
1 / 63

This guide focuses on how to use Directory Services software to build secure, high-
performance, manageable directory services. It helps directory service architects design

scalable services that fit their needs.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their
relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the
platform, see https://www.forgerock.com .

Deployment



Use DS components.

DS Software



Outline a successful

plan.

Project Outline



Create comprehensive

plans.

Complete Plans



Apply best practices.

Deployment Patterns



Prepare systems and

hardware.

Provisioning



Follow checklists.

Checklists



https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/about-components.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/project.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/patterns.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/prerequisites.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/checklists.html

2 / 63

The ForgeRock® Common REST API works across the platform to provide common ways

to access web resources and collections of resources.

A directory service provides LDAP and HTTP access to distributed, shared directory data.
A deployed directory service consists of one or more components. Each component

plays a particular role in your directory service. Before you design your deployment, you
need to be familiar with the roles that each component can play:

Directory servers, which maintain and serve requests for directory data.

In most deployments, directory servers use data replication to ensure that their data

sets eventually converge everywhere. This documentation refers to a replicated
directory server as a replica.

Directory proxy servers that forward requests for directory data to directory servers,
and return directory server responses to client applications.

Replication servers that transmit data replication messages among replicas.

You can configure a directory server to act as a replication server as well. A

standalone replication server plays only the replication server role, brokering
replication change messages. It does not store directory data.

DSML gateways that intermediate between DSML client applications and an LDAP
directory.

DS Software

3 / 63

REST to LDAP gateways that intermediate between RESTful HTTP client applications

and LDAP directories.

LDAP client tools and server administration tools for testing and managing servers.

Directory servers have the following characteristics.

Directory servers provide access to their copy of the distributed directory database. A
directory server usually functions as the repository of identities for users, applications,

and things. They respond to requests from client applications directly or indirectly
through directory proxy servers. This includes the following:

LDAP requests for authentication, reads, and updates.

An LDAP client application authenticates with the directory server, and then

performs one or more operations before either reauthenticating to reuse the
connection or ending the session and closing the connection.

HTTP read and update requests, often including credentials for authentication.

An HTTP request translates to one or more internal LDAP requests.

Administrative requests, such as requests to modify the server configuration or to
perform a task such as backup or LDIF export.

JMX and SNMP requests specifically for monitoring information.

In deployments with multiple replicas, directory servers replay replicated operations.

Expect each replica to replay every successful update to any replica.

In addition to the libraries and tools delivered with the server distribution, a directory
server is associated with the following persistent state information and local data:

User data

Directory servers store user data. The directory server stores the data in local

storage, such as an internal disk or an attached disk array. The storage must keep
pace with throughput for update operations.

The amount of user data depends entirely on the deployment, ranging from a few
LDAP entries to more than a billion. The amount of user data grows or shrinks in

deployment depending on the pattern of update operations.

Directory Servers

Roles

Data

4 / 63

The directory server stores user data in a backend database. For details, see Data

Storage.

Metadata for replication

A directory server can be a replica of other directory servers, meaning it can hold an
eventually consistent copy of the data on the other replicas. To avoid an individual

server becoming a single point of failure, almost all real-world deployments depend
on replication.

When serving a request to update directory data, the directory server modifies its
data and sends a request to a replication server. The replication server, described in

Replication Servers, ensures that all other replicas update their data to eventually
reflect the current state of the data.

To tolerate network partitions, the directory service supports concurrent update
operations on different replicas. Concurrent updates potentially cause conflicts, but

directory servers can resolve most conflicts automatically. To resolve conflicts, a
directory server stores historical metadata alongside user data, trading space for

resilience. For details, see About Replication.

The directory server purges this historical metadata after a configurable interval. The

volume of historical metadata depends on the total number of updates made to the
directory service since the purge interval.

Server configuration

Each server has configuration data in its config directory. This includes the server

configuration, mostly in LDIF format, LDAP schema definitions also in LDIF format,
keys used to secure connections and perform encryption and decryption, and some

additional data.

When installing a server, the setup command instantiates this configuration data

from templates.

When upgrading a server, the upgrade command modifies this configuration data

to apply any necessary changes.

Log files

The server writes to multiple log files by default, including error and access logs.

The server writes a message to the current access log for each operation. For high-

volume directory services, log file storage must keep pace with the requests to
record access to the service.

Log file retention and rotation policies prevent log file data from filling the disk. For
details, see Logging. As a result of default retention policies, messages can eventually

be lost unless you copy old files to another system for permanent storage.

Backup files

file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#about-repl
file:///home/pptruser/Downloads/build/site/ds/logging-guide/preface.html

5 / 63

When you export directory data to LDIF or create a backup, the directory server

writes the files to the specified directory. If you never purge or move these files, they
can eventually fill the disk.

For details, see Import and Export, and Backup and Restore.

When deciding how to deploy a directory server, think of it as a copy of the database. A

large, high-performance, distributed database serving lots of applications requires more
system resources than a small database serving one, simple application.

A directory server requires the following system resources:

Sufficient RAM to cache frequently used data.

For best read performance, cache the entire directory data set in memory.

Sufficient CPU to perform any required calculations.

Authentication operations generally use more CPU than other operations. In
particular, password storage schemes like PBKDF2 are designed to consume CPU

resources. Calculations for transport layer security can use CPU as well, particularly
if many client requests are over short-lived HTTPS connections.

Sufficient fast disk access to serve client applications, to replay replication
operations, and to log access and errors.

The underlying disk subsystem must serve enough input/output operations per
second (IOPS) to avoid becoming a bottleneck when performing these operations. A

small database that serves few client operations and changes relatively infrequently
requires fewer IOPS than a large database sustaining many updates and serving

many clients.

Plan additional capacity for any backup or LDIF files stored on local partitions.

Sufficiently fast network access to serve client applications and relay replication
traffic.

When considering network requirements, keep the following points in mind:

Each LDAP search request can return multiple response messages.

Each request to update directory data results in corresponding replication
traffic. The operation must be communicated to replication servers and

replayed on each other directory server.

Once established, and unlike most HTTP connections, LDAP connections

remain open until the client closes the connection, or until the server idles the
connection. This is particularly true for applications using persistent searches,

which by design are intended to be permanent.

System Resources

file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html#importing-exporting-ldif
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html

6 / 63

Standalone replication servers have the following characteristics. If you configure a

directory server to play the role of a replication server as well, then the directory server
also has these roles and characteristics.

Replication servers provide the following services:

Receive and transmit change messages between replicas.

Each replica is connected to one replication server at a time. A single standalone

replication server can serve 10 or more replicas.

Maintain information about all other replication servers and directory servers in the

deployment that replicate the same data.

Change messages travel from a connected directory server to the replication server.

The replication server transmits the message to connected replicas. If there are
other replication servers, the replication server transmits the message to the other

replication servers, which in turn transmit the message to their connected replicas.
This hub-and-spoke communication model means directory services can be

composed of many individual servers.

Respond to administrative requests.

Respond to HTTP, JMX, LDAP, and SNMP requests for monitoring information.

In all deployments using replication, the replication service provides the foundation of

directory service availability. This is as important to the directory service as a naming
service is for a network. When deploying replicated directory services, start by installing

the replication service.

To avoid a single point of failure, install two or more replication servers in each location.

In addition to the libraries and tools delivered with the server distribution, a replication

server is associated with the following persistent state information and local data:

Change data

When serving a request to update directory data, a directory server, described in
Directory Servers, modifies its data and sends a request to a replication server. The

replication server ensures that all other replicas update their data to eventually
reflect the current state of the data.

Replication Servers

Roles

Data

7 / 63

The replication protocol is proprietary. Replication servers expose a public record of

changes in a change log, allowing other applications to keep up to date with changes
to user data. This change data is stored in change log files. For details, see Changelog

for Notifications.

The replication server purges this historical metadata after a configurable interval.

The volume of historical metadata depends on the updates made to the directory
service since the purge interval.

Server configuration

Each server has configuration data in its config directory. This includes the server

configuration, mostly in LDIF format, LDAP schema definitions also in LDIF format,
keys used to secure connections and perform encryption and decryption, and some

additional data.

When installing a server, the setup command instantiates this configuration data

from templates.

When upgrading a server, the upgrade command modifies this configuration data

to apply any necessary changes.

Log files

The server writes to multiple log files by default, including error and access logs.

Log file retention and rotation policies prevent log file data from filling the disk. For

details, see Logging. This means, however, that messages are eventually lost unless
you move old files to another system for permanent storage.

When deploying a replication server, keep its foundational role in mind. Directory
servers communicate with other replicas through replication servers. Directory proxy

servers rely on replication servers to find directory servers.

A replication server requires the following system resources:

Sufficient fast disk access to log and read change messages, and to update access
and error logs.

The underlying disk subsystem must serve enough IOPS to avoid becoming a
bottleneck when performing these operations.

Sufficiently fast network access to receive and transmit change messages for
multiple replicas and for each other replication server.

Directory proxy servers have the following characteristics.

System Resources

Directory Proxy Servers

file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html
file:///home/pptruser/Downloads/build/site/ds/logging-guide/preface.html

8 / 63

Directory proxy servers provide the following services:

Balance load of requests to LDAP directory servers.

Receive and transmit LDAP client requests to LDAP directory servers.

Receive and transmit LDAP directory server responses to LDAP client applications.

Respond to administrative requests.

Respond to HTTP, JMX, LDAP, and SNMP requests for monitoring information.

A directory proxy server can hide the underlying directory service architecture from

client applications, enabling you to build a single point of directory service access.

A directory proxy server can discover directory servers through a replication server. This

capability relies, however, on the replication server configuration. If you use the proxy
server with third-party directory service components, then you must manually maintain

the network locations for directory servers.

A directory proxy server provides LDAP access to remote LDAP directory servers. If you

want to provide HTTP access to remote LDAP directory servers, use the REST to LDAP
gateway instead. For details, see REST to LDAP Gateway.

In addition to the libraries and tools delivered with the server distribution, a directory

proxy server is associated with the following persistent state information and local data:

Server configuration

Each server has configuration data in its config directory. This includes the server
configuration, mostly in LDIF format, LDAP schema definitions also in LDIF format,

keys used to secure connections and perform encryption and decryption, and some
additional data.

When installing a server, the setup command instantiates this configuration data
from templates.

When upgrading a server, the upgrade command modifies this configuration data
to apply any necessary changes.

Log files

The server writes to multiple log files by default, including error and access logs.

Log file retention and rotation policies prevent log file data from filling the disk. For
details, see Logging. This means, however, that messages are eventually lost unless

you move old files to another system for permanent storage.

Roles

Data

file:///home/pptruser/Downloads/build/site/ds/logging-guide/preface.html

9 / 63

In order to route requests appropriately, a directory proxy server must decode incoming

requests and encode ongoing requests. It must also decode and encode incoming and
outgoing responses. When deploying a directory proxy server, keep this decoding and

encoding in mind, because it explains why you might need as many proxy servers as
directory servers.

A directory proxy server requires the following system resources:

Sufficient fast disk access to update access and error logs.

The underlying disk subsystem must serve enough IOPS to avoid becoming a
bottleneck when performing these operations.

Sufficiently fast network access to receive and transmit client requests and server
responses.

Sufficient CPU to perform any required calculations.

Request and response decoding and encoding consume CPU resources.

Sufficient RAM to maintain active connections.

When you install the files for a server component, those files include tools for setting up,
upgrading, and configuring and maintaining the server and administrative tasks. The

files also include LDAP command-line tools for sending LDAP requests and measuring
directory service performance.

