
1 / 80

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com .

This guide describes tasks and con�gurations you might repeat throughout the life cycle

of a deployment in your organization. It is for people who maintain IG services for their

organization.

IG operates in development mode and production mode, as de�ned in the Development

Mode and Production Mode.

After installation, IG is by default in production mode. While you evaluate IG or develop

routes, it can be helpful to switch to development mode as described in Switching from

production mode to development mode. However, after deployment it is essential to

switch back to production mode to prevent unwanted changes to the con�guration.

1. In $HOME/.openig/config/admin.json  (on Windows, %appdata%

\OpenIG\config  ), change the value of mode  from DEVELOPMENT  to

PRODUCTION :

The �le changes the operating mode from development mode to production

mode. For more information about the admin.json  �le, refer to

AdminHttpApplication (admin.json).

The value set in admin.json  overrides any value set by the ig.run.mode

con�guration token when it is used in an environment variable or system

property. For information about ig.run.mode , refer to Con�guration Tokens.

2. (Optional) Prevent routes from being reloaded after startup:

Maintenance guide



Switching from development mode to production mode

{

"mode": "PRODUCTION"

}

https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#operating-modes
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#dev-mode-switch
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication
file:///home/pptruser/Downloads/build/site/ig/reference/PropertyValueSubstitution.html#ConfigToken


2 / 80

To prevent all routes in the con�guration from being reloaded, add a

config.json  as described in the Getting started, and con�gure the

scanInterval  property of the main Router.

To prevent individual routes from being reloaded, con�gure the

scanInterval  of the routers in those routes.

For more information, refer to Router.

3. Restart IG.

When IG starts up, the route endpoints are not displayed in the logs, and are not

available. You can’t access Studio on http://ig.example.com:8080/openig/studio

.

The following sections describe how to set up auditing for your deployment. For

information about how to include user ID in audit logs, refer to Recording User ID in Audit

Events.

For information about the audit framework and each event handler, refer to Audit

framework.

This section describes how to record access audit events in a CSV �le, using tamper-

evident logging. For information about the CSV audit event handler, refer to

CsvAuditEventHandler.

{

"type": "Router",

"config": {

"scanInterval": "disabled"

}

}



Auditing your deployment

Record access audit events in CSV

The CSV handler does not sanitize messages when writing to CSV log �les.

Do not open CSV logs in spreadsheets or other applications that treat data as code.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Router
http://ig.example.com:8080/openig/studio
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-userid
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#CsvAuditEventHandler


3 / 80

Before you start, prepare IG and the sample application as described in the Getting

started.

1. Set up secrets for tamper-evident logging:

a. Locate a directory for secrets, and go to it:

b. Generate a key pair in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of

signature  for the signing key, where the key is generated with the RSA

key algorithm and the SHA256withRSA  signature algorithm:

c. Generate a secret key in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of

csv-key-2  for the symmetric key, where the key is generated with the

HmacSHA256  key algorithm and 256-bit key size:

$ cd /path/to/secrets

$ keytool \

-genkeypair \

-keyalg RSA \

-sigalg SHA256withRSA \

-alias "signature" \

-dname "CN=ig.example.com,O=Example Corp,C=FR" \

-keystore audit-keystore \

-storetype JCEKS \

-storepass password \

-keypass password

Because keytool converts all characters in its key aliases to lowercase,

use only lowercase in alias de�nitions of a keystore.

NOTE

$ keytool \

-genseckey \

-keyalg HmacSHA256 \

-keysize 256 \

-alias "password" \

-keystore audit-keystore \

-storetype JCEKS \

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html


4 / 80

d. Verify the content of the keystore:

2. Add the following route to IG, replacing /path/to/secrets/audit-keystore

with your path:

1. Linux

2. Windows

-storepass password \

-keypass password

$ keytool \

-list \

-keystore audit-keystore \

-storetype JCEKS \

-storepass password

Keystore type: JCEKS

Keystore provider: SunJCE

Your keystore contains 2 entries

password, ... SecretKeyEntry,

signature, ... PrivateKeyEntry,

Certificate fingerprint (SHA1): 4D:...:D1

$HOME/.openig/config/routes/30-csv.json

%appdata%\OpenIG\config\routes\30-csv.json

{

"name": "30-csv",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/csv-

audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.csv.CsvAuditEventHandler",



5 / 80

The route calls an audit service con�guration for publishing log messages to the

CSV �le, /tmp/logs/access.csv .

When a request matches audit , audit events are logged to the CSV �le.

The route uses the ForgeRockClientHandler  as its handler, to send the X-

ForgeRock-TransactionId  header with its requests to external services.

3. Go to http://ig.example.com:8080/home/csv-audit .

The home page of the sample application is displayed, and the �le

/tmp/logs/tamper-evident-access.csv  is updated.

For information about con�guring the JMS event handler, refer to JmsAuditEventHandler.

"config": {

"name": "csv",

"logDirectory": "/tmp/logs",

"security": {

"enabled": "true",

"filename": "/path/to/secrets/audit-

keystore",

"password": "password",

"signatureInterval": "1 day"

},

"topics": [

"access"

]

}

}

],

"config": { }

}

}

],

"auditService": "AuditService",

"handler": "ForgeRockClientHandler"

}



Recording access audit events with a JMS audit event handler

This procedure is an example of how to record access audit events with a JMS audit

event handler con�gured to use the ActiveMQ message broker. This example is not

tested on all con�gurations, and can be more or less relevant to your con�guration.

IMPORTANT

http://ig.example.com:8080/home/csv-audit
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#JmsAuditEventHandler


6 / 80

Before you start, prepare IG as described in the Getting started.

1. Download the following �les:

ActiveMQ binary . IG is tested with ActiveMQ Classic 5.15.11.

ActiveMQ Client . Use a version that corresponds to your ActiveMQ

version.

Apache Geronimo J2EE management bundle .

hawtbuf-1.11 JAR .

2. Add the �les to the con�guration:

Create the directory $HOME/.openig/extra , where $HOME/.openig  is the

instance directory, and add .jar �les to the directory.

3. Create a consumer that subscribes to the audit  topic.

From the ActiveMQ installation directory, run the following command:

4. Add the following route to IG:

1. Linux

2. Windows









$ ./bin/activemq consumer --destination topic://audit

$HOME/.openig/config/routes/30-jms.json

%appdata%\OpenIG\config\routes\30-jms.json

{

"name": "30-jms",

"MyCapture" : "all",

"baseURI": "http://app.example.com:8081",

"condition" : "${request.uri.path ==

'/activemq_event_handler'}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers" : [

{

"class" : 

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
https://activemq.apache.org/components/classic/download/
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/
https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/


7 / 80

When a request matches the /activemq_event_handler  route, this

con�guration publishes JMS messages containing audit event data to an

ActiveMQ managed JMS topic, and the StaticResponseHandler displays a

message.

5. Access the route on http://ig.example.com:8080/activemq_event_handler .

"org.forgerock.audit.handlers.jms.JmsAuditEventHandler",

"config" : {

"name" : "jms",

"topics": [ "access" ],

"deliveryMode" : "NON_PERSISTENT",

"sessionMode" : "AUTO",

"jndi" : {

"contextProperties" : {

"java.naming.factory.initial" : 

"org.apache.activemq.jndi.ActiveMQInitialContextFactory",

"java.naming.provider.url" : 

"tcp://am.example.com:61616",

"topic.audit" : "audit"

},

"topicName" : "audit",

"connectionFactoryName" : 

"ConnectionFactory"

}

}

}

],

"config" : { }

}

}

],

"auditService": "AuditService",

"handler" : {

"type" : "StaticResponseHandler",

"config" : {

"status" : 200,

"headers" : {

"Content-Type" : [ "text/plain; charset=UTF-8" ]

},

"entity" : "Message from audited route"

}

}

}



http://ig.example.com:8080/activemq_event_handler


8 / 80

Depending on how ActiveMQ is con�gured, audit events are displayed on the

ActiveMQ console or written to �le.

This section describes how to record access audit events with a JSON audit event handler.

For information about con�guring the JSON event handler, refer to

JsonAuditEventHandler.

1. Add the following route to IG:

1. Linux

2. Windows

Recording access audit events with a JSON audit event handler

$HOME/.openig/config/routes/30-json.json

%appdata%\OpenIG\config\routes\30-json.json

{

"name": "30-json",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/json-

audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.json.JsonAuditEventHandler",

"config": {

"name": "json",

"logDirectory": "/tmp/logs",

"topics": [

"access"

],

"fileRetention": {

"rotationRetentionCheckInterval": "1

minute"

},

file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#JsonAuditEventHandler


9 / 80

Notice the following features of the route:

The route calls an audit service con�guration for publishing log messages

to the JSON �le, /tmp/audit/access.audit.json . When a request

matches /home/json-audit , a single line per audit event is logged to the

JSON �le.

The route uses the ForgeRockClientHandler  as its handler, to send the X-

ForgeRock-TransactionId  header with its requests to external services.

2. Go to http://ig.example.com:8080/home/json-audit .

The home page of the sample application is displayed and the �le

/tmp/logs/access.audit.json  is created or updated with a message. The

following example message is formatted for easy reading, but it is produced as

a single line for each event:

"buffering": {

"maxSize": 100000,

"writeInterval": "100 ms"

}

}

}

]

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}



{

"_id": "830...-41",

"timestamp": "2019-...540Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-40",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51666

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

http://ig.example.com:8080/home/json-audit


10 / 80

This section describes how to record access audit events to standard output. For more

information about the event handler, refer to JsonStdoutAuditEventHandler.

Before you start, prepare IG and the sample application as described in the Getting

started.

1. Add the following route to IG:

1. Linux

2. Windows

"method": "GET",

"path": "http://ig.example.com:8080/home/json-

audit",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,/;

q=0.8"],

"host": ["ig.example.com:8080"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 212,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "b3f...-29",

"routeId": "30-json",

"routeName": "30-json"

}

}

Recording access audit events to standard output

$HOME/.openig/config/routes/30-jsonstdout.json

%appdata%\OpenIG\config\routes\30-jsonstdout.json

file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#JsonStdoutAuditEventHandler
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html


11 / 80

Notice the following features of the route:

The route matches requests to /home/jsonstdout-audit .

The route calls the audit service con�guration for publishing access log

messages to standard output. When a request matches

/home/jsonstdout-audit , a single line per audit event is logged.

2. Go to http://ig.example.com:8080/home/jsonstdout-audit .

The home page of the sample application is displayed, and a message like this is

published to standard output:

{

"name": "30-jsonstdout",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/jsonstdout-audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}



http://ig.example.com:8080/home/jsonstdout-audit


12 / 80

{

"_id": "830...-61",

"timestamp": "2019-...89Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-60",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51876

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": "http://ig.example.com:8080/home/jsonstdout-

audit",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,/;

q=0.8"],

"host": ["ig.example.com:8080"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 10,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "b3f...-41",

"routeId": "30-jsonstdout",

"routeName": "30-jsonstdout"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}



13 / 80

Each audit event is identi�ed by a unique transaction ID that can be communicated across

products and recorded for each local event. By using the transaction ID, requests can be

tracked as they traverse the platform, making it easier to monitor activity and to enrich

reports.

The X-ForgeRock-TransactionId  header is automatically set in all outgoing HTTP calls

from one ForgeRock product to another. Customers can also set this header themselves

from their own applications or scripts that call into the ForgeRock Identity Platform.

To reduce the risk of malicious attacks, by default IG does not trust transaction ID

headers from client applications.

If you trust the transaction IDs sent by your client applications, consider setting Java

system property org.forgerock.http.TrustTransactionHeader  to true .

