
1 / 85

This guide covers recurring administrative operations.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their
relationships with their customers, and improve the productivity and connectivity of

their employees and partners. For more information about ForgeRock and about the
platform, see https://www.forgerock.com .

Maintenance



Run DS command-line

tools.

Tools



Start, stop, restart DS.

Server Process



Backup and restore

data.

Backup/Restore



Set limits for user and

application.

Resource Limits



Tune server

performance.

Tuning



Solve common

problems.

Troubleshooting



Maintenance Tools

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/admin-tools.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/server-process.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/resource-limits.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/troubleshooting.html

2 / 85

Add DS server command-line tools to your PATH:

1. Bash

2. PowerShell

For reference information, use the --help option with any DS tool.

All commands call Java programs. This means every command starts a JVM, so it

takes longer to start than a native binary.

DS running on…​ DS installed

from…​

Default path to tools…​

Linux distributions .zip /path/to/opendj/bin

Linux distributions .deb, .rpm /opt/opendj/bin

Microsoft Windows .zip C:\path\to\opendj\bat

The installation and upgrade tools, setup , and upgrade , are found in the parent
directory of the other tools. These tools are not used for everyday administration.

Commands Constraints

dsbackup

dsconfig

export-ldif

import-ldif

rebuild-index

setup

setup-profile

start-ds

When the server is offline, or when running commands in

offline mode, these commands can modify server files. They
must, therefore, access server files as a user who has the same

filesystem permissions as the user who installs and runs the
server.

For most systems, the simplest way to achieve this is to run the
command as the same user who installs and runs the server.

When following best practices for auditing and separation of
duty, provision administrative and server user accounts with

compatible group or access control list permissions.

Server Commands

$ export PATH=/path/to/opendj/bin:${PATH}

PS C:\path\to> $env:PATH += ";C:\path\to\opendj\bat"

file:///home/pptruser/Downloads/build/site/ds/tools-reference/setup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/upgrade.html

3 / 85

Commands Constraints

backendstat

create-rc-

script

encode-password

setup

setup-profile

start-ds

supportextract

upgrade

windows-service

These commands must be used with the local DS server in the

same installation as the tools.

These commands are not useful with non-DS servers.

dsbackup

changelogstat

dsconfig

dsrepl

encode-password

export-ldif

import-ldif

manage-account

manage-tasks

rebuild-index

status

stop-ds

verify-index

These commands must be used with DS servers having the

same version as the command.

These commands are not useful with non-DS servers.

makeldif This command depends on template files. The template files
can make use of configuration files installed with DS servers

under config/MakeLDIF/ .

The LDIF output can be used with any directory server.

base64

ldapcompare

ldapdelete

ldapmodify

ldappasswordmod

ify

ldapsearch

ldifdiff

ldifmodify

ldifsearch

These commands can be used independently of DS servers, and
are not tied to a specific version.

4 / 85

Command Description

addrate Measure add and delete throughput and response time.

authrate Measure bind throughput and response time.

backendstat Debug databases for pluggable backends.

base64 Encode and decode data in base64 format.

Base64-encoding represents binary data in ASCII, and can be
used to encode character strings in LDIF, for example.

changelogstat Debug file-based changelog databases.

create-rc-

script (UNIX)

Generate a script you can use to start, stop, and restart the

server, either directly, or at system boot and shutdown. Use
create-rc-script -f script-file .

This lets you register and manage DS servers as services on
UNIX and Linux systems.

dsbackup Back up or restore directory data.

dskeymgr Generate a deployment key, a shared master key, a private CA

certificate based on a deployment key and password, or a key
pair with the certificate signed by the private CA.

(1)

file:///home/pptruser/Downloads/build/site/ds/tools-reference/addrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/authrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/backendstat.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/base64.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/changelogstat.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/create-rc-script.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/create-rc-script.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

5 / 85

Command Description

dsconfig The dsconfig command is the primary command-line tool for

viewing and editing DS server configurations. When started
without arguments, dsconfig prompts you for administration

connection information. Once connected to a running server, it
presents you with a menu-driven interface to the server

configuration.

To edit the configuration when the server is not running, use

the --offline command.

Some advanced properties are not visible by default when you

run the dsconfig command interactively. Use the --
advanced option to access advanced properties.

When you pass connection information, subcommands, and
additional options to dsconfig , the command runs in script

mode, so it is not interactive.

You can prepare dsconfig batch scripts with the --

commandFilePath option in interactive mode, then read from
the batch file with the --batchFilePath option in script

mode. Batch files can be useful when you have many
dsconfig commands to run, and want to avoid starting the

JVM for each command.

Alternatively, you can read commands from standard input with

the --batch option.

dsrepl Manage data replication between directory servers to keep

their contents in sync.

encode-password Encode a plaintext password according to one of the available

storage schemes.

export-ldif Export directory data to LDIF, the standard, portable, text-

based representation of directory content.

import-ldif Load LDIF content into the directory, which overwrites existing

data. It cannot be used to append data to the backend
database.

ldapcompare Compare the attribute values you specify with those stored on
entries in the directory.

ldapdelete Delete one entry or an entire branch of subordinate entries in
the directory.

(1)

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsconfig.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsrepl.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/encode-password.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/export-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/import-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapcompare.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapdelete.html

6 / 85

Command Description

ldapmodify Modify the specified attribute values for the specified entries.

ldappasswordmod

ify

Modify user passwords.

ldapsearch Search a branch of directory data for entries that match the
LDAP filter you specify.

ldifdiff Display differences between two LDIF files. The output is LDIF.

ldifmodify Similar to the ldapmodify command, modify specified

attribute values for specified entries in an LDIF file.

ldifsearch Similar to the ldapsearch command, search a branch of data

in LDIF for entries matching the LDAP filter you specify.

makeldif Generate directory data in LDIF based on templates that define

how the data should appear.

The makeldif command generates test data that mimics data

expected in production, and does not compromise real,
potentially private information.

manage-account Lock and unlock user accounts, and view and manipulate
password policy state information.

manage-tasks View information about tasks scheduled to run in the server,
and cancel specified tasks.

modrate Measure modification throughput and response time.

rebuild-index Rebuild an index stored in an indexed backend.

searchrate Measure search throughput and response time.

setup-profile Configure a setup profile after initial installation.

start-ds Start one DS server.

status Display information about the server.

stop-ds Stop one DS server.

supportextract Collect troubleshooting information for technical support

purposes.

(1)

file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldappasswordmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldappasswordmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapsearch.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldifdiff.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldifmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldifsearch.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/makeldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/manage-account.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/manage-tasks.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/modrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/rebuild-index.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/searchrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/setup-profile.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/start-ds.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/status.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/stop-ds.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/supportextract.html

7 / 85

Command Description

verify-index Verify that an index stored in an indexed backend is not

corrupt.

windows-service

(Windows)

Register and manage one DS server as a Windows service.

 UNIX names for the commands. Equivalent Windows commands have .bat extensions.

When a client tool initiates a secure connection to a server, the server presents its digital
certificate.

The tool must determine whether it trusts the server certificate and continues to
negotiate a secure connection, or does not trust the server certificate and drops the

connection. To trust the server certificate, the tool’s truststore must contain the trusted
certificate. The trusted certificate is a CA certificate, or the self-signed server certificate.

The following table explains how the tools locate the truststore.

Truststore Option Truststore Used

None The default truststore, user.home/.opendj/keystore ,
where user.home is the Java system property. user.home

is $HOME on Linux and UNIX, and %USERPROFILE% on
Windows. The keystore password is OpenDJ . Neither

the file name, nor the password can be changed.

In interactive mode, DS command-line tools prompt

for approval to trust an unrecognized certificate,
and whether to store it in the default truststore for

future use.

In silent mode, the tools rely on the default

truststore.

--use<Type>TrustStore

{trustStorePath}

Only the specified truststore is used. The <Type> in the

option name reflects the trust store type.

The tool fails with an error if it cannot trust the server

certificate.

(1)

(1)

Trusted Certificates

Default Settings

file:///home/pptruser/Downloads/build/site/ds/tools-reference/verify-index.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/windows-service.html

8 / 85

You can set defaults in the ~/.opendj/tools.properties file, as in the following

example:

The file location on Windows is %UserProfile%\.opendj\tools.properties .

Start the server in the background:

Alternatively, specify the --no-detach option to start the server in the foreground.

(Linux) If the DS server was installed from a .deb or .rpm package, then service

management scripts were created at setup time:

(UNIX) Create an RC script, and use the script to start the server.

Unless you run DS servers on Linux as root, use the --userName userName option

to specify the user who installed the server:

hostname=localhost

port=4444

bindDN=uid=admin

useSsl=true

trustAll=true

Server Processes

Start a Server

$ start-ds

centos# service opendj start

Starting opendj (via systemctl): [

OK]

ubuntu$ sudo service opendj start

$Starting opendj: > SUCCESS.

$ sudo create-rc-script --outputFile /etc/init.d/opendj --

userName opendj

9 / 85

For example, if you run the DS server on Linux as root, you can use the RC script to

start the server at system boot, and to stop the server at system shutdown:

Alternatively, generate a service file with the --systemdService option, and use
systemd to manage the service.

(Windows) Register the DS server as a Windows service:

Manage the service with Windows-native administration tools.

Although DS servers are designed to recover from failure and disorderly shutdown, it is

safer to shut the server down cleanly, because a clean shutdown reduces startup delays.
During startup, the server attempts to recover database backend state. Clean shutdown

prevents situations where the server cannot recover automatically.

1. Before shutting down the system where the server is running, and before
detaching any storage used for directory data, cleanly stop the server using one

of the following techniques:

Use the stop-ds command:

$ sudo /etc/init.d/opendj start

$ sudo update-rc.d opendj defaults

update-rc.d: warning: /etc/init.d/opendj missing LSB

information

update-rc.d: see <http://wiki.debian.org/LSBInitScripts>

Adding system startup for /etc/init.d/opendj ...

/etc/rc0.d/K20opendj -> ../init.d/opendj

/etc/rc1.d/K20opendj -> ../init.d/opendj

/etc/rc6.d/K20opendj -> ../init.d/opendj

/etc/rc2.d/S20opendj -> ../init.d/opendj

/etc/rc3.d/S20opendj -> ../init.d/opendj

/etc/rc4.d/S20opendj -> ../init.d/opendj

/etc/rc5.d/S20opendj -> ../init.d/opendj

C:\path\to\opendj\bat> windows-service.bat --enableService

Stop a Server

Clean Server Retirement

10 / 85

(Linux) If the DS server was installed from a .deb or .rpm package, then
service management scripts were created at setup time:

(UNIX) Create an RC script, and then use the script to stop the server:

(Windows) Register the DS server once as a Windows service:

Manage the service with Windows-native administration tools.

Do not intentionally kill the DS server process unless the server is completely
unresponsive.

+ When stopping cleanly, the server writes state information to database
backends, and releases locks that it holds on database files.

Use the stop-ds command:

(Linux) If the DS server was installed from a .deb or .rpm package, then service
management scripts were created at setup time:

$ stop-ds

centos# service opendj stop

Stopping opendj (via systemctl):

[OK]

ubuntu$ sudo service opendj stop

$Stopping opendj: ... > SUCCESS.

$ sudo create-rc-script --outputFile /etc/init.d/opendj

--userName opendj

$ sudo /etc/init.d/opendj stop

C:\path\to\opendj\bat> windows-service.bat --

enableService

Restart a Server

$ stop-ds --restart

11 / 85

(UNIX) Create an RC script, and then use the script to stop the server:

(Windows) Register the DS server once as a Windows service:

Manage the service with Windows-native administration tools.

The following server administration commands can be run in online and offline mode.
They invoke data-intensive operations, and so potentially take a long time to complete.

The links below are to the reference documentation for each command:

dsbackup

export-ldif

import-ldif

rebuild-index

When you run these commands in online mode, they run as tasks on the server. Server

tasks are scheduled operations that can run one or more times as long as the server is
up. For example, you can schedule the dsbackup and export-ldif commands to run

recurrently in order to back up server data on a regular basis.

You schedule a task as a directory administrator, sending the request to the

administration port. You can therefore schedule a task on a remote server if you choose.
When you schedule a task on a server, the command returns immediately, yet the task

centos# service opendj restart

Restarting opendj (via systemctl): [

OK]

ubuntu$ sudo service opendj restart

$Stopping opendj: ... > SUCCESS.