For details, see Server Commands.

The standalone DSML gateway web application has the following characteristics.

You can install this component independently of directory services. For details, see

Install a DSML Gateway.

DSML gateways provide the following services:

Receive HTTP DSML requests from client applications, and transmit them as LDAP
requests to a directory service.

Receive LDAP responses from a directory service, and transmit them as HTTP DSML
responses to client applications.

System Resources

Command-Line Tools

DSML Gateway

Roles

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/admin-tools.html#cli-overview
file:///home/pptruser/Downloads/build/site/ds/install-guide/install-dsml.html

10 / 63

A DSML gateway runs in a Java web application container. It is limited to one host:port

combination for the LDAP directory service.

A DSML gateway maintains only its own service configuration, recorded in the web

application WEB-INF/web.xml file. It depends on the host web application container for
other services, such as logging.

A DSML gateway requires the following system resources:

Sufficiently fast network access to receive and transmit client requests and server
responses.

Sufficient CPU to perform any required calculations.

Request and response decoding, encoding, and transformation all consume CPU

resources.

Calculations to secure network connections also consume CPU resources.

Sufficient RAM to maintain active connections.

The standalone REST to LDAP gateway web application has the following characteristics.
REST refers to the representational state transfer architectural style. RESTful requests

use the HTTP protocol.

You can install this component independently of directory services. For details, see

Install a REST to LDAP Gateway.

REST to LDAP gateways provide the following services:

Receive HTTP requests from client applications, and transmit them as LDAP

requests to a directory service.

Receive LDAP responses from a directory service, and transmit them as HTTP

responses to client applications.

A REST to LDAP gateway runs in a Java web application container. It can be configured to

contact multiple LDAP directory servers.

Data

System Resources

REST to LDAP Gateway

Roles

file:///home/pptruser/Downloads/build/site/ds/install-guide/install-rest.html

11 / 63

One RESTful HTTP request can generate multiple LDAP requests. This is particularly true

if the REST to LDAP mapping configuration includes references to resolve before
returning response entries. For example, an LDAP user entry can have a manager

attribute that holds the DN of the user’s manager’s entry. Rather than return an LDAP-
specific DN in the REST response, the REST to LDAP mapping is configured to return the

manager’s name in the response. As a result, every time a user’s manager is returned in
the response, the gateway must make a request for the user’s LDAP information and

another request for the user’s manager’s name.

A REST to LDAP gateway maintains only its own service configuration, recorded in files as

described in REST to LDAP Reference. It depends on the host web application container
for other services, such as logging.

A REST to LDAP gateway requires the following system resources:

Sufficiently fast network access to receive and transmit client requests and server
responses.

Sufficient CPU to perform any required calculations.

Request and response decoding, encoding, and transformation all consume CPU

resources.

Calculations to secure network connections also consume CPU resources.

Sufficient RAM to maintain active connections.

Consider the following when preparing the high-level project plan.

Needs assessment is prerequisite to developing a comprehensive deployment plan. An
accurate needs assessment is critical to ensuring that your directory services

implementation meets your business needs and objectives.

As part of the needs assessment, make sure you answer the following questions:

What are your business objectives?

Clarify and quantify your business goals for directory services.

Data

System Resources

Project Outline

Needs Assessment

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest2ldap.html

12 / 63

Why do you want to deploy directory services?

Consider at least the following list when answering this question:

Is this a greenfield deployment?

Do you need to transition an existing deployment to the cloud?

Do you need to scale existing deployment for more users, devices, or things?

If you have an existing deployment, how do you upgrade?

Consider at least the following list when answering this question:

Do you require a graceful upgrade?

What obsolete components need a graceful transition?

What should their replacements be?

What are the costs related to the change?

How can you save cost by making the transition?

Define objectives based on your needs assessment. State your objective so that all

stakeholders agree on the same goals and business objectives.

Deployment planning is critical to ensuring that your directory services are properly

implemented within the time frame determined by your requirements. The more
thoroughly you plan your deployment, the more solid your configuration will be, and you

will meet timelines and milestones while staying within budget.

A deployment plan defines the goals, scope, roles, and responsibilities of key

stakeholders, architecture, implementation, and testing of your DS deployment. A good
plan ensures that a smooth transition to a new product or service is configured and all

possible contingencies are addressed to quickly troubleshoot and solve any issue that
may occur during the deployment process.

The deployment plan also defines a training schedule for your employees, procedural
maintenance plans, and a service plan to support your directory services.

What key applications does your system serve? Understand how key client

applications will use your directory service and what they require. Based on this
understanding, you can match service level objectives (SLOs) to operational

requirements. This ensures that you focus on what is critical to your primary
customers.

What directory data does your system serve? Directory data can follow standard
schema and be shared by many applications. Alternatively, it can be dedicated to a

Deployment Planning

Important Questions

13 / 63

single application such as AM CTS or IDM repository. Key applications can impose

how they access directory data, or the directory data definition can be your
decision.

In addition, know where you will obtain production data, and in what format you
will obtain it. You might need to maintain synchronization between your directory

service and existing data services.

What are your SLOs? In light of what you know about key and other applications,

determine your SLOs. An SLO is a target for a directory service level that you can
measure quantitatively.

What objectives will you set for your service? How will you measure the following?

Availability

Response times

Throughput

Support response

What are your availability requirements? DS services are designed to run

continuously, without interruption even during upgrade. Providing a highly available
service of course comes with operational complexities and costs.

If your deployment must be highly available, take care in your planning phase to
avoid single points of failure. You will need to budget for redundancy in all cases,

and good operational policies, procedures, and training to avoid downtime as much
as possible.

If your deployment does not require true high availability, however, you will benefit
from taking this into account during the planning stages of your deployment as well.

You may be able to find significant cost savings as a trade for lower availability.

What are your security requirements? DS services build in security in depth, as

described in Security.

Understand the specific requirements of your deployment in order to use only the

security features you really need. If you have evaluated DS software by setting up
servers with the evaluation setup profile, be aware that access control settings for

Example.com data in the evaluation setup profile are very lenient.

Are all stakeholders engaged starting in the planning phase? This effort includes

but is not limited to delivery resources, such as project managers, architects,
designers, implementers, testers, and service resources, such as service managers,

production transition managers, security, support, and sustaining personnel. Input
from all stakeholders ensures all viewpoints are considered at project inception,

rather than downstream, when it may be too late.

Planning Steps

file:///home/pptruser/Downloads/build/site/ds/security-guide/preface.html

14 / 63

Follow these steps to a successful deployment.

The project initiation phase begins by defining the overall scope and requirements of the
deployment. Plan the following items:

Determine the scope, roles and responsibilities of key stakeholders and resources
required for the deployment.

Determine critical path planning including any dependencies and their assigned
expectations.

Run a pilot to test the functionality and features of AM and uncover any possible
issues early in the process.

Determine training for administrators of the environment and training for
developers, if needed.

The design phase involves defining the deployment architecture. Plan the following

items:

Determine the use of products, map requirements to features, and ensure the

architecture meets the functional requirements.

Ensure that the architecture is designed for ease of management and scale. TCO is

directly proportional to the complexity of the deployment.

Define the directory data model.

Determine how client applications will access directory data, and what data they
have access to.

Determine which, if any, custom DS server plugins must be developed. Derive
specifications and project plans for each plugin.

Determine the replication configuration.

Define backup and recovery procedures, including how to recover all the servers,

should disaster occur.

Define monitoring and audit procedures, and how the directory service integrates

with your tools.

Determine how to harden DS servers for a secure deployment.

Define the change management process for configurations and custom plugins.

Define the test criteria to validate that the service meets your objectives.

Define the operations required to maintain and support the running service.

Define how you will roll out the service into production.

Project Initiation

Design

15 / 63

Determine how many of each DS server type to deploy in order to meet SLOs. In

addition, define the systems where each of the servers will run.

The implementation phase involves deploying directory services. Plan the following

items:

Provision the DS servers.

Maintain a record and history of the deployment for consistency across the project.

Monitor and maintain the running service.

The automation and continuous integration phase involves using tools for testing. Plan

the following items:

Use a continuous integration server, such as Jenkins, to ensure that changes have

the expected impact, and no change causes any regressions.

Ensure your custom plugins follow the same continuous integration process.

Test all functionality to deliver the solution without any failures. Ensure that all
customizations and configurations are covered in the test plan.

Non-functionally test failover and disaster recovery procedures. Run load testing to
determine the demand of the system and measure its responses. During this phase,

anticipate peak load conditions.

The supportability phase involves creating the runbook for system administrators and
operators. This includes procedures for backup and restore operations, debugging,

change control, and other processes.

If you have a ForgeRock Support contract, it ensures everything is in place prior to your

deployment.

Your comprehensive deployment plan should cover the following themes.

Implementation

Automation and Testing

Supportability

Comprehensive Plans

Team Training

16 / 63

Training provides a common understanding, vocabulary, and basic skills for those

working together on the project. Depending on previous experience with access
management and with DS software, both internal teams and project partners might

need training.

The type of training team members need depends on their involvement in the project:

All team members should take at least some training that provides an overview of
DS software. This helps to ensure a common understanding and vocabulary for

those working on the project.

Team members planning the deployment should take an DS training before

finalizing their plans, and ideally before starting to plan the deployment.

DS training pays for itself as it helps you to make the right initial choices to deploy

more quickly and successfully.

Team members involved in designing and developing DS client applications or

custom plugins should take training in DS development in order to help them make
the right choices.

Team members who have already had been trained in the past might need to
refresh their knowledge if your project deploys newer or significantly changed

features, or if they have not worked with DS software for some time.

ForgeRock University regularly offers training courses for DS topics. For a current list of

available courses, see the ForgeRock web site .

When you have determined who needs training and the timing of the training during the

project, prepare a training schedule based on team member and course availability.
Include the scheduled training plans in your deployment project plan.

ForgeRock also offers an accreditation program for partners, including an in-depth
assessment of business and technical skills for each ForgeRock product. This program is

open to the partner community and ensures that best practices are followed during the
design and deployment phases.

DS servers provide a Java plugin API that allows you to extend and customize server
processing. A server plugin is a library that you plug into an installed server and

configure for use. The DS server calls the plugin as described in Plugin Types.

DS servers have many features that are implemented as server plugin extensions. This

keeps the core server processing focused on directory logic, and loosely coupled with
other operations.

When you create your own custom plugin, be aware you must at a minimum recompile
and potentially update your plugin code for every DS server update. The plugin API has



Customization

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/

17 / 63

interface stability: Evolving. A plugin built with one version of a server is not guaranteed

to run or even to compile with a subsequent version. Only create your own custom
plugin when you require functionality that the server cannot be configured to provide.

The best practice is to deploy DS servers with a minimum of custom plugins.

Although some custom plugins involve little development work, they can require
additional scheduling and coordination. The more you customize, the more important it

is to test your deployment thoroughly before going into production. Consider each
custom plugin as sub-project with its own acceptance criteria. Prepare separate plans

for unit testing, automation, and continuous integration of each custom plugin. For
details, see Tests.

When you have prepared plans for each custom plugin sub-project, you must account
for those plans in your overall deployment project plan.

Plugin types correspond to the points where the server invokes the plugin.

For the full list of plugin invocation points, see the Javadoc for PluginType. The following
list summarizes the plugin invocation points:

At server startup and shutdown

Before and after data export and import

Immediately after a client connection is established or is closed

Before processing begins on an LDAP operation (to change an incoming request

before it is decoded)

Before core processing for LDAP operations (to change the way the server handles

the operation)

After core processing for LDAP operations (where the plugin can access all

information about the operation including the impact it has on the targeted entry)

When a subordinate entry is deleted as part of a subtree delete, or moved or

renamed as part of a modify DN operation

Before sending intermediate and search responses

After sending a result

ForgeRock supports customers using standard plugins delivered as part of DS

software.