Add the following system property in env.sh :

All incoming X-ForgeRock-TransactionId  headers are trusted, and monitoring or

reporting systems that consume the logs can allow requests to be correlated as they

traverse multiple servers.

To prevent logging of sensitive data for an audit event, the Common Audit Framework

uses a safelist to specify which audit event �elds appear in the logs.

By default, only safelisted audit event �elds are included in the logs. For information

about how to include non-safelisted audit event �elds, or exclude safelisted audit event

�elds, refer to Including or excluding audit event �elds in logs.

Audit event �elds use JSON pointer notation, and are taken from the JSON schema for the

audit event content. The following event �elds are safelisted:

/_id

/timestamp

/eventName

/transactionId

Trusting transaction IDs from other products

# Specify a JVM option

TX_HEADER_OPT="-Dorg.forgerock.http.TrustTransactionHeader=true"

# Include it into the JAVA_OPTS environment variable

export JAVA_OPTS="${TX_HEADER_OPT}"

Safelisting audit event �elds for the logs

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#maint-audit-include-exclude


14 / 80

/trackingIds

/userId

/client

/server

/ig/exchangeId

/ig/routeId

/ig/routeName

/http/request/secure

/http/request/method

/http/request/path

/http/request/headers/accept

/http/request/headers/accept-api-version

/http/request/headers/content-type

/http/request/headers/host

/http/request/headers/user-agent

/http/request/headers/x-forwarded-for

/http/request/headers/x-forwarded-host

/http/request/headers/x-forwarded-port

/http/request/headers/x-forwarded-proto

/http/request/headers/x-original-uri

/http/request/headers/x-real-ip

/http/request/headers/x-request-id

/http/request/headers/x-requested-with

/http/request/headers/x-scheme

/request

/response

The safelist is designed to prevent logging of sensitive data for audit events by specifying

which audit event �elds appear in the logs. You can add or remove messages from the

logs as follows:

To include audit event �elds in logs that are not safelisted, con�gure the includeIf

property of AuditService.

Including or excluding audit event �elds in logs

IMPORTANT



15 / 80

To exclude safelisted audit event �elds from the logs, con�gure the excludeIf

property of AuditService. For an example, refer to Exclude safelisted audit event

�elds from logs.

Exclude safelisted audit event fields from logs

1. Set up recording for audit events, as described in Recording access audit events

in JSON, and note the audit event �elds in the log �le access.audit.json .

2. Replace 30-json.json  with the following route:

1. Linux

2. Windows

Before you include non-safelisted audit event �elds in the logs, consider the

impact on security. Including some headers, query parameters, or cookies in

the logs could cause credentials or tokens to be logged, and allow anyone with

access to the logs to impersonate the holder of these credentials or tokens.

IMPORTANT

$HOME/.openig/config/routes/30-json-excludeif.json

%appdata%\OpenIG\config\routes\30-json-excludeif.json

{

"name": "30-json-excludeif",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/json-

audit-excludeif$')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"config": {

"filterPolicies": {

"field": {

"excludeIf": [

"/access/http/request/headers/host",

"/access/http/request/path",

"/access/server",

"/access/response"

]

}

}

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#proc-audit-exclude
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-json


16 / 80

Notice that the AuditService is con�gured with an excludeIf  property to

exclude audit event �elds from the logs.

3. Go to http://ig.example.com:8080/home/json-audit-excludeif .

The home page of the sample application is displayed and the �le

/tmp/logs/access.audit.json  is updated:

},

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.json.JsonAuditEventHandler",

"config": {

"name": "json",

"logDirectory": "/tmp/logs",

"topics": [

"access"

],

"fileRetention": {

"rotationRetentionCheckInterval": "1

minute"

},

"buffering": {

"maxSize": 100000,

"writeInterval": "100 ms"

}

}

}

]

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}



{

"_id": "830...-41",

"timestamp": "2019-...540Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-40",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51666

},

http://ig.example.com:8080/home/json-audit-excludeif


17 / 80

4. Compare the audit event �elds in access.audit.json  with those produced in

Recording access audit events in JSON, and note that the audit event �elds

speci�ed by the excludeIf  property no longer appear in the logs.

The following sections provide examples of how to capture the AM user ID in audit logs.

Sample scripts are available in the openig-samples.jar  �le, to capture the user ID after

SSO, CDSSO, OpenID, or SAML authentication. The scripts inject the user ID into the

RequestAuditContext so that it is available when the audit event is written.

Using the notes in the sample scripts, adapt the script for your deployment. For example,

con�gure which user_info  �eld to capture in the audit event.

The audit service in these examples use a JsonStdoutAuditEventHandler, which writes

audit events to standard output, but can be any other audit service.

1. Set up SSO, as described in Authenticating with SSO.

2. Add the following script to IG:

1. Linux

2. Windows

"http": {

"request": {

"secure": false,

"method": "GET",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,*/

*;q=0.8"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"ig": {

"exchangeId": "b3f...-56",

"routeId": "30-json-excludeif",

"routeName": "30-json-excludeif"

}

}

Recording user ID in audit events

Recording user ID in audit logs after SSO authentication

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-json
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#sso-auth


18 / 80

$HOME/.openig/scripts/groovy/InjectUserIdSso.groovy

%appdata%\OpenIG\scripts\groovy\InjectUserIdSso.groovy

package scripts.groovy

import org.forgerock.openig.openam.SsoTokenContext

import org.forgerock.services.context.RequestAuditContext

/**

* Sample ScriptableFilter implementation to capture the

user id from the session

* and inject it into the RequestAuditContext for later

use when the audit event

* is written.

*

* This ScriptableFilter should be added in the filter

chain at whatever point the

* desired user id is available - e.g. on the session

after SSO.

*

* "handler": {

*   "type": "Chain",

*   "config": {

*     "filters": [ {

*        "name": "SingleSignOnFilter-1",

*         "type": "SingleSignOnFilter",

*         "config": {

*           "amService": "AmService-1"

*         }

*       }, {

*         "type" : "ScriptableFilter",

*         "config" : {

*           "file" : "InjectUserIdSso.groovy",

*           "type": "application/x-groovy"

*         }

*       }

*     ],

*     "handler" : "ReverseProxyHandler",

* }

*

* When using the SSO/ CDSSO flow then the SsoTokenContext

is guaranteed to exist and



19 / 80

The script captures the user ID after SSO or CDSSO authentication, and injects it

into the RequestAuditContext so that it is available when the audit event is

written.

3. Replace sso.json  with the following route:

* be populated if there was no error. The

RequestAuditContext is also guaranteed to

* be available. Note also that if the SessionInfoFilter

is present in the route then

* a SessionInfoContext would be available in the context

chain and could be queried

* for user info.

*

* Implementors may decide which user id field to capture

in the audit event:

* - The sessionInfo universalId - 'universalId' - is

always available as

*   provided by AM and resembles -

*   e.g.

"id=bonnie,ou=user,o=myrealm,ou=services,dc=openam,dc=forg

erock,dc=org".

* - The sessionInfo username - mapped to 'username')

resembles - e.g. "bonnie".

*   Field 'username' should be preferred to 'uid', which

also points to 'username'.

*

* Additional error handling may be required.

*

* @see RequestAuditContext

* @see SsoTokenContext

* @see org.forgerock.openig.openam.SessionInfoContext

*/

def requestAuditContext =

context.asContext(RequestAuditContext.class)

def ssoTokenContext =

context.asContext(SsoTokenContext.class)

// The sessionInfo 'universalId' is always available, 

though 'username' may be unknown

requestAuditContext.setUserId(ssoTokenContext.universalId)

// Propagate the request to the next filter/ handler in

the chain

next.handle(context, request)



20 / 80

1. Linux

2. Windows

$HOME/.openig/config/routes/audit-sso.json

%appdata%\OpenIG\config\routes\audit-sso.json

{

"name": "audit-sso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/audit-

sso$')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {



21 / 80

Notice the following features of the route compared to sso.json :

The route matches requests to /home/audit-sso .

An audit service is included to publish access log messages to standard

output.

The chain includes a scriptable �lter that refers to

InjectUserIdSso.groovy .

4. Test the setup

5. Log out of AM, and go to http://ig.example.com:8080/home/audit-sso . The

SingleSignOnFilter redirects the request to AM for authentication.

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"auditService": "AuditService",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"type" : "ScriptableFilter",

"config" : {

"file" : "InjectUserIdSso.groovy",

"type": "application/x-groovy"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



http://ig.example.com:8080/home/audit-sso


22 / 80

a. Log in to AM as user demo , password Ch4ng31t , and then allow the

application to access user information.

The pro�le page of the sample application is displayed. The script captures

the user ID from the session, and the audit service includes it with the audit

event.

b. Search the standard output for a message like this, containing the user ID:

{

"_id": "23a...-23",

"timestamp": "...",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "23a...-22",

"userId": 

"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 57843

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": "http://ig.example.com/home/audit-sso",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9

,image/webp,/;q=0.8"],

"host": ["ig.example.com:8080"],

"user-agent": [...]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 276,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "1dc...-26",



23 / 80

1. Set up authentication, as described in Use AM as a single OpenID Connect

provider.

2. Set up the script:

a. Add the following example script to IG:

1. Linux

2. Windows

"routeId": "audit-sso",

"routeName": "audit-sso"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}

Recording user ID in audit logs after OpenID connect authentication

$HOME/.openig/scripts/groovy/InjectUserIdOpenId.groovy

%appdata%

\OpenIG\scripts\groovy\InjectUserIdOpenId.groovy

package scripts.groovy

import org.forgerock.services.context.AttributesContext

import

org.forgerock.services.context.RequestAuditContext

/**

* Sample script implementation supporting user id

injection in an OpenId scenario.

* This sample captures the user id and injects it into

the RequestAuditContext for

* later use when the audit event is written.

*

* This ScriptableFilter should be added in the filter

chain at whatever point the

* desired user id is available - e.g. after OpenId

client authentication (in the

* OAuth2 authentication filter chain) - as follows:

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am


24 / 80

*

* "handler" : {

*   "type" : "Chain",

*   "config" : {

*     "filters" : [ {

*       "type" : "OAuth2ClientFilter",

*       "config" : {

*         ...

*         "target" : "${attributes.target}",

*         "registrations" : [

"ClientRegistrationWithOpenIdScope" ],

*       }

*     }, {

*       "type" : "ScriptableFilter",

*       "config" : {

*         "file" : "InjectUserIdOpenId.groovy",

*         "type": "application/x-groovy"

*       }

*     } ],

*     "handler" : "display-user-info-groovy-handler"

*   }

* }

*

* The ClientRegistration associated with the above

OAuth2ClientFilter config will

* require the 'openid' scope. The OAuth2SessionContext

is guaranteed to exist and

* be populated on successful authentication. The

userinfo will then be populated

* according to the OAuth2ClientFilter OpenId 'target'

configuration (e.g. in this

* sample, on the AttributesContext). The 'target'

referenced will be populated

* with a 'user_info' JSON value containing the

userinfo. It should be noted that

* the OAuth2ClientFilter 'target' config is a config-

time expression, and cannot

* be used in a ScriptableFilter to read runtime data.

The RequestAuditContext is

* also guaranteed to be available.

*

* Implementors may decide which 'user_info' field to

capture in the audit event:

* - The userinfo 'sub' field is the user's "complex"

ID marked with a type - e.g.



25 / 80

*   "(usr!bonnie)".

* - The userinfo 'subName' field is the user's

username (or resource name) - e.g.

*   "bonnie".

* - To capture the universalId (consistent with the

session info universalId),

*   it is necessary to configure AM to provide it as a

claim in the id-token. To

*   do this, edit the OIDC Claims Script to include

the following line just prior

*   to the UserInfoClaims creation:

*       computedClaims["universalId"] =

identity.universalId

* - This will include 'universalId' in the userinfo

which we can use with audit

*   e.g.