$Starting opendj: > SUCCESS.

$ sudo create-rc-script --outputFile /etc/init.d/opendj --

userName opendj

$ sudo /etc/init.d/opendj restart

C:\path\to\opendj\bat> windows-service.bat --enableService

Server Tasks

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/export-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/import-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/rebuild-index.html

12 / 85

can start later, and might run for a long time before it completes. You can access tasks

by using the manage-tasks command.

Although you can schedule a server task on a remote server, the data for the task must be

accessible to the server locally. For example, when you schedule a backup task on a
remote server, that server writes backup files to a file system on the remote server.

Similarly, when you schedule a restore task on a remote server, that server restores
backup files from a file system on the remote server.

The reference documentation describes the available options for each command:

Configure email notification for success and failure

Define alternatives on failure

Start tasks immediately (--start 0)

Schedule tasks to start at any time in the future

DS servers can restart after a crash or after the server process is killed abruptly. After

disorderly shutdown, the DS server must recover its database backends. Generally, DS
servers return to service quickly.

Database recovery messages are found in the database log file, such as

/path/to/opendj/db/userData/dj.log .

The following example shows two example messages from the recovery log. The first
message is written at the beginning of the recovery process. The second message is

written at the end of the process:

The JVM’s heap-based database cache is lost when the server stops or crashes. The
cache must therefore be reconstructed from the directory database files. Database files

might still be in the filesystem cache on restart, but rebuilding the JVM’s heap-based
database cache takes time. DS servers start accepting client requests before this process

is complete.

Server Recovery

[/path/to/opendj/db/userData]Recovery underway, found end of log

...

[/path/to/opendj/db/userData]Recovery finished: Recovery Info ...

Backup and Restore

IMPORTANT

file:///home/pptruser/Downloads/build/site/ds/tools-reference/manage-tasks.html

13 / 85

When you set up a directory server, the process creates a /path/to/opendj/bak/
directory. You can use this for backups if you have enough local disk space, and when

developing or testing backup processes. In deployment, store backups remotely to avoid
losing your data and backups in the same crash.

When you schedule a backup as a server task, the DS server manages task

completion. The server must be running when you schedule the task, and when the
task runs:

1. Schedule the task on a running server, binding as a user with the backend-
backup administrative privilege.

The following example schedules an immediate backup task for the
dsEvaluation backend:

Backup archives are not guaranteed to be compatible across major and minor

server releases. Restore backups only on directory servers of the same major or

minor version.

To share data between servers of different versions, either use replication, or
use LDIF.

DS servers use cryptographic keys to sign and verify the integrity of backup
files, and to encrypt data. Servers protect these keys by encrypting them with

the shared master key for a deployment. For portability, servers store the
encrypted keys in the backup files.

Any server can therefore restore a backup taken with the same server version,
as long as it holds a copy of the shared master key used to encrypt the keys.

IMPORTANT

Back Up

Back Up Data (Server Task)

$ dsbackup \

create \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

14 / 85

To back up all backends, omit the --backendName option.

To back up more than one backend, specify the --backendName option
multiple times.

For details, see dsbackup.

When you schedule a backup as a server task, the DS server manages task

completion. The server must be running when you schedule the task, and when the
task runs:

1. Schedule backups using the crontab format with the --recurringTask
option.

The following example schedules nightly online backup of all user data at 2 AM,
notifying diradmin@example.com when finished, or on error:

For details, see dsbackup.

--backupLocation bak \

--backendName dsEvaluation

Back Up Data (Scheduled Task)

$ dsbackup \

create \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--backupLocation bak \

--recurringTask "00 02 * * *" \

--description "Nightly backup at 2 AM" \

--taskId NightlyBackup \

--completionNotify diradmin@example.com \

--errorNotify diradmin@example.com

Back Up Data (External Command)

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

15 / 85

When you back up data without contacting the server, the dsbackup create

command runs as an external command, independent of the server process. It
backs up the data whether the server is running or not.

Use this method to schedule backup with a third-party tool, such as the cron
command:

1. Back up data without contacting the server process, and use the --offline
option.

The following example backs up the dsEvaluation backend immediately:

To back up all backends, omit the --backendName option.

To back up more than one backend, specify the --backendName option
multiple times.

For details, see dsbackup.

When you back up directory data using the dsbackup command, you do not back
up server configuration files. The server stores configuration files under the

/path/to/opendj/config/ directory.

The server records snapshots of its configuration under the

/path/to/opendj/var/ directory. You can use snapshots to recover from
misconfiguration performed with the dsconfig command. Snapshots only reflect

the main configuration file, config.ldif .

When you back up LDIF-based backends with this method, the command does
not lock the files. To avoid corrupting the backup files, do not run the

dsbackup create --offline command on an LDIF backend simultaneously
with any changes to the backend.

This applies to LDIF backends, schema files, and the task backend, for example.

NOTE

$ dsbackup \

create \

--offline \

--backupLocation bak \

--backendName dsEvaluation

Back Up Configuration Files

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

16 / 85

1. Stop the server:

2. Back up the configuration files:

By default, this backup includes the server keystore, so store it securely.

3. Start the server:

ForgeRock recommends using the dsbackup command when possible for backup and
restore operations. You can use snapshot technology as an alternative to the dsbackup
command, but you must be careful how you use it.

While DS directory servers are running, database backend cleanup operations write data

even when there are no pending client or replication operations. An ongoing file system
backup operation may record database log files that are not in sync with each other.

Successful recovery after restore is only guaranteed under certain conditions.

The snapshots must:

Be atomic, capturing the state of all files at exactly the same time.

If you are not sure that the snapshot technology is atomic, do not use it. Use the

dsbackup command instead.

Capture the state of all data (db/) and (changelogDb/) changelog files together.

When using a file system-level snapshot feature, for example, keep at least all data
and changelog files on the same file system. This is the case in a default server

setup.

Be paired with a specific server configuration.

A snapshot of all files includes configuration files that may be specific to one DS
server, and cannot be restored safely on another DS server with a different

configuration. If you restore all system files, this principle applies to system
configuration as well.

$ stop-ds

$ tar -zcvf backup-config-$(date +%s).tar.gz config

$ start-ds

Back Up Using Snapshots

17 / 85

For details on making DS configuration files as generic as possible, see Property

Value Substitution.

If snapshots in your deployment do not meet these criteria, you must stop the DS server

before taking the snapshot. You must also take care not to restore incompatible
configuration files.

1. Verify the backup you intend to restore.

The following example verifies the most recent backup of the dsEvaluation

backend:

2. Schedule the restore operation as a task, binding as a user with the backend-

restore administrative privilege.

Restore

After you restore a replicated backend, replication brings it up to date with changes

newer than the backup. Replication uses internal change log records to determine
which changes to apply. This process happens even if you only have a single server

that you configured for replication at setup time (by setting the replication port with
the --replicationPort port option). To prevent replication from replaying

changes newer than the backup you restore, refer to Disaster recovery.

Replication purges internal change log records, however, to prevent the change log

from growing indefinitely. Replication can only bring the backend up to date if the
change log still includes the last change backed up.

For this reason, when you restore a replicated backend from backup, the backup

must be newer than the last purge of the replication change log (default: 3 days).

If no backups are newer than the replication purge delay, do not restore from a
backup. Initialize the replica instead, without using a backup. For details, see

Manual Initialization.

IMPORTANT

Restore Data (Server Task)

$ dsbackup \

list \

--backupLocation bak \

--backendName dsEvaluation \

--last \

--verify

file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html
file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/disaster-recovery.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#init-repl

18 / 85

The following example schedules an immediate restore task for the

dsEvaluation backend:

To restore the latest backups of more than one backend, specify the --
backendName option multiple times.

To restore a specific backup, specify the --backupId option. To restore
multiple specific backups of different backends, specify the --backupId

option multiple times.

To list backup information without performing verification, use the dsbackup

list command without the --verify option. The output includes backup IDs
for use with the --backupId option.

For details, see dsbackup.

1. Stop the server if it is running:

2. Verify the backup you intend to restore.

The following example verifies the most recent backup of the dsEvaluation
backend:

$ dsbackup \

restore \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--backupLocation bak \

--backendName dsEvaluation

Restore Data (External Command)

$ stop-ds --quiet

$ dsbackup \

list \

--backupLocation bak \

--backendName dsEvaluation \

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

19 / 85

3. Restore using the --offline option.

The following example restores the dsEvaluation backend:

To restore the latest backups of more than one backend, specify the --
backendName option multiple times.

To restore a specific backup, specify the --backupId option. To restore
multiple specific backups of different backends, specify the --backupId

option multiple times.

To list backup information without performing verification, use the dsbackup

list command without the --verify option. The output includes backup IDs
for use with the --backupId option.

For details, see dsbackup.

4. Start the server:

1. Stop the server:

2. Restore the configuration files from the backup, overwriting existing files:

3. Start the server:

--last \

--verify

$ dsbackup \

restore \

--offline \

--backupLocation bak \

--backendName dsEvaluation

$ start-ds --quiet

Restore Configuration Files

$ stop-ds --quiet

$ tar -zxvf backup-config-<date>.tar.gz

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

20 / 85

ForgeRock recommends using the dsbackup command when possible for backup and
restore operations.

You can use snapshot technology as an alternative to the dsbackup command, but you
must be careful how you use it. For details, see Back Up Using Snapshots.

Take the following points into account before restoring a snapshot:

When you restore files for a replicated backend, the snapshot must be newer than the

last purge of the replication change log (default: 3 days).

Stop the DS server before you restore the files.

The DS configuration files in the snapshot must match the configuration where you
restore the snapshot.

If the configuration uses expressions, define their values for the current server
before starting DS.

When using snapshot files to initialize replication, only restore the data (db/) files
for the target backend.

Depending on the snapshot technology, you might need to restore the files
separately, and then move only the target backend files from the restored

snapshot.

When using snapshot files to restore replicated data to a known state, stop all

affected servers before you restore.

Periodically purge old backup files with the dsbackup purge command. The following
example removes all backup files older than the default replication purge delay:

This example runs the external command without contacting the server process. You

can also purge backups by ID, or by backend name, and you can specify the number of
backups to keep. For details, see dsbackup.

$ start-ds --quiet

Restore From a Snapshot

Purge Old Files

$ dsbackup \

purge \

--offline \

--backupLocation bak \

--olderThan 3d

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

21 / 85

To purge files as a server task, use the task options, such as --recurringTask . The

user must have the backend-backup administrative privilege to schedule a purge task.

You can stream backup files to cloud storage, and restore them directly from cloud

storage.

The implementation supports these providers:

Amazon AWS S3

Azure Cloud Storage

Google Cloud Storage

Follow these steps to store backup files in the cloud:

1. Get a storage account and space from the cloud provider where the server can
store backup files.

This storage space is referred to below as cloud-bak.

2. Get credentials from the cloud provider.

The DS server backing up files must have read, write, and delete access. For
information about granting access, see the access control documentation for

your provider.

If you are not yet familiar with cloud storage, see the documentation from your

provider for help. The following table provides links to the documentation for
supported providers:

Provider Hints

Amazon AWS

S3

For details on setting up S3 and working with S3 buckets, see

the Amazon Web Services documentation on Getting started
with Amazon Simple Storage Service .

Azure Cloud
Storage

DS authenticates to Azure with an Azure storage account.
For details, see the Microsoft documentation on how to

Create an Azure Storage account , or to Create a
BlockBlobStorage account .

Cloud Storage







https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob

22 / 85

Provider Hints

Google

Cloud
Storage

DS authenticates to Google Cloud with a service account. For

details, see the Google documentation on Getting Started
with Authentication .

For details about creating and managing storage buckets,
see the Google How-To documentation on Creating buckets

, and Working with buckets .

