
1 / 30

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com .

This guide is for ForgeRock Identity Cloud evaluators, administrators, and architects. It

provides examples of how to integrate your business application and APIs with Identity

Cloud for Single Sign-On and API Security, with ForgeRock Identity Gateway.

Unless otherwise stated, the examples in this guide assume the following installation:

Identity Gateway installed on http://ig.example.com:8080 , as described in

Download and start IG.

Sample application installed on http://app.example.com:8081 , as described in

Using the sample application.

The ForgeRock Identity Cloud, with the default configuration, as described in the

ForgeRock Identity Cloud Docs.

When you are using the ForgeRock Identity Cloud, you need to know the value of the

following properties:

The root URL of your ForgeRock Identity Cloud. For example,

https://myTenant.forgeblocks.com .

The URL of the Access Management component of the ForgeRock Identity Cloud is

the root URL of your Identity Cloud followed by /am . For example,

https://myTenant.forgeblocks.com/am .

The realm where you work. The examples in this document use alpha .

Prefix each realm in the hierarchy with the realms keyword. For example,

/realms/root/realms/alpha .

If you use a different configuration, substitute in the procedures accordingly.

Identity Cloud guide



Example installation for this guide

Authenticate an IG agent to Identity Cloud

IMPORTANT

https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-sampleapp.html
https://backstage.forgerock.com/docs/idcloud/overview.html

2 / 30

This section describes how to create a journey to authenticate an IG agent to Identity

Cloud. The journey has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a journey in Identity Cloud, that same journey is used for all instances

of IG, Java agent, and Web agent. Consider this point if you change the journey

configuration.

1. Log in to the Identity Cloud admin UI as an administrator.

2. Click Journeys > New Journey.

3. Add a journey with the following information and click Create journey:

Name: Agent

Identity Object: The user or device to authenticate.

(Optional) Description: Authenticate an IG agent to Identity Cloud

The journey designer is displayed, with the Start entry point connected to the

Failure exit point, and a Success node.

4. Using the  Filter nodes bar, find and then drag the following nodes from the

Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are

provided in the incoming authentication request, and use their values in the

following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they are not provided in the

incoming authentication request, and use their values in the following

nodes.

Agent Data Store Decision node to verify the agent credentials match the

registered IG agent profile.

IG agents are automatically authenticated to Identity Cloud by a non-configurable

authentication module. Authentication chains and modules are deprecated in

Identity Cloud and replaced by journeys.

You can now authenticate IG agents to Identity Cloud with a journey. The procedure

is currently optional, but will be required when authentication chains and modules

are removed in a future release of Identity Cloud.

For more information, refer to Identity Cloud’s Journeys.

IMPORTANT

IMPORTANT

https://backstage.forgerock.com/docs/idcloud/latest/realms/journeys.html

3 / 30

5. Drag the following nodes from the Components panel into the Page node:

Platform Username node to prompt the user to enter their username.

Platform Password node to prompt the user to enter their password.

6. Connect the nodes as follows and save the journey:

This procedure registers an agent that acts on behalf of IG.

1. Log in to the Identity Cloud admin UI as an administrator.

2. Click verified_user Gateways & Agents > + New Gateway/Agent > Identity Gateway

> Next, and add an agent profile:

ID: agent-name

Password: agent-password

3. Click Save Profile > Done. The agent profile page is displayed.

4. To add a redirect URL for CDSSO, go to the agent profile page and add the URL.

5. To change the introspection scope, click open_in_new Native Consoles > Access

Management, and update the agent in the AM admin UI. By default, the agent

can introspect OAuth 2.0 tokens issued to any client, in the realm and subrealm

where it is created.

Many nodes can be configured in the panel on the right side of the page.

Unless otherwise stated, do not configure the nodes, and use only the

default values.

IMPORTANT

Register an IG agent in Identity Cloud

Use secure passwords in a production environment. Consider using a

password manager to generate secure passwords.