"id=bonnie,ou=user,o=myrealm,ou=services,dc=openam,dc=f

orgerock,dc=org"

*

* Additional error handling may be required.

*

* @see RequestAuditContext

* @see AttributesContext

*/

def requestAuditContext =

context.asContext(RequestAuditContext.class)

def attributesContext =

context.asContext(AttributesContext.class)

// The OAuth2ClientFilter captures userinfo based on

its 'target' configuration.

// In this sample 'target' is configured as the

AttributesContext with key "target".

// We can query this for 'user_info' values: 'sub',

'subName' or anything else

// made available via the OIDC Claims Script (see

above).

def oauth2UserInfo =

attributesContext.getAttributes().get("target")

requestAuditContext.setUserId(oauth2UserInfo.get("user_

info").get("sub"))

// Propagate the request to the next filter/ handler in



26 / 80

The script captures the user ID from the

AuthorizationCodeOAuth2ClientFilter target  object, by default at

${attributes.openid} , and injects it into the RequestAuditContext so that

it is available when the audit event is written.

b. Edit the script to get the attributes from the openid  target:

Replace attributesContext.getAttributes().get("target")

with attributesContext.getAttributes().get("openid") .

3. Replace 07-openid.json  with the following route:

1. Linux

2. Windows

the chain

next.handle(context, request)

$HOME/.openig/config/routes/audit-oidc.json

%appdata%\OpenIG\config\routes\audit-oidc.json

{

"name": "audit-oidc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}



27 / 80

}

],

"config": {}

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"auditService": "AuditService",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-1",

"type": "AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Error in OAuth 2.0 setup."

}

},

"registrations": [

{

"name": "oidc-user-info-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint": 

"http://am.example.com:8088/openam/oauth2/.well-



28 / 80

Notice the following features of the route compared to 07-openid.json :

An audit service is included to publish access log messages to standard

output.

The chain includes a scriptable �lter that refers to

InjectUserIdOpenId.groovy .

4. Test the setup

a. Log out of AM, and go to http://ig.example.com:8080/home/id_token .

The AM login page is displayed.

b. Log in to AM as user demo , password Ch4ng31t , and then allow the

application to access user information.

known/openid-configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"secretsProvider": 

"SystemAndEnvSecretStore-1",

"tokenEndpointAuthMethod": 

"client_secret_basic"

}

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

},

{

"type" : "ScriptableFilter",

"config" : {

"file" : "InjectUserIdOpenId.groovy",

"type": "application/x-groovy"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



http://ig.example.com:8080/home/id_token


29 / 80

The home page of the sample application is displayed. The script captures

the user ID from the openid  target, and the audit service includes it with

the audit event.

c. Search the standard output for a message like this, containing the user ID:

{

"_id": "b64...-25",

"timestamp": "2021...",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "b64...-24",

"userId": "(usr!demo)",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 64443

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": 

"http://ig.example.com:8080/home/id_token",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9

,image/webp,/;q=0.8"],

"host": ["ig.example.com:8080"],

"user-agent": [...]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 199,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "1dc...-26",

"routeId": "audit-oidc",

"routeName": "audit-oidc"

},



30 / 80

1. Set up federation, as described in SAML.

2. Set up the script:

a. Add the following example script to IG:

1. Linux

2. Windows

"source": "audit",

"topic": "access",

"level": "INFO"

}

Recording user ID in audit logs after SAML authentication

This example uses the deprecated SamlFederationHandler. The

SamlFederationHandler is replaced by the SamlFederationFilter and will be removed

in a future release.

IMPORTANT

$HOME/.openig/scripts/groovy/InjectUserIdSaml.groovy

%appdata%

\OpenIG\scripts\groovy\InjectUserIdSaml.groovy

package scripts.groovy

import org.forgerock.http.session.SessionContext

import

org.forgerock.services.context.RequestAuditContext

/**

* Sample ScriptableFilter implementation to capture

the user id obtained from a

* SAML assertion. The IG SamlFederationHandler

captures this and locates it on

* the SessionContext with the key as the configured

SAML 2 user id key. We then

* take this and inject it into the RequestAuditContext

for later use when the

* audit event is written.

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html
file:///home/pptruser/Downloads/build/site/ig/reference/SamlFederationFilter.html


31 / 80

*

* This ScriptableFilter should be added in the filter

chain together with the

* SamlFederationHandler, as follows. Note that the

InjectUserIdSaml.groovy script

* operates on the response, injecting the userId as

captured by the handler.

*

* {

*     "condition" :

"${matches(request.uri.path,'^/api/saml')}",

*     "handler" : {

*         "type" : "Chain",

*         "config" : {

*             "filters" : [ {

*                 "type" : "ScriptableFilter",

*                 "config" : {

*                     "file" :

"InjectUserIdSaml.groovy",

*                     "type": "application/x-groovy"

*                 }

*             } ],

*             "handler" : {

*                 "name" : "saml_handler_SPOne",

*                 "type" : "SamlFederationHandler",

*                 "config" : {

*                      "assertionMapping" : {

*                          "SPOne_userName" : "uid",

*                          "SPOne_password" : "mail"

*                      },

*                      "redirectURI" : "/api/home",

*                      "logoutURI" :

"http://openig.example.com:8082/api/after_logout",

*                      "subjectMapping" :

"SubjectName_SPOne",

*                      "authnContext" :

"AuthnContext_SPOne",

*                      "sessionIndexMapping" :

"SessionIndex_SPOne"

*                 }

*             }

*         }

*     }

* }

*



32 / 80

The script captures the user ID from the SessionContext subject or attribute

mappings, provided by the SamlFederationHandler from the inbound

assertions. It injects the user ID into the RequestAuditContext so that it is

available when the audit event is written.

b. Replace get("SPOne_userName"))  with get("username")) .

* The SessionContext and RequestAuditContext are

guaranteed to be available and the

* SessionContext will have been populated with

userinfo on successful authentication.

*

* Implementors may decide which user id field to

capture in the audit event:

* - This should be based on SAML attribute mappings

and/ or the subject mapping (if

*   transient names are not used).

* - Other attributes are available, such as 'uid' and

'userName', though  it must be

*   noted that there is an expectation that the IDP

makes available the user id.

* - In this sample, 'SPOne_userName' maps to the

'uid'.

*

* Additional error handling may be required.

*

* @see RequestAuditContext

* @see SessionContext

*/

// Propagate the request to the next filter/ handler in

the chain

next.handle(context, request)

.then({ response ->

def requestAuditContext =

context.asContext(RequestAuditContext.class)

def sessionContext =

context.asContext(SessionContext.class)

// Inject the user id as captured by the

SamlFederationHandler

requestAuditContext.setUserId(sessionContext.getSession

().get("SPOne_userName"))

return response

})



33 / 80

The script captures the user ID from the assertionMapping username ,

which is mapped in the route to cn .

3. Replace saml.json  with the following route:

1. Linux

2. Windows

$HOME/.openig/config/routes/audit-saml.json

%appdata%\OpenIG\config\routes\audit-saml.json

{

"name": "audit-saml",

"condition": "${find(request.uri.path, '^/saml')}",

"session": "JwtSession",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class": 

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

}

],

"auditService": "AuditService",

"handler": {

"type": "Chain",

"config": {

"filters": [



34 / 80

Notice the following features of the route compared to saml.json :

An audit service is included to publish access log messages to standard

output.

The main Handler is a Chain, that includes a scriptable �lter to refer to

InjectUserIdSaml.groovy .

The script uses the assertionMapping username  to capture the user ID.

4. Test the setup

a. Log out of AM, and go to IDP-initiated SSO .

b. Log in to AM with username demo  and password Ch4ng31t .

IG returns the response page showing that the the demo user has logged in.

The script captures the user ID from the session, and the audit service

includes it with the audit event.

c. Search the standard output for a message like this, containing the user ID:

{

"type" : "ScriptableFilter",

"config" : {

"file" : "InjectUserIdSaml.groovy",

"type": "application/x-groovy"

}

}

],

"handler": {

"type": "SamlFederationHandler",

"config": {

"useOriginalUri": true,

"assertionMapping": {

"username": "cn",

"password": "sn"

},

"subjectMapping": "sp-subject-name",

"redirectURI": "/home/federate"

}

}

}

}

}



{

"_id": "82f...-14",

"timestamp": "2021-...",

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp


35 / 80

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "82f...-13",

"userId": "demo",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 60655

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "POST",

"path": 

"http://sp.example.com:8080/saml/fedletapplication/meta

Alias/sp",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9

,image/webp,/;q=0.8"],

"content-type": ["application/x-www-form-

urlencoded"],

"host": ["sp.example.com:8080"],

"user-agent": [...]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "302",

"elapsedTime": 2112,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "1dc...-26",

"routeId": "audit-saml",

"routeName": "audit-saml"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}



36 / 80

The following sections describe how to set up and maintain monitoring in your

deployment, to ensure appropriate performance and service availability:

All ForgeRock products automatically expose a monitoring endpoint to expose metrics in

a standard Prometheus format, and as a JSON format monitoring resource.

In IG, metrics are available for each router, subrouter, and route in the con�guration.

When a TimerDecorator is con�gured, timer metrics are also available.

For information about IG monitoring endpoints and available metrics, see Monitoring.

All ForgeRock products automatically expose a monitoring endpoint where Prometheus

can scrape metrics, in a standard Prometheus format.

When IG is set up as described in the Getting started, the Prometheus Scrape Endpoint is

available at http://ig.example.com:8080/openig/metrics/prometheus .

By default, no special setup or con�guration is required to access metrics at this

endpoint. The following example queries the Prometheus Scrape Endpoint for a route.

Tools such as Grafana are available to create customized charts and graphs based on the

information collected by Prometheus. For more information on installing and running

Grafana, refer to the Grafana website .

1. Add the following route to IG:

1. Linux

2. Windows

Monitoring services

Access the monitoring endpoints

Monitor at the Prometheus Scrape Endpoint

Prometheus metric names are deprecated and expected to be replaced with names

ending in _total. The information provided by the metric is not deprecated. Other

Prometheus metrics are not a�ected.

NOTE





$HOME/.openig/config/routes/myroute1.json

%appdata%\OpenIG\config\routes\myroute1.json

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://ig.example.com:8080/openig/metrics/prometheus
https://grafana.com/


37 / 80

The route contains a StaticResponseHandler to display a simple message.

2. Access the route a few times, on http://ig.example.com:8080/myroute1 .

3. Query the Prometheus Scrape Endpoint:

Metrics for myroute1  and _router  are displayed:

{

"name": "myroute1",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": [ "text/plain; charset=UTF-8" ]

},

"entity": "Hello world, from myroute1!"

}

},

"condition": "${find(request.uri.path, '^/myroute1')}"

}



$ curl 

"http://ig.example.com:8080/openig/metrics/prometheus"

# HELP ig_router_deployed_routes Generated from Dropwizard

metric import (metric=gateway._router.deployed-routes,

type=gauge)

# TYPE ig_router_deployed_routes gauge

ig_router_deployed_routes{fully_qualified_name="gateway._r

outer",heap="gateway",name="_router",} 1.0

# HELP ig_route_request_active Generated from Dropwizard

metric import

(metric=gateway._router.route.default.request.active,

type=gauge)

# TYPE ig_route_request_active gauge

ig_route_request_active{name="default",route="default",rou

ter="gateway._router",} 0.0

# HELP ig_route_request_active Generated from Dropwizard

metric import

(metric=gateway._router.route.myroute1.request.active,

type=gauge)

# TYPE ig_route_request_active gauge

ig_route_request_active{name="myroute1",route="myroute1",r

http://ig.example.com:8080/myroute1


38 / 80

Vert.x monitoring is enabled by default to provide additional metrics for HTTP,

TCP, and the internal component pool. The metrics provide low-level

information about requests and responses, such as the number of bytes,

duration, the number of concurrent requests, and so on.

