
1 / 99

Use this guide to get a quick, hands-on look at what Directory Services software can do.
You will download, install, and use DS on your local computer.

Expect to spend 30-120 minutes working through this guide.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive
Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of
their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

The ForgeRock® Common REST API works across the platform to provide common ways

to access web resources and collections of resources.

Start here



Install DS software.

Install DS



Use DS LDAP tools.

Learn LDAP



Access DS over HTTP.

Learn REST/HTTP



Replicate DS data.

Learn Replication



Measure LDAP

operations.

Measure Performance



Learn DS ACIs.

Learn Access Control



https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ds/getting-started/install.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/ldap.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/rest.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/replication.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/performance.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/acis.html

2 / 99

1. To evaluate DS software, make sure you have 10 GB free disk space for the
software and for sample data.

2. Verify that you have a supported Java version installed on your local computer.

For details, check the supported Java versions.

3. If you plan to run the Bash-based REST API examples, make sure the curl
command is available.

For details, see the curl site .

Directory Services software is free to download, evaluate, and use in development:

1. If you do not have an account on ForgeRock BackStage , sign up for one.

2. Sign in to ForgeRock BackStage.

3. Find and download the latest Directory Services ZIP distribution.

1. Unzip the .zip file into the file system directory where you want to install the

server.

Unzipping the .zip file creates a top-level opendj directory in the directory

where you unzipped the file. On Windows systems if you unzip the file with
Right-Click > Extract All, remove the trailing opendj-version directory from

the folder you specify.

Install DS

DS software has no GUI. Instead, DS software is bundled with command-line tools.

Because LDAP is standard, you can use third-party GUI tools to view and edit
directory data. For a short list, see Try Third-Party Tools.

TIP

Prepare For Installation



Download DS Software



Install a Directory Server

https://backstage.forgerock.com/docs/ds/latest/release-notes/requirements.html#prerequisites-java
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://backstage.forgerock.com/
https://backstage.forgerock.com/
https://backstage.forgerock.com/
file:///home/pptruser/Downloads/build/site/ds/getting-started/further.html#further-tools

3 / 99

The documentation shows the installation file system directory as

/path/to/opendj .

For example:

1. Bash

2. PowerShell

3. Zsh

2. Use the setup command to set up a server with the ds-evaluation profile.
The evaluation profile includes Example.com sample data, more lenient access

control, and some other features.

The following example runs the command non-interactively. Use the same

settings shown here to be able to copy and paste the commands shown in this
guide:

1. Bash

2. PowerShell

3. Zsh

$ unzip ~/Downloads/DS-7.1.8.zip -d /path/to

PS C:\path\to> Expand-Archive DS-7.1.8.zip C:\path\to

% unzip ~/Downloads/DS-7.1.8.zip -d /path/to

$ /path/to/opendj/setup \

--serverId first-ds \

--deploymentKeyPassword password \

--rootUserDn uid=admin \

--rootUserPassword password \

--monitorUserPassword password \

--hostname localhost \

--ldapPort 1389 \

--ldapsPort 1636 \

--httpsPort 8443 \

--adminConnectorPort 4444 \

--replicationPort 8989 \

--profile ds-evaluation \

--start \

--acceptLicense

Validating parameters..... Done

4 / 99

Configuring certificates..... Done

Store the following deployment key in a safe place and re-

use it when

configuring other servers in the topology:

<deployment-key>

Configuring server... Done

Configuring profile DS evaluation.....................

Done

Starting directory server............... Done

To see basic server status and configuration, you can

launch

/path/to/opendj/bin/status

PS C:\path\to> C:\path\to\opendj\setup.bat `

--serverId first-ds `

--deploymentKeyPassword password `

--rootUserDn uid=admin `

--rootUserPassword password `

--monitorUserPassword password `

--hostname localhost `

--ldapPort 1389 `

--ldapsPort 1636 `

--httpsPort 8443 `

--adminConnectorPort 4444 `

--replicationPort 8989 `

--profile ds-evaluation `

--start `

--acceptLicense

% /path/to/opendj/setup \

--serverId first-ds \

--deploymentKeyPassword password \

--rootUserDn uid=admin \

--rootUserPassword password \

--monitorUserPassword password \

--hostname localhost \

--ldapPort 1389 \

--ldapsPort 1636 \

--httpsPort 8443 \

--adminConnectorPort 4444 \

5 / 99

Save the generated <deployment-key> . You will use this key later when setting

up a second server for replication.

The setup command shown here has the following options:

--rootUserDn uid=admin

These options set the credentials for the directory superuser. This user

has privileges to perform any and all administrative operations, and is not
subject to access control. It is called the root user due to the similarity to

the UNIX root user.

The root user distinguished name (DN) identifies the directory superuser.

In LDAP, a DN is the fully qualified name for a directory entry. The name
used here is the default name: uid=admin .

--monitorUserPassword password

The monitor user has the privilege to read monitoring data. No --

monitorUserDn option is set, so the DN defaults to uid=Monitor .

--hostname localhost

The server uses the fully qualified domain name for identification
between replicated servers.

Using localhost is a shortcut suitable only for evaluation on your local
computer. In production, set this to the fully qualified domain name, such

as ds.example.com .

--ldapPort 1389

The reserved port for LDAP is 389 . Connections to this port can be
secured with StartTLS, but are not secure by default.

Examples in the documentation use 1389 , which is accessible to non-
privileged users.

--ldapsPort 1636

The reserved port for LDAPS is 636 . Connections to this port are secured

with TLS.

Examples in the documentation use 1636 , which is accessible to non-

privileged users.

--httpsPort 8443

--replicationPort 8989 \

--profile ds-evaluation \

--start \

--acceptLicense

More about setup options

6 / 99

The reserved port for HTTPS is 443 .

HTTP client applications access directory data and monitoring
information on this port.

Examples in the documentation use 8443 , which is accessible to non-
privileged users.

--adminConnectorPort 4444

This is the service port used to configure the server and to run tasks.

Connections to this port are secured with TLS.

The port used in the documentation is 4444 , which is the initial port

suggested during interactive setup.

--replicationPort 8989

This is the service port used for replication messages.

The port used in the documentation is 8989 , which is the initial port

suggested during interactive setup.

--profile ds-evaluation

The setup profile adds hard-coded entries for users like Babs Jensen, and
groups like Directory Administrators. It also generates 100,000 sample

LDAP user entries. All generated users have the same password, literally
password . The generated user accounts are helpful for performance

testing.

All entries are added under the base DN dc=example,dc=com . A base

DN is the suffix shared by all DNs in a set of directory data.

LDAP entries are arranged hierarchically in the directory. The hierarchical

organization resembles a file system on a PC or a web server, often
visualized as an upside down tree structure, or a pyramid. In the same

way a full path uniquely identifies each file or folder in a file system, a DN
uniquely identifies each LDAP entry.

Each DN consists of components separated by commas, such as
uid=bjensen,ou=People,dc=example,dc=com . The base DN matches

the final components of each DN in that branch of the directory. A DN’s
components reflect the hierarchy of directory entries. The user entry with

DN uid=bjensen,ou=People,dc=example,dc=com is under the
organizational unit entry ou=People,dc=example,dc=com , which in turn

is under dc=example,dc=com .

Basic components have the form attribute-name=attribute-value ,

such as dc=com . In the example dc=com , the attribute dc (DNS domain

7 / 99

component) has the value com . The DN dc=example,dc=com reflects

the DNs domain name example.com .

--start

By default, the setup command does not start the server. This lets you
complete any necessary configuration steps before starting the server for

the first time, which may initiate the replication process.

In this case, you have no further configuration to do. This option causes

the server to start immediately.

--acceptLicense

Remove this option to read the license and then accept it interactively.

Alternatively, you can run the setup command interactively by starting it

without options.

3. Add the DS tools to your PATH to avoid having to specify the full path for each

command:

1. Bash

2. PowerShell

3. Zsh

4. Run the status command:

1. Bash

2. PowerShell

3. Zsh

$ export PATH=/path/to/opendj/bin:${PATH}

PS C:\path\to> $env:PATH += ";C:\path\to\opendj\bat"

% export PATH=/path/to/opendj/bin:${PATH}

$ status \

--bindDn uid=admin \

--bindPassword password \

--hostname localhost \

--port 4444 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

8 / 99

The status command uses a secure connection to the administration port. To

trust the server’s certificate, the command uses the server’s own truststore.

Read the output that the status command displays.

LDAP is short for Lightweight Directory Access Protocol, a standard Internet protocol.

The examples that follow show you how to use bundled DS command-line tools to send
LDAP requests.

Before you try the examples, set up a server, as described in Install DS. Make sure you
added the command-line tools to your PATH:

1. Bash

2. PowerShell

3. Zsh

PS C:\path\to> status.bat `

--bindDn uid=admin `

--bindPassword password `

--hostname localhost `

--port 4444 `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file

C:\path\to\opendj\config\keystore.pin

% status \

--bindDn uid=admin \

--bindPassword password \

--hostname localhost \

--port 4444 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

Learn LDAP

$ export PATH=/path/to/opendj/bin:${PATH}

PS C:\path\to> $env:PATH += ";C:\path\to\opendj\bat"

file:///home/pptruser/Downloads/build/site/ds/getting-started/install.html

9 / 99

Searching the directory is like searching for a phone number in a phone book. You can
look up a subscriber’s phone number because you know the subscriber’s last name. In

other words, you use the value of an attribute to find entries that have attributes of
interest.

When looking up a subscriber’s entry in a phone book, you need to have some idea
where they live in order to pick the right phone book. For example, a Los Angeles

subscriber cannot be found in the New York phone book. In an LDAP directory, you need
to know at least the base DN to search under.

For this example, assume you know a user’s full name, Babs Jensen , and that Babs
Jensen’s entry is under the base DN dc=example,dc=com . You want to look up Babs

Jensen’s email and office location. The following command sends an appropriate LDAP
search request to the server you installed:

1. Bash

2. PowerShell

3. Zsh

% export PATH=/path/to/opendj/bin:${PATH}

Search

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

cn mail street l

dn: uid=bjensen,ou=People,dc=example,dc=com

cn: Barbara Jensen

cn: Babs Jensen

l: San Francisco

mail: bjensen@example.com

street: 201 Mission Street Suite 2900

PS C:\path\to> ldapsearch.bat `

--hostname localhost `

--port 1636 `

10 / 99

Notice the following characteristics of the search:

The command makes a secure connection to the server using LDAPS.

The command relies on the server’s truststore to trust the CA certificate used to

sign the server certificate.

The base DN option, --baseDn dc=example,dc=com , tells the server where to

look for Babs Jensen’s entry. Servers can hold data for multiple base DNs, so this
is important information.

It is possible to restrict the scope of the search, but the default is to search the
entire subtree under the base DN.

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--baseDn dc=example,dc=com `

"(cn=Babs Jensen)" `

cn mail street l

dn: uid=bjensen,ou=People,dc=example,dc=com

cn: Barbara Jensen

cn: Babs Jensen

l: San Francisco

mail: bjensen@example.com

street: 201 Mission Street Suite 2900

% ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

cn mail street l

dn: uid=bjensen,ou=People,dc=example,dc=com

cn: Barbara Jensen

cn: Babs Jensen

l: San Francisco

mail: bjensen@example.com

street: 201 Mission Street Suite 2900

More about the search example

11 / 99

The command uses a search filter, "(cn=Babs Jensen)" , which tells the server,

"Find entries whose cn attribute exactly matches the string Babs Jensen
without regard to case."

The cn (commonName) attribute is a standard attribute for full names.

Internally, the directory server has an equality index for the cn attribute. The

directory uses the index to quickly find matches for babs jensen . The default
behavior in LDAP is to ignore case, so "(cn=Babs Jensen)" , "(cn=babs

jensen)" , and "(CN=BABS JENSEN)" are equivalent.

If more than one entry matches the filter, the server returns multiple entries.

The filter is followed by a list of LDAP attributes, cn mail street l . This tells
the server to return only the specified attributes in the search result entries. By

default, if you do not specify the attributes to return, the server returns all the
user attributes that you have the right to read.

The result shows attributes from a single entry. Notice that an LDAP entry,
represented here in the standard LDIF format, has a flat structure with no

nesting.

The DN that uniquely identifies the entry is

uid=bjensen,ou=People,dc=example,dc=com . Multiple entries can have the
same attribute values, but each must have a unique DN. This is the same as

saying that the leading relative distinguished name (RDN) value must be unique at
this level in the hierarchy. Only one entry directly under

ou=People,dc=example,dc=com has the RDN uid=bjensen .

The mail , street , l (location), and uid attributes are all standard LDAP

attributes like cn .

For additional examples, see LDAP Search.

You installed the server with the ds-evaluation profile. That profile grants access to
search Example.com data without authenticating to the directory. When modifying

directory data, however, you must authenticate first. LDAP servers must know who you
are to determine what you have access to.

In the following example Babs Jensen modifies the description on her own entry:

1. Bash

2. PowerShell

3. Zsh

Modify

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/search-ldap.html

12 / 99

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN

uid=bjensen,ou=People,dc=example,dc=com

PS C:\path\to> New-Item -Path . -Name "description.ldif" -ItemType

"file" -Value @"

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: New description

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=bjensen,ou=People,dc=example,dc=com `

--bindPassword hifalutin `

description.ldif

MODIFY operation successful for DN

uid=bjensen,ou=People,dc=example,dc=com

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

13 / 99

Babs Jensen’s authentication credentials are provided with the --bindDn and --
bindPassword options. Notice that the user identifier is Babs Jensen’s DN.

Authentication operations bind an LDAP identity to a connection. In LDAP, a client
application connects to the server, then binds an identity to the connection. An

LDAP client application keeps its connection open until it finishes performing its
operations. The server uses the identity bound to the connection to make

authorization decisions for subsequent operations, such as search and modify
requests.

If no credentials are provided, then the identity for the connection is that of an
anonymous user. As a directory administrator, you can configure access controls

for anonymous users just as you configure access controls for other users.

A simple bind involving a DN and a password is just one of several supported

authentication mechanisms. The documentation frequently shows simple binds
in examples because this kind of authentication is so familiar. Alternatives include

authenticating with a digital certificate, or using Kerberos.