If you deploy with custom plugins and need support in production, contact

info@forgerock.com in advance to determine how your deployment can be
supported.

NOTE

Plugin Types

file:///home/pptruser/Downloads/build/site/ds/_attachments/javadoc/org/opends/server/api/plugin/PluginType.html
mailto:info@forgerock.com

18 / 63

A plugin’s types are specified in its configuration, and can therefore be modified at

runtime.

Server plugin configuration is managed with the same configuration framework that is

used for DS server configuration.

The DS configuration framework has these characteristics:

LDAP schemas govern what attributes can be used in plugin configuration entries.

For all configuration attributes that are specific to a plugin, the plugin should have

its own object class and attributes defined in the server LDAP schema. Having
configuration entries governed by schemas makes it possible for the server to

identify and prevent configuration errors.

For plugins, having schema for configuration attributes means that an important

part of plugin installation is making the schema definitions available to the DS
server.

The plugin configuration is declared in XML files.

The XML specifies configuration properties and their documentation, and

inheritance relationships.

The XML Schema Definition files (.xsd files) for the namespaces used are not

published externally. For example, the namespace identifier

http://opendj.forgerock.org/admin is not an active URL. An XML

configuration definition has these characteristics:

The attributes of the <managed-object> element define XML namespaces, a

(singular) name and plural name for the plugin, and the Java-related
inheritance of the implementation to generate. A managed object is a

configurable component of DS servers.

A managed object definition covers the object’s structure and inheritance, and

is like a class in Java. The actual managed object is like an instance of an object
in Java. Its configuration maps to a single LDAP entry in the configuration

backend cn=config .

Notice that the <profile> element defines how the whole object maps to an

LDAP entry in the configuration. The <profile> element is mandatory, and
should include an LDAP profile.

The name and plural-name properties are used to identify the managed
object definition. They are also used when generating Java class names. Names

must be a lowercase sequence of words separated by hyphens.

Plugin Configuration

19 / 63

The package property specifies the Java package name for generated code.

The extends property identifies a parent definition that the current definition
inherits.

The mandatory <synopsis> element provides a brief description of the
managed object.

If a longer description is required, add a <description> . The
<description> is used in addition to the synopsis, so there is no need to

duplicate the synopsis in the description.

The <property> element defines a property specific to the plugin, including

its purpose, its default value, its type, and how the property maps to an LDAP
attribute in the configuration entry.

The name attribute is used to identify the property in the configuration.

The <property-override> element sets the pre-defined property java-

class to the fully qualified implementation class.

Compilation generates the server-side and client-side APIs to access the plugin

configuration from the XML. To use the server-side APIs in a plugin project, first
generate and compile them, and then include the classes on the project classpath.

When a plugin is loaded in the DS server, the client-side APIs are available to
configuration tools like the dsconfig command. Directory administrators can

configure a custom plugin in the same way they configure other server
components.

The framework supports internationalization.

The plugin implementation selects appropriate messages from the resource bundle

based on the server locale. If no message is available for the server locale, the
plugin falls back to the default locale.

A complete plugin project includes LDAP schema definitions, XML configuration
definitions, Java plugin code, and Java resource bundles. For examples, see the sample

plugins delivered with DS software.

Unless you are planning a maintenance upgrade, consider starting with a pilot

implementation, which is a long-term project that is aligned with your specific
requirements.

A pilot shows that you can achieve your goals with DS software plus whatever custom
plugins and companion software you expect to use. The idea is to demonstrate

feasibility by focusing on solving key use cases with minimal expense, but without

Pilot Projects

20 / 63

ignoring real-world constraints. The aim is to fail fast, before investing too much, so you

can resolve any issues that threaten the deployment.

Do not expect the pilot to become the first version of your deployment. Instead, build

the pilot as something you can afford to change easily, and to throw away and start over
if necessary.

The cost of a pilot should remain low compared to overall project cost. Unless your
concern is primarily the scalability of your deployment, you run the pilot on a much

smaller scale than the full deployment. Scale back on anything not necessary to
validating a key use case.

Smaller scale does not necessarily mean a single-server deployment, though. If you
expect your deployment to be highly available, for example, one of your key use cases

should be continued smooth operation when part of your deployment becomes
unavailable.

The pilot is a chance to experiment with and test features and services before finalizing
your plans for deployment. The pilot should come early in your deployment plan, leaving

appropriate time to adapt your plans based on the pilot results. Before you can schedule
the pilot, team members might need training. You might require prototype versions of

functional customizations.

Plan the pilot around the key use cases that you must validate. Make sure to plan the

pilot review with stakeholders. You might need to iteratively review pilot results as some
stakeholders refine their key use cases based on observations.

Before you start defining how to store and access directory data, you must know what
data you want to store, and how client applications use the data. You must have or be

able to generate representative data samples for planning purposes. You must be able
to produce representative client traffic for testing.

When defining the directory information tree (DIT) and data model for your service,
answer the following questions:

What additional schema definitions does your directory data require?

See LDAP Schema Extensions.

What are the appropriate base DNs and branches for your DIT?

See The DIT.

How will applications access the directory service? Over LDAP? Over HTTP?

See Data Views.

Directory Data Model

21 / 63

Will a single team manage the directory service and the data? Will directory data

management be a shared task, delegated to multiple administrators?

See Data Management.

What groups will be defined in your directory service?

See Groups.

What sort of data will be shared across many directory entries? Should you define
virtual or collective attributes to share this data?

See Shared Data.

How should you cache data for appropriate performance?

See Caching.

How will identities be managed in your deployment?

See Identity Management.

As described in LDAP Schema, DS servers ship with many standard LDAP schema

definitions. In addition, you can update LDAP schema definitions while the server is
online.

This does not mean, however, that you can avoid schema updates for your deployment.
Instead, unless the data for your deployment requires only standard definitions, you

must add LDAP schema definitions before importing your data.

Follow these steps to prepare the schema definitions to add:

1. If your data comes from another LDAP directory service, translate the schema
definitions used by the data from the existing directory service. Use them to start an

LDIF modification list of planned schema updates, as described in Update LDAP
Schema.

The schema definitions might not be stored in the same format as DS definitions.
Translating from existing definitions should be easier than creating new ones,

however.

As long as the existing directory service performs schema checking for updates, the

directory data you reuse already conforms to those definitions. You must apply
them to preserve data integrity.

2. If your data comes from applications that define their own LDAP schema, add those
definitions to your list of planned schema updates.

3. Match as much of your data as possible to the standard LDAP schema definitions
listed in the Schema Reference.

LDAP Schema Extensions

file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html#update-schema
file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html#update-schema
file:///home/pptruser/Downloads/build/site/ds/schemaref/preface.html

22 / 63

4. Define new LDAP schema definitions for data that does not fit existing definitions.

This is described in About LDAP Schema, and Update LDAP Schema.

Add these new definitions to your list.

Avoid any temptation to modify or misuse standard definitions, as doing so can
break interoperability.

Once your schema modifications are ready, use comments to document your choices in
the source LDIF. Keep the file under source control. Apply a change control process to

avoid breaking schema definitions in the future.

Perhaps you can request object identifiers (OIDs) for new schema definitions from an

OID manager in your organization. If not, either take charge of OID assignment, or else
find an owner who takes charge. OIDs must remain globally unique, and must not be

reused.

When defining the base DNs and hierarchical structure of the DIT, keep the following

points in mind:

For ease of use, employ short, memorable base DNs with RDNs using well-known

attributes.

For example, you can build base DNs that correspond to domain names from

domain component (dc) RDNs. The sample data for Example.com uses

dc=example,dc=com .

Well-known attributes used in base DNs include the following:

c : country, a two-letter ISO 3166 country code

dc : component of a DNS domain name

l : locality

o : organization

ou : organizational unit

st : state or province name

For base DNs and hierarchical structures, depend on properties of the data that do

not change.

For example, the sample data places all user entries under

ou=People,dc=example,dc=com . There is no need to move a user account when
the user changes status, role in the organization, location, or any other property of

their account.

Introduce hierarchical branches in order to group similar entries.

The DIT

file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html#about-schema
file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html#update-schema

23 / 63

As an example of grouping similar entries, the following branches separate apps,

devices, user accounts, and LDAP group entries:

ou=Apps,dc=example,dc=com

ou=Devices,dc=example,dc=com

ou=Groups,dc=example,dc=com

ou=People,dc=example,dc=com

In this example, client application accounts belong under ou=Apps . A user account

under ou=People for a device owner or subscriber can have an attribute
referencing devices under ou=Devices . Device entries can reference their owner

in ou=People . Group entries can include members from any branch. Their
members' entries would reference the groups with isMemberOf .

Otherwise, use hierarchical branches only as required for specific features. Such
features include the following:

Access control

Data distribution

Delegated administration

Replication

Subentries

Use delegated administration when multiple administrators share the directory

service. Each has access to manage a portion of the directory service or the
directory data. By default, ACIs and subentries apply to the branch beneath their

entry or parent. If a delegated administrator must be able to add or modify such
operational data, the DIT should prevent the delegated administrator from affecting

a wider scope than you intend to delegate.

As described in About Replication, the primary unit of replication is the base DN. If

necessary, you can split a base DN into multiple branches. For example use cases, read
Deployment Patterns.

Once you have defined your DIT, arrange the directory data you import to follow its
structure.

If client applications only use LDAP to access the directory service, you have few choices
to make when configuring connection handlers. The choices involve how to secure

connections, and whether to limit access with client hostnames or address masks. The
client applications all have the same LDAP view of the directory data.

This is true for DSML applications as well if you use the DSML gateway.

Data Views

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#about-repl
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/patterns.html

24 / 63

If client applications use RESTful HTTP APIs to access the directory service, then you have

the same choices as for LDAP. In addition, you must define how the HTTP JSON
resources map to LDAP entries.

Figure 1. Mapping JSON Resources to LDAP Entries

As shown above, you can define multiple versioned APIs providing alternative views of

the underlying LDAP data if required for your deployment. The basic sample API that
ships with DS servers is likely not sufficient. For details, see REST to LDAP Reference.

In a shared or high-scale directory service, service management—​installation and

configuration, backup, and recovery—​may be the responsibility of only a few specialists.
These tasks may be carefully scripted.

Directory data management is, however, often a task shared by multiple users. Many of
these tasks may be performed manually. In addition, users may be responsible for

profile data in their own entry, including passwords, for example. You can arrange the
DIT hierarchically to make it easier to scope control of administrative access.

Your plan must define who should have what access to which data, and list the privileges
and access controls to grant such access. Read Administrative Roles to review the

alternatives.

As described in Groups, DS directory servers offer dynamic, static, and virtual static
group implementations:

Dynamic groups identify members with an LDAP URL.

An entry belongs to a dynamic group when it matches the base DN, scope, and filter

defined in a member URL of the group. Changes to the entry can modify its dynamic
group membership.

Static groups enumerate each member. The size of a static group entry can grow
very large in a high-scale directory.

Data Management

Groups

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest2ldap.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/groups.html

25 / 63

Virtual static groups are like dynamic groups, but the server can be configured to

have them return a list of members when read.

Consider your data and client applications. Use dynamic or virtual static groups

whenever possible. When you cannot use dynamic or virtual static groups, use static
groups and consider caching them in memory, as described in Cache for Large Groups.

