
1 / 114

This chapter is written for administrators who must manage and maintain Autonomous

Identity.

ForgeRock® Autonomous Identity is an entitlements and roles analytics system that lets

you fully manage your company’s access to your data.

An entitlement refers to the rights or privileges assigned to a user or thing for access to

specific resources. A company can have millions of entitlements without a clear picture

of what they are, what they do, and who they are assigned to. Autonomous Identity

solves this problem by using advanced artificial intelligence (AI) and automation

technology to determine the full entitlements landscape for your company. The system

also detects potential risks arising from incorrect or over-provisioned entitlements that

lead to policy violations. Autonomous Identity eliminates the manual re-certification of

entitlements and provides a centralized, transparent, and contextual view of all access

points within your company.

Administrator tasks



Run self-service tasks.

Self service



Add, edit, or remove

user identities.

Manage identities



Prepare your data for

ingestion.

Prepare data



Run deployment-related

tasks.

Deployment tasks

 

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-self-service.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-manage-identities.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-data-preparation.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-deployment-tasks.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-data-sources.html

2 / 114

For installation instructions, refer to the Autonomous Identity Installation Guide.

For a description of the Autonomous Identity UI console, refer to the Autonomous

Identity Users Guide.

Set your attribute entity

definitions.

Set entity definitions

Set your data sources.

Set data sources

=

Set attribute mappings.

Set attribute

mappings



Set analytic settings.

Set analytics settings



Run the analytics

pipeline.

Run analytics



Run admin tasks.

Admin tasks



Run server

maintenance-related

tasks.

Server maintenance



Manage your roles.

Roles management

Self service

file:///home/pptruser/Downloads/build/site/autonomous-identity/install-guide/preface.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/users-guide/preface.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/users-guide/preface.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-data-sources.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-data-sources.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-analytics-settings.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-analytics-pipeline.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-admin-user-tasks.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-server-maintenance.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-roles-tasks.html

3 / 114

Autonomous Identity provides a self service UI page for administrators to change their

profile and password information.

The page also lets administrators create time-based API keys for users to access the

Autonomous Identity system. For more information, refer to Generate an API key.

1. On the Autonomous Identity UI, click the admin drop-down on the top-left of the

page.

2. Click Self Service.

3. On the Profile page, enter and re-enter a new password, and then click Save.

1. On the Autonomous Identity UI, click the admin drop-down on the top-left of the

page.

2. Click Self Service.

3. On the Profile page, click Edit personal info to update your profile details:

a. Update the display name.

Reset your password

Click an example

Update your profile

You cannot change your email address or group ID as these are used to

identify each user.

NOTE

file:///home/pptruser/Downloads/build/site/autonomous-identity/api-guide/chap-obtain-api-key.html

4 / 114

b. Update your distinguished name (DN).

c. Update your uid.

4. Click Save to apply your changes.

The Manage Identities page lets administrators add or edit, assign roles, and deactivate

users to Autonomous Identity.

1. On the Autonomous Identity UI, click the administration icon on the navigation

menu, and then click Manage.

2. On the Manage Identities page, click Roles.

3. Select a specific role, and then click Edit to view its details.

4. Click through the Details and Permissions to view its details. You cannot change the

permissions in these roles.

5. Click Role Members to access the members associated with this role. If you want to

add a user to this Role group, click New Role Member and enter the user’s name.

You can enter multiple users. When finished, click Save.

Click an example

Manage identities

View the default roles

Click an example

5 / 114

1. On the Autonomous Identity UI, click the administration icon on the navigation

menu, and then click Manage.

2. On the Manage Identities page, click New User.

3. Enter the Display Name, Email Address, DN, Gid Number, Uid, and Password for the

user.

4. Click Save.

5. Click Authorization Roles, and then click New Authorization Roles. This step is

important to assign the proper role to the user.

6. Select a role to assign the user, and then click Save.

Create a new user

Click an example

6 / 114

1. On the Autonomous Identity UI, click the administration icon on the navigation

menu, and then click Manage.

2. On the Manage Identities page, search for a user.

3. For a specific user, click Edit.

4. Click Reset Password, enter a temporary password, and then click Save.

Reset a user’s password

Click an example

7 / 114

Often administrators need to assign roles to existing members. There are two ways to

do this: from the user’s detail page and through the role’s Role Members page (refer to

View the default roles).

1. On the Autonomous Identity UI, click the administration icon on the navigation

menu, and then click Manage.

2. On the Manage Identities page, search for a user.

3. For a specific user, click Edit.

4. Click Authorization Roles, and then click New Authorization Roles.

5. Select one or more roles to add, and then click Save.

1. On the Autonomous Identity UI, click the administration icon on the navigation

menu, and then click Manage.

2. On the Manage Identities page, search for a user.

3. For a specific user, click Deactivate. The user’s status changes to "In-active".

Add a role to an existing user

Click an example

Deactivate an existing user

Click an example

8 / 114

Autonomous Identity administrators and deployers must set up additional tasks prior to

your installment.

The following are some deployments tasks that may occur:

Once you have deployed Autonomous Identity, you can prepare your dataset into a

format that meets the schema.

The initial step is to obtain the data as agreed upon between ForgeRock and your

company. The files contain a subset of user attributes from the HR database and

entitlement metadata required for the analysis. Only the attributes necessary for

analysis are used.

There are a number of steps that must be carried out before your production

entitlement data is input into Autonomous Identity. The summary of these steps are

outlined below:

Typically, the raw client data is not in a form that meets the Autonomous Identity

schema. For example, a unique user identifier can have multiple names, such as

user_id , account_id , user_key , or key . Similarly, entitlement columns can have

several names, such as access_point , privilege_name , or entitlement .

Prepare data

Data preparation

Data collection

9 / 114

To get the correct format, here are some general rules:

Submit the raw client data in .csv file format. The data can be in a single file or

multiple files. Data includes application attributes, entitlement assignments,

entitlements decriptions, and identities data.

Duplicate values should be removed.

Add optional columns for additional training attributes, for example,

MANAGERS_MANAGER and MANAGER_FLAG . You can add these additional attributes

to the schema using the Autonomous Identity UI. For more information, refer to Set

Entity Definitions.

Make a note of those attributes that differ from the Autonomous Identity schema,

which is presented below. This is crucial for setting up your attribute mappings. For

more information, refer to Set Attribute Mappings.

The required attributes for the schema are as follows:

CSV Files Schema

Files Schema

applications.csv This file depends on the attributes that the client wants

to include. Here are some required columns:

app_id. Specifies the applications’s unique ID.

app_name. Specifies the applications’s name.

app_owner_id. Specifies the ID of the application’s

owner.

assignments.csv user_id. Specifies the unique user ID to which the

entitlement is assigned.

ent_id. Specifies the entitlements’s unique ID.

entitlements.csv ent_id. Specifies the entitlements’s unique ID.

ent_name. Specifies the entitlement name.

ent_owner_id. Specifies the entitlement’s owner.

app_id. Specifies the applications’s unique ID.

CSV files and schema

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html

10 / 114

Files Schema

identities.csv usr_id. Specifies the user’s unique ID.

user_name. Specifies a human readable username.

For example, John Smith .

usr_manager_id. Specifies the user’s manager ID.

Autonomous Identity administrators and deployers must set up additional tasks during

installment.

The following are some deployments tasks that may occur:

By default, the Autonomous Identity URL and domain for the UI console is set to

autoid-ui.forgerock.com , and the URL and domain for the self-service feature is

autoid-selfservice.forgerock.com .

1. Customize the domain name and target environment by editing the /autoid-

config/vars.xml file. By default, the domain name is set to forgerock.com and

the target environment is set to autoid . The default Autonomous Identity URL will

be: https://autoid-ui.forgerock.com . For example, set the domain name to

the following:

2. If you set up your domain name and target environment in the previous step, you

need to change the certificates to reflect the changes. Autonomous Identity

generates self-signed certificates for its default configuration. You must generate

new certificates as follows:

a. Generate the private key (that is, server.key).

Deployment tasks

Customize the domain and namespace

These instructions are for new deployments. To change the domain and certificates

in existing deployments, refer to Customize domain and namespace (existing

deployments).

NOTE

Customize domain and namespace (new deployments)



domain_name: example.com

target_environment: autoid

https://autoid-ui.forgerock.com/
https://autoid-ui.forgerock.com/
https://autoid-ui.forgerock.com/

11 / 114

b. Generate the certificate signing request using your key. When prompted enter

attributes sent with your certificate request:

3. Generate the self-signed certificate.

4. Copy the certificate to the /autoid-config/certs directory. Make sure to use the

following filename: nginx-jas-wildcard.pem.

5. Copy the key to the /autoid-config/certs directory. Make sure to use the

following filename: nginx-jas.key', depending on where your `/autoid-

config/certs/ resides.

6. Run the Autonomous Identity deployer. Make sure that there are no errors after

running the ./deployer.sh run command.

openssl genrsa -out server.key 2048

openssl req -new -key server.key -out server.csr

Country Name (2 letter code) [XX]:US

State or Province Name (full name) {}:Texas

Locality Name (eg, city) [Default City]:Austin

Organization Name (eg, company) [Default Company Ltd]:Ping

Organizational Unit Name (eg, section) []:Eng

Common Name (eg, your name or your server’s hostname)

[]:autoid-ui.example.com

Email Address []:

A challenge password []:

An optional company name []:

openssl x509 -req -days 365 -in server.csr -signkey server.key

-out server.crt

openssl x509 -in server.crt -out nginx-jas-wildcard.pem

cp nginx-jas-wildcard.pem ~/autoid-config/certs

cp -i ~/.ssh/server.key /autoid-config/certs/nginx-jas.key

or

scp -i ~/.ssh/server.key autoid@remotehost:/autoid-

config/certs/nginx-jas.key

12 / 114

a. Make the domain changes on your DNS server or update your /etc/hosts

(Linux/Unix) file or C:\Windows\System32\drivers\etc\hosts (Windows)

locally on your machine.

1. Modify the server name values with your updated domain name in the following

files under /opt/autoid/mounts/nginx/conf.d :

api.conf

ui.conf

kibana.conf

jas.conf

2. Copy the SSL certificate file and corresponding SSL certificate key to the

/opt/autoid/mounts/nginx/cert directory. The

/opt/autoid/mounts/nginx/cert directory is mounted under

/etc/nginx/cert in the container.

3. Modify ssl_certificate and ssl_certificate_key in

/opt/autoid/mounts/nginx/nginx.conf with the correct filenames. Only the

name of the files need to be updated, the path stays the same.

4. Restart the nginx container:

./deployer.sh run

Customize domain and namespace (existing deployments)

When using self-signed certificates, you need to import the new certificates in

the JAS keystore and truststore at: /opt/autoid/certs/jas/jas-client-

keystore.jks and /opt/autoid/certs/jas/jas-server-

truststore.jks :

NOTE

keytool -importcert -keystore jas-client-keystore.jks -alias

myalias -file /opt/autoid/mounts/nginx/cert/cert.crt -noprompt -

keypass mypass -storepass mypass

keytool -importcert -keystore jas-server-truststore.jks -alias

myalias -file /opt/autoid/mounts/nginx/cert/cert.crt -noprompt -

keypass mypass -storepass mypass

docker stack rm nginx

docker stack deploy -c /opt/autoid/res/nginx/docker-

compose.yml nginx

13 / 114

5. Update the new domain name in your hosts file where an entry exists for JAS . For

example, the default JAS url is autoid-jas.forgerock.com. Change the JAS URL

with your domain name.

6. Update the JAS_URL environment variable on all nodes by updating and sourcing

your .bashrc file.

7. Restart Spark and Livy.

The filters on the Applications pages let you focus your searches based on entitlement

and user attributes. In most cases, the default filters should suffice for most

environments. However, if you need to customize the filters, you can do so by accessing

Searchable attribute under entity definitions. For information, refer to Set Entity

Definitions.

The default filters for an entitlement are the following:

Risk Level

Criticality

The default filters for an user attributes are the following:

User Department Name

Line of Business Subgroup

City

Jobcode Name

User Employee Type

Chief Yes No

Manager Name

Line of Business

Cost Center

Autonomous Identity uses the ansible vault to store passwords in encrypted files, rather

than in plaintext. Autonomous Identity stores the vault file at /autoid-

config/vault.yml saves the encrypted passwords to

/config/.autoid_vault_password . The /config/ mount is internal to the deployer

container. The default encryption algorithm used is AES256.

By default, the /autoid-config/vault.yml file uses the following parameters:

Configuring your filters

Change the Vault Passwords

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html

14 / 114

Assume that the vault file is encrypted during the installation. To edit the file:

1. Change to the /autoid-config/ directory.

2. First, decrypt the vault file.

3. Open a text editor and edit the vault.yml file.

4. Encrypt the file again.

Autonomous Identity supports single sign-on (SSO) using OpenID Connect (OIDC) JWT

tokens. SSO lets you log in once and access multiple applications without the need to re-

authenticate yourself. You can use any third-party identity provider (IdP) to connect to

Autonomous Identity.

There are two scenarios for SSO configuration:

configuration_service_vault:

basic_auth_password: Welcome123

openldap_vault:

openldap_password: Welcome123

cassandra_vault:

cassandra_password: Welcome123

cassandra_admin_password: Welcome123

mongo_vault:

mongo_admin_password: Welcome123

mongo_root_password: Welcome123

elastic_vault:

elastic_admin_password: Welcome123

elasticsearch_password: Welcome123

Edit the Vault file

$ cd ~/autoid-config/

$./deployer.sh decrypt-vault

$./deployer.sh encrypt-vault

Set Up single sign-on (SSO)

15 / 114

Set up SSO for initial deployments. In this example, we use ForgeRock Access

Management (AM) as an OpenID Connect (OIDC) IdP for Autonomous Identity

during the original installation of Autonomous Identity. Refer to Set up SSO in initial

deployments.

Set up SSO for existing deployments. For procedures to set up SSO in an existing

Autonomous Identity deployment, see Set up SSO in existing deployments.

The following procedure requires a running instance of ForgeRock AM. For more

information, refer to ForgeRock Access Management Authentication and Single Sign-On

Guide.

1. First, set up your hostnames locally in /etc/hosts (Linux/Unix) file or

C:\Windows\System32\drivers\etc\hosts (Windows):

2. Open a browser and point to http://openam.example.com:8080/openam . Log

in with username: amadmin , password: cangetinam .

3. In AM, select Realm > Identities > Groups tab, and add the following groups:

AutoIdAdmin

AutoIdEntitlementOwner

AutoIdExecutive

AutoIdSupervisor

AutoIdUser

AutoIdAppOwner

AutoIdRoleOwner

AutoIdRoleEngineer

If you set up SSO-only, be aware that the following services are not deployed with

this setting:

Self Service

Manage Identities

If you want to use these services and SSO, set up the authentication as

"LocalAndSSO" in the vars.yml file. Otherwise, for SSO-only, you must use the

user services provided by your SSO provider.

NOTE

Set up SSO in initial deployments

35.189.75.99 autoid-ui.forgerock.com autoid-

selfservice.forgerock.com

35.246.65.234 openam.example.com



NOTE

https://backstage.forgerock.com/docs/am/7.1/authentication-guide/about-sso.html
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/about-sso.html
http://openam.example.com:8080/openam
http://openam.example.com:8080/openam
http://openam.example.com:8080/openam

16 / 114

4. Add the demo user to each group.

5. Go back to the main AM Admin UI page. Click Configure OAuth Provider.

6. Click Configure OpenID Connect, and then Create.

7. Select desired Realm > Go to Applications > OAuth 2.0, and then click Add Client.

Enter the following properties, specific to your deployment:

For example:

8. On the New Client page, go to to the Advanced tab, and enable Implied Consent .

Next, change the Token Endpoint Authentication Method to

client_secret_post .

