
1 / 47

Installation Guide

Upgrade

Prepare the Network

Install IG in Standalone Mode

Install IG in Apache Tomcat

Install IG in Jetty

Install IG in JBoss EAP

Change the Default Location of the Con�guration Folders

Con�gure IG For HTTPS (Client-Side)

Encrypt and Share JWT Sessions

Prepare For Load Balancing and Failover

Secure Connections

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com.

This guide describes options for installing IG for customized or secure environments. For

information about how to install and con�gure IG for evaluation, see the Getting Started.

The following table lists supported upgrade paths to IG 7.1:

Installation Guide

ON THIS PAGE

Installation Guide

Upgrade

Supported Upgrade Paths

https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

2 / 47

Version Upgrade supported?

IG 6.x ✔

IG 7.x ✔

For more information, see Checking your product versions are supported in the

ForgeRock Knowledge Base.

For unsupported, legacy deployments, ForgeRock can assist you in the upgrade process.

Major, minor, maintenance, and patch product release levels are de�ned in ForgeRock

Product Release Levels. How much you need to do to upgrade IG software depends on

the magnitude of the di�erences between the version you currently use and the new

version.

Minor, maintenance, and patch releases have a limited e�ect on current functionality but

contain necessary bug and security �xes. Keep up-to-date with maintenance and patch

releases because the �xes are important, and the risk of a�ecting service is minimal.

Do these planning tasks before you start an upgrade:

Planning task Description

Find out what

changed

Read the Release Notes for all releases between the version you

currently use and the new version.

Understand the

impact

Decide whether you need to change the con�guration of your

deployment for this release, and evaluate the work involved.

Make sure you meet all of the requirements for the new version.

In particular, make sure that you have a recent, supported Java

version.

Plan for server

downtime

At least one of your IG servers will be down during upgrade.

Plan to route client applications to another server until the

upgrade process is complete, and you have validated the result.

Make sure client application owners are aware of the change,

and let them know what to expect.

If you have a single IG server, make sure the downtime happens

in a low-usage window, and make sure you let client application

owners plan accordingly.

Planning the Upgrade

https://backstage.forgerock.com/knowledge/kb/article/a18529200
file:///home/pptruser/Downloads/build/site/ig/release-notes/stability.html#release-levels
file:///home/pptruser/Downloads/build/site/ig/release-notes/preface.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/before-you-install.html

3 / 47

Planning task Description

Back up The IG con�guration is a set of �les, including admin.json ,

config.json , logback.xml , routes, and scripts. Back up the IG

con�guration and store it in version control, so that you can roll

back if something goes wrong.

Also back up any tools scripts that you have edited for your

deployment, and any trust stores used to connect securely.

Plan for rollback Sometimes even a well-planned upgrade fails to go smoothly. In

such cases, you need a plan to roll back smoothly to the pre-

upgrade version.

For IG servers, roll back by restoring a backed-up con�guration.

Prepare a test

environment

Before applying the upgrade in your production environment,

always try to upgrade IG in a test environment. This will help

you gauge the amount of work required, without a�ecting your

production environment, and will help smooth out unforeseen

problems.

The test environment should resemble your production

environment as closely as possible.

Use the Release Notes for all releases between the version you currently use and the new

version, and upgrade your con�guration as follows:

Review all Incompatible Changes, and adjust your con�guration as necessary.

Switch to the replacement settings in Deprecation. Although deprecated objects

continue to work, they add to the noti�cations in the logs, and are eventually

removed.

Check the lists of Fixes, Limitations, and Known Issues, to see if they impact your

deployment.

Recompile your Java extensions. The method signature or imports for supported and

evolving APIs can change in each version.

Read the Documentation Updates for new examples and information that can help

with your con�guration.

Upgrade the IG Con�guration

Upgrade IG Instances

file:///home/pptruser/Downloads/build/site/ig/release-notes/preface.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/changed-functionality.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/deprecated-functionality.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/fixes.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/limitations.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/known-issues.html
file:///home/pptruser/Downloads/build/site/ig/release-notes/doc-updates.html

4 / 47

For information about the versions that are supported for upgrade, see Supported

Upgrade Paths.

1. Read and act on Plan the Upgrade and Upgrade the IG Con�guration.

2. Back up the IG con�guration, and store it in version control so that you can roll

back if something goes wrong.

3. Stop IG.

4. Make the new con�guration available on the �le system, and specify the

IG_INSTANCE_DIR env variable or ig.instance.dir system property to point

to them.

5. Restart IG.

6. In a test environment that simulates your production environment, validate that

the upgraded service performs as expected with the new con�guration. Check

the logs for new or unexpected noti�cations or errors.

7. Allow client application tra�c to �ow to the upgraded site.

The most straightforward option when upgrading sites with multiple IG instances is to

upgrade in place. One by one, stop, upgrade, and then restart each server individually,

leaving the service running during upgrade.

IG is delivered as a standalone Java executable in a .zip �le, as well as in a .war �le.

Consider these points to migrate from IG in web container mode to IG in standalone

mode.

High-availability of sessions is not supported in standalone mode.

In ClientHandler and ReverseProxyHandler, use only the default mode of

asyncBehavior:non_streaming ; responses are processed when the entity content is

entirely available.

Upgrade a Single IG Instance

Upgrade a Site With Multiple IG Instances

Migrate From Web Container Mode to Standalone Mode

Session Replication Between IG Instances

Streaming Asynchronous Responses and Events

file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#supported-upgrades
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#upgrade-planning
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#upgrade-planning
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ClientHandler
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler

5 / 47

If the property is set to streaming , the setting is ignored.

In ClientHandler and ReverseProxyHandler, use only the default mode of

stateTrackingEnabled:true ; when a client certi�cate is used for authentication,

connections cannot be reused.

If the property is set to false , the setting is ignored.

Feature Standalone Tomcat

Port number Con�gure the connectors

property of admin.json.

Con�gure in the Connector

element of

/path/to/tomcat/conf/server.

xml :

HTTPS server-

side

con�guration

Create a keystore, set up secrets,

and con�gure secrets stores,

ports, and ServerTlsOptions in

admin.json.

For information, see Con�gure

IG For HTTPS (Server-Side) in

Standalone Mode.

Create a keystore, and set up the

SSL port in the Connector

element of

/path/to/tomcat/conf/server.

xml .

For information, see Con�gure

IG for HTTPS (Server-Side) in

Tomcat.

Session cookie

name

Con�gure the session property

of admin.json.

Con�gure WEB-INF/web.xml

when you unpack the IG .war

�le.

Access logs Con�gure in the Audit

framework.

For information, see Auditing

Your Deployment and Audit

Framework.

Con�gure with AccessLogValve .

Connection Reuse When Client Certi�cates Are Used for Authentication

Tomcat Con�guration

<Connector port="8080"

protocol="HTTP/1.1"

connectionTimeout="200

00"

redirectPort="8443" />

file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ClientHandler
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-tomcat.html#tomcat-https
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html

6 / 47

Feature Standalone Tomcat

JDBC

datasource

Con�gure with the

JdbcDataSource object.

For information, see

JdbcDataSource.

For an example, see Log In With

Credentials From a Database.

Con�gure in the

GlobalNamingResources

element of

/path/to/tomcat/conf/server.

xml .

Environment

variables

Con�gure in

$HOME/.openig/bin/env.sh ,

where $HOME/.openig is the

instance directory.