As described in Virtual Attributes, and Collective Attributes, DS servers support virtual
and collective attributes that let entries share attribute values. Sharing attribute values

where it makes sense can significantly reduce data duplication, saving space and
avoiding maintenance updates.

Consider your directory data. You can use virtual or collective attributes to replace
attributes that repeat on many entries and can remain read-only on those entries.

Familiar use cases include postal addresses that are the same for everyone in a given
location, and class of service properties that depend on a service level attribute.

A directory server is an object-oriented database. It will therefore exhibit its best

performance when its data is cached in memory. This is as true for large static groups
mentioned in Groups as it is for all directory data.

A disadvantage of caching all data is that systems with enough RAM are more expensive.
Consider the suggestions in Database Cache Settings, testing the results for your data

when planning your deployment.

DS servers have the following features that make them well-suited to serve identity data:

LDAP entries provide a natural model for identity profiles and accounts.

LDAP entries associate a unique name with a flat, extensible set of profile attributes
such as credentials, location or contact information, descriptions, and more. LDAP

schemas define what entries can contain, and are themselves extensible at runtime.

Because they are defined and accessible in standard ways, and because fine-

grained access controls can protect all attributes of each entry, the profiles can be
shared by all network participants as the single source of identity information.

Profile names need not be identified by LDAP DNs. For HTTP access, DS servers
offer several ways to map to a profile, including mapping an HTTP user name to an

LDAP name, or using an OAuth 2.0 access token instead. For devices and
applications, DS servers can also map public key certificates to profiles.

Shared Data

Caching

Identity Management

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-entry-cache
file:///home/pptruser/Downloads/build/site/ds/config-guide/virtual-attrs.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/collective-attrs.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-db-cache

26 / 63

Directory services are optimized to support common authentication mechanisms.

LDAP entries easily store and retrieve credentials, keys, PKI metadata, and more.
Where passwords are used, directory services support multiple secure and legacy

password storage schemes. You can also configure directory servers to upgrade
password storage when users authenticate.

Each individual server can process thousands of authentication requests per
second.

ForgeRock® Access Management integrates directory authentication into full access
management services, including making directory authentication part of a flow that

potentially involves multiple authentication steps.

Directory services support user self-service operations and administrator

intervention.

Directory services let you protect accounts automatically or manually by locking

accounts after repeated authentication failure, expiring old passwords, and tracking
authentication times to distinguish active and inactive accounts. Directory services

can then notify applications and users about account-related events, such as
account lockout, password expiration, and other events.

Users can be granted access to update their own profiles and change their
passwords securely. If necessary, administrators can also be granted access to

update profiles and to reset passwords.

ForgeRock Identity Management integrates directory account management features

into full identity management services.

Further Reading on Managing Identities

Topics References

Account Management Accounts

Active Accounts

Authentication Authentication Mechanisms

Authentication (Binds)

Certificate-Based Authentication

Pass-Through Authentication

DS REST APIs

Authorization Configure HTTP Authorization

Proxied Authorization

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/accounts.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/search-ldap.html#extensible-match-search
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/client-auth.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#pta
file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest-operations.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-http-authorization
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/proxied-authz.html

27 / 63

Topics References

Password Management Password management

Changing passwords over LDAP

Changing passwords over HTTP

Consider these topics when designing the access model for your deployment.

The fewer restrictions you place on an administrative account, the greater the danger
the account will be misused.

As described in Administrative Access, you can avoid using directory superuser accounts
for most operations. Instead, limit administrator privileges and access to grant only what

their roles require. The first high-level distinction to make is between operational staff
who manage the service, and those users who manage directory data. Read the section

cited for fine-grained distinctions.

When your deployment involves delegated administration, it is particularly important to

grant only required access to the delegates. This is easier if your DIT supports
appropriate access scopes by default, as described in The DIT.

An immutable configuration does not change at runtime. A mutable configuration does

change at runtime.

With an immutable configuration, you maintain the server configuration as an artifact

under source control, and manage changes by applying the same process you use for
other source code. This approach helps prevent surprises in production configurations.

If properly applied, there is little risk of rolling out an untested change.

With a mutable configuration, operational staff have more flexibility to make changes.

This approach requires even more careful change management for test and production
systems.

DS server configurations can be immutable, except for the portion devoted to
replication, which evolves as peer servers come and go.

DS directory data, however, must remain mutable to support write operations. As long
as you separate directory data from the configuration, this does not prevent you from

Directory Access

Separation of Duties (SoD)

Immutable and Mutable Configuration

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/change-password.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/action-rest.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html#admin-roles

28 / 63

replacing directory server replicas. As described in Manual Initialization, new replicas can

start with existing data sets.

DS servers provide both HTTP and LDAP access to directory data. HTTP access to

directory data eventually translates to LDAP access internally. At the LDAP level, DS
servers provide powerful, fine-grained access control.

The default server behavior is to refuse all access. All DS servers therefore grant some
level of access through privileges, and through access controls. For details, see Access

Control.

Access control instructions (ACIs) in directory data take the form of aci LDAP attributes,

or global-aci properties in the server configuration. You write ACIs in a domain-
specific language. The language lets you describe concisely who has access to what

under what conditions. When configuring access control, notice that access controls
apply beneath their location in the directory information tree. As a result, some ACIs,

such as those granting access to LDAP controls and extended operations, must be
configured for the entire server rather than a particular location in the data.

Administrative privileges provide a mechanism that is separate from access control to

restrict what administrators can do.

You assign privileges to users as values of the ds-privilege-name LDAP attribute. You

can assign privileges to multiple users with collective attribute subentries. For details,
see Administrative Privileges.

Take care when granting privileges, especially the following privileges:

bypass-acl : The holder is not subject to access control.

config-write : The holder can edit the server configuration.

modify-acl : The holder can edit access control instructions.

privilege-change : The holder can edit administrative privileges.

proxied-auth : The holder can make requests on behalf of another user, including

directory superusers such as uid=admin .

DS servers support a variety of authentication mechanisms.

When planning your service, use the following guidelines:

Fine-Grained Access

Privileges

Authentication

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#init-repl
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html#admin-privileges

29 / 63

Limit anonymous access to public data.

Allow simple (username and password) authentication only over secure
connections.

Require client applications to authenticate based on public key certificates
(EXTERNAL SASL mechanism) rather than simple authentication where possible.

For details, see Authentication Mechanisms.

DS directory proxy servers, and DS DSML and REST to LDAP gateway applications

encapsulate DS directory services, and offer access to other directory services.

Unlike directory servers, directory proxy servers do not hold directory data, and so use

global access policies rather than ACIs. You define global access policies as server
configuration objects. For details, see Access Control.

As mentioned in System Resources, be aware that for high-performance services you
may need to deploy as many proxy servers or gateways as directory servers.

For details about DS LDAP proxy services, see LDAP Proxy.

As described in HTTP Access, you can configure DS servers to provide RESTful HTTP
access.

If you deploy this capability, you must configure how HTTP resources map to LDAP
entries. This is explained in Data Views. For details, see REST to LDAP Reference.

Although LDAP and RESTful HTTP access ensure high performance, your deployment

may require a higher level of abstraction than LDAP or HTTP can provide.

Other ForgeRock® Identity Platform components offer such higher-level abstractions.

For example, ForgeRock Access Management software lets you plug into directory
services for authentication and account profiles, and then orchestrate powerful

authentication and authorization scenarios. ForgeRock Identity Management software
can plug into directory services to store configuration and account profiles, to provide

user self-services, and to synchronize data with a wide variety of third-party systems.

For an introduction to the alternatives, read the Identity Platform Guide.

Proxy Layer

HTTP Access

Higher-Level Abstraction

Data Replication

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/about-components.html#about-dps-system-resources
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html#planning-data-protocols
file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest2ldap.html
https://backstage.forgerock.com/docs/platform/7.1/platform-guide/

30 / 63

Replication is the process of synchronizing data updates across directory servers.

Replication is the feature that makes the directory a highly available distributed
database.

Replication is designed to provide high availability with tolerance for network partitions.
In other words, the service continues to allow both read and write operations when the

network is down. Replication provides eventual consistency, not immediate consistency.

According to what is called the CAP theorem, it appears to be impossible to guarantee

consistency, availability, and partition tolerance when network problems occur. The CAP
theorem makes the claim that distributed databases can guarantee at most two of the

following three properties:

Consistency

Read operations reflect the latest write operation (or result in errors).

Availability

Every correct operation receives a non-error response.

Partition Tolerance

The service continues to respond even when the network between individual servers
is down or operating in degraded mode.

When the network connection is down between two replicas, replication is temporarily
interrupted. Client applications continue to receive responses to their requests, but

clients making requests to different servers will not have the same view of the latest
updates. The discrepancy in data on different replicas also arises temporarily when a

high update load takes time to fully process across all servers.

Eventual consistency can be a trap for the unwary. The client developer who tests

software only with a single directory server might not notice problems that become
apparent when a load balancer spreads requests evenly across multiple servers. A single

server is immediately consistent for its own data. Implicit assumptions about
consistency therefore go untested.

For example, a client application that implicitly assumes immediate consistency might
perform a write quickly followed by a read of the same data. Tests are all successful

when only one server is involved. In deployment, however, a load balancer distributes
requests across multiple servers. When the load balancer sends the read to a replica

that has not yet processed the write, the client application appears to perform a
successful write, followed by a successful read that is inconsistent with the write that

succeeded!

When deploying replicated DS servers, keep this eventual consistency trap in mind.

Educate developers about the trade off, review patches, and test and fix client

Consistency and Availability

31 / 63

applications under your control. In deployments with client applications that cannot be

fixed, use affinity load balancing in DS directory proxy servers to work around broken
clients. For details, see Load Balancing.

In DS software, the role of a replication server is to transmit messages about updates.
Directory servers receive replication messages from replication servers, and apply

updates accordingly, meanwhile serving client applications.

Deploy at least two replication servers per local network in case one fails, and deploy

more if you have many directory servers per replication server. For LAN-based
deployments, each directory server can double as a replication server. For large, WAN-

based deployments, consider using standalone replication servers and directory servers.

In a widely distributed deployment, be aware that replication servers all communicate

with each other. Directory servers always communicate through replication servers,
even if the replication service runs in the same server process as the directory server. By

assigning servers to replication groups, you can ensure that directory servers only
connect to local replication servers until they need to fail over to remote replication

servers. This limits the WAN replication traffic to messages between replication servers,
except when all replication servers on the LAN are down. For details, see Install

Standalone Servers and Replication Groups.

Deploy the replication servers first. You can think of them as providing a network service

(replication) in the same way DNS provides a network service (name resolution). You
therefore install and start replication servers before you add directory servers.

After you install a directory server and configure it as a replica, you must initialize it to
the current replication state. There are a number of choices for this, as described in

Manual Initialization. Once a replica has been initialized, replication eventually brings its
data into a consistent state with the other replicas. As described in Consistency and

Availability, give a heavy update load or significant network latency, temporary
inconsistency is expected. You can monitor the replication status to estimate when

replicas will converge on the same data set.

Client applications can adopt best practices that work with eventual consistency, as

described in Best Practices, Optimistic Concurrency (MVCC), and Update. To work
around broken client applications that assume immediate consistency, use affinity load

balancing in directory proxy servers. For details, see Load Balancing.

Some client applications need notifications when directory data changes. Client

applications cannot participate in replication itself, but can get change notifications. For
details, see Changelog for Notifications.