9. Edit the OIDC claims script to return roles (groups) , so that AM can match the

Autonomous Identity groups. Additionally, add the groups as a claim in the script:

In the utils.setScopeClaimsMap block, add:

The group names above are arbitrary and are defined in the /autoid-

config/vars.yml file. Ensure that the groups you create in AM match the

values in the vars.yml file.

NOTE

Client ID: <autoid>

Client secret: <password>

Redirection URIs: https://<autoid-ui>.<domain>/api/sso/finish

Scope(s): openid profile



Client ID: autoid

Client secret: Welcome123

Redirection URIs: https://autoid-

ui.forgerock.com/api/sso/finish

Scope(s): openid profile



"groups": { claim, identity -> ["groups" :

identity.getMemberships(IdType.GROUP).collect { group ->

group.name }]}

groups: ['groups']

For more information about the OIDC claims script, refer to the ForgeRock

Knowledge Base .

NOTE



https://autoid-ui.forgerock.com/api/sso/finish
https://autoid-ui.forgerock.com/api/sso/finish
https://autoid-ui.forgerock.com/api/sso/finish
https://autoid-ui.forgerock.com/api/sso/finish
https://backstage.forgerock.com/knowledge/kb/article/a15751293
https://backstage.forgerock.com/knowledge/kb/article/a15751293
https://backstage.forgerock.com/knowledge/kb/article/a15751293
https://backstage.forgerock.com/knowledge/kb/article/a15751293

17 / 114

The id_token returns the content that includes the group names.

You have successfully configured AM as an OIDC provider.

10. Next, we set up Autonomous Identity. Change to the Autonomous Identity install

directory on the deployer machine.

{

"at_hash": "QJRGiQgr1c1sOE4Q8BNyyg",

"sub": "demo",

"auditTrackingId": "59b6524d-8971-46da-9102-704694cae9bc-

48738",

"iss": "http://openam.example.com:8080/openam/oauth2",

"tokenName": "id_token",

"groups": [

"AutoIdAdmin",

"AutoIdSupervisor",

"AutoIdUser",

"AutoIdExecutive",

"AutoIdEntitlementOwner",

"AutoIdAppOwner",

"AutoIdRoleOwner",

"AutoIdRoleEngineer"

],

"given_name": "demo",

"aud": "autoid",

"c_hash": "SoLsfc3zjGq9xF5mJG_C9w",

"acr": "0",

"org.forgerock.openidconnect.ops":

"B15A_wXm581fO8INtYHHcwSQtJI",

"s_hash": "bOhtX8F73IMjSPeVAqxyTQ",

"azp": "autoid",

"auth_time": 1592390726,

"name": "demo",

"realm": "/",

"exp": 1592394729,

"tokenType": "JWTToken",

"family_name": "demo",

"iat": 1592391129,

"email": "demo@example.com"

}

For more information on how to retrieve the id_token for observation, refer

to OpenID Connect 1.0 Endpoints.

NOTE

mailto:demo@example.com
https://backstage.forgerock.com/docs/am/7.1/oidc1-guide/rest-api-oidc-idtoken-validation.html%7D

18 / 114

11. Open a text editor, and set the SSO parameters in the /autoid-config/vars.yml

file. Make sure to change LDAP to SSO .

12. On the target machine, edit the /etc/hosts file or your DNS server, and add an

entry for openam.example.com .

13. On the deployer machine, run deployer.sh to push the new configuration.

cd ~/autoid-config/

authentication_option: "SSO"

oidc_issuer: "http://openam.example.com:8080/openam/oauth2"

oidc_auth_url:

"http://openam.example.com:8080/openam/oauth2/authorize"

oidc_token_url:

"http://openam.example.com:8080/openam/oauth2/access_token"

oidc_user_info_url:

"http://openam.example.com:8080/openam/oauth2/userinfo"

oidc_jwks_url:

"http://openam.example.com:8080/openam/oauth2/connect/jwk_uri"

oidc_callback_url: "https://autoid-

ui.forgerock.com/api/sso/finish"

oidc_client_scope: 'openid profile'

oidc_groups_attribute: groups

oidc_uid_attribute: sub

oidc_client_id: autoid

oidc_client_secret: Welcome1

admin_object_id: AutoIdAdmin

entitlement_owner_object_id: AutoIdEntitlementOwner

executive_object_id: AutoIdExecutive

supervisor_object_id: AutoIdSupervisor

user_object_id: AutoIdUser

application_owner_object_id: AutoIdAppOwner

role_owner_object_id: AutoIdRoleOwner

role_engineer_object_id: AutoIdRoleEngineer

oidc_end_session_endpoint:

"http://openam.example.com:8080/openam/oauth2/logout"

oidc_logout_redirect_url:

"http://openam.example.com:8088/openam/logout"

35.134.60.234 openam.example.com

$ deployer.sh run

19 / 114

14. Test the connection now. Access https://autoid-ui/forgerock.com . The

redirect should occur with the following:

1. First, update the permissions configuration object as follows:

a. Obtain an Autonomous Identity admin level JWT bearer token. You can obtain it

using curl and the Autonomous Identity login endpoint with administrator

credentials. Use your admin username and password:

The response is:

b. Use curl and the bearer token from the previous step to obtain the

Autonomous Identity JAS tenant ID:



http://openam.example.com:8080/openam/XUI/?

realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam

%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Daut

oid

Set up SSO in existing deployments

curl -X POST \

https://autoid-ui.forgerock.com/api/authentication/login

\

-k \

-H 'Content-Type: application/json' \

-d '{

"username": "bob.rodgers@forgerock.com",

"password": "Welcome123"

}'



{

"user": {

"dn":

"cn=bob.rodgers@zoran.com,ou=People,dc=zoran,dc=com",

"controls": [],

"displayName": "Bob Rodgers",

"gidNumber": "999",

"uid": "bob.rodgers",

"_groups": ["Zoran Admin"]

},

"token": "eyJhbGciOiJIUzI1NiIsInR5 …”

}

https://autoid-ui/forgerock.com
https://autoid-ui/forgerock.com
https://autoid-ui/forgerock.com
http://openam.example.com:8080/openam/XUI/?realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dautoid
http://openam.example.com:8080/openam/XUI/?realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dautoid
http://openam.example.com:8080/openam/XUI/?realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dautoid
http://openam.example.com:8080/openam/XUI/?realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dautoid
http://openam.example.com:8080/openam/XUI/?realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dautoid
http://openam.example.com:8080/openam/XUI/?realm=%2F&goto=http%3A%2F%2Fopenam.example.com%3A8080%2Fopenam%2Foauth2%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dautoid
https://autoid-ui.forgerock.com/api/authentication/login
https://autoid-ui.forgerock.com/api/authentication/login
https://autoid-ui.forgerock.com/api/authentication/login
mailto:bob.rodgers@forgerock.com
mailto:bob.rodgers@zoran.com

20 / 114

The response is:

c. To open the current permissions object, run the following curl command with

the bearer token and tenant ID from the previous steps:

An example response is as follows:

curl -k -L -X GET 'https://autoid-

ui.forgerock.com/jas/tenants' \

-H 'Authorization: Bearer <token_value>'

[

{

"id": "31092f95-3eed-418e-8ffb-f1b707bc9372",

"name": "autonomous-iam",

"description": "System Tenancy",

"created": "2023-03-02T20:15:30.166Z"

}

]

curl -k -L -X POST 'https://autoid-

ui.forgerock.com/jas/entity/search/common/config' \

-H 'X-TENANT-ID: <tenant_id>' \

-H 'Content-Type: application/json' \

-H 'Authorization: Bearer <token_value> \

-d '{

"query": {

"query": {

"bool": {

"must": {

"match": {

"name": "PermissionsConf"

}

}

}

}

}

}'

You can find the permissions value under the hits object > hits array >

_source > value .

NOTE

21 / 114

d. Edit the Permissions object in the template by replacing the

"###Zoran_.._Token###" fields with the SSO group ID. For example, the

Permissions object would appear as follows before the change:

{

"took": 1,

"timed_out": false,

"_shards": {

"total": 3,

"successful": 3,

"skipped": 0,

"failed": 0

},

"hits": {

"total": {

"value": 1,

"relation": "eq"

},

"max_score": 0.9808291,

"hits": [

{

"_index": "autonomous-iam_common_config_latest",

"_type": "_doc",

"_id":

"f72a58dd8bf5a38205c2d4c9eeafe85ebbaa1c3a2670b45c57f021902

2b90ea6fc50ebf88e720c98410600e427528f0fe702b55f70975c8f49c

b73c64ab1e101",

"_score": 0.9808291,

"_source": {

"name": "PermissionsConf",

"value": {

"permissions": {

"Zoran Admin": {

"title": "Admin",

"can": "*"

},

…​

"###Zoran_Admin_Token###":

{

"title": "Admin",

"can": "*"

},

22 / 114

For SSO only setup, the following is used:

For SSO and local setup, use the following:

e. Update the Permissions object in JAS with the edited JSON file:

A successful response is:

f5bd09ca-096c-4a6e-b06d-65decc22cb09 is an example group ID for

an organization’s administrators.

NOTE

"f5bd09ca-096c-4a6e-b06d-65decc22cb09":

{

"title": "Admin",

"can": "*"

},

"###Zoran_Admin_Token###":

{

"title": "Admin",

"can": "*"

},

"f5bd09ca-096c-4a6e-b06d-65decc22cb09":

{

"title": "Admin",

"can": "*"

},

curl -k -L -X PATCH 'https://autoid-

ui.forgerock.com/jas/entity/upsert/common/config' \

-H 'X-TENANT-ID: <tenant_id>' \

-H 'Content-Type: application/json' \

-H 'Authorization: Bearer <token_value>' \

-d @<path/to/SSO.json>

{

"indexName": "autonomous-iam_common_config_latest",

"indices":

{

"latest": "autonomous-iam_common_config_latest",

"log": "autonomous-iam_common_config"

23 / 114

f. Depending on how you want to configure SSO, use one of the following

templates:

}

}

The ContextID is an arbitrary UUID that can be any UUID. It is used just to

track this transaction.

NOTE

localAndSSO template (LocalAndSSO.json)

{

"branch": "actual",

"contextId": "ecba1baa-66d1-4548-8c74-6012bea9b838",

"indexingRequired": true,

"tags": {},

"indexInSync": true,

"entityData": [

{

"name": "PermissionsConf",

"value":

{

"permissions":

{

"Zoran Admin":

{

"title": "Admin",

"can": "*"

},

"###Zoran_Admin_Token###":

{

"title": "Admin",

"can": "*"

},

"Zoran Role Engineer":

{

"title": "Role Engineer",

"can": [

"SHOW__ROLE_PAGE",

"SEARCH__ALL_ROLES",

"CREATE__ROLE",

"UPDATE__ROLE",

"DELETE__ROLE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

24 / 114

"SHOW__CERTIFICATIONS",

"STATS_ALL__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"###Zoran_Role_Engineer_Token###":

{

"title": "Role Engineer",

"can": [

"SHOW__ROLE_PAGE",

"SEARCH__ALL_ROLES",

"CREATE__ROLE",

"UPDATE__ROLE",

"DELETE__ROLE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"STATS_ALL__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"Zoran Role Owner":

{

"title": "Role Owner",

"can": [

25 / 114

"SHOW__ROLE_PAGE",

"SEARCH__ROLES",

"CREATE__ROLE",

"UPDATE__ROLE",

"DELETE__ROLE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"STATS__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLES",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"###Zoran_Role_Owner_Token###":

{

"title": "Role Owner",

"can": [

"SHOW__ROLE_PAGE",

"SEARCH__ROLES",

"CREATE__ROLE",

"UPDATE__ROLE",

"DELETE__ROLE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"STATS__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLES",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

26 / 114

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"Zoran Role Auditor":

{

"title": "Role Auditor",

"can": [

"SEARCH__ALL_ROLES",

"STATS_ALL__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS"

]

},

"###Zoran_Role_Auditor_Token###":

{

"title": "Role Auditor",

"can": [

"SEARCH__ALL_ROLES",

"STATS_ALL__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS"

]

},

"Zoran Application Owner":

{

"title": "Application Owner",

"can": [

27 / 114

"SHOW__APPLICATION_PAGE",

"SEARCH__USER",

"SEARCH__ENTITLEMENTS_BY_APP_OWNER",

"SHOW_OVERVIEW_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__ENTITLEMENT_USERS",

"SHOW__APP_OWNER_FILTER_OPTIONS",

"SHOW__ENTT_OWNER_UNSCORED_ENTITLEMENTS",

"SHOW__ENTT_OWNER_PAGE",

"SHOW__ENTT_OWNER_USER_PAGE",

"SHOW__ENTT_OWNER_ENT_PAGE",

"SHOW__USER_ENTITLEMENTS",

"SHOW__RULES_BY_APP_OWNER",

"REVOKE__CERTIFY_ACCESS",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"###Zoran_Application_Owner_Token###":

{

"title": "Application Owner",

"can": [

"SHOW__APPLICATION_PAGE",

"SEARCH__USER",

"SEARCH__ENTITLEMENTS_BY_APP_OWNER",

"SHOW_OVERVIEW_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__ENTITLEMENT_USERS",

"SHOW__APP_OWNER_FILTER_OPTIONS",

"SHOW__ENTT_OWNER_UNSCORED_ENTITLEMENTS",

"SHOW__ENTT_OWNER_PAGE",

"SHOW__ENTT_OWNER_USER_PAGE",

"SHOW__ENTT_OWNER_ENT_PAGE",

"SHOW__USER_ENTITLEMENTS",

"SHOW__RULES_BY_APP_OWNER",

"REVOKE__CERTIFY_ACCESS",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"Zoran Entitlement Owner":

{

"title": "Entitlement Owner",

"can": [

"SEARCH__ENTITLEMENTS_BY_ENTT_OWNER",

28 / 114

"SHOW_OVERVIEW_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__ENTITLEMENT_USERS",

"SHOW__ENTT_OWNER_FILTER_OPTIONS",

"SHOW__ENTT_OWNER_UNSCORED_ENTITLEMENTS",

"SHOW__ENTT_OWNER_PAGE",

"SHOW__ENTT_OWNER_USER_PAGE",

"SHOW__ENTT_OWNER_ENT_PAGE",

"SHOW__USER_ENTITLEMENTS",

"SHOW__RULES_BY_ENTT_OWNER",

"REVOKE__CERTIFY_ACCESS",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"LOOKUP_USER",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"###Zoran_Entitlement_Owner_Token###":

{

"title": "Entitlement Owner",

"can": [

"SEARCH__ENTITLEMENTS_BY_ENTT_OWNER",

"SHOW_OVERVIEW_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__ENTITLEMENT_USERS",

"SHOW__ENTT_OWNER_FILTER_OPTIONS",

"SHOW__ENTT_OWNER_UNSCORED_ENTITLEMENTS",

"SHOW__ENTT_OWNER_PAGE",

"SHOW__ENTT_OWNER_USER_PAGE",

"SHOW__ENTT_OWNER_ENT_PAGE",

"SHOW__USER_ENTITLEMENTS",

"SHOW__RULES_BY_ENTT_OWNER",

"REVOKE__CERTIFY_ACCESS",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"LOOKUP_USER",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

