Sessions".

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Realms > Realm Name > Authentication > Settings > Trees.

3. From the Authentication session state management scheme drop-down list, select JWT.

4. In the Max duration (minutes) field, enter the maximum life of the authentication session in
minutes.

5. Save your changes.

6. Navigate to Configure > Authentication > Core > Security.

7. In the Organization Authentication Signing Secret field, enter a base64-encoded HMAC secret
that AM uses to sign the JWT that is passed back and forth between the client and AM during the
authentication process. The secret must be at least 128-bits in length.

Configuring Client-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 14

8. Save your changes.

9. Protect your client-based authentication sessions. See "Configuring Client-Based Session
Security" in the Security Guide.

To Configure Client-Based Sessions

1. Log in to the AM console as an administrative user. For example, amAdmin.

2. Navigate to Realms > Realm Name > Authentication > Settings > General.

3. Select the Use Client-based Sessions check box.

4. Save your changes.

5. Protect your client-based sessions. See "Configuring Client-Based Session Security" in the
Security Guide.

6. Verify that AM creates a client-based session when non-administrative users authenticate to the
realm. Perform the following steps:

a. Authenticate to the AM console as the top-level administrator (by default, the amAdmin user).
Note that sessions for the top-level administrator are always stored in the CTS token store.

b. Navigate to Realms > Realm Name > Sessions.

c. Verify that a session is present for the amAdmin user.

d. In your browser, examine the AM cookie, named iPlanetDirectoryPro by default. Copy and paste
the cookie's value into a text file and note its size.

e. Start up a private browser session that will not have access to the iPlanetDirectoryPro cookie
for the amAdmin user:

• In Chrome, open an incognito window.

• In Internet Explorer or Microsoft Edge, start InPrivate browsing.

• In Firefox, open a new private window.

• In Safari, open a new private window.

f. Authenticate to AM as a non-administrative user in the realm for which you enabled client-
based sessions. Be sure not to authenticate as the amAdmin user this time.

g. In your browser, examine the iPlanetDirectoryPro cookie. Copy and paste the cookie's value
into a second text file and note its size. The size of the client-based session cookie's value
should be considerably larger than the size of the cookie used by the CTS-based session
for the amAdmin user. If the cookie is not larger, you have not enabled client-based sessions
correctly.

Configuring Client-Based Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 15

h. Return to the original browser window in which the AM console appears.

i. Refresh the window containing the Sessions page.

j. Verify that a session still appears for the amAdmin user, but that no session appears for the non-
administrative user in the realm with client-based sessions enabled.

Configuring In-Memory Authentication Sessions

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 16

Chapter 6

Configuring In-Memory Authentication
Sessions
Authentication chains always store authentication sessions in AM's memory. Perform the steps in the
following procedure only for realms that configure authentication trees:

To Configure In-Memory Authentication Sessions

1. Ensure you have configured AM for sticky load balancing. For more information, see "Load
Balancers" in the Setup Guide.

2. Log in to the AM console as an administrative user. For example, amAdmin.

3. Navigate to Realms > Realm Name > Authentication > Settings > Trees.

4. From the Authentication session state management scheme drop-down list, select In-Memory.

5. In the Max duration (minutes) field, enter the maximum life of the authentication session in
minutes.

6. Save your changes.

7. Navigate to Configure > Authentication > Core > Security.

8. In the Organization Authentication Signing Secret field, enter a base64-encoded HMAC secret
that AM uses to sign the JWT that is passed back and forth between the client and AM during the
authentication process. The secret must be, at least, 128-bits in length.

9. Save your changes.

Managing Sessions (Console)

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 17

Chapter 7

Managing Sessions (Console)
The AM console lets the administrator view and manage active CTS-based user sessions by realm by
navigating to Realms > Realm Name > Sessions.

Sessions Page

To search for active sessions, enter a username in the search box. AM retrieves the sessions for the
user and displays them within a table. If no active CTS-based session is found, AM displays a session
not found message.

You can end any sessions—except the current amAdmin user's session—by selecting it and clicking the
Invalidate Selected button. As a result, the user has to authenticate again.