The modification is expressed in standard LDAP Data Interchange Format (LDIF).

The LDIF specifies the DN of the target entry to modify. It then indicates that the
change to perform is an LDAP modify, and that the value New description is to

replace existing values of the description attribute.

Notice that the result is a comment indicating success. The command’s return

code—​0, but not shown in the example—​also indicates success.

The scripts and applications that you write should use and trust LDAP return

codes.

For additional examples, see LDAP Updates, and Passwords.

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN

uid=bjensen,ou=People,dc=example,dc=com

More about the modify example

Add

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/write-ldap.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/change-password.html

14 / 99

Authorized users can modify attributes, and can also add and delete directory entries.

The following example adds a new user entry to the directory:

1. Bash

2. PowerShell

3. Zsh

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=admin \

--bindPassword password <<EOF

dn: uid=newuser,ou=People,dc=example,dc=com

uid: newuser

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: top

cn: New User

sn: User

ou: People

mail: newuser@example.com

userPassword: chngthspwd

EOF

ADD operation successful for DN

uid=newuser,ou=People,dc=example,dc=com

PS C:\path\to> New-Item -Path . -Name "user.ldif" -ItemType "file"

-Value @"

dn: uid=newuser,ou=People,dc=example,dc=com

uid: newuser

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: top

cn: New User

sn: User

ou: People

mail: newuser@example.com

15 / 99

The bind DN for the user requesting the add is uid=admin . It is also possible to

authorize regular users to add entries.

The entry to add is expressed in standard LDIF.

userPassword: chngthspwd

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=admin `

--bindPassword password `

user.ldif

ADD operation successful for DN

uid=newuser,ou=People,dc=example,dc=com

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=admin \

--bindPassword password <<EOF

dn: uid=newuser,ou=People,dc=example,dc=com

uid: newuser

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: top

cn: New User

sn: User

ou: People

mail: newuser@example.com

userPassword: chngthspwd

EOF

ADD operation successful for DN

uid=newuser,ou=People,dc=example,dc=com

More about the add example

16 / 99

For additional examples, see LDAP Updates.

The following example deletes the user added in Add:

1. Bash

2. PowerShell

3. Zsh

Delete

$ ldapdelete \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=admin \

--bindPassword password \

uid=newuser,ou=People,dc=example,dc=com

DELETE operation successful for DN

uid=newuser,ou=People,dc=example,dc=com

PS C:\path\to> ldapdelete.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=admin `

--bindPassword password `

uid=newuser,ou=People,dc=example,dc=com

DELETE operation successful for DN

uid=newuser,ou=People,dc=example,dc=com

% ldapdelete \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=admin \

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/write-ldap.html

17 / 99

Notice that the ldapdelete command specifies the entry to delete by its DN.

For additional examples, see LDAP Updates.

The examples that follow show you how to send RESTful HTTP requests to the directory

server.

Before you try the examples, set up a server, as described in Install DS.

ForgeRock Directory Services let you access directory data over HTTP as well as LDAP.

The feature is known as REST to LDAP because it transforms REST operations into
LDAP operations.

The server maps JSON resources to LDAP entries in order to convert HTTP operations
to LDAP internally. The directory server you installed is bundled with a default

mapping file for sample data. You can configure your own mapping depending on
your directory data, and the JSON objects you want.

Get the deployment CA certificate used to trust the server in the RESTful examples:

When using the Bash or Zsh examples with curl commands, get the deployment CA
certificate in PEM format, which the curl command can read:

--bindPassword password \

uid=newuser,ou=People,dc=example,dc=com

DELETE operation successful for DN

uid=newuser,ou=People,dc=example,dc=com

Learn REST/HTTP

More about HTTP access

Prepare

(Bash, Zsh) Get the CA cert in PEM format

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/write-ldap.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/install.html

18 / 99

1. Bash

2. Zsh

For PowerShell examples, first configure Windows to trust the deployment CA
certificate. Import the deployment CA from the server truststore using Microsoft

Management Console (MMC):

1. Run Microsoft Management Console (mmc.exe).

2. Add the certificates snap-in so you can import the deployment CA certificate:

In the console, select File > Add/Remove Snap-in, then Add.

Select Certificates from the list of snap-ins and click Add.

Finish the wizard.

3. Import the deployment CA certificate using the snap-in:

Select Console Root > Trusted Root Certification Authorities >

Certificates.

In the Action menu, select Import to open the wizard.

Use the wizard to import the deployment CA certificate from the server
truststore file, C:\path\to\opendj\config\keystore .

The truststore password is the text in the file
C:\path\to\opendj\config\keystore.pin .

Use the REST API to create a user resource over HTTP:

$ dskeymgr \

export-ca-cert \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--outputFile ca-cert.pem

% dskeymgr \

export-ca-cert \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--outputFile ca-cert.pem

(PowerShell) Import the CA certificate with MMC

Create

19 / 99

1. Bash

2. PowerShell

3. Zsh

$ curl \

--request POST \

--cacert ca-cert.pem \

--user admin:password \

--header "Content-Type: application/json" \

--data '{

"_id": "newuser",

"_schema":"frapi:opendj:rest2ldap:user:1.0",

"contactInformation": {

"telephoneNumber": "+1 408 555 1212",

"emailAddress": "newuser@example.com"

},

"name": {

"givenName": "New",

"familyName": "User"

},

"displayName": ["New User"],

"manager": {

"_id": "bjensen",

"displayName": "Babs Jensen"

}

}' \

https://localhost:8443/api/users?_prettyPrint=true

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

"displayName" : ["New User"],

"name" : {

"givenName": "New",

"familyName": "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

20 / 99

},

"contactInformation" : {

"telephoneNumber" : "+1 408 555 1212",

"emailAddress" : "newuser@example.com"

}

}

PS C:\path\to> $Credentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.Get

Bytes("admin:password"))

$Headers = @{

Authorization = "Basic $Credentials"

}

Invoke-RestMethod `

-Uri https://localhost:8443/api/users `

-Method Post `

-Headers $Headers `

-ContentType application/json `

-Body @"

{

"_id": "newuser",

"_schema":"frapi:opendj:rest2ldap:user:1.0",

"contactInformation": {

"telephoneNumber": "+1 408 555 1212",

"emailAddress": "newuser@example.com"

},

"name": {

"givenName": "New",

"familyName": "User"

},

"displayName": ["New User"],

"manager": {

"_id": "bjensen",

"displayName": "Babs Jensen"

}

}

"@ | ConvertTo-JSON

{

"_id": "newuser",

"_rev": "<revision>",

"_schema": "frapi:opendj:rest2ldap:user:1.0",

"_meta": {

"created": "<timestamp>"

21 / 99

},

"userName": "newuser@example.com",

"displayName": [

"New User"

],

"name": {

"givenName": "New",

"familyName": "User"

},

"manager": {

"_id": "bjensen",

"_rev": "<revision>"

},

"contactInformation": {

"telephoneNumber": "+1 408 555

1212",

"emailAddress":

"newuser@example.com"

}

}

% curl \

--request POST \

--cacert ca-cert.pem \

--user admin:password \

--header "Content-Type: application/json" \

--data '{

"_id": "newuser",

"_schema":"frapi:opendj:rest2ldap:user:1.0",

"contactInformation": {

"telephoneNumber": "+1 408 555 1212",

"emailAddress": "newuser@example.com"

},

"name": {

"givenName": "New",

"familyName": "User"

},

"displayName": ["New User"],

"manager": {

"_id": "bjensen",

"displayName": "Babs Jensen"

}

}' \

"https://localhost:8443/api/users?_prettyPrint=true"

22 / 99

The command makes a secure connection to the server using HTTPS.

The user performing the HTTP POST is the directory superuser.

The default authorization mechanism for HTTP access is HTTP Basic

authentication. The superuser’s HTTP user ID, admin , is mapped to the LDAP DN,
uid=admin . REST to LDAP uses the DN and password to perform a simple LDAP

bind for authentication. The directory can then use its LDAP-based access control
mechanisms to authorize the operation.

The form of the JSON data respects the API defined by the mapping file. The
example mapping file is a JSON format configuration file with comments. See

/path/to/opendj/config/rest2ldap/endpoints/api/example-v1.json .

The successful response is the JSON resource that the command created.

Fields whose names start with _ are reserved. For details, see DS REST APIs.

For additional details, see DS REST APIs and Create.

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

"displayName" : ["New User"],

"name" : {

"givenName": "New",

"familyName": "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 408 555 1212",

"emailAddress" : "newuser@example.com"

}

}

More about the example

Read

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest-operations.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest-operations.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/create-rest.html

23 / 99

Use the REST API to read the user resource created in Create:

1. Bash

2. PowerShell

3. Zsh

$ curl \

--request GET \

--cacert ca-cert.pem \

--user bjensen:hifalutin \

--header "Content-Type: application/json" \

https://localhost:8443/api/users/newuser?_prettyPrint=true

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

"displayName" : ["New User"],

"name" : {

"givenName": "New",

"familyName": "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 408 555 1212",

"emailAddress" : "newuser@example.com"

}

}

PS C:\path\to> $Credentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.Get

Bytes("bjensen:hifalutin"))

$Headers = @{

Authorization = "Basic $Credentials"

}

Invoke-RestMethod `

-Uri https://localhost:8443/api/users/newuser `

24 / 99

-Method Get `

-Headers $Headers `

-ContentType application/json | ConvertTo-JSON

{

"_id": "newuser",

"_rev": "<revision>",

"_schema": "frapi:opendj:rest2ldap:user:1.0",

"_meta": {

"created": "<timestamp>"

},

"userName": "newuser@example.com",

"displayName": [

"New User"

],

"name": {

"givenName": "New",

"familyName": "User"

},

"manager": {

"_id": "bjensen",

"_rev": "<revision>"

},

"contactInformation": {

"telephoneNumber": "+1 408 555

1212",

"emailAddress":

"newuser@example.com"

}

}

% curl \

--request GET \

--cacert ca-cert.pem \

--user bjensen:hifalutin \

--header "Content-Type: application/json" \

"https://localhost:8443/api/users/newuser?_prettyPrint=true"

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

25 / 99

Notice that Babs Jensen authenticates for this HTTP GET request. If no credentials are

specified, the response is the HTTP 401 Unauthorized:

In other words, the HTTP Basic authorization mechanism requires authentication even

for read operations.

For additional details, see DS REST APIs and Read. You can also query collections of

resources, as described in Query.

Use the REST API to replace the user resource created in Create:

1. Bash

2. PowerShell

3. Zsh

},

"userName" : "newuser@example.com",

"displayName" : ["New User"],

"name" : {

"givenName": "New",

"familyName": "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 408 555 1212",

"emailAddress" : "newuser@example.com"

}

}

{"code":401,"reason":"Unauthorized","message":"Invalid

Credentials"}

Update

$ curl \

--request PUT \

--cacert ca-cert.pem \

--user admin:password \

--header "Content-Type: application/json" \

--header "If-Match: *" \

--data '{

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest-operations.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/read-rest.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/query-rest.html

26 / 99

"_id": "newuser",

"_schema":"frapi:opendj:rest2ldap:user:1.0",

"contactInformation": {

"telephoneNumber": "+1 234 567 8910",

"emailAddress": "updated.user@example.com"

},

"name": {

"givenName": "Updated",

"familyName": "User"

},

"displayName": ["Updated User"],

"manager": {

"_id" : "bjensen",

"displayName" : "Babs Jensen"

}

}' \

https://localhost:8443/api/users/newuser?_prettyPrint=true

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

"displayName" : ["Updated User"],

"name" : {

"givenName" : "Updated",

"familyName" : "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 234 567 8910",

"emailAddress" : "updated.user@example.com"

}

}

PS C:\path\to> $Credentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.Get

Bytes("admin:password"))

27 / 99

$Headers = @{

"Authorization" = "Basic $Credentials"

"If-Match" = "*"

}

Invoke-RestMethod `

-Uri https://localhost:8443/api/users/newuser `

-Method Put `

-Headers $Headers `

-ContentType application/json `

-Body @"

{

"_id": "newuser",

"_schema":"frapi:opendj:rest2ldap:user:1.0",

"contactInformation": {

"telephoneNumber": "+1 234 567 8910",

"emailAddress": "updated.user@example.com"

},

"name": {

"givenName": "Updated",

"familyName": "User"

},

"displayName": ["Updated User"],

"manager": {

"_id" : "bjensen",

"displayName" : "Babs Jensen"

}

}

"@ | ConvertTo-JSON

{

"_id": "newuser",

"_rev": "<revision>",

"_schema": "frapi:opendj:rest2ldap:user:1.0",

"_meta": {

"created": "<timestamp>",

"lastModified": "<timestamp>"

},

"displayName": [

"Updated User"

],

"name": {

"givenName": "Updated",

"familyName": "User"

},

"manager": {

28 / 99

"_id": "bjensen",

"_rev": "<revision>"

},

"contactInformation": {

"telephoneNumber": "+1 234 567

8910"

}

}

% curl \

--request PUT \

--cacert ca-cert.pem \

--user admin:password \

--header "Content-Type: application/json" \

--header "If-Match: *" \

--data '{

"_id": "newuser",

"_schema":"frapi:opendj:rest2ldap:user:1.0",

"contactInformation": {

"telephoneNumber": "+1 234 567 8910",

"emailAddress": "updated.user@example.com"

},

"name": {

"givenName": "Updated",

"familyName": "User"

},

"displayName": ["Updated User"],

"manager": {

"_id" : "bjensen",

"displayName" : "Babs Jensen"

}

}' \

"https://localhost:8443/api/users/newuser?_prettyPrint=true"

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

"displayName" : ["Updated User"],

"name" : {

29 / 99

Resources are versioned using revision numbers. A revision is specified in the resource’s

_rev field. The --header "If-Match: *" ensures the resource is replaced,
regardless of its revision. Alternatively, you can set --header "If-Match: revision"

to replace only the expected revision of the resource.

For additional details, see DS REST APIs and Update. You can also patch resources

instead of replacing them entirely. See Patch.