3. Set environment variables for the credentials:

Provider Environment Variable(s)

Amazon AWS

S3

export AWS_ACCESS_KEY_ID=aws-access-key

export AWS_SECRET_ACCESS_KEY=aws-secret-key

Azure Cloud

Storage

export AZURE_ACCOUNT_NAME=azure-account-name

export AZURE_ACCOUNT_KEY=azure-account-key

Google

Cloud
Storage

export GOOGLE_CREDENTIALS=/path/to/gcp-

credentials.json (optional)

4. Restart the DS server so that it reads the environment variables you set:

5. Run dsbackup commands with all required provider-specific options.

The options in the following table use the providers' default storage endpoints:

Provider Required Options

Amazon AWS

S3



 

$ stop-ds --restart

--storageProperty

s3.keyId.env.var:AWS_ACCESS_KEY_ID \

--storageProperty

s3.secret.env.var:AWS_SECRET_ACCESS_KEY \

--backupLocation s3://cloud-bak

https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#working-with-buckets
https://cloud.google.com/storage/docs/how-to#working-with-buckets
https://cloud.google.com/storage/docs/how-to#working-with-buckets

23 / 85

Provider Required Options

Azure Cloud

Storage

Google
Cloud

Storage

or

If your cloud storage does not use the default endpoint, add one of the following

options:

--storage-property endpoint:endpoint-url

--storage-property endpoint.env.var:environment-variable-for-

endpoint-url

For Azure cloud storage, the endpoint-url starts with the account name.
Examples include https://azure-account-name.blob.core.windows.net ,

https://${AZURE_ACCOUNT_NAME}.blob.core.windows.net , and
https://${AZURE_ACCOUNT_NAME}.some.private.azure.endpoint .

Cloud storage requires working space in the local system temporary directory.
Some cloud storage providers require sending the content length with each

file.

To send the correct content length, the dsbackup command writes each

prepared backup file to the system temporary directory before upload. It
deletes each file after successful upload.

Click the samples for your storage provider to expand the section and see the
commands:

--storageProperty

az.accountName.env.var:AZURE_ACCOUNT_NAME \

--storageProperty

az.accountKey.env.var:AZURE_ACCOUNT_KEY \

--backupLocation az://cloud-bak

--storageProperty

gs.credentials.path:/path/to/gcp-

credentials.json \

--backupLocation gs://cloud-bak

--storageProperty

gs.credentials.env.var:GOOGLE_CREDENTIALS \

--backupLocation gs://cloud-bak

Cloud storage samples

24 / 85

AWS samples

#

API keys created through the AWS API gateway console:

#

export AWS_ACCESS_KEY_ID=aws-access-key-id

export AWS_SECRET_ACCESS_KEY=aws-secret-key

These samples use the following S3 bucket, and a non-default

endpoint:

S3 bucket: s3://ds-test-backup

S3 endpoint: https://s3.us-east-1.amazonaws.com

Back up the dsEvaluation backend offline:

dsbackup create --backendName dsEvaluation --offline \

--backupLocation s3://ds-test-backup \

--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \

--storageProperty s3.secret.env.var:AWS_SECRET_ACCESS_KEY \

--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

List and verify the latest backup files for each backend at

this location:

dsbackup list --verify --last \

--backupLocation s3://ds-test-backup \

--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \

--storageProperty s3.secret.env.var:AWS_SECRET_ACCESS_KEY \

--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

Restore dsEvaluation from backup offline:

dsbackup restore --backendName dsEvaluation --offline \

--backupLocation s3://ds-test-backup \

--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \

--storageProperty s3.secret.env.var:AWS_SECRET_ACCESS_KEY \

--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

Purge all dsEvaluation backup files:

dsbackup purge --backendName dsEvaluation --keepCount 0 --

offline \

--backupLocation s3://ds-test-backup \

--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \

--storageProperty s3.secret.env.var:AWS_SECRET_ACCESS_KEY \

--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

Azure samples

25 / 85

#

Credentials for Azure storage, where the Azure account is

found in key1 in the Azure console:

#

export AZURE_ACCOUNT_NAME=azure-account-name

export AZURE_ACCOUNT_KEY=azure-account-key

These samples use the following Azure storage, and a non-

default endpoint:

Azure storage: az://ds-test-backup/test1

Azure endpoint:

https://${AZURE_ACCOUNT_NAME}.blob.core.windows.net

Back up the dsEvaluation backend offline:

dsbackup create --backendName dsEvaluation --offline \

--backupLocation az://ds-test-backup/test1 \

--storageProperty az.accountName.env.var:AZURE_ACCOUNT_NAME \

--storageProperty az.accountKey.env.var:AZURE_ACCOUNT_KEY \

--storageProperty

"endpoint:https://${AZURE_ACCOUNT_NAME}.blob.core.windows.net"

List and verify the latest backup files for each backend at

this location:

dsbackup list --verify --last \

--backupLocation az://ds-test-backup/test1 \

--storageProperty az.accountName.env.var:AZURE_ACCOUNT_NAME \

--storageProperty az.accountKey.env.var:AZURE_ACCOUNT_KEY \

--storageProperty

"endpoint:https://${AZURE_ACCOUNT_NAME}.blob.core.windows.net"

Restore dsEvaluation from backup offline:

dsbackup restore --backendName dsEvaluation --offline \

--backupLocation az://ds-test-backup/test1 \

--storageProperty az.accountName.env.var:AZURE_ACCOUNT_NAME \

--storageProperty az.accountKey.env.var:AZURE_ACCOUNT_KEY \

--storageProperty

"endpoint:https://${AZURE_ACCOUNT_NAME}.blob.core.windows.net"

Purge all dsEvaluation backup files:

dsbackup purge --backendName dsEvaluation --keepCount 0 --

offline \

--backupLocation az://ds-test-backup/test1 \

--storageProperty az.accountName.env.var:AZURE_ACCOUNT_NAME \

--storageProperty az.accountKey.env.var:AZURE_ACCOUNT_KEY \

26 / 85

--storageProperty

"endpoint:https://${AZURE_ACCOUNT_NAME}.blob.core.windows.net"

Google cloud samples

#

Credentials generated with and download from the Google cloud

console:

#

export GOOGLE_CREDENTIALS=/path/to/gcp-credentials.json

These samples use the following cloud storage, and endpoint:

Google storage: gs://ds-test-backup/test1

Google endpoint: https://www.googleapis.com

Back up the dsEvaluation backend offline:

dsbackup create --backendName dsEvaluation --offline \

--backupLocation gs://ds-test-backup/test1 \

--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \

--storageProperty endpoint:https://www.googleapis.com

List and verify the latest backup files for each backend at

this location:

dsbackup list --verify --last \

--backupLocation gs://ds-test-backup/test1 \

--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \

--storageProperty endpoint:https://www.googleapis.com

Restore dsEvaluation from backup offline:

dsbackup restore --backendName dsEvaluation --offline \

--backupLocation gs://ds-test-backup/test1 \

--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \

--storageProperty endpoint:https://www.googleapis.com

Purge all dsEvaluation backup files:

dsbackup purge --backendName dsEvaluation --keepCount 0 --

offline \

--backupLocation gs://ds-test-backup/test1 \

--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \

--storageProperty endpoint:https://www.googleapis.com

Disaster recovery

27 / 85

Directory services are critical to authentication, session management, authorization, and

more. When directory services are broken, quick recovery is a must.

In DS directory services, a disaster is a serious data problem affecting the entire

replication topology. Replication can’t help you recover from a disaster because it
replays data changes everywhere.

Disaster recovery comes with a service interruption, the loss of recent changes, and a
reset for replication. It is rational in the event of a real disaster. It’s unnecessary to follow

the disaster recovery procedure for a hardware failure or a server that’s been offline too
long and needs reinitialization. Even if you lose most of your DS servers, you can still

rebuild the service without interruption or data loss.

The following example helps prepare to recover from a disaster. It shows the following
tasks:

Back up a DS directory service.

Restore the service to a known state.

Validate the procedure.

The following tasks demonstrate a disaster recovery procedure on a single computer
two replicated DS servers set up for evaluation.

In deployment, the procedure involves multiple computers, but the order and content of
the tasks remain the same. Before you perform the procedure in production, make sure

you have copies of the following:

The deployment description, documentation, plans, runbooks, and scripts.

The system configuration and software, including the Java installation.

The DS software and any customizations, plugins, or extensions.

A recent backup of any external secrets required, such as an HSM or a CA key.

A recent backup of each server’s configuration files, matching the production

configuration.

The deployment ID and password.

For disaster recovery to be quick, you must prepare in advance.

Don’t go to production until you have successfully tested your disaster recovery
procedures.

IMPORTANT

Tasks

IMPORTANT

file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-ds.html

28 / 85

Disaster recovery has these characteristics:

You perform disaster recovery on a stopped server, one server at a time.

Disaster recovery is per base DN, like replication.

On each server you recover, you use the same disaster recovery ID, a unique

identifier for this recovery.

To minimize the service interruption, this example recovers the servers one by one. It is

also possible to perform disaster recovery in parallel by stopping and starting all servers
together.

Back up data while the directory service is running smoothly. For additional details, refer
to Backup and Restore.

1. Back up the directory data.

The following command backs up directory data created for evaluation:

The command returns, and the DS server runs the backup task in the background.

When adapting the recovery process for deployment, schedule a backup task to run

regularly for each database backend.

2. Check the backup task finishes successfully:

This procedure applies to DS versions providing the dsrepl disaster-recovery

command.

For deployments with any earlier DS servers that don’t provide the command, you

can’t use this procedure. Instead, refer to How do I perform disaster recovery steps
in DS (All versions)?

IMPORTANT



Task 1: Back up directory data

$ /path/to/opendj/bin/dsbackup \

create \

--start 0 \

--backupLocation /path/to/opendj/bak \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
https://backstage.forgerock.com/knowledge/kb/article/a31420361
https://backstage.forgerock.com/knowledge/kb/article/a31420361
https://backstage.forgerock.com/knowledge/kb/article/a31420361
https://backstage.forgerock.com/knowledge/kb/article/a31420361

29 / 85

The status of the backup task is "Completed successfully" when it is done.

Recovery from disaster means stopping the directory service and losing the latest
changes. The more recent the backup, the fewer changes you lose during recovery.

Backup operations are cumulative, so you can schedule them regularly without using
too much disk space as long as you purge outdated backup files. As you script your

disaster recovery procedures for deployment, schedule a recurring backup task to have
safe, current, and complete backup files for each backend.

This task restores the directory data from backup files created before the disaster. Adapt
this procedure as necessary if you have multiple directory backends to recover.

Subtasks:

Prepare for recovery

Recover the first directory server

Recover remaining servers

1. If you have lost DS servers, replace them with servers configured as before the

disaster.

In this example, no servers were lost. Reuse the existing servers.

2. On each replica, prevent applications from making changes to the backend for the
affected base DN. Changes made during recovery would be lost or could not be

replicated:

$ /path/to/opendj/bin/manage-tasks \

--summary \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

Task 2: Recover from a disaster

All changes since the last backup operation are lost.

IMPORTANT

Prepare for recovery

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html#cumulative-backups

30 / 85

In this example, the first server’s administrative port is 4444 . The second server’s
administrative port is 14444 .

$ /path/to/opendj/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:internal-only \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

$ /path/to/replica/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:internal-only \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

Recover the first directory server

IMPORTANT

31 / 85

This process generates the disaster recovery ID to use when recovering the other

servers.

1. Stop the directory server you use to start the recovery process:

2. Restore the affected data on this directory server:

DS uses the disaster recovery ID to set the generation ID, an internal, shorthand form

of the initial replication state. Replication only works when the data for the base DN
share the same generation ID on each server.

There are two approaches to using the dsrepl disaster-recovery command.
Use one or the other:

(Recommended) Let DS generate the disaster recovery ID on a first replica. Use
the generated ID on all other servers you recover.

When you use the generated ID, the dsrepl disaster-recovery command
verifies each server you recover has the same initial replication state as the

first server.

Use the recovery ID of your choice on all servers.

Don’t use this approach if the replication topology includes one or more
standalone replication servers. It won’t work.

This approach works when you can’t define a "first" replica, for example,
because you’ve automated the recovery process in an environment where the

order of recovery is not deterministic.

When you choose the recovery ID, the dsrepl disaster-recovery

command doesn’t verify the data match. The command uses your ID as the
random seed when calculating the new generation ID. For the new generation

IDs to match, your process must have restored the same data on each server.
Otherwise, replication won’t work between servers whose data does not

match.

If you opt for this approach, skip these steps. Instead, proceed to Recover

remaining servers.

Don’t mix the two approaches in the same disaster recovery procedure. Use the

generated recovery ID or the recovery ID of your choice, but do not use both.