Managing Sessions (Console)

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 18

Important

Deleting a user does not automatically remove any of the user's CTS-based sessions. After deleting a user,
check for any sessions for the user and remove them on the Sessions page.

Tip

Use the REST API for advanced functionality regarding sessions.

Managing Sessions (REST)
Obtaining Information About Sessions Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 19

Chapter 8

Managing Sessions (REST)
AM provides REST APIs under /json/sessions for the following use cases:

• "Obtaining Information About Sessions Using REST"

• "Validating Sessions Using REST"

• "Refreshing CTS-Based Sessions Using REST"

• "Invalidating Sessions Using REST"

• "Getting and Setting Session Properties Using REST"

Obtaining Information About Sessions Using REST
To get information about a session, send an HTTP POST to the /json/sessions/ endpoint, using the
getSessionInfo action. This endpoint returns information about the session token provided in the
iPlanetDirectoryPro header by default. To get information about a different session token, include it in
the POST body as the value of the tokenId parameter.

Note

For information about how to retrieve custom session properties:

• If you are using authentication modules, see "How do I retrieve user attributes from a session using the REST
API?" in the ForgeRock Knowledge Base.

• For authentication trees, use the Scripted Decision Node to retrieve user attributes and session properties, or
the Set Session Properties Node for session properties only.

The following example shows an administrative user passing their session token in the
iPlanetDirectoryPro header, and the session token of the demo user as the tokenId parameter:

https://backstage.forgerock.com/knowledge/kb/article/a72365672
https://backstage.forgerock.com/knowledge/kb/article/a72365672

Managing Sessions (REST)
Validating Sessions Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 20

$ curl \
--request POST \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=4.0" \
--header "Content-Type: application/json" \
--data '{ "tokenId": "BXCCq...NX*1*" }' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfo
{
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm": "/",
 "latestAccessTime": "2020-02-21T14:31:18Z",
 "maxIdleExpirationTime": "2020-02-21T15:01:18Z",
 "maxSessionExpirationTime": "2020-02-21T16:29:56Z",
 "properties": {
 "AMCtxId": "aba7b4f3-16ff-4680-b06a-d7ba237d3730-91932"
 }
}

The getSessionInfo action does not refresh the session idle timeout. To obtain session information
about a CTS-based session and also reset the idle timeout (you cannot reset the idle timeout of client-
based sessions), use the getSessionInfoAndResetIdleTime endpoint, as follows:
$ curl \
--request POST \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=4.0, protocol=1.0" \
--header "Content-Type: application/json" \
--data '{ "tokenId": "BXCCq...NX*1*" }' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionInfoAndResetIdleTime
{
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm": "/",
 "latestAccessTime": "2020-02-21T14:32:49Z",
 "maxIdleExpirationTime": "2020-02-21T15:02:49Z",
 "maxSessionExpirationTime": "2020-02-21T16:29:56Z",
 "properties": {
 "AMCtxId": "aba7b4f3-16ff-4680-b06a-d7ba237d3730-91932"
 }
}

Note

To return the AMCtxId property in the session query response, as in this example, you must set AMCtxId in the
Session Properties to return to session queries setting, under Realms > Realm Name > Services > Session
Property Whitelist Service.

Validating Sessions Using REST
To check over REST whether a session token is valid, perform an HTTP POST to the /json/sessions/
endpoint using the validate action. Provide the session token in the POST data as the value of

Managing Sessions (REST)
Refreshing CTS-Based Sessions Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 21

the tokenId parameter. You must also provide the session token of an administrative user in the
iPlanetDirectoryPro header.

If you don't specify the tokenId parameter, the session in the iPlanetDirectoryPro header is validated
instead.

The following example shows an administrative user, such as amAdmin, validating a session token for
the demo user:
$ curl \
--request POST \
--header "Content-type: application/json" \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=2.1, protocol=1.0" \
--data '{ "tokenId": "BXCCq...NX*1*" }' \
https://openam.example.com:8443/openam/json/realms/root/sessions?_action=validate

If the session token is valid, the user ID and its realm is returned, as shown below:
{
 "valid":true,
 "sessionUid":"209331b0-6d31-4740-8d5f-740286f6e69f-326295",
 "uid":"demo",
 "realm":"/"
}

By default, validating a session resets the session's idle time, which triggers a write operation to the
Core Token Service token store. To avoid this, perform a call using the validate&refresh=false action.