All ForgeRock products expose a monitoring endpoint where metrics are exposed as a

JSON format monitoring resource.

When IG is set up as described in Getting started, the Common REST Monitoring Endpoint

is available at http://ig.example.com:8080/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=true

outer="gateway._router",} 0.0

# HELP ig_route_request_total Generated from Dropwizard

metric import

(metric=gateway._router.route.default.request,

type=counter)

# TYPE ig_route_request_total counter

ig_route_request_total{name="default",route="default",rout

er="gateway._router",} 0.0

# HELP ig_route_response_error Generated from Dropwizard

metric import

(metric=gateway._router.route.default.response.error,

type=counter)

# TYPE ig_route_response_error counter

ig_route_response_error{name="default",route="default",rou

ter="gateway._router",} 0.0

# HELP ig_route_response_null Generated from Dropwizard

metric import

(metric=gateway._router.route.default.response.null,

type=counter)

# TYPE ig_route_response_null counter

ig_route_response_null{name="default",route="default",rout

er="gateway._router",} 0.0

# HELP ig_route_response_status_total Generated from

Dropwizard metric import

(metric=gateway._router.route.default.response.status.clie

nt_error, type=counter)

# TYPE ig_route_response_status_total counter

ig_route_response_status_total{family="client_error",name=

"default",route="default",router="gateway._router",} 0.0

...

Monitor the Common REST Monitoring Endpoint



file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://ig.example.com:8080/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true


39 / 80

By default, no special setup or con�guration is required to access metrics at this

endpoint. The following example queries the Common REST Monitoring Endpoint for a

route, and restricts the query to speci�c metrics only.

Before you start, prepare IG as described in the Getting started.

1. Set up IG and some example routes, as described in the �rst few steps of

Monitor the Prometheus Scrape Endpoint.

2. Query the Common REST Monitoring Endpoint:

Metrics for myroute1  and _router  are displayed:

$ curl "http://ig.example.com:8080/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=true"

{

"result" : [ {

"_id" : "gateway._router.deployed-routes",

"value" : 1.0,

"_type" : "gauge"

}, {

"_id" : "gateway._router.route.default.request",

"count" : 204,

"_type" : "counter"

}, {

"_id" : "gateway._router.route.default.request.active",

"value" : 0.0,

"_type" : "gauge"

}, {

. . .

_id" :

"gateway._router.route.myroute1.response.status.unknown",

"count" : 0,

"_type" : "counter"

}, {

"_id" : "gateway._router.route.myroute1.response.time",

"count" : 204,

"max" : 0.420135,

"mean" : 0.08624678327176545,

"min" : 0.045079999999999995,

"p50" : 0.070241,

"p75" : 0.096049,

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/monitoring.html#proc-monitor-prometheus


40 / 80

Vert.x monitoring is enabled by default to provide additional metrics for HTTP,

TCP, and the internal component pool. The metrics provide low-level

information about requests and responses, such as the number of bytes,

duration, the number of concurrent requests, and so on.

3. Change the query to access metrics only for myroute1 :

http://ig.example.com:8080/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+"gateway._router.route.

myroute1" ;.

Note that metric for the router, "_id" : "gateway._router.deployed-

routes" , is no longer displayed.

Vert.x monitoring is enabled by default to provide metrics for HTTP, TCP, and the internal

component pool. The metrics provide low-level information about requests and

responses, such as the number of bytes, duration, the number of concurrent requests,

and so on.

"p95" : 0.178534,

"p98" : 0.227217,

"p99" : 0.242554,

"p999" : 0.420135,

"stddev" : 0.046611762381930474,

"m15_rate" : 0.2004491450567003,

"m1_rate" : 2.8726563452698075,

"m5_rate" : 0.5974045160056258,

"mean_rate" : 0.010877725092634833,

"duration_units" : "milliseconds",

"rate_units" : "calls/second",

"total" : 17.721825,

"_type" : "timer"

} ],

"resultCount" : 11,

"pagedResultsCookie" : null,

"totalPagedResultsPolicy" : "EXACT",

"totalPagedResults" : 11,

"remainingPagedResults" : -1

}



Monitor Vert.x metrics

Vert.x metric names are deprecated and expected to be replaced with names ending

in _total. The information provided by the metric is not deprecated. Other

Prometheus metrics are not a�ected.

NOTE

http://ig.example.com:8080/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22


41 / 80

To disable Vert.x monitoring, add the following lines to admin.json , and restart IG:

For more information, refer to AdminHttpApplication (admin.json).

By default, no special credentials or privileges are required for read-access to the

Prometheus Scrape Endpoint and Common REST Monitoring Endpoint.

To protect the monitoring endpoints, add an admin.json  �le to your con�guration, with

a �lter declared in the heap and named MetricsProtectionFilter . The following

procedure gives an example of how to manage access to the monitoring endpoints.

1. Set up the procedure in Monitor at the Prometheus Scrape Endpoint, query the

Prometheus Scrape Endpoint, and note that metrics for myroute1  and _router

are displayed:

2. Add the following script to the IG con�guration:

1. Linux

2. Windows

{

"vertx": {

"metricsEnabled": false

}

}

Protect monitoring endpoints

$ curl -v 

"http://ig.example.com:8080/openig/metrics/prometheus"

$HOME/.openig/scripts/groovy/BasicAuthResourceServerFilter

.groovy

%appdata%

\OpenIG\scripts\groovy\BasicAuthResourceServerFilter.groov

y

/*

* This script is a simple implementation of HTTP basic

access authentication on

* server side.

file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication


42 / 80

* It expects the following arguments:

*  - realm: the realm to display when the user agent

prompts for

*    username and password if none were provided.

*  - username: the expected username

*  - passwordSecretId: the secretId to find the password

*  - secretsProvider: the SecretsProvider to query for

the password

*/

import static

org.forgerock.util.promise.Promises.newResultPromise;

import java.nio.charset.Charset;

import org.forgerock.util.encode.Base64;

import org.forgerock.secrets.Purpose;

import org.forgerock.secrets.GenericSecret;

String authorizationHeader =

request.getHeaders().getFirst("Authorization");

if (authorizationHeader == null) {

// No credentials provided, return 401 Unauthorized

Response response = new Response(Status.UNAUTHORIZED);

response.getHeaders().put("WWW-Authenticate", "Basic

realm=\"" + realm + "\"");

return newResultPromise(response);

}

return secretsProvider.getNamed(Purpose.PASSWORD,

passwordSecretId)

.thenAsync(password -> {

// Build basic authentication string ->

username:password

StringBuilder basicAuthString = new

StringBuilder(username).append(":");

password.revealAsUtf8{ p ->

basicAuthString.append(new String(p).trim()) };

String expectedAuthorization = "Basic " +

Base64.encode(basicAuthString.toString().getBytes(Charset.

defaultCharset()));

// Incorrect credentials provided, return 403

forbidden

if

(!expectedAuthorization.equals(authorizationHeader)) {

return newResultPromise(new

Response(Status.FORBIDDEN));



43 / 80

The script is a simple implementation of the HTTP basic access authentication

scheme. For information about scripting �lters and handlers, refer to

Extensibility.

3. Add the following admin.json  con�guration to IG:

}

// Correct credentials provided, continue.

return next.handle(context, request);

},

noSuchSecretException -> { throw new

RuntimeException(noSuchSecretException); });

{

"prefix": "openig",

"connectors": [

{ "port": 8080 }

],

"heap": [

{

"name": "ClientHandler",

"type": "ClientHandler"

},

{

"name": "mySecretsProvider",

"type": "Base64EncodedSecretStore",

"config": {

"secrets": {

"password.secret.id": "cGFzc3dvcmQ="

}

}

},

{

"name": "MetricsProtectionFilter",

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "BasicAuthResourceServerFilter.groovy",

"args": {

"realm": "/",

"username": "myUsername",

"passwordSecretId": "password.secret.id",

"secretsProvider": 

"${heap['mySecretsProvider']}"

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html


44 / 80

Notice the following features of the con�guration:

The MetricsProtectionFilter uses the script to protect the monitoring

endpoint.

The MetricsProtectionFilter requires the username myUsername , and a

password provided by the SecretsProvider in the heap.

4. Restart IG to reload the con�guration.

5. Query the Prometheus Scrape Endpoint without providing credentials, and note

that an HTTP 401 Unauthorized is returned:

6. Query the Prometheus Scrape Endpoint by providing correct credentials, and

note that metrics are displayed:

7. Query the Prometheus Scrape Endpoint by providing incorrect credentials`, and

note that an HTTP 403 Forbidden is returned:

For information about IG sessions, refer to Sessions. Change IG session properties in the

following ways:

}

}

]

}

$ curl -v 

"http://ig.example.com:8080/openig/metrics/prometheus"

$ curl -v 

"http://ig.example.com:8080/openig/metrics/prometheus" -u

myUsername:password

$ curl -v 

"http://ig.example.com:8080/openig/metrics/prometheus" -u

myUsername:wrong-password

Managing sessions

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#about-sessions


45 / 80

Mode To change the session properties

Stateless sessions Con�gure the JwtSession object in the route that

processes a request, or in its ascending con�guration.

For example, de�ne the cookie  property to con�gure

the IG session name.

Stateful sessions Change the session  property in admin.json , and

restart IG.

For example, add the following lines to admin.json  to

con�gure the IG session name:

Log messages in IG and third-party dependencies are recorded using the Logback

implementation of the Simple Logging Facade for Java (SLF4J) API. The following log levels

are supported: TRACE , DEBUG , INFO , WARN , ERROR , ALL , and OFF . For a full description

of the options for logging, refer to the Logback website .

By default, log messages are recorded with the following con�guration:

When IG starts, log messages for IG and third-party dependencies, such as the

ForgeRock Common Audit framework, are displayed on the console and written to

{

"name": "JwtSession",

"type": "JwtSession",

"config": {

"cookie": {

"name": "MY_SESSIONID"

}

}

}

"session": {

"cookie": {

"name": "MY_SESSIONID"

}

}

Managing logs



Default logging behavior

file:///home/pptruser/Downloads/build/site/ig/reference/JwtSession.html
http://logback.qos.ch/index.html


46 / 80

$HOME/.openig/logs/route-system.log , where $HOME/.openig  is the instance

directory.

When a capture point for the default CaptureDecorator is de�ned in a route, for

example, when "capture: "all"  is set as a top-level attribute of the JSON, log

messages for requests and responses passing through the route are written to a log

�le in $HOME/.openig/logs .

When no capture point is de�ned in a route, only exceptions thrown during request

or response processing are logged.

For more information, refer to Capturing log messages for routes and

CaptureDecorator.

By default, log messages with the level INFO  or higher are recorded, with the titles

and the top line of the stack trace. Messages on the console are highlighted with a

color related to their log level.

The content and format of logs in IG is de�ned by the reference logback.xml  delivered

with IG. This �le de�nes the following con�guration items for logs:

A root logger to set the overall log level, and to write all log messages to the SIFT

and STDOUT  appenders.

A STDOUT  appender to de�ne the format of log messages on the console.

A SIFT  appender to separate log messages according to the key routeId , to de�ne

when log �les are rolled, and to de�ne the format of log messages in the �le.

An exception logger, called LogAttachedExceptionFilter , to write log messages for

exceptions attached to responses.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

<!--

Prevent log flow attacks, by limiting repeated log messages.