Con�gure in

/path/to/tomcat/bin/setenv.s

h .

Jar �les Add to $HOME/.openig/extra ,

where $HOME/.openig is the

instance directory.

Add to to web container

classpath; for example

/path/to/tomcat/webapps/ROOT

/WEB-INF/lib .

Because IG uses reverse proxy architecture, you must con�gure the network so that that

tra�c from the browser to the protected application goes through IG.

Modify DNS or host �le settings so that the host name of the protected application

resolves to the IP address of IG on the system where the browser runs.

Restart the browser after making this change.

Consider the following best practices for installing and running IG:

Create a service account with which to install and run IG, for example, igadmin . Do

not use the root account to install and run IG.

Allocate the following permissions to the account:

Read/write permissions on the installation directory, for example

/path/to/identity-gateway .

Prepare the Network

Install IG in Standalone Mode

Download and Start IG in Standalone Mode

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JdbcDataSource
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/credentials-datasource.html#tutorial-credentials-from-sql

7 / 47

Execute permissions on the scripts in the installation bin directory, for

example /path/to/identity-gateway/bin .

The following sections describe how to install and start IG in standalone mode, from a

.zip �le.

1. Create a local installation directory for IG. The examples in this section use

/path/to .

2. Download IG-7.1.2.zip from the ForgeRock BackStage download site, and

copy the .zip �le to the installation directory:

3. Unzip the �le:

The directory /path/to/identity-gateway is created.

Use the following step to start the instance of IG, specifying the con�guration directory

where IG looks for con�guration �les.

1. Start IG:

By default, the base location for IG con�guration �les is in $HOME/.openig .

To read the con�guration from a di�erent location, specify the base location as

an argument. The following example reads the con�guration from the config

directory under /path/to/instance-dir :

Download the IG .zip File

$ cp IG-7.1.2.zip /path/to/IG-7.1.2.zip

$ unzip IG-7.1.2.zip

Start IG With Default Settings

$ /path/to/identity-gateway/bin/start.sh

...

... started in 1234ms on ports : [8080]

$ /path/to/identity-gateway/bin/start.sh

https://backstage.forgerock.com/downloads

8 / 47

2. Check that IG is running in one of the following ways:

Ping IG at http://openig.example.com:8080/openig/ping , and make

sure an HTTP 200 is returned.

Access the IG welcome page at http://openig.example.com:8080 .

When IG is running in development mode, display the product version and

build information at

http://openig.example.com:8080/openig/api/info .

By default, IG runs on HTTP, on port 8080 , from the instance directory $HOME/.openig .

To start IG with custom settings, add the con�guration �le admin.json with the

following properties, and restart IG:

vertx : Finely tune Vert.x instances.

connectors : Customize server port, TLS, and Vert.x-speci�c con�gurations. Each

connectors object represents the con�guration of an individual port.

prefix : Set the instance directory, and therefore, the base of the route for

administration requests.

The following example starts IG on non-default ports, and con�gures Vert.x-speci�c

options for the connection on port 9091:

For more information, see AdminHttpApplication (admin.json).

/path/to/instance-dir

Start IG With Custom Settings

{

"connectors": [{

"port": 9090

},

{

"port": 9091,

"vertx": {

"maxWebSocketFrameSize": 128000,

"maxWebSocketMessageSize": 256000,

"compressionLevel": 4

}

}]

}

Stop IG

file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication

9 / 47

1. In the terminal where IG is running, select CTRL+C to stop the service.

When IG is server-side, applications send requests to IG or request services from IG. IG is

acting as a server of the application, and the application is acting as a client.

To run IG as a server over HTTPS, you must con�gure connections to TLS-protected

endpoints, based on ServerTlsOptions.

During a TLS handshake, IG accesses secret key and certi�cate pairs sychronously; they

are loaded in memory at IG startup, and must be present. You must restart IG to update a

secret key and certi�cate pair. For information about secret stores provided in IG, see

Secrets.

This example uses a PKCS12 keystore, but you can adapt it to use other certi�cates.

Before you start, install IG in standalone mode, as described in Download and Start

IG in Standalone Mode.

1. Locate a directory for secrets, for example, /path/to/secrets , and go to it.

2. Create a keystore holding a self-signed certi�cate:

3. Add a �le called keystore.pass , containing the keystore password password :

Con�gure IG For HTTPS (Server-Side) in Standalone Mode

Serve the Same Certi�cate for TLS Connections to All Server Names

$ keytool \

-genkey \

-alias https-connector-key \

-keyalg RSA \

-keystore IG-keystore \

-storepass password \

-keypass password \

-dname "CN=openig.example.com,O=Example Corp,C=FR"

Because keytool converts all characters in its key aliases to lower case, use

only lowercase in alias de�nitions of a KeyStore.

NOTE

$ echo -n 'password' > keystore.pass

NOTE

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#ServerTlsOptions
file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone

10 / 47

4. Set up TLS on IG:

a. Add the following �le to IG, replacing /path/to/secrets with your path:

1. Linux

2. Windows

Make sure that the password �le contains only the password, with no

trailing spaces or carriage returns.

NOTE

$HOME/.openig/config/admin.json

appdata\OpenIG\config\admin.json

{

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"properties": {

"ig_keystore_directory": "/path/to/secrets"

},

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

}

},

{

"type": "FileSystemSecretStore",

"name": "SecretsPasswords",

11 / 47

Notice the following features of the �le:

IG starts on port 8080 , and on 8443 over TLS.

IG’s private keys for TLS are managed by the SecretsKeyManager,

whose ServerIdentityStore references a KeyStoreSecretStore.

The KeyStoreSecretStore maps the keystore alias to the secret ID for

retrieving the server keys (private key + certi�cate).

The password of the KeyStoreSecretStore is provided by the

FileSystemSecretStore.

5. Start IG:

6. Access the IG welcome page on https://openig.example.com:8443.

If you see warnings that the site is not secure, or that the self-signed certi�cate is

not valid, respond to the warnings to access the site.

"config": {

"directory": "&{ig_keystore_directory}/",

"format": "PLAIN"

}

},

{

"type": "KeyStoreSecretStore",

"name": "ServerIdentityStore",

"config": {

"file": "&{ig_keystore_directory}/IG-keystore",

"storePassword": "keystore.pass",

"secretsProvider": "SecretsPasswords",

"mappings": [

{

"secretId": "key.manager.secret.id",

"aliases": ["https-connector-key"]

}

]

}

}

]

}

$ /path/to/identity-gateway/bin/start.sh

...

... started in 1234ms on ports : [8080 8443]

https://openig.example.com:8443/

12 / 47

Con�gure environment variables and system properties for IG in standalone mode, as

follows:

By adding environment variables on the command line when you start IG.

By adding environment variables in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory. After changing env.sh , restart IG to load

the new con�guration.

Start IG With a Customized Router Scan Interval

By default, IG scans every 10 seconds for changes to the route con�guration �les.

Any changes to the �les are automatically loaded into the con�guration without

restarting IG. For more information about the router scan interval, see Router.