29 / 114

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"Zoran Executive":

{

"title": "Executive",

"can": [

"SEARCH__USER",

"SHOW__ASSIGNMENTS_STATS",

"SHOW__COMPANY_PAGE",

"SHOW__COMPANY_ENTITLEMENTS_DATA",

"SHOW__CRITICAL_ENTITLEMENTS",

"SHOW__ENTITLEMENT_AVG_GROUPS",

"SHOW__USER_ENTITLEMENTS"

]

},

"###Zoran_Executive_Token###":

{

"title": "Executive",

"can": [

"SEARCH__USER",

"SHOW__ASSIGNMENTS_STATS",

"SHOW__COMPANY_PAGE",

"SHOW__COMPANY_ENTITLEMENTS_DATA",

"SHOW__CRITICAL_ENTITLEMENTS",

"SHOW__ENTITLEMENT_AVG_GROUPS",

"SHOW__USER_ENTITLEMENTS"

]

},

"Zoran Supervisor":

{

"title": "Supervisor",

"can": [

"SEARCH__USER",

"SHOW_OVERVIEW_PAGE",

"SHOW__SUPERVISOR_FILTER_OPTIONS",

"SHOW__SUPERVISOR_PAGE",

"SHOW__SUPERVISOR_ENTITLEMENT_USERS",

"SHOW__SUPERVISOR_USER_ENTITLEMENTS",

"SHOW__SUPERVISOR_UNSCORED_ENTITLEMENTS",

30 / 114

"SEARCH__SUPERVISOR_USER_ENTITLEMENTS",

"REVOKE__CERTIFY_ACCESS",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"###Zoran_Supervisor_Token###":

{

"title": "Supervisor",

"can": [

"SEARCH__USER",

"SHOW_OVERVIEW_PAGE",

"SHOW__SUPERVISOR_FILTER_OPTIONS",

"SHOW__SUPERVISOR_PAGE",

"SHOW__SUPERVISOR_ENTITLEMENT_USERS",

"SHOW__SUPERVISOR_USER_ENTITLEMENTS",

"SHOW__SUPERVISOR_UNSCORED_ENTITLEMENTS",

"SEARCH__SUPERVISOR_USER_ENTITLEMENTS",

"REVOKE__CERTIFY_ACCESS",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"Zoran User":

{

"title": "User",

"can": [

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"###Zoran_User_Token###":

{

"title": "User",

"can": [

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"Zoran Service Connector":

{

31 / 114

"title": "Service Connector",

"can": [

"SERVICE_CONNECTOR",

"SHOW__API_KEY_MGMT_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"SHOW__RULES",

"REVOKE__CERTIFY_ACCESS"

]

},

"###Zoran_Service_Connector_Token###":

{

"title": "Service Connector",

"can": [

"SERVICE_CONNECTOR",

"SHOW__API_KEY_MGMT_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"SHOW__RULES",

"REVOKE__CERTIFY_ACCESS"

]

}

}

}

}

]

}

SSO template (SSO.json)

{

"branch": "actual",

"contextId": "ecba1baa-66d1-4548-8c74-6012bea9b838",

"indexingRequired": true,

"tags": {},

"indexInSync": true,

"entityData": [

{

"name": "PermissionsConf",

"value":

{

"permissions":

{

32 / 114

"###Zoran_Admin_Token###":

{

"title": "Admin",

"can": "*"

},

"###Zoran_Role_Engineer_Token###":

{

"title": "Role Engineer",

"can": [

"SHOW__ROLE_PAGE",

"SEARCH__ALL_ROLES",

"CREATE__ROLE",

"UPDATE__ROLE",

"DELETE__ROLE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"STATS_ALL__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"###Zoran_Role_Owner_Token###":

{

"title": "Role Owner",

"can": [

"SHOW__ROLE_PAGE",

"SEARCH__ROLES",

"CREATE__ROLE",

"UPDATE__ROLE",

"DELETE__ROLE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"STATS__USERS",

"SEARCH_ALL__USERS",

33 / 114

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLES",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"###Zoran_Role_Auditor_Token###":

{

"title": "Role Auditor",

"can": [

"SEARCH__ALL_ROLES",

"STATS_ALL__USERS",

"SEARCH_ALL__USERS",

"SEARCH_ALL__ENTITLEMENTS",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS"

]

},

"###Zoran_Application_Owner_Token###":

{

"title": "Application Owner",

"can": [

"SHOW__APPLICATION_PAGE",

"SEARCH__USER",

"SEARCH__ENTITLEMENTS_BY_APP_OWNER",

"SHOW_OVERVIEW_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__ENTITLEMENT_USERS",

"SHOW__APP_OWNER_FILTER_OPTIONS",

"SHOW__ENTT_OWNER_UNSCORED_ENTITLEMENTS",

"SHOW__ENTT_OWNER_PAGE",

"SHOW__ENTT_OWNER_USER_PAGE",

34 / 114

"SHOW__ENTT_OWNER_ENT_PAGE",

"SHOW__USER_ENTITLEMENTS",

"SHOW__RULES_BY_APP_OWNER",

"REVOKE__CERTIFY_ACCESS",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"###Zoran_Entitlement_Owner_Token###":

{

"title": "Entitlement Owner",

"can": [

"SEARCH__ENTITLEMENTS_BY_ENTT_OWNER",

"SHOW_OVERVIEW_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__ENTITLEMENT_USERS",

"SHOW__ENTT_OWNER_FILTER_OPTIONS",

"SHOW__ENTT_OWNER_UNSCORED_ENTITLEMENTS",

"SHOW__ENTT_OWNER_PAGE",

"SHOW__ENTT_OWNER_USER_PAGE",

"SHOW__ENTT_OWNER_ENT_PAGE",

"SHOW__USER_ENTITLEMENTS",

"SHOW__RULES_BY_ENTT_OWNER",

"REVOKE__CERTIFY_ACCESS",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"LOOKUP_USER",

"SEARCH__ROLE_USERS",

"SEARCH__ROLE_ENTITLEMENTS",

"SEARCH__ROLE_JUSTIFICATIONS",

"SHOW_ROLE_METADATA",

"SHOW_ROLE_ATTRIBUTES",

"WORKFLOW__REQUESTS",

"WORKFLOW__TASKS",

"WORKFLOW__TASK_APPROVE"

]

},

"###Zoran_Executive_Token###":

{

"title": "Executive",

"can": [

"SEARCH__USER",

"SHOW__ASSIGNMENTS_STATS",

"SHOW__COMPANY_PAGE",

"SHOW__COMPANY_ENTITLEMENTS_DATA",

35 / 114

"SHOW__CRITICAL_ENTITLEMENTS",

"SHOW__ENTITLEMENT_AVG_GROUPS",

"SHOW__USER_ENTITLEMENTS"

]

},

"###Zoran_Supervisor_Token###":

{

"title": "Supervisor",

"can": [

"SEARCH__USER",

"SHOW_OVERVIEW_PAGE",

"SHOW__SUPERVISOR_FILTER_OPTIONS",

"SHOW__SUPERVISOR_PAGE",

"SHOW__SUPERVISOR_ENTITLEMENT_USERS",

"SHOW__SUPERVISOR_USER_ENTITLEMENTS",

"SHOW__SUPERVISOR_UNSCORED_ENTITLEMENTS",

"SEARCH__SUPERVISOR_USER_ENTITLEMENTS",

"REVOKE__CERTIFY_ACCESS",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"###Zoran_User_Token###":

{

"title": "User",

"can": [

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS"

]

},

"###Zoran_Service_Connector_Token###":

{

"title": "Service Connector",

"can": [

"SERVICE_CONNECTOR",

"SHOW__API_KEY_MGMT_PAGE",

"SHOW__ENTITLEMENT",

"SHOW__USER",

"SHOW__CERTIFICATIONS",

"SHOW__RULES",

"REVOKE__CERTIFY_ACCESS"

]

}

36 / 114

g. Verify your changes by opening the permissions object as shown in step 1c.

2. Next, update the JAS container environment variables:

a. On the instance where Docker is running, create a backup of the

/opt/autoid/res/jas/docker-compose.yml file, and edit the variables in

the environment section. For example, change the following variables:

From:

To:

b. Remove the running JAS container and re-deploy:

3. Next, update the zoran-api container environment variables:

a. On the instance where Docker is running, create a backup of the

/opt/autoid/res/api/docker-compose.yml file, and edit the following

variables in the file replacing the \$\{…​\} placeholders:

}

}

}

]

}

- OIDC_ENABLED=False

- GROUPS_ATTRIBUTE=_groups

- OIDC_JWKS_URL=na

- OIDC_ENABLED=True

- GROUPS_ATTRIBUTE=groups

- OIDC_JWKS_URL= <Same value as in the zoran-api. Refer to

step 3 below>

The GROUPS_ATTRIBUTE variable must match the

OIDC_GROUPS_ATTRIBUTE variable used in the docker-compose.yml

file.

NOTE

docker stack rm jas

docker stack deploy --with-registry-auth --compose-file

/opt/autoid/res/jas/docker-compose.yml jas

37 / 114

For example, Autonomous Identity displays something similar below (the

example uses Asure links and object IDs):

b. Remove the running zoran-api Docker container and re-deploy:

c. Restart the UI and Nginx Docker containers:

- OIDC_ISSUER=${OIDC_ISSUER}

- OIDC_AUTH_URL=${OIDC_AUTH_URL}

- OIDC_TOKEN_URL=${OIDC_TOKEN_URL}

- OIDC_USER_INFO_URL=${OIDC_USER_INFO_URL}

- OIDC_CLIENT_ID=${OIDC_CLIENT_ID}

- OIDC_CLIENT_SECRET=${OIDC_CLIENT_SECRET}

- OIDC_CALLBACK_URL=${OIDC_CALLBACK_URL}

- OIDC_JWKS_URL=${OIDC_JWKS_URL}

- OIDC_CLIENT_SCOPE=${OIDC_CLIENT_SCOPE}

- OIDC_GROUPS_ATTRIBUTE=${OIDC_GROUPS_ATTRIBUTE}

- OIDC_UID_ATTRIBUTE=${OIDC_UID_ATTRIBUTE}

- OIDC_END_SESSION_ENDPOINT=${OIDC_END_SESSION_ENDPOINT}

- OIDC_LOGOUT_REDIRECT_URL=${OIDC_LOGOUT_REDIRECT_URL}

If you are configuring SSO only for the login mode, set LOCAL_AUTH_MODE

to false (for example, LOCAL_AUTH_MODE=false). If you keep

LOCAL_AUTH_MODE to true , Autonomous Identity defaults to

LocalAndSSO, which uses the OIDC and email options for login.

IMPORTANT

docker stack rm api

docker stack deploy --with-registry-auth --compose-file

/opt/autoid/res/api/docker-compose.yml api

38 / 114

3. Open the Autonomous Identity UI to verify the SSO login.

By default, the session duration is set to 30 minutes. You can change this value at

installation by setting the JWT_EXPIRY property in the /autoid-config/vars.yml file.

If you did not set the value at installation, you can make the change after installation by

setting the JWT_EXPIRY property using the API service.

1. Log in to the Docker manager node.

2. Verify the JWT_EXPIRY property.

3. Go to the API folder.

4. Edit the docker-compose.yml file and update the JWT_EXPIRY property. The

JWT_EXPIRY property is set to minutes.

5. Redeploy the Docker stack API.

If the command returns any errors, such as "image could not be accessed by the

registry," then try the following command:

docker service update --force ui_zoran-ui

docker service update --force nginx_nginx

Setting the session duration

$ docker inspect api_zoran-api

$ cd /opt/autoid/res/api

$ docker stack deploy --with-registry-auth --compose-file

docker-compose.yml api

39 / 114

6. Verify the new JWT_EXPIRY property.

7. Log in to the Docker worker node.

8. Stop the worker node.

The Docker manager node re-initiates the worker node. Repeat this step on any

other worker node.

By default, Autonomous Identity uses self-signed certificates in its services. You can

replace these self-signed certificates with a certificate issued by a Certificate Authority

(CA). This section provides instructions on how to replace your self-signed certificates

and also update your existing certificates when expired.

Update certificates on Cassandra

Update certificates on MongoDB

Update certificates on JAS

Update the certificates on NGINX

Update certificates on OpenSearch

The following items were used to test the custom certificate procedures:

Private key file. The procedure uses a private key file privkey.pem.

Full trust chain. The procedure also uses a full trust certificate chain,

fullchain.pem.

Keystore password. The procedure was tested using the keystore password is

Acc#1234.

NGINX certificate. The NGINX certificate must support subject alternative name

(SAN) for the following domains:

autoid-ui.<domain-name>

$ docker stack deploy --with-registry-auth --resolve-image

changed \

--compose-file /opt/autoid/res/api/docker-compose.yml api

$ docker inspect api_zoran-api

$ docker stop [container ID]

Custom certificates

Pre-requisites

40 / 114

autoid-jas.<domain-name>

autoid-configuration-service.<domain-name>

autoid-kibana.<domain-name>

autoid-api.<domain-name>

Domain name. The domain name used in the procedure below is

certupdate.autoid.me. Change the value in various places to the domain name

applicable to your deployment.

Autonomous Identity version. The procedures were tested on Autonomous

Identity versions 2021.8.5 and 2021.8.6.

1. Create the Java keystore and truststore files for the server using keytool. The

commands generate two JKS files: cassandra-keystore.jks and cassandra-

truststore.jks. You need these files for configuring Cassandra and the Java API

Service (JAS).

2. Create the client certificate. The client certificate is used by external clients, such as

JAS and cqlsh to authenticate to Cassandra. In the following example, use the

same client certificate for the Cassandra nodes to authenticate with each other.

Update certificates on Cassandra

openssl pkcs12 -export -in fullchain.pem -inkey privkey.pem -

out server.p12 -name cassandranode

keytool -importkeystore -deststorepass Acc#1234 -destkeypass

Acc#1234 -destkeystore cassandra-keystore.jks -srckeystore

server.p12 -srcstoretype PKCS12 -srcstorepass Acc#1234 -alias

cassandranode

keytool -importcert -keystore cassandra-truststore.jks -alias

rootCa -file fullchain.pem -noprompt -keypass Acc#1234 -

storepass Acc#1234

You can create a different certificate, if desired, using similar steps.