IMPORTANT

4 / 30

This procedure sets up a demo user in the alpha realm.

a. Log in to the Identity Cloud admin UI as an administrator.

b. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user

with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

ForgeRock Identity Cloud simplifies the consumption of ForgeRock as an Identity

Platform. However, many organizations have business web applications and APIs

deployed across multiple clouds, or on-premise.

Identity Gateway facilitates non-intrusive integration of your web applications and APIs

with the Identity Cloud, for SSO and API Security. The following image illustrates how

Identity Gateway bridges your business to the ForgeRock Identity Cloud:

Set up a demo user in Identity Cloud

About Identity Gateway and the ForgeRock Identity Cloud

5 / 30

For information about the ForgeRock Identity Cloud, refer to the ForgeRock Identity Cloud

Docs.

This example sets up OAuth 2.0, using the standard introspection endpoint, where

ForgeRock Identity Cloud is the authorization server, and Identity Gateway is the resource

server.

For more information about Identity Gateway as an OAuth 2.0 resource server, see

Validate access tokens through the introspection endpoint.

Before you start, prepare Identity Cloud, IG, and the sample application as described

in Example installation for this guide.

1. Set up Identity Cloud:

a. Log in to the Identity Cloud admin UI as an administrator.

b. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a

user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

c. Make sure you are managing the alpha realm. If not, click the current

realm at the top of the screen, and switch realm.

d. Add a web application:

i. In the Identity Cloud admin UI, click  Applications > + Add

Application > Web, and add a web application with the following

values:

Client ID: oauth2-client

Client Secret: password

API security with OAuth 2.0 and the ForgeRock Identity

Cloud

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



https://backstage.forgerock.com/docs/idcloud/overview.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#preface-examples
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

6 / 30

ii. On the application page, add the following general settings:

Grant Types: Resource Owner Password Credentials

Scopes: mail

e. Register an IG agent with the following values, as described in Register an

IG agent in Identity Cloud:

ID: ig_agent

Password: password

f. (Optional) Authenticate the agent to Identity Cloud as described in

Authenticate an IG agent to Identity Cloud.

2. Set up Identity Gateway:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to Identity Gateway, replacing the value for the

property amInstanceUrl :

1. Linux

2. Windows

IG agents are automatically authenticated to Identity Cloud by a

deprecated authentication module in Identity Cloud. This step is

currently optional, but will be required when authentication chains

and modules are removed in a future release of Identity Cloud.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/oauth2rs-idc.json

%appdata%\OpenIG\config\routes\oauth2rs-idc.json

{

"name": "oauth2rs-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/oauth2rs-

idc')}",

"properties": {

"amInstanceUrl":

"https://myTenant.forgeblocks.com/am"

file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#register-agent-idc
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#authenticate-agent-idc

7 / 30

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "&{amInstanceUrl}",

"realm": "/alpha",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

8 / 30

Notice the following features of the route compared to rs-

introspect.json in Validate access tokens through the introspection

endpoint, where a local Access Management instance is the authorization

server:

The AmService URL points to Access Management in the Identity

Cloud.

The AmService realm points to the realm where you have configured

your web application and the IG agent.

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

}

}

}

}

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

9 / 30

3. Test the setup:

a. In a terminal, export an environment variable for URL of Access

Management in the Identity Cloud:

b. Use a curl command similar to the following to retrieve an access token:

c. Validate the access token returned in the previous step:

This example sets up ForgeRock Identity Cloud as an OpenID Connect identity provider,

and Identity Gateway as a relying party.

For more information about Identity Gateway and OpenID Connect, see OpenID Connect.

Before you start, prepare Identity Cloud, IG, and the sample application as described

in Example installation for this guide.

1. Set up Identity Cloud:

$ export amInstanceUrl='myAmInstanceUrl'

$ mytoken=$(curl -s \

--user "oauth2-client:password" \

--data

'grant_type=password&username=demo&password=Ch4ng3!t&sc

ope=mail' \

$amInstanceUrl/oauth2/realms/alpha/access_token | jq -r

".access_token")

$ curl -v http://ig.example.com:8080/oauth2rs-idc --

header "Authorization: Bearer ${mytoken}"

{

active = true,

scope = mail,

realm = /alpha,

client_id = oauth2-client,

...