The following example overwrites the default value of the Router scan interval to two

seconds when you start up IG:

Specify Environment Variables for Key and JVM Options

The following example speci�es environment variables in the IG env.sh �le to

customize JVM options and keys:

IG includes a complete Java application programming interface for extending your

deployment with customizations. For more information, see Extend IG Through the Java

Con�gure Environment Variables and System Properties for IG in

Standalone Mode

$ IG_ROUTER_SCAN_INTERVAL='2 seconds' /path/to/identity-

gateway/bin/start.sh

Specify JVM options

JVM_OPTS="-Xms256m -Xmx2048m"

Specify the DH key size for stronger ephemeral DH keys, and

to protect against weak keys

JSSE_OPTS="-Djdk.tls.ephemeralDHKeySize=2048"

Wrap them up into the JAVA_OPTS environment variable

export JAVA_OPTS="${JAVA_OPTS} ${JVM_OPTS} ${JSSE_OPTS}"

Add .jar Files for IG Extensions in Standalone Mode

file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Router
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html#about-custom-extensions

13 / 47

API

Create the directory $HOME/.openig/extra , where $HOME/.openig is the instance

directory, and add .jar �les for IG extensions to the directory.

When IG starts up, the JVM loads .jar �les in $HOME/.openig/extra .

Con�gure Tomcat to use the same protocol as the application you are protecting with IG.

If the protected application is on a remote system, con�gure Tomcat to use the same port

as well. If your application listens on both an HTTP and an HTTPS port, then you must

con�gure Tomcat to do so, too.

To con�gure Tomcat to use an HTTP port other than 8080, modify the defaults in

/path/to/tomcat/conf/server.xml . Search for the default value of 8080 and replace it

with the new port number.

The commands in this guide assume that you install Tomcat to /path/to/tomcat , and

after installation, you have a directory /path/to/tomcat/webapps in which you install IG.

If you use another directory structure, substitute the commands.

1. Download a supported version of Tomcat server from its download page, and

install it to /path/to/tomcat .

2. Remove the ROOT directory in Tomcat:

3. Download IG-7.1.2.war from the ForgeRock BackStage download site.

Install IG in Apache Tomcat

If you use startup scripts to bootstrap the IG web container, the scripts can start the

container process with a di�erent user. To prevent errors, make sure that the

location of the IG con�guration is correct. Alternatively, adapt the startup scripts to

specify the IG_INSTANCE_DIR env variable or ig.instance.dir system properties,

taking care to set �le permissions correctly.

If you start and stop the IG web container yourself, the default location of the IG

con�guration �les is correct. By default, IG con�guration �les are located under

$HOME/.openig on Linux, Mac, and UNIX systems, and under appdata\OpenIG

on Windows.

IMPORTANT

Downloading and Starting IG in Tomcat

$ rm -rf /path/to/tomcat/webapps/ROOT

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html#about-custom-extensions
http://tomcat.apache.org/
https://backstage.forgerock.com/downloads

14 / 47

4. Copy the IG-7.1.2.war to the Tomcat webapps directory, as ROOT.war :

Tomcat automatically deploys IG in the root context on startup.

5. Start Tomcat:

If necessary, make the startup scripts executable.

6. Check that IG is running in one of the following ways:

Ping IG at http://openig.example.com:8080/openig/ping, and make sure an

HTTP 200 is returned.

Access the IG welcome page at http://openig.example.com:8080.

When IG is running in development mode, display the product version and

build information at http://openig.example.com:8080/openig/api/info.

To protect multiple applications running on di�erent hosts, set a cookie domain as

follows:

For stateful sessions, add a context element to

/path/to/conf/Catalina/server/root.xml , as in the following example, and then

restart Tomcat to read the con�guration changes:

If JwtSession is not con�gured, stateful sessions are created automatically. For more

information, see Sessions.

For stateless sessions, con�gure the domain property of JwtSession. When set, the

JWT cookie can be accessed from di�erent hosts in that domain. When not set, the

JWT cookie can be accessed only from the host where the cookie was created. For

information, see JwtSession.

This section describes how to set up IG to run as a server over HTTPS. For information

about the set up for HTTPS (client-side), see Con�gure IG For HTTPS (Client-Side).

$ cp IG-7.1.2.war /path/to/tomcat/webapps/ROOT.war

$ /path/to/tomcat/bin/startup.sh

Con�gure Cookie Domains in Tomcat

<Context sessionCookieDomain=".example.com" />

Con�gure IG for HTTPS (Server-Side) in Tomcat

http://openig.example.com:8080/openig/ping
http://openig.example.com:8080/
http://openig.example.com:8080/openig/api/info
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#about-sessions
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession
file:///home/pptruser/Downloads/build/site/ig/installation-guide/client-side-https.html

15 / 47

To get Tomcat up quickly on an SSL port, add an entry similar to the following in

/path/to/tomcat/conf/server.xml :

Also create a keystore holding a self-signed certi�cate:

Notice the keystore �le location and the keystore password both match the con�guration.

By default, Tomcat looks for a certi�cate with alias tomcat .

Restart Tomcat to read the con�guration changes.

Browsers generally do not trust self-signed certi�cates. To work with a certi�cate signed

instead by a trusted CA, see the Tomcat documentation on con�guring HTTPS.

If IG accesses an SQL database, then you must con�gure Tomcat to access the database

using Java Naming and Directory Interface (JNDI). To do so, you must add the driver .jar

for the database, set up a JNDI data source, and set up a reference to that data source.

The following steps are for MySQL Connector/J:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true">

<SSLHostConfig sslProtocol="TLS" protocols="all"

certificateVerification="none">

<Certificate

certificateKeystoreFile="/path/to/tomcat/conf/keystore"

certificateKeystorePassword="password"

certificateKeystoreType="PKCS12" />

</SSLHostConfig>

</Connector>

$ keytool \

-genkey \

-alias tomcat \

-keyalg RSA \

-keystore /path/to/tomcat/conf/keystore \

-storetype PKCS12 \

-storepass password \

-keypass password \

-dname "CN=openig.example.com,O=Example Corp,C=FR"

Because keytool converts all characters in its key aliases to lowercase, use only

lowercase in alias de�nitions of a KeyStore.

NOTE

Con�gure Access to MySQL Over JNDI in Tomcat

16 / 47

1. Download the MySQL JDBC Driver Connector/J from

http://dev.mysql.com/downloads/connector/j.

2. Copy the driver .jar to /path/to/tomcat/lib/ so that it is on Tomcat’s class path.

3. Add a JNDI data source for your MySQL server and database in

/path/to/tomcat/conf/context.xml :

4. Add a resource reference to the data source in /path/to/tomcat/conf/web.xml :

5. Restart Tomcat to read the con�guration changes.

Tomcat can help with session stickiness, and a Tomcat cluster can handle session

replication:

If you choose to use the Tomcat connector (mod_jk) on your web server to perform

load balancing, then see the LoadBalancer HowTo for details.

In the HowTo, you con�gure the jvmRoute attribute in the Tomcat server

con�guration, /path/to/tomcat/conf/server.xml , to identify the server. The

connector can use this identi�er to achieve session stickiness.

A Tomcat cluster con�guration can handle session replication. When setting up a

cluster con�guration, the ClusterManager de�nes the session replication

implementation.