Refreshing CTS-Based Sessions Using REST
To reset the idle time of a CTS-based session using REST, perform an HTTP POST to the /json/
sessions/ endpoint, using the refresh action. The endpoint will refresh the session token provided in
the iPlanetDirectoryPro header by default. To refresh a different session token, include it in the POST
body as the value of the tokenId query parameter.

The following example shows an administrative user passing their session token in the
iPlanetDirectoryPro header, and the session token of the demo user as the tokenId parameter:

Managing Sessions (REST)
Invalidating Sessions Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 22

$ curl \
--request POST \
--header 'Content-Type: application/json' \
--header 'Accept: application/json' \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--data '{ "tokenId": "BXCCq...NX*1*" }' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=refresh
{
 "uid": "demo",
 "realm": "/",
 "idletime": 17,
 "maxidletime": 30,
 "maxsessiontime": 120,
 "maxtime": 7106
}

On success, AM resets the idle time for the CTS-based session, and returns timeout details of the
session.

Resetting a CTS-based session's idle time triggers a write operation to the Core Token Service token
store. Therefore, to avoid the overhead of write operations to the token store, be careful to use the
refresh action only if you want to reset a CTS-based session's idle time.

Because AM does not monitor idle time for client-based sessions, do not use the tokenId of a client-
based session when refreshing a session's idle time.

Invalidating Sessions Using REST
To invalidate a session, perform an HTTP POST to the /json/sessions/ endpoint using the logout action.
The endpoint will invalidate the session token provided in the iPlanetDirectoryPro header:
$ curl \
--request POST \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout
{
 "result": "Successfully logged out"
}

On success, AM invalidates the session and returns a success message.

If the token is not valid and cannot be invalidated an error message is returned, as follows:
{
 "result": "Token has expired"
}

To invalidate a different session token, include it in the POST body as the value of the tokenId
parameter.

Managing Sessions (REST)
Getting and Setting Session Properties Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 23

For example, the following command shows an administrative user passing their session token in the
iPlanetDirectoryPro header, and the session token of the demo user as the tokenId parameter:
$ curl \
--request POST \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--header "Content-Type: application/json" \
--data '{ "tokenId": "BXCCq...NX*1*" }' \
"https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout"
{
 "result": "Successfully logged out"
}

Getting and Setting Session Properties Using REST
AM lets you read and update properties on users' sessions using REST API calls.

Before you can perform operations on session properties using the REST API, you must first
define the properties you want to set in the Session Property Whitelist Service configuration. For
information on whitelisting session properties, see "Session Property Whitelist Service" in the
Reference.

You can use REST API calls for the following purposes:

• To retrieve the names of the properties that you can read or update. This is the same set of
properties configured in the Session Property Whitelist Service.

• To read property values.

• To update property values.

Session state affects the ability to set and delete properties as follows:

• You can set and delete properties on a CTS-based session at any time during the session's lifetime.

• You can only set and update properties on a client-based session during the authentication process,
before the user receives the session token from AM. For example, you could set or delete properties
on a client-based session from within a post-authentication plugin.

Differentiate the user who performs the operation on session properties from the session affected by
the operation as follows:

• Specify the session token of the user performing the operation on session properties in the
iPlanetDirectoryPro header.

• Specify the session token of the user whose session is to be read or modified as the tokenId
parameter in the body of the REST API call.

• Omit the tokenId parameter from the body of the REST API call if the session of the user performing
the operation is the same session that you want to read or modify.

Managing Sessions (REST)
Getting and Setting Session Properties Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 24

The following examples assume that you configured a property named LoginLocation in the Session
Property Whitelist Service configuration.