Configuration properties:

* AllowedRepetitions (int): Threshold above which repeated

messages are no longer logged.

* CacheSize (int): When CacheSize is reached, remove the

oldest entry.

-->

<!--<turboFilter

class="ch.qos.logback.classic.turbo.DuplicateMessageFilter" />-->

<!-- Allow configuration of JUL loggers within this file,

without performance impact -->

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html#logging-capture
file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html#CaptureDecorator


47 / 80

<contextListener

class="ch.qos.logback.classic.jul.LevelChangePropagator" />

<appender name="STDOUT"

class="ch.qos.logback.core.ConsoleAppender">

<withJansi>true</withJansi>

<encoder>

<pattern>%nopex[%thread] %highlight(%-5level)

%boldWhite(%logger{35}) @%mdc{routeId:-system} -

%replace(%message){'([\r\n])(.)',

'$1[CONTINUED]$2'}%n%highlight(%replace(%rootException{short})

{'(^|[\r\n])(.)', '$1[CONTINUED]$2'})</pattern>

</encoder>

</appender>

<appender name="SIFT"

class="ch.qos.logback.classic.sift.SiftingAppender">

<discriminator>

<key>routeId</key>

<defaultValue>system</defaultValue>

</discriminator>

<sift>

<!-- Create a separate log file for each <key> -->

<appender name="FILE-${routeId}"

class="ch.qos.logback.core.rolling.RollingFileAppender">

<file>${instance.dir}/logs/route-${routeId}.log</file>

<rollingPolicy

class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy"

>

<!-- Rotate files daily -->

<fileNamePattern>${instance.dir}/logs/route-${routeId}-

%d{yyyy-MM-dd}.%i.log</fileNamePattern>

<!-- each file should be at most 100MB, keep 30 days

worth of history, but at most 3GB -->

<maxFileSize>100MB</maxFileSize>

<maxHistory>30</maxHistory>

<totalSizeCap>3GB</totalSizeCap>

</rollingPolicy>

<encoder>

<pattern>%nopex%date{"yyyy-MM-dd'T'HH:mm:ss,SSSXXX",

UTC} | %-5level | %thread | %logger{20} | @%mdc{routeId:-system}

| %replace(%message%n%xException){'([\r\n])(.)',



48 / 80

To change the logging behavior, create a new logback �le at

$HOME/.openig/config/logback.xml , and restart IG. The custom Logback �le overrides

the default con�guration.

To take into account edits to logback.xml , stop and restart IG, or edit the

configuration  parameter to add a scan and an interval:

The logback.xml  �le is scanned after both of the following criteria are met:

The speci�ed number of logging operations have occurred, where the default is 16.

The scanPeriod  has elapsed.

If the custom logback.xml  contains errors, messages like these are displayed on the

console but log messages are not recorded:

'$1[CONTINUED]$2'}</pattern>

</encoder>

</appender>

</sift>

</appender>

<!-- Disable logs of exceptions attached to responses by

defining 'level' to OFF -->

<logger

name="org.forgerock.openig.filter.LogAttachedExceptionFilter"

level="INHERITED" />

<root level="${ROOT_LOG_LEVEL:-INFO}">

<appender-ref ref="SIFT" />

<appender-ref ref="STDOUT" />

</root>

</configuration>

Using a custom Logback �le

<configuration scan="true" scanPeriod="5 seconds">

14:38:59,667 |-ERROR in

ch.qos.logback.core.joran.spi.Interpreter@20:72 … 

14:38:59,690 |-ERROR in

ch.qos.logback.core.joran.action.AppenderRefAction … 

Changing the global log level



49 / 80

The global log level is set by default to INFO  by the following line of the default

logback.xml :

The log level set in logback.xml  supercedes the log level set by environment variables.

When the global log level is not set in logback.xml , set the global log level.

To persist the log level for all future IG instances:

Add an environment variable in $HOME/.openig/bin/env.sh , where

$HOME/.openig  is the instance directory:

Alternatively, add a system property in $HOME/.openig/bin/env.sh , where

$HOME/.openig  is the instance directory:

If both an environment variable and system property is set, the system property

takes precedence.

To persist the log level for IG instances launched from the same shell, add an

environment variable in the shell before you start IG:

1. Linux

2. Windows

To persist the log level for a single IG instance:

1. Linux

2. Windows

<root level="${ROOT_LOG_LEVEL:-INFO}">

export ROOT_LOG_LEVEL=DEBUG

export JAVA_OPTS="-DROOT_LOG_LEVEL=DEBUG"

$ export ROOT_LOG_LEVEL=DEBUG

$ /path/to/identity-gateway/bin/start.sh $HOME/.openig

C:\set ROOT_LOG_LEVEL=DEBUG

C:\path\to\identity-gateway\bin\start.bat %appdata%\OpenIG

$ export ROOT_LOG_LEVEL=DEBUG /path/to/identity-

gateway/bin/start.sh $HOME/.openig



50 / 80

To change the log level for a single object type without changing it for the rest of the

con�guration, edit logback.xml  to add a logger de�ned by the fully quali�ed class name

or package name of the object, and set its log level.

The following line in logback.xml  sets the ClientHandler log level to ERROR , but does

not change the log level of other classes or packages:

To facilitate debugging, in logback.xml  add loggers de�ned by the fully quali�ed

package name or class name of the object. For example, add loggers for the following

feature:

Feature Logger

OAuth 2.0 client authentication:

AuthorizationCodeOAuth2ClientFilter

ClientCredentialsOAuth2ClientFilter

ResourceOwnerOAuth2ClientFilter

org.forgerock.secrets.oauth2

Expression resolution org.forgerock.openig.el

org.forgerock.openig.resolver

WebSocket noti�cations org.forgerock.openig.tools.notifica

tions.ws

Session management with JwtSession org.forgerock.openig.jwt

OAuth 2.0 and OpenID Connect and token

resolution and validation

org.forgerock.openig.filter.oauth2

AM policies, SSO, CDSSO, and user

pro�les

org.forgerock.openig.openam

org.forgerock.openig.tools

SAML org.forgerock.openig.handler.saml

UMA org.forgerock.openig.uma

C:\set ROOT_LOG_LEVEL=DEBUG

C:\path\to\identity-gateway\bin\start.bat %appdata%\OpenIG

Changing the log level for di�erent object types

<logger name="org.forgerock.openig.handler.ClientHandler"

level="ERROR" />

file:///home/pptruser/Downloads/build/site/ig/reference/AuthorizationCodeOAuth2ClientFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/ClientCredentialsOAuth2ClientFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/ResourceOwnerOAuth2ClientFilter.html


51 / 80

Feature Logger

WebSocket tunnelling org.forgerock.openig.websocket

Secret resolution org.forgerock.secrets.propertyresol

ver org.forgerock.secrets.jwkset

org.forgerock.secrets.keystore

org.forgerock.secrets.oauth2

org.forgerock.openig.secrets.Base64

EncodedSecretStore

AllowOnlyFilter org.forgerock.openig.filter.allow.A

llowOnlyFilter.<filter_name>

Condition of a route org.forgerock.openig.handler.router

.RouterHandler

Header �eld size io.vertx.core.http.impl.HttpServerI

mpl

By default, logs use the system default character set where IG is running.

The following lines add the date to log messages, and change the character set:

For more information about what information you can include in the logs, and its format,

refer to PatternLayoutEncoder  and Layouts  in the Logback documentation.

The logger  object provides access to a unique SLF4J logger instance for scripts. Events

are logged as de�ned in by a dedicated logger in logback.xml , and are included in the

logs with the name of with the scriptable object.

Change the character set and format of log messages

If your logs might contain characters that are not in your system character set, edit

logback.xml  to change the encoder  part of the SIFT appender.

TIP

<encoder>

<pattern>%d{yyyyMMdd-HH:mm:ss} | %-5level | %thread |

%logger{20} | %message%n%xException</pattern>

<charset>UTF-8</charset>

</encoder>

 

Logging in scripts



https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/layouts.html
https://www.slf4j.org/api/org/slf4j/Logger.html


52 / 80

To log events for scripts:

Add logger objects to the script to enable logging at di�erent levels. For example,

add some of the following logger objects:

Add a logger to logback.xml  to reference the scriptable object and set the log level.

The logger is de�ned by the type and name of the scriptable object that references

the script, as follows:

ScriptableFilter:

org.forgerock.openig.filter.ScriptableFilter.filter_name

ScriptableHandler:

org.forgerock.openig.handler.ScriptableHandler.handler_name

ScriptableThrottlingPolicy:

org.forgerock.openig.filter.throttling.ScriptableThrottlingPolicy.th

rottling_policy_name

ScriptableAccessTokenResolver:

org.forgerock.openig.filter.oauth2.ScriptableAccessTokenResolver.acc

ess_token_resolver_name

For example, the following logger logs trace-level messages for a ScriptableFilter named

cors_filter :

The resulting messages in the logs contain the name of the scriptable object:

During setup and con�guration, it can be helpful to display log messages from the

BaseUriDecorator. To record a log message each time a request URI is rebased , edit

logback.xml  to add a logger de�ned by the fully quali�ed class name of the

BaseUriDecorator appended by the name of the baseURI decorator:

logger.error("ERROR")

logger.warn("WARN")

logger.info("INFO")

logger.debug("DEBUG")

logger.trace("TRACE")

<logger

name="org.forgerock.openig.filter.ScriptableFilter.cors_filter"

level="TRACE" />

14:54:38:307 | TRACE | http-nio-8080-exec-6 |

o.f.o.f.S.cors_filter | TRACE

Logging the BaseUriDecorator



53 / 80

Each time a request URI is rebased, a log message similar to this is created:

To stop recording log messages for exceptions, edit logback.xml  to set the level to OFF :

To capture the context or entity of inbound and outbound messages for a route, or for an

individual handler or �lter in the route, con�gure a CaptureDecorator. Captured

information is written to SLF4J logs.

For more information about the decorator con�guration, refer to CaptureDecorator.

Studio provides an easy way to capture messages while developing your con�guration.

The following image illustrates the capture points where you can log messages on a

route:

<logger

name="org.forgerock.openig.decoration.baseuri.BaseUriDecorator.ba

seURI" level="TRACE" />

12:27:40| TRACE | http-nio-8080-exec-3 | o.f.o.d.b.B.b.

{Router}/handler| Rebasing request to http://app.example.com:8081

Switching o� exception logging

<logger

name="org.forgerock.openig.filter.LogAttachedExceptionFilter"

level="OFF" />

Capturing the context or entity of messages for routes

During debugging, consider using a CaptureDecorator to capture the entity and

context of requests and responses. However, increased logging consumes resources,

such as disk space, and can cause performance issues. In production, reduce logging

by disabling the CaptureDecorator properties captureEntity  and

captureContext , or setting maxEntityLength .

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html#CaptureDecorator


54 / 80

Inbound requests

ForgeRock Identity Platform

User agent
Protected 

application
ForgeRock Identity Gateway

Inbound responses

Outbound requests

Outbound responses

ForgeRock Identity Platform requests ForgeRock Identity Platform responses

Figure 1. Capturing log messages for routes

Capture messages on a route in Studio

1. In Studio, select  ROUTES, and then select a route with the  icon.

2. On the left side of the screen, select  Capture, and then select capture

options. You can capture the body and context of messages passing to and from

the user agent, the protected application, and the ForgeRock Identity Platform.

3. Select  Deploy to push the route to the IG con�guration.

You can check the $HOME/.openig/config/routes  folder to see that the route

is there.