IMPORTANT

$ /path/to/opendj/bin/stop-ds

$ /path/to/opendj/bin/dsbackup \

restore \

32 / 85

Changes to the affected data that happened after the backup are lost. Use the most
recent backup files prior to the disaster.

3. Run the command to begin the disaster recovery process.

When this command completes successfully, it displays the disaster recovery ID:

Record the <generatedId>. You will use it to recover all other servers.

4. Start the recovered server:

5. Test the data you restored is what you expect.

6. Start backing up the recovered directory data.

As explained in New backup after recovery, you can no longer rely on pre-recovery

backup data after disaster recovery.

7. Allow external applications to make changes to directory data again:

--offline \

--backendName dsEvaluation \

--backupLocation /path/to/opendj/bak

This approach to restoring data works in deployments with the same DS server
version. When all DS servers share the same DS version, you can restore all the

DS directory servers from the same backup data.

Backup archives are not guaranteed to be compatible across major and minor

server releases. Restore backups only on directory servers of the same major or

minor version.

TIP

$ /path/to/opendj/bin/dsrepl \

disaster-recovery \

--baseDn dc=example,dc=com \

--generate-recovery-id \

--no-prompt

Disaster recovery id: <generatedId>

$ /path/to/opendj/bin/start-ds

$ /path/to/opendj/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:enabled \

--hostname localhost \

33 / 85

You have recovered this replica and begun to bring the service back online. To enable
replication with other servers to resume, recover the remaining servers.

You can perform this procedure in parallel on all remaining servers or on one server at a

time. For each server:

1. Stop the server:

2. Unless the server is a standalone replication server, restore the affected data:

3. Run the recovery command.

The following command uses a generated ID. It verifies this server’s data matches
the first server you recovered:

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

Recover remaining servers

Make sure you have a disaster recovery ID. Use the same ID for all DS servers in this

recovery procedure:

(Recommended) If you generated the ID as described in Recover the first

directory server, use it.

If not, use a unique ID of your choosing for this recovery procedure.

For example, you could use the date at the time you begin the procedure.

IMPORTANT

$ /path/to/replica/bin/stop-ds

$ /path/to/replica/bin/dsbackup \

restore \

--offline \

--backendName dsEvaluation \

--backupLocation /path/to/opendj/bak

$ export DR_ID=<generatedId>

$ /path/to/replica/bin/dsrepl \

34 / 85

If the recovery ID is a unique ID of your choosing, use dsrepl disaster-recovery

--baseDn <base-dn> --user-generated-id <recoveryId> instead. This
alternative doesn’t verify the data on each replica match and won’t work if the

replication topology includes one or more standalone replication servers.

4. Start the recovered server:

5. If this is a directory server, test the data you restored is what you expect.

6. If this is a directory server, allow external applications to make changes to directory
data again:

After completing these steps for all servers, you have restored the directory service and
recovered from the disaster.

After recovering from the disaster, validate replication works as expected. Use the
following steps as a simple guide.

1. Modify an entry on one replica.

The following command updates Babs Jensen’s description to Post recovery :

disaster-recovery \

--baseDn dc=example,dc=com \

--generated-id ${DR_ID} \

--no-prompt

$ /path/to/replica/bin/start-ds

$ /path/to/replica/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:enabled \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

Validation

$ /path/to/opendj/bin/ldapmodify \

--hostname localhost \

35 / 85

2. Read the modified entry on another replica:

You have shown the recovery procedure succeeded.

When planning to deploy disaster recovery procedures, take these topics into account.

When recovering from backup, you must complete the recovery procedure while the

backup is newer than the replication delay.

If this is not possible for all servers, recreate the remaining servers from scratch after

recovering as many servers as possible and taking a new backup.

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--bindDn uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin <<EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

replace: description

description: Post recovery

EOF

MODIFY operation successful for DN

uid=bjensen,ou=People,dc=example,dc=com

$ /path/to/replica/bin/ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--bindDN uid=bjensen,ou=People,dc=example,dc=com \

--bindPassword hifalutin \

--baseDn dc=example,dc=com \

"(cn=Babs Jensen)" \

description

dn: uid=bjensen,ou=People,dc=example,dc=com

description: Post recovery

Before deployment

Recover before the purge delay

36 / 85

Disaster recovery resets the replication generation ID to a different format than you get

when importing new directory data.

After disaster recovery, you can no longer use existing backup files for the recovered

base DN. Directory servers can only replicate data under a base DN with directory
servers having the same generation ID. The old backups no longer have the right

generation IDs.

Instead, immediately after recovery, back up data from the recovered base DN and use

the new backups going forward.

You can purge older backup files to prevent someone accidentally restoring from a

backup with an outdated generation ID.

Disaster recovery clears the changelog for the recovered base DN.

If you use change number indexing for the recovered base DN, disaster recovery resets

the change number.

If you have standalone replication servers and directory servers, you might not want to
recover them all at once.

Instead, in each region, alternate between recovering a standalone directory server then
a standalone replication server to reduce the time to recovery.

Reference Description

About replication In-depth introduction to replication concepts

Backup and Restore The basics, plus backing up to the cloud and using

filesystem snapshots

Cryptographic Keys About keys, including those for encrypting and

decrypting backup files

Data Storage Details about exporting and importing LDIF, common

data stores

New backup after recovery

Change notifications reset

Standalone servers

Reference material

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-enable
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-configure-changenumber-indexer
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#about-repl
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html

37 / 85

Account lockout settings are part of password policy. The server locks an account after
the specified number of consecutive authentication failures. For example, users are

allowed three consecutive failures before being locked out for five minutes. Failures
themselves expire after five minutes.

The aim of account lockout is not to punish users who mistype their passwords. It
protects the directory when an attacker attempts to guess a user password with

repeated attempts to bind.

The following command adds a replicated password policy to activate lockout:

Accounts

Account Lockout

Account lockout is not transactional across a replication topology. Under normal
circumstances, replication propagates lockout quickly. If replication is ever delayed,

an attacker with direct access to multiple replicas could try to authenticate up to
the specified number of times on each replica before being locked out on all

replicas.

NOTE

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Lock after three failures,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

cn: Lock after three failures

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-lockout-failure-expiration-interval: 5 m

ds-pwp-lockout-duration: 5 m

ds-pwp-lockout-failure-count: 3

subtreeSpecification: { base "ou=people" }

EOF

38 / 85

Users with this policy are locked out after three failed attempts in succession:

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--baseDN dc=example,dc=com \

uid=bjensen \

mail

dn: uid=bjensen,ou=People,dc=example,dc=com

mail: bjensen@example.com

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword fatfngrs \

--baseDN dc=example,dc=com \

uid=bjensen \

mail

The LDAP bind request failed: 49 (Invalid Credentials)

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword fatfngrs \

--baseDN dc=example,dc=com \

uid=bjensen \

mail

The LDAP bind request failed: 49 (Invalid Credentials)

39 / 85

1. Make sure the user running the manage-account command has access to

perform the appropriate operations.

Kirsten Vaughan is a member of the Directory Administrators group. For this

example, she must have the password-reset privilege, and access to edit
user attributes and operational attributes:

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword fatfngrs \

--baseDN dc=example,dc=com \

uid=bjensen \

mail

The LDAP bind request failed: 49 (Invalid Credentials)

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--baseDN dc=example,dc=com \

uid=bjensen \

mail

The LDAP bind request failed: 49 (Invalid Credentials)

Account Management

Disable an Account

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

40 / 85

Notice here that the directory superuser, uid=admin , assigns privileges. Any
administrator with the privilege-change privilege can assign privileges.

However, if the administrator can update administrator privileges, they can
assign themselves the bypass-acl privilege. Then they are no longer bound

by access control instructions, including both user data ACIs and global ACIs.
For this reason, do not assign the privilege-change privilege to normal

administrator users.

2. Set the account status to disabled:

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: password-reset

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (target="ldap:///ou=People,dc=example,dc=com")

(targetattr ="*||+")

(version 3.0;acl "Admins can run amok"; allow(all)

groupdn = "ldap:///cn=Directory

Administrators,ou=Groups,dc=example,dc=com";)

EOF

$ manage-account \

set-account-is-disabled \

--hostname localhost \

--port 4444 \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--operationValue true \

--targetDN uid=bjensen,ou=people,dc=example,dc=com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

Account Is Disabled: true

41 / 85

1. Clear the disabled status:

DS servers can send mail about account status changes. The DS server needs an SMTP
server to send messages, and needs templates for the mail it sends. By default, message

templates are in English, and found in the /path/to/opendj/config/messages/
directory.

DS servers generate notifications only when the server writes to an entry or evaluates a
user entry for authentication. A server generates account enabled and account disabled

notifications when the user account is enabled or disabled with the manage-account
command. A server generates password expiration notifications when a user tries to

bind.

For example, if you configure a notification for password expiration, that notification

gets triggered when the user authenticates during the password expiration warning
interval. The server does not automatically scan entries to send password expiry

notifications.

DS servers implement controls that you can pass in an LDAP search to determine

whether a user’s password is about to expire. See Supported LDAP Controls for a list.
Your script or client application can send notifications based on the results of the search.

Activate a Disabled Account

$ manage-account \

set-account-is-disabled \

--hostname localhost \

--port 4444 \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--operationValue false \

--targetDN uid=bjensen,ou=people,dc=example,dc=com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

Account Is Disabled: false

Account Status Notifications

Send Account Status Mail

file:///home/pptruser/Downloads/build/site/ds/ldap-reference/controls.html

42 / 85

1. Configure an SMTP server to use when sending messages:

2. Prepare the DS server to mail users about account status.

The following example configures the server to send text-format mail
messages:

Notice that the server finds the user’s mail address on the attribute on the

user’s entry, specified by email-address-attribute-type . You can also
configure the message-subject and message-template-file properties.

Use interactive mode to make the changes.

$ dsconfig \

create-mail-server \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--server-name "SMTP server" \

--set enabled:true \

--set auth-username:mail.user \

--set auth-password:password \

--set smtp-server:smtp.example.com:587 \

--set trust-manager-provider:"JVM Trust Manager" \

--set use-start-tls:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-account-status-notification-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name "SMTP Handler" \

--set enabled:true \

--set email-address-attribute-type:mail \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

43 / 85

You find templates for messages by default under the config/messages

directory. Edit the templates as necessary.

If you edit the templates to send HTML rather than text messages, then set the

advanced property, send-email-as-html :

3. Adjust applicable password policies to use the account status notification
handler you configured:

When configuring a subentry password policy, set the ds-pwp-account-

status-notification-handler attribute, an attribute of the ds-pwp-
password-policy object class.

Message Templates
When editing the config/messages templates, use the following tokens, which the

server replaces with text:

$ dsconfig \

set-account-status-notification-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name "SMTP Handler" \

--set enabled:true \

--set send-email-as-html:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--set account-status-notification-handler:"SMTP Handler"

\

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

44 / 85

%%notification-type%%

The name of the notification type.

%%notification-message%%

The message for the notification.

%%notification-user-dn%%

The string representation of the user DN that is the target of the notification.

%%notification-user-attr:attrname%%

The value of the attribute specified by attrname from the user’s entry.

If the specified attribute has multiple values, then this is the first value encountered.

If the specified attribute does not have any values, then this is an empty string.

%%notification-property:propname%%

The value of the specified property.

If the specified property has multiple values, then this is the first value encountered.

If the specified property does not have any values, then this is an empty string.

Valid propname values include the following:

account-unlock-time

new-password

old-password

password-expiration-time

password-policy-dn

seconds-until-expiration

seconds-until-unlock

time-until-expiration

time-until-unlock

You can set limits on search operations:

The lookthrough limit defines the maximum number of candidate entries that the DS

server considers when processing a search.

The default lookthrough limit of 5000 is set by the global server property

lookthrough-limit .

Resource Limits

Search Limits

45 / 85

You can override the limit per user with the operational attribute, ds-rlim-

lookthrough-limit .

The size limit sets the maximum number of entries returned for a search.

The default size limit of 1000 is set by the global server property size-limit .

You can override the limit per user with the operational attribute, ds-rlim-size-

limit .

Search requests can include a size limit setting. The ldapsearch command has a -

-sizeLimit option.

The time limit defines the maximum processing time for a search operation.

The default time limit of 1 minute is set by the global server property time-limit .