<Resource

name="jdbc/forgerock"

auth="Container"

type="javax.sql.DataSource"

maxActive="100"

maxIdle="30"

maxWait="10000"

username="mysqladmin"

password="password"

driverClassName="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost:3306/databasename"

/>

<resource-ref>

<description>MySQL Connection</description>

<res-ref-name>jdbc/forgerock</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

About Session Stickiness and Session Replication for Tomcat

http://dev.mysql.com/downloads/connector/j
http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/common_howto/loadbalancers.html
http://tomcat.apache.org/tomcat-7.0-doc/config/cluster.html
http://tomcat.apache.org/tomcat-7.0-doc/config/cluster-manager.html

17 / 47

Con�gure Jetty to use the same protocol as the application you are protecting with IG. If

the protected application is on a remote system, con�gure Jetty to use the same port as

the protected application. If the protected application listens on both an HTTP and an

HTTPS port, con�gure Jetty to listen on both an HTTP and an HTTPS port.

To con�gure Jetty to use an HTTP port other than 8080, modify the defaults in

/path/to/jetty/etc/jetty.xml . Search for the default value of 8080 and replace it

with the new port number.

The commands in this guide assume that you install Jetty to /path/to/jetty , and after

installation, you have a directory /path/to/jetty/webapps in which you install IG. If you

use another directory structure, substitute the commands.

1. Download a supported version of Jetty server from its download page, and

install it to /path/to/jetty .

2. Download IG-7.1.2.war from the ForgeRock BackStage download site.

3. Copy the .war �le:

Jetty automatically deploys IG in the root context on startup.

4. Start Jetty:

To start Jetty in the background, enter:

To start Jetty in the foreground, enter:

Install IG in Jetty

IG depends on javax.websocket-api version 1.1, which is a higher version than that

provided by Jetty. To prevent errors related to WebSocket, do not include the

websocket con�guration modules when you con�gure Jetty.

To change the default port for Jetty in HTTP, edit http.ini .

To change the default port for Jetty in HTTPS, edit server.ini .

NOTE

Downloading and Starting IG in Jetty

$ cp IG-7.1.2.war /path/to/jetty/webapps/IG-7.1.2.war

$ /path/to/jetty/bin/jetty.sh start

http://www.eclipse.org/jetty/download.html
https://backstage.forgerock.com/downloads

18 / 47

5. Check that IG is running in one of the following ways:

Ping IG at http://openig.example.com:8080/openig/ping, and make sure an

HTTP 200 is returned.

Access the IG welcome page at http://openig.example.com:8080.

When IG is running in development mode, display the product version and

build information at http://openig.example.com:8080/openig/api/info.

To use IG for multiple protected applications running on di�erent hosts, set a cookie

domain as follows:

For stateful sessions, add a session domain handler element that speci�es the

domain to /path/to/jetty/etc/webdefault.xml , as in the following example:

Restart Jetty to read the con�guration changes.

If JwtSession is not con�gured, stateful sessions are created automatically. For more

information, see Sessions.

For stateless sessions, con�gure the domain property of JwtSession. When set, the

JWT cookie can be accessed from di�erent hosts in that domain. When not set, the

JWT cookie can be accessed only from the host where the cookie was created. For

information, see JwtSession.

This section describes how to set up Jetty to run IG over HTTPS. For information about the

set up for HTTPS (client-side), see Con�gure IG For HTTPS (Client-Side).

These instructions are for Jetty 9.4.21, and are not compatible with earlier versions of

Jetty. For more information about Jetty and HTTPS, see

http://www.eclipse.org/jetty/documentation/current/con�guring-ssl.html#con�guring-

sslcontextfactory.

$ cd /path/to/jetty/

$ java -jar start.jar

Con�gure Cookie Domains in Jetty

<context-param>

<param-name>org.eclipse.jetty.servlet.SessionDomain</param-

name>

<param-value>.example.com</param-value>

</context-param>

Con�gure IG for HTTPS (Server-Side) in Jetty

http://openig.example.com:8080/openig/ping
http://openig.example.com:8080/
http://openig.example.com:8080/openig/api/info
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#about-sessions
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession
file:///home/pptruser/Downloads/build/site/ig/installation-guide/client-side-https.html
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html#configuring-sslcontextfactory

19 / 47

1. Install Jetty, and set up the location for the Jetty distribution binaries:

Download a supported version of Jetty server from its download page, and

install it to /path/to/jetty .

Set the environment variable JETTY_HOME for /path/to/jetty :

2. Set up the location for con�gurations and customizations to the Jetty

distribution:

Create a directory /path/to/jetty_base .

Set the environment variable JETTY_BASE for /path/to/jetty_base :

3. Set up the keystore:

Remove the built-in keystore:

Generate a key pair with a self-signed certi�cate in the keystore:

4. Create a directory to store local server customization and con�gurations in

$JETTY_BASE:

Delete the global start.ini :

$ export JETTY_HOME=/path/to/jetty

$ export JETTY_BASE=/path/to/jetty_base

$ rm $JETTY_HOME/modules/ssl/keystore

$ keytool \

-genkey \

-alias jetty \

-keyalg RSA \

-keystore $JETTY_HOME/modules/ssl/keystore \

-storepass password \

-keypass password \

-dname "CN=openig.example.com,O=Example Corp,C=FR"

Because keytool converts all characters in its key aliases to lowercase,

use only lowercase in alias de�nitions of a KeyStore.

NOTE

$ rm $JETTY_HOME/start.ini

http://www.eclipse.org/jetty/download.html

20 / 47

From $JETTY_BASE, create the start.d folder to hold the module .ini

�les:

5. From $JETTY_BASE, add the following Jetty con�guration modules:

$ cd $JETTY_BASE

$ java -jar $JETTY_HOME/start.jar --create-startd

MKDIR : ${jetty.base}/start.d

INFO : Base directory was modified

$ cd $JETTY_BASE

$ java -jar $JETTY_HOME/start.jar \

--add-to-

start=server,webapp,deploy,ssl,jstl,ext,jsp,resources,cons

ole-capture,http,https

INFO : webapp initialized in

${jetty.base}/start.d/webapp.ini

INFO : ext initialized in

${jetty.base}/start.d/ext.ini

INFO : server initialized in

${jetty.base}/start.d/server.ini

INFO : mail transitively enabled

INFO : servlet transitively enabled

INFO : jsp initialized in

${jetty.base}/start.d/jsp.ini

INFO : annotations transitively enabled

INFO : resources initialized in

${jetty.base}/start.d/resources.ini

INFO : transactions transitively enabled

INFO : threadpool transitively enabled, ini template

available with --add-to-start=threadpool

INFO : ssl initialized in

${jetty.base}/start.d/ssl.ini

INFO : plus transitively enabled

INFO : deploy initialized in

${jetty.base}/start.d/deploy.ini

INFO : jstl initialized in

${jetty.base}/start.d/jstl.ini

INFO : security transitively enabled

INFO : apache-jsp transitively enabled

INFO : jndi transitively enabled

INFO : console-capture initialized in

${jetty.base}/start.d/console-capture.ini

21 / 47

6. Replace jetty-util-*.jar with the version for your installation, and �nd the

obfuscated form of the keystore password:

7. In $JETTY_BASE/start.d/ssl.ini , uncomment the following lines, and update

the passwords with the OBF password returned in the previous step:

INFO : apache-jstl transitively enabled

INFO : http initialized in

${jetty.base}/start.d/http.ini

INFO : client transitively enabled

INFO : https initialized in

${jetty.base}/start.d/https.ini

INFO : bytebufferpool transitively enabled, ini template

available with --add-to-start=bytebufferpool

MKDIR : ${jetty.base}/lib

MKDIR : ${jetty.base}/lib/ext

MKDIR : ${jetty.base}/resources

MKDIR : ${jetty.base}/etc

COPY : ${jetty.home}/modules/ssl/keystore to

${jetty.base}/etc/keystore

MKDIR : ${jetty.base}/webapps

MKDIR : ${jetty.base}/logs

INFO : Base directory was modified

IG depends on javax.websocket-api version 1.1, which is a higher version

than that provided by Jetty. To prevent errors related to WebSocket, do not

include the websocket con�guration modules when you con�gure Jetty.