Use the REST API to delete the user resource updated in Update:

1. Bash

2. PowerShell

3. Zsh

"givenName" : "Updated",

"familyName" : "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 234 567 8910",

"emailAddress" : "updated.user@example.com"

}

}

Delete

$ curl \

--request DELETE \

--cacert ca-cert.pem \

--user admin:password \

--header "Content-Type: application/json" \

https://localhost:8443/api/users/newuser?_prettyPrint=true

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest-operations.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/update-rest.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/patch-rest.html

30 / 99

"displayName" : ["Updated User"],

"name" : {

"givenName" : "Updated",

"familyName" : "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 234 567 8910",

"emailAddress" : "updated.user@example.com"

}

}

PS C:\path\to> $Credentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.Get

Bytes("admin:password"))

$Headers = @{

Authorization = "Basic $Credentials"

}

Invoke-RestMethod `

-Uri https://localhost:8443/api/users/newuser `

-Method Delete `

-Headers $Headers `

-ContentType application/json | ConvertTo-JSON

{

"_id": "newuser",

"_rev": "<revision>",

"_schema": "frapi:opendj:rest2ldap:user:1.0",

"_meta": {

"created": "<timestamp>",

"lastModified": "<timestamp>"

},

"displayName": [

"Updated User"

],

"name": {

"givenName": "Updated",

"familyName": "User"

},

"manager": {

"_id": "bjensen",

31 / 99

For additional details, see DS REST APIs and Delete.

"_rev": "<revision>"

},

"contactInformation": {

"telephoneNumber": "+1 234 567

8910"

}

}

% curl \

--request DELETE \

--cacert ca-cert.pem \

--user admin:password \

--header "Content-Type: application/json" \

"https://localhost:8443/api/users/newuser?_prettyPrint=true"

{

"_id" : "newuser",

"_rev" : "<revision>",

"_schema" : "frapi:opendj:rest2ldap:user:1.0",

"_meta" : {

"created" : "<timestamp>"

},

"userName" : "newuser@example.com",

"displayName" : ["Updated User"],

"name" : {

"givenName" : "Updated",

"familyName" : "User"

},

"manager" : {

"_id" : "bjensen",

"_rev" : "<revision>"

},

"contactInformation" : {

"telephoneNumber" : "+1 234 567 8910",

"emailAddress" : "updated.user@example.com"

}

}

Learn Replication

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest-operations.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/delete-rest.html

32 / 99

Replication provides automatic data synchronization between directory servers. It

ensures that all directory servers eventually share a consistent set of directory data.

Replication requires two or more directory servers and additional configuration. This
page takes you though the setup process quickly, providing commands that you can

reuse. It does not explain each command in detail.

For a full discussion of the subject, see Replication.

High-level steps:

1. Unpack the files for a second directory server in a different folder.

2. Set up the new server as a replica of the first server using the generated

<deployment-key> from Install DS.

The following example demonstrates the process:

1. Bash

2. PowerShell

3. Zsh

More about replication

Add a Replica

Unpack files for a second, replica server in a different folder:

cd ~/Downloads && unzip ~/Downloads/DS-7.1.8.zip && mv opendj

/path/to/replica

Set up a second, replica server:

/path/to/replica/setup \

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/install.html

33 / 99

--serverId second-ds \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--rootUserDn uid=admin \

--rootUserPassword password \

--hostname localhost \

--ldapPort 11389 \

--ldapsPort 11636 \

--adminConnectorPort 14444 \

--replicationPort 18989 \

--bootstrapReplicationServer localhost:8989 \

--profile ds-evaluation \

--start \

--acceptLicense

Unpack files for a second, replica server in a different folder:

Expand-Archive DS-7.1.8.zip C:\Temp

Rename-Item -Path C:\Temp\opendj -NewName C:\Temp\replica

Move-Item C:\Temp\replica C:\path\to

Set up a second, replica server:

C:\path\to\replica\setup.bat `

--serverId second-ds `

--deploymentKey <deployment-key> `

--deploymentKeyPassword password `

--rootUserDn uid=admin `

--rootUserPassword password `

--hostname localhost `

--ldapPort 11389 `

--ldapsPort 11636 `

--adminConnectorPort 14444 `

--replicationPort 18989 \

--bootstrapReplicationServer locahost:8989 \

--profile ds-evaluation `

--start `

--acceptLicense

Unpack files for a second, replica server in a different folder:

cd ~/Downloads && unzip ~/Downloads/DS-7.1.8.zip && mv opendj

/path/to/replica

Set up a second, replica server:

/path/to/replica/setup \

--serverId second-ds \

34 / 99

With the new replica set up and started, demonstrate that replication works:

1. Bash

2. PowerShell

3. Zsh

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--rootUserDn uid=admin \

--rootUserPassword password \

--hostname localhost \

--ldapPort 11389 \

--ldapsPort 11636 \

--adminConnectorPort 14444 \

--replicationPort 18989 \

--bootstrapReplicationServer localhost:8989 \

--profile ds-evaluation \

--start \

--acceptLicense

Try Replication

Update a description on the first server:

ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Replicate this

EOF

On the first server, read the description to see the effects of

your change:

ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

35 / 99

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

On the second server, read the description to see the change has

been replicated:

ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

Update a description on the first server:

New-Item -Path . -Name "mod-desc.ldif" -ItemType "file" -Value @"

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Replicate this

"@

ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=bjensen,ou=People,dc=example,dc=com `

--bindPassword password `

mod-desc.ldif

On the first server, read the description to see the effects of

your change:

ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--baseDn dc=example,dc=com `

36 / 99

"(cn=Babs Jensen)" `

description

On the second server, read the description to see the change has

been replicated:

ldapsearch.bat `

--hostname localhost `

--port 11636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--baseDn dc=example,dc=com `

"(cn=Babs Jensen)" `

description

Update a description on the first server:

ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Replicate this

EOF

On the first server, read the description to see the effects of

your change:

ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

On the second server, read the description to see the change has

been replicated:

37 / 99

Also demonstrate that replication works despite crashes and network interruptions:

1. Bash

2. PowerShell

3. Zsh

ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

Stop the second server to simulate a network outage or server

crash:

/path/to/replica/bin/stop-ds

On the first server, update the description again:

ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Second server is stopped

EOF

On the first server, read the description to see the change:

ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

38 / 99

description

Start the second server again to simulate recovery:

/path/to/replica/bin/start-ds

On the second server, read the description to check that

replication has resumed:

ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

Stop the second server to simulate a network outage or server

crash:

C:\path\to\replica\bat\stop-ds.bat

On the first server, update the description again:

New-Item -Path . -Name "mod-desc2.ldif" -ItemType "file" -Value @"

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Second server is stopped

"@

ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=bjensen,ou=People,dc=example,dc=com `

--bindPassword password `

mod-desc2.ldif

On the first server, read the description to see the change:

ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

39 / 99

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--baseDn dc=example,dc=com `

"(cn=Babs Jensen)" `

description

Start the second server again to simulate recovery:

C:\path\to\replica\bat\start-ds.bat

On the second server, read the description to check that

replication has resumed:

ldapsearch.bat `

--hostname localhost `

--port 11636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--baseDn dc=example,dc=com `

"(cn=Babs Jensen)" `

description

Stop the second server to simulate a network outage or server

crash:

/path/to/replica/bin/stop-ds

On the first server, update the description again:

ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Second server is stopped

EOF

On the first server, read the description to see the change:

ldapsearch \

--hostname localhost \

--port 1636 \

40 / 99

Unlike some databases, DS replication does not operate in active-passive mode. Instead,
you read and write on any running server. Replication replays your changes as soon as

possible. Demonstrate this to check your understanding:

1. Stop the first server.

Use the stop-ds command.

2. Modify an entry on the second server.

For an example, see Modify.

3. Restart the first server.

Use the start-ds command.

4. Search for the modified entry on the first server to check that replication replays the
change.

For an example, see Search.

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

Start the second server again to simulate recovery:

/path/to/replica/bin/start-ds

On the second server, read the description to check that

replication has resumed:

ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

Hint

Hint

Hint

Hint

file:///home/pptruser/Downloads/build/site/ds/getting-started/ldap.html#modify-ldap
file:///home/pptruser/Downloads/build/site/ds/getting-started/ldap.html#search-ldap

41 / 99

Some applications require notification when directory data updates occur. For example,

IDM can sync directory data with another database. Other applications start additional
processing when certain updates occur.

Replicated DS directory servers publish an external change log over LDAP. This
changelog allows authorized client applications to read changes to directory data:

1. Bash

2. PowerShell

3. Zsh

Notifications

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--baseDN cn=changelog \

--control "ecl:false" \

"(&)" \

changes changeLogCookie targetDN

C:\> ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDN uid=admin `

--bindPassword password `

--baseDN cn=changelog `

--control "ecl:false" `

"(objectclass=*)" `

changes changeLogCookie targetDN

% ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

42 / 99

When looking at the output of the command (not shown here), notice that the changes

values are base64-encoded in LDIF because they include line breaks. You can use the DS
base64 command to decode them. For details, see Changelog for Notifications.

DS directory servers offer high throughput and low response times for most operations.

DS software includes the following command-line tools for measuring performance of
common LDAP operations:

addrate measures LDAP adds and deletes

authrate measures LDAP binds

modrate measures LDAP modifications

searchrate measures LDAP searches

Measure the LDAP modification rate:

1. Bash

2. PowerShell

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--baseDN cn=changelog \

--control "ecl:false" \

"(&)" \

changes changeLogCookie targetDN

Measure Performance

Before trying the examples that follow, work through the previous examples. You

should have two directory server replicas running on your local computer, as
described in Learn Replication:

NOTE

Modifications

file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/addrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/authrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/modrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/searchrate.html
file:///home/pptruser/Downloads/build/site/ds/getting-started/replication.html

43 / 99

3. Zsh

Run modrate for 10 seconds against the first server:

modrate \

--maxDuration 10 \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin \

--noRebind \

--numConnections 4 \

--numConcurrentRequests 4 \

--targetDn "uid=user.{1},ou=people,dc=example,dc=com" \

--argument "rand(0,100000)" \

--argument "randstr(16)" \

"description:{2}"

Read number of modify requests on the LDAPS port:

ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=monitor \

--bindPassword password \

--baseDN "cn=LDAPS,cn=connection handlers,cn=monitor" \

"(&)" \

ds-mon-requests-modify

Run modrate for 10 seconds against the first server, and observe

the performance numbers:

modrate.bat `

--maxDuration 10 `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=bjensen,ou=People,dc=example,dc=com `

--bindPassword password `

44 / 99

--noRebind `

--numConnections 4 `

--numConcurrentRequests 4 `

--targetDn "uid=user.{1},ou=people,dc=example,dc=com" `

--argument "rand(0,100000)" `

--argument "randstr(16)" `

"description:{2}"

Read number of modify requests on the LDAPS port:

ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDN uid=monitor `

--bindPassword password `

--baseDN "cn=LDAPS,cn=connection handlers,cn=monitor" `

"(objectclass=*)" `

ds-mon-requests-modify

Run modrate for 10 seconds against the first server:

modrate \

--maxDuration 10 \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin \

--noRebind \

--numConnections 4 \

--numConcurrentRequests 4 \

--targetDn "uid=user.{1},ou=people,dc=example,dc=com" \

--argument "rand(0,100000)" \

--argument "randstr(16)" \

"description:{2}"

Read number of modify requests on the LDAPS port:

ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

45 / 99

When reading the modrate command output, notice that it shows statistics for
throughput (operations/second), response times (milliseconds), and errors/second. If

you expect all operations to succeed and yet err/sec is not 0.0, the command options
are no doubt incorrectly set. For an explanation of the command output, see modrate.

Notice that the monitoring attributes hold similar, alternative statistics.

Measure the LDAP search rate:

1. Bash

2. PowerShell

3. Zsh

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=monitor \

--bindPassword password \

--baseDN "cn=LDAPS,cn=connection handlers,cn=monitor" \

"(&)" \

ds-mon-requests-modify

Searches

Run searchrate for 10 seconds against the first server:

searchrate \

--maxDuration 10 \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin \

--noRebind \

--numConnections 4 \

--numConcurrentRequests 4 \

--baseDn "dc=example,dc=com" \

--argument "rand(0,100000)" \

"(uid=user.{})"

Read number of subtree search requests on the LDAPS port:

ldapsearch \

--hostname localhost \

--port 1636 \

file:///home/pptruser/Downloads/build/site/ds/tools-reference/modrate.html

46 / 99

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=monitor \

--bindPassword password \

--baseDN "cn=LDAPS,cn=connection handlers,cn=monitor" \

"(&)" \

ds-mon-requests-search-sub

Run searchrate for 10 seconds against the first server:

searchrate.bat `

--maxDuration 10 `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn uid=bjensen,ou=People,dc=example,dc=com `

--bindPassword password `

--noRebind `

--numConnections 4 `

--numConcurrentRequests 4 `

--baseDn "dc=example,dc=com" `

--argument "rand(0,100000)" `

"(uid=user.{})"

Read number of subtree search requests on the LDAPS port:

ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDN uid=monitor `

--bindPassword password `

--baseDN "cn=LDAPS,cn=connection handlers,cn=monitor" `

"(objectclass=*)" `

ds-mon-requests-search-sub

Run searchrate for 10 seconds against the first server:

searchrate \

--maxDuration 10 \

--hostname localhost \

--port 1636 \

47 / 99

Notice that searchrate command output resembles that of the modrate command.

The searchrate output also indicates how many entries each search returned. For an
explanation of the command output, see searchrate.

