
1 / 15

Identity Cloud Guide

About Identity Gateway and the ForgeRock Identity Cloud

API Security With OAuth 2.0 and the ForgeRock Identity Cloud

Single Sign-On With OpenID Connect and the ForgeRock Identity Cloud

Cross-Domain Single Sign-On With the ForgeRock Identity Cloud

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com.

This guide is for ForgeRock Identity Cloud evaluators, administrators, and architects. It

provides examples of how to integrate your business application and APIs with Identity

Cloud for Single Sign-On and API Security, with ForgeRock Identity Gateway.

Unless otherwise stated, the examples in this guide assume the following installation:

Identity Gateway installed in standalone mode, on

http://openig.example.com:8080 , as described in Download and Start IG in

Standalone Mode.

Sample application installed on http://app.example.com:8081 , as described in

Downloading and Starting the Sample Application.

The ForgeRock Identity Cloud, with the default configuration, as described in the

ForgeRock Identity Cloud Docs.

When you are using the ForgeRock Identity Cloud, you need to know the value of the

following properties:

The root URL of your ForgeRock Identity Cloud. For example,

https://myTenant.forgeblocks.com .

Identity Cloud Guide

ON THIS PAGE

Identity Cloud Guide

Example Installation for This Guide

https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-sampleapp.html
https://backstage.forgerock.com/docs/idcloud/overview.html
https://mytenant.forgeblocks.com/

2 / 15

The URL of the Access Management component of the ForgeRock Identity Cloud

is the root URL of your Identity Cloud followed by /am . For example,

https://myTenant.forgeblocks.com/am .

The realm where you work. The examples in this document use alpha .

Prefix each realm in the hierarchy with the realms keyword. For example,

/realms/root/realms/alpha .

If you use a different configuration, substitute in the procedures accordingly.

ForgeRock Identity Cloud simplifies the consumption of ForgeRock as an Identity

Platform. However, many organizations have business web applications and APIs

deployed across multiple clouds, or on-premise.

Identity Gateway facilitates non-intrusive integration of your web applications and APIs

with the Identity Cloud, for SSO and API Security. The following image illustrates how

Identity Gateway bridges your business to the ForgeRock Identity Cloud:

For information about the ForgeRock Identity Cloud, see the ForgeRock Identity Cloud

Docs.

About Identity Gateway and the ForgeRock Identity Cloud

API Security With OAuth 2.0 and the ForgeRock Identity

Cloud

https://mytenant.forgeblocks.com/am
https://backstage.forgerock.com/docs/idcloud/overview.html

3 / 15

This example sets up OAuth 2.0, using the standard introspection endpoint, where

ForgeRock Identity Cloud is the authorization server, and Identity Gateway is the resource

server.

For more information about Identity Gateway as an OAuth 2.0 resource server, see

Validate Access_Tokens Through the Introspection Endpoint.

Before you start, prepare Identity Cloud and Identity Gateway as described in Example

Installation for This Guide.

1. Set up Identity Cloud:

a. Log in to the ForgeRock Identity Cloud as an administrator.

b. In the platform console, go to  Identities > Manage > Alpha realm - Users,

and add a new user with the following values:

Username : demo

First name : demo

Last name : user

Email Address : demo@example.com

Password : Ch4ng3!t

c. Make sure that you are managing the alpha realm. If not, click the current

realm at the top of the screen, and switch realm.

d. Add a web application:

i. In the platform console, click  Applications >  Add Application >

Web, and add a web application with the following values:

Client ID : oauth2-client

Client Secret : password

ii. On the application page, add the following general settings:

Grant Types : Resource owner Password Credentials

Scopes : mail

e. Click Gateways & Agents, and add an agent profile with the following

values:

ID : ig_agent

Password : password

By default, the agent can introspect OAuth 2.0 tokens issued to any

client, in the realm and subrealm where it is created. To change the

introspection, click Native Consoles > Access Management, and update

the agent in the AM console.