4. Access the route, and then check $HOME/.openig/logs  for a log �le named by

the route, where $HOME/.openig  is the instance directory. The log �le should

contain the messages de�ned by your capture con�guration.

To keep log �les clean and readable, and to prevent log �ow attacks, limit the number of

repeat log messages. Add a custom logback.xml  with a DuplicateMessageFilter . This

�lter detects duplicate messages, and after the speci�ed number of repetitions, drops

repeated messages.

The following example allows 5 repetitions of a log message, and holds the last 10

repeated messages in the cache:

The DuplicateMessageFilter has the following limitations:

Limit repetitive log messages

<turboFilter

class="ch.qos.logback.classic.turbo.DuplicateMessageFilter"

allowedRepetitions="5" CacheSize="10" />



55 / 80

Filters out all duplicate messages. It does not �lter per logger, or logger instance, or

logger name.

Detects repetition of raw messages, meaning that the following example messages

are considered as repetition:

Does not limit the lifespan of the cache. After the speci�ed number of repetitions is

reached, the repeated log messages never appear again, even if they are frequently

hit.

Tune deployments in the following steps:

1. Consider the issues that impact the performance of a deployment. See De�ning

Performance Requirements and Constraints.

2. Tune and test the downstream servers and applications:

a. Tune the downstream web container and JVM to achieve performance targets.

b. Test downstream servers and applications in a pre-production environment,

under the expected load, and with common use cases.

c. Make sure the con�guration of the downstream web container can form the

basis for IG and its container.

3. Increase hardware resources as required, and then re-tune the deployment.

When you consider performance requirements, bear in mind the following points:

The capabilities and limitations of downstream services or applications on your

performance goals.

The increase in response time due to the extra network hop and processing, when IG

is inserted as a proxy in front of a service or application.

The constraint that downstream limitations and response times place on IG.

A service level objective (SLO) is a target that you can measure quantitatively. Where

possible, de�ne SLOs to set out what performance your users expect. Even if your �rst

logger.debug("Hello {}.", name0);

logger.debug("Hello {}.", name1);

Tuning performance

De�ning performance requirements and constraints

Service level objectives

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-req


56 / 80

version of an SLO consists of guesses, it is a �rst step towards creating a clear set of

measurable goals for your performance tuning.

When you de�ne SLOs, bear in mind that IG can depend on external resources that can

impact performance, such as AM’s response time for token validation, policy evaluation,

and so on. Consider measuring remote interactions to take dependencies into account.

Consider de�ning SLOs for the following metrics of a route:

Average response time for a route.

The response time is the time to process and forward a request, and then receive,

process, and forward the response from the protected application.

The average response time can range from less than a millisecond, for a low latency

connection on the same network, to however long it takes your network to deliver

the response.

Distribution of response times for a route.

Because applications set timeouts based on worst case scenarios, the distribution of

response times can be more important than the average response time.

Peak throughput.

The maximum rate at which requests can be processed at peak times. Because

applications are limited by their peak throughput, this SLO is arguably more

important than an SLO for average throughput.

Average throughput.

The average rate at which requests are processed.

Metrics are returned at the monitoring endpoints. For information about monitoring

endpoints, refer to Monitoring. For examples of how to set up monitoring in IG, refer to

Monitoring services.

With your de�ned SLOs, inventory the server, networks, storage, people, and other

resources. Estimate whether it is possible to meet the requirements, with the resources at

hand.

Before you can improve the performance of your deployment, establish an accurate

benchmark of its current performance. Consider creating a deployment scenario that you

can control, measure, and reproduce.

Available resources

Benchmarks

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/monitoring.html


57 / 80

For information about running ForgeRock Identity Platform benchmark tests, refer to the

ForgeOps documentation on benchmarks. Adapt the scenarios as necessary for your IG

deployment.

Consider the following recommendations for improving performance, throughput, and

response times. Adjust the tuning to your system workload and available resources, and

then test suggestions before rolling them out into production.

Log messages in IG and third-party dependencies are recorded using the Logback

implementation of the Simple Logging Facade for Java (SLF4J) API. By default, logging

level is INFO.

To reduce the number of log messages, consider setting the logging level to error . For

information, refer to Managing logs.

IG creates a TemporaryStorage object to bu�er content during processing. For

information about this object and its default values, refer to TemporaryStorage.

Messages bigger than the bu�er size are written to disk, consuming I/O resources and

reducing throughput.

The default size of the bu�er is 64 KB. If the number of concurrent messages in your

application is generally bigger than the default, consider allocating more heap memory or

changing the initial or maximum size of the bu�er.

To change the values, add a TemporaryStorage object named TemporaryStorage , and

use non-default values.

When caches are enabled, IG can reuse cached information without making additional or

repeated queries for the information. This gives the advantage of higher system

performance, but the disadvantage of lower trust in results.

During service downtime, the cache is not updated, and important noti�cations can be

missed, such as for the revocation of tokens or the update of policies, and IG can

continue to use outdated tokens or policies.

When caches are disabled, IG must query a data store each time it needs data. This gives

the disadvantage of lower system performance, and the advantage of higher trust in

Tuning IG

Logs

Bu�ering message content

Cache

https://backstage.forgerock.com/docs/forgeops/7.4/how-to/benchmark/overview.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#TemporaryStorage


58 / 80

results.

When you con�gure caches in IG, make choices to balance your required performance

with your security needs.

IG provides the following caches:

Session cache

When a user authenticates with AM, this cache stores information about the session.

IG can reuse the information without asking AM to verify the session token (SSO token

or CDSSO token) for each request.

If WebSocket noti�cations are enabled, the cache evicts entries based on session

noti�cations from AM, making the cache content more accurate (trustable).

By default, the session information is not cached. To increase performance, consider

enabling and con�guring the cache. For more information, refer to sessionCache  in

AmService.

Policy cache

When the PolicyEnforcementFilter requests and receives a policy decision from AM, it

stores the decision in the policy cache.

When a request matches a cached policy decision, IG can reuse the decision without

asking AM for a new decision. When caching is disabled, IG must ask AM to make a

decision for each request.

If WebSocket noti�cations are enabled, the cache evicts entries based on policy

noti�cations from AM, making the cache content more accurate (trustable).

By default, policy decisions aren’t cached.

User pro�le cache

When the UserPro�leFilter retrieves user information, it caches it. IG can reuse the

cached data without repeatedly querying AM to retrieve it.

By default, pro�le attributes are not cached. To increase performance, consider

enabling and con�guring the cache. For more information, refer to UserPro�leFilter.

Maximize the cache hit ratio by using RequestResourceUriProvider or

ScriptableResourceUriProvider in conjuction with AM policies. The

PolicyEnforcementFilter identi�es cached policy decisions by the resource URL

returned by these URI providers.

For more information and examples, refer to the resourceUriProvider property

of PolicyEnforcementFilter.

TIP

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#AmService
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#UserProfileFilter
file:///home/pptruser/Downloads/build/site/ig/reference/RequestResourceUriProvider.html
file:///home/pptruser/Downloads/build/site/ig/reference/ScriptableResourceUriProvider.html
file:///home/pptruser/Downloads/build/site/ig/reference/PolicyEnforcementFilter.html#PolicyEnforcementFilter-resourceUriProvider


59 / 80

Access token cache

After a user presents an access token to the OAuth2ResourceServerFilter, this cache

stores the token. IG can reuse the token information without repeatedly asking the

Authorization Server to verify the access token for each request.

By default, access tokens are not cached. To increase performance by caching access

tokens, consider con�guring a cache in one of the following ways:

Con�gure a CacheAccessTokenResolver for a cache based on Ca�eine. For more

information, refer to CacheAccessTokenResolver.

Con�gure the cache  property of OAuth2ResourceServerFilter. For more

information, refer to OAuth2ResourceServerFilter

Open ID Connect user information cache

When a downstream �lter or handler needs user information from an OpenID

Connect provider, IG fetches it lazily. By default, IG caches the information for 10

minutes to prevent repeated calls over a short time.

For more information, refer to cacheExpiration  in

AuthorizationCodeOAuth2ClientFilter.

All caches provide similar con�guration properties for timeout, de�ning the duration to

cache entries. When the timeout is lower, the cache is evicted more frequently, and

consequently, the performance is lower but the trust in results is higher. Consider your

requirements for performance and security when you con�gure the timeout properties

for each cache.

By default, IG receives WebSocket noti�cations from AM for the following events:

When a user logs out of AM, or when the AM session is modi�ed, closed, or times

out. IG can use WebSocket noti�cations to evict entries from the session cache. For

an example of setting up session cache eviction, refer to Session cache eviction.

When AM creates, deletes, or changes a policy decision. IG can use WebSocket

noti�cations to evict entries from the policy cache. For an example of setting up

policy cache eviction, refer to Using WebSocket noti�cations to evict the policy cache.

When IG automatically renews a WebSocket connection to AM. To con�gure

WebSocket renewal, refer to the notifications.renewalDelay  property of

AmService.

If the WebSocket connection is lost, during that time the WebSocket is not connected, IG

behaves as follows:

Responds to session service calls with an empty SessionInfo result.

WebSocket noti�cations

file:///home/pptruser/Downloads/build/site/ig/reference/AccessTokenResolvers.html#CacheAccessTokenResolver
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#OAuth2ResourceServerFilter
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#AuthorizationCodeOAuth2ClientFilter
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#session-eviction
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-evict-cache
file:///home/pptruser/Downloads/build/site/ig/reference/AmService.html#amservice.notifications.renewalDelay


60 / 80

When the SingleSignOn �lter recieves an empty SessionInfo call, it concludes that the

user is not logged in, and triggers a login redirect.

Responds to policy evaluations with a deny policy result.

By default, IG waits for �ve seconds before trying to re-establish the WebSocket

connection. If it can’t re-establish the connection, it keeps trying every �ve seconds.

To disable WebSocket noti�cations, or change any of the parameters, con�gure the

notifications  property in AmService. For information, refer to AmService.

The ClientHandler/ReverseProxyHandler communicates as a client to a downstream

third-party service or protected application. The performance of the communication is

determined by the following parameters:

The number of available connections to the downstream service or application.

The connection timeout, which is the maximum time to connect to a server-side

socket before timing out and abandoning the connection attempt.

The socket timeout, which is the maximum time a request can take before a

response is received after which the request is deemed to have failed.

Con�gure IG in conjunction with IG’s �rst-class Vert.x con�guration, and the vertx

property of admin.json . For more information, refer to AdminHttpApplication

(admin.json).

Vert.x options for tuning

Object Vert.x Option Description

IG (�rst-

class)

gatewayUnits The number of deployed Vert.x Verticles.

This setting is e�ectively the number of

cores that IG operates across, or in other

words, the number of available threads.

Each instance operates on the same port

on its own event-loop thread.

Default: Number of available cores. (This

is the optimal value.)

Tuning the ClientHandler/ReverseProxyHandler

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#AmService
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication


61 / 80

Object Vert.x Option Description

root.vertx eventLoopPoolSize The size of the pool available to service

Verticles for event-loop threads.

To guarantee that a single thread handles

all I/O events for a single request or

response, IG deploys a Verticle onto each

event loop.

Con�gure eventLoopPoolSize  to be

greater than or equal to gatewayUnits .

Default: 2 * number of available cores.

For more information, refer to Reactor

and Multi-Reactor .

root.connec

tors.

<connector

>.vertx

acceptBacklog The maximum number of connections to

queue before refusing requests.

sendBufferSize The TCP connection send bu�er size.

Set this property according to the

available RAM and required number of

concurrent connections.

receiveBufferSize The TCP receive bu�er size.

Set this property according to the

available RAM and required number of

concurrent connections.

"maxHeaderSize" Set this property when HTTP headers

manage large values (such as JWT).