To change the default port for Jetty in HTTP, edit http.ini .

To change the default port for Jetty in HTTPS, edit server.ini .

NOTE

$ cd $JETTY_HOME/lib

$ ls jetty-util-*.jar

$ java -cp jetty-util-.jar

org.eclipse.jetty.util.security.Password password*

password

OBF:1v2...v1v

MD5:5f4...f99

22 / 47

8. Copy the IG .war �le to $JETTY_BASE/webapps/IG-7.1.2.war .

9. Go to $JETTY_BASE, and start Jetty:

10. Access the IG welcome page on https://openig.example.com:8443.

If you see warnings that the site is not secure, or that the self-signed certi�cate is

not valid, respond to the warnings to access the site.

If IG accesses an SQL database, then you must con�gure Jetty to access the database over

JNDI. To do so, you must add the driver .jar for the database, set up a JNDI data source,

and set up a reference to that data source.

The following steps are for MySQL Connector/J:

1. Download the MySQL JDBC Driver Connector/J from

http://dev.mysql.com/downloads/connector/j.

2. Copy the driver .jar to /path/to/jetty/lib/jndi/ so that it is on Jetty’s class path.

3. Add a JNDI data source for your MySQL server and database in

/path/to/jetty/etc/jetty.xml :

Connector port to listen on

jetty.ssl.port=8443

Keystore file path (relative to $jetty.base)

jetty.sslContext.keyStorePath=etc/keystore

Keystore password

jetty.sslContext.keyStorePassword=OBF:1v2j1uum1xtv1zej1zer

1xtn1uvk1v1v

KeyManager password

jetty.sslContext.keyManagerPassword=OBF:1v2j1uum1xtv1zej1z

er1xtn1uvk1v1v

$ cd $JETTY_BASE

$ java -jar $JETTY_HOME/start.jar

Con�gure Access MySQL Over JNDI in Jetty

<New id="jdbc/forgerock"

class="org.eclipse.jetty.plus.jndi.Resource">

<Arg></Arg>

<Arg>jdbc/forgerock</Arg>

https://openig.example.com:8443/
http://dev.mysql.com/downloads/connector/j

23 / 47

4. Add a resource reference to the data source in

/path/to/jetty/etc/webdefault.xml :

5. Restart Jetty to read the con�guration changes.

Jetty has provisions for session stickiness, and also for session replication through

clustering:

Jetty’s persistent session mechanism appends a node ID to the session ID in the

same way Tomcat appends the jvmRoute value to the session cookie. This can be

useful for session stickiness if your load balancer examines the session ID.

Session Clustering with a Database describes how to con�gure Jetty to persist

sessions over JDBC, allowing session replication.

Unless it is set up to be highly available, the database can be a single point of failure

in this case.

Session Clustering with MongoDB describes how to con�gure Jetty to persist

sessions in MongoDB, allowing session replication.

The Jetty documentation recommends this implementation when session data is

seldom written, but often read.

<Arg>

<New

class="com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSo

urce">

<Set

name="Url">jdbc:mysql://localhost:3306/databasename</Set>

<Set name="User">mysqladmin</Set>

<Set name="Password">password</Set>

</New>

</Arg>

</New>

<resource-ref>

<description>MySQL Connection</description>

<res-ref-name>jdbc/forgerock</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

About Session Stickiness and Session Replication for Jetty

http://www.eclipse.org/jetty/documentation/current/configuring-sessions-jdbc.html
http://www.eclipse.org/jetty/documentation/current/configuring-sessions-mongo.html

24 / 47

This section installs JBoss to /path/to/jboss . If you use another directory structure,

substitute the commands.

1. Download a supported version of JBoss server from its download page, and

install it to /path/to/jboss .

2. In the JBoss con�guration �le

/path/to/jboss/standalone/configuration/standalone.xml , delete the line

for the JBoss welcome-content handler:

3. Download IG-7.1.2.war from the ForgeRock BackStage download site.

4. Copy the IG-7.1.2.war to the JBoss deployment directory:

5. Start JBoss as a standalone server:

JBoss deploys IG in the root context.

6. Check that IG is running in one of the following ways:

Ping IG at http://openig.example.com:8080/openig/ping, and make sure an

HTTP 200 is returned.

Access the IG welcome page at http://openig.example.com:8080.

When IG is running in development mode, display the product version and

build information at http://openig.example.com:8080/openig/api/info.

Install IG in JBoss EAP

Download and Start IG in JBoss EAP

<server name="default-server">

<host name="default-host" alias="localhost">

<location name="/" handler="welcome-content"/> <!--

Delete this line -->

$ cp IG-7.1.2.war

/path/to/jboss/standalone/deployments/IG-7.1.2.war

$ /path/to/jboss/bin/standalone.sh

Con�gure Cookie Domains in JBoss EAP

https://developers.redhat.com/products/eap/download/
https://backstage.forgerock.com/downloads
http://openig.example.com:8080/openig/ping
http://openig.example.com:8080/
http://openig.example.com:8080/openig/api/info

25 / 47

To use IG to protect multiple applications running on di�erent hosts, set a cookie domain

as follows:

For stateful sessions, set a cookie domain in JBoss. For information, see the Redhat

documentation about Cookie Domain .

If JwtSession is not con�gured, stateful sessions are created automatically. For more

information, see Sessions.

For stateless sessions, con�gure the domain property of JwtSession. When set, the

JWT cookie can be accessed from di�erent hosts in that domain. When not set, the

JWT cookie can be accessed only from the host where the cookie was created. For

information, see JwtSession.

This section describes how to set up JBoss to run IG over HTTPS. These instructions are

for JBoss EAP 7.3, and are not compatible with earlier versions. For information about the

set up for HTTPS (client-side), see Con�gure IG For HTTPS (Client-Side).

The default ephemeral DH key size in the JVM is 1024-bit. To support stronger ephemeral

DH keys, and protect against weak keys, set the following system property:

jdk.tls.ephemeralDHKeySize=2048 .

Before you start, install IG in JBoss as described in Download and Start IG in JBoss

EAP. JBoss is installed in /path/to/jboss .