NOTE

Create client.conf with following contents

[req]

distinguished_name = CA_DN

prompt = no

default_bits = 2048

[CA_DN]

41 / 114

3. View the files that are needed in later steps:

4. Copy the following files to the /opt/autoid/apache-cassandra-

3.11.2/conf/certs directory on each Cassandra node:

cassandra-keystore.jks

cassandra-truststore.jks

client-keystore.jks

C = cc

O = eng

OU = cass

CN = CA_CN

Create client key and CSR

openssl req -newkey rsa:2048 -nodes -keyout client.key -out

signing_request.csr -config client.conf

Create client certificate

openssl x509 -req -CA fullchain.pem -CAkey privkey.pem -in

signing_request.csr -out client.crt -days 3650 -CAcreateserial

Import client cert into a Java keystore for JAS

openssl pkcs12 -export -in client.crt -inkey client.key -out

client.p12 -name jas

keytool -importkeystore -deststorepass Acc#1234 -destkeypass

Acc#1234 -destkeystore client-keystore.jks -srckeystore

client.p12 -srcstoretype PKCS12 -srcstorepass Acc#1234 -alias

jas

$ ls -1 .

cassandra-keystore.jks

cassandra-truststore.jks

client.conf

client.crt

client.key

client-keystore.jks

client.p12

fullchain.pem

fullchain.srl

privkey.pem

server.p12

signing_request.csr

42 / 114

5. Copy the following files to the <autoid-user-home-dir>/.cassandra directory

on each Cassandra node:

client.key

client.crt

fullchain.pem

6. Make the following edits in the /opt/autoid/apache-cassandra-

3.11.2/conf/cassandra.yaml file on each Cassandra node:

a. Change the keystore and truststore paths in the

server_encryption_options and client_encryption_options sections:

7. Update the <autoid-user-home-dir>/.cassandra/cqlshrc file with the

following edits:

8. Restart Cassandra.

9. Make sure that Cassandra is running normally using cqlsh. Use your server’s IP. :

keystore: /opt/autoid/apache-cassandra-

3.11.2/conf/certs/client-keystore.jks

truststore: /opt/autoid/apache-cassandra-

3.11.2/conf/certs/cassandra-truststore.jks

[authentication]

username = zoranuser

password = <password>

[connection]

hostname = <ip address>

factory = cqlshlib.ssl.ssl_transport_factory

[ssl]

certfile = <autoid-user-home-dir>/.cassandra/fullchain.pem

validate = false

version = SSLv23

Next 2 lines must be provided when require_client_auth =

true in the cassandra.yaml file

userkey = <autoid-user-home-dir>/.cassandra/client_key.key

usercert = <autoid-user-home-dir>/.cassandra/client.crt

ps auxf | grep cassandra

kill <pid>

cd /opt/autoid/apache-cassandra-3.11.2/bin

nohup ./cassandra >/opt/autoid/apache-cassandra-

3.11.2/cassandra.out 2>&1 &

43 / 114

1. Create the keystore and truststore using keytool.

2. Create a new mongodb.pem file.

3. Download the isg root x1 root certificate from Lets Encrypt at

https://letsencrypt.org/certs/isgrootx1.pem , and save it as rootCA.pem.

4. Back up the MongoDB certificates.

$ cqlsh --ssl

Connected to Zoran Cluster at <server-ip>:9042.

[cqlsh 5.0.1 | Cassandra 3.11.2 | CQL spec 3.4.4 | Native

protocol v4]

Use HELP for help.

zoranuser@cqlsh> describe keyspaces;

autonomous_iam system_auth system_distributed

autoid_analytics

autoid system system_traces autoid_base

system_schema autoid_meta autoid_staging

zoranuser@cqlsh>

Update certificates on MongoDB

openssl pkcs12 -export -in fullchain.pem -inkey privkey.pem -

out server.p12 -name mongonode

keytool -importkeystore -deststorepass Acc#1234 -destkeypass

Acc#1234 -destkeystore mongo-client-keystore.jks -srckeystore

server.p12 -srcstoretype PKCS12 -srcstorepass Acc#1234 -alias

mongonode

keytool -importcert -keystore mongo-server-truststore.jks -

alias rootCa -file fullchain.pem -noprompt -keypass Acc#1234 -

storepass Acc#1234

cat fullchain.pem privkey.pem > mongodb.pem



cd /opt/autoid/mongo/certs/

mkdir backup

mv mongodb.pem backup/

mv rootCA.pem backup/

mv mongo-*.jks backup

https://letsencrypt.org/certs/isgrootx1.pem
https://letsencrypt.org/certs/isgrootx1.pem
https://letsencrypt.org/certs/isgrootx1.pem

44 / 114

5. Copy the new certificates to the mongodb installation.

6. Restart Mongo DB.

7. Check for logs for errors in /opt/autoid/mongo/mongo-autoid.log. The log may

show connection errors until JAS has been updated and restarted.

8. Add the hostname to the hosts file. For example, we are using: autoid-

mongo.certupdate.autoid.me.

9. Check the MongoDB connection from the command line.

10. Back up and copy the new keystore and truststore to JAS.

11. Update the JAS configuration. On each Docker manager and worker node, copy the

following files to the /opt/autoid/mount/jas directory.

mongo-client-keystore.jks

mongo-server-truststore.jks

12. On each Docker manager node, update /opt/autoid/res/jas/docker-

compose.yml file and set the Mongo keystore, truststore, and host, and add the

extra_hosts line as follows:

cp mongodb.pem /opt/autoid/mongo/certs/

cp rootCA.pem /opt/autoid/mongo/certs/

sudo systemctl stop mongo-autoid

sudo systemctl start mongo-autoid

mongo --tls --host autoid-mongo.certupdate.autoid.me --

tlsCAFile /opt/autoid/mongo/certs/rootCA.pem --

tlsCertificateKeyFile /opt/autoid/mongo/certs/mongodb.pem --

username mongoadmin

cd /opt/autoid/mounts/jas

mkdir backup

mv mongo-*.jks backup

cp mongo-server-truststore.jks /opt/autoid/mounts/jas

cp mongo-client-keystore.jks /opt/autoid/mounts/jas

The certificates must exist on all Docker nodes (all managers and worker

nodes).

NOTE

45 / 114

13. Restart JAS.

14. Check JAS logs for errors.

1. On each Docker manager and worker node, copy the following keystore and

truststore files to /opt/autoid/mounts/jas directory:

client-keystore.jks

cassandra-truststore.jks

2. On each Docker manager node, update /opt/autoid/res/jas/docker-

compose.yml with the correct keystore and truststore paths:

3. Redeploy the JAS server.

4. Make sure JAS has no errors.

MONGO_KEYSTORE_PATH=/db-certs/mongo-client-keystore.jks

MONGO_TRUSTSTORE_PATH=/db-certs/mongo-server-truststore.jks

MONGO_HOST=autoid-mongo.certupdate.autoid.me

extra_hosts:

- "autoid-mongo.certupdate.autoid.me:<ip of mongodb host>"

docker stack rm jas nginx

docker stack deploy -c /opt/autoid/res/jas/docker-compose.yml

jas

docker stack deploy -c /opt/autoid/res/nginx/docker-

compose.yml nginx

docker service logs -f jas_jasnode

Update certificates on JAS

CASSANDRA_KEYSTORE_PATH=/db-certs/client-keystore.jks

CASSANDRA_TRUSTSTORE_PATH=/db-certs/cassandra-truststore.jks

docker stack rm jas

docker stack deploy jas -c /opt/autoid/res/jas/docker-

compose.yml

docker service logs -f jas_jasnode

46 / 114

1. Copy the following files to /opt/autoid/mounts/nginx/cert/ :

privkey.pem

fullchain.pem

2. In the /opt/autoid/mounts/nginx/nginx.conf file, update the

ssl_certificate and ssl_certificate_key properties as follows:

3. Make sure that the domain names in the configuration files

(/opt/autoid/mounts/nginx/conf.d) matches the domain names used for

certificate generation.

4. Restart the Docker container.

1. Create a keystore and truststore using keystore .

2. Create backups.

Update the certificates on NGINX

#SSL Settings

ssl_certificate /etc/nginx/cert/fullchain.pem;

ssl_certificate_key /etc/nginx/cert/privkey.pem;

docker stack rm nginx

docker stack deploy -c /opt/autoid/res/nginx/docker-

compose.yml nginx

Update certificates on OpenSearch

openssl pkcs12 -export -in fullchain.pem -inkey privkey.pem -

out server.p12 -name esnodekey

keytool -importkeystore -deststorepass Acc#1234 -destkeypass

Acc#1234 -destkeystore elastic-client-keystore.jks -

srckeystore server.p12 -srcstoretype PKCS12 -srcstorepass

Acc#1234 -alias esnodekey

keytool -importcert -keystore elastic-server-truststore.jks -

alias rootCa -file fullchain.pem -noprompt -keypass Acc#1234 -

storepass Acc#1234

cd /opt/autoid/certs/elastic

mkdir backup

47 / 114

3. Copy the new jks files, fullchain.pem , privkey.pem , and chain.pem to

/opt/autoid/certs/elastic .

4. Also, copy the fullchain.pem , privkey.pem , and chain.pem certificates to

/opt/autoid/elastic/opensearch-1.3.6/config/.

5. Update the following attributes in the /opt/autoid/elastic/opensearch-

1.3.6/config/elasticsearch.yml file:

6. Restart OpenSearch on all OpenSearch nodes:

7. Check /opt/autoid/elastic/logs/elasticcluster.log for errors. The file

shows any certificate error until all nodes have been restarted.

8. In the /opt/autoid/res/jas/docker-compose.yml file, add the following:

9. Restart the JAS container:

mv *.jks backup

opensearch_security.ssl.transport.pemcert_filepath:

fullchain.pem

opensearch_security.ssl.transport.pemkey_filepath: privkey.pem

opensearch_security.ssl.transport.pemtrustedcas_filepath:

chain.pem

opensearch_security.ssl.http.pemcert_filepath: fullchain.pem

opensearch_security.ssl.http.pemkey_filepath: privkey.pem

opensearch_security.ssl.http.pemtrustedcas_filepath: chain.pem

opensearch_security.nodes_dn:

- CN=elastic.certupdate.autoid.me

sudo systemctl restart elastic

extra_hosts:

- "elastic.certupdate.autoid.me:<ip of ES host>"

update ES_HOST env var:

ES_HOST=elastic.certupdate.autoid.me

docker stack rm jas

docker stack rm nginx

docker stack deploy -c /opt/autoid/res/jas/docker-compose.yml

jas

48 / 114

10. Test the connection from the JAS container to OpenSearch:

11. Update the configuration in the JAS service using curl:

a. First log in using curl .

b. Pull in the current configuration using curl .

c. Modify value for elasticsearch" to "host": elastic.certupdate.autoid.me``.

d. Push the updated configuration:

12. Update the environment variable in your .bashrc on all OpenSearch nodes and

Spark nodes:

docker stack deploy -c /opt/autoid/res/nginx/docker-

compose.yml nginx

docker container exec -it <jas container id> sh

apk add curl

curl -v --cacert /elastic-certs/fullchain.pem -u elasticadmin

https://elastic.certupdate.autoid.me:9200

curl -X POST https://autoid-

ui.certupdate.autoid.me:443/api/authentication/login -k -

H 'Content-Type: application/json' -H 'X-TENANT_ID:

<tenant_id >' -d '{

"username": "bob.rodgers@forgerock.com",

"password": "Welcome123"

}'



curl -k -H "Content-Type: application/json" -H 'X-TENANT-

ID: <tenant_id>' -H 'Authorization: Bearer <bearer_token>'

--request GET

https://jasnode:10081/config/analytics_env_config

curl -k -H "Content-Type: application/json" -H 'X-TENANT-

ID: <tenant_id>' -H 'Authorization: Bearer

<bearer_token>' --request PUT

https://jasnode:10081/config/analytics_env_config -d

'<updated json config>'



ES_HOST=elastic.certupdate.autoid.me

https://elastic.certupdate.autoid.me:9200/
https://elastic.certupdate.autoid.me:9200/
https://elastic.certupdate.autoid.me:9200/
https://autoid-ui.certupdate.autoid.me/api/authentication/login
https://autoid-ui.certupdate.autoid.me/api/authentication/login
https://autoid-ui.certupdate.autoid.me/api/authentication/login
https://autoid-ui.certupdate.autoid.me/api/authentication/login
mailto:bob.rodgers@forgerock.com
https://jasnode:10081/config/analytics_env_config
https://jasnode:10081/config/analytics_env_config
https://jasnode:10081/config/analytics_env_config
https://jasnode:10081/config/analytics_env_config
https://jasnode:10081/config/analytics_env_config
https://jasnode:10081/config/analytics_env_config

49 / 114

Before you run analytics, you can add new attributes to the schema using the

Autonomous Identity UI. Only administrators have access to this functionality.

1. Open a browser. If you set up your own url, use it for your login.

2. Log in as an admin user, specific to your system. For example:

3. Click the Administration icon, indicated by the sprocket. Then, click Entity

Definitions.

4. On the Entity Definitions page, click Applications to add any new attributes to the

schema.

a. Click the Add attribute button.

b. In the Attribute Name field, enter the name of the new attribute. For example,

app_owner_id .

c. In the Display Name field, enter a human-readable name of the attribute.

d. Select the attribute type. The options are:

Text , Boolean , Integer , Float , Date , and Number .

e. Click Searchable if you want the attribute to be indexed and available in your

filters.

f. Click Save.

g. Click Save again to apply your attribute.

h. If you need to edit the attribute, click the Edit icon. If you need to remove the

attribute, click the Remove icon. Note that attributes marked as Required

cannot be removed.

5. Click Assignments, and repeat the previous steps.

6. Click Entitlements, and repeat the previous steps.

7. Click Identities, and repeat the previous steps.

Set entity definitions

$ https://autoid-ui.forgerock.com/

test user: bob.rodgers@forgerock.com

password: Welcome123

Click an example

https://autoid-ui.forgerock.com/
https://autoid-ui.forgerock.com/
https://autoid-ui.forgerock.com/
mailto:bob.rodgers@forgerock.com

50 / 114

7. Next, you must set the data sources. Refer to Set Data Sources.

After defining any new attributes, you must set your data sources, so that Autonomous

Identity can import and ingest your data. Autonomous Identity supports three types of

data source files:

Comma-separated values (CSV). A comma-separated values (CSV) file is a text file

that uses a comma delimiter to separate each field value. Each line of text

represents a record, consisting of one or more fields of data.

Java Database Connectivity (JDBC). Java Database Connectivity (JDBC) is a Java API

that connects to and executes queries on databases, like Oracle, MySQL,

PostgreSQL, and MSSQL.

Generic. Generic data sources are those data types from vendors that have neither

CSV nor JDBC-based formats, such as JSON, or others.

Autonomous Identity supports partial or incremental data ingestion for faster and

efficient data uploads. The four types are full , incremental , enrichment , and

delete , and are summarized below:

Table: Summary of Data Sync Types

Sync Type Data Source In AutoID Result

Set data sources

Data source sync types

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-data-sources.html

51 / 114

Sync Type Data Source In AutoID Result

Full The records

from the entity

represents the

full set of all

records that you

intend to ingest.

For example:

0,

"amy.user"

1,

"bob.user"

An existing table

may have the

following:

2,

"walt.user"

3,

"kelly.user"

After the ingest job runs,

all existing records are

fully replaced:

0, "amy.user"

1, "bob.user"

Incremental The records

from the entity

represents the

records that you

want to add to

AutoID. For

example:

2,

"walt.user"

3,

"kelly.user"

An existing table

may have the

following:

0,

"amy.user"

1,

"bob.user"

After the ingest job runs,

the records in the data

source are added to the

existing records:

0, "amy.user"

1, "bob.user"

2, "walt.user"

3, "kelly.user"

52 / 114

Sync Type Data Source In AutoID Result

Enrichment The records

from the entity

represents

changes to

existing data,

such as adding a

department

attribute. No

new objects are

added, but here

you want to edit

or "patch" in new

attributes to

existing records:

0, "finance"

1, "finance"

2, "finance"

An existing table

may have the

following:

0,

"amy.user"

1,

"bob.user"

2,

"walt.user"

3,

"kelly.user"

After the ingest job runs,

the attributes in the data

source is added to the

existing records. If

attributes exist, they get

updated. If attributes do

not exist, they do not get

updated, but you can add

also attributes using

mappings:

0, "amy.user",

"finance"

1, "bob.user",

"finance"

2, "walt.user",

"finance"

3, "kelly.user"

Delete The records

from the entity

represent

records to be

deleted,

identified by the

primary key:

3,

"kelly.user"

An existing table

may have the

following:

0,

"amy.user",

"finance"

1,

"bob.user",

"finance"

2,

"walt.user",

"finance"

3,

"kelly.user"

After the ingest job

completes, the records

with the primary key are

deleted:

0, "amy.user",

"finance"

1, "bob.user",

"finance"

2, "walt.user",

"finance"

The following are general tips for setting up your comma-separated-values (CSV) files:

Make sure you have access to your CSV files: applications.csv ,

assignments.csv , entitlements.csv , and identities.csv .