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#preface-examples

4 / 15

2. Set up Identity Gateway:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to Identity Gateway, replacing the value for the

property amInstanceUrl :

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

appdata\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/oauth2rs-idc.json

appdata\OpenIG\config\routes\oauth2rs-idc.json

{

"name": "oauth2rs-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/oauth2rs-

idc')}",

"properties": {

"amInstanceUrl": "<myIdentityCloudUrl/am>"

5 / 15

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "&{amInstanceUrl}",

"realm": "/alpha",

"version": "7.1",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

6 / 15

Notice the following features of the route compared to rs-

introspect.json in Validate Access_Tokens Through the Introspection

Endpoint, where a local Access Management instance is the authorization

server:

The AmService URL points to Access Management in the Identity

Cloud.

The AmService realm points to the realm where you have configured

your web application and the IG agent.

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

}

}

}

}

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect

7 / 15

3. Test the setup:

a. In a terminal, export an environment variable for URL of Access

Management in the Identity Cloud:

b. Use a curl command similar to the following to retrieve an access_token:

c. Validate the access_token returned in the previous step:

This example sets up ForgeRock Identity Cloud as an OpenID Connect identity provider,

and Identity Gateway as a relying party.

For more information about Identity Gateway and OpenID Connect, see Act As an OpenID

Connect Relying Party.

Before you start, prepare Identity Cloud, Identity Gateway, and the sample application as

described in Example Installation for This Guide.

$ export amInstanceUrl='myAmInstanceUrl'

$ mytoken=$(curl -s \

--user "oauth2-client:password" \

--data

'grant_type=password&username=demo&password=Ch4ng3!t&sc

ope=mail' \

$amInstanceUrl/oauth2/realms/alpha/access_token | jq -r

".access_token")

$ curl -v http://openig.example.com:8080/oauth2rs-idc -

-header "Authorization: Bearer ${mytoken}"

{

active = true,

scope = mail,

realm = /alpha,

client_id = oauth2-client,

...

}

Single Sign-On With OpenID Connect and the ForgeRock

Identity Cloud

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html
file:///home/pptruser/Downloads/build/site/ig/identity-cloud-guide/preface.html#preface-examples

8 / 15

1. Set up Identity Cloud:

a. Log in to the ForgeRock Identity Cloud as an administrator.

b. In the platform console, go to  Identities > Manage > Alpha realm - Users,

and add a new user with the following values:

Username : demo

First name : demo

Last name : user

Email Address : demo@example.com

Password : Ch4ng3!t

c. Make sure that you are managing the alpha realm. If not, click the current

realm at the top of the screen, and switch realm.

d. Add a web application:

i. In the platform console, click  Applications >  Add Application >

Web, and add a web application with the following values:

Client ID : oidc-client

Client Secret : password

ii. In General Settings on the application page, add the following values:

Sign-in URLs :

http://openig.example.com:8080/home/id_token/callback

Grant Types : Authorization Code , Resource owner Password

Credentials

Scopes : openid , profile , mail

iii. Click Show advanced settings > Authentication, and click Implied

Consent :

The resource owner is not asked for consent during authorization

flows.

2. Set up Identity Gateway:

a. Set an environment variable for the oidc-client password, and then

restart IG:

a. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

$ export CLIENT_SECRET_ID='cGFzc3dvcmQ='

9 / 15

b. Add the following route to Identity Gateway, replacing the value for the

property amInstanceUrl :

1. Linux

2. Windows

$HOME/.openig/config/routes/static-resources.json

appdata\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/oidc-idc.json

appdata\OpenIG\config\routes\oidc-idc.json

{

"name": "oidc-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"properties": {

"amInstanceUrl": "<myIdentityCloudUrl/am>"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ClientFilter-1",

"type": "OAuth2ClientFilter",

10 / 15

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Error in OAuth 2.0 setup."

}

},

"registrations": [

{

"name": "oauth2-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc-client",

"clientSecretId": "client.secret.id",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint": "&

{amInstanceUrl}/oauth2/realms/alpha/.well-known/openid-

configuration"

}

},

"scopes": [

"openid",

"profile",

"mail"

],

"secretsProvider":

"SystemAndEnvSecretStore-1",

"tokenEndpointAuthMethod":

"client_secret_basic"

}

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

11 / 15

Notice the following features of the route compared to 07-openid.json in

Use AM As a Single OpenID Connect Provider, where Access Management is

running locally:

The ClientRegistration wellKnownEndpoint points to the Identity

Cloud.