After running the performance tools, check that both replicas are up to date. The
following example uses monitoring metrics to check that replication delay is zero on

each replica:

1. Bash

2. PowerShell

3. Zsh

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin \

--noRebind \

--numConnections 4 \

--numConcurrentRequests 4 \

--baseDn "dc=example,dc=com" \

--argument "rand(0,100000)" \

"(uid=user.{})"

Read number of subtree search requests on the LDAPS port:

ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=monitor \

--bindPassword password \

--baseDN "cn=LDAPS,cn=connection handlers,cn=monitor" \

"(&)" \

ds-mon-requests-search-sub

Check Replication

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

file:///home/pptruser/Downloads/build/site/ds/tools-reference/searchrate.html

48 / 99

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=monitor \

--bindPassword password \

--baseDN cn=monitor \

"(ds-mon-current-delay=*)" \

ds-mon-current-delay

dn: ds-mon-domain-

name=dc=example\,dc=com,cn=replicas,cn=replication,cn=monitor

ds-mon-current-delay: 0

dn: ds-mon-server-id=second-ds,cn=remote replicas,ds-mon-domain-

name=dc=example\,dc=com,cn=replicas,cn=replication,cn=monitor

ds-mon-current-delay: 0

PS C:\path\to> ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDN uid=monitor `

--bindPassword password `

--baseDN cn=monitor `

"(ds-mon-current-delay=*)" `

ds-mon-current-delay

dn: ds-mon-domain-

name=dc=example\,dc=com,cn=replicas,cn=replication,cn=monitor

ds-mon-current-delay: 0

dn: ds-mon-server-id=second-ds,cn=remote replicas,ds-mon-domain-

name=dc=example\,dc=com,cn=replicas,cn=replication,cn=monitor

ds-mon-current-delay: 0

% ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=monitor \

--bindPassword password \

--baseDN cn=monitor \

49 / 99

Until now, you have used the evaluation setup profile. The evaluation profile makes it
easy to access Example.com data. It helps you learn and demonstrate directory services

without explicitly granting access after server setup.

In a production directory service where security is important, access is under tighter

control. In most cases, access is denied by default to prevent accidental information
leaks. You must explicitly grant access where required. To grant access, use access

control instructions (ACIs).

ACIs are implemented as operational LDAP attributes. An operational attribute is not
meant to store application data, but to influence server behavior. Operational attributes

are often left hidden from normal users. A server does not return operational attributes
on an entry unless explicitly requested.

Each ACI influences server behavior by indicating:

Which directory data it targets

Which permissions it allows or denies

Which users or groups it applies to

Under which conditions (time, network origin, connection security, user properties)
it applies

"(ds-mon-current-delay=*)" \

ds-mon-current-delay

dn: ds-mon-domain-

name=dc=example\,dc=com,cn=replicas,cn=replication,cn=monitor

ds-mon-current-delay: 0

dn: ds-mon-server-id=second-ds,cn=remote replicas,ds-mon-domain-

name=dc=example\,dc=com,cn=replicas,cn=replication,cn=monitor

ds-mon-current-delay: 0

Learn Access Control

The sample ACIs described here demonstrate some but not all ACI features.

For details, see Access Control.

NOTE

About ACIs

Example ACI with explanation

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

50 / 99

The following example ACI gives users access to change their own passwords:

Consider the characteristics of this ACI attribute:

Target Entries and Scope

The target entries and scope for this ACI are implicit.

The default target is the entry with this aci attribute.

The default scope includes the target entry and all its subordinates.

In other words, if you set this ACI on ou=People,dc=example,dc=com , it affects
all users under that base entry. For example, Babs Jensen,

uid=bjensen,ou=People,dc=example,dc=com , can set her own password.

Target Attributes

This ACI affects operations on either of the standard password attributes:
(targetattr = "authPassword || userPassword") .

The ACI only has an effect when an operation targets either authPassword or
userPassword , and any subtypes of those attribute types.

Permissions

This ACI affects only operations that change affected attributes: allow (write) .

If this is the only ACI that targets password attributes, users have access to change
their own passwords, but they do not have access to read passwords.

Subjects

This ACI has an effect when the target entry is the same as the bind DN: (userdn

= "ldap:///self") .

This means that the user must have authenticated to change their password.

Documentation

The wrapper around the permissions and subjects contains human-readable

documentation about the ACI: (version 3.0;acl "Allow users to change
their own passwords"; …​ ;) .

Version 3.0 is the only supported ACI version.

Conditions

This ACI does not define any conditions. It applies all the time, for connections
from all networks, and so forth.

aci: (targetattr = "authPassword || userPassword")

(version 3.0;acl "Allow users to change their own passwords";

allow (write)(userdn = "ldap:///self");)

51 / 99

Server configuration settings can further constrain how clients connect. Such

constraints are not specified by this ACI, however.

To write ACI attributes:

A user must have the modify-acl administrative privilege.

Privileges are server configuration settings that control access to administrative

operations.

An ACI must give the user permission to change aci attributes.

Prepare to use the examples:

Use each server’s stop-ds command to stop any DS servers running on your

computer.

This lets the new server use ports that might already be in use by another server.

1. Download the Example.ldif file, shown in the following listing:

Use ACIs

By default, only the directory superuser has the right to add, delete, or modify ACI

attributes. In fact, the directory superuser has a privilege, bypass-acl , that allows
the account to perform operations without regard to ACIs.

Any account with permissions to change ACIs is dangerous, because the power can
be misused. The user with permissions to change ACIs can give themselves full

access to all directory data in their scope.

IMPORTANT

Stop running servers

Get sample data

Show listing

#

Copyright 2020-2021 ForgeRock AS. All Rights Reserved

#

Use of this code requires a commercial software license

with ForgeRock AS.

or with one of its affiliates. All use shall be

exclusively subject

to such license between the licensee and ForgeRock AS.

#

dn: dc=example,dc=com

objectClass: domain

file:///home/pptruser/Downloads/build/site/ds/_attachments/ldif/Example.ldif

52 / 99

objectClass: top

dc: example

dn: ou=Groups,dc=example,dc=com

objectClass: organizationalUnit

objectClass: top

ou: Groups

dn: ou=Self Service,ou=Groups,dc=example,dc=com

objectClass: organizationalUnit

objectClass: top

description: Groups that authenticated users can manage on

their own

ou: Self Service

dn: ou=People,dc=example,dc=com

objectClass: organizationalUnit

objectClass: top

description: Description on ou=People

ou: People

dn: uid=ACI Admin,ou=People,dc=example,dc=com

objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: top

cn: ACI Admin

givenName: ACI

mail: aci-admin@example.com

ou: People

sn: Admin

uid: ACI Admin

userPassword: 5up35tr0ng

dn: uid=bjensen,ou=People,dc=example,dc=com

objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: top

cn: Babs Jensen

givenName: Barbara

mail: bjensen@example.com

ou: People

sn: Jensen

53 / 99

2. Save the file to your computer’s temporary directory, such as /tmp or C:\Temp .

1. Unzip the DS server .zip file into the folder where you want to install the server.

2. Set up the directory server using the LDIF you downloaded.

Set up the server without the evaluation setup profile, so the access control

settings are secure by default. The default password policies require stronger
passwords. The configuration grants very little access to regular users. Only

uid=admin has access to the data:

1. Bash

2. PowerShell

3. Zsh

uid: bjensen

userPassword: 5up35tr0ng

Install server with secure settings

$ /path/to/opendj/setup \

--serverId learn-acis \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--rootUserDn uid=admin \

--rootUserPassword str0ngAdm1nPa55word \

--hostname localhost \

--ldapPort 1389 \

--ldapsPort 1636 \

--httpsPort 8443 \

--adminConnectorPort 4444 \

--acceptLicense

$ dsconfig \

create-backend \

--backend-name exampleData \

--type je \

--set enabled:true \

--set base-dn:dc=example,dc=com \

--offline \

--no-prompt

$ import-ldif \

--backendId exampleData \

--ldifFile /tmp/Example.ldif \

--offline

$ start-ds --quiet

54 / 99

PS C:\path\to> C:\path\to\opendj\setup.bat `

--serverId learn-acis `

--deploymentKey $DEPLOYMENT_KEY `

--deploymentKeyPassword password `

--rootUserDn uid=admin `

--rootUserPassword str0ngAdm1nPa55word `

--hostname localhost `

--ldapPort 1389 `

--ldapsPort 1636 `

--httpsPort 8443 `

--adminConnectorPort 4444 `

--acceptLicense

PS C:\path\to> C:\path\to\opendj\bat\dsconfig.bat `

create-backend `

--backend-name exampleData `

--type je `

--set enabled:true `

--set base-dn:dc=example,dc=com `

--offline `

--no-prompt

PS C:\path\to> C:\path\to\opendj\bat\import-ldif.bat `

--backendId exampleData `

--ldifFile C:\Temp\Example.ldif `

--offline

PS C:\path\to> C:\path\to\opendj\bat\start-ds.bat --quiet

% /path/to/opendj/setup \

--serverId learn-acis \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--rootUserDn uid=admin \

--rootUserPassword str0ngAdm1nPa55word \

--hostname localhost \

--ldapPort 1389 \

--ldapsPort 1636 \

--httpsPort 8443 \

--adminConnectorPort 4444 \

--acceptLicense

% dsconfig \

create-backend \

--backend-name exampleData \

--type je \

--set enabled:true \

--set base-dn:dc=example,dc=com \

55 / 99

Grant the ACI Admin user access to modify ACIs:

1. Bash

2. PowerShell

3. Zsh

--offline \

--no-prompt

% import-ldif \

--backendId exampleData \

--ldifFile /tmp/Example.ldif \

--offline

% start-ds --quiet

Grant ACI admin access

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=admin \

--bindPassword str0ngAdm1nPa55word << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "aci") (version 3.0;acl "ACI Admin can manage

ACI attributes";

allow (write) userdn = "ldap:///uid=ACI

Admin,ou=People,dc=example,dc=com";)

dn: uid=ACI Admin,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: modify-acl

EOF

PS C:\path\to> New-Item -Path . -Name "aci-admin.ldif" -ItemType

"file" -Value @"

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "aci") (version 3.0;acl "ACI Admin can manage

56 / 99

Try examples from Learn LDAP.

ACI attributes";

allow (write) userdn = "ldap:///uid=ACI

Admin,ou=People,dc=example,dc=com";)

dn: uid=ACI Admin,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: modify-acl

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin

`

--bindDn uid=admin `

--bindPassword str0ngAdm1nPa55word `

aci-admin.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=admin \

--bindPassword str0ngAdm1nPa55word << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "aci") (version 3.0;acl "ACI Admin can manage

ACI attributes";

allow (write) userdn = "ldap:///uid=ACI

Admin,ou=People,dc=example,dc=com";)

dn: uid=ACI Admin,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: modify-acl

EOF

(Optional) Try LDAP examples

file:///home/pptruser/Downloads/build/site/ds/getting-started/ldap.html

57 / 99

You find that Babs Jensen does not have the access that she had with the evaluation

setup profile. For production servers, the best practice is to grant access only when
required.

Prepare to use the examples before trying them. The ACI Admin account must have
access to manage ACIs. After you add an example ACI, test users' access. For inspiration,

see the examples in Learn LDAP.

ACI syntax is powerful, and sometimes difficult to get right. For details, see Access

Control.

The following example grants authenticated users access to read their own entry, and
modify some attributes:

1. Bash

2. PowerShell

3. Zsh

Examples

ACI: Access Own Entry

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Users can read their

entries";

allow (read, search, compare) (userdn = "ldap:///self");)

-

add: aci

aci: (targetattr = "authPassword || description || displayName ||

homePhone ||

jpegPhoto || preferredLanguage || userPassword")

(version 3.0;acl "Self-service modifications for basic

attributes";

file:///home/pptruser/Downloads/build/site/ds/getting-started/ldap.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

58 / 99

allow (write) (userdn = "ldap:///self");)

EOF

PS C:\path\to> New-Item -Path . -Name "self-access.ldif" -ItemType

"file" -Value @"

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Users can read their

entries";

allow (read, search, compare) (userdn = "ldap:///self");)

-

add: aci

aci: (targetattr = "authPassword || description || displayName ||

homePhone ||

jpegPhoto || preferredLanguage || userPassword")

(version 3.0;acl "Self-service modifications for basic

attributes";

allow (write) (userdn = "ldap:///self");)

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

self-access.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Users can read their

entries";

allow (read, search, compare) (userdn = "ldap:///self");)

59 / 99

In this example, the list of attributes that users can read includes all user attributes. The
list that users can modify is limited. Other attributes might be governed by other

applications. For example, a user’s manager might only be changed through an HR
system. Perhaps the IT department is responsible for all changes to email addresses.

The subSchemaSubEntry attribute indicates the entry holding the LDAP schema
definitions that apply to the current entry. Many applications retrieve this attribute, and

the associated schema, to properly display or validate attribute values.

The following example demonstrates how to grant access to read this attribute on

directory entries:

1. Bash

2. PowerShell

3. Zsh

-

add: aci

aci: (targetattr = "authPassword || description || displayName ||

homePhone ||

jpegPhoto || preferredLanguage || userPassword")

(version 3.0;acl "Self-service modifications for basic

attributes";

allow (write) (userdn = "ldap:///self");)

EOF

ACI: Access SubSchemaSubEntry Attribute

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "subSchemaSubEntry")

(version 3.0;acl "Authenticated users can read

subSchemaSubEntry";

allow (read, search, compare) (userdn = "ldap:///all");)

EOF

60 / 99

For some static groups, you might choose to let users manage their own memberships.
The following example lets members of self-service groups manage their own

membership:

PS C:\path\to> New-Item -Path . -Name "subSchemaSubentry-

access.ldif" -ItemType "file" -Value @"

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "subSchemaSubEntry")

(version 3.0;acl "Authenticated users can read

subSchemaSubEntry";

allow (read, search, compare) (userdn = "ldap:///all");)

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

subSchemaSubentry-access.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "subSchemaSubEntry")

(version 3.0;acl "Authenticated users can read

subSchemaSubEntry";

allow (read, search, compare) (userdn = "ldap:///all");)

EOF

ACI: Manage Group Membership

61 / 99

1. Bash

2. PowerShell

3. Zsh

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: ou=Self Service,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "member") (version 3.0;acl "Self registration";

allow (selfwrite) (userdn =

"ldap:///uid=*,ou=People,dc=example,dc=com");)

EOF

PS C:\path\to> New-Item -Path . -Name "self-service-groups.ldif" -

ItemType "file" -Value @"

dn: ou=Self Service,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "member") (version 3.0;acl "Self registration";

allow (selfwrite) (userdn =

"ldap:///uid=*,ou=People,dc=example,dc=com");)

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

self-service-groups.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

62 / 99

The selfwrite permission is for adding or deleting one’s own DN from a group.