1. Set the environment variable JBOSS_HOME in two terminals:

2. In the �rst terminal, create a user with administrative permissions to run the

setup:

3. Make a temporary directory for the settings and keystore:

Con�gure IG for HTTPS (Server-Side) in JBoss EAP

$ export JBOSS_HOME=/path/to/jboss

$ $JBOSS_HOME/bin/add-user.sh myadmin myadmin-password

Added user 'myadmin' to file

'$JBOSS_HOME/standalone/configuration/mgmt-

users.properties'

Added user 'myadmin' to file

'$JBOSS_HOME/domain/configuration/mgmt-users.properties'

$ mkdir $JBOSS_HOME/tmp

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/sect-Cookie_Domain.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#about-sessions
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession
file:///home/pptruser/Downloads/build/site/ig/installation-guide/client-side-https.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-jboss

26 / 47

4. Create the following �le as $JBOSS_HOME/tmp/batch_settings :

5. Generate a key pair with a self-signed certi�cate in the keystore:

6. Start JBoss as a standalone server:

7. While JBoss is running, in the second terminal, update the batch settings:

/socket-binding-group=standard-sockets/socket-

binding=http/:write-attribute(name=port, value=8080)

/socket-binding-group=standard-sockets/socket-

binding=https/:write-attribute(name=port, value=8443)

/socket-binding-group=standard-sockets/socket-

binding=ajp/:write-attribute(name=port, value=8009)

/socket-binding-group=standard-sockets/socket-

binding=management-http/:write-attribute(name=port,

value=9990)

/socket-binding-group=standard-sockets/socket-

binding=management-https/:write-attribute(name=port,

value=9993)

/subsystem=deployment-scanner/scanner=default/:write-

attribute(name="scan-interval", value="2000")

/interface=management/:write-attribute(name="inet-

address",

value="${jboss.bind.address:openig.example.com}")

/interface=public/:write-attribute(name="inet-address",

value="${jboss.bind.address:openig.example.com}")

$ keytool \

-genkey \

-alias jboss \

-storetype PKCS12 \

-keyalg RSA \

-keystore $JBOSS_HOME/tmp/keystore \

-storepass password \

-keypass password \

-dname "CN=openig.example.com,O=Example Corp,C=FR"

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias de�nitions of a KeyStore.

NOTE

$ $JBOSS_HOME/bin/standalone.sh

27 / 47

8. Make sure IG is deployed on port 8080 :

9. Enable SSL:

Enable the SSL server:

10. Access the IG welcome page on https://openig.example.com:8443.

If you see warnings that the site is not secure, or that the self-signed certi�cate is

not valid, respond to the warnings to access the site.

By default, the base location for IG con�guration �les is in the following directory:

1. Linux

2. Windows

$ $JBOSS_HOME/bin/jboss-cli.sh --connect \

--controller=openig.example.com:9990 command="run-batch -v

\

--file=$JBOSS_HOME/tmp/batch_settings"

$ $JBOSS_HOME/bin/jboss-cli.sh --connect \

--controller=openig.example.com:9990 command="deployment

list"

$ $JBOSS_HOME/bin/jboss-cli.sh --connect \

--controller=openig.example.com:9990 command="security

enable-ssl-http-server \

--key-store-path=$JBOSS_HOME/tmp/keystore \

--key-store-password=password \

--key-store-type=PKCS12"

Server reloaded.

SSL enabled for default-server

ssl-context is ssl-context-keystore

key-manager is key-manager-keystore

key-store is keystore

Change the Default Location of the Con�guration Folders

$HOME/.openig

https://openig.example.com:8443/

28 / 47

Change the default base location in the following ways:

Set the IG_INSTANCE_DIR environment variable to the full path to the base location:

1. Linux

2. Windows

For IG running in web container mode, set the ig.instance.dir Java system

property to the full path of the base location. The following example starts Jetty in

the foreground and sets the value of ig.instance.dir :

For IG running in standalone mode, specify the base location as an argument. The

following example reads the con�guration from the config directory under

/path/to/instance-dir :

When IG sends requests over HTTP to a proxied application, or requests services from a

third-party application, IG is acting as a client of the application, and the application is

acting as a server. IG is client-side.

When IG sends requests securely over HTTPS, IG must be able to trust the server. By

default, IG uses the Java environment truststore to trust server certi�cates. The Java

environment truststore includes public key signing certi�cates from many well-known

Certi�cate Authorities (CAs).

When servers present certi�cates signed by trusted CAs, then IG can send requests over

HTTPS to those servers, without any con�guration to set up the HTTPS client connection.

When server certi�cates are self-signed or signed by a CA whose certi�cate is not

automatically trusted, the following objects can be required to con�gure the connection:

KeyStore, to hold the server certi�cates or the CA’s signing certi�cate. See KeyStore.

appdata\OpenIG

$ export IG_INSTANCE_DIR=/path/to/instance-dir

C:> set IG_INSTANCE_DIR=c:\path\to\instance-dir

$ java -Dig.instance.dir=/path/to/instance-dir -jar start.jar

$ /path/to/identity-gateway/bin/start.sh /path/to/instance-dir

Con�gure IG For HTTPS (Client-Side)

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#KeyStore

29 / 47

SecretsTrustManager, to let IG handle the certi�cates in the KeyStore when deciding

whether to trust a server certi�cate. See SecretsTrustManager.

(Optional) KeyManager, to let IG present its certi�cate from the keystore when the

server must authenticate IG as client. See KeyManager.

ClientHandler and ReverseProxyHandler reference to ClientTlsOptions, for

connecting to TLS-protected endpoints. See ClientTlsOptions.

The following procedure describes how to set up IG for HTTPS (client-side), when server

certi�cates are self-signed or signed by untrusted CAs.

Set Up IG for HTTPS (Client-Side) for Untrusted Servers

1. Locate or set up the following directories:

Directory containing the sample application .jar: sampleapp_install_dir

Directory to store the sample application certi�cate and IG keystore:

/path/to/secrets

2. Extract the public certi�cate from the sample application:

The �le /path/to/secrets/tls/sampleapp-cert.pem is created.

3. From the same directory, import the certi�cate into the IG keystore, and answer

yes to trust the certi�cate:

$ cd /path/to/secrets

$ jar --verbose --extract \

--file sampleapp_install_dir/IG-sample-application-

7.1.2.jar tls/sampleapp-cert.pem

inflated: tls/sampleapp-cert.pem

$ keytool -importcert \

-alias ig-sampleapp \

-file tls/sampleapp-cert.pem \

-keystore reverseproxy-truststore.p12 \

-storetype pkcs12 \

-storepass password

...

Trust this certificate? [no]: yes

Certificate was added to keystore

NOTE

file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#SecretsTrustManager
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#KeyManager
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#ClientTlsOptions

30 / 47

4. List the keys in the IG keystore to make sure that a key with the alias ig-

sampleapp is present:

5. In the terminal where you run IG, create an environment variable for the value

of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

a. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias de�nitions of a KeyStore.

NOTE

$ keytool -list \

-v \

-keystore /path/to/secrets/reverseproxy-truststore.p12 \

-storetype pkcs12 \

-storepass password

Keystore type: PKCS12

Keystore provider: SUN

Your keystore contains 1 entry

Alias name: ig-sampleapp

...

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

appdata\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

31 / 47

6. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/client-side-https.json

appdata\OpenIG\config\routes\client-side-https.json

{

"name": "client-side-https",

"condition": "${find(request.uri.path, '/home/client-

side-https')}",

"baseURI": "https://app.example.com:8444",

"heap": [

{

"name": "Base64EncodedSecretStore-1",

"type": "Base64EncodedSecretStore",

"config": {

"secrets": {

"keystore.secret.id": "cGFzc3dvcmQ="

}

}

},

{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/reverseproxy-

truststore.p12",

"storeType": "PKCS12",

"storePassword": "keystore.secret.id",

"secretsProvider": "Base64EncodedSecretStore-1",

"mappings": [

{

"secretId": "trust.manager.secret.id",

"aliases": ["ig-sampleapp"]

}

]

}

},

{

"name": "SecretsTrustManager-1",

"type": "SecretsTrustManager",

32 / 47

Notice the following features of the route:

The route matches requests to /home/client-side-https .