CSV data sources

53 / 114

You can review the Data Preparation chapter for more tips on setting up your files.

Set Up a CSV Data Source:

1. Log in to the Autonomous Identity UI as an administrator.

2. On the Autonomous Identity UI, click the Administration > Data Sources > Add

data source > CSV > Next.

3. In the CSV Details dialog box, enter a human-readable name for your CSV file.

4. Select the Sync Type. The options are as follows:

Full. Runs a full replacement of data if any.

Incremental. Adds new records to existing data.

Enrichment. Adds new attributes to existing data records.

Delete. Delete any existing data objects.

5. Click Add Object, and then select the data source file.

a. Click Applications, enter the path to the application.csv file. For example,

/data/input/applications.csv .

b. Click Assignments, enter the path to the assignments.csv file. For example,

/data/input/assignments.csv .

c. Click Entitlements, enter the path to the entitlements.csv file. For

example, /data/input/entitlements.csv .

d. Click Identities, enter the path to the identities.csv file. For example,

/data/input/identities.csv .

6. Click Save.

Click an example

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-prepare-data-tasks.html

54 / 114

7. Repeat the previous steps to add more CSV data source files if needed.

8. Next, you must set the attribute mappings. This is a critical step to ensure a

successful analytics run. Refer to Set Attribute Mappings.

The following are general tips for setting up your JDBC data sources (Oracle, MySQL,

PostgreSQL, and MSSQL):

When configuring your JDBC database, make sure you have properly "whitelisted"

the IP addresses that can access the server. For example, you should include your

local autoid instance and other remote systems, such as a local laptop.

Make sure you have configured your database tables on your system:

applications , assignments , entitlements , and identities.

Make sure to make note of the IP address of your database server.

The following procedure assumes that you have set up Autonomous Identity with

connectivity to a database:

Set Up a JDBC Data Source:

1. Log in to the Autonomous Identity UI as an administrator.

2. On the Autonomous Identity UI, click the Administration icon > Data Sources >

Add data source > JDBC > Next.

3. In the JDBC Details dialog box, enter a human-readable name for your JDBC files.

4. Select the Sync Type. The options are as follows:

Full. Runs a full replacement of data if any.

Incremental. Adds new records to existing data.

Enrichment. Adds new attributes to existing data records.

Delete. Delete any existing data objects.

5. For Connection Settings, enter the following:

a. Database Username. Enter a user name for the database user that connects to

the data source.

b. Database Password. Enter a password for the database user.

c. Database Driver. Select the database driver. Options are:

Oracle

Mysql

Postgresql

Mssqlserver

JDBC Data Sources

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html

55 / 114

d. Database Connect String. Enter the database connection URI to the data

source. For example, jdbc:<Database Type>://<Database IP

Address>/<Database Acct Name> , where:

jdbc is the SQL driver type

<Database Type> is the database management system type. Options

are: oracle , mysql , postgresql , or sqlserver .

<Database IP Address> is the database IP address

<Database Acct Name> is the database account name created in the

database instance.

For example: * Oracle: jdbc:oracle://35.180.130.161/autoid * MySQL:

jdbc:mysql://35.180.130.161/autoid * PostgreSQL:

jdbc:postgresql://35.180.130.161/autoid * MSSQL:

jdbc:sqlserver://35.180.130.161;database=autoid

1. Click Add Object, and then select the data source file:

a. Click Applications, enter the path to the APPLICATIONS table. For example,

using PostgreSQL, SELECT * FROM public.applications , where public is

the PostgreSQL schema. Make sure to use your company’s database schema.

b. Click Assignments, enter the path to the ASSIGNMENTS table. For example,

SELECT * FROM public.assignments.

c. Click Entitlements, enter the path to the ENTITLEMENTS table. For example,

SELECT * FROM public.entitlements.

d. Click Identities, enter the path to the IDENTITIES table. For example, SELECT

* FROM public.identities.

2. Click Save.

There are other properties that you can use for each JDBC connection URI. Refer to

the respective documentation for more information.

NOTE

Click an example

56 / 114

3. If you are having connection issues, check the Java API Service (JAS) logs to verify the

connection failure:

The following entry can appear, which possibly indicates the whitelist was not

properly set on the database server:

4. Next, you must set the attribute mappings. This is a critical step to ensure a

successful analytics run. Refer to Set Attribute Mappings.

$ docker service logs -f jas_jasnode

jas_jasnode.1.5gauc33o1nnn@autonomous-base-dev |

java.lang.RuntiimeException:

org.postgresql.util.PSQLException: The connection attempt

failed.

. . .

jas_jasnode.1.5gauc33o1nnn@autonomous-base-dev | Caused

by: org.postgresql.util.PSQLException: The connection attempt

failed.

. . .

Caused by: java.net.SocketTimeoutExceptiion: connect timed

out

Generic Data Sources

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html

57 / 114

The following are general tips for setting up your generic data sources:

Make sure you have configured data source files: applications , assignments ,

entitlements , and identities .

Make sure you have the metadata (e.g., URL, prefix) required to access your generic

data source files.

Set Up a Generic Data Source:

1. Log in to the Autonomous Identity UI as an administrator.

2. On the Autonomous Identity UI, click the Administration icon > Data Sources >

Add data source > Generic > Next.

3. In the Generic Details dialog box, enter a human-readable name for your generic

files.

4. Select the Sync Type. The options are as follows:

Full. Runs a full replacement of data if any.

Incremental. Adds new records to existing data.

Enrichment. Adds new attributes to existing data records.

Delete. Delete any existing data objects.

5. For Connection Settings, enter the settings to connect to your database server. For

example:

6. Click Add Object, and then select the data source file:

a. Click Applications, enter the metadata for applications file. For example:

b. Click Assignments, enter the metadata for the assignments file. For example:

{

"username": "admin",

"password": "Password123",

"connectURL": "http://identity.generic.com"

}

{

"appMetaUrl": "http://identity.generic.com?

q=applications&appName=Ac*",

"prefix": "autoid"

}

{

"appMetaUrl": "http://identity.generic.com?

q=assignments&userId=*",

58 / 114

c. Click Entitlements, enter the metadata for the entitlements file. For example:

d. Click Identities, enter the metadata for the identities file. For example:

7. Click Save.

8. Repeat the previous steps to add more JDBC data source files if necessary.

9. Next, you must set the attribute mappings. This is a critical step to ensure a

successful analytics run. Refer to Set Attribute Mappings.

"prefix": "autoid"

}

{

"appMetaUrl": "http://identity.generic.com?

q=entitlements&appId=*",

"prefix": "autoid"

}

{

"appMetaUrl": "http://identity.generic.com?

q=identities&userId=*",

"prefix": "autoid"

}

Click an example

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html

59 / 114

After setting your data sources for your CSV files, you must map any attributes specific

to each of your data files to the Autonomous Identity schema.

1. On the Autonomous Identity UI, click the Administration icon > Data Sources.

2. Click the specific data source file to map.

3. Click Applications to set up its attribute mappings.

a. Click Discover Schema to view the current attributes in the schema, and then

click Save.

b. Click Edit mapping to set up attribute mappings. On the Choose an attribute

menu, select the corresponding attribute to map to the required attributes.

Repeat for each attribute.

c. Click Save.

4. Click Assignments and repeat the previous steps.

5. Click Entitlements and repeat the previous steps.

6. Click Identities and repeat the previous steps.

7. Repeat the procedures for each data source file that you want to map.

8. Optional. Next, adjust the analytics thresholds. Refer to Set Analytic Thresholds.

Set attribute mappings

Click an example

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-analytics-settings.html

60 / 114

The Autonomous Identity UI now supports the configuration of the analytics threshold

values to calculate confidence scores, predications, and recommendations.

There are six types of threshold settings that administrators can edit:

Confidence Score Thresholds. Confidence score thresholds lets you define High,

Medium, and Low confidence score ranges. Autonomous Identity computes a

confidence score for each access assignment based on its machine learning

algorithm. The properties are:

Table 1: Confidence Score Thresholds

Settings Default Description

Confidence

Score

Thresholds

High:

0.75 or

75%

Medium:

0.35 or

35%

Confidence scores from 75 to 100 are set

to High.

Confidence scores from 35 to 74 are set to

Medium, and scores from 0 to 34 are set to

Low.

Automation Score Threshold. Automation score threshold is a UI setting determining

if an approval button and checkbox appears before a justification rule on the

Entitlement Details and Rules pages.

Set analytics thresholds

In general, there is little reason to change the default threshold values. If you do

edit these values, be aware that incorrect threshold values can negatively affect

your analytics results.

WARNING

Click to display an example image of where the approval button and checkbox are

located

61 / 114

Table 2: Automation Score Threshold

Settings Default Description

Automation

Score

Threshold

0.5 or 50% Specifies if any confidence score less than 50%

will not give the user the option to approve the

justification or rule.

Role Discovery Settings. Role discovery settings determine the key factors for roles

for inclusion in the role mining process. Roles are a collection of entitlements and

their associated justifications and access patterns. This collection is produced from

the output training rules.

Table 3: Role Discovery

Settings Default Description

Confidence

Threshold

0.75 or 75% Specifies the minimum rule confidence

required for inclusion in the role mining

process.

62 / 114

Settings Default Description

Entitlements

Threshold

1 Specifies the minimum number of entitlements

a role may contain. The Autonomous Identity

role mining process does not produce

candidate roles below this threshold value. For

example, if the threshold is 2, there are no roles

that contain only one entitlement.

Minimum

Role

Membership

30 Specifies the granularity of the role through its

membership. For example, the default is 30,

which means that no role produced can have

fewer than 30 members.

Remove

Redundant

Access

Patterns

Enabled Specifies a pruning process that removes

redundant patterns when more general

patterns can be retained.

For example, if a user is an Employee AND in the

department, Finance, they receive the Excel

access entitlement. However, there may be a

more general rule that provisions Excel access

by simply being an Employee.

[ENT_Excel | DEPT_Finance,

EMP_TYPE_Employee]

[ENT_Excel | EMP_TYPE_Employee]

As a result, Autonomous Identity removes the

first pattern and retains the latter more general

rule.

Training Settings. Administrators can set the thresholds for the AI/ML training

process, specifically the stemming process and general training properties.

Stemming: During the training process, Autonomous Identity generates rules by

searching the data for if-then patterns that have a parent-child relationship in their

composition. These if-then patterns are also known as antecedent-consequent

relationships, which means rule-entitlement for Autonomous Identity.

Stemming is a process to remove any redundant final association rules output. For

a rule to be stemmed, it must match the following criteria:

1. Rule B consequent must match Rule A consequent.

2. Rule B antecedent must be a superset of Rule A antecedent.

63 / 114

3. Rule B confidence score must be within a given range +/- (offset) of Rule A

confidence score.

For example, the Payroll Report entitlement has two rules, each that involves the

Finance department. All Dublin employees in the Finance department also get the

entitlement. Stemming prunes the second rule (B) and retains the more general first

rule (A).

ID Consequent (ENT) Antecedent (Rule) Confidence Score

A Payroll report [Finance] 90%

B Payroll report [Dublin,Finance] 89%

Table 4: Training Settings

Type Settings Default Description

Stemming Predictions Determines stemming, or pruning,

properties.

Stemming

Enabled

Enabled Specifies if stemming occurs or not. Do

not disable this feature.

Stemming

Offset

0.02 Specifies the confidence range (plus or

minus) of one rule to another rule.

Stemming

Feature

Size

3 Specifies the "up-to" maximum

antecedent/justification size that may

be the size priority of stemming.

Because we want to retain the smallest

rules possible, we start by prioritizing

rules with an antecedent size of 1. We

can then increase the antecedent size,

iteratively, until we reach the

Stemming Feature Size setting.

Batch Size 15000 Specifies the number of samples

viewed is indicated by the batch size.

An epoch is defined as the number of

passes for a model to iterate through

the entire dataset once and update its

learning algorithm. To process the

entire epoch, the model views a few

samples at a time in batches.

64 / 114

Type Settings Default Description

Base Minimum Group 2 Specifies the minimum support value

used in training. It is referred as Base,

because it is used to find the minimum

support value for the initial chunk of

training.

Minimum Confidence 0.02 Specifies the lowest acceptable

confidence score to be included in the

entitlement-rule combination.

Number of Partitions 200 Specifies the number of partitions in a

Spark configuration. A partition is a

smaller chunk of a large dataset. Spark

can run one concurrent task in a single

partition. As a rule of thumb, the more

partitions you have, the more work can

be distributed among Spark worker

nodes. In this case, small chunks of

data are processed by each worker. In

the case of fewer partitions,

Autonomous Identity can process

larger chunks of data.

Predictions Settings. Administrators can set the thresholds for the

recommendation and as-is prediction processes.

Table 5: Predictions Settings

Type Settings Default Description

Recommendation Settings Properties for setting the

recommendation predictions settings.

Threshold 0.75 Specifies the confidence score

threshold to be considered for

recommendation.

Batch Size 1000 Specifies the number of rules and user

entitlements processed at one time.

65 / 114

Type Settings Default Description

Minimum

Frequency

0 Specifies the minimum frequency for a

rule to appear for consideration as a

recommendation. During the first

training stage, Autonomous Identity

models the frequent itemsets that

appear in the HR attributes-only of

each user. Only rules that appear a

minimum of N times are considered.

The value of N is the Minimum

Frequency.

As-Is Prediction Settings Properties for setting the as-is

predictions settings.

Batch Size 15000 Specifies the number of rules and user

entitlements processed at one time.

Confidence

Threshold

0 Specifies the confidence score

threshold to be considered for an as-is

prediction.

Minimum Rule Length 1 Specifies the minimum justification size

for rules to be considered in

predictions. You only would increase

this property if you don’t want a single

rule overriding more specific or

granular rules when determining

access. For example, if the minimum

rule length is 2, Autonomous Identity

only uses the rule DEPT_Finance,

JOB_TITLE_Account_II. However, if the

default is kept at 1, the second and

shorter rule can include a broader

number of entitlement assignments.

[ENT_AccountingSoftware |

DEPT_Finance,

JOB_TITLE_Account_II]

[ENT_AccountingSoftware |

EMP_TYPE_Employee]

66 / 114

Type Settings Default Description

Maximum Rule Length 10 Specifies the maximum justification

size for rules to be considered in

predictions. This property is a guardrail

to keep rules that contain extremely

large or complex justifications out of

the prediction set.

Prediction Confidence

Window

0.05 Specifies the range of acceptable

values for a prediction confidence

score. Rules with confidence scores

outside the prediction confidence

window range are filtered out. A

confidence window is determined from

the values set in the configuration file:

max=maxConf, min=maxConf -

pred_conf_window.