}

Single sign-on with OpenID Connect and the ForgeRock

Identity Cloud

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#preface-examples

10 / 30

a. Log in to the Identity Cloud admin UI as an administrator.

b. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a

user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

c. Make sure you are managing the alpha realm. If not, click the current

realm at the top of the screen, and switch realm.

d. Add a web application:

i. In the Identity Cloud admin UI, click  Applications > + Add

Application > Web, and add a web application with the following

values:

Client ID: oidc-client

Client Secret: password

ii. In General Settings on the application page, add the following values:

Sign-in URLs:

http://ig.example.com:8080/home/id_token/callback

Grant Types: Authorization Code

Scopes: openid , profile , mail

iii. Click Show advanced settings > Authentication, and click Implied

Consent:

The resource owner is not asked for consent during authorization

flows.

2. Set up Identity Gateway:

a. Set an environment variable for the oidc-client password, and then

restart IG:

a. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

$ export CLIENT_SECRET_ID='cGFzc3dvcmQ='

11 / 30

b. Add the following route to Identity Gateway, replacing the value for the

property amInstanceUrl :

1. Linux

2. Windows

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/oidc-idc.json

%appdata%\OpenIG\config\routes\oidc-idc.json

{

"name": "oidc-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"properties": {

"amInstanceUrl":

"https://myTenant.forgeblocks.com/am"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-

12 / 30

1",

"type":

"AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Error in OAuth 2.0 setup."

}

},

"registrations": [

{

"name": "oauth2-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc-client",

"clientSecretId": "client.secret.id",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint": "&

{amInstanceUrl}/oauth2/realms/alpha/.well-known/openid-

configuration"

}

},

"scopes": [

"openid",

"profile",

"mail"

],

"secretsProvider":

"SystemAndEnvSecretStore-1",

"tokenEndpointAuthMethod":

"client_secret_basic"

}

}

],

13 / 30

Notice the following features of the route compared to 07-openid.json in

Use AM As a Single OpenID Connect Provider, where Access Management is

running locally:

The ClientRegistration wellKnownEndpoint points to the Identity

Cloud.

3. Test the setup:

a. Go to http://ig.example.com:8080/home/id_token . The Identity Cloud

login page is displayed.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t . The home page

of the sample application is displayed.

For organizations relying on AM’s session and policy services with SSO, consider cross-

Domain Single Sign-On (CDSSO) as an alternative to SSO through OpenID Connect.

This example sets up ForgeRock Identity Cloud as an SSO authentication server for

requests processed by Identity Gateway. For more information about about Identity

Gateway and CDSSO, see Authenticate with CDSSO.

Before you start, prepare Identity Cloud, IG, and the sample application as described

in Example installation for this guide.

1. Set up Identity Cloud:

a. Log in to the Identity Cloud admin UI as an administrator.

b. Make sure you are managing the alpha realm. If not, click the current

realm at the top of the screen, and switch realm.

c. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a

user with the following values:

Username: demo

"requireHttps": false,

"cacheExpiration": "disabled"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



Cross-domain single sign-on

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
http://ig.example.com:8080/home/id_token
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#cdsso-auth
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#preface-examples

14 / 30

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

d. Register an IG agent with the following values, as described in Register an

IG agent in Identity Cloud:

ID: ig_agent

Password: password

Redirect URLs:

https://ig.example.com:8443/home/cdsso/redirect

e. (Optional) Authenticate the agent to Identity Cloud as described in

Authenticate an IG agent to Identity Cloud.

f. Add a Validation Service:

i. In Identity Cloud, select open_in_new Native Consoles > Access Management.

The AM admin UI is displayed.

ii. Select Services, and add a validation service with the following Valid

goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

2. Set up Identity Gateway:

a. Set up IG for HTTPS, as described in Configure IG for HTTPS (server-side).

b. Add the following session configuration to admin.json , to ensure that

the browser passes the session cookie in the form-POST to the redirect

endpoint (step 6 of Information flow during CDSSO):

IG agents are automatically authenticated to Identity Cloud by a

deprecated authentication module in Identity Cloud. This step is

currently optional, but will be required when authentication chains

and modules are removed in a future release of Identity Cloud.