Deploying Replication

Scaling Replication

file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html#proxy-load-balancing
file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-rs.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-rs.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-groups
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#init-repl
file:///home/pptruser/Downloads/build/site/ds/getting-started/best-practices.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/write-ldap.html#modify-optimistic-concurrency
file:///home/pptruser/Downloads/build/site/ds/rest-guide/update-rest.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html#proxy-load-balancing
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html

32 / 63

When scaling replicated directory services, keep the following rules in mind:

Read operations affect only one replica.

To add more read performance, use more powerful servers or add servers.

Write operations affect all replicas.

To add more write performance, use more powerful servers or add separate

replication domains.

When a replica writes an update to its directory data set, it transmits the change

information to its replication server for replay elsewhere. The replication server
transmits the information to connected directory servers, and to other replication

servers replicating the same data. Those replication servers transmit the message to
others until all directory servers have received the change information. Each directory

server must process the change, reconciling it with other change information.

As a result, you cannot scale up write capacity by adding servers. Each server must

replay all the writes.

If necessary, you can scale up write capacity by increasing the capacity of each server

(faster disks, more powerful servers), or by splitting the data into separate sets that you
replicate independently (data distribution).

In shared directory service deployments, the directory must continue serving client
requests during maintenance operations, including service upgrades, during network

outage recovery, and in spite of system failures.

DS replication lets you build a directory service that is always online. DS directory proxy

capabilities enable you to hide maintenance operations from client applications. You
must still plan appropriate use of these features, however.

As described above, replication lets you use redundant servers and systems that
tolerate network partitions. Directory server replicas continue to serve requests when

peer servers fail or become unavailable. Directory proxy servers route around directory
servers that are down for maintenance or down due to failure. When you upgrade the

service, you roll out one upgraded DS server at a time. New servers continue to
interoperate with older servers, so the whole service never goes down. All of this

depends on deploying redundant systems, including network links, to eliminate single
points of failure. For more, see High Availability.

As shown in that section, your deployment may involve multiple locations, with servers
communicating locally over LANs and remotely over WANs. Your deployment can also

use separate replication topologies, for example, in order to sustain very high write
loads, or to separate volatile data from more static data. Carefully plan your load

High Availability

file:///home/pptruser/Downloads/build/site/ds/deployment-guide/patterns.html#patterns-ha

33 / 63

balancing strategy to offer good service at a reasonable cost. By using replication

groups, you can limit most replication traffic over WAN links to communications
between replication servers. Directory proxy servers can direct client traffic to local

servers until it becomes necessary to failover to remote servers.

Sound operational procedures play as important a role in availability as good design.

Operational staff maintaining the directory service must be well-trained and organized
so that someone is always available to respond if necessary. They must have

appropriate tools to monitor the service in order to detect situations that need
attention. When maintenance, debugging, or recovery is required, they should have a

planned response in most cases. Your deployment plans should therefore cover the
requirements and risks that affect your service.

Before finalizing deployment plans, make sure that you understand key availability
features in detail. For details about replication, read Replication. For details about proxy

features, read LDAP Proxy.

Make sure your plans define how you:

Back up directory data

Safely store backup files

Recover your directory service from backup

DS servers store data in backends. A backend is a private server repository that can be

implemented in memory, as a file, or as an embedded database. DS servers use local
backends to store directory data, server configuration, LDAP schema, and administrative

tasks. Directory proxy servers implement a type of backend for non-local data, called a
proxy backend, which forwards LDAP requests to a remote directory service.

For performance reasons, DS servers store directory data in a local database backend,
which is a backend implemented using an embedded database. Database backends are

optimized to store directory data. Database backends hold data sets as key-value pairs.
LDAP objects fit the key-value model very effectively, with the result that a single

database backend can serve hundreds of millions of LDAP entries. Database backends
support indexing and caching for fast lookups in large data sets. Database backends do

not support relational queries or direct access by other applications. For more
information, see Data Storage.

Backup and restore procedures are described in Backup and Restore. When planning
your backup and recovery strategies, be aware of the following key features:

Backups are not guaranteed to be compatible across major and minor server
releases. Restore backups only on directory servers of the same major or minor version.

Backup and Recovery

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html

34 / 63

Backup and restore tasks can run while the server is online. They can, however,

have a significant impact on server performance.

For deployments with high performance requirements, consider dedicating a

replica to perform only backup operations. This prevents other replicas from
stealing cycles to back up data that could otherwise be used to serve client

applications.

When you restore replicated data from backup, the replication protocol brings the

replica up to date with others after the restore operation.

The requires, however, that the backup is recent enough. Backup files older than

the replication purge delay (default: 3 days) are stale and should be discarded.

Directory data replication ensures that all servers converge on the latest data. If

your data is affected by an serious accidental deletion or change, you must restore
the entire directory service to an earlier state.

For details, see Recover From User Error.

When you restore encrypted data, the server must have the same shared master

key as the server that performed the backup.

Otherwise, the directory server cannot decrypt the symmetric key used to decrypt

the data. For details, see Data Encryption.

For portability, you can also export directory data to LDIF files. You can then restore

directory data by importing the LDIF.

If you have stored passwords with a reversible encryption password storage

scheme, be aware that the server must have the same shared master key as the
server that encrypted the password.

You can perform a file system backup of your servers instead of using the server
tools.

You must, however, stop the server before taking a file system backup. Running DS
directory servers cannot guarantee that database backends will be recoverable

unless you back them up with the DS tools.

When monitoring DS servers and auditing access, be aware that you can obtain some

but not all data remotely.

The following data sources allow remote monitoring:

HTTP connection handlers expose a /metrics/api endpoint that offers RESTful
access to monitoring data, and a /metrics/prometheus endpoint for Prometheus

monitoring software .

Monitoring and Auditing



file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#recover-from-user-error
file:///home/pptruser/Downloads/build/site/ds/security-guide/data.html
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/

35 / 63

For details, see Use Administrative APIs.

LDAP connection handlers expose a cn=monitor branch that offers LDAP access to
monitoring data.

For details, see LDAP-Based Monitoring.

JMX connection handlers offer remote access.

For details, see JMX-Based Monitoring.

SNMP connection handlers enable remote access.

For details, see SNMP-Based Monitoring.

You can configure alerts to be sent over JMX or SMTP (mail).

For details, see Alerts.

Replication conflicts are found in the directory data.

For details, see Replication Conflicts.

Server tools, such as the status command, can run remotely.

For details, see Status and Tasks.

The following data sources require access to the server system:

Server logs, as described in Logging.

DS servers write log files to local disk subsystems. In your deployment, plan to move

access logs that you want to retain. Otherwise the server will eventually remove logs
according to its retention policy to avoid filling up the disk.

Index verification output and statistics, as described in Rebuild Indexes, and Verify
Indexes.

When defining how to monitor the service, use the following guidelines:

Your service level objectives (SLOs) should reflect what your stakeholders expect

from the directory service for their key client applications.

If SLOs reflect what stakeholders expect, and you monitor them in the way key

client applications would experience them, your monitoring system can alert
operational staff when thresholds are crossed, before the service fails to meet

SLOs.

Make sure you keep track of resources that can expire, such as public key

certificates and backup files from directory server replicas, and resources that can
run out, such as system memory and disk space.

Monitor system and network resources in addition to the directory service.

file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-admin-endpoint
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/ldap-monitoring.html
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/jmx-monitoring.html
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/snmp-monitoring.html
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/alert-notifications.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-conflict
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/monitoring-status-and-tasks.html
file:///home/pptruser/Downloads/build/site/ds/logging-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/indexing.html#rebuild-index
file:///home/pptruser/Downloads/build/site/ds/config-guide/indexing.html#verify-index
file:///home/pptruser/Downloads/build/site/ds/config-guide/indexing.html#verify-index

36 / 63

Make sure operational staff can find and fix problems with the system or network,

not only the directory.

Monitor replication delay, so you can take action when it remains high and

continues to increase over the long term.

In order to analyze server logs, use other software, such as Splunk , which indexes

machine-generated logs for analysis.

If you require integration with an audit tool, plan the tasks of setting up logging to work

with the tool, and analyzing and monitoring the data once it has been indexed. Consider
how you must retain and rotate log data once it has been consumed, as a high-volume

service can produce large volumes of log data.

When you first set up DS servers with the evaluation profile, the configuration favors

ease of use over security for Example.com data.

All other configurations and setup profiles leave the server hardened for more security

by default. You explicitly grant additional access if necessary.

For additional details, see Security.

In addition to planning tests for each custom plugin, test each feature you deploy.

Perform functional and non-functional testing to validate that the directory service
meets SLOs under load in realistic conditions. Include acceptance tests for the actual

deployment. The data from the acceptance tests help you to make an informed decision
about whether to go ahead with the deployment or to roll back.

Functional testing validates that specified test cases work with the software considered

as a black box.

As ForgeRock already tests DS servers and gateways functionally, focus your functional

testing on customizations and service level functions. For each key capability, devise
automated functional tests. Automated tests make it easier to integrate new deliveries

to take advantage of recent bug fixes, and to check that fixes and new features do not
cause regressions.

As part of the overall plan, include not only tasks to develop and maintain your
functional tests, but also to provision and to maintain a test environment in which you

run the functional tests before you significantly change anything in your deployment. For



Hardening and Security

Tests

Functional Tests

https://www.splunk.com/
https://www.splunk.com/
https://www.splunk.com/
file:///home/pptruser/Downloads/build/site/ds/security-guide/preface.html

37 / 63

example, run functional tests whenever you upgrade any server or custom component,

and analyze the output to understand the effect on your deployment.

With written SLOs, even if your first version consists of guesses, you turn performance

plans from an open-ended project to a clear set of measurable goals for a manageable
project with a definite outcome. Therefore, start your testing with service level objectives

clear definitions of success.

Also, start your testing with a system for load generation that can reproduce the traffic

you expect in production, and underlying systems that behave as you expect in
production. To run your tests, you must therefore generate representative load data and

test clients based on what you expect in production. You can then use the load
generation system to perform iterative performance testing.

Iterative performance testing consists of identifying underperformance, and the
bottlenecks that cause it, and discovering ways to eliminate or work around those

bottlenecks. Underperformance means that the system under load does not meet
service level objectives. Sometimes resizing or tuning the system can help remove

bottlenecks that cause underperformance.

Based on SLOs and availability requirements, define acceptance criteria for performance

testing, and iterate until you have eliminated underperformance.

Tools for running performance testing include the tools listed in Performance Tests, and

Gatling , which uses a domain specific language for load testing. To mimic the
production load, examine the access patterns, and the data that DS servers store. The

representative load should reflect the distribution of client access expected in
production.

Although you cannot use actual production data for testing, you can generate similar
test data using tools, such as the makeldif command.

As part of the overall plan, include not only tasks to develop and maintain performance
tests, but also to provision and to maintain a pre-production test environment that

mimics your production environment. Security measures in your test environment must
also mimic your production environment, as security measures can impact

performance.

Once you are satisfied that the baseline performance is acceptable, run performance

tests again when something in your deployment changes significantly with respect to
performance. For example, if the load or number of clients changes significantly, it could

cause the system to underperform. Also, consider the thresholds that you can monitor
in the production system to estimate when your system might start to underperform.

Performance Tests



Deployment Tests

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-testing
https://gatling.io/
https://gatling.io/
https://gatling.io/

38 / 63

Here, deployment testing is a description rather than a term. It refers to the testing

implemented within the deployment window after the system is deployed to the
production environment, but before client applications and users access the system.

Plan for minimal changes between the pre-production test environment and the actual
production environment. Then test that those changes have not cause any issues, and

that the system generally behaves as expected.