This example lets users create and delete self-managed groups:

1. Bash

2. PowerShell

3. Zsh

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: ou=Self Service,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "member") (version 3.0;acl "Self registration";

allow (selfwrite) (userdn =

"ldap:///uid=*,ou=People,dc=example,dc=com");)

EOF

ACI: Manage Self-Service Groups

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: ou=Self Service,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targattrfilters="add=objectClass:

(objectClass=groupOfNames)")

(version 3.0; acl "Users can create self-service groups";

allow (add) (userdn =

"ldap:///uid=*,ou=People,dc=example,dc=com");)

-

add: aci

aci: (version 3.0; acl "Owner can delete self-service groups";

allow (delete) (userattr = "owner#USERDN");)

EOF

63 / 99

PS C:\path\to> New-Item -Path . -Name "self-managed-groups.ldif" -

ItemType "file" -Value @"

dn: ou=Self Service,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targattrfilters="add=objectClass:

(objectClass=groupOfNames)")

(version 3.0; acl "Users can create self-service groups";

allow (add) (userdn =

"ldap:///uid=*,ou=People,dc=example,dc=com");)

-

add: aci

aci: (version 3.0; acl "Owner can delete self-service groups";

allow (delete) (userattr = "owner#USERDN");)

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

self-managed-groups.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: ou=Self Service,ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targattrfilters="add=objectClass:

(objectClass=groupOfNames)")

(version 3.0; acl "Users can create self-service groups";

allow (add) (userdn =

"ldap:///uid=*,ou=People,dc=example,dc=com");)

-

add: aci

aci: (version 3.0; acl "Owner can delete self-service groups";

64 / 99

The following ACI grants Babs Jensen permission to perform all LDAP operations,

allowing her full administrator access to the directory data under dc=example,dc=com .
Babs can read and write directory data, rename and move entries, and use proxied

authorization. Some operations also require administrative privileges not shown in this
example:

1. Bash

2. PowerShell

3. Zsh

allow (delete) (userattr = "owner#USERDN");)

EOF

ACI: Full Access

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Babs has full

access";

allow (all, export, import, proxy) (userdn =

"ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

EOF

PS C:\path\to> New-Item -Path . -Name "full-access.ldif" -ItemType

"file" -Value @"

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Babs has full

access";

allow (all, export, import, proxy) (userdn =

"ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

"@

PS C:\path\to> ldapmodify.bat `

65 / 99

(targetattr = "* || +") permits access to all user attributes and all operational

attributes. allow (all, import, export, proxy) permits all user operations,
modify DN operations, and proxied authorization. Notice that all does not allow

modify DN and proxied authorization.

In LDAP, an anonymous user is one who does not provide bind credentials. By default,

most setup profiles only allow anonymous access to read information about the server’s
capabilities, or before using the StartTLS operation to get a secure connection before

providing credentials.

Unless you set up the server with the evaluation profile, anonymous users cannot read

application data by default. You can grant them access, however. First, change the global
configuration to allow unauthenticated requests. Second, add an ACI to grant access to

the entries.

The following command changes the global configuration property, unauthenticated-
requests-policy , to allow unauthenticated requests:

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

full-access.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Babs has full

access";

allow (all, export, import, proxy) (userdn =

"ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

EOF

ACI: Anonymous Reads and Searches

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#unauthenticated-requests-policy
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#unauthenticated-requests-policy

66 / 99

1. Bash

2. PowerShell

3. Zsh

This ACI makes all user attributes in dc=example,dc=com data (except passwords)
world-readable:

1. Bash

2. PowerShell

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword str0ngAdm1nPa55word \

--set unauthenticated-requests-policy:allow \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

PS C:\path\to> dsconfig.bat `

set-global-configuration-prop `

--hostname localhost `

--port 4444 `

--bindDN uid=admin `

--bindPassword str0ngAdm1nPa55word `

--set unauthenticated-requests-policy:allow `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--no-prompt

% dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword str0ngAdm1nPa55word \

--set unauthenticated-requests-policy:allow \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

67 / 99

3. Zsh

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr != "authPassword || userPassword") (version

3.0;acl "Anonymous read-search access";

allow (read, search, compare) (userdn = "ldap:///anyone");)

EOF

PS C:\path\to> New-Item -Path . -Name "anon-access.ldif" -ItemType

"file" -Value @"

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr != "authPassword || userPassword") (version

3.0;acl "Anonymous read-search access";

allow (read, search, compare) (userdn = "ldap:///anyone");)

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

anon-access.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

68 / 99

Notice that ldap:///anyone designates anonymous users and authenticated users. Do
not confuse that with ldap:///all , which designates authenticated users only.

This ACI uses IP address and Security Strength Factor subjects to prevent insecure
remote access to dc=example,dc=com data. In most cases, you explicitly grant

permission with allow , making it easier to understand and to explain why the server
permits a given operation. This demonstrates one use case where it makes sense to

deny permission:

1. Bash

2. PowerShell

3. Zsh

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr != "authPassword || userPassword") (version

3.0;acl "Anonymous read-search access";

allow (read, search, compare) (userdn = "ldap:///anyone");)

EOF

ACI: Permit Insecure Access Over Loopback Only

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Restrict insecure

LDAP to the loopback address";

deny (all) (ip != "127.0.0.1" and ssf <= "1");)

EOF

PS C:\path\to> New-Item -Path . -Name "deny-cleartext.ldif" -

ItemType "file" -Value @"

69 / 99

ssf = 1 means that TLS is configured without a cipher. The server verifies integrity
using packet checksums, but all content is sent in plain text.

ssf = 0 means that the content is sent plain text with no connection security.

A directory resembles a dictionary or a phone book. If you know a word, you can look up
its entry in the dictionary to learn its definition or its pronunciation. If you know a name,

you can look up its entry in the phone book to find the telephone number and street

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Restrict cleartext

LDAP to the loopback address";

deny (all) (ip != "127.0.0.1" and ssf <= "1");)

"@

PS C:\path\to> ldapmodify.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore C:\path\to\opendj\config\keystore `

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin `

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" `

--bindPassword 5up35tr0ng `

deny-cleartext.ldif

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \

--bindPassword 5up35tr0ng << EOF

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Restrict insecure

LDAP to the loopback address";

deny (all) (ip != "127.0.0.1" and ssf <= "1");)

EOF

About Directories

70 / 99

address associated with the name. If you are bored, curious, or have lots of time, you

can also read through the dictionary, phone book, or directory, entry after entry.

Where a directory differs from a paper dictionary or phone book is in how entries are

indexed. Dictionaries typically have one index, which is words in alphabetical order.
Phone books, have one index as well, which is names in alphabetical order. Directories'

entries, however, are often indexed for multiple attributes, including names, user
identifiers, email addresses, and telephone numbers. This means you can look up a

directory account by the user’s name, their user identifier, their email address, or their
telephone number, for example.

ForgeRock Directory Services are based on the Lightweight Directory Access Protocol
(LDAP). Nearly all of what follows is an introduction to LDAP.

ForgeRock Directory Services also provide RESTful HTTP access to directory data. As a
directory user, you will find it useful to understand the underlying LDAP model even if

most users are accessing the directory over HTTP rather than LDAP.

Phone companies have been managing directories for many decades. The Internet itself

has relied on distributed directory services like DNS since the mid 1980s.

It was not until the late 1980s, however, that experts from what is now the International

Telecommunications Union published the X.500 set of international standards, including
Directory Access Protocol. The X.500 standards specify Open Systems Interconnect (OSI)

protocols and data definitions for general purpose directory services. The X.500
standards were designed to meet the needs of systems built according to the X.400

standards, covering electronic mail services.

Lightweight Directory Access Protocol has been around since the early 1990s. LDAP was

originally developed as an alternative protocol that would allow directory access over
Internet protocols rather than OSI protocols, and be lightweight enough for desktop

implementations. By the mid-1990s, LDAP directory servers became generally available
and widely used.

Until the late 1990s, LDAP directory servers were designed primarily with quick lookups
and high availability for lookups in mind. LDAP directory servers replicate data. When an

update is made, that update is applied to other peer directory servers. Thus, if one
directory server goes down, lookups can continue on other servers. Furthermore, if a

directory service needs to support more lookups, the administrator can simply add
another directory server to replicate with its peers.

As organizations rolled out larger and larger directories serving more and more
applications, they discovered the need for high availability and fast updates. Around the

year 2000, directories began to support multi-master replication; that is, replication with

History

71 / 99

multiple read-write servers. The organizations with the very largest directories became

concerned about replicating so many changes.

The DS code base began in the mid-2000s, when engineers solving the update

performance issue decided that the cost of adapting the existing C-based directory
technology for high-performance updates would be higher than the cost of building

new, high-performance directory using Java technology.

LDAP directory data is organized into entries, similar to the entries for words in the

dictionary, or for subscriber names in the phone book:

Barbara Jensen’s entry has a number of attributes, such as uid: bjensen ,

telephoneNumber: +1 408 555 1862 , and objectClass: posixAccount . (The

objectClass attribute type indicates which types of attributes are required and
allowed for the entry. As the entries object classes can be updated online, and even the

definitions of object classes and attributes are expressed as entries that can be updated
online, directory data is extensible on the fly.) When you look up her entry in the

directory, you specify one or more attributes and values to match. The directory server
then returns entries with attribute values that match what you specified.

LDAP Data

dn: uid=bjensen,ou=People,dc=example,dc=com

uid: bjensen

cn: Babs Jensen

cn: Barbara Jensen

facsimileTelephoneNumber: +1 408 555 1992

gidNumber: 1000

givenName: Barbara

homeDirectory: /home/bjensen

l: San Francisco

mail: bjensen@example.com

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: person

objectClass: posixAccount

objectClass: top

ou: People

ou: Product Development

roomNumber: 0209

sn: Jensen

telephoneNumber: +1 408 555 1862

uidNumber: 1076

72 / 99

The attributes you search for are indexed in the directory, so the directory server can

retrieve them more quickly. Attribute values are not necessarily strings. Some attribute
values, like certificates and photos, are binary.

Each entry also has a unique identifier, shown at the top of the entry, dn:
uid=bjensen,ou=People,dc=example,dc=com . DN is an acronym for Distinguished

Name. No two entries in the directory have the same distinguished name. DNs are
typically composed of case-insensitive attributes.

Sometimes distinguished names include characters that you must escape. The following
example shows an entry that includes escaped characters in the DN:

1. Bash

2. PowerShell

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDN dc=example,dc=com \

"(uid=escape)"

dn: cn=DN Escape Characters \" # \+ \, \; \< = \>

\\,dc=example,dc=com

objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: top

givenName: DN Escape Characters

uid: escape

cn: DN Escape Characters " # + , ; < = > \

sn: " # + , ; < = > \

mail: escape@example.com

PS C:\path\to> ldapsearch.bat `

--hostname localhost `

--port 1636 `

--useSsl `

--usePkcs12TrustStore /path/to/opendj/config/keystore `

--trustStorePassword:file /path/to/opendj/config/keystore.pin `

--baseDN dc=example,dc=com `

"(uid=escape)"

73 / 99

LDAP entries are arranged hierarchically in the directory. The hierarchical organization
resembles a file system on a PC or a web server, often imagined as an upside down tree

structure, or a pyramid. The distinguished name consists of components separated by
commas, uid=bjensen,ou=People,dc=example,dc=com . The names are little-endian.

The components reflect the hierarchy of directory entries.

dc=example,dc=com

ou=People

uid=ajensen

uid=bjense2

uid=bjensen

RDNs
dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen
givenName: Barbara
surname: Jensen
cn: Babs Jensen
cn: Barbara Jensen
…

Base DN

Barbara Jensen’s entry is located under an entry with DN
ou=People,dc=example,dc=com , an organizational unit and parent entry for the

people at Example.com. The ou=People entry is located under the entry with DN
dc=example,dc=com , the base entry for Example.com. DC is an acronym for Domain

Component. The directory has other base entries, such as cn=config , under which the
configuration is accessible through LDAP.

A directory can serve multiple organizations, too. You might find dc=example,dc=com ,
dc=mycompany,dc=com , and o=myOrganization in the same LDAP directory.

Therefore, when you look up entries, you specify the base DN to look under in the same
way you need to know whether to look in the New York, Paris, or Tokyo phone book to

find a telephone number.

The root entry for the directory, technically the entry with DN "" (the empty string), is

called the root DSE. It contains information about what the server supports, including the
other base DNs it serves.

dn: cn=DN Escape Characters \" # \+ \, \; \< = \>

\\,dc=example,dc=com

objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: top

givenName: DN Escape Characters

uid: escape

cn: DN Escape Characters " # + , ; < = > \

sn: " # + , ; < = > \

mail: escape@example.com

74 / 99

A directory server stores two kinds of attributes in a directory entry: user attributes and

operational attributes. User attributes hold the information for users of the directory. All
attributes shown in the entry above are user attributes. Operational attributes hold

information used by the directory itself. Examples of operational attributes include
entryUUID , modifyTimestamp , and subschemaSubentry .

When an LDAP search operation finds an entry in the directory, the directory server
returns all the visible user attributes unless the search request restricts the list of

attributes by specifying those attributes explicitly. The directory server does not,
however, return any operational attributes unless the search request specifically asks

for them.

Generally speaking, applications should change only user attributes, and leave updates

of operational attributes to the server, relying on public directory server interfaces to
change server behavior. An exception is access control instruction (aci) attributes,

which are operational attributes used to control access to directory data.

In some client/server applications, like web browsing, a connection is set up and torn

down for each client request.

LDAP has a different model. In LDAP, the client application connects to the server and

authenticates. The client then requests any number of operations, perhaps processing
results in between requests. The client finally disconnects when done, potentially days

later.

The standard operations are as follows:

Bind (authenticate)

The first operation in an LDAP session usually involves the client binding to the LDAP

server w ith the server authenticating the client. Authentication identifies the client’s
identity in LDAP terms, the identity which is later used by the server to authorize (or

not) access to directory data that the client wants to lookup or change.

If the client does not bind explicitly, the server treats the client as an anonymous

client. An anonymous client is allowed to do anything that can be done anonymously.
What can be done anonymously depends on access control and configuration

settings. The client can also bind again on the same connection.