Default: 8 KB (8,192 bytes)

Vert.x options for troubleshooting performance

Object Vert.x Option Description



https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor


62 / 80

Object Vert.x Option Description

root.vertx blockedThreadCheckInter

val  and

blockedThreadCheckInter

valUnit

The interval at which Vert.x checks for

blocked threads and logs a warning.

Default: 1 second

maxEventLoopExecuteTim

e  and

maxEventLoopExecuteTime

Unit

The maximum execution time before

Vert.x logs a warning.

Default: 2 seconds

warningExceptionTime

and

warningExceptionTimeUni

t

The threshold at which warning logs are

accompanied by a stack trace to identify

cause.

Default: 5 seconds

logActivity Log network activity.

Each IG instance in your environment should have access to at least 65,536 �le

descriptors to handle multiple client connections.

Ensure that every IG instance is allocated enough �le descriptors. For example, use the

ulimit -n  command to check the limits for a particular user:

It may also be necessary to increase the number of processes available to the user

running the IG processes.

For example, use the ulimit -u  command to check the process limits for a user:

Set the maximum number of �le descriptors and processes per

user

$ su - iguser

$ ulimit -n

$ su - iguser

$ ulimit -u

IMPORTANT



63 / 80

Refer to your operating system’s documentation for instructions on how to display and

increase the �le descriptors or process limits for the operating system and for a given

user.

Start tuning the JVM with default values, and monitor the execution, paying particular

attention to memory consumption, and GC collection time and frequency. Incrementally

adjust the con�guration, and retest to �nd the best settings for memory and garbage

collection.

Make sure there is enough memory to accommodate the peak number of required

connections, and make sure timeouts in IG and its container support latency in

downstream servers and applications.

IG makes low memory demands, and consumes mostly YoungGen memory. However,

using caches, or proxying large resources, increases the consumption of OldGen

memory. For information about how to optimize JVM memory, refer to the Oracle

documentation.

Consider these points when choosing a JVM:

Find out which version of the JVM is available. More recent JVMs usually contain

performance improvements, especially for garbage collection.

Choose a 64-bit JVM if you need to maximize available memory.

Consider these points when choosing a GC:

Test GCs in realistic scenarios, and load them into a pre-production environment.

Choose a GC that is adapted to your requirements and limitations. Consider

comparing the Garbage-First Collector (G1) and Parallel GC in typical business use

cases.

The G1 is targeted for multi-processor environments with large memories. It

provides good overall performance without the need for additional options. The G1

is designed to reduce garbage collection, through low-GC latency. It is largely self-

tuning, with an adaptive optimization algorithm.

Before increasing the �le descriptors for the IG instance, ensure that the total

amount of �le descriptors con�gured for the operating system is higher than

65,536.

If the IG instance uses all of the �le descriptors, the operating system will run out of

�le descriptors. This may prevent other services from working, including those

required for logging in the system.

IMPORTANT

Tuning IG’s JVM



64 / 80

The Parallel GC aims to improve garbage collection by following a high-throughput

strategy, but it requires more full garbage collections.

For more information, refer to Best practice for JVM Tuning with G1 GC

The following sections give an overview of how to manage rotation of encryption keys

and signing keys, and include examples for key rotation based on use cases from the

Gateway guide.

Key rotation is the process of generating a new version of a key, assigning that version as

the active key to encrypt or sign new messages, or as a valid key to decrypt or validate

messages, and then deprovisioning the old key.

Regular key rotation is a security consideration that is sometimes required for internal

business compliance. Regularly rotate keys to:

Limit the amount of data protected by a single key.

Reduce dependence on speci�c keys, making it easier to migrate to stronger

algorithms.

Prepare for when a key is compromised. The �rst time you try key rotation shouldn’t

be during a real-time recovery.

Key revocation is a type of key rotation, done exceptionally if you suspect that a key has

been compromised. To decide when to revoke a key, consider the following points:

If limited use of the old keys can be tolerated, provision the new keys and then

deprovision the old keys. Messages produced before the new keys are provisioned

are impacted.

If use of the old keys cannot be tolerated, deprovision the old keys before you

provision the new keys. The system is unusable until new keys are provisioned.

The following steps outline key rotation and revocation for symmetric keys managed by a

KeyStoreSecretStore. For an example, refer to Rotating keys in a shared JWT session.



Rotating keys

About key rotation

Why and when to rotate keys

Steps for rotating symmetric keys

https://backstage.forgerock.com/knowledge/kb/article/a75965340
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface


65 / 80

1. Using OpenSSL, Keytool, or another key creation mechanism, create the new

symmetric key. The keystore should contain the old key and the new key.

2. Provision the new key.

a. In the mappings  property of KeyStoreSecretStore, add the alias for the new key

after the alias for the old key. The new key is now valid. Because the old key is

the �rst key in the list, it is the active key.

b. Move the new key to be the �rst key in the list. The new key is now the active

key.

3. Deprovision the old key.

To ensure that no messages or users are impacted, wait until messages encrypted or

signed with the old key are out of the system before you deprovision the old key.

a. In the mappings  property of KeyStoreSecretStore, delete the alias for the old

key. The old key can no longer be used.

b. Using OpenSSL, Keytool, or another key creation mechanism, delete the old

symmetric key.

The following steps outline the process for key rotation and revocation for asymmetric

keys managed by a KeyStoreSecretStore or HsmSecretStore. For an example, refer to

Rotating keys for stateless access tokens signed with a KeyStoreSecretStore.

1. Create new asymmetric keys for signing and encryption, using OpenSSL, Keytool, or

another key creation mechanism.

2. Provision the message consumer with the private portion of the new encryption key,

and the public portion of the new signing key.

The message consumer can now decrypt and verify messages with the old key and

the new key.

3. Provision the message producer, with the public portion of the new encryption key,

and the private portion of the signing key. The message producer starts encrypting

and signing messages with the new key, and stops using the old key.

4. Deprovision the message consumer with the private portion of the old encryption

key, and the public portion of the old signing key. The message consumer can no

longer decrypt and verify messages with the old key.

To ensure that no messages or users are impacted, wait until messages encrypted or

signed with the corresponding old key are out of the system before you deprovision

the old key.

5. Deprovision the message producer, with the public portion of the old encryption

key, and the private portion of old signing key.

Steps for rotating asymmetric keys



66 / 80

When keys are provided by a JWK Set from AM, the key rotation is transparent to IG. AM

generates a key ID ( kid ) for each key it exposes at the jwk_uri . For more information,

refer to Mapping and rotating secrets in AM’s Security guide.

When IG processes a request with a JWT containing a kid , IG uses the kid  to identify

the key in the JWK Set. If the kid  is available at the jwk_uri  on AM, IG processes the

request. Otherwise, IG tries all compatible secrets from the JWK Set. If none of the secrets

work, the JWT is rejected.

This example extends the example in Validate signed access tokens with the

StatelessAccessTokenResolver and KeyStoreSecretStore to rotate the keys that sign an

access token and verify the signature.

Rotate Keys For Stateless Access Tokens Signed With a

KeyStoreSecretStore

Before you start, set up and test the example in Validate signed access tokens with

the StatelessAccessTokenResolver and KeyStoreSecretStore.

1. Set up the new keys:

a. Generate a new private key called signature-key-new , and a

corresponding public certi�cate called x509certificate-new.pem :

b. Convert the private key and certi�cate �les into a new PKCS#12 keystore

�le:

Key rotation for keys in a JWK set

Rotating keys for stateless access tokens signed with a

KeyStoreSecretStore

$ openssl req -x509 \

-newkey rsa:2048 \

-nodes \

-subj 

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout keystore_directory/signature-key-new.key \

-out keystore_directory/x509certificate-new.pem \

-days 365

... writing new private key to 

'keystore_directory/signature-key-new.key'

https://backstage.forgerock.com/docs/am/7.4/security-guide/secret-mapping.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-stateless-signed-ksss
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-stateless-signed-ksss


67 / 80

c. List the keys in the new keystore:

d. Import the new keystore into keystore.p12 , so that keystore.p12

contains both keys:

e. List the keys in keystore.p12 , to make sure it contains the new and old

keys:

$ openssl pkcs12 \

-export \

-in keystore_directory/x509certificate-new.pem \

-inkey keystore_directory/signature-key-new.key \

-out keystore_directory/keystore-new.p12 \

-passout pass:password \

-name signature-key-new

$ keytool -list \

-keystore "keystore_directory/keystore-new.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: signature-key-new

$ keytool -importkeystore

-srckeystore keystore_directory/keystore-new.p12

-srcstoretype pkcs12

-srcstorepass password

-destkeystore keystore_directory/keystore.p12

-deststoretype pkcs12

-deststorepass password

Entry for alias signature-key-new successfully imported

...

$ keytool -list \

-keystore "keystore_directory/keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries



68 / 80

2. Set up AM:

a. Copy the updated keystore to AM:

i. Copy keystore.p12  to AM:

ii. List the keys in the updated AM keystore:

iii. Restart AM to update the keystore cache.

b. Update the KeyStoreSecretStore on AM:

i. In AM, select  Secret Stores > keystoresecretstore.

ii. Select the Mappings tab, and in am.services.oauth2.stateless

.signing.RSA  add the alias signature-key-new .

The mapping now contains two aliases, but the alias signature-key  is

still the active alias. AM still uses signature-key  to sign tokens.

iii. Drag signature-key-new  above signature-key .

AM now uses signature-key-new  to sign tokens.

3. Set up IG:

a. Import the public certi�cate to the IG keystore, with the alias

verification-key-new :

Alias name: signature-key

Alias name: signature-key-new

$ cp keystore_directory/keystore.p12

am_keystore_directory/AM_keystore.p12

$ keytool -list \

-keystore "am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: signature-key

Alias name: signature-key-new

$ keytool -import \

-trustcacerts \

-rfc \

-alias verification-key-new \

-file "keystore_directory/x509certificate-new.pem" \



69 / 80

b. List the keys in the IG keystore:

c. In rs-stateless-signed-ksss.json , edit the KeyStoreSecretStore

mapping with the new veri�cation key:

If the Router scanInterval  is disabled, restart IG to reload the route.

IG can now check the authenticity of access tokens signed with

verification-key , the old key, and verification-key-new , the new key.

However, AM signs with the old key.

4. Test the setup:

a. Get an access token for the demo user, using the scope myscope :

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storetype PKCS12 \

-storepass "password"

...

Trust this certificate? [no]:  yes

Certificate was added to keystore

$ keytool -list \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: verification-key

Alias name: verification-key-new

"mappings": [

{

"secretId": 

"stateless.access.token.verification.key",

"aliases": [ "verification-key", "verification-key-

new" ]

}

]

$ mytoken=$(curl -s \

--user "client-application:password" \

--data 

"grant_type=password&username=demo&password=Ch4ng31t&sc



70 / 80

b. Display the token:

c. Access the route by providing the token returned in the previous step:

Deprovision Old Keys

1. Remove signature-key  from the AM keystore:

a. Delete the key from the keystore:

b. List the keys in the AM keystore to make sure signature-key  is removed:

c. Restart AM.

2. Remove verification-key  from the IG keystore:

a. Delete the key from the keystore:

ope=myscope" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ echo ${mytoken}

$ curl -v http://ig.example.com:8080/rs-stateless-

signed-ksss --header "Authorization: Bearer ${mytoken}"

...

Decoded access_token: {

sub=demo,

cts=OAUTH2_STATELESS_GRANT,

...