Take the time to agree upfront with stakeholders regarding the acceptance criteria for

deployment tests. When the production deployment window is small, and you have only
a short time to deploy and test the deployment, you must trade off thorough testing for

adequate testing. Make sure to plan enough time in the deployment window for
performing the necessary tests and checks.

Include preparation for this exercise in your overall plan, as well as time to check the
plans close to the deployment date.

Make sure your plan defines the change control process for configuration. Identify the
ways that the change is likely to affect your service. Validate your expectations with

appropriate functional, integration, and stress testing. The goal is to adapt how you
maintain the service before, during, and after the change. Complete your testing before

you subject all production users to the change.

Review the configuration options described here, so that you know what to put under

change control.

DS servers store configuration in files under the server’s config directory. When you
set up a server, the setup process creates the initial configuration files based on

templates in the server’s template directory. File Layout describes the files.

When a server starts, it reads its configuration files to build an object view of the

configuration in memory. This view holds the configuration objects, and the constraints
and relationships between objects. This view of the configuration is accessible over

client-side and server-side APIs. Configuration files provide a persistent, static
representation of the configuration objects.

Configuration tools use the client-side API to discover the server configuration and to
check for constraint violations and missing relationships. The tools prevent you from

breaking the server configuration structurally by validating structural changes before
applying them. The server-side API allows the server to validate configuration changes,

and to synchronize the view of the configuration in memory with the file representation
on disk. If you make changes to the configuration files on disk while the server is

Configuration Changes

Server Configuration

file:///home/pptruser/Downloads/build/site/ds/install-guide/file-layout.html

39 / 63

running, the server can neither validate the changes beforehand, nor guarantee that

they are in sync with the view of the configuration in memory.

DS Server Configuration

Method Notes

Tools (dsconfig and

others)

Stable, supported, public interfaces for editing server

configurations. Most tools work with local and remote
servers, both online and offline.

Files Internal interface to the server configuration, subject to
change without warning in any release. If you must

make manual changes to configuration files, always stop
the DS server before editing the files.

If the changes break the configuration, compare with
the var/config.ldif.startok file, and with the

compressed snapshots of the main configuration in the
var/archived-configs/ directory.

REST (HTTP) API Internal interface to the server configuration, subject to
change without warning in any release.

Useful for enabling browser-based access to the
configuration.

Once a server begins to replicate data with other servers, the part of the configuration
pertaining to replication is specific to that server. As a result, a server effectively cannot

be cloned once it has begun to participate in data replication. When deploying servers,
do not initialize replication until you have deployed the server.

You edit files to configure DS DSML and REST to LDAP gateway web applications.

The gateways do not have external configuration APIs, and must be restarted after you
edit configuration files for the changes to take effect.

The DS product documentation is written for readers like you, who are architects and
solution developers, as well as for DS developers and for administrators who have had

DS training. The people operating your production environment need concrete
documentation specific to your deployed solution, with an emphasis on operational

policies and procedures.

Gateway Configuration

Documentation

40 / 63

Procedural documentation can take the form of a runbook with procedures that

emphasize maintenance operations, such as backup, restore, monitoring and log
maintenance, collecting data pertaining to an issue in production, replacing a broken

server or web application, responding to a monitoring alert, and so forth. Make sure you
document procedures for taking remedial action in the event of a production issue.

Furthermore, to ensure that everyone understands your deployment and to speed
problem resolution in the event of an issue, changes in production must be documented

and tracked as a matter of course. When you make changes, always prepare to roll back
to the previous state if the change does not perform as expected.

If you own the architecture and planning, but others own the service in production, or
even in the labs, then you must plan coordination with those who own the service.

Start by considering the service owners' acceptance criteria. If they have defined support
readiness acceptance criteria, you can start with their acceptance criteria. You can also

ask yourself the following questions:

What do they require in terms of training in DS software?

What additional training do they require to support your solution?

Do your plans for documentation and change control, as described in

Documentation, match their requirements?

Do they have any additional acceptance criteria for deployment tests, as described

in Deployment Tests?

Also, plan back line support with ForgeRock or a qualified partner. The aim is to define

clearly who handles production issues, and how production issues are escalated to a
product specialist if necessary.

Include a task in the overall plan to define the hand off to production, making sure there
is clarity on who handles monitoring and issues.

In addition to planning for the hand off of the production system, also prepare plans to

roll out the system into production. Rollout into production calls for a well-
choreographed operation, so these are likely the most detailed plans.

Take at least the following items into account when planning the rollout:

Availability of all infrastructure that DS software depends on, such as the following:

Server hosts and operating systems

Web application containers for gateways

Maintenance and Support

Rollout

41 / 63

Network links and configurations

Persistent data storage

Monitoring and audit systems

Installation for all DS servers.

Final tests and checks.

Availability of the personnel involved in the rollout.

In your overall plan, leave time and resources to finalize rollout plans toward the end of

the project.

To succeed, your directory service must adapt to changes, some that you can predict,

some that you cannot.

In addition to the configuration changes covered in Configuration Changes, predictable

changes include the following:

Increases and decreases in use of the service

For many deployments, you can predict changes in the use of the directory service,
and in the volume of directory data.

If you expect cyclical changes, such as regular batch jobs for maintenance or high
traffic at particular times of the year, test and prepare for normal and peak use of

the service. For deployments where the peaks are infrequent but much higher than
normal, it may be cost effective to dedicate replicas for peak use that are retired in

normal periods.

If you expect use to increase permanently, then decide how much headroom you

must build into the deployment. Plan to monitor progress and add capacity as
necessary to maintain headroom, and to avoid placing DS servers under so much

stress that they stop performing as expected.

If you expect use to decrease permanently, at some point you will retire the directory

service. Make sure all stakeholders have realistic migration plans, and that their
schedules match your schedule for retirement.

Depending on the volume of directory data and the growth you expect for the
directory service, you may need to plan for scalability beyond your initial

requirements.

As described in Scaling Replication, you can increase read performance by adding

servers. To increase write performance, adding servers is not the solution. Instead,
you must split the data into sets that you replicate separately.

Ongoing Change

42 / 63

Luckily, single directory services can already support thousands of replicated write

operations per second, meaning millions of write operations per hour. It may well be
possible to achieve appropriate performance by deploying on more powerful

servers, and by using higher performance components, such as dedicated SSD disks
instead of traditional disks.

When scaling up the systems is not enough, you must instead organize the DIT to
replicate different branches separately. Deploy the replicas for each branch on sets

of separate systems. For details, see High Scalability.

Directory service upgrades

ForgeRock regularly offers new releases of DS software. These include maintenance
and feature releases. Supported customers may also receive patch releases for

particular issues.

Patch and maintenance releases are generally fully compatible. Plan to test and roll

out patch and maintenance releases swiftly, as they include important updates such
as fixes for security issues or bugs that you must address quickly.

Plan to evaluate feature releases as they occur. Even if you do not intend to use new
features immediately, you might find important improvements that you should roll

out. Furthermore, by upgrading regularly you apply fewer changes at a time than you
would by waiting until the end of support life and then performing a major upgrade.

Key rotation

Even if you do not change the server configuration, the signatures eventually expire

on certificates used to secure connections. You must at minimum replace the
certificates. You could also change the key pair in addition to getting a new

certificate.

If you encrypt directory data for confidentiality, you might also choose to rotate the

symmetric encryption key.

Unpredictable changes include the following:

Disaster recovery

As described in High Availability, assess the risks. In light of the risks, devise and test

disaster recovery procedures.

For details, refer to Disaster recovery.

New security issues

Time and time again, security engineers have found vulnerabilities in security

mechanisms that could be exploited by attackers. Expect this to happen during the
lifetime of your deployment.

You might need to change the following at any time:

Keys used to secure connections

file:///home/pptruser/Downloads/build/site/ds/deployment-guide/patterns.html#patterns-scale
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html#planning-availability
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/disaster-recovery.html

43 / 63

Keys used to encrypt directory data

Protocol versions used to secure connections

Password storage schemes

Deployed software that has a newly discovered security bug

In summary, plan to adapt your service to changing conditions. To correct security bugs

and other issues and to recover from minor or major disasters, be prepared to patch,
upgrade, roll out, and roll back changes as part of your regular operations.

Use these patterns in your deployments.

When you deploy DS servers into a highly available directory service, you are
implementing the primary use case for which DS software is designed:

Data replication lets you eliminate single points of failure.

When using replication, keep in mind the trade off, described in Consistency and

Availability.

DS upgrade capabilities let you perform rolling upgrades without ever taking the

whole service offline.

If desired, DS proxy capabilities help you provide a single point of entry for directory

applications, hiding the fact that individual servers do go offline.

You build a highly available directory service by using redundant servers in multiple
locations. If possible, use redundant networks within and between locations to limit

network partitions.

Deployment Patterns

High Availability

file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html#overview-replication-cap
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html#overview-replication-cap

44 / 63

When you install or upgrade a highly available directory service, bring component

servers online in the following order:

1. Standalone Replication Servers

If you have a large DS service with standalone replication servers, they provide the
foundation for high availability. They communicate change messages to directory

server replicas, and they also let other servers discover available replicas.

2. Directory Servers

Directory server replicas ultimately respond to client application requests. They
hold an eventually convergent copy of the directory data. They require a replication

service to communicate with other replicas about changes to their copy of the
directory data.

3. Directory Proxy Servers

If you use DS directory proxy servers for a unified view of the service, they discover

DS replicas by querying the replication service. They forward requests to the
replicas, and responses to the client applications.

In addition to redundant server components, avoiding downtime depends on being able
operationally to recover quickly and effectively. Prepare and test your plans. Even if

disaster strikes, you will be able to repair the service promptly.

Plan how you store backup files both onsite and offsite. Make sure you have safe copies

of the master keys that let directory servers decrypt encrypted data. For details, see
Backup and Restore.

When defining disaster recovery plans, consider at least the following situations:

The entire service is down.

It is important to distinguish whether the situation is temporary and easily
recoverable, or permanent and requires implementation of disaster recovery plans.

If an accident, such as a sudden power cut at a single-site deployment, brought all
the servers down temporarily, restart them when the power returns. As described

in Server Recovery, directory servers might have to replay their transaction logs
before they are ready. However, this operation happens automatically when you

restart the server.

In a disaster, the entire service could go offline permanently. Be prepared to rebuild

the entire service. For details, refer to Disaster recovery.

Part of the service is down.

Failover client applications to servers still in operation, and restart or rebuild
servers that are down.

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/server-process.html#crash-recovery
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/disaster-recovery.html

45 / 63

You can configure directory proxy servers to fail over automatically, and to retry

requests for certain types of failure. For details, see LDAP Proxy.

The network is temporarily down between servers.

By default, you do not need to take immediate action for a temporary network
outage. As long as client applications can still communicate with local servers,

replication is designed to catch up when the network connections are reestablished.

By default, when a directory server replica cannot communicate with a replication

server, the isolation-policy setting prevents the directory server replica from
accepting updates.

In any case, if the network is partitioned longer than the replication purge delay
(default: 3 days), then replication will have purged older data, and might not be able

to catch up. For longer network outages, you will have to reinitialize replication.

When defining procedures to rebuild a service that is permanently offline, the order of

operations is the same as during an upgrade:

1. Redirect client applications to a location where the service is still running.

If the proxy layer is still running, directory proxy servers can automatically fail
requests over to remote servers that are still running.