To retrieve the names of the properties you can get or set, and their values, perform an an HTTP
POST to the sessions endpoint, /json/sessions/, using the getSessionProperties action, as shown in the
following example:
$ curl \
--request POST \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--header "Content-Type: application/json" \
--data '{ "tokenId": "BXCCq...NX*1*" }' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=getSessionProperties
{
 "LoginLocation": ""
}

To set the value of a session property, perform an HTTP POST to the sessions endpoint, /json/
sessions/, using the updateSessionProperties action. If no tokenId parameter is present in the body of the
REST API call, the session affected by the operation is the session specified in the iPlanetDirectoryPro
header, as follows:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--data '{"LoginLocation":"40.748440, -73.984559"}' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
{
 "LoginLocation": "40.748440, -73.984559"
}

You can set multiple properties in a single REST API call by specifying a set of fields and their values
in the JSON data. For example:
--data '{"property1":"value1", "property2":"value2"}'

To set the value of a session property on another user's session, specify the session token of the user
performing the updateSessionProperties action in the iPlanetDirectoryPro, and specify the session token
to be modified in the POST body as the value of the tokenId parameter:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--data '{"LoginLocation": "40.748440, -73.984559", "tokenId": "BXCCq...NX*1*"}' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
{
 "LoginLocation": "40.748440, -73.984559"
}

If the user attempting to modify the session does not have sufficient access privileges, the preceding
examples result in a 403 Forbidden error.

Managing Sessions (REST)
Getting and Setting Session Properties Using REST

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 25

You cannot set properties internal to AM sessions. If you try to modify an internal property in a REST
API call, a 403 Forbidden error is returned. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--data '{"AuthLevel":"5", "tokenId": "BXCCq...NX*1*"}' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=updateSessionProperties
{
 "code": 403,
 "reason": "Forbidden",
 "message": "Forbidden"
}

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 26

Chapter 9

Session Upgrade
Sessions can be upgraded to provide access to sensitive resources.

Consider a website for a University. Some information, such as courses and degree catalogs, are
free for anyone to see and therefore, do not need to be protected. The University also provides the
students with a portal they can use to see their grades, which is protected with a policy that requires
users to authenticate. However, to pay tuition, students are required to present additional credentials
to increase their authentication level and gain access to these functions.

Allowing authenticated users to provide additional credentials to access sensitive resources is called
session upgrade, which is AM's mechanism to perform step-up authentication.

+ What Triggers a Session Upgrade?

• An authenticated user being redirected to a URL that has the ForceAuth parameter set to true.
For example, https://openam.example.com:8443/openam/XUI/?realm=/myRealm&ForceAuth=true#login

In this case, the user is asked to reauthenticate to the default chain in the realm myRealm.

Important

Session upgrade using the ForceAuth parameter is only supported for CTS-based sessions.

• An authenticated user trying to access a resource protected by a web or Java agent (or a custom
policy enforcement point (PEP)). In this case, AM sends the agent or PEP advice that the user
should perform one of the following actions:

• Authenticate at an authentication level greater than the current level

• Authenticate to a module

• Authenticate to a service

The flow of the session upgrade during policy evaluation is as follows:

1. An authenticated user tries to access a resource.

2. The PEP, for example a web or Java agent, sends the request to AM for policy decision.

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 27

3. AM returns an authorization decision that denies access to the resource, and returns
an advice indicating that the user needs to present additional credentials to access the
resource.

4. The policy enforcement point sends the user back to AM for session upgrade.

5. The user provides additional credentials. For example, they may provide a one-time
password, swipe their phone screen, or use face recognition.

6. AM authenticates the user.

7. The user can now access the sensitive resource.

+ Session Upgrade Outcomes

• Successful. One of the following will happen depending on the type of sessions configured for
the realm:

• If the realm is configured for CTS-based sessions, one of the following will happen depending
on the mechanism used to perform session upgrade:

• When using the ForceAuth parameter, AM does one of the following:

• (Authentication trees only) AM issues new session tokens to users on reauthentication,
even if the current session already meets the security requirements.

• (Authentication chains only) AM does not issue new session tokens on reauthentication,
regardless of the security level they are authenticating to. Instead, it updates the session
token with the new authentication information, if required.