Search (lookup)

After binding, the client can request that the server return entries based on an LDAP
filter, which is an expression that the server uses to find entries that match the

request, and a base DN under which to search. For example, to look up all entries for
people with the email address bjensen@example.com in data for Example.com, you

would specify a base DN such as ou=People,dc=example,dc=com and the filter

(mail=bjensen@example.com) .

Communication

mailto:bjensen@example.com

75 / 99

Compare

After binding, the client can request that the server compare an attribute value that
the client specifies with the value stored on an entry in the directory.

Modify

After binding, the client can request that the server change one or more attribute

values on an entry. Often administrators do not allow clients to change directory
data, so allow appropriate access for client application if they have the right to

update data.

Add

After binding, the client can request to add one or more new LDAP entries to the
server.

Delete

After binding, the client can request that the server delete one or more entries. To

delete an entry with other entries underneath, first delete the children, then the
parent.

Modify DN

After binding, the client can request that the server change the distinguished name

of the entry. In other words, this renames the entry or moves it to another location.
For example, if Barbara changes her unique identifier from bjensen to something

else, her DN would have to change. For another example, if you decide to
consolidate ou=Customers and ou=Employees under ou=People instead, all the

entries underneath must change distinguished names.

Renaming entire branches of entries can be a major operation for the directory, so

avoid moving entire branches if you can.

Unbind

When done making requests, the client can request an unbind operation to end the
LDAP session.

Abandon

When a request seems to be taking too long to complete, or when a search request

returns many more matches than desired, the client can send an abandon request to
the server to drop the operation in progress.

LDAP has standardized two mechanisms for extending the operations directory servers
can perform beyond the basic operations listed above. One mechanism involves using

LDAP controls. The other mechanism involves using LDAP extended operations.

LDAP controls are information added to an LDAP message to further specify how an

LDAP operation should be processed. For example, the Server-Side Sort request control

Controls and Extensions

76 / 99

modifies a search to request that the directory server return entries to the client in

sorted order. The Subtree Delete request control modifies a delete request so the server
also removes child entries of the entry targeted for deletion.

One special search operation that DS servers support is Persistent Search. The client
application sets up a Persistent Search to continue receiving new results whenever

changes are made to data that is in the scope of the search, using the search as a form
of change notification. Persistent Searches are intended to remain connected

permanently, though they can be idle for long periods of time.

The directory server can also send response controls in some cases to indicate that the

response contains special information. Examples include responses for entry change
notification, password policy, and paged results.

For the list of supported LDAP controls, see Supported LDAP Controls.

LDAP extended operations are additional LDAP operations not included in the original

standard list. For example, the Cancel Extended Operation works like an abandon
operation, but finishes with a response from the server after the cancel is complete. The

StartTLS Extended Operation allows a client to connect to a server on an unsecure port,
then starts Transport Layer Security negotiations to protect communications.

For the list of supported LDAP extended operations, see Supported LDAP Extended
Operations.

Directories have indexes for multiple attributes. By default, DS does not let normal users
perform searches that are not indexed, because such searches mean DS servers have to

scan an entire directory database when looking for matches.

As directory administrator, part of your responsibility is making sure directory data is

properly indexed. DS software provides tools for building and rebuilding indexes, for
verifying indexes, and for evaluating how well indexes are working.

For help better understanding and managing indexes, read Indexes.

Some databases are designed to hold huge amounts of data for a particular application.
Although such databases can support multiple applications, data organization depends

on the applications served.

In contrast, directories are designed for shared, centralized services. Although the first

guides to deploying directory services suggested taking inventory of all the applications
that would access the directory, today many directory administrators do not even know

how many applications use their services. The shared, centralized nature of directory

Indexes

Schema

file:///home/pptruser/Downloads/build/site/ds/ldap-reference/controls.html
file:///home/pptruser/Downloads/build/site/ds/ldap-reference/extended-ops.html
file:///home/pptruser/Downloads/build/site/ds/ldap-reference/extended-ops.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/indexing.html

77 / 99

services fosters interoperability in practice. It has helped directory services be successful

in the long term.

Part of what makes this possible is the shared model of directory user information, in

particular the LDAP schema. LDAP schema defines what the directory can contain. This
means that directory entries are not arbitrary data, but tightly codified objects whose

attributes are completely predictable from publicly readable definitions. Many schema
definitions are in fact standard. They are the same not just across a directory service but

across different directory services.

At the same time, unlike some databases, LDAP schema and the data it defines can be

extended on the fly while the service is running. LDAP schema is accessible over LDAP.
One attribute of every entry is its set of objectClass values. This gives you as

administrator great flexibility in adapting your directory service to store new data
without losing or changing the structure of existing data, and without ever stopping your

directory service.

For a closer look, see LDAP Schema.

Directory services support fine-grained access control.

As directory administrator, you can control who has access to what data when, how,

where and under what conditions by using access control instructions (ACI). You can
allow some directory operations and not others. You can scope access control from the

whole directory service down to individual attributes on directory entries. You can
specify when, from what host or IP address, and the encryption strength required for an

operation.

As ACIs are stored on entries in the directory, you can update access controls while the

service is running, and even delegate that control to client applications. DS software
combines the strengths of ACIs with separate administrative privileges to help you

secure access to directory data.

For more information, read Access Control.

DS replication consists of copying each update to the directory service to multiple

directory servers. This brings both redundancy, in the case of network partitions or of
crashes, and scalability for read operations. Most directory deployments involve multiple

servers replicating together.

When you have replicated servers, all of which are writable, you can have replication

conflicts. What if, for example, there is a network outage between two replicas, and

Access Control

Replication

file:///home/pptruser/Downloads/build/site/ds/config-guide/schema.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

78 / 99

meanwhile two different values are written to the same attribute on the same entry on

the two replicas?

In nearly all cases, DS replication can resolve these situations automatically without

involving you, the directory administrator. This makes your directory service resilient
and safe even in the unpredictable real world.

One counterintuitive aspect of replication is that although you add directory read

capacity by adding replicas to your deployment, you do not add directory write capacity

by adding replicas. Each write operation must be replayed everywhere. As a result, if you
have N servers, you have N write operations to replay.

Replication is also loosely consistent. Loosely consistent means that directory data will
eventually converge to be the same everywhere, but it will not necessarily be the same

everywhere at all times, or even at any time. Client applications sometimes get this
wrong when they write to a pool of load balanced directory servers, immediately read

back what they wrote, and are surprised that it is not the same. If your users are
complaining about this, consider using a directory proxy server to mitigate their poor

practices.

Directory Services Markup Language (DSMLv2) v2.0 became a standard in 2001. DSMLv2

describes directory data and basic directory operations in XML format, so they can be
carried in Simple Object Access Protocol (SOAP) messages. DSMLv2 further allows clients

to batch multiple operations together in a single request, to be processed either in
sequential order or in parallel.

DS software provides support for DSMLv2 as a DSML gateway, which is a servlet that
connects to any standard LDAPv3 directory. DSMLv2 opens basic directory services to

SOAP-based web services and service oriented architectures.

To set up DSMLv2 access, see Install a DSML Gateway.

DS software can expose directory data as JSON resources over HTTP to REST clients,

providing easy access to directory data for developers who are not familiar with LDAP.
RESTful access depends on a configuration that describes how the JSON representation

maps to LDAP entries.

Although client applications have no need to understand LDAP, the underlying

implementation still uses the LDAP model for its operations. The mapping adds some
overhead.

Furthermore, depending on the configuration, individual JSON resources can require
multiple LDAP operations. For example, an LDAP user entry represents manager as a

DSMLv2

HTTP Access

file:///home/pptruser/Downloads/build/site/ds/install-guide/install-dsml.html

79 / 99

DN (of the manager’s entry). The same manager might be represented in JSON as an

object holding the manager’s user ID and full name, in which case the software must
look up the manager’s entry to resolve the mapping for the manager portion of the JSON

resource, in addition to looking up the user’s entry. As another example, suppose a large
group is represented in LDAP as a set of 100,000 DNs. If the JSON resource is configured

so that a member is represented by its name, then listing that resource would involve
100,000 LDAP searches to translate DNs to names.

A primary distinction between LDAP entries and JSON resources is that LDAP entries
hold sets of attributes values, whereas JSON resources are documents containing

arbitrarily nested objects. As LDAP data is governed by schema, almost no LDAP objects
are arbitrary collections of data. (LDAP has the object class extensibleObject , but its

should be used sparingly.) JSON resources can hold arrays, ordered collections that can
contain duplicates. LDAP attributes are sets, unordered collections without duplicates.

For most directory and identity data, these distinctions do not matter. You are likely to
run into them, however, if you try to turn your directory into a document store for

arbitrary JSON resources.

Despite some extra cost in terms of system resources, exposing directory data over

HTTP can unlock directory services for a new generation of applications. The
configuration provides flexible mapping, so that you can configure views that

correspond to how client applications need to see directory data.

DS software also give you a deployment choice for HTTP access. You can deploy the

REST to LDAP gateway, which is a servlet that connects to any standard LDAPv3
directory, or you can activate the HTTP connection handler on a server to allow direct

and more efficient HTTP and HTTPS access.

This page serves as an introduction. When you have understood enough of the concepts

to build the directory services that you want to deploy, you must still build a prototype
and test it before you roll out shared, centralized services for your organization.

Start with Deployment when beginning your project.

Follow these best practices for writing effective, maintainable, high-performance
directory client applications.

Deployment

Best Practices

Authenticate Correctly

file:///home/pptruser/Downloads/build/site/ds/deployment-guide/preface.html

80 / 99

Unless your application performs only read operations, authenticate to the directory

server. Some directory services require authentication to read directory data.

Once you authenticate (bind), directory servers make authorization decisions based on

your identity. With servers that support proxied authorization, once authenticated, your
application can request an operation on behalf of another identity, such as the identity

of the end user.

Your application therefore should have an account, such as cn=My

App,ou=Apps,dc=example,dc=com . The directory administrator can authorize
appropriate access for your application’s account, and monitor your application’s

requests to help you troubleshoot problems if they arise.

Applications can use simple, password-based authentication. When using password-

based authentication, use secure connections to protect credentials over the network.
For applications, prefer certificate-based authentication if possible.

LDAP is a stateful protocol. You authenticate (bind), you perform operations, you
unbind. The server maintains a context that lets it make authorization decisions

concerning your requests. Therefore, reuse connections whenever possible.

Because LDAP supports asynchronous requests, it is normal and expected to make

multiple requests over the same connection. Your application can share a pool of
connections to avoid the overhead of setting them up and tearing them down.

In a network built for HTTP applications, your long-lived LDAP connections can get cut by

network equipment configured to treat idle and old connections as stale resources to
reclaim.

When you maintain a particularly long-lived connection, such as a connection for a
persistent search, periodically perform a health check to maintain the connection

operational.

A health check involves reading or writing an attribute on a well-known entry in your

data. It can serve the purposes of maintaining the connection operational, and of
verifying access to your data. A success result for a read indicates that the data is

available, and the application can read it. A success result for a write indicates that the
data is available, and the application can write to it. The exact check to perform depends

on how your application uses the directory. Under some circumstances, your data might
be temporarily read-only, for example.

When using a connection timeout, take care not to set the timeout so low that long
operations, such as unindexed searches, fail to complete before the timeout.

Reuse Connections

Check Connection Health

81 / 99

By the time your application makes it to production, you should know what attributes

you want. Request them explicitly, and request all the attributes in the same search.

For example, if you require mail and cn , then specify both attributes in your search

request.

The difference in results between a general filter (mail=*@example.com) , and a good,
specific filter like (mail=user@example.com) can be huge numbers of entries and

enormous amounts of processing time, both for the directory server that has to return
search results, and for your application that has to sort through them.

Many use cases can be handled with short, specific filters. As a rule, prefer equality
filters over substring filters.

DS servers reject unindexed searches by default, because unindexed searches are
resource-intensive. If your application needs to use a filter that results in an unindexed

search, work with the directory administrator to find a solution, such as adding the
indexes required for your search filters.

Always use & with ! to restrict the potential result set before returning all entries that
do not match part of the filter. For example, (&(location=Oslo)(!

(mail=birthday.girl@example.com))) .

Specific modifications help directory servers apply and replicate your changes more
effectively.

When you modify attributes with multiple values, such as a static group member
attribute, replace or delete specific values individually, rather than replacing the entire

list of values.

Trust the LDAP result code from the directory server. For example, if you request a

modification, and you get a success result, consider the operation a success. Do not
immediately issue a search to get the modified entry.

LDAP replication model is loosely convergent. In other words, the directory server sends
you the success result before replicating the change to every directory server replica

across the network. If you issue a read immediately after a write, a load balancer may
direct the request to another replica. The result might differ from what you expect.

Request Exactly What You Need All At Once

Use Specific LDAP Filters

Make Modifications Specific

Trust Result Codes

mailto:user@example.com
mailto:birthday.girl@example.com

82 / 99

The loosely convergent model means that the entry could have changed since you read

it. If needed, use LDAP assertions to set conditions for your LDAP operations.

When taking input directly from a user or another program, use appropriate methods to

sanitize the data. Failure to sanitize the input data can leave your application vulnerable
to injection attacks.

For Java applications, the Directory Services format() methods for filters and DNs are
similar to the Java String.format() methods. In addition to formatting the output,

they escape the input objects. When building a search filter, use one of the methods of
the DS APIs to escape input.

Reading an entire large static group entry to check membership is wasteful.

If you need to determine which groups an account belongs to, request the DS virtual
attribute, isMemberOf , when you read the account entry. Other directory servers use

other names for this attribute that identifies the groups to an account belongs to.

Directory servers expose their capabilities as operational attribute values on the root
DSE, which is the entry whose DN is an empty string, "" .

This lets your application discover capabilities at run time, rather than storing
configuration separately. Putting effort into checking directory capabilities makes your

application easier to deploy and to maintain.

For example, rather than hard-coding dc=example,dc=com as a base DN in your

configuration, read the root DSE namingContexts attribute.

Directory servers also expose their schema over LDAP. The root DSE attribute

subschemaSubentry shows the DN of the entry for LDAP schema definitions.