IMPORTANT

{

"connectors": […​],

"session": {

"cookie": {

"sameSite": "none",

"secure": true

}

file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#register-agent-idc
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#authenticate-agent-idc
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#figure-cdsso-auth

15 / 30

This step is required for the following reasons:

When sameSite is strict or lax , the browser does not send the

session cookie, which contains the nonce used in validation. If IG

doesn’t find the nonce, it assumes that the authentication failed.

When secure is false , the browser is likely to reject the session

cookie.

For more information, refer to admin.json.

c. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

d. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

e. Add the following route to Identity Gateway, and correct the value for the

property amInstanceUrl :

1. Linux

2. Windows

},

"heap": […​]

}

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

16 / 30

$HOME/.openig/config/routes/cdsso-idc.json

%appdata%\OpenIG\config\routes\cdsso-idc.json

{

"name": "cdsso-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/cdsso')}",

"properties": {

"amInstanceUrl":

"https://myTenant.forgeblocks.com/am"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "&{amInstanceUrl}",

"realm": "/alpha",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"sessionCache": {

"enabled": false

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

17 / 30

Notice the following features of the route compared to cdsso.json in

CDSSO for IG in standalone mode, where Access Management is running

locally:

The AmService URL points to Access Management in the Identity

Cloud.

The AmService realm points to the realm where you configure your IG

agent.

f. Restart IG.

3. Test the setup:

a. Go to https://ig.example.com:8443/home/cdsso .

If you see warnings that the site is not secure, respond to the warnings to

access the site.

The Identity Cloud login page is displayed.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t .

Access Management calls /home/cdsso/redirect , and includes the CDSSO

token. The CrossDomainSingleSignOnFilter passes the request to sample

app.

"redirectEndpoint": "/home/cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1",

"verificationSecretId": "verify",

"secretsProvider": {

"type": "JwkSetSecretStore",

"config": {

"jwkUrl": "&

{amInstanceUrl}/oauth2/realms/alpha/connect/jwk_uri"

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#cdsso-sa
https://ig.example.com:8443/home/cdsso

18 / 30

The following procedure gives an example of how to request and enforce policy decisions

from Identity Cloud.

Before you start, set up and test the example in Cross-domain single sign-on.

1. Set up Identity Cloud:

a. In the Identity Cloud admin UI, select open_in_new Native Consoles > Access

Management. The AM admin UI is displayed.

b. Select  Authorization > Policy Sets > New Policy Set, and add a policy

set with the following values:

Id : PEP-CDSSO

Resource Types : URL

c. In the new policy set, add a policy with the following values:

Name : CDSSO

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/cdsso

This policy protects the home page of the sample application.

d. On the Actions tab, add an action to allow HTTP GET .

e. On the Subjects tab, remove any default subject conditions, add a subject

condition for all Authenticated Users .

2. Set up IG:

a. Replace cdsso-idc.json with the following route, and correct the value

for the property amInstanceUrl:

1. Linux

2. Windows

Policy enforcement

Enforce a simple policy

$HOME/.openig/config/routes/pep-cdsso-idc.json

%appdata%\OpenIG\config\routes\pep-cdsso-idc.json

file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/cdsso.html

19 / 30

{

"name": "pep-cdsso-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/cdsso')}",

"properties": {

"amInstanceUrl":

"https://myTenant.forgeblocks.com/am"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "&{amInstanceUrl}",

"realm": "/alpha",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"sessionCache": {

"enabled": false

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

"redirectEndpoint": "/home/cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1"

20 / 30

Note the following feature of the route compared to cdsso-idc.json :

The CrossDomainSingleSignOnFilter is followed by a

PolicyEnforcementFilter to enforce the policy PEP-CDSSO .

3. Test the setup:

a. Go to https://ig.example.com:8443/home/cdsso .

If you have warnings that the site is not secure respond to the warnings to

access the site.

IG redirects you to Identity Cloud for authentication.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t .