You can override the limit on a per user basis with the operational attribute, ds-

rlim-time-limit . Times for ds-rlim-time-limit are expressed in seconds.

In addition, search requests themselves can include a time limit setting. The

ldapsearch command has an --timeLimit option.

The idle time limit defines how long an idle connection remains open.

No default idle time limit is set. You can set an idle time limit by using the global
server property idle-time-limit .

You can override the limit on a per user basis with the operational attribute, ds-
rlim-idle-time-limit . Times for ds-rlim-idle-time-limit are expressed in

seconds.

The maximum number of persistent searches is set by the global server property

max-psearches .

1. Give an administrator access to update the operational attributes related to

search limits:

Set Limits For a User

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

46 / 85

2. Change the user entry to set the limits to override:

When Babs Jensen performs an indexed search returning more than 10 entries,
she sees the following message:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "ds-rlim-lookthrough-limit||ds-rlim-

time-limit||ds-rlim-size-limit")

(version 3.0;acl "Allow Kirsten Vaughan to manage search

limits";

allow (all) (userdn =

"ldap:///uid=kvaughan,ou=People,dc=example,dc=com");)

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: uid=bjensen,ou=People,dc=example,dc=com

changetype: modify

add: ds-rlim-size-limit

ds-rlim-size-limit: 10

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=bjensen,ou=people,dc=example,dc=com \

--bindPassword hifalutin \

--baseDN dc=example,dc=com \

"(sn=jensen)"

The LDAP search request failed: 4 (Size Limit Exceeded)

47 / 85

1. Give an administrator the privilege to write subentries:

Notice here that the directory superuser, uid=admin , assigns privileges. Any
administrator with the privilege-change privilege can assign privileges.

However, if the administrator can update administrator privileges, they can
assign themselves the bypass-acl privilege. Then they are no longer bound

by access control instructions, including both user data ACIs and global ACIs.
For this reason, do not assign the privilege-change privilege to normal

administrator users.

2. Create an LDAP subentry to specify the limits using collective attributes:

Additional Information: This search operation has sent

the maximum of 10 entries to the client

Set Limits For Users in a Group

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: subentry-write

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: cn=Remove Administrator Search

Limits,dc=example,dc=com

48 / 85

The base entry identifies the branch that holds administrator entries. For
details on how subentries apply, see About Subentry Scope.

3. Check the results:

An LDAP persistent search maintains an open a connection that may be be idle for long
periods of time. Whenever a modification changes data in the search scope, the server

objectClass: collectiveAttributeSubentry

objectClass: extensibleObject

objectClass: subentry

objectClass: top

cn: Remove Administrator Search Limits

ds-rlim-lookthrough-limit;collective: 0

ds-rlim-size-limit;collective: 0

ds-rlim-time-limit;collective: 0

subtreeSpecification: {base "ou=people",

specificationFilter

"(isMemberOf=cn=Directory

Administrators,ou=Groups,dc=example,dc=com)" }

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN uid=kvaughan,ou=people,dc=example,dc=com \

--searchScope base \

"(&)" \

ds-rlim-lookthrough-limit ds-rlim-time-limit ds-rlim-

size-limit

dn: uid=kvaughan,ou=People,dc=example,dc=com

ds-rlim-lookthrough-limit: 0

ds-rlim-size-limit: 0

ds-rlim-time-limit: 0

Limit Persistent Searches

file:///home/pptruser/Downloads/build/site/ds/config-guide/collective-attrs.html#subentry-scope

49 / 85

returns a search result. The more concurrent persistent searches, the more work the

server has to do for each modification:

1. Set the global property max-psearches to limit total concurrent persistent

searches.

The following example limits the maximum number of persistent searchees to

30:

Each connection uses memory. On UNIX and Linux systems, each connection uses an

available file descriptor.

To limit the total number of concurrent client connections that the server accepts, use

the global setting max-allowed-client-connections . The following example sets the
limit to 64K. 64K is the minimum number of file descriptors that should be available to

the DS server:

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set max-psearches:30 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Connection Limits

Limit Total Connections

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set max-allowed-client-connections:65536 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#max-allowed-client-connections

50 / 85

To restrict which clients can connect to the server, use the global setting allowed-
client , or denied-client . The following example restricts access to clients from the

example.com domain:

Set these properties per Connection Handler . The settings on a connection handler
override the global settings.

To limit the number of concurrent connections from a client, use the global settings

restricted-client , and restricted-client-connection-limit . The following
example sets the limit for all clients on the 10.0.0.* network to 1000 concurrent

connections:

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Restrict Who Can Connect

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set allowed-client:example.com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Limit Connections Per Client

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set restricted-client:"10.0.0.*" \

--set restricted-client-connection-limit:1000 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#allowed-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#allowed-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#denied-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-connection-handler.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#restricted-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#restricted-client-connection-limit

51 / 85

Set these properties per Connection Handler . The settings on a connection handler

override the global settings.

The server applies the properties in this order:

1. If the denied-client property is set, the server denies connections from any
client matching the settings.

2. If the restricted-client property is set, the server checks the number of
connections from any client matching the settings.

If a matching client exceeds restricted-client-connection-limit connections,
the server refuses additional connections.

3. If the allowed-client property is set, the server allows connections from any
client matching the settings.

4. If none of the properties are set, the server allows connections from any client.

If client applications leave connections idle for long periods, you can drop their

connections by setting the global configuration property idle-time-limit. By default, no
idle time limit is set.

If your network is configured to drop connections that have been idle for some time, set
the DS idle time limit to a lower value than the idle time limit for the network. This helps

to ensure that idle connections are shut down in orderly fashion. Setting the DS limit
lower than the network limit is particularly useful with networks that drop idle

connections without cleanly closing the connection and notifying the client and server.

The following example sets the idle-time-limit to 24 hours:

Idle Time Limits

DS servers do not enforce idle timeout for persistent searches.

NOTE

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set idle-time-limit:24h \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

file:///home/pptruser/Downloads/build/site/ds/configref/objects-connection-handler.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#idle-time-limit

52 / 85

The default maximum request size is 5 MB. This is sufficient for most deployments. In

cases where clients add groups with large numbers of members, requests can exceed
the 5 MB limit.

The following example increases the limit to 20 MB for the LDAP connection handler:

This setting affects only the size of requests, not responses.

Proxied authorization lets an application bind as one user and carry out LDAP
operations on behalf of other users.

Resource limits do not change when the user proxies as another user. In other words,
resource limits depend on the bind DN, not the proxy authorization identity.

The following procedure moves a server to the new host new-server.example.com .

The steps skip creation of system accounts, startup scripts, and registration as a
Windows service:

1. Stop the server:

2. Renew the server certificate to account for the new hostname.

Request Size Limits

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAP \

--set max-request-size:20mb \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Limits and Proxied Authorization

Move a Server

$ stop-ds

53 / 85

Skip this step if the server certificate is a wildcard certificate that is already valid

for the new hostname.

The following command renews the server certificate generated with a

deployment key:

For more command options, refer to dskeymgr. The default validity for the

certificate is one year.

3. Find and replace the old hostname with the new hostname in the server’s

configuration file, config/config.ldif .

The following list includes configuration settings that may specify the server

hostname:

ds-cfg-advertised-listen-address

ds-cfg-bootstrap-replication-server

ds-cfg-listen-address

ds-cfg-server-fqdn

ds-cfg-source-address

4. Move all files in the /path/to/opendj directory to the new server.

5. Start the server:

6. If the server you moved is referenced by others as a replication bootstrap

server, update the replication bootstrap server configuration on those servers.

$ dskeymgr \

create-tls-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin \

--hostname localhost \

--hostname new-server.example.com \

--subjectDn CN=DS,O=ForgeRock

$ start-ds

Performance Tuning

Performance Requirements

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

54 / 85

Your key performance requirement is to satisfy your users or customers with the

resources available to you. Before you can solve potential performance problems, define
what those users or customers expect. Determine which resources you will have to

satisfy their expectations.

A service level objective (SLO) is a target for a directory service level that you can

measure quantitatively. If possible, base SLOs on what your key users expect from the
service in terms of performance.

Define SLOs for at least the following areas:

Directory service response times

Directory service response times range from less than a millisecond on average,
across a low latency connection on the same network, to however long it takes your

network to deliver the response.

More important than average or best response times is the response time

distribution, because applications set timeouts based on worst case scenarios.

An example response time performance requirement is, Directory response times

must average less than 10 milliseconds for all operations except searches returning

more than 10 entries, with 99.9% of response times under 40 milliseconds.

Directory service throughput

Directories can serve many thousands of operations per second. In fact there is no

upper limit for read operations such as searches, because only write operations
must be replicated. To increase read throughput, simply add additional replicas.

More important than average throughput is peak throughput. You might have peak
write throughput in the middle of the night when batch jobs update entries in bulk,

and peak binds for a special event or first thing Monday morning.

An example throughput performance requirement is, The directory service must

sustain a mix of 5,000 operations per second made up of 70% reads, 25% modifies, 3%

adds, and 2% deletes.

Ideally, you mimic the behavior of key operations during performance testing, so
that you understand the patterns of operations in the throughput you need to

provide.

Directory service availability

DS software is designed to let you build directory services that are basically
available, including during maintenance and even upgrade of individual servers.

Service Level Objectives

55 / 85

To reach very high levels of availability, you must also ensure that your operations

execute in a way that preserves availability.

Availability requirements can be as lax as a best effort, or as stringent as 99.999% or

more uptime.

Replication is the DS feature that allows you to build a highly available directory

service.

Directory service administrative support

Be sure to understand how you support your users when they run into trouble.

While directory services can help you turn password management into a self-service

visit to a web site, some users still need to know what they can expect if they need
your help.

Creating an SLO, even if your first version consists of guesses, helps you reduce
performance tuning from an open-ended project to a clear set of measurable goals for a

manageable project with a definite outcome.

With your SLOs in hand, inventory the server, networks, storage, people, and other

resources at your disposal. Now is the time to estimate whether it is possible to meet
the requirements at all.

If, for example, you are expected to serve more throughput than the network can
transfer, maintain high-availability with only one physical machine, store 100 GB of

backups on a 50 GB partition, or provide 24/7 support all alone, no amount of tuning will
fix the problem.

When checking that the resources you have at least theoretically suffice to meet your
requirements, do not forget that high availability in particular requires at least two of

everything to avoid single points of failure. Be sure to list the resources you expect to
have, when and how long you expect to have them, and why you need them. Make note

of what is missing and why.

DS servers are pure Java applications, making them very portable. DS servers tend to
perform best on single-board, x86 systems due to low memory latency.

High-performance storage is essential for handling high-write throughput. When the

database stays fully cached in memory, directory read operations do not result in disk

Resource Constraints

Server Hardware

Storage

56 / 85

I/O. Only writes result in disk I/O. You can further improve write performance by using

solid-state disks for storage or file system cache.

Regarding database size on disk, sustained write traffic can cause the database to grow
to more than twice its initial size on disk. This is normal behavior. The size on disk does

not impact the DB cache size requirements.

To avoid directory database file corruption after crashes or power failures on Linux

systems, enable file system write barriers, and make sure that the file system journaling
mode is ordered. For details on how to enable write barriers and set the journaling

mode for data, see the options for your file system in the mount command manual
page.

Even if you do not need high availability, you still need two of everything, because your

test environment needs to mimic your production environment as closely as possible.

In your test environment, set up DS servers just as you do in production. Conduct

experiments to determine how to best meet your SLOs.

The following command-line tools help with basic performance testing:

The makeldif command generates sample data with great flexibility.

The addrate command measures add and delete throughput and response time.

The authrate command measures bind throughput and response time.

The modrate command measures modification throughput and response time.

The searchrate command measures search throughput and response time.

All *rate commands display response time distributions measurements, and support

testing at specified levels of throughput.

For additional precision when evaluating response times, use the global configuration

setting etime-resolution. To change elapsed processing time resolution from
milliseconds (default) to nanoseconds:

DS directory servers are designed to work with local storage for database backends.

Do not use network file systems, such as NFS, where there is no guarantee that a single

process has access to files.

Storage area networks (SANs) and attached storage are fine for use with DS
directory servers.

WARNING

Performance Tests

file:///home/pptruser/Downloads/build/site/ds/tools-reference/makeldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/addrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/authrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/modrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/searchrate.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#etime-resolution

57 / 85

The etime , recorded in the server access log, indicates the elapsed time to process the

request. The etime starts when the decoded operation is available to be processed by
a worker thread.