To serve results quickly with high availability, directory servers cache content and

replicate it everywhere. If you already store large attribute values elsewhere, such as
photos or audio messages, keep only a reference to external content in a user’s account.

Handle Input Securely

Check Group Membership on the Account, Not the Group

Check Support for Features You Use

Store Large Attribute Values By Reference

Take Care With Persistent Search and Server-Side Sorting

83 / 99

A persistent search lets your application receive updates from the server as they happen

by keeping the connection open and forcing the server to check whether to return
additional results any time it performs a modification in the scope of your search.

Directory administrators therefore might hesitate to grant persistent search access to
your application.

DS servers expose a change log to let you discover updates with less overhead. If you do
have to use a persistent search instead, try to narrow the scope of your search.

DS servers support a resource-intensive, standard operation called server-side sorting.
When your application requests a server-side sort, the directory server retrieves all

matching entries, sorts the entries in memory, and returns the results. For result sets of
any size, server-side sorting ties up server resources that could be used elsewhere.

Alternatives include sorting the results after your application receives them, or working
with the directory administrator to enable appropriate browsing (virtual list view)

indexes for applications that must regularly page through long lists of search results.

DS servers come with schema definitions for a wide range of standard object classes and

attribute types. Directories use unique, IANA -registered object identifiers (OIDs) to
avoid object class and attribute type name clashes. The overall goal is Internet-wide

interoperability.

Therefore, reuse schema definitions that already exist whenever you reasonably can.

Reuse them as is. Do not try to redefine existing schema definitions.

If you must add schema definitions for your application, extend existing object classes

with AUXILIARY classes. Take care to name your schemas such that they do not clash
with other names.

When you have defined schema required for your application, work with the directory
administrator to add your definitions to the directory service. DS servers let directory

administrators update schema definitions over LDAP. There is no need to interrupt the
service to add your application. Directory administrators can, however, have other

reasons why they hesitate to add your schema definitions. Coming to the discussion
prepared with good schema definitions, explanations of why they should be added, and

evident regard for interoperability makes it easier for the directory administrator to
grant your request.

By default, Directory Services APIs use a minimal, built-in core schema, rather than

reading the schema from the server. Doing so automatically would incur a significant
performance cost. Unless schemas change, your application only needs to read them

once.

Reuse Schemas Where Possible



Read Directory Server Schemas During Initialization

https://www.iana.org/
https://www.iana.org/
https://www.iana.org/

84 / 99

When you start your application, read directory server schemas as a one-off initialization

step.

Once you have the directory server schema definitions, use them to validate entries.

When a directory server returns a search result, the result is not necessarily an entry. If
the result is a referral, then your application should follow up with an additional search

based on the URIs provided in the result.

LDAP result codes are standard, and listed in LDAP Result Codes.

When your application receives a result, it must rely on the result code value to

determine what action to take. When the result is not what you expect, read or at least
log the additional message information.

If you can read the directory server access log, then check what the server did with your

application’s request. The following excerpt shows a successful search by cn=My
App,ou=Apps,dc=example,dc=com :

Handle Referrals

Troubleshooting: Check Result Codes

Troubleshooting: Check Server Log Files

Show excerpt

{"eventName":"DJ-LDAP","client":

{"ip":"127.0.0.1","port":59891},"server":

{"ip":"127.0.0.1","port":1389},"request":

{"protocol":"LDAP","operation":"CONNECT","connId":0},"transactio

nId":"0","response":

{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":0,"elapsed

TimeUnits":"MILLISECONDS"},"timestamp":"2016-10-

20T15:48:36.933Z","_id":"11d5fdaf-79ac-4677-a640-805db1c35af0-

3"}

{"eventName":"DJ-LDAP","client":

{"ip":"127.0.0.1","port":59891},"server":

{"ip":"127.0.0.1","port":1389},"request":

{"protocol":"LDAP","operation":"EXTENDED","connId":0,"msgId":1,"

name":"StartTLS","oid":"1.3.6.1.4.1.1466.20037"},"transactionId"

:"0","response":

{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":3,"elapsed

TimeUnits":"MILLISECONDS"},"timestamp":"2016-10-

20T15:48:36.945Z","_id":"11d5fdaf-79ac-4677-a640-805db1c35af0-

file:///home/pptruser/Downloads/build/site/ds/ldap-reference/ldap-result-codes.html

85 / 99

Notice that each operation type is shown in upper case. The messages track the client
information, and the connection ID (connId) and message ID (msgID) numbers for

filtering messages. The elapsedTime indicates how many milliseconds the DS server
worked on the request. Result code 0 corresponds to a successful result, as described in

RFC 4511 .

5"}

{"eventName":"DJ-LDAP","client":

{"ip":"127.0.0.1","port":59891},"server":

{"ip":"127.0.0.1","port":1389},"request":

{"protocol":"LDAP","operation":"BIND","connId":0,"msgId":2,"vers

ion":"3","authType":"Simple","dn":"cn=My

App,ou=Apps,dc=example,dc=com"},"transactionId":"0","response":

{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":6,"elapsed

TimeUnits":"MILLISECONDS"},"userId":"cn=My

App,ou=Apps,dc=example,dc=com","timestamp":"2016-10-

20T15:48:38.462Z","_id":"11d5fdaf-79ac-4677-a640-805db1c35af0-

7"}

{"eventName":"DJ-LDAP","client":

{"ip":"127.0.0.1","port":59891},"server":

{"ip":"127.0.0.1","port":1389},"request":

{"protocol":"LDAP","operation":"SEARCH","connId":0,"msgId":3,"dn

":"dc=example,dc=com","scope":"sub","filter":"

(uid=kvaughan)","attrs":

["isMemberOf"]},"transactionId":"0","response":

{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":6,"elapsed

TimeUnits":"MILLISECONDS","nentries":1},"timestamp":"2016-10-

20T15:48:38.472Z","_id":"11d5fdaf-79ac-4677-a640-805db1c35af0-

9"}

{"eventName":"DJ-LDAP","client":

{"ip":"127.0.0.1","port":59891},"server":

{"ip":"127.0.0.1","port":1389},"request":

{"protocol":"LDAP","operation":"UNBIND","connId":0,"msgId":4},"t

ransactionId":"0","timestamp":"2016-10-

20T15:48:38.480Z","_id":"11d5fdaf-79ac-4677-a640-805db1c35af0-

11"}

{"eventName":"DJ-LDAP","client":

{"ip":"127.0.0.1","port":59891},"server":

{"ip":"127.0.0.1","port":1389},"request":

{"protocol":"LDAP","operation":"DISCONNECT","connId":0},"transac

tionId":"0","response":

{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":0,"elapsed

TimeUnits":"MILLISECONDS","reason":"Client

Unbind"},"timestamp":"2016-10-20T15:48:38.481Z","_id":"11d5fdaf-

79ac-4677-a640-805db1c35af0-13"}



https://tools.ietf.org/html/rfc4511#section-4.1.9
https://tools.ietf.org/html/rfc4511#section-4.1.9
https://tools.ietf.org/html/rfc4511#section-4.1.9

86 / 99

If result codes and server logs are not enough, many network tools can interpret HTTP

and LDAP packets. Install the necessary keys to decrypt encrypted packet content.

Once you have worked through the examples in this guide, try the following suggestions:

Data replication is sometimes called the "killer feature" of LDAP directories. Its strengths
are in enabling very high availability for directory services even during network outages,

and automatically resolving conflicts that can occur when the network is down, for
example. LDAP directories have been improving and hardening replication features for

decades.

Its weaknesses are that replication protocols have not been standardized for

interoperability, and that unwary developers can misunderstand its property of eventual
consistency if they are too used to the strong, immediate consistency of monolithic,

transactional databases.

Replication necessarily involves multiple servers and additional configuration. You can

learn more about it by reading Replication, and trying the examples in that page.

Category Topics Covered

Release notes DS features, fixes, and known issues

Deployment Deploying Directory Services in on-premises and cloud
environments

Installation Installing DS software

Upgrade Upgrading DS software

Configuration Configuring DS servers after installation

Security Ensuring a Directory Services deployment is secure

Maintenance Day-to-day operations for maintaining DS servers

Troubleshooting: Inspect Network Traffic

Next Steps

Learn About Replication

Browse DS Documentation

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html
https://backstage.forgerock.com/docs/ds/latest/release-notes
file:///home/pptruser/Downloads/build/site/ds/deployment-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/upgrade-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/preface.html

87 / 99

Category Topics Covered

Logging Configuring DS server logs

Monitoring What to monitor when running DS servers, and where to
look for metrics and other information

Use LDAP How to use LDAP features and command-line tools

Use REST/HTTP How to configure and use DS REST APIs for HTTP access

Configuration Reference The dsconfig subcommands and server configuration
properties

DS Javadoc Evolving LDAP SDK and server APIs, including ForgeRock
common APIs

LDAP Reference LDAP-specific features of DS software

LDAP Schema Reference All default LDAP schema, including monitoring attributes

and object classes

Log Reference DS server error log messages by category and ID

Tools Reference Tools bundled with DS software

LDAP is a standard protocol, and so you can use LDAP-compliant third-party tools to

manage directory data:

Admin4

Apache Directory Studio

JXplorer and JXWorkBench

phpLDAPadmin

Softerra LDAP Administrator

web2ldap

Many software solutions include support for LDAP authentication and LDAP-based

address books.

ForgeRock does not endorse or support third-party tools.

Try Third-Party Tools













Use DS With AM

file:///home/pptruser/Downloads/build/site/ds/logging-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/rest-guide/preface.html
file:///home/pptruser/Downloads/build/site/ds/configref/preface.html
file:///home/pptruser/Downloads/build/site/ds/_attachments/javadoc/index.html
file:///home/pptruser/Downloads/build/site/ds/ldap-reference/preface.html
file:///home/pptruser/Downloads/build/site/ds/schemaref/preface.html
file:///home/pptruser/Downloads/build/site/ds/log-reference/index.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/preface.html
http://www.admin4.org/
http://www.admin4.org/
http://www.admin4.org/
https://directory.apache.org/studio/
https://directory.apache.org/studio/
https://directory.apache.org/studio/
http://jxplorer.org/
http://jxplorer.org/
http://jxplorer.org/
https://github.com/leenooks/phpLDAPadmin/wiki
https://github.com/leenooks/phpLDAPadmin/wiki
https://github.com/leenooks/phpLDAPadmin/wiki
https://www.ldapadministrator.com/
https://www.ldapadministrator.com/
https://www.ldapadministrator.com/
https://pypi.org/project/web2ldap/
https://pypi.org/project/web2ldap/
https://pypi.org/project/web2ldap/

88 / 99

Back End Directory Servers in the AM Deployment Planning Guide

Preparing External Stores in the AM Installation Guide

Configuring External CTS Token Stores in the AM Core Token Service Guide

You can install DS directory servers for use as external AM stores.

For details, see Setup Profiles.

External DS Repository and Select a Repository in the IDM Installation Guide

Also see Install DS as an IDM Repository.

One Way Synchronization From LDAP to IDM, Two Way Synchronization Between
LDAP and IDM, and other LDAP-related pages in the IDM Samples Guide

DS Repository Configuration and Generic and Explicit Mappings With a DS
Repository in the IDM Object Modeling Guide

Synchronizing Passwords With ForgeRock Directory Services (DS) in the IDM
Password Synchronization Plugin Guide

For details, see Uninstallation.

Abandon operation

LDAP operation to stop processing of a request in progress, after which the server
drops the connection without a reply to the client application.

Access control

Control to grant or to deny access to a resource.

Access control instruction (ACI)

Instruction added as a directory entry attribute for fine-grained control over what a

given user or group member is authorized to do in terms of LDAP operations and
access to user data.

ACIs are implemented independently from privileges, which apply to administrative
operations.

See also: Privilege

Access control list (ACL)

Use DS With IDM

Remove DS Software

Glossary

https://backstage.forgerock.com/docs/am/7.1/deployment-planning-guide/deploy-topologies-onprem.html#backend-ds
https://backstage.forgerock.com/docs/am/7.1/install-guide/prepare-ext-stores.html
https://backstage.forgerock.com/docs/am/7.1/cts-guide/cts-openam-config.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-profiles.html
https://backstage.forgerock.com/docs/idm/7.1/install-guide/ds-external.html
https://backstage.forgerock.com/docs/idm/7.1/install-guide/chap-repository.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/profile-idm-repo.html
https://backstage.forgerock.com/docs/idm/7.1/samples-guide/sync-with-ldap.html
https://backstage.forgerock.com/docs/idm/7.1/samples-guide/sync-with-ldap-bidirectional.html
https://backstage.forgerock.com/docs/idm/7.1/samples-guide/sync-with-ldap-bidirectional.html
https://backstage.forgerock.com/docs/idm/7.1/objects-guide/repo-config.html#repo-ds-json
https://backstage.forgerock.com/docs/idm/7.1/objects-guide/explicit-generic-mapping.html#generic-mappings-ds
https://backstage.forgerock.com/docs/idm/7.1/objects-guide/explicit-generic-mapping.html#generic-mappings-ds
https://backstage.forgerock.com/docs/idm/7.1/pwd-plugin-guide/chap-sync-dj.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/uninstall.html

89 / 99

An access control list connects a user or group of users to one or more security

entitlements. For example, users in group sales are granted the entitlement read-
only to some financial data.

Access log

Server log tracing the operations the server processes including timestamps,

connection information, and information about the operation itself.

Account lockout

The act of making an account temporarily or permanently inactive after successive
authentication failures.

Active user

A user that has the ability to authenticate and use the services, having valid

credentials.

Add operation

LDAP operation to add a new entry or entries to the directory.

Anonymous

A user that does not need to authenticate, and is unknown to the system.

Anonymous bind

A bind operation using simple authentication with an empty DN and an empty
password, allowing anonymous access such as reading public information.

Approximate index

Index is used to match values that "sound like" those provided in the filter.

Attribute

Properties of a directory entry, stored as one or more key-value pairs. Typical

examples include the common name (cn) to store the user’s full name and
variations of the name, user ID (uid) to store a unique identifier for the entry, and

mail to store email addresses.

Audit log

Type of access log that dumps changes in LDIF.

Authentication

The process of verifying who is requesting access to a resource; the act of confirming
the identity of a principal.