Analytics Spark Job Config. Administrators can adjust the Apache Spark job

configuration if needed.

Table 6: Analytics Spark Job Configuration

Settings Default Description

Driver

Memory

2G Specifies the amount of memory for the driver

process.

Driver Cores 3 Specifies the number of cores to use for the

driver process in cluster mode.

Executor

Memory

3G Specifies the amount of memory to use per

executor process.

Executor

Cores

6 Specifies the number of executor cores per

worker node.

1. Log in to the Autonomous Identity UI as an administrator.

2. On the Autonomous Identity UI, click Administration.

3. Click Analytics Settings.

4. Under Confidence Score Thresholds, click Edit next to the High threshold value, and

then enter a new value. Click Save. Repeat for the Medium threshold value.

Configure Analytic Settings

67 / 114

5. Under Automation Score Threshold, click Edit next to a threshold value, and then

enter a new value.

6. Under Role Discovery Setting, click Edit next to a threshold value, and then enter a

new value.

7. Under Training Settings, click Edit next to a threshold value, and then enter a new

value.

8. Under Prediction Settings, click Edit next to a threshold value, and then enter a new

value.

9. Under Analytics Spark Job Config, click Edit next to a threshold value, and then

enter a new value.

10. Click Save.

10. Next, you can run the analytics. Refer Run Analytics.

The Analytics pipeline is the heart of Autonomous Identity. The pipeline analyzes,

calculates, and determines the association rules, confidence scores, predictions, and

recommendations for assigning entitlements and roles to the users.

The analytics pipeline is an intensive processing operation that can take time depending

on your dataset and configuration. To ensure an accurate analysis, the data needs to be

as complete as possible with little or no null values. Once you have prepared the data,

you must run a series of analytics jobs to ensure an accurate rendering of the

entitlements and confidence scores.

Click an example

Run analytics

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-analytics-pipeline.html

68 / 114

Before running the analytics, you must run the following pre-analytics steps to set up

your datasets and schema using the Autonomous Identity UI:

Add attributes to the schema. For more information, refer to Set Entity Definitions.

Define your datasources. Autonomous Identity supports different file types for

ingestion: CSV, JDBC, and generic. You can enter more than one data source file,

specifying the dataset location on your target machine. For more information, refer

to Set Data Sources.

Define attribute mappings between your data and the schema. For more

information, refer to Set Attribute Mappings.

Configure your analytics threshold values. For more information, refer to Set

Analytics Thresholds.

Once you have finished the pre-analytics steps, you can start the analytics. The general

analytics process is outlined as follows:

Ingest. The ingestion job pulls in data into the system. You can ingest CSV, JDBC,

and generic JSON files depending on your system.

Training. The training job creates the association rules for each user-assigned

entitlement. This is a somewhat intensive operation as the analytics generates a

million or more association rules. Once the association rules have been determined,

they are applied to user-assigned entitlements.

Role Mining. The role mining job analyzes all existing entitlements and analyzes

candidate configurations for new roles.

Predict As-Is. The predict as-is job determines the current confidence scores for all

assigned entitlements.

Predict Recommendation. The predict recommendations job looks at all users who

do not have a specific entitlement, but are good candidates to receive the

entitlement based on their user attribute data.

Publish. The publish run publishes the data to the backend Cassandra or MongoDB

databases.

Create Assignment Index. The create-assignment-index creates the Autonomous

Identity index.

Run Reports. You can run the create-assignment-index-report (report on index

creation), anomaly (report on anomalous entitlement assignments), insight

(summary of the analytics jobs), and audit (report on change of data).

Pre-analytics tasks

About the analytics process

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-data-sources.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-analytics-settings.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-analytics-settings.html

69 / 114

Figure 1. Autonomous Identity Analytics Pipeline Jobs

The following sections present the steps to run the analytics pipeline using the Jobs UI.

At this point, you should have set your data sources and configured your attribute

mappings. You can now run the initial analytics job to import the data into the

Cassandra or MongoDB database.

Run ingest using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Ingest, and then click Next.

4. On the New Ingest Job box, enter the name of the job, and then select the data

source file.

5. Click Advanced and adjust any of the Spark properties, if necessary:

Driver Memory (GB)

The analytics pipeline requires that DNS properly resolve the hostname before its

start. Make sure to set it on your DNS server or locally in your /etc/hosts file.

NOTE

You can continue to use the command-line to run each step of the analytics

pipeline. For instructions, refer to Run analytics on the command Line.

NOTE

Ingest the data files

70 / 114

Driver Cores

Executor Memory (GB)

Executor Cores

6. Click Save to continue.

7. Click one of the following commands:

a. If you need to edit any of the job settings, click Edit.

b. If you want to remove the job from your Jobs page, click Delete job.

8. Click Run Now to start the ingestion run.

9. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

10. When the job completes, the change in the status appears.

After you have ingested the data into Autonomous Identity, start the training run.

Training involves two steps:

Autonomous Identity starts an initial machine learning run where it analyzes the

data and produces association rules, which are relationships discovered within your

large set of data. In a typical deployment, you can have several million generated

rules. The training process can take time depending on the size of your data set.

Click an example

Run training

71 / 114

Each of these rules are mapped from the user attributes to the entitlements and

assigned a confidence score.

The initial training run may take time as it goes through the analysis process. Once it

completes, it saves the results directly to the database.

Run training using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Training, and then click Next.

4. On the New Training Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

9. When the job completes, the change in the status is displayed.

After you have run training, you can now run the role mining job.

Click an example

Run role mining

NOTE

72 / 114

Run role mining using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Role Mining, and then click Next.

4. On the New Role Mining Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

9. When the job completes, the change in the status appears.

If you want to update your role mining data after an initial analytics job, you can

minimally run the ingest , train , and mine analytics jobs. However, we

recommend re-running the full analytics pipeline, so that other pages can pick up

changes to your access landscape.

NOTE

Click an example

Run as-is predictions

73 / 114

After your initial training run, the association rules are saved to disk. The next phase is

to use these rules as a basis for the predictions module.

The predictions module is comprised of two different processes:

as-is. During the As-Is Prediction process, confidence scores are assigned to the

entitlements that users currently have. The as-is process maps the highest

confidence score to the highest freqUnion rule for each user-entitlement access.

These rules will then be displayed in the UI and saved directly to the database.

Recommendations. Refer to Run recommendations.

Run predict as-is using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Predict-As-Is, and then click Next.

4. On the New Predict-As-Is Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the Jobs

page.

9. When the job completes, the change in the status is displayed.

Click an example

74 / 114

During the second phase of the predictions process, the recommendations process

analyzes each employee who may not have a particular entitlement and predicts the

access rights that they should have according to their high confidence score

justifications. These rules will then be displayed in the UI and saved directly to the

database.

Run predict-recommendation using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Predict-Recommendation, and then click Next.

4. On the New Predict-Recommendation Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

9. When the job completes, the change in the status appears.

Run recommendations

Click an example

75 / 114

Populate the output of the training, predictions, and recommendation runs to a large

table with all assignments and justifications for each assignment. The table data is then

pushed to the Cassandra or MongoDB backend.

Run publish using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Publish, and then click Next.

4. On the New Publish Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click one of the following commands:

8. Click Run Now.

9. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

10. When the job completes, the change in the status appears.

Publish the analytics data

Click an example

76 / 114

Next, run the create-assignment-index job. This command creates a master index

by joining together all database tables. The combined index becomes a source index for

the APIs.

Run create-assignment-index using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Create Assignment Index, and then click Next.

4. On the New Create Assignment Index Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

9. When the job completes, the change in the status appears.

Create assignment index

Click an example

77 / 114

Autonomous Identity provides a report on any anomalous entitlement assignments that

have a low confidence score but are for entitlements that have a high average

confidence score. The report’s purpose is to identify true anomalies rather than poorly

managed entitlements.

The report generates the following points:

Identifies potential anomalous assignments.

Identifies the number of users who fall below a low confidence score threshold. For

example, if 100 people all have low confidence score assignments to the same

entitlement, then it is likely not an anomaly. The entitlement is either missing data

or the assignment is poorly managed.

Run the anomaly report using the UI:

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Anomaly, and then click Next.

4. On the New Anomaly Job box, enter the name of the job.

The create-assignment-index-report is an export of the assignment index to a

csv file. This allows users to create custom reports from the master table.

NOTE

Run anomaly report

78 / 114

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now to start the ingestion run.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the

Jobs page.

9. When the job completes, the change in the status appears.

10. Access the anomaly report. The report is available at

/data/output/reports/anomaly_report/<report-id>.csv .

Next, run an insight report on the generated rules and predictions that were generated

during the training and predictions runs. The analytics command generates

insight_report.txt and insight_report.xlsx and writes them to the

/data/input/spark_runs/reports directory.

The report provides the following insights:

Total number of assignments received, scored, and unscored.

Total number of valid assignments received.

Total number of invalid assignments received.

Total number of assignments received, scored, and unscored.

Number of entitlements received, scored, and unscored.

Number of assignments scored greater than 80% and less than 5%.

Distribution of assignment confidence scores.

List of the high volume, high average confidence entitlements.

List of the high volume, low average confidence entitlements.

Top 25 users with more than 10 entitlements.

Top 25 users with more than 10 entitlements and confidence scores greater than

80%.

Top 25 users with more than 10 entitlements and confidence scores less than 5%.

Breakdown of all applications and confidence scores of their assignments.

Supervisors with most employees and confidence scores of their assignments.

Top 50 role owners by number of assignments.

List of the "Golden Rules," high confidence justifications that apply to a large volume

of people.

Run the insight report using the UI:

Run insight report

79 / 114

1. On the Autonomous Identity UI, click the Administration link, and then click Jobs.

2. On the Jobs page, click New Job. Autonomous Identity displays a job schedule with

each job in the analytics pipeline.

3. Click Insight, and then click Next.

4. On the New Insight Job box, enter the name of the job.

5. Click Advanced and adjust any of the Spark properties, if necessary.

6. Click Save to continue.

7. Click Run Now.

8. Next monitor the state of the job by clicking Logs, or click Refresh to update the Jobs

page.

9. When the job completes, the change in the status appears.

10. Access the insight report. The report is available at

/data/output/reports/insight_report.xlsx .

Autonomous Identity supports the ability to run the pipeline from the command-line.

Before you run the pipeline commands, you must run the pre-analytic tasks as defined

in Pre-Analytics Tasks, and then define the jobs on the Jobs UI.

1. Make sure to run the pre-analytics tasks, such as adding attributes to the schema,

define your datasources, set up your attribute mappings, and adjusting your

analytics threshold values, if necessary:

Add attributes to the schema. For more information, refer to Set Entity

Definitions.

Define your datasources. Autonomous Identity supports different file types for

ingestion: CSV, JDBC, and generic. You can enter more than one data source

file, specifying the dataset location on your target machine. For more

information, refer to Set Data Sources.

Define attribute mappings between your data and the schema. For more

information, refer to Set Attribute Mappings.

Configure your analytics threshold values. For more information, refer to Set

Analytics Thresholds.

2. Define your job definitions on the UI for each of the following:

Run analytics on the command Line

The analytics pipeline CLI commands will be deprecated in a future release. We

recommend using the Jobs UI to run the analytics jobs.

IMPORTANT

IMPORTANT

file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/chap-analytics-pipeline.html#pre-analytics-tasks
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-entity-definitions.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-data-sources.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-attribute-mappings.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-analytics-settings.html
file:///home/pptruser/Downloads/build/site/autonomous-identity/admin-guide/set-analytics-settings.html

80 / 114

Ingest

Train

Role Mine

Predict As-Is

Predict Recommendation

Publish

Create Assignment Index

Anomaly Report (Optional)

Insight Report (Optional)

Audit Report (Optional)

3. In a terminal window, SSH to the target server.

4. Change to the analytics directory.

5. Run each of the following jobs to completion, and then submit the next job.

a. Run the ingest job.

You can only define your job definitions on the Autonomous Identity UI. There

is no command-line equivalent to define the jobs.

IMPORTANT

Click an example

$ cd /opt/autoid/apache-livy/analytics

$ analytics run <ingest-job-definition-name>

81 / 114

b. When the ingest job completes, you can run a status command to confirm its

completion:

c. Run the training job.

d. Run the role mining job.

e. Run the predict-as-is job.

For example:

$ analytics run ingestShowcaseData

$ analytics status ingestShowcaseData

2021-09-20 23:18:55 INFO AnalyticsJobsClient:104 - →

checking analytic job status for --→ ingestShowcaseData

2021-09-20 23:18:55 INFO ServiceConfigParser:54 -

Building JAS config

2021-09-20 23:18:55 INFO JASHelper:49 - → Building new

SSL context for JAS REST Client using trust store

2021-09-20 23:18:55 INFO SSLUtils:36 - --→ KeyStore path

:

2021-09-20 23:18:55 INFO SSLUtils:44 - --→ Truststore

path : /opt/autoid/certs/jas/jas-server-truststore.jks

2021-09-20 23:18:55 INFO ServiceConfigParser:54 -

Building JAS config

Job Status result

Job Status for ingestShowcaseData -→ COMPLETED

$ analytics run <training-job-definition-name>

For example:

$ analytics run trainShowcaseData

$ analytics run <role-mining-job-definition-name>

For example:

$ analytics run roleMining

$ analytics run <predict-asis-job-definition-name>

82 / 114

f. Run the predict-recommendation job.

g. Run the publish job.

h. Run the create assignment index job.

i. Optional. Run the anomaly report job.

j. Optional. Run the insight report job.

k. Optional. Run the audit report job.

For example:

$ analytics run predictAsIs

$ analytics run <predict-recommendation-job-definition-

name>

For example:

$ analytics run predictRecommendation

$ analytics run <publish-job-definition-name>

For example:

$ analytics run publishShowcaseData

$ analytics run <create-assignment-index-definition-name>

For example:

$ analytics run createAssignmentIndex

$ analytics run <anomaly-report-definition-name>

For example:

$ analytics run anomalyReport

$ analytics run <insight-report-definition-name>

For example:

$ analytics run insightReport

$ analytics run <audit-report-definition-name>

83 / 114

6. Click the Autonomous Identity UI Dashboard. The page reloads with your data.

The Admin user functionality is similar to that of a system administration superuser.

Admin users have the access rights to company-wide entitlement data on the

Autonomous Identity console. Admin users can approve or revoke a user’s entitlement.

One important task that an administrator must perform is to examine all critical

entitlements. Critical entitlements are assigned entitlements that have are highly-

assigned but have a low confidence score associated with it. The Autonomous Identity

console provides a means to examine these entitlements.

Follow these steps to evaluate the most critical entitlements list:

1. On the Dashboard, scroll down to the Most Critical Entitlements section. This

section displays the entitlements that have low confidence scores and a high

number of employees who have this entitlement.

2. Click an entitlement to view its details.

3. On the Entitlements detail page, review the key metrics.

4. Click the right arrow in one of the category ranges to view the users, and then click

one of the users in the list.

5. On the User’s Entitlements page, scroll down to review the Confidence Score

Comparison table to display the differences between the user’s attribute and the

driving factor attributes.

6. Click Employees associated with this entitlement to review other uses who have this

entitlement.

7. Click Actions, and then click Approve or Revoke for this entitlement. You can also

bulk approve more than one entitlement. You can only revoke one entitlement at a

time.