Test performance with your production-ready configuration. If, however, you simply
want to demonstrate top performance, take the following points into account:

Incorrect JVM tuning slows down server and tool performance. Make sure the JVM is
tuned for best performance.

For example, set the following environment variable, then restart the server and
run the performance tools again to take the change into account:

export OPENDJ_JAVA_ARGS="-XX:+UseParallelGC -

XX:MaxTenuringThreshold=1"

If the server heap is very large, see the details in Java Settings.

Unfiltered access logs record messages for each client request. Turn off full access

logging.

For example, set enabled:false for the Json File-Based Access Logger log

publisher, and any other unfiltered log publishers that are enabled.

Secure connections are recommended, and they can be costly.

Set require-secure-authentication:false in the password policies governing
the bind entries, and bind using insecure connections.

Use the following suggestions when your tests show that DS performance is lacking,
even though you have the right underlying network, hardware, storage, and system

resources in place.

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set etime-resolution:nanoseconds \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Performance Settings

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-java

58 / 85

DS servers must open many file descriptors when handling thousands of client

connections.

Linux systems often set a limit of 1024 per user. That setting is too low to accept

thousands of client connections.

Make sure the server can use at least 64K (65536) file descriptors. For example, when

running the server as user opendj on a Linux system that uses

/etc/security/limits.conf to set user level limits, set soft and hard limits by adding

these lines to the file:

The example above assumes the system has enough file descriptors available overall.

Check the Linux system overall maximum as follows:

Default Linux virtual memory settings cause significant buildup of dirty data pages
before flushing them. When the kernel finally flushes the pages to disk, the operation

can exhaust the disk I/O for up to several seconds. Application operations waiting on the
file system to synchronize to disk are blocked.

The default virtual memory settings can therefore cause DS server operations to block
for seconds at a time. Symptoms included high outlier etimes, even for very low average

etimes. For sustained high loads, such as import operations, the server has to maintain
thousands of open file descriptors.

To avoid these problems, tune Linux page caching. As a starting point for testing and
tuning, set vm.dirty_background_bytes to one quarter of the disk I/O per second,

and vm.dirty_expire_centisecs to 1000 (10 seconds) using the sysctl command.
This causes the kernel to flush more often, and limits the pauses to a maximum of 250

milliseconds.

For example, if the disk I/O is 80 MB/second for writes, the following example shows an

appropriate starting point. It updates the /etc/sysctl.conf file to change the setting
permanently, and uses the sysctl -p command to reload the settings:

Maximum Open Files

opendj soft nofile 65536

opendj hard nofile 131072

$ cat /proc/sys/fs/file-max

204252

Linux Page Caching

59 / 85

Be sure to test and adjust the settings for your deployment.

For additional details, see the Oracle documentation on Linux Page Cache Tuning , and
the Linux sysctl command virtual memory kernel reference .

Default Java settings let you evaluate DS servers using limited system resources. For high
performance production systems, test and run with a tuned JVM.

Availability of the following java options depends on the JVM:

-Xmx

If you observe any internal node evictions, add more RAM to the system. If adding

RAM is not an option, increase the maximum heap size to optimize RAM allocation.
For details, see Cache Internal Nodes.

Use at least a 2 GB heap unless your data set is small.

-XX:+DisableExplicitGC

When using JMX, add this option to the list of start-ds.java-args arguments to
avoid periodic full GC events.

JMX is based on RMI, which uses references to objects. By default, the JMX client and
server perform a full GC periodically to clean up stale references. As a result, the

default settings cause JMX to cause a full GC every hour.

Avoid using this argument with import-ldif.offline.java-args or when using

the import-ldif command. The import process uses garbage collection to manage
memory and references to memory-mapped files.

$ echo vm.dirty_background_bytes=20971520 | sudo tee -a

/etc/sysctl.conf

[sudo] password for admin:

$ echo vm.dirty_expire_centisecs=1000 | sudo tee -a

/etc/sysctl.conf

$ sudo sysctl -p

vm.dirty_background_bytes = 20971520

vm.dirty_expire_centisecs = 1000





Java Settings

To apply JVM settings for a server, edit config/java.properties , and restart the

server.

TIP

https://docs.oracle.com/cd/NOSQL/html/AdminGuide/linuxcachepagetuning.html
https://docs.oracle.com/cd/NOSQL/html/AdminGuide/linuxcachepagetuning.html
https://docs.oracle.com/cd/NOSQL/html/AdminGuide/linuxcachepagetuning.html
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt

60 / 85

-XX:MaxTenuringThreshold=1

This sets the maximum number of GC cycles an object stays in survivor spaces
before it is promoted into the old generation space.

Setting this option as suggested reduces the new generation GC frequency and
duration. The JVM quickly promotes long-lived objects to the old generation space,

rather than letting them accumulate in new generation survivor spaces, copying
them for each GC cycle.

-Xlog:gc=level:file

Log garbage collection messages when diagnosing JVM tuning problems. You can

turn the option off when everything is running smoothly.

Always specify the output file for the garbage collection log. Otherwise, the JVM logs

the messages to the opendj/logs/server.out file, mixing them with other
messages, such as stack traces from the supportextract command.

For example, -Xlog:gc=info:file=/path/to/gc.log logs informational
messages about garbage collection to the file, /path/to/gc.log .

For details, use the java -Xlog:help command.

-XX:TieredStopAtLevel=1

Short-lived client tools, such as the ldapsearch command, start up faster when this
option is set to 1 as shown.

-XX:+UseG1GC -XX:MaxGCPauseMillis=100

Java 11

Use G1 GC (the default) when the heap size is 8 GB or more.

Java 17

Use G1 GC.

-XX:+UseParallelGC

Java 11

Use parallel GC when the heap size is less than 8 GB.

Java 17

Use G1 GC instead.

By default, DS servers compress attribute descriptions and object class sets to reduce
data size. This is called compact encoding.

By default, DS servers do not compress entries stored in its backend database. If your
entries hold values that compress well, such as text, you can gain space. Set the backend

Data Storage Settings

61 / 85

property entries-compressed:true , and reimport the data from LDIF. The DS server

compresses entries before writing them to the database:

DS directory servers do not proactively rewrite all entries after you change the settings.

To force the DS server to compress all entries, you must import the data from LDIF.

By default, the temporary directory used for scratch files is opendj/import-tmp . Use

the import-ldif --tmpDirectory option to set this directory to a tmpfs file system,
such as /tmp .

If you are certain your LDIF contains only valid entries with correct syntax, you can skip
schema validation. Use the import-ldif --skipSchemaValidation option.

$ dsconfig \

set-backend-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--backend-name dsEvaluation \

--set entries-compressed:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ import-ldif \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--ldifFile backup.ldif \

--backendID dsEvaluation \

--includeBranch dc=example,dc=com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

LDIF Import Settings

Database Cache Settings

IMPORTANT

62 / 85

If you require fine-grained control over JE backend cache settings, you can configure the
amount of memory requested for database cache per database backend:

1. Configure db-cache-percent or db-cache-size for each JE backend.

db-cache-percent

Percentage of JVM memory to allocate to the database cache for the backend.

If the directory server has multiple database backends, the total percent of JVM

heap used must remain less than 100 (percent), and must leave space for other
uses.

Default: 50 (percent)

db-cache-size

JVM memory to allocate to the database cache.

This is an alternative to db-cache-percent . If you set its value larger than 0,

then it takes precedence over db-cache-percent .

Default: 0 MB

2. Set the global property je-backend-shared-cache-enabled:false .

3. Restart the server for the changes to take effect.

By default, DS directory servers:

Use shared cache for all JE database backends.

The recommended setting is to leave the global property, je-backend-

shared-cache-enabled , set to true .

If you have more than one JE database backend, before you change this setting

to false , you must set either db-cache-percent or db-cache-size
appropriately for each JE backend. By default, db-cache-percent is 50% for

each backend. If you have multiple backends, including backends created with
setup profiles, the default settings can prevent the server from starting if you

first disable the shared cache.

Cache JE database internal and leaf notes to achieve best performance.

The recommended setting is to leave this advanced property, db-cache-mode ,
set to cache-ln .

In very large directory deployments, monitor the server to make sure internal
nodes remain cached. For details, see Cache Internal Nodes.

IMPORTANT

Cache Internal Nodes

file:///home/pptruser/Downloads/build/site/ds/configref/objects-je-backend.html#db-cache-percent
file:///home/pptruser/Downloads/build/site/ds/configref/objects-je-backend.html#db-cache-size
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#je-backend-shared-cache-enabled
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#je-backend-shared-cache-enabled
file:///home/pptruser/Downloads/build/site/ds/configref/objects-je-backend.html#db-cache-mode

63 / 85

A JE backend is implemented as a B-tree data structure. A B-tree is made up of nodes

that can have children. Nodes with children are called internal nodes. Nodes without
children are called leaf nodes.

The directory stores data in key-value pairs. Internal nodes hold the keys, and can also
hold small values. Leaf nodes hold the values. One internal node usually holds keys to

values in many leaf nodes. A B-tree has many more leaf nodes than internal nodes.

To read a value by its key, the backend traverses all internal nodes on the branch from

the B-tree root to the leaf node holding the value. The backend is more likely to access
nodes the closer they are to the B-tree root. Internal nodes are accessed far more

frequently than leaf nodes, and must remain cached in memory. In addition to the
worker threads serving client application requests, cleaner threads working in the

background also access internal nodes frequently. The performance impact of having to
fetch frequently used internal nodes from disk can be severe.

When the database cache is full, the backend must begin evicting nodes from cache in
order to load others. By default, the backend evicts leaf nodes even when the cache is

not full. The backend is less likely to access a leaf node than an internal node, and leaf
nodes might remain in the file system cache where they can be accessed quickly. If,

however, the internal nodes do not all fit in cache, the backend eventually evicts even
critical internal nodes.

Monitor the backend database environment to react if a backend evicts internal nodes,
or performs critical evictions. The following example shows no internal node (IN)

evictions, and no critical evictions:

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--baseDN cn=backends,cn=monitor \

"(|(ds-mon-db-cache-evict-internal-nodes-count=*)(ds-mon-je-

environment-nbytes-evicted-critical=*))" \

ds-mon-db-cache-evict-internal-nodes-count \

ds-mon-je-environment-nbytes-evicted-critical

dn: ds-cfg-backend-id=dsEvaluation,cn=backends,cn=monitor

ds-mon-db-cache-evict-internal-nodes-count: 0

dn: cn=raw JE database statistics,ds-cfg-backend-

64 / 85

If ds-mon-db-cache-evict-internal-nodes-count is greater than 0 , then the

system has too little memory for all internal nodes to remain in DB cache.

If ds-mon-je-environment-nbytes-evicted-critical is greater than 0 , then

the DB worker threads are evicting data because the normal process of clearing
cache using background threads is no longer sufficient.

Increase the DB cache size, and add more RAM to your system if necessary, until there
are no internal node evictions, and no critical evictions. If adding RAM is not an option,

increase the maximum heap size (-Xmx) to optimize RAM allocation.

When the DB cache is not large enough to hold all internal nodes, the performance

impact can be severe. This section explains how to estimate the minimum DB cache size
to hold all internal nodes.

The examples below reflect a directory server with a 10 million entry dsEvaluation
backend. The backend holds Example.com entries that generated as described in Install

DS for Evaluation with the additional setup option --set ds-

evaluation/generatedUsers:10,000,000 .

Base your own calculations on realistic sample data, with the same indexes that you use
in production, and with data affected by realistic client application and replication loads.

To generate your own sample data, start by reading Generate Test Data. To simulate
load, use the tools described in Performance Tests. Even better, learn about real loads

from analysis of production access logs, and build custom test clients that reflect the
access patterns of your applications.

After loading the server for some time, stop the server. Use the backendstat
command and JE DbCacheSize tool together to estimate the required DB cache size.

id=dsEvaluation,cn=backends,cn=monitor

ds-mon-je-environment-nbytes-evicted-critical: 0

Estimate Minimum DB Cache Size

After you import LDIF, the backend contains the minimum number of internal

nodes required for the data. Over time as external applications update the
directory server, the number of internal nodes grows.