• When using advices, AM copies the session properties to a new session and hands the client
a new session token to replace the original one. The new session reflects the successful
authentication to a higher level.

• If the realm is configured for client-based sessions, AM hands the client a new session token
to replace the original one. The new session reflects the successful authentication to a higher
level.

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 28

• Unsuccessful. AM leaves the user session as it was before the attempt at stronger
authentication. If session upgrade failed because the login page times out, AM redirects the
user's browser to the success URL from the last successful authentication.

Tip

Anonymous sessions can also be upgraded to non-anonymous sessions by using the "Anonymous Session
Upgrade Node" in the Authentication and Single Sign-On Guide.

Session Upgrade Prerequisites

• Configure a policy enforcement point (PEP), for example, a web or Java agent, that enforces AM
policies on a website or application.

AM web and Java agents handle session upgrade without additional configuration because the
agents are built to handle AM's advices. If you build your own PEPs, however, you must take
advices and session upgrade into consideration.

+ Resources

• ForgeRock Web Agent User Guide.

• ForgeRock Java Agent User Guide.

• "Requesting Policy Decisions Using REST" in the Authorization Guide (For RESTful PEPs).

• Configure an authorization policy to protect a resource protected by the Java or web agent, or a
RESTful PEP.

+ Example

The following policy allows GET and POST access to the *://*:*/sample/* resource to any
authenticated user:

https://backstage.forgerock.com/docs/openam-web-policy-agents/5.5/web-agents-guide/
https://backstage.forgerock.com/docs/openam-jee-policy-agents/5.5/java-agents-guide/

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 29

Authorization Policy Example

Tasks:

• "To Configure the Environment for Session Upgrade"

• "To Perform Session Upgrade Using a Browser"

• "To Perform Session Upgrade Using REST"

To Configure the Environment for Session Upgrade

1. Configure an authentication tree or chain to validate users' credentials during session upgrade.

Authentication trees and chains do not require additional configuration to perform session
upgrade. However, because session upgrade is a mechanism which may be used to grant users
access to sensitive information, you should consider configuring a strong authentication method
such as multi-factor authentication. Also, you may want to consider how long-lived sessions in
your environment are. For example, if users should only have access to the protected resource
to perform an operation, such as check the balance of an account, you may want to consider
implementing transactional authorization instead.

• For more information, see "Transactional Authorization" in the Authorization Guide.

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 30

• For more information about configuring authentication trees and chains, see the Authentication
and Single Sign-On Guide.

2. Configure at least one of the following environment conditions in the authentication policy you
created as part of the prerequisites:

+ Authentication Level (greater than or equal to) (Authentication modules only)

Use this condition to present a list of authentication chains that provide a greater or equal
authentication level to the one specified in the condition. The user selects their service of
choice if multiple chains are able to meet the criteria of the condition. For example, the
following policy requires a chain that provides authentication level 3 or greater:

Session Upgrade by Authentication Level (greater than or equal to)

Tip

For more information about configuring the authentication level by authentication module, see "About
Authentication Levels for Chains" in the Authentication and Single Sign-On Guide.

+ Authentication by Service

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 31

Use this condition to specify the chains or authentication trees to which the user needs to use
to authenticate. For example, the following policy requires the user to log in with the Example
tree:

Session Upgrade by Service

Note that the names of the authentication trees and chains are case-sensitive.

+ Authentication by Module Instance (Authentication modules only)

Use this condition to enforce that a user has gone through a specific authentication module.
For example, the following policy requires the user to log in with the DataStore module:

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 32

Session Upgrade by Module Instance

Note

The examples feature simple policy conditions. For more information about configuring policies and
environment conditions, see "Configuring Policies" in the Authorization Guide.

3. Test session upgrade:

• To test session upgrade with a browser, see "To Perform Session Upgrade Using a Browser".

• To test session upgrade with REST, see "To Perform Session Upgrade Using REST".

To Perform Session Upgrade Using a Browser

To upgrade a session using a browser, perform the following steps:

1. Ensure you have performed the tasks in Session Upgrade Prerequisites and "To Configure the
Environment for Session Upgrade".