The baseURI changes the request URI to point to the HTTPS port for the

sample application.

The Base64EncodedSecretStore provides the KeyStore password.

The SecretsTrustManager uses a KeyStoreSecretStore to manage the trust

material.

The KeyStoreSecretStore points to the sample application certi�cate. The

password to access the KeyStore is provided by the

SystemAndEnvSecretStore.

The ReverseProxyHandler uses the SecretsTrustManager for the connection

to TLS-protected endpoints. All hostnames are allowed.

7. Test the setup:

Start the sample application

a. Go to http://openig.example.com:8080/home/client-side-https.

"config": {

"verificationSecretId": "trust.manager.secret.id",

"secretsProvider":"KeyStoreSecretStore-1"

}

},

{

"name": "ReverseProxyHandler-1",

"type": "ReverseProxyHandler",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": "SecretsTrustManager-1"

}

},

"hostnameVerifier": "ALLOW_ALL"

},

"capture": "all"

}

],

"handler": "ReverseProxyHandler-1"

}

$ java -jar sampleapp_install_dir/IG-sample-

application-7.1.2.jar

http://openig.example.com:8080/home/client-side-https

33 / 47

The request is proxied transparently to the sample application, on the

TLS port 8444 . Check the route log for GET

https://app.example.com:8444/home/client-side-https .

JwtSession objects store session information in JWT cookies on the user-agent. The

following sections describe how to set authenticated encryption for JwtSession, using

symmetric keys.

Authenticated encryption encrypts data and then signs it with HMAC, in a single step. For

more information, see Authenticated Encryption. For information about JwtSession, see

JwtSession.

This section describes how to set up a keystore with a symmetric key for authenticated

encryption of a JWT session.

1. Generate a keystore to contain the encryption key, where the keystore and the

key have the password password :

2. Add the following route to IG:

1. Linux

2. Windows

Encrypt and Share JWT Sessions

Encrypt JWT Sessions

$ keytool \

-genseckey \

-alias symmetric-key \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype pkcs12 \

-keyalg HmacSHA512 \

-keysize 512

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias de�nitions of a KeyStore.

NOTE

$HOME/.openig/config/routes/jwt-session-encrypt.json

https://app.example.com:8444/home/client-side-https
https://en.wikipedia.org/wiki/Authenticated_encryption/
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession

34 / 47

appdata\OpenIG\config\routes\jwt-session-encrypt.json

{

"name": "jwt-session-encrypt",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePassword": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"reason": "OK",

"headers": {

"Content-Type": ["text/plain"]

35 / 47

Notice the following features of the route:

The route matches requests to /jwt-session-encrypt .

The KeyStoreSecretStore uses the SystemAndEnvSecretStore in the heap to

manage the store password.

The JwtSession uses the KeyStoreSecretStore in the heap to manage the

session encryption secret.

3. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

When a session is shared between multiple instances of IG, the instances are able to

share the session information for load balancing and failover.

This section gives an example of how to set up a deployment with three instances of IG

that share a JwtSession.

},

"entity": "Hello world!"

}

},

"condition": "${request.uri.path == '/jwt-session-

encrypt'}"

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Share JWT Session Between Multiple Instances of IG

36 / 47

R
eq

ue
st

 p
ath

/w
eb

app/b
ro

w
si

ng
 a

nd

/w
eb

app/b
ro

w
si

ng
?on

e

Instance 1
Load balancer

8001

Instance 2
Retrieve session username

8082

Instance 3
Retrieve session username

8083

R
equest path

/w
ebapp/brow

sing?tw
o

All requests

Request path
/log-in-and-generate-session

In this example, IG is running in web container mode.

1. Generate a keystore to contain the encryption key, where the keystore and the

key have the password password :

2. Set up and start the �rst instance of IG, which acts as the load balancer:

Download and install the instance to /path/to/instance1 .

Create a con�guration directory for the instance:

$ keytool \

-genseckey \

-alias symmetric-key \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype pkcs12 \

-keyalg HmacSHA512 \

-keysize 512

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias de�nitions of a KeyStore.

NOTE

37 / 47

a. Add the following route to IG:

1. Linux

2. Windows

$ mkdir $HOME/.instance1/

$HOME/.openig/config/routes/instance1-

loadbalancer.json

appdata\OpenIG\config\routes\instance1-

loadbalancer.json

{

"name": "instance1-loadbalancer",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePassword": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-

1"],

"mappings": [{

"secretId":

"jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

38 / 47

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [{

"condition": "${find(request.uri.path,

'/webapp/browsing') and

(contains(request.uri.query, 'one') or

empty(request.uri.query))}",

"baseURI":

"http://openig.example.com:8082",

"handler": "ReverseProxyHandler"

}, {

"condition": "${find(request.uri.path,

'/webapp/browsing') and contains(request.uri.query,

'two')}",

"baseURI":

"http://openig.example.com:8083",

"handler": "ReverseProxyHandler"

}, {

"condition": "${find(request.uri.path,

'/log-in-and-generate-session')}",

"handler": {

"type": "Chain",

"config": {

"filters": [{

"type": "AssignmentFilter",

"config": {

"onRequest": [{

"target":

"${session.authUsername}",

"value": "Sam Carter"

}]

}

}],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

39 / 47

Notice the following features of the route:

The route has no condition, so it matches all requests.

When the request matches /log-in-and-generate-session , the

DispatchHandler creates a JWT session, whose authUsername

attribute contains the name Sam Carter .

When the request matches /webapp/browsing , the

DispatchHandler dispatches the request to instance 2 or instance

3, depending on the rest of the request path.

1. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

Start the instance on port 8001 :

2. Set up and start the second instance of IG:

Download and install the instance to /path/to/instance2

Create a con�guration directory for the instance:

"headers": {

"Content-Type": ["text/html"]

},

"entity": "<html><body>Sam Carter

logged IN. (JWT session generated)</body></html>"

}

}

}

}

}]

}

},

"capture": "all"

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$ java -jar start.jar -Djetty.http.port=8001 -

Dig.instance.dir=$HOME/.instance1/

$ mkdir $HOME/.instance2/

40 / 47

Add the following route as $HOME/.instance2/config/routes/instance2-

retrieve-session-username.json :

{

"name": "instance2-retrieve-session-username",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePassword": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html"]

},

41 / 47

Notice the following features of the route compared to the route for

instance 1:

The route matches the condition /webapp/browsing . When a request

matches /webapp/browsing , the DispatchHandler dispatches it to

instance 2.

The StaticResponseHandler displays information from the session

context.

3. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

Start the instance on port 8082 :

4. Set up and start the third instance of IG:

Download and install the instance to /path/to/instance3

Create the con�guration directory:

Add the following route as $HOME/.instance3/config/routes/instance3-

retrieve-session-username.json :

"entity": "<html><body>${session.authUsername!=

null?'Hello, '.concat(session.authUsername).concat('

!'):'Session.authUsername is not defined'}! (instance2)

</body></html>"

}

},

"condition": "${find(request.uri.path,

'/webapp/browsing')}",

"capture": "all"

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$ java -jar start.jar -Djetty.http.port=8082 -

Dig.instance.dir=$HOME/.instance2/

$ mkdir $HOME/.instance3/

{

"name": "instance3-retrieve-session-username",

"heap": [{

42 / 47

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePassword": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html"]

},

"entity": "<html><body>${session.authUsername!=

null?'Hello, '.concat(session.authUsername).concat('

!'):'Session.authUsername is not defined'}! (instance3)

</body></html>"

}

},

43 / 47

Notice that the route is the same as instance2.json , apart from the text

in the entity of the StaticResponseHandler.

5. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

Start the instance on port 8083 :

6. Test the setup:

Access instance 1, to generate a session:

Using the JWT cookie returned in the previous step, access the instance 2:

"condition": "${find(request.uri.path,

'/webapp/browsing')}",

"capture": "all"

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$ java -jar start.jar -Djetty.http.port=8083 -

Dig.instance.dir=$HOME/.instance3/

$ curl -v http://openig.example.com:8001/log-in-and-

generate-session**

GET /log-in-and-generate-session HTTP/1.1

...

HTTP/1.1 200 OK

Content-Length: 84

Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com;

HttpOnly

...

Sam Carter logged IN. (JWT session generated)

$ curl -v

http://openig.example.com:8001/webapp/browsing?one --

header "cookie:IG=<JWT cookie>"

GET /webapp/browsing?one HTTP/1.1

...

44 / 47

Note that instance 2 can access the session info.

Using the JWT cookie again, access the instance 3:

Note that instance 3 can access the session info.

For a high scale or highly available deployment, you can prepare a pool of IG servers with

nearly identical con�gurations, and then load balance requests across the pool, routing

around any servers that become unavailable. Load balancing allows the service to handle

more load.

Before you spread requests across multiple servers, however, you must determine what

to do with state information that IG saves in the context, or retrieves locally from the IG

server system. If information is retrieved locally, then consider setting up failover. If one

server becomes unavailable, another server in the pool can take its place. The bene�t of

failover is that a server failure can be invisible to client applications.

IG saves state information in the following ways:

By using a handler, such as a SamlFederationHandler or a custom ScriptableHandler,

that can store information in the context. Most handlers depend on information in

the context, some of which is �rst stored by IG.

By using �lters, such as AssignmentFilters, HeaderFilters, OAuth2ClientFilters,

OAuth2ResourceServerFilters, ScriptableFilters, SqlAttributesFilters, and

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance2)

$ curl -v

http://openig.example.com:8001/webapp/browsing?two --

header "cookie:IG=<JWT cookie>"

GET /webapp/browsing?two HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance3)

Prepare For Load Balancing and Failover

45 / 47

StaticRequestFilters, that can store information in the context. Most �lters depend on

information in the request, response, or context, some of which is �rst stored by IG.

IG retrieves information locally in the following ways:

By using �lters and handlers, such as FileAttributesFilters, ScriptableFilters,

ScriptableHandlers, and SqlAttributesFilters, that depend on local system �les or

container con�guration.

By default, the context data, including storage of the default session implementation,

resides in memory. For information about whether to store session data on the user-

agent instead, see JwtSession.

When using JwtSession with a cookie domain, share the encryption keys and the

signature symmetric secret across all IG con�gurations so that any server can read or

update JWT cookies from any other server in the same cookie domain.

If your data does not �t in an HTTP cookie, for example, because when encrypted it is

larger than 4 KB, consider storing a reference in the cookie, and then retrieve the data by

using another �lter. IG logs warning messages if the JwtSession cookie is too large. Using

a reference can also work when a server becomes unavailable, and the load balancer

must fail requests over to another server in the pool.

If some data attached to a context must be stored on the server-side, then you have

additional con�guration steps to perform for session stickiness and for session

replication. Session stickiness means that the load balancer sends all requests from the

same client session to the same server. Session stickiness helps to ensure that a client

request goes to the server holding the original session data. Session replication involves

writing session data either to other servers or to a data store, so that if one server goes

down, other servers can read the session data and continue processing. Session

replication helps when one server fails, allowing another server to take its place without

having to start the session over again. If you set up session stickiness but not session

replication, when a server crashes, the client session information for that server is lost,

and the client must start again with a new session.

For more information, see About Session Stickiness and Session Replication for Tomcat

and About Session Stickiness and Session Replication for Jetty.

IG is often deployed to replay credentials or other security information. In a real world

deployment, that information must be communicated over a secure connection using

HTTPS, meaning in e�ect HTTP over encrypted Transport Layer Security (TLS). Never send

real credentials, bearer tokens, or other security information unprotected over HTTP.

Secure Connections

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-tomcat.html#stickiness-tomcat
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-jetty.html#stickiness-jetty

46 / 47

When IG is running in web container mode, and acting as a server, the TLS connection is

con�gured in the container. When IG is running in standalone mode, and acting as a

server, the TLS connection is con�gured in admin.json .

When IG is acting as a client, the TLS connection is con�gured in the

ReverseProxyHandler. For details, see Con�gure IG For HTTPS (Client-Side) and

ReverseProxyHandler.

TLS depends on the use of digital certi�cates (public keys). In typical use of TLS, the client

authenticates the server by its X.509 digital certi�cate as the �rst step to establishing

communication. Once trust is established, then the client and server can set up a

symmetric key to encrypt communications.

In order for the client to trust the server certi�cate, the client needs �rst to trust the

certi�cate of the party who signed the server’s certi�cate. This means that either the client

has a trusted copy of the signer’s certi�cate, or the client has a trusted copy of the

certi�cate of the party who signed the signer’s certi�cate.

Certi�cate Authorities (CAs) are trusted signers with well-known certi�cates. Browsers

generally ship with many well-known CA certi�cates. Java distributions also ship with

many well-known CA certi�cates. Getting a certi�cate signed by a well-known CA is often

expensive.

It is also possible for you to self-sign certi�cates. The trade-o� is that although there is no

monetary expense, the certi�cate is not trusted by any clients until they have a copy.

Whereas it is often enough to install a certi�cate signed by a well-known CA in the server

keystore as the basis of trust for HTTPS connections, self-signed certi�cates must also be

installed in all clients.

Like self-signed certi�cates, the signing certi�cates of less well-known CAs are also

unlikely to be found in the default truststore. You might therefore need to install those

signing certi�cates on the client-side as well.

This guide describes how to install self-signed certi�cates, that are suitable for trying out

the software, or for deployments where you manage all clients that access IG. For

information about how to use well-known CA-signed certi�cates, see the documentation

for the Java Virtual Machine (JVM).

After certi�cates are properly installed to allow client-server trust, consider the cipher

suites con�gured for use. The cipher suite determines the security settings for the

communication. Initial TLS negotiations bring the client and server to agreement on

which cipher suite to use. Basically the client and server share their preferred cipher

suites to compare and to choose. If you therefore have a preference concerning the

cipher suites to use, you must set up your deployment to use only your preferred cipher

suites. IG inherits the list of cipher suites from the underlying Java environment.

The Java Secure Socket Extension (JSSE), part of the Java environment, provides security

services that IG uses to secure connections. You can set security and system properties to

file:///home/pptruser/Downloads/build/site/ig/installation-guide/client-side-https.html
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler

47 / 47

con�gure the JSSE. For a list of properties you can use to customize the JSSE in Oracle

Java, see the Customization section of the JSSE Reference Guide.

Copyright © 2010-2023 ForgeRock, all rights reserved.

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9