A JE backend only appends to the database log for update operations, so many
internal nodes in the database logs of a live system represent garbage that the

backend eventually cleans up. Only the live internal nodes must be cached in
memory. Over time, the increase in the number of internal nodes should track

backend growth.

NOTE

file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-ds.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-ds.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/ldif-tools.html#generating-ldif

65 / 85

The following example uses the backendstat command to discover information about

keys in the backend. Using a script or a spreadsheet on the output, calculate the total
number of keys (sum of Total Keys, here: 73255315) and average key size (sum of Key

Size/sum of Total Keys, here: 13). Use the results as input to the JE DbCacheSize tool:

Stop the server before using backendstat:

$ stop-ds

$ backendstat list-raw-dbs --backendId dsEvaluation

Raw DB Name ... Total Keys Keys Size Values Size

Total Size

----------------------- ... --------------------------------------

/compressed_schema/comp ... 50 50 772

822

/compressed_schema/comp ... 17 17 848

865

/dc=com,dc=example/aci. ... 1 1 3

4

/dc=com,dc=example/cn.c ... 10000165 139242471 47887210

187129681

/dc=com,dc=example/cn.c ... 858658 5106085 204936391

210042476

/dc=com,dc=example/dn2i ... 10000181 268892913 80001448

348894361

/dc=com,dc=example/ds-c ... 0 0 0

0

/dc=com,dc=example/ds-c ... 1 18 3

21

/dc=com,dc=example/ds-s ... 0 0 0

0

/dc=com,dc=example/ds-s ... 0 0 0

0

/dc=com,dc=example/entr ... 9988518 39954072 47871653

87825725

/dc=com,dc=example/give ... 8614 51691 20017387

20069078

/dc=com,dc=example/give ... 19652 97670 48312528

48410198

/dc=com,dc=example/id2c ... 8 26 14

40

/dc=com,dc=example/id2e ... 10000181 80001448 4989592300

5069593748

/dc=com,dc=example/json ... 4 74 10

84

66 / 85

/dc=com,dc=example/json ... 2 34 4

38

/dc=com,dc=example/mail ... 10000152 238891751 47887168

286778919

/dc=com,dc=example/mail ... 1222798 7336758 112365106

119701864

/dc=com,dc=example/memb ... 1 40 2

42

/dc=com,dc=example/obje ... 23 379 393

772

/dc=com,dc=example/refe ... 0 0 0

0

/dc=com,dc=example/sn.c ... 13457 92943 20027045

20119988

/dc=com,dc=example/sn.c ... 41585 219522 73713958

73933480

/dc=com,dc=example/stat ... 23 1153 22

1175

/dc=com,dc=example/tele ... 9989952 109889472 47873522

157762994

/dc=com,dc=example/tele ... 1111110 6543210 221282026

227825236

/dc=com,dc=example/uid. ... 10000152 118889928 47887168

166777096

/dc=com,dc=example/uniq ... 10 406 21

427

Total: 29

Calculate sum of Total Keys, sum of Key Size, and average key

size:

$ java -cp /path/to/opendj/lib/opendj.jar

com.sleepycat.je.util.DbCacheSize \

-records 73255315 -key 13

=== Environment Cache Overhead ===

3,158,773 minimum bytes

To account for JE daemon operation, record locks, HA network

connections, etc,

a larger amount is needed in practice.

=== Database Cache Size ===

Number of Bytes Description

67 / 85

--------------- -----------

2,709,096,544 Internal nodes only

To get leaf node sizing specify -data

For further information see the DbCacheSize javadoc.

The resulting recommendation for DB cache size, 2,709,096,544 bytes in this case, is a

minimum estimate. Round up when configuring backend settings for db-cache-
percent or db-cache-size . If the system in this example has 8 GB available memory,

use the default setting of db-cache-percent: 50 . (50% * 8 GB = 4 GB, which is larger
than the minimum estimate.)

With default settings, if the database has more than 200 files on disk, then the JE
backend must start closing one log file in order to open another. This has serious impact

on performance when the file cache starts to thrash.

Having the JE backend open and close log files from time to time is okay. Changing the

settings is only necessary if the JE backend has to open and close the files very
frequently.

A JE backend stores data on disk in append-only log files. The maximum size of each log
file is configurable. A JE backend keeps a configurable maximum number of log files

open, caching file handles to the log files. The relevant JE backend settings are the
following:

db-log-file-max

Maximum size of a database log file.

Default: 1 GB

db-log-filecache-size

File handle cache size for database log files.

Default: 200

With these defaults, if the size of the database reaches 200 GB on disk (1 GB x 200 files),
the JE backend must close one log file to open another. To avoid this situation, increase

db-log-filecache-size until the JE backend can cache file handles to all its log files.
When changing the settings, make sure the maximum number of open files is sufficient.

DS servers implement an entry cache designed for a few large entries that are regularly

updated or accessed, such as large static groups. An entry cache is used to keep such

Database Log File Settings

Cache for Large Groups

68 / 85

groups in memory in a format that avoids the need to constantly read and deserialize

the large entries.

When configuring an entry cache, take care to include only the entries that need to be

cached. The memory devoted to the entry cache is not available for other purposes. Use
the configuration properties include-filter and exclude-filter for this.

The following example adds a Soft Reference entry cache to hold entries that match the
filter (ou=Large Static Groups) . A Soft Reference entry cache releases entries when

the JVM runs low on memory. It does not have a maximum size setting. The number of
entries cached is limited only by the include-filter and exclude-filter settings:

The entry cache configuration takes effect when the entry cache is enabled.

Debug logs trace the internal workings of DS servers, and should be used sparingly. Be

particularly careful when activating debug logging in high-performance deployments.

In general, leave other logs active for production environments to help troubleshoot any

issues that arise.

For servers handling 100,000 operations per second or more, the access log can be a

performance bottleneck. Each client request results in at least one access log message.
Test whether disabling the access log improves performance in such cases.

The following command disables the JSON-based LDAP access logger:

$ dsconfig \

create-entry-cache \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--cache-name "Large Group Entry Cache" \

--type soft-reference \

--set cache-level:1 \

--set include-filter:"(ou=Large Static Groups)" \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Log Settings

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

69 / 85

The following command disables the HTTP access logger:

By default, a replication server indexes change numbers for replicated user data. This

allows legacy applications to get update notifications by change number, as described in
Align Draft Change Numbers. Indexing change numbers requires additional CPU, disk

accesses and storage, so it should not be used unless change number-based browsing is
required.

Disable change number indexing if it is not needed. For details, see Disable Change
Number Indexing.

To solve your problem, save time by clearly defining it first. A problem statement
compares the difference between observed behavior and expected behavior:

What exactly is the problem?

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "Json File-Based Access Logger" \

--set enabled:false \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based HTTP Access Logger" \

--set enabled:false \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Changelog Settings

Troubleshooting

Define the problem

file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-legacy-format
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-configure-changenumber-indexer
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-configure-changenumber-indexer

70 / 85

What is the behavior you expected?

What is the behavior you observed?

How do you reproduce the problem?

When did the problem begin?

Under similar circumstances, when does the problem not occur?

Is the problem permanent?

Intermittent?

Is it getting worse? Getting better? Staying the same?

Installation and upgrade procedures result in a log file tracing the operation. Look for
this in the command output:

See file for a detailed log of this operation.

Prevent antivirus and intrusion detection systems from interfering with DS software.

Before using DS software with antivirus or intrusion detection software, consider the

following potential problems:

Interference with normal file access

Antivirus and intrusion detection systems that perform virus scanning, sweep
scanning, or deep file inspection are not compatible with DS file access, particularly

write access.

Antivirus and intrusion detection software have incorrectly marked DS files as

suspect to infection, because they misinterpret normal DS processing.

Prevent antivirus and intrusion detection systems from scanning DS files, except these

folders:

/path/to/opendj/bat/

Windows command-line tools

/path/to/opendj/bin/

UNIX/Linux command-line tools

Installation problems

Use the logs

Antivirus interference

71 / 85

/path/to/opendj/extlib/

Optional additional .jar files used by custom plugins

/path/to/opendj/lib/

Scripts and libraries shipped with DS servers

Port blocking

Antivirus and intrusion detection software can block ports that DS uses to provide
directory services.

Make sure that your software does not block the ports that DS software uses. For
details, see Administrative Access.

Negative performance impact

Antivirus software consumes system resources, reducing resources available to

other services including DS servers.

Running antivirus software can therefore have a significant negative impact on DS

server performance. Make sure that you test and account for the performance
impact of running antivirus software before deploying DS software on the same

systems.

When starting a directory server on a Linux system, make sure the server user can watch

enough files. If the server user cannot watch enough files, you might see an error
message in the server log such as this:

InitializationException: The database environment could not be

opened:

com.sleepycat.je.EnvironmentFailureException: (JE version)

/path/to/opendj/db/userData

or its sub-directories to WatchService.

UNEXPECTED_EXCEPTION: Unexpected internal Exception, may have side

effects.

Environment is invalid and must be closed.

A directory server backend database monitors file events. On Linux systems, backend

databases use the inotify API for this purpose. The kernel tunable

fs.inotify.max_user_watches indicates the maximum number of files a user can

watch with the inotify API.

Make sure this tunable is set to at least 512K:

JE initialization

File notification

file:///home/pptruser/Downloads/build/site/ds/security-guide/os.html#os-admin

72 / 85

If this tunable is set lower than that, update the /etc/sysctl.conf file to change the
setting permanently, and use the sysctl -p command to reload the settings:

By default, DS servers store the entry for the directory superuser in an LDIF backend.
Edit the file to reset the password:

1. Generate the encoded version of the new password:

2. Stop the server while you edit the LDIF file for the backend:

3. Replace the existing password with the encoded version.

In the db/rootUser/rootUser.ldif file, carefully replace the userPassword
value with the new, encoded password:

Trailing whitespace is significant in LDIF. Take care not to add any trailing

whitespace at the end of the line.

$ sysctl fs.inotify.max_user_watches

fs.inotify.max_user_watches = 524288

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a

/etc/sysctl.conf

[sudo] password for admin:

$ sudo sysctl -p

fs.inotify.max_user_watches = 524288

Forgotten superuser password

$ encode-password --storageScheme PBKDF2-HMAC-SHA256 --

clearPassword password

{PBKDF2-HMAC-SHA256}10<hash>

$ stop-ds

dn: uid=admin

...

uid: admin

userPassword: <encoded-password>

73 / 85

4. Restart the server:

5. Verify that you can use the directory superuser account with the new

password:

1. Create one or more debug targets.

No debug targets are enabled by default:

$ start-ds

$ status \

--bindDn uid=admin \

--bindPassword password \

--hostname localhost \

--port 4444 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--script-friendly

...

"isRunning" : true,

Debug logging

DS debug logging can generate a high volume of debug messages. Use debug

logging very sparingly on production systems.

CAUTION

$ dsconfig \

list-debug-targets \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based Debug Logger" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

74 / 85

A debug target specifies a fully qualified DS Java package, class, or method:

2. Enable the debug log, opendj/logs/debug :

The server immediately begins to write debug messages to the log file.

3. Read messages in the debug log file:

4. Disable the debug log as soon as it is no longer required.

Debug Target : enabled : debug-exceptions-only

-------------:---------:----------------------

$ dsconfig \

create-debug-target \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based Debug Logger" \

--type generic \

--target-name org.opends.server.api \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based Debug Logger" \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ tail -f /path/to/opendj/logs/debug

Lockdown Mode

75 / 85

Misconfiguration can put the DS server in a state where you must prevent users and

applications from accessing the directory until you have fixed the problem.

DS servers support lockdown mode . Lockdown mode permits connections only on the

loopback address, and permits only operations requested by superusers, such as
uid=admin .

To put the DS server into lockdown mode, the server must be running. You cause the
server to enter lockdown mode by starting a task. Notice that the modify operation is

performed over the loopback address (accessing the DS server on the local host):

The DS server logs a notice message in logs/errors when lockdown mode takes

effect:

...msg=Lockdown task Enter Lockdown Mode finished execution

Client applications that request operations get a message concerning lockdown mode:

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: ds-task-id=Enter Lockdown Mode,cn=Scheduled Tasks,cn=tasks

objectClass: top

objectClass: ds-task

ds-task-id: Enter Lockdown Mode

ds-task-class-name: org.opends.server.tasks.EnterLockdownModeTask

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDN "" \

--searchScope base \

"(objectclass=*)" \

+

The LDAP search request failed: 53 (Unwilling to Perform)

76 / 85

Leave lockdown mode by starting a task:

The DS server logs a notice message when leaving lockdown mode:

...msg=Leave Lockdown task Leave Lockdown Mode finished execution

By default, DS directory servers check that entries you import match the LDAP

schema.