For example:

$ analytics run auditReport

Admin user tasks

Investigate Most Critical Entitlements

Click an example

84 / 114

Follow these steps to investigate a confidence score and approve or revoke access an

entitlement assigned to a specific user:

1. On Autonomous Identity console, click Identities, and enter a name of a supervisor.

The only way to access a user’s entitlements is through the Most Critical

Entitlements section or the Identities page.

2. On the Identities page, click a circle, and then click the user in the list on the right.

3. On the User Entitlement page, click a confidence circle on the graph to highlight the

entitlement below.

4. For the selected entitlement, click the down arrow on the right to view the Driving

Factor Comparison.

5. Click Employees associated with this entitlement to view the justifications for those

users with high confidence scores with this entitlement.

6. Click Actions, and then click Approve Access or Revoke access. If you have more

than one entitlement that you want to approve, select them all and do a bulk

Approval. You can only do one Revoke Access at a time.

Approve or revoke access an entitlement for a user

Click an example

85 / 114

Follow these steps to check Not Scored entitlements. Not-scored indicates that it does

not have a justification associated with the entitlement:

1. On Autonomous Identity console, click Identities, and enter a name of a supervisor.

The only way to access a user’s entitlements is through the Most Critical

Entitlements section or the Identities page.

2. On the Identities page, click a circle, and then click the user in the list on the right.

3. On the User Entitlement page, click Not Scored.

4. On the Not Scored Entitlements page, click the down arrow to view the driving

factors comparison.

5. Click Employees associated with this entitlement to view the justifications for those

users with high confidence scores with this entitlement.

6. Click Actions, and then click Approve Access or Revoke access. At a later date, you

can re-click the Approve or Revoke button to cancel the operation.

Check not-scored users

Click an example

86 / 114

Follow these steps to apply filters to your confidence score graphs on the Identities and

Entitlements pages:

1. On the Identities or Entitlements page, view the average confidence score graph.

2. On the right, click Filters.

3. Under filters, do one or all of the following:

Click Remove High Scores from Average or enable any filter in the Application

Filters section.

Under Applications, click one or more applications to display the identities or

entitlements asssociated with the selected application.

Click Add Filters to further display only those identities or entitlements based

on a user attribute, such as city . When ready, click Apply Filters.

4. Click Clear Filters to remove your filters.

Apply filters

The Filters for the Identities and Entitlements are similar. The filters for the

Applications and Rules pages offer different options to filter your searches.

NOTE

Click an example

87 / 114

The following steps outline how to change the Autonomous Identity API’s Elasticsearch

client timeout to override the default of 30 seconds.

1. Open the /opt/autoid/res/api/docker-compose.yml file, and edit the

ELASTICSEARCH_CLIENT_TIMEOUT variable as necessary (time in milliseconds):

For example:

2. Remove the currently running zoran-api container, and redeploy the zoran-api

Docker image:

3. Restart the zoran-api and nginx containers:

Changing the API’s elasticsearch client request timeout

environment:

…​

- ELASTICSEARCH_CLIENT_TIMEOUT=30000

environment:

…​

- ELASTICSEARCH_CLIENT_TIMEOUT=60000

docker stack rm api

docker stack deploy --with-registry-auth --compose-file

/opt/autoid/res/api/docker-compose.yml api

88 / 114

4. Verity that Autonomous Identity is running by opening the UI in a web browser.

Autonomous Identity administrators must conduct various tasks to maintain the service

for their users.

The following are basic server maintenance tasks that may occur:

You can run the following command to stop or start Autonomous Identity components:

Stop docker. This will shutdown all of the containers.

1. To restart docker, first set the docker to start on boot using the enable command:

2. To start docker, run the start command:

3. After restarting Docker, restart the JAS service to ensure the service can write to its

logs:

docker service update --force ui_zoran-ui && docker service

update --force nginx_nginx

Server maintenance

Stopping and starting

Docker

Stop Docker

$ sudo systemctl stop docker

Restart Docker

$ sudo systemctl enable docker

$ sudo systemctl start docker

$ docker service update --force jas_jasnode

Cassandra

89 / 114

1. On the deployer node, SSH to the target node.

2. Check Cassandra status.

3. To stop Cassandra, find the process ID and run the kill command.

4. Check the status again.

1. On the deployer node, SSH to the target node.

2. Restart Cassandra. When the No gossip backlog; proceeding message is

displayed, hit Enter to continue.

3. Check the status of Cassandra. Make sure that it is in UN status ("Up" and

"Normal").

Stop Cassandra

Datacenter: datacenter1

=======================

Status=Up/Down

|/ State=Normal/Leaving/Joining/Moving —  Address Load

Tokens Owns (effective) Host ID

Rack

UN 10.128.0.38 1.17 MiB 256 100.0%

d134e7f6-408e-43e5-bf8a-7adff055637a rack1

$ pgrep -u autoid -f cassandra | xargs kill -9

nodetool: Failed to connect to '127.0.0.1:7199' -

ConnectException: 'Connection refused (Connection refused)'.

Restart Cassandra

$ cassandra

…​

INFO [main] 2020-11-10 17:22:49,306 Gossiper.java:1670 -

Waiting for gossip to settle…​

INFO [main] 2020-11-10 17:22:57,307 Gossiper.java:1701 - No

gossip backlog; proceeding

$ nodetool status

90 / 114

1. Check the status of the MongDB

2. Connect to the Mongo shell.

3. Switch the admin table.

4. Authenticate using the password set in vault.yml file.

5. Start the shutdown process.

MongoDB

Shut Down MongoDB

$ ps -ef | grep mongod

$ mongo --tls --tlsCAFile /opt/autoid/mongo/certs/rootCA.pem -

-tlsCertificateKeyFile /opt/autoid/mongo/certs/mongodb.pem

--tlsAllowInvalidHostnames --host <ip-address>

MongoDB shell version v4.2.9

connecting to: mongodb://<ip-address>:27017/?

compressors=disabled&gssapiServiceName=mongodb

2020-10-08T18:46:23.285+0000 W NETWORK [js] The server

certificate does not match the hostname. Hostname: <ip-

address> does not match CN: mongonode

Implicit session: session { "id" : UUID("22c0123-30e3-4dc9-

9d16-5ec310e1ew7b") }

MongoDB server version: 4.2.9

> use admin

switched to db admin

> db.auth("root", "Welcome123")

1

> db.shutdownServer()

2020-10-08T18:47:06.396+0000 I NETWORK [js]

DBClientConnection failed to receive message from <ip-

address>:27017 - SocketException: short read

server should be down…​

91 / 114

6. Exit the mongo shell.

7. Check the status of the MongDB

1. Re-start the MongoDB service.

2. Check the status of the MongDB

== Apache Spark

1. On the deployer node, SSH to the target node.

2. Check Spark status. Make sure that it is up-and-running.

3. Stop the Spark Master and workers.

2020-10-08T18:47:06.399+0000 I NETWORK [js] trying reconnect

to <ip-address>:27017 failed

2020-10-08T18:47:06.399+0000 I NETWORK [js] reconnect <ip-

address>:27017 failed

$ quit()

or <Ctrl-C>

$ ps -ef | grep mongod

no instance of mongod found

Restart MongoDB

$ /usr/bin/mongod --config /opt/autoid/mongo/mongo.conf

about to fork child process, waiting until server is ready for

connections.

forked process: 31227

child process started successfully, parent exiting

$ ps -ef | grep mongod

autoid 9245 1 0 18:48 ? 00:00:45

/usr/bin/mongod --config /opt/autoid/mongo/mongo.conf

autoid 22003 6037 0 21:12 pts/1 00:00:00 grep --

color=auto mongod

$ elinks http://localhost:8080

http://localhost:8080/
http://localhost:8080/
http://localhost:8080/

92 / 114

4. Check the Spark status again. You should see: Unable to retrieve

htp://localhost:8080: Connection refused .

1. On the deployer node, SSH to the target node.

2. Start the Spark Master and workers. Enter the user password on the target node

when prompted.

3. Check the Spark status again. Make sure that it is up-and-running.

Apache Livy lets you manage Spark Clusters context management using a simple REST

interface.

1. Stop Livy.

2. Start Livy.

$ /opt/autoid/spark/spark-2.4.4-bin-hadoop2.7/sbin/stop-all.sh

localhost: stopping org.apache.spark.deploy.worker.Worker

stopping org.apache.spark.deploy.master.Master

Restart Spark

$ /opt/autoid/spark/spark-2.4.4-bin-hadoop2.7/sbin/start-

all.sh

starting org.apache.spark.deploy.master.Master, logging to

/opt/autoid/spark/spark-2.4.4-bin-hadoop2.7/logs/spark-a

utoid-org.apache.spark.deploy.master.Master-1.out

autoid-2 password:

localhost: starting org.apache.spark.deploy.worker.Worker,

logging to /opt/autoid/spark/spark-2.4.4-bin-hadoop2.7/l

ogs/spark-autoid-org.apache.spark.deploy.worker.Worker-1.out

Apache Livy

Stop and Start Livy

$ /opt/autoid/apache-livy/apache-livy-080-incubating-SNAPSHOT-

bin/bin/livy-server stop

$ /opt/autoid/apache-livy/apache-livy-080-incubating-SNAPSHOT-

bin/bin/livy-server start

93 / 114

Autonomous Identity provides different log files to monitor or troubleshoot your system.

1. On the target node, get system wide information about the Docker deployment. The

information shows the number of containers running, paused, and stopped

containers as well as other information about the deployment.

2. If you want to get debug information, use the -D option. The option specifies that

all docker commands will output additional debug information.

3. Get information on all of your containers on your system.

4. Get information on the docker images on your system.

5. Get docker service information on your system.

6. Get docker the logs for a service.

For example, to access the nginx service logs:

Other useful arguments:

--details . Show extra details.

--follow, -f . Follow log output. The command will stream new output from

STDOUT and STDERR.

--no-trunc . Do not truncate output.

Accessing log files

Getting Docker container information

$ docker info

$ docker -D info

$ docker ps -a

$ docker images

$ docker service ls

$ docker service logs <service-name>

$ docker service logs nginx_nginx

94 / 114

--tail {n|all} . Show the number of lines from the end of log files, where

n is the number of lines or all for all lines.

--timestamps, -t . Show timestamps.

The Apache Cassandra output log is kicked off at startup. Autonomous Identity pipes the

output to a log file in the directory, /opt/autoid/ .

1. On the target node, get the log file for the Cassandra install.

2. Get startup information. Cassandra writes to cassandra.out at startup.

3. Get the general Cassandra log file.

By default, the log level is set to INFO . You can change the log level by editing the

/opt/autoid/apache-cassandra-3.11.2/conf/logback.xml file. After any

edits, the change will take effect immediately. No restart is necessary. The log levels

from most to least verbose are as follows:

TRACE

DEBUG

INFO

WARN

ERROR

FATAL

4. Get the JVM garbage collector logs.

For example:

Getting Cassandra logs

$ cat /opt/autoid/cassandra/installcassandra.log

$ cat /opt/autoid/cassandra.out

$ cat /opt/autoid/apache-cassandra-3.11.2/logs/system.log

$ cat /opt/autoid/apache-cassandra-3.11.2/logs/gc.log.

<number>.current

$ cat /opt/autoid/apache-cassandra-

3.11.2/logs/gc.log.0.current

95 / 114

The output is configured in the /opt/autoid/apache-cassandra-

3.11.2/conf/cassandra-env.sh file. Add the following JVM properties to enable

them:

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDetails"

JVM_OPTS="$JVM_OPTS -XX:+PrintGCDateStamps"

JVM_OPTS="$JVM_OPTS -XX:+PrintHeapAtGC"

JVM_OPTS="$JVM_OPTS -XX:+PrintGCApplicationStoppedTime"

5. Get the debug log.

Apache Cassandra has other useful monitoring tools that you can use to observe or

diagnose and issue. To access the complete list of options, refer to the Apache

Cassandra documentation.

1. View statistics for a cluster, such as IP address, load, number of tokens,

2. View statistics for a node, such as uptime, load, key cache hit, rate, and other

information.

3. View the Cassandra configuration file to determine how properties are pre-set.

Apache Spark provides several ways to monitor the server after an analytics run.

1. To get an overall status of the Spark server, point your browser to http://<spark-

master-ip>:8080 .

2. Print the logging message sent to the output file during an analytics run.

$ cat /opt/autoid/apache-cassandra-3.11.2/logs/debug.log

Other useful Cassandra monitoring tools and files

$ /opt/autoid/apache-cassandra-3.11.2/bin/nodetool status

$ /opt/autoid/apache-cassandra-3.11.2/bin/nodetool info

$ cat /opt/autoid/apache-cassandra-3.11.2/conf/cassandra.yaml

Apache Spark logs



$ cat /opt/autoid/spark/spark-2.4.4-bin-hadoop2.7/logs/<file-

name>

96 / 114

For example:

3. Print the data logs that were written during an analytics run.

For example:

When an IDP provider changes their certificates, you can update these certificates in

Autonomous Identity.

1. SSH to the target machine.

2. View the current certificate settings in the docker-compose.yml file, and

locate the NODE_EXTRA_CA_CERTS property

3. Access your IDP URL, and export the .cer file from the browser.

4. Convert the .cer file into a .pem file using the following command:

5. Open the docker-compose.yml file and update the NODE_EXTRA_CA_CERTS

property.

6. Restart the Autonomous Identity services.

$ cat /opt/autoid/spark/spark-2.4.4-bin-hadoop2.7/logs/spark-

org.apache.spark.deploy.master.Master-1-autonomous-id-test.out

$ cat /data/log/files/<filename>

$ cat /data/log/files/f6c0870e-5782-441e-b145-b0e662f05f79.log

Updating IDP Certificates

$ vi /opt/autoid/res/api/docker-compose.yml

NODE_EXTRA_CA_CERTS=/opt/app/cert/<customer ID>-sso.pem

$ openssl x509 -in certificatename.cer -outform PEM -out

certificatename.pem

$ vi /opt/autoid/res/api/docker-compose.yml

NODE_EXTRA_CA_CERTS=/opt/app/cert/<new-cert>.pem

97 / 114

During deployment, Autonomous Identity creates two user accounts to interact with the

Cassandra database: zoran_dba and zoran_user. The zoran_dba is an administrator or

superuser account used by Autonomous Identity to set up the Cassandra database. The

zoran_user is a non-admin account used to log in to the Cassandra command-line

interface, cqlsh .

You can change the passwords after deploying Autonomous Identity using cqlsh .

Change the Cassandra zoran_dba and zoran_user passwords

1. Access cqlsh.

2. In cqlsh, change the zoran_dba password:

3. Use a text editor and change the environment variables in the

/opt/autoid/res/jas/docker-compose.yml file:

4. Remove the running container and redeploy it:

$ docker stack rm api

$ docker stack deploy --with-registry-auth --compose-file

$ /opt/autoid/res/api/docker-compose.yml api

$ docker service update --force ui_zoran-ui

$ docker service update --force nginx_nginx

Changing the Cassandra zoran_dba and zoran_user passwords

$ cqlsh -u zoran_dba -p admin_password

Connected to Zoran Cluster at <server-ip>:9042.

[cqlsh 5.0.1 | Cassandra 3.11.2 | CQL spec 3.4.4 | Native

protocol v4]

Use HELP for help.

zoran_dba@cqlsh>

zoran_dba@cqlsh>ALTER USER zoran_dba WITH PASSWORD

'new_admin_password';

zoran_dba@cqlsh>exit

- CASSANDRA_DB_PASSWORD=new_admin_password

$ docker stack rm jas

$ **docker stack deploy --with-registry-auth --compose-

98 / 114

5. Update the zoran_user password:

You can update the MongoDB password by running the following steps on a running

instance of MongoDB.