2. Rebuild replication servers.

3. Rebuild directory servers.

4. Rebuild directory proxy servers.

A high-scale directory service is one that requires high performance. For example, very

high throughput or very low response times, or both. Or, it has a large data set, such as
100 million entries. When building a high-scale directory, the fundamental question is

whether to scale up or scale out.

Scaling up means deploying more powerful server systems. Scaling out means deploying

many more server systems.

High Scalability

file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-replication-synchronization-provider.html#isolation-policy

46 / 63

Scale Up or Scale Out

Scaling Up Scaling Out

Why Choose…​

?

Simpler architecture

Cannot distribute or shard
data

Very high update load

Can distribute or shard data

Advantages Simpler architecture

No need to distribute or

shard data

Not limited by underlying
platform

Smaller server systems

Better isolation of issues

High update scalability

Disadvantages Limited by underlying

platform

Powerful (expensive) server

systems

Less isolation of issues

Limited write scalability

Complex architecture

Must distribute/shard data
somehow

Before building a test directory service, start sizing systems by considering service level
objectives (SLOs) and directory data.

Plan to Scale

47 / 63

Define SLOs as described in Performance Requirements. Once you have defined the

SLOs, model directory client traffic to test them using your own tools, or the tools
described in Performance Tests.

Estimate the disk space needed for each server. This depends on the traffic you
modelled to meet SLOs, and on directory data that represents what you expect in

production:

1. Import a known fraction of the expected initial data with the server configured for

production.

For help, see Generate Test Data. Make sure you adapt the template for your data.

Do not rely only on the default template for the makeldif command.

2. Check the size of the database.

Divide by the fraction used in the previous step to estimate the total starting
database size.

3. Multiply the result to account for replication metadata.

To estimate the volume of replication metadata, set up replication with multiple

servers as expected in production, and run the estimated production load that
corresponds to the data you used. Keep the load running until the replication purge

delay. After the purge delay, measure the size of the databases on a directory
server, and the size of the changelog database on a replication server. Assuming the

load is representative of the production load including expected peaks and normal
traffic, additional space used since the LDIF import should reflect expected growth

due to replication metadata.

4. Multiply the result to account for the overall growth that you expect for the

directory service during the lifetime of the current architecture.

5. To complete the estimate, add 2 GB for default access log files, and space for any

backups or LDIF exports you expect to store on local disk.

For a directory server, make sure the system has enough RAM available to cache the

database. By default, database files are stored under the /path/to/opendj/db
directory. Ideally, the RAM available to the server should be at least 1.5 to 2 times the

total size of the database files on disk.

When scaling up on appropriately powerful server systems, each system must have the

resources to run a high-scale DS server. As described in Scaling Replication, a directory
server replica is only required to absorb its share of the full read load. But each replica

must be able to absorb the full write load for the service.

Make sure that the estimates you arrived at in Plan to Scale remain within the

capabilities of each server and system.

Scale Up

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-define-starting-points
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-testing
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/ldif-tools.html#generating-ldif
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html#overview-replication-scale

48 / 63

In addition to the recommendations in Hardware, and the tips in Performance Settings,

consider the following points to avoid resource contention:

For best performance, use dedicated servers.

Run as few additional system services as possible.

Run standalone replication servers, directory servers, and directory proxy servers

on separate systems.

In addition to using fast disks with good IOPS, put logs, databases, and backup files

on separate disk subsystems.

Keep resource limitations for client applications to acceptable minimums.

Schedule backups and maintenance for minimum service impact.

When scaling out onto multiple server systems, you must find a usable way to distribute

or shard the data into separate replication domains. In some cases, each replication
domain holds a branch of the DIT with a similar amount of traffic, and an equivalent

amount of data. Entries could then be distributed based on location or network or some
other attribute. Branches could join at a base DN that brings all the entries together in

the same logical view.

Separate at least the directory server replicas in each replication domain, so that they

share only minimal and top-level entries. To achieve this, use subtree replication, which
is briefly described in Subtree Replication. Each replica can hold minimal and top-level

entries in one database backend, but its primary database backend holds only the
branch it shares with others in the domain.

If the data to scale out is all under a single DN, consider using a DS proxy server layer to
perform the data distribution, as described in Data Distribution.

When building a scaled-out architecture, be sure to consider the following questions:

How will you distribute the data to allow the service to scale naturally, for example,

by adding a replication domain?

How will you manage what are essentially multiple directory services?

All of your operations, from backup and recovery to routine monitoring, must take
the branch data into account, always distinguishing between replication domains.

How will you automate operations?

How will you simplify access to the service?

Consider using DS proxy servers for a single point of entry, as described in Single
Point of Access.

Scale Out

https://backstage.forgerock.com/docs/ds/latest/release-notes/requirements.html#prerequisites-hardware
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-tweaking
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-subtree
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html#pattern-data-distribution-example
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html#proxy-access-point
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html#proxy-access-point

49 / 63

In many countries, how you store and process user accounts and profile information is

subject to regulations and restrictions that protect users' privacy. Data sovereignty
legislation is beyond the scope of this document. However, DS servers do include

features to help you build services in compliance with data sovereignty requirements:

Data replication

Subtree replication

Fractional replication

The deployments patterns described below address questions of data storage. When
planning your deployment, also consider how client applications access and process

directory data. By correctly configuring access controls, as described in Access Control,
you can restrict network access by hostname or IP address, but not generally by physical

location of a mobile client application, for example.

Consider developing a dedicated service layer to manage policies that define what

clients can access and process based on their location. If your deployment calls for more
dynamic access management, use DS together with ForgeRock Access Management

software.

Data replication is critical to a high-scale, highly available directory service. For
deployments where data protection is also critical, you must, however, make sure you

do not replicate data outside locations where you can guarantee compliance with local
regulations.

As described in Deploying Replication, replication messages flow from directory servers
through replication servers to other directory servers. Replication messages contain

data that has changed, including data governed by privacy regulations:

For details on replicating data that must not leave a given location, see Subtree

Replication.

For details on replicating only part of the data set outside a given location, see

Fractional Replication.

As described in Replication Per Base DN, the primary unit of replication is the base DN.
Subtree replication refers to putting different subtrees (branches) in separate backends,

and then replicating those subtrees only to specified servers. For example, you can
ensure that the data replicates only to locations where you can guarantee compliance

with the regulations in force.

Data Sovereignty

Replication and Data Sovereignty

Subtree Replication

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/plans.html#overview-replication-deployment
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-per-base-dn

50 / 63

For subtree replication, the RDN of the subtree base DN identifies the subtree. This

leads to a hierarchical directory layout. The directory service retains the logical view of a
flatter layout, because the branches all join at a top-level base DN.

The following example shows an LDIF outline for a directory service with top-level and
local backends:

The userData backend holds top-level entries, which do not directly reference
users in a particular region.

The region1 backend holds entries under the ou=Region 1,dc=example,dc=com
base DN.

The region2 backend holds entries under the ou=Region 2,dc=example,dc=com
base DN.

The example uses nested groups to avoid referencing local accounts at the top level, but
still allowing users to belong to top-level groups:

%<--- Start of LDIF for userData --->%

Base entries are stored in the userData backend:

dn: dc=example,dc=com # Base DN of

userData backend

...

dn: ou=groups,dc=example,dc=com # Stored in userData

backend

...

dn: ou=Top-level Group,ou=groups,dc=example,dc=com

...

member: ou=R1 Group,ou=groups,ou=Region 1,dc=example,dc=com

member: ou=R2 Group,ou=groups,ou=Region 2,dc=example,dc=com

dn: ou=people,dc=example,dc=com # Stored in userData

backend

...

%<--- End of LDIF for userData --->%

%<--- Start of LDIF for Region 1 --->%

Subtree entries are stored in a country or region-specific

backend.

dn: ou=Region 1,dc=example,dc=com # Base DN of region1

backend

...

dn: ou=groups,ou=Region 1,dc=example,dc=com # Stored in region1

51 / 63

The deployment for this example has the following characteristics:

backend

...

dn: ou=R1 Group,ou=groups,ou=Region 1,dc=example,dc=com

...

member: uid=aqeprfEUXIEuMa7M,ou=people,ou=Region

1,dc=example,dc=com

...

dn: ou=people,ou=Region 1,dc=example,dc=com # Stored in region1

backend

...

dn: uid=aqeprfEUXIEuMa7M,ou=people,ou=Region 1,dc=example,dc=com

uid: aqeprfEUXIEuMa7M

...

%<--- End of LDIF for Region 1 --->%

%<--- Start of LDIF for Region 2 --->%

dn: ou=Region 2,dc=example,dc=com # Base DN of region2

backend

...

dn: ou=groups,ou=Region 2,dc=example,dc=com # Stored in region2

backend

...

dn: ou=groups,ou=R2 Group,ou=Region 2,dc=example,dc=com

...

member: uid=8EvlfE0rRa3rgbX0,ou=people,ou=Region

2,dc=example,dc=com

...

dn: ou=people,ou=Region 2,dc=example,dc=com # Stored in region2

backend

...

dn: uid=8EvlfE0rRa3rgbX0,ou=people,ou=Region 2,dc=example,dc=com

uid: 8EvlfE0rRa3rgbX0

...

%<--- End of LDIF for Region 2 --->%

52 / 63

The LDIF is split at the comments about where to cut the file:

%<--- Start|End of LDIF for ... --->%

All locations share the LDIF for dc=example,dc=com , but the data is not replicated.

If DS replicates dc=example,dc=com , it replicates all data for that base DN, which
includes all the data from all regions.

Instead, minimize the shared entries, and manually synchronize changes across all
locations.

The local LDIF files are constituted and managed only in their regions:

Region 1 data is only replicated to servers in region 1.

Region 2 data is only replicated to servers in region 2.

The directory service only processes information for users in their locations

according to local regulations.

Figure 2. Separate Replication Domains for Data Sovereignty

In a variation on the deployment shown above, consider a deployment with the
following constraints:

Region 1 regulations allow region 1 user data to be replicated to region 2.

You choose to replicate the region 1 base DN in both regions for availability.

Region 2 regulations do not allow region 2 user data to be replicated to region 1.

53 / 63

Figure 3. Mixed Replication Domains for Data Sovereignty

When you use subtree replication in this way, client applications can continue to read
and update directory data as they normally would. Directory servers only return data

that is locally available.

For additional information, see Subtree Replication, and Split Data.

In some deployments, regulations let you replicate some user attributes. For example,
consider a deployment where data sovereignty regulations in one region let you

replicate UIDs and class of service levels everywhere, but do not let personally
identifiable information leave the user’s location.

Consider the following entry where you replicate only the uid and classOfService
attributes outside the user’s region:

Fractional Replication

dn: uid=aqeprfEUXIEuMa7M,ou=people,ou=Region 1,dc=example,dc=com

objectClass: top

objectClass: cos

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: posixAccount

cn: Babs Jensen

cn: Barbara Jensen

facsimiletelephonenumber: +1 408 555 1992

gidNumber: 1000

givenname: Barbara

homeDirectory: /home/bjensen

l: Region 1

mail: bjensen@example.com

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-subtree
file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html#split-data

54 / 63

To let you replicate only a portion of each entry, DS servers implement fractional
replication. You configure fractional replication by updating the directory server

configuration to specify which attributes to include or exclude in change messages from
replication servers to the directory server replica.

The replication server must remain located with the directory server replicas that hold
full entries which include all attributes. The replication server can receive updates from

these replicas, and from replicas that hold fractional entries. Each replication server
must therefore remain within the location where the full entries are processed.

Otherwise, replication messages describing changes to protected attributes would be
sent outside the location where the full entries are processed.