2. In a browser, navigate to your protected resource. For example, http://www.example.com:9090/sample.

The agent redirects the browser to the AM login screen.

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 33

3. Authenticate to AM as the demo user.

AM requires additional credentials to grant access to the resource. For example, if you set the
policy environment condition to Authentication by Service and Example, you will be required to log in
again as the demo user.

4. Authenticate as the demo user. Note that providing credentials for a different user will fail.

You can now access the protected resource.

To Perform Session Upgrade Using REST

To upgrade a session using REST, perform the following steps:

1. Ensure you have performed the tasks in Session Upgrade Prerequisites and "To Configure the
Environment for Session Upgrade".

Note

This example uses composite advice with an authentication level condition, which only applies to
authentication chains.

2. Log in with an administrative user that has permission to evaluate policies, such as amAdmin. For
example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: amadmin" \
--header "X-OpenAM-Password: password" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
 {
 "tokenId":"AQIC5wM2...",
 "successUrl":"/openam/console",
 "realm":"/"
}

Tip

You can also assign privileges to a user to evaluate policies. For more information, see "To Allow a User to
Evaluate Policies" in the Authorization Guide.

3. Log in with the user that should access the resources. For example, log in as the demo user:

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 34

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: Ch4ng31t" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
 {
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

4. Request a policy decision from AM for a protected resource, in this case, http://openam.example.
com:9090/sample. The iPlanetDirectoryPro header sets the SSO token for the administrative user, and
the subject element of the payload sets the SSO token for the demo user:
$ curl --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5wM2..." \
 --header "Accept-API-Version:protocol=1.0,resource=2.1" \
 --data '{
 "resources": [
 "http://www.example.com:9090/sample"
],
 "application": "iPlanetAMWebAgentService",
 "subject": { "ssoToken": "AQIC5wM...TU3OQ*"}
}' \
"https://openam.example.com:8443/openam/json/policies?_action=evaluate"
 [
 {
 "resource":"http://www.example.com:9090/sample",
 "actions":{

 },
 "attributes":{

 },
 "advices":{
 "AuthLevelConditionAdvice":[
 "3"
]
 },
 "ttl":9223372036854775807
 }
]

AM returns with advice, which means the user must present additional credentials to access that
resource.

For more information about requesting policy decision, see "Requesting Policy Decisions Using
REST" in the Authorization Guide.

5. Format the advice as XML, without spaces or line breaks. The following example is spaced and
tabulated for readability purposes only:

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 35

<Advices>
 <AttributeValuePair>
 <Attribute name="AuthLevelConditionAdvice"/>
 <Value>3</Value>
 </AttributeValuePair>
</Advices>

Note

The example shows the XML render of a single advice. Depending on the conditions configured in the
policy, the advice may contain several lines. For more information about advices, see "Policy Decision
Advice" in the Authorization Guide.

6. URL-encode the XML advice. For example: %3CAdvices%3E%3CAttributeValuePair%3E%3CAttribute%20name
%3D%22AuthLevelConditionAdvice%22%2F%3E%3CValue%3E3%3C%2FValue%3E%3C%2FAttributeValuePair%3E%3C
%2FAdvices%3E.

Ensure there are no spaces between tags when URL-encoding the advice.

7. Call AM's authenticate endpoint to request information about the advice. Use the following details:

• Add the following URL parameters:

• authIndexType=composite_advice

• authIndexValue=URL-encoded_Advice

• Set the iPlanetDirectoryPro cookie as the SSO token for the demo user.

For example:
$ curl --request POST \
--header "Content-Type: application/json" \
--cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--header "Accept-API-Version: protocol=1.0,resource=2.1" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=composite_advice&authIndexValue=%3CAdvices%3E%3CAttributeValuePair%3E...'
 {
 "authId":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdXRoSW5kZ...",
 "template":"",
 "stage":"DataStore1",
 "header":"Sign in",
 "callbacks":[
 {
 "type":"NameCallback",
 "output":[
 {
 "name":"prompt",
 "value":"User Name:"
 }
],
 "input":[

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 36

 {
 "name":"IDToken1",
 "value":""
 }
]
 },
 {
 "type":"PasswordCallback",
 "output":[
 {
 "name":"prompt",
 "value":"Password:"
 }
],
 "input":[
 {
 "name":"IDToken2",
 "value":""
 }
]
 }
]
}

AM returns information about how the user can authenticate in a callback; in this case, providing
a username and password. For a list of possible callbacks, and more information about the /
json/authenticate endpoint, see "Authenticating (REST)" in the Authentication and Single Sign-On
Guide.