1. Open the MongoDB shell. Use your host IP and root password:

2. On the MongoDB shell, run the changeUserPassword command:

3. Update the password as an environment variable in the JAS service. Update the

following variable in the /opt/autoid/res/jas/docker-compose.yml file:

4. Delete the currently running JAS container and redeploy:

file /opt/autoid/res/jas/docker-compose.yml jas

zoran_dba@cqlsh>ALTER USER zoran_user WITH PASSWORD

'new_user_password';

zoran_dba@cqlsh>exit

Change MongoDB password post-deployment

Update the various parameters for host IP and current root password as pertains to

your environment. Also, the --tlsAllowInvalidHostnames parameter is

necessary if you are using self-signed certificates.

NOTE

mongo admin --host 10.10.10.10 --tls \

--tlsCertificateKeyFile

/opt/autoid/certs/mongo/mongodb.pem \

--tlsCAFile /opt/autoid/certs/mongo/rootCA.pem \

--tlsAllowInvalidHostnames \

--username root \

--password 'current_root_password'

db.changeUserPassword("mongoadmin","new_password")

- MONGO_ROOT_PASSWORD=new_password

docker stack rm jas

99 / 114

5. Check that there are no stack errors in the container logs. The logs should

show successful connections to MongoDB:

Autonomous Identity supports a powerful role analysis and management system that

examines all roles and their assigned entitlements within your access landscape. The

docker stack deploy \

--with-registry-auth \

--compose-file /opt/autoid/res/jas/docker-compose.yml jas

2022-11-21 19:07:40, 257 INFO c.m.d.l.SLF4JLogger

[cluster-

ClusterId{value='637bcc764cb8670d06c2feb8',description='nu

ll'}-10.10.10.:27017]

Opened connection [connectionId{localValue:2,

serverValue:30}] to 10.10.10.10.:27017

2022-11-21 19:07:40, 257 INFO c.m.d.l.SLF4JLogger

[cluster-rtt-

ClusterId{value='637bcc764cb8670d06c2feb8',description='nu

ll'}-10.10.10.:27017]

Opened connection [connectionId{localValue:1,

serverValue:31}] to 10.10.10.10.:27017

2022-11-21 19:07:40, 257 INFO c.m.d.l.SLF4JLogger

[cluster-rtt-

ClusterId{value='637bcc764cb8670d06c2feb8',description='nu

ll'}-10.10.10.:27017]

Monitor thread successfully connected to server with

description

ServerDescription{address=10.10.10.10:27017,

type=STANDALONE, State=CONNECTED,

ok=true, minWireVersion=0, maxWireVersion=9,

maxDocumentSize=16777216,

logicalSessionTimeoutMinutes=30,

roundTripTimeNanos=221098137}

2022-11-21 19:07:45, 383 INFO c.m.d.l.SLF4JLogger [main]

Opened connection [connectionId{localValue:3,

serverValue:32}] to 10.10.10.10.:27017

Roles management tasks

100 / 114

system uses machine learning rules and analytics thresholds to determine the

confidence scores and driving factors for each role.

The central hub of the roles management system is the Roles Workshop. The Roles

Workshop lets authorized users review, edit, and test new or existing roles before

publishing them to production.

In a typical scenario, an administrator runs a role mining job as part of the analytics

pipeline. During a role mining analytics run, Autonomous Identity discovers candidates

for any new roles and displays them in the Roles Workshop with confidence scores and

driving factors. Authorized users can review these roles, make edits to entitlements, and

re-run the role mining analytics until the correct mix of entitlements meets your

threshold objectives for given rules.

A month or two later, the administrator can re-run the role mining job to pick up

changes in the entitlements landscape. Autonomous Identity re-analyzes each role and

recommends updates to existing roles, such as the indication of stale data, or changes in

the confidence scores. Based on these recommendations, the authorized user can

revoke any active roles, make new configuration changes to a draft, and publish these

draft roles to production.

Figure 2. Roles workshop

Roles user types

101 / 114

Autonomous Identity supports two types of user role types to manage roles with the

system. You can assign these roles using the Manage Identities function.

User Type Description

Role Engineer A user who has the ability to view, edit, delete, and export all

roles. Role engineers can create drafts from mined candidates

and assign role owners to the draft. They can also create

custom roles for further evaluation and testing. Autonomous

Identity administrators automatically are assigned this role.

Role Owner A user who has the ability to view, edit, delete, and export

active and draft roles assigned to them.

The Roles Workshop displays roles in three different states: candidate, draft, and active.

Candidate. A candidate is a template role that is discovered through the latest role

mining analytics job. After each role mining job, all newly mined roles are marked as

new and as a candidate. Role engineers can review a candidate, assign a role owner

to it, and approve the role as a draft. You cannot edit or remove a candidate role as

is, but must create a draft from a candidate to change its details. Candidate roles

are retained in the system for later adjustments and for the creation of additional

new roles until the next role mining job, where all candidates are deleted and a new

candidate pool is rebuilt.

Roles workflow

Click to display an image.

102 / 114

Draft. A draft is a role that requires review and approval by an authorized approver

to become active. Role engineers can re-run a role mining job to pick up the latest

changes in the access landscape. The Roles Workshop displays the latest confidence

scores, driving factors, and a Recommended section that shows a suggested course

of action for the role. Also, when you create a custom role, Autonomous Identity

saves the role in draft status. You can edit the draft, make another custom role

from it, publish the role for production, or delete the draft.

Click to display an image.

103 / 114

Active. Once a draft has been approved, the role is active for production use. The

role appears with an Active status and also appears on the Roles Catalog page. The

Recommended section presents suggested updates for each role analyzed in the

latest mining job. You can create a draft from this active role or unpublish it back to

draft status.

Click to display an image.

104 / 114

You can originate roles in two different ways: role-mined and custom.

Role-mined roles are discovered through Autonomous Identity’s machine learning

process. The result of the role mining run is a generated list of candidates that a role

engineer can edit and review on the Roles Workshop page.

Custom roles are created through different workflows:

From Scratch. You can create a totally new role on the Roles Workshop using the

Create Role function.

From Existing. You can create a custom role from an existing draft or active role,

which can occur in the following scenarios:

When you run a new role-mining job and an existing candidate role is deleted.

When you have a draft or an active role that is associated with a deleted

candidate, and the recommendation is to delete the draft/active role as role

mining determines that it is stale or no longer relevant.

The following procedures presents the typical Roles Workshop tasks:

Autonomous Identity lets authorized users create new custom role drafts on the Roles

Workshop.

1. On the Roles Workshop, click Create Role. Autonomous Identity creates a random

label for the role at the top of the page.

2. Click Details. Enter a name, description, and select the Role Owner from the list of

authorized users on the drop-down menu.

3. Click Entitlements. On the page, click Add Entitlements. You can search by

entitlement name or application.

4. Click Access Patterns. On the page, click Add Access Pattern. Select a User

Attribute, and enter an associated value.

5. Review your entries. When ready, click Save Draft.

Role-mined vs custom roles

Custom roles do not have recommendations. Recommendations are based on the

difference between a mined role and its candidate.

NOTE

Roles workshop tasks

Create a custom role

105 / 114

The role will be saved in the Roles Workshop as a draft. An authorized user must

review and approve the role to activate it in production.

Many companies have a large number of roles within their system. The Roles Workshop

provides a useful filter to locate specific roles.

Search Roles using the filter:

1. On the Roles Workshop, click Filters.

2. Enter any of the following data:

a. Name. Enter a role name.

b. Status. Select Active , Draft , or Candidate .

c. Application. Enter an application with which the role is associated.

d. Role Owner. Enter a role owner.

e. Origin. Select Custom or Role Mining .

3. Click Done.

Click an example

Do not create a custom role before running an initial analytics pipeline job. Doing

so can result in the role mining job failing.

WARNING

Search roles using the filter

106 / 114

Autonomous Identity lets authorized users review role-mined candidates on the Roles

Workshop. If the role engineer and role owner approves the candidate, the role goes to

draft state.

Create a New Draft:

1. On the Roles Workshop, review the list of candidates. Click a candidate role.

2. Change the role name, and then add a description.

3. Add an authorized user as a role owner. All drafts or active roles must have a role

owner assigned to it.

Note: The role owner must have the Role Owner role assigned to them.

Administrators can add them on the Manage Identities page, or make a request to

your adminstrator.

4. Click Entitlements to review the entitlement name, application if assigned, and the

average confidence score.

5. Click Members to review the members or users associated with this role.

6. Click Access Patterns to review the access pattern for this role.

7. Click Driving Factors to review the list of attributes, driving factors, frequency, and

percentage of members with the role.

8. Click Recommended to review any suggested action on the role. You must run the

role mining job several times to pick up new changes in your access landscape.

Initial role mining jobs will not have recommendations other than Create Draft.

Click an example

Create a new draft

107 / 114

9. Click Create Draft when all entries are accepted.

Autonomous Identity lets role engineers and role owners approves a draft and push it

into production. The Roles Workshop displays the role in an active state.

Publish a Draft:

1. On the Roles Workshop, review the list of candidates. Click a draft role.

2. Review the role details.

3. Click Publish.

Click an example

Publish a role

Click an example

108 / 114

Autonomous Identity lets role engineers and role owners delete a draft or an active role.

Delete a Role:

1. On the Roles Workshop, review the list of candidates. Click a draft or active role.

2. Review the role details.

3. Click Delete Draft.

Delete a role

Click an example

109 / 114

The Roles Catalog lists all active roles within your system. Role engineers can export any

role as a json file, edit, unpublish, and delete the roles if necessary. Role owners can

carry out the same tasks on only roles assigned to them.

Export a Role to JSON:

1. On the UI Dashboard, click Roles, and then click Roles Catalog.

2. Click the role(s) to export.

3. Click Export Selected. Autonomous Identity sends a JSON file to your local drive.

Search the Catalog using the filter:

1. On the UI Dashboard, click Roles, and then click Roles Catalog.

2. Click Filters to view specific roles in your catalog.

3. On the Filters menu, enter and select from the following drop-down lists:

a. Name. Enter a role name.

b. Status. Select Active , Draft , or Candidate .

c. Application. Enter an application with which the role is associated.

d. Role Owner. Enter a role owner.

Roles catalog tasks

Export a role

Filter roles in the catalog

110 / 114

e. Origin. Select Custom or Role Mining .

4. Click Done.

The following section provides information to help you troubleshoot Autonomous

Identity. The topics are:

Where to access the logs

How to change the Docker root folder

Tune Cassandra for large data

Autonomous Identity captures information in its log files to troubleshoot any problem.

When running the ansible playbook during the deployment, logs print to your screen

(STDOUT). You can access additional information is available through the -v or --

verbose . For more information, try -vvx . To enable connection debugging, try -vvvv .

The Cassandra install log file (installcassandra.log) is located at

/data/opt/autoid/cassandra .

You can view any output logs of the running services on Docker using the following

commands:

You can view any output logs of the Cassandra database, which is kicked-off at startup.

Autonomous Identity pipes the output message to a log file in the standard installation

folder.

Troubleshooting

More troubleshooting tips will be added in the future.

NOTE

Where to access the logs

Deployment logs

Front-end logs

docker service logs <SERVICE NAME> --follow

docker service ps <SERVICE NAME> --no-trunc

Cassandra logs

111 / 114

Cassandra Log Locations

Log Location Standard Cassandra log

/data/opt/autoid/cassandr

a.out

Backup Log /data/opt/autoid/cassandr

a/cassandra-

backup/cassandra-

backup.log

You can specify the path for analytic logs in the configuration file.

For example, you can determine the analytic files in the /data/other/logs .

If the Spark UI is not available on port 8080 of the Spark master server, then do the

following:

Check the Spark start-up logs. Check if the status of Spark UI port 8080 is not the

default port, or if there is another service using the port.

If the UI is not accessible, run some curl commands to check the core and

memory in the cluster.

Docker stores its images in the root /var folder. Customers who mount /var with low

storage can run out of disk space quickly.

Analytic logs

You can change the file path to any path, but it must always be within the same

base path.

NOTE

Spark UI logs

curl -s https://<ip-address>:8080 | grep -A 2 'Memory in

use'

curl -s https://<ip-address>:8080 | grep -A 2 'Cores in use'





For more information, Refer to Spark REST API .

NOTE



How to change the Docker root folder

How to change the Docker root folder?

https://spark.apache.org/docs/1.6.2/monitoring.html#rest-api
https://spark.apache.org/docs/1.6.2/monitoring.html#rest-api
https://spark.apache.org/docs/1.6.2/monitoring.html#rest-api

112 / 114

1. Stop the Docker service:

2. Edit the Docker service file, and add a -g option to the file to redirect the root

folder to another location:

3. Make a new folder for the Docker root if needed:

4. Copy all of the content from the old Docker root folder to the new Docker root

folder:

5. Reload the system daemon:

6. Start the docker service:

7. Make sure Docker is running with right arguments. The output should show Docker

is running with right parameters set:

You can tune Cassandra for large data sets or when Cassandra times out during

analytics.

1. Navigate to Cassandra Folder:

sudo systemctl stop docker.service

sudo systemctl stop docker.socket

sudo vi /usr/lib/systemd/system/docker.service

ExecStart=/usr/bin/dockerd -g /opt/autoid/docker -H fd:// --

containerd=/run/containerd/containerd.sock

sudo mkdir -p /opt/autoid/docker

sudo rsync -aqxP /var/lib/docker/* /new/path/docker/.

sudo systemctl daemon-reload

sudo systemctl start docker

ps aux | grep -i docker | grep -v grep

Tune Cassandra for large data

cd /opt/autoid/apache-cassandra-3.11.2/conf

113 / 114

2. Edit the jvm.options , and change the Java heap size and the size of the heap size

for young generation as follows:

3. Edit the cassandra.yml file, and change the files as follows:

4. After saving the file, restart the Cassandra and Docker jobs:

a. First, find the Cassandra job:

b. Kill the Cassandra PID.

c. Make sure no Cassandra process is running:

d. Restart Cassandra:

-Xms10G

-Xmx10G

-Xmn2800M

vi cassandra.yml

key_cache_size_in_mb: 1000

key_cache_save_period: 34400

max_mutation_size_in_kb: 65536

commitlog_segment_size_in_mb: 128

read_request_timeout_in_ms: 200000

write_request_timeout_in_ms: 200000

request_timeout_in_ms: 200000

counter_write_request_timeout_in_ms: 200000

cas_contention_timeout_in_ms: 50000

truncate_request_timeout_in_ms: 600000

slow_query_log_timeout_in_ms: 50000

concurrent_writes: 256

commitlog_compression:

- class_name: LZ4Compressor

ps -ef | grep cassandra. // find the PID

kill -9 PID

ps -ef|grep cassandra

cd /opt/autoid/apache-cassandra-3.11.2/bin

nohup cassandra > /opt/autoid/apache-cassandra-

114 / 114

e. Make sure to check if the following information message or similar is present:

f. Restart Docker:

Copyright © 2010-2024 ForgeRock, all rights reserved.

3.11.2/cassandra.out 2>&1 &

INFO [main] 2022-01-24 23:38:26,207 Gossiper.java:1701 -

No gossip backlog; proceeding

sudo systemctl docker restart