You can temporarily bypass this check with the import-ldif --
skipSchemaValidation option.

By default, DS servers ensure that entries have only one structural object class.

You can relax this behavior with the advanced global configuration property,

single-structural-objectclass-behavior .

This can be useful when importing data exported from Sun Directory Server.

For example, warn when entries have more than one structural object class, rather

than rejecting them:

Additional Information: Rejecting the requested operation

because the server is in lockdown mode and will only accept

requests from root users over loopback connections

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: ds-task-id=Leave Lockdown Mode,cn=Scheduled Tasks,cn=tasks

objectClass: top

objectClass: ds-task

ds-task-id: Leave Lockdown Mode

ds-task-class-name: org.opends.server.tasks.LeaveLockdownModeTask

EOF

LDIF import

$ dsconfig \

set-global-configuration-prop \

77 / 85

By default, DS servers check syntax for several attribute types. Relax this behavior
using the advanced global configuration property, invalid-attribute-syntax-

behavior .

Use the import-ldif -R rejectFile --countRejects options to log rejected

entries and to return the number of rejected entries as the command’s exit code.

Once you resolve the issues, reinstate the default behavior to avoid importing bad data.

Due to a change in Java APIs, the same DS deployment ID generates different CA key

pairs with Java 11 and Java 17 and later. When running the dskeymgr and setup
commands, use the same Java environment everywhere in the deployment.

Using different Java versions is a problem if you use deployment ID-based CA
certificates. Replication breaks, for example, when you use the setup command for a

new server with a more recent version of Java than was used to set up existing servers.
The error log includes a message such as the following:

...category=SYNC severity=ERROR msgID=119 msg=Directory server

DS(server_id)

encountered an unexpected error while connecting to replication

server host:port for domain "base_dn":

ValidatorException: PKIX path validation failed:

java.security.cert.CertPathValidatorException:

signature check failed

To work around the issue, follow these steps:

1. Update all DS servers to use the same Java version.

Make sure you have a required Java environment installed on the system.

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set single-structural-objectclass-behavior:warn \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

Security problems

Incompatible Java versions

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#invalid-attribute-syntax-behavior
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#invalid-attribute-syntax-behavior

78 / 85

If your default Java environment is not appropriate, use one of the following

solutions:

Edit the default.java-home setting in the

opendj/config/java.properties file.

Set OPENDJ_JAVA_HOME to the path to the correct Java environment.

Set OPENDJ_JAVA_BIN to the absolute path of the java command.

2. Export CA certificates generated with the different Java versions.

a. Export the CA certificate from an old server:

b. Export the CA certificate from a new server:

3. On all existing DS servers, import the new CA certificate:

4. On all new DS servers, import the old CA certificate:

$ keytool \

-exportcert \

-alias ca-cert \

-keystore /path/to/old-server/config/keystore \

-storepass:file /path/to/old-server/config/keystore.pin \

-file java11-ca-cert.pem

$ keytool \

-exportcert \

-alias ca-cert \

-keystore /path/to/new-server/config/keystore \

-storepass:file /path/to/new-server/config/keystore.pin \

-file java17-ca-cert.pem

$ keytool \

-importcert \

-trustcacerts \

-alias alt-ca-cert \

-keystore /path/to/old-server/config/keystore \

-storepass:file /path/to/old-server/config/keystore.pin \

-file java17-ca-cert.pem \

-noprompt

$ keytool \

-importcert \

-trustcacerts \

-alias alt-ca-cert \

-keystore /path/to/new-server/config/keystore \

79 / 85

The servers reload their keystores dynamically and replication works as expected.

Replication uses TLS to protect directory data on the network. Misconfiguration can

cause replicas to fail to connect due to handshake errors. This leads to repeated error
log messages in the replication log file such as the following:

...msg=Replication server accepted a connection from address

to local address address but the SSL handshake failed.

This is probably benign, but may indicate a transient network

outage

or a misconfigured client application connecting to this

replication server.

The error was: Received fatal alert: certificate_unknown

You can collect debug trace messages to help determine the problem. To see the TLS

debug messages, start the server with javax.net.debug set:

The debug trace settings result in many, many messages. To resolve the problem, review
the output of starting the server, looking in particular for handshake errors.

If the chain of trust for your PKI is broken somehow, consider renewing or replacing
keys, as described in Key Management. Make sure that trusted CA certificates are

configured as expected.

How you handle the problem depends on which key was compromised:

For keys generated by the server, or with a deployment key, see Retire secret keys.

For a private key whose certificate was signed by a CA, contact the CA for help. The
CA might choose to publish a certificate revocation list (CRL) that identifies the

certificate of the compromised key.

Replace the key pair that has the compromised private key.

For a private key whose certificate was self-signed, replace the key pair that has the
compromised private key.

-storepass:file /path/to/new-server/config/keystore.pin \

-file java11-ca-cert.pem \

-noprompt

Certificate-based authentication

$ OPENDJ_JAVA_ARGS="-Djavax.net.debug=all" start-ds

Compromised keys

file:///home/pptruser/Downloads/build/site/ds/security-guide/key-management.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/key-management.html#retire-secret-keys

80 / 85

Make sure the clients remove the compromised certificate from their truststores.

They must replace the certificate of the compromised key with the new certificate.

By default, DS servers record messages for LDAP client operations in the logs/ldap-
access.audit.json log file.

Client problems

Use the logs

Show example log messages

[

{

"eventName": "DJ-LDAP",

"client": {

"ip": "<clientIp>",

"port": 12345

},

"server": {

"ip": "<clientIp>",

"port": 1389

},

"request": {

"protocol": "LDAP",

"operation": "CONNECT",

"connId": 0

},

"transactionId": "0",

"response": {

"status": "SUCCESSFUL",

"statusCode": "0",

"elapsedTime": 0,

"elapsedTimeUnits": "MILLISECONDS"

},

"timestamp": "<timestamp>",

"_id": "<uuid>"

},

{

"eventName": "DJ-LDAP",

"client": {

"ip": "<clientIp>",

"port": 12345

},

"server": {

81 / 85

"ip": "<clientIp>",

"port": 1389

},

"request": {

"protocol": "LDAP",

"operation": "SEARCH",

"connId": 0,

"msgId": 1,

"dn": "dc=example,dc=com",

"scope": "sub",

"filter": "(uid=bjensen)",

"attrs": ["ALL"]

},

"transactionId": "0",

"response": {

"status": "SUCCESSFUL",

"statusCode": "0",

"elapsedTime": 9,

"elapsedTimeUnits": "MILLISECONDS",

"nentries": 1

},

"timestamp": "<timestamp>",

"_id": "<uuid>"

},

{

"eventName": "DJ-LDAP",

"client": {

"ip": "<clientIp>",

"port": 12345

},

"server": {

"ip": "<clientIp>",

"port": 1389

},

"request": {

"protocol": "LDAP",

"operation": "UNBIND",

"connId": 0,

"msgId": 2

},

"transactionId": "0",

"timestamp": "<timestamp>",

"_id": "<uuid>"

},

{

82 / 85

Each message specifies the operation performed, the client that requested the

operation, and when it completed.

By default, the server does not log internal LDAP operations corresponding to HTTP

requests. To match HTTP client operations to internal LDAP operations:

1. Prevent the server from suppressing log messages for internal operations.

Set suppress-internal-operations:false on the LDAP access log publisher.

2. Match the request/connId field in the HTTP access log with the same field in the

LDAP access log.

To help diagnose client errors due to access permissions, see Effective rights.

"eventName": "DJ-LDAP",

"client": {

"ip": "<clientIp>",

"port": 12345

},

"server": {

"ip": "<clientIp>",

"port": 1389

},

"request": {

"protocol": "LDAP",

"operation": "DISCONNECT",

"connId": 0

},

"transactionId": "0",

"response": {

"status": "SUCCESSFUL",

"statusCode": "0",

"elapsedTime": 0,

"elapsedTimeUnits": "MILLISECONDS",

"reason": "Client Unbind"

},

"timestamp": "<timestamp>",

"_id": "<uuid>"

}

]

Client access

Simple paged results

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html#get-effective-rights

83 / 85

For some versions of Linux, you see a message in the DS access logs such as the

following:

The request control with Object Identifier (OID)

"1.2.840.113556.1.4.319"

cannot be used due to insufficient access rights

This message means clients are trying to use the simple paged results control without
authenticating. By default, a global ACI allows only authenticated users to use the

control.

To grant anonymous (unauthenticated) user access to the control, add a global ACI for

anonymous use of the simple paged results control:

If you set up servers with different deployment keys, they cannot share encrypted data.

By default, they also cannot trust each other’s secure connections. You may see
messages like the following in the logs/replication log file:

msg=Replication server accepted a connection from /address:port

to local address /address:port but the SSL handshake failed.

Unless the servers use your own CA, make sure their keys are generated with the same
deployment key/password. Either set up the servers again with the same deployment

key, or see Replace Deployment Keys.



$ dsconfig \

set-access-control-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword "password" \

--add global-aci:"(targetcontrol=\"SimplePagedResults\") \

(version 3.0; acl \"Anonymous simple paged results access\";

allow(read) \

userdn=\"ldap:///anyone\";)" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Replication problems

Replicas do not connect

https://www.rfc-editor.org/info/rfc2696
https://www.rfc-editor.org/info/rfc2696
https://www.rfc-editor.org/info/rfc2696
file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html#replace-deployment-keys

84 / 85

Replication can generally recover from conflicts and transient issues. Temporary delays

are normal and expected while replicas converge, especially when the write load is
heavy. This is a feature of eventual convergence, not a bug.

For more information, see Replication Delay (LDAP).

Replication uses its own error log file, logs/replication . Error messages in the log file
have category=SYNC .

The messages have the following form. The following example message is folded for
readability:

...msg=Replication server accepted a connection from

10.10.0.10/10.10.0.10:52859

to local address 0.0.0.0/0.0.0.0:8989 but the SSL handshake

failed.

This is probably benign, but may indicate a transient network

outage

or a misconfigured client application connecting to this

replication server.

The error was: Remote host closed connection during handshake

DS servers maintain historical information to bring replicas up to date, and to resolve
conflicts. To prevent historical information from growing without limit, servers purge

historical information after a configurable delay (replication-purge-delay, default: 3
days). A replica can become irrevocably out of sync if you restore it from a backup that is

older than the purge delay, or if you stop it for longer than the purge delay. If this
happens, reinitialize the replica from a recent backup or from a server that is up to date.

When replication is configured incorrectly, fixing the problem can involve adjustments

on multiple servers. For example, adding or removing a bootstrap replication server
means updating the bootstrap-replication-server settings in the synchronization

provider configuration of other servers. (The settings can be hard-coded in the
configuration, or read from the environment at startup time, as described in Property

Value Substitution. In either case, changing them involves at least restarting the other
servers.)

Temporary Delays

Use the Logs

Stale Data

Incorrect configuration

file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/ldap-monitoring.html#monitoring-replication-delay-ldap
file:///home/pptruser/Downloads/build/site/ds/configref/objects-replication-synchronization-provider.html#replication-purge-delay
file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html
file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html

85 / 85

For details, see sections in Replication.

Sometimes you cannot resolve a problem yourself, and must ask for help or technical
support. In such cases, identify the problem and how you reproduce it, and the version

where you see the problem:

Be prepared to provide the following additional information:

The Java home set in config/java.properties .

Access and error logs showing what the server was doing when the problem started

occurring.

A copy of the server configuration file, config/config.ldif , in use when the

problem started occurring.

Other relevant logs or output, such as those from client applications experiencing

the problem.

A description of the environment where the server is running, including system

characteristics, hostnames, IP addresses, Java versions, storage characteristics, and
network characteristics. This helps to understand the logs, and other information.

The .zip file generated using the supportextract command.

For an example showing how to use the command, see supportextract.

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

Support

$ status --offline --version

ForgeRock Directory Services 7.1.8

Build <datestamp>

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/supportextract.html