Identity Cloud redirects you back to the request URL, and IG requests a

policy decision. Identity Cloud returns a policy decision that grants access

to the sample application.

Before you start, set up and test the example in pep.adoc#pep-cdsso.

1. In the Identity Cloud admin UI, select code Scripts > Auth Scripts > New Script

> Journey Decision Node > Next, and add a default Journey Decision Node

Script script called TxTestPassword :

}

},

{

"name": "PolicyEnforcementFilter-1",

"type": "PolicyEnforcementFilter",

"config": {

"application": "PEP-CDSSO",

"ssoTokenSubject":

"${contexts.cdsso.token}",

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



Step up authorization for a transaction

https://ig.example.com:8443/home/cdsso
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/pep.html#pep-cdsso

21 / 30

2. Configure a journey:

a. Click account_tree Journeys and add a journey with the following configuration:

Name: Tx01_Tree

Identity Object: Alpha realm users

The journey canvas is displayed.

b. In Nodes > Basic Authentication, drag a Password Collector node onto

the canvas.

c. In Nodes > Utilities, drag a Scripted decision node onto the canvas.

d. Configure the scripted decision node as follows:

Script: select TxTestPassword

Outcomes: enter true and false

e. Connect the nodes as shown:

/*

- Data made available by nodes that have already

executed are available in the sharedState variable.

- The script should set outcome to either "true" or

"false".

*/

var givenPassword = nodeState.get("password").asString()

if (givenPassword.equals("7890")) {

outcome = "true"

} else {

outcome = "false"

}

22 / 30

For information about configuring trees, refer to ForgeRock Identity Cloud

Docs

3. Edit the authorization policy:

a. In the Identity Cloud admin UI, select open_in_new Native Consoles > Access

Management. The AM admin UI is displayed.

b. Select  Authorization > Policy Sets > PEP-CDSSO, and add the following

environment condition to the CDSSO policy:

All of

Type: Transaction

Script name: Authenticate to tree

Strategy Specifier: Tx01_Tree

4. Test the setup:

a. In a browser, go to https://ig.example.com:8443/home/cdsso .

If you have not previously authenticated to Identity Cloud, the

CrossDomainSingleSignOnFilter redirects the request to Identity Cloud for

authentication.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t .

c. Enter the password 7890 required by the script TxTestPassword .

Identity Cloud redirects you back to the request URL, and IG requests a

policy decision. Identity Cloud returns a policy decision based on the

authentication journey.

This example sets up Identity Cloud as an identity provider, to pass identity or other

runtime information downstream, in a JWT signed with a PEM.

For more information about using runtime data, refer to Passing data along the chain. To

help with development, the sample application includes a /jwt endpoint to display the

JWT, verify its signature, and decrypt it.

Before you start, prepare Identity Cloud, IG, and the sample application as described

in Example installation for this guide.

1. Set up secrets:

a. Locate a directory for secrets, and go to it:



Pass runtime data downstream in a JWT

https://backstage.forgerock.com/docs/idcloud/overview.html
https://ig.example.com:8443/home/cdsso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/data-downstream.html
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#preface-examples

23 / 30

b. Create the following secret key and certificate pair as PEM files:

Two PEM files are created, one for the secret key, and another for the

associated certificate.

c. Map the key and certificate to the same secret ID in IG:

d. Generate PEM files to sign and verify the JWT:

e. Make sure the following files have been added to your secrets directory:

id.key.for.signing.jwt.pem

id.key.for.verifying.jwt.pem

key.manager.secret.id.pem

ig.example.com-certificate.pem

ig.example.com-key.pem

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout ig.example.com-key.pem \

-out ig.example.com-certificate.pem

$ cat ig.example.com-key.pem ig.example.com-

certificate.pem > key.manager.secret.id.pem

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout id.key.for.signing.jwt.pem \

-out id.key.for.verifying.jwt.pem

24 / 30

2. Set up Identity Cloud:

a. Log in to the Identity Cloud admin UI as an administrator.

b. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a

user with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

c. Register an IG agent with the following values, as described in Register an

IG agent in Identity Cloud:

ID: ig_agent_jwt

Password: password

Redirect URLs: https://ig.example.com:8443/jwt/redirect

d. (Optional) Authenticate the agent to Identity Cloud as described in

Authenticate an IG agent to Identity Cloud.

e. Add a Validation Service:

i. In Identity Cloud, select open_in_new Native Consoles > Access Management.