Authorization

The process of determining whether access should be granted to an individual based

on information about that individual; the act of determining whether to grant or to
deny a principal access to a resource.

Backend

90 / 99

Repository that stores directory data. Different implementations with different

capabilities exist.

Binary copy

Backup files from one replica are restored on another replica.

Bind operation

LDAP authentication operation to determine the client’s identity in LDAP terms, the
identity which is later used by the server to authorize (or not) access to directory data

that the client wants to lookup or change.

Branch

The distinguished name (DN) of a non-leaf entry in the Directory Information Tree
(DIT), and that entry and all its subordinates taken together.

Some administrative operations allow you to include or exclude branches by
specifying the DN of the branch.

See also: Suffix

Collective attribute

A standard mechanism for defining attributes that appear on all the entries in a
particular subtree.

Compare operation

LDAP operation to compare a specified attribute value with the value stored on an

entry in the directory.

Control

Information added to an LDAP message to further specify how an LDAP operation
should be processed. DS supports many LDAP controls.

Change sequence number (CSN)

An opaque string uniquely identifying a single change to directory data. A CSN

indicates exactly when a change occurred on which replica. An example CSN is
010f016df804edca0000008fevaluation-only .

DS replication uses CSNs to replay replicated operations consistently on all replicas.
DS replicas record CSNs in historical data values for ds-sync-state and ds-sync-

hist attributes.

When troubleshooting replication data consistency, it can be useful to interpret

CSNs. For details, see the ForgeRock Knowledge Base .

Database cache

Memory space set aside to hold database content.

Debug log

Server log tracing details needed to troubleshoot a problem in the server.



https://backstage.forgerock.com/knowledge/kb
https://backstage.forgerock.com/knowledge/kb
https://backstage.forgerock.com/knowledge/kb

91 / 99

Delete operation

LDAP operation to remove an existing entry or entries from the directory.

Directory

A directory is a network service which lists participants in the network such as users,
computers, printers, and groups. The directory provides a convenient, centralized,

and robust mechanism for publishing and consuming information about network
participants.

Directory hierarchy

A directory can be organized into a hierarchy in order to make it easier to browse or

manage. Directory hierarchies normally represent something in the physical world,
such as organizational hierarchies or physical locations.

For example, the top level of a directory may represent a company, the next level
down divisions, the next level down departments, and down the hierarchy.

Alternately, the top level may represent the world, the next level down countries,
next states or provinces, and next cities.

Directory Information Tree (DIT)

A set of directory entries organized hierarchically in a tree structure, where the

vertices are the entries, and the arcs between vertices define relationships between
entries.

Directory object

A directory object is an item in a directory. Example objects include users, user

groups, computers, and more. Objects may be organized into a hierarchy and
contain identifying attributes.

See also: Entry

Directory proxy server

Server that forwards LDAP requests to remote directory servers. A standalone
directory proxy server does not store user data.

Directory server

Server application for centralizing information about network participants. A highly

available directory service consists of multiple directory servers configured to
replicate directory data.

See also: Replication

Directory Services Markup Language (DSML)

Standard language to access directory services using XML. DMSL v1 defined an XML
mapping of LDAP objects, while DSMLv2 maps the LDAP Protocol and data model to

XML.

Directory superuser

92 / 99

Directory account with privileges to do full administration of the DS server, including

bypassing access control evaluation, changing access controls, and changing
administrative privileges.

See also: Superuser

Distinguished name (DN)

Fully qualified name for a directory entry, such as
uid=bjensen,ou=People,dc=example,dc=com , built by concatenating the entry

RDN (uid=bjensen) with the DN of the parent entry
(ou=People,dc=example,dc=com).

Domain

A replication domain consists of several directory servers sharing the same

synchronized set of data.

The base DN of a replication domain specifies the base DN of the replicated data.

DSML gateway

Standalone web application that translates DSML requests from client applications to

LDAP requests to a directory service, and LDAP responses from a directory service to
DSML responses to client applications.

Dynamic group

Group that specifies members using LDAP URLs.

Entry

An entry is an object in the directory, defined by one of more object classes, and

their related attributes.

Entry cache

Memory space set aside to hold frequently accessed, large entries, such as static
groups.

Equality index

Index used to match values that correspond exactly (though generally without case

sensitivity) to the value provided in the search filter.

Errors log

Server log tracing server events, error conditions, and warnings, categorized and
identified by severity.

Etime

Elapsed time within the server to process a request, starting from the moment the

decoded operation is available to be processed by a worker thread.

Export

Save directory data in an LDIF file.

93 / 99

Extended operation

Additional LDAP operation not included in the original standards. DS servers support
several standard LDAP extended operations.

Extensible match index

Index for a matching rule other than approximate, equality, ordering, presence,

substring or VLV, such as an index for generalized time.

External user

An individual that accesses company resources or services but is not working for the
company. Typically, a customer or partner.

Filter

An LDAP search filter is an expression that the server uses to find entries that match

a search request, such as (mail=*@example.com) to match all entries having an
email address in the example.com domain.

Group

Entry identifying a set of members whose entries are also in the directory.

Generation ID

The initial state identifier for a replicated directory server base DN. It is a hash of the

first 1000 entries of the base DN, computed when creating the backend, importing
data from LDIF, or initializing replication.

Replication can only proceed between base DNs that have the same generation ID.

Idle time limit

Defines how long DS allows idle connections to remain open.

Import

Read in and index directory data from an LDIF file.

Inactive user

An entry in the directory that once represented a user but which is now no longer
able to be authenticated.

Index

Directory server backend feature to allow quick lookup of entries based on their

attribute values.

See also: Approximate index, Equality index, Extensible match index, Ordering index,

Presence index, Substring index, VLV index, Index entry limit

Index entry limit

When the number of entries that an index key points to exceeds the index entry
limit, DS stops maintaining the list of entries for that index key.

Internal user

94 / 99

An individual who works within the company either as an employee or as a

contractor.

LDAP Data Interchange Format (LDIF)

Standard, portable, text-based representation of directory content.

See RFC 2849 .

LDAP URL

LDAP Uniform Resource Locator, such as

ldaps://ds.example.com:636/dc=example,dc=com??sub?(uid=bjensen) .

See RFC 2255 .

LDAPS

LDAP over SSL.

Lightweight Directory Access Protocol (LDAP)

A simple and standardized network protocol used by applications to connect to a

directory, search for objects and add, edit or remove objects.

See RFC 4510 .

Lookthrough limit

Defines the maximum number of candidate entries DS considers when processing a

search.

Matching rule

Defines rules for performing matching operations against assertion values. Matching
rules are frequently associated with an attribute syntax, and are used to compare

values according to that syntax.

For example, the distinguishedNameEqualityMatch matching rule can be used to

determine whether two DNs are equal and can ignore unnecessary spaces around
commas and equal signs, differences in capitalization in attribute names, and other

discrepancies.

Modify DN operation

LDAP modification operation to request that the server change the distinguished
name of an entry.

Modify operation

LDAP modification operation to request that the server change one or more

attributes of an entry.

Naming context

Base DN under which client applications can look for user data.

Object class







https://tools.ietf.org/html/rfc2849
https://tools.ietf.org/html/rfc2849
https://tools.ietf.org/html/rfc2849
https://tools.ietf.org/html/rfc2255
https://tools.ietf.org/html/rfc2255
https://tools.ietf.org/html/rfc2255
https://tools.ietf.org/html/rfc4510
https://tools.ietf.org/html/rfc4510
https://tools.ietf.org/html/rfc4510

95 / 99

Identifies entries that share certain characteristics. Most commonly, an entry’s object

classes define the attributes that must and may be present on the entry.

Object classes are stored on entries as values of the objectClass attribute. Object

classes are defined in the directory schema, and can be abstract (defining
characteristics for other object classes to inherit), structural (defining the basic

structure of an entry, one structural inheritance per entry), or auxiliary (for
decorating entries already having a structural object class with other required and

optional attributes).

Object identifier (OID)

String that uniquely identifies an object, such as 0.9.2342.19200300.100.1.1 for
the user ID attribute or 1.3.6.1.4.1.1466.115.121.1.15 for DirectoryString

syntax.

Operational attribute

An attribute that has a special (operational) meaning for the server, such as
pwdPolicySubentry or modifyTimestamp .

Ordering index

Index used to match values for a filter that specifies a range.

Password policy

A set of rules regarding what sequence of characters constitutes an acceptable

password. Acceptable passwords are generally those that would be too difficult for
another user, or an automated program to guess and thereby defeat the password

mechanism.

Password policies may require a minimum length, a mixture of different types of

characters (lowercase, uppercase, digits, punctuation marks, and other characters),
avoiding dictionary words or passwords based on the user’s name, and other

attributes.

Password policies may also require that users not reuse old passwords and that

users change their passwords regularly.

Password reset

Password change performed by a user other than the user who owns the entry.

Password storage scheme

Mechanism for encoding user passwords stored on directory entries. DS implements
a number of password storage schemes.

Password validator

Mechanism for determining whether a proposed password is acceptable for use. DS

implements a number of password validators.

Plugin

96 / 99

Java library with accompanying configuration that implements a feature through

processing that is not essential to the core operation of DS servers.

As the name indicates, plugins can be plugged in to an installed server for immediate

configuration and use without recompiling the server.

DS servers invoke plugins at specific points in the lifecycle of a client request. The DS

configuration framework lets directory administrators manage plugins with the same
tools used to manage the server.

Presence index

Index used to match the fact that an attribute is present on the entry, regardless of

the value.

Principal

Entity that can be authenticated, such as a user, a device, or an application.

Privilege

Server configuration settings controlling access to administrative operations such as
exporting and importing data, restarting the server, performing password reset, and

changing the server configuration.

Privileges are implemented independently from access control instructions (ACI),

which apply to LDAP operations and user data.

See also: Access control instruction

Referential integrity

Ensuring that group membership remains consistent following changes to member

entries.

Referint log

Server log tracing referential integrity events, with entries similar to the errors log.

Referral

Reference to another directory location, which can be another directory server
running elsewhere or another container on the same server, where the current

operation can be processed.

Relative distinguished name (RDN)

Initial portion of a DN that distinguishes the entry from all other entries at the same
level, such as uid=bjensen in uid=bjensen,ou=People,dc=example,dc=com .

Replica

Directory server this is configured to use replication.

Replication

Data synchronization that ensures all directory servers participating eventually share

a consistent set of directory data.

97 / 99

Replication log

Server log tracing replication events, with entries similar to the errors log.

Replication server

Server dedicated to transmitting replication messages. A standalone replication
server does not store user data.

REST to LDAP gateway

Standalone web application that translates RESTful HTTP requests from client

applications to LDAP requests to directory services, and LDAP responses from
directory services to HTTP responses to client applications.

Root DSE

The directory entry with distinguished name "" (empty string), where DSE is an

acronym for DSA-Specific Entry. DSA is an acronym for Directory Server Agent, a single
directory server.

The root DSE serves to expose information over LDAP about what the directory
server supports in terms of LDAP controls, auth password schemes, SASL

mechanisms, LDAP protocol versions, naming contexts, features, LDAP extended
operations, and other information.

Schema

LDAP schema defines the object classes, attributes types, attribute value syntaxes,

matching rules and other constrains on entries held by the directory server.

Search filter

See: Filter

Search operation

LDAP lookup operation where a client requests that the server return entries based
on an LDAP filter, and a base DN under which to search.

Simple authentication

Bind operation performed with a user’s entry DN and user’s password.

Use simple authentication only if the network connection is secure.

Size limit

Sets the maximum number of entries returned for a search.

Static group

Group that enumerates member entries.

Subentry

An entry, such as a password policy entry, that resides with the user data but holds
operational data, and is not visible in search results unless explicitly requested.

Substring index

98 / 99

Index used to match values specified with wildcards in the filter.

Suffix

The distinguished name (DN) of a root entry in the Directory Information Tree (DIT),

and that entry and all its subordinates taken together as a single object of
administrative tasks such as export, import, indexing, and replication.

Superuser

User with privileges to perform unconstrained administrative actions on DS server.

This account is analogous to the UNIX root and Windows Administrator
accounts.

The conventional default superuser DN is uid=admin . You can create additional
superuser accounts, each with different administrative privileges.

Superuser privileges include the following:

bypass-acl : The holder is not subject to access control.

privilege-change : The holder can edit administrative privileges.

proxied-auth : The holder can make requests on behalf of another user,

including directory superusers.

See also: Directory superuser, Privilege

Task

Mechanism to provide remote access to server administrative functions.

DS software supports tasks to back up and restore backends, to import and export
LDIF files, and to stop and restart the server.

Time limit

Defines the maximum processing time DS devotes to a search operation.

Unbind operation

LDAP operation to release resources at the end of a session.

Unindexed search

Search operation for which no matching index is available.

If no indexes are applicable, then the directory server potentially has to go through
all entries to look for candidate matches. For this reason, the unindexed-search

privilege, which allows users to request searches for which no applicable index
exists, is reserved for the directory manager by default.

User

An entry that represents an individual that can be authenticated through credentials

contained or referenced by its attributes. A user may represent an internal user or an
external user, and may be an active user or an inactive user.

99 / 99

User attribute

An attribute for storing user data on a directory entry such as mail or givenname .

Virtual attribute

An attribute with dynamically generated values that appear in entries but are not
persistently stored in the backend.

Virtual directory

An application that exposes a consolidated view of multiple physical directories over

an LDAP interface. Consumers of the directory information connect to the virtual
directory’s LDAP service.

Behind the scenes, requests for information and updates to the directory are sent to
one or more physical directories where the actual information resides. Virtual

directories enable organizations to create a consolidated view of information that for
legal or technical reasons cannot be consolidated into a single physical copy.

Virtual list view (VLV) index

Browsing index designed to help the directory server respond to client applications

that need, for example, to browse through a long list of results a page at a time in a
GUI.

Virtual static group

DS group that lets applications see dynamic groups as what appear to be static

groups.

X.500

A family of standardized protocols for accessing, browsing and maintaining a
directory. X.500 is functionally similar to LDAP, but is generally considered to be

more complex, and has consequently not been widely adopted.

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