$ keytool -delete \

-keystore "am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-alias signature-key

$ keytool -list \

-keystore "am_keystore_directory/AM_keystore-new.p12" \

-storepass "password" \

-storetype PKCS12

$ keytool -delete \

-keystore "ig_keystore_directory/IG_keystore.p12" \



71 / 80

b. List the keys in the IG keystore to make sure that verification-key  is

removed:

3. In AM, delete the mapping for signature-key  from keystoresecretstore .

4. In IG, delete the mapping for verification-key  from the route rs-stateless-

signed-ksss.json . If the Router scanInterval  is disabled, restart IG to reload

the route.

This section builds on the example in Share JWT Session Between Multiple Instances of IG

to rotate a key used in a shared JWT session.

When a JWT session is shared between multiple instances of IG, the instances are able to

share the session information for load balancing and failover.

Before you start, set up the example in Set Up Shared Secrets for Multiple Instances

of IG, where three instances of IG share a JwtSession and use the same authenticated

encryption key. Instance 1 acts as a load balancer, and generates a session. instances

2 and 3 access the session information.

1. Test the setup with the existing key, symmetric-key :

a. Access instance 1 to generate a session:

-storepass "password" \

-alias verification-key

$ keytool -list \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

Rotating keys in a shared JWT session

$ curl -v http://ig.example.com:8001/log-in-and-

generate-session

GET /log-in-and-generate-session HTTP/1.1

...

HTTP/1.1 200 OK

Content-Length: 84

Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com;

HttpOnly

file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-sharesecrets
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#proc-jwtsession-sharesecrets


72 / 80

b. Using the JWT cookie returned in the previous step, access instance 2:

Note that instance 2 can access the session info.

c. Using the JWT cookie again, access instance 3:

Note that instance 3 can access the session info.

2. Commission a new key:

a. Generate a new encryption key, called symmetric-key-new , in the existing

keystore:

...

Sam Carter logged IN. (JWT session generated)

$ curl -v http://ig.example.com:8001/webapp/browsing?

one --header "cookie:IG=<JWT cookie>"

GET /webapp/browsing?one HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance2)

$ curl -v http://ig.example.com:8001/webapp/browsing?

two --header "Cookie:IG=<JWT cookie>"

GET /webapp/browsing?two HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance3)

$ keytool \

-genseckey \

-alias symmetric-key-new

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12 \



73 / 80

b. Make sure the keystore contains the old key and the new key:

c. Add the key alias to instance1-loadbalancer.json , instance2-

retrieve-session-username.json , and instance3-retrieve-session-

username.json , for each IG instance, as follows:

If the Router scanInterval  is disabled, restart IG to reload the route.

The active key is symmetric-key , and the valid key is symmetric-key-new .

d. Test the setup again, as described in step 1, and make sure instances 2 and

3 can still access the session information.

3. Make the new key the active key for generating sessions:

a. In instance1-loadbalancer.json , change the order of the keys to make

symmetric-key-new  the active key, and symmetric-key  the valid key:

Don’t change instance2-retrieve-session-username.json  or

instance3-retrieve-session-username.json .

b. Test the setup again, as described in step 1, and make sure instances 2 and

3 can still access the session information.

-keyalg HmacSHA512 \

-keysize 512

$ keytool \

-list \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12

...

Your keystore contains 2 entries

symmetric-key, ...

symmetric-key-new ...

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key", "symmetric-key-new"]

}]

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key-new", "symmetric-key"]

}]



74 / 80

Instance 1 creates the session using the new active key, symmetric-key-

new .

Because symmetric-key-new  is declared as a valid key in instances 2 and

3, the instances can still access the session. It isn’t necessary to make

symmetric-key-new  the active key.

4. Decommission the old key:

a. Remove the old key from all of the routes, as follows:

Key symmetric-key-new  is the only key in the routes.

b. Remove the old key, symmetric-key , from the keystore:

i. Delete symmetric-key :

ii. Make sure the keystore contains only symmetric-key-new :

c. Test the setup again, as described in step 1, and make sure instances 2 and

3 can still access the session information.

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key-new"]

}]

$ keytool \

-delete \

-alias symmetric-key \

-keystore

/path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12 \

-keypass password

$ keytool \

-list \

-keystore

/path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12

...

Your keystore contains 1 entry

symmetric-key-new ...



75 / 80

ForgeRock provides support services, professional services, training through ForgeRock

University, and partner services to help you set up and maintain your deployments.

ForgeRock provides support services, professional services, training through ForgeRock

University, and partner services to assist you in setting up and maintaining your

deployments. For a general overview of these services, see https://www.forgerock.com

.

ForgeRock has sta� members around the globe who support our international customers

and partners. For details on ForgeRock’s support o�ering, including support plans and

service level agreements (SLAs), visit https://www.forgerock.com/support .

ForgeRock publishes comprehensive documentation online:

The ForgeRock Knowledge Base  o�ers a large and increasing number of up-to-

date, practical articles that help you deploy and manage ForgeRock software.

While many articles are visible to everyone, ForgeRock customers have access to

much more, including advanced information for customers using ForgeRock

software in a mission-critical capacity.

ForgeRock product documentation, such as this document, aims to be technically

accurate and complete with respect to the software documented. It is visible to

everyone and covers all product features and examples of how to use them.

When you are trying to solve a problem, save time by asking the following questions:

How do you reproduce the problem?

What behavior do you expect, and what behavior do you have?

When did the problem start occurring?

Are their circumstances in which the problem does not occur?

Is the problem permanent, intermittent, getting better, getting worse, or staying the

same?

If you contact ForgeRock for help, include the following information with your request:

The product version and build information. This information is included in the logs

when IG starts up. If IG is running in development mode, and set up as described in

Troubleshooting

Getting support







Getting info about the problem

https://www.forgerock.com/
https://www.forgerock.com/support
https://backstage.forgerock.com/knowledge/kb


76 / 80

the Getting started, access the information at

http://ig.example.com:8080/openig/api/info.

Description of the problem, including when the problem occurs and its impact on

your operation.

Steps you took to reproduce the problem.

Relevant access and error logs, stack traces, and core dumps.

Description of the environment, including the following information:

Machine type

Operating system and version

Web server or container and version

Java version

Patches or other software that might a�ect the problem

Displaying resources

By default, ForgeRock Access Management 5 and later writes cookies to the fully

quali�ed domain name of the server; for example, am.example.com . Therefore, a

host-based cookie, rather than a domain-based cookie, is set.

Consequently, after authentication through Access Management, requests can be

redirected to Access Management instead of to the resource.

To resolve this issue, add a cookie domain to the Access Management

con�guration. For example, in the AM admin UI, go to Con�gure > Global

Services > Platform, and add the domain example.com .

When the sample application is used with IG in the documentation examples, the

sample application must serve static resources, such as the .css. Add the following

route to the IG con�guration, as:

1. Linux

2. Windows

Troubleshooting

Requests redirected to AM instead of to the resource

Sample application not displayed correctly

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html


77 / 80

De�ne an entity for the response, as in the following example:

Using routes

Symptom

The following errors are in route-system.log :

Cause

IG is not con�gured to handle the incoming request or the request to the

speci�ed URI:

"no handler to dispatch to": the router cannot �nd a route that accepts the

incoming request. This error happens when none of the route conditions

match the incoming request and there is no default route.

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

StaticResponseHandler results in a blank page

{

"name": "AccessDeniedHandler",

"type": "StaticResponseHandler",

"config": {

"status": 403,

"headers": {

"Content-Type": [ "text/html; charset=UTF-8" ]

},

"entity": "<html><body><p>User does not have

permission</p></body></html>"

}

}

No handler to dispatch to

... | ERROR | main | o.f.o.h.r.RouterHandler | no handler

to dispatch to

08:22:54:974 | ERROR | http-... | o.f.o.h.DispatchHandler

| no handler to dispatch to for URI 

'http://ig.example.com/demo'



78 / 80

"no handler to dispatch to for URI": the router cannot �nd a route that can

handle the request to the speci�ed URI because none of the route

conditions match the request path (URI).

Solution

If the errors occur during the startup, they are safe to ignore. If the errors occur

after the startup, do the following:

Identify why the request matched none of the Route conditions, and adapt

the conditions. For examples, refer to Example conditions and requests.

Add a default handler to the Router.

Add a default route for when no condition is met.

If you have the following error, you have speci�ed "handler": "Router2"  in

config.json  or in the route, but no handler con�guration object named Router2

exists:

Make sure you have added an entry for the handler, and that you have correctly

spelled its name.

When the JSON for a route is not valid, IG does not load the route. Instead, a

description of the error appears in the log.

Use a JSON editor or JSON validation tool such as JSONLint  to make sure your

JSON is valid.

IG loads all con�gurations at startup, and, by default, periodically reloads changed

route con�gurations.

If you make changes to a route that result in an invalid con�guration, IG logs errors,

but it keeps the previous, correct con�guration, and continues to use the old route.

Object not found in heap

org.forgerock.json.fluent.JsonValueException: /handler:

object Router2 not found in heap

at

org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:351)

at

org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:334)

at

org.forgerock.openig.heap.HeapImpl.getHandler(HeapImpl.java:5

38)

Extra or missing character / invalid JSON



Route not used

file:///home/pptruser/Downloads/build/site/ig/reference/Route.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/routing.html#table-route-conditions
file:///home/pptruser/Downloads/build/site/ig/reference/Router.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#add-default-route
http://jsonlint.com/


79 / 80

IG only uses the new con�guration after you save a valid version or when you

restart IG.

Of course, if you restart IG with an invalid route con�guration, then IG tries to load

the invalid route at startup and logs an error. In that case, if there is no default

handler to accept any incoming request for the invalid route, then you have an

error, No handler to dispatch to .

IG returns an exception if it loads a route for which it can’t resolve a requirement.

For example, when you load a route that uses an AmService object, the object must

be available in the AM con�guration.

If you add routes to a con�guration when the environment is not ready, rename the

route to prevent IG from loading it. For example, rename a route as follows:

If necessary, restart IG to reload the con�guration. When you have con�gured the

environment, change the �le extension back to .json .

Using Studio

Studio deploys and undeploys routes through a main router named _router ,

which is the name of the main router in the default con�guration. If you use a

custom config.json , make sure it contains a main router named _router .

For information about creating routes in Studio, refer to the Studio guide.

Understanding timeout errors

Problem: After a request is sent to IG, IG seems to hang. An HTTP 502 Bad Gateway

error is produced, and the IG log is �ushed with SocketTimeoutException warnings.

Possible cause: The baseURI  con�guration is missing or causes the request to

return to IG, so IG can’t produce a response to the request.

Possible solution: Con�gure the baseURI  to use a di�erent host and port to IG.

Other problems

Make sure the user running IG can read the �at �le. Remember that values include

spaces and tabs between the separator, so make sure the values are not padded

Skip routes

$ mv $HOME/.openig/config/routes/03-sql.json 

$HOME/.openig/config/routes/03-sql.inactive

Can’t deploy routes in Studio

Log is �ushed with timeout exception warnings on sending a request

Incorrect values in the �at �les

file:///home/pptruser/Downloads/build/site/ig/studio-guide/preface.html#preface


80 / 80

with spaces.

The following error can be encountered when using an AssignmentFilter  as

described in AssignmentFilter and setting a string value for one of the headers.

All headers are stored in lists so the header must be addressed with a subscript. For

example, rather than trying to set request.headers['Location']  for a redirect in

the response object, you should instead set request.headers['Location'][0] . A

header without a subscript leads to the error above.

Copyright © 2010-2023 ForgeRock, all rights reserved.

Problem accessing URLs

HTTP ERROR 500

Problem accessing /myURL . Reason:

java.lang.String cannot be cast to java.util.List

Caused by:

java.lang.ClassCastException: java.lang.String cannot

be cast to java.util.List

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#AssignmentFilter