The AM admin UI is displayed.

ii. Select Services, and add a validation service with the following Valid

goto URL Resources:

https://ig.example.com:8443/*

https://ig.example.com:8443/*?*

3. Set up IG:

a. Set up TLS by adding the following file to IG, replacing the value for the

property secretsDir :

1. Linux

2. Windows

IG agents are automatically authenticated to Identity Cloud by a

deprecated authentication module in Identity Cloud. This step is

currently optional, but will be required when authentication chains

and modules are removed in a future release of Identity Cloud.

IMPORTANT

$HOME/.openig/config/admin.json

file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#register-agent-idc
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#authenticate-agent-idc

25 / 30

%appdata%\OpenIG\config\admin.json

{

"mode": "DEVELOPMENT",

"properties": {

"secretsDir": "/path/to/secrets"

},

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"session": {

"cookie": {

"sameSite": "none",

"secure": true

}

},

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

}

},

{

"name": "ServerIdentityStore",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

"suffix": ".pem",

"mappings": [{

26 / 30

b. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

c. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

d. Add the following route to IG, replacing the value for the properties

secretsDir and amInstanceUrl :

1. Linux

2. Windows

"secretId": "key.manager.secret.id",

"format": {

"type": "PemPropertyFormat"

}

}]

}

}

]

}

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/jwt-idc.json

%appdata%\OpenIG\config\routes\jwt-idc.json

27 / 30

{

"name": "jwt-idc",

"condition": "${find(request.uri.path, '/jwt')}",

"baseURI": "http://app.example.com:8081",

"properties": {

"secretsDir": "/path/to/secrets",

"amInstanceUrl":

"https://myTenant.forgeblocks.com/am"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "&{amInstanceUrl}",

"realm": "/alpha",

"agent": {

"username": "ig_agent_jwt",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"sessionCache": {

"enabled": false

}

}

},

{

"name": "pemPropertyFormat",

"type": "PemPropertyFormat"

},

{

"name": "FileSystemSecretStore-1",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

"suffix": ".pem",

"mappings": [{

"secretId": "id.key.for.signing.jwt",

"format": "pemPropertyFormat"

}]

28 / 30

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

"redirectEndpoint": "/jwt/redirect",

"authCookie": {

"path": "/jwt",

"name": "ig-token-cookie"

},

"amService": "AmService-1",

"verificationSecretId": "verify",

"secretsProvider": {

"type": "JwkSetSecretStore",

"config": {

"jwkUrl": "&

{amInstanceUrl}/oauth2/realms/alpha/connect/jwk_uri"

}

}

}

},

{

"name": "UserProfileFilter",

"type": "UserProfileFilter",

"config": {

"username":

"${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1"

}

}

}

},

{

"name": "JwtBuilderFilter-1",

"type": "JwtBuilderFilter",

"config": {

29 / 30

4. Test the setup:

a. Go to https://ig.example.com:8443/jwt .

If you receive warnings that the site is not secure, respond to the warnings

to access the site. The Identity Cloud login page is displayed.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t . The sample

app displays the signed JWT along with its header and payload.

c. In USE PEM FILE , enter the absolute path to

id.key.for.verifying.jwt.pem to verify the JWT signature.

"template": {

"name":

"${contexts.userProfile.commonName}",

"email":

"${contexts.userProfile.rawInfo.mail[0]}"

},

"secretsProvider": "FileSystemSecretStore-

1",

"signature": {

"secretId": "id.key.for.signing.jwt",

"algorithm": "RS512"

}

}

},

{

"name": "HeaderFilter-1",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-openig-user":

["${contexts.jwtBuilder.value}"]

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



https://ig.example.com:8443/jwt

30 / 30

Copyright © 2010-2023 ForgeRock, all rights reserved.