Figure 4. Fractional Replication for Protected Data

To leave schema checking enabled on the replicas that receive fractional updates,

portions of entries that are replicated must themselves be complete entries. In other
words, in the example above, the entry’s structural object class would have to allow

manager: uid=2jD5NanzOZGjMmcz,ou=people,ou=Region

1,dc=example,dc=com

ou: People

ou: Product Development

preferredLanguage: en, ko;q=0.8

roomnumber: 0209

sn: Jensen

telephonenumber: +1 408 555 1862

uidNumber: 1076

userpassword: {PBKDF2-HMAC-SHA256}10000:<hash>

Outside the user's region, you replicate only these attributes:

uid: aqeprfEUXIEuMa7M

classOfService: bronze

55 / 63

classOfService and uid . This would require editing the schema, and the

objectClass values of the entries. For details, see LDAP Schema.

For additional information, see Fractional Replication.

Common use cases involve interoperability with other directory software.

Use Case See…​

More than one directory service Proxy Layer

Credentials in another directory service Pass-Through Authentication

Must sync changes across directory
services

Data Synchronization and Migration

Web clients need alternate data views Alternative Views

Adding a directory proxy layer can help you deploy alongside an existing directory
service. The proxy layer lets you provide a single entry point to both new and old

directory services.

You configure a directory proxy server to connect to servers in each directory. DS proxy

servers can discover DS directory servers by connecting to DS replication servers. For
other directories, you must statically enumerate the directory server to contact. DS

proxy servers work with any LDAP directory server that supports the standard proxied
authorization control defined in RFC 4370 .

Each DS proxy server forwards client requests to the directory service based on the
target DN of the operation. As long as the base DNs for each directory service differ, the

proxy layer can provide a single entry point to multiple directory services.

For details, see Single Point of Access.

For cases where an existing directory service holds authentication credentials, DS

servers provide a feature called pass-through authentication.

With pass-through authentication, the DS server effectively redirects LDAP bind

operations to a remote LDAP directory service. If the DS and remote user accounts do
not have the same DN, you configure the DS server to automatically map local entries to

Interoperability

Proxy Layer



Pass-Through Authentication

file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-fractional
https://tools.ietf.org/html/rfc4370
https://tools.ietf.org/html/rfc4370
https://tools.ietf.org/html/rfc4370
file:///home/pptruser/Downloads/build/site/ds/config-guide/proxy.html#proxy-access-point

56 / 63

the remote entries. Pass-through authentication can cache passwords if necessary for

higher performance with frequent authentication.

For details, see Pass-Through Authentication.

You may need to continually synchronize changes across multiple services, or to migrate
data from an existing directory service.

For ongoing data synchronization across multiple services, consider ForgeRock Identity
Management software or a similar solution. ForgeRock Identity Management software

supports configurable data reconciliation and synchronization at high scale, and with
multiple data sources, including directory services.

For one-time upgrade and data migration to DS software, the appropriate upgrade and
migration depends on your deployment:

Offline Migration

When downtime is acceptable, you can synchronize data, then migrate applications

to the DS service and retire the old service.

Depending on the volume of data, you might export LDIF from the old service and

import LDIF into the DS service during the downtime period. In this case, stop the
old service at the beginning of the downtime period to avoid losing changes.

If the old service has too much data to fit the export/import operation into the
downtime period, you can perform an export/import operation before the

downtime starts, but you must then implement ongoing data synchronization from
the old service to the DS service. Assuming you can keep the new DS service

updated with the latest changes, the DS service will be ready to use. You can stop
the old service after migrating the last client application.

Online Migration

When downtime is not acceptable, both services continue running concurrently.

You must be able to synchronize data, possibly in both directions. ForgeRock
Identity Management software supports bi-directional data synchronization.

Once you have bi-directional synchronization operating correctly, migrate
applications from the old service to the DS service. You can stop the old service

after migrating the last client application.

Not all directory clients expect the same directory data. Clients might even expect
completely different identity objects.

Data Synchronization and Migration

Alternative Views

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#pta

57 / 63

DS servers expose the same LDAP data view to all directory clients. (You can adjust this

behavior somewhat for update operations, as described in Change Incoming Updates.)

The RESTful views of directory data for HTTP clients are fully configurable, however. By

developing alternative REST to LDAP mappings and exposing multiple APIs, or different
versions of the same API, you can present directory data in different ways to different

applications. For details, see Configure HTTP User APIs, and REST to LDAP Reference.

Before running Directory Services software in production, review the Requirements page
of the Release Notes, and the following information.

Given availability requirements and estimates on sizing for services, estimate the
required capacity for individual systems, networks, and storage. Sizing described here

only accounts for DS servers. Monitoring and audit tools, backup storage, and client
applications require additional resources.

CPU, memory, network, and storage requirements depend in large part on the services
you plan to provide. The indications in Hardware are only starting points for your sizing

investigation.

For details about how each component uses system resources, see DS Software.

Directory servers consume significant CPU resources when processing username-

password authentications where the password storage scheme is computationally
intensive (Bcrypt, PBKDF2, PKCS5S2).

DS servers also use CPU resources to decode requests and encode responses, and to set
up secure connections. LDAP is a connection-oriented protocol, so the cost of setting up

a connection may be small compared to the lifetime of the connection.

Provisioning Systems

Sizing Systems

CPU

Using a computationally intensive password storage scheme such as Bcrypt will

have a severe impact on performance. Before you deploy a computationally
intensive password storage scheme in production, you must complete sufficient

performance testing and size your deployment appropriately. Provision enough
CPU resources to keep pace with the peak rate of simple binds. If you do not

complete this testing and sizing prior to deploying in production, you run the risk of
production outages due to insufficient resources.

WARNING

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/write-ldap.html#filter-adds-modifies
file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-rest2ldap-endpoint
file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest2ldap.html
https://backstage.forgerock.com/docs/ds/latest/release-notes/requirements.html
https://backstage.forgerock.com/docs/ds/latest/release-notes/requirements.html#prerequisites-hardware
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/about-components.html

58 / 63

HTTP, however, requires a new connection for each operation. If you have a significant

volume of HTTPS traffic, provision enough CPU resources to set up secure connections.

Directory server memory requirements depend primarily on how you cache directory

data. If your directory data set can fit entirely into system memory, provision enough
RAM to cache everything. The RAM available for the server should be 1.5 to 2 times the

total size of the database files on disk. By default, database files are stored under the

/path/to/opendj/db directory.

By default, DS directory servers cache database internal nodes in the JVM heap. The file
system cache holds the database leaf nodes. For details, see Cache Internal Nodes.

DS servers also use memory to maintain active connections and processes. As indicated
in Memory, provision an additional minimum of 2 GB RAM or more depending on the

volume of traffic to your service.

When sizing network connections, account for all requests and responses, including
replication traffic. When calculating request and response traffic, base your estimates on

your key client applications. When calculating replication traffic, be aware that all write
operations must be communicated over the network, and replayed on each directory

server. Each write operation results in at least N-1 replication messages, where N is the
total number of servers. Be aware that all DS servers running a replication service are

fully connected, including those servers that are separated by WAN links.

For deployments in multiple regions, account especially for traffic over WAN links, as this

is much more likely to be an issue than traffic over LAN links.

Make sure to size enough bandwidth for peak throughput, and do not forget

redundancy for availability.

The largest disk I/O loads for DS servers arise from logging and writing directory data.
You can also expect high disk I/O when performing a backup operation or exporting data

to LDIF.

I/O rates depend on the service levels that the deployment provides. When you size disk

I/O and disk space, you must account for peak rates and leave a safety margin when you
must briefly enable debug logging to troubleshoot any issues that arise.

Also, keep in mind the possible sudden I/O increases that can arise in a highly available
service when one server fails and other servers must take over for the failed server

Memory

Network Connections

Disk I/O and Storage

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-db-internal-nodes
https://backstage.forgerock.com/docs/ds/latest/release-notes/requirements.html#prerequisites-memory

59 / 63

temporarily.

DS server access log files grow more quickly than other logs. Default settings prevent
each access logger’s files from growing larger than 2 GB before removing the oldest. If

you configure multiple access loggers at once, multiply 2 GB by their number.

Directory server database backend size grows as client applications modify directory

data. Even if data set’s size remains constant, the size of the backend grows. Historical
data on modified directory entries increases until purged by the directory server when it

reaches the replication purge delay (default: 3 days). In order to get an accurate disk
space estimate, follow the process described in Plan to Scale.

Replication server changelog backend size is subject to the same growth pattern as
historical data. Run the service under load until it reaches the replication purge delay to

estimate disk use.

For highest performance, use fast SSD disk and separate disk subsystems logging,

backup, and database backends.

DS client and server code is pure Java, and depends only on the JVM. This means you can

run clients and servers on different operating systems, and copy backup files and
archives from one system to another.

DS servers and data formats are portable across operating systems. When using

multiple operating systems, nevertheless take the following features into account:

Command-Line Tool Locations

DS server and command-line tools are implemented as scripts. The path to the
scripts differ on UNIX/Linux and Windows systems. Find UNIX/Linux scripts in the

bin directory. Find Windows scripts in the bat folder.

Native Packaging

When you download DS software, you choose between cross-platform and native
packages.

Cross-platform .zip packaging facilitates independence from the operating
system. You manage the server software in the same way, regardless of the

operating system.

Native packaging facilitates integration with the operating system. You use the

operating system tools to manage the software.

Both packaging formats provide scripts to help register the server as a service of the

operating system. These scripts are create-rc-script (UNIX/Linux) and windows-

Portability

Server Portability

file:///home/pptruser/Downloads/build/site/ds/deployment-guide/patterns.html#patterns-scale-start

60 / 63

service (Windows).

The only persistent state for gateway applications is in their configuration files. The
gateway configuration files are portable across web application containers and

operating systems.

Use these checklists when deploying your directory service:

Task Done?

Understand the business requirements

for your DS deployment

▢

Identify key client applications ▢

Identify project stakeholders ▢

Define SLOs based on business

requirements

▢

Define project scope ▢

Define project roles and responsibilities ▢

Schedule DS training for deployment

team members

▢

Task Done?

Find out how to get help and support

from ForgeRock and partners

▢

Find out how to get training from

ForgeRock and partners

▢

Gateway Portability

Deployment Checklists

Initiate the Project

Prepare Supportability

61 / 63

Task Done?

Find out how to keep up to date with new

development and new releases

▢

Find out how to report problems ▢

Task Done?

Understand the roles of directory

components

▢

Define architecture, mapping

requirements to component features

▢

Define the directory data model ▢

Define the directory access model ▢

Define the replication model ▢

Define how to backup, restore, and
recover data

▢

Define how you will monitor and audit
the service

▢

Determine how to harden and secure the
service

▢

Task Done?

Engage development of custom server
plugins as necessary

▢

Apply configuration management ▢

Create a test plan ▢

Engage automation, continuous
integration

▢

Design the Service

Develop the Service

62 / 63

Task Done?

Create a documentation plan ▢

Create a maintenance and support plan ▢

Pilot the implementation ▢

Size systems to provision for production ▢

Execute test plans ▢

Execute documentation plans ▢

Create a rollout plan in alignment with all

stakeholders

▢

Prepare patch and upgrade plans ▢

Task Done?

Ensure appropriate support for

production services

▢

Execute the rollout plan ▢

Engage ongoing monitoring and auditing
services

▢

Engage ongoing maintenance and
support

▢

Task Done?

Execute patch and upgrade plans as
necessary

▢

Plan how to adapt the deployment to
new and changing requirements

▢

Implement the Service

Maintain the Service

63 / 63

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