3. Test the setup:

a. Go to http://openig.example.com:8080/home/id_token. The Identity Cloud

login page is displayed.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t . The home page

of the sample application is displayed.

For organizations relying on AM’s session and policy services with SSO, consider cross-

Domain Single Sign-On (CDSSO) as an alternative to SSO through OpenID Connect.

This example sets up ForgeRock Identity Cloud as an SSO authentication server for

requests processed by Identity Gateway. For more information about about Identity

Gateway and CDSSO, see Authenticate With CDSSO.

Before you start, prepare AM, IG, and the sample application, as described in

Download and Start IG in Standalone Mode.

1. Set up Identity Cloud:

a. Log in to the ForgeRock Identity Cloud as an administrator.

b. In the platform console, go to  Identities > Manage > Alpha realm - Users,

and add a new user with the following values:

Username : demo

First name : demo

Last name : user

Email Address : demo@example.com

}

],

"handler": "ReverseProxyHandler"

}

}

}

Cross-Domain Single Sign-On With the ForgeRock Identity

Cloud

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
http://openig.example.com:8080/home/id_token
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html#cdsso-auth
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone

12 / 15

Password : Ch4ng3!t

c. Make sure that you are managing the alpha realm. If not, click the current

realm at the top of the screen, and switch realm.

d. Select Applications > Agents > Identity Gateway, add an agent with the

following values:

Agent ID: ig_agent_cdsso

Password: password

Redirect URL for CDSSO:

https://openig.ext.com:8443/home/cdsso/redirect

2. Set up Identity Gateway:

a. Set up IG for HTTPS, as described in Configure IG For HTTPS (Server-Side) in

Standalone Mode.

b. Add the following session configuration to admin.json , to ensure that

the browser passes the session cookie in the form-POST to the redirect

endpoint (step 6 of Information Flow During CDSSO):

This step is required for the following reasons:

When sameSite is strict or lax , the browser rejects the session

cookie, which contains the nonce used in validation. If IG doesn’t find

the nonce, it assumes that it didn’t originate the authorization request.

When secure is false , the browser is likely to reject the session

cookie.

For more information, see admin.json.

c. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

{

"connectors": […​],

"session": {

"cookie": {

"sameSite": "none",

"secure": true

}

},

"heap": […​]

}

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html#figure-cdsso-auth
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

13 / 15

d. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

e. Add the following route to Identity Gateway, replacing the value for the

property amInstanceUrl :

1. Linux

2. Windows

$HOME/.openig/config/routes/static-resources.json

appdata\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/cdsso-idc.json

appdata\OpenIG\config\routes\cdsso-idc.json

{

"name": "cdsso-idc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/cdsso')}",

"properties": {

"amInstanceUrl": "<myIdentityCloudUrl/am>"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

14 / 15

"type": "AmService",

"config": {

"url": "&{amInstanceUrl}",

"realm": "/alpha",

"version": "7.1",

"agent": {

"username": "ig_agent_cdsso",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"sessionCache": {

"enabled": false

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

"redirectEndpoint": "/home/cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1",

"verificationSecretId": "verify",

"secretsProvider": {

"type": "JwkSetSecretStore",

"config": {

"jwkUrl": "&

{amInstanceUrl}/oauth2/realms/alpha/connect/jwk_uri"

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

15 / 15

Notice the following features of the route compared to cdsso.json in

gateway-guide:sso.adoc#proc-cdsso, where Access Management is running

locally:

The AmService URL points to Access Management in the Identity

Cloud.

The AmService realm points to the realm where you configure your IG

agent.

3. Test the setup:

a. Go to https://openig.ext.com:8443/home/cdsso. The Identity Cloud login

page is displayed.

If you see warnings that the site is not secure, respond to the warnings to

access the site.

b. Log in to Identity Cloud as user demo , password Ch4ng3!t .

Access Management calls /home/cdsso/redirect , and includes the CDSSO

token. The CrossDomainSingleSignOnFilter passes the request to sample

app.

Copyright © 2010-2023 ForgeRock, all rights reserved.

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html#proc-cdsso
https://openig.ext.com:8443/home/cdsso