8. Call AM's authenticate endpoint to provide the required callback information. Use the following
details:

• Add the following URL query parameters:

• authIndexType=composite_advice

• authIndexValue=URL-encoded_Advice

• Set the iPlanetDirectoryPro cookie as the SSO token for the demo user.

• Send as data the complete payload AM returned in the previous step, ensuring you provide the
requested callback information.

In this example, provide the username and password for the demo user in the input objects, as
follows:
$ curl --request POST \
 --header 'Content-Type: application/json' \
 --header "Accept-API-Version: protocol=1.0,resource=2.1" \
 --cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
 --data '{
 "authId":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdXRoSW5kZ...",
 "template":"",
 "stage":"DataStore1",
 "header":"Sign in",

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 37

 "callbacks":[
 {
 "type":"NameCallback",
 "output":[
 {
 "name":"prompt",
 "value":"User Name:"
 }
],
 "input":[
 {
 "name":"IDToken1",
 "value":"demo"
 }
]
 },
 {
 "type":"PasswordCallback",
 "output":[
 {
 "name":"prompt",
 "value":"Password:"
 }
],
 "input":[
 {
 "name":"IDToken2",
 "value":"Ch4ng31t"
 }
]
 }
]
 }
 }' \
 'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=composite_advice&authIndexValue=%3CAdvices%3E%3CAttributeValuePair%3E...'
 {
 "tokenId":"wpU01SaTq4X2x...NDVFMAAlMxAAA.*",
 "successUrl":"/openam/console",
 "realm":"/"
}

Note that AM returns a new SSO token for the demo user.

9. Request a new policy decision from AM for the protected resource. The iPlanetDirectoryPro header
sets the SSO token for the administrative user, and the subject element of the payload sets the
new SSO token for the demo user:

Session Upgrade

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 38

$ curl --request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5wM2..." \
--header "Accept-API-Version:protocol=1.0,resource=2.1" \
--data '{
 "resources":[
 "http://www.example.com:9090/sample"
],
 "application":"iPlanetAMWebAgentService",
 "subject":{
 "ssoToken":"wpU01SaTq4X2x...NDVFMAAlMxAAA.*"
 }
}' \
"https://openam.example.com:8443/openam/json/policies?_action=evaluate"
 [
 {
 "resource":"http://www.example.com:9090/sample",
 "actions":{
 "POST":true,
 "GET":true
 },
 "attributes":{

 },
 "advices":{

 },
 "ttl":9223372036854775807
 }
]

AM returns that demo can perform POST and GET operations on the resource.

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 39

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 40

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 41

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 42

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IDP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 43

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

Sessions Guide ForgeRock Access Management 7.0.2 (2024-10-03)
Copyright © 2019-2021 ForgeRock AS. All rights reserved. 44

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	Sessions Guide
	Table of Contents
	Overview
	Chapter 1. Introducing Sessions
	CTS-Based Sessions
	Client-Based Sessions
	In-Memory Sessions

	Chapter 2. Choosing Where to Store Sessions
	Chapter 3. Session Cookies and Session Security
	Chapter 4. Configuring CTS-Based Sessions
	Chapter 5. Configuring Client-Based Sessions
	Chapter 6. Configuring In-Memory Authentication Sessions
	Chapter 7. Managing Sessions (Console)
	Chapter 8. Managing Sessions (REST)
	Obtaining Information About Sessions Using REST
	Validating Sessions Using REST
	Refreshing CTS-Based Sessions Using REST
	Invalidating Sessions Using REST
	Getting and Setting Session Properties Using REST

	Chapter 9. Session Upgrade
	Glossary

