
1 / 59

Maintenance Guide

Switching From Development Mode to Production Mode

Auditing Your Deployment

Monitoring Services

Managing Logs

Tuning Performance

Rotating Keys

Troubleshooting

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com.

This guide describes tasks and configurations you might repeat throughout the life cycle

of a deployment in your organization. It is for people who maintain IG services for their

organization.

IG operates in development mode and production mode, as defined inDevelopment

Mode and Production Mode.

After installation, IG is by default in production mode. While you evaluate IG or develop

routes, it can be helpful to switch to development mode as described in Switching from

Production Mode to Development Mode. However, after deployment it is essential to

switch back to production mode to prevent unwanted changes to the configuration.

Maintenance Guide

ON THIS PAGE

Maintenance Guide

Switching From Development Mode to Production Mode

https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#operating-modes
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#dev-mode-switch

2 / 59

1. In $HOME/.openig/config/admin.json (on Windows, appdata

\OpenIG\config), change the value of mode from DEVELOPMENT to

PRODUCTION :

The file changes the operating mode from development mode to production

mode. For more information about the admin.json file, see

AdminHttpApplication (admin.json).

The value set in admin.json overrides any value set by the ig.run.mode

configuration token when it is used in an environment variable or system

property. For information about ig.run.mode , see Configuration Tokens.

2. (Optional) Prevent routes from being reloaded after startup:

To prevent all routes in the configuration from being reloaded, add a

config.json as described in the Getting Started, and configure the

scanInterval property of the main Router.

To prevent individual routes from being reloaded, configure the

scanInterval of the routers in those routes.

For more information, see Router.

3. Restart IG.

When IG starts up, the route endpoints are not displayed in the logs, and are not

available. You can’t access Studio on

http://openig.example.com:8080/openig/studio.

For information about the IG audit framework, see Audit Framework. The following

sections describe how to set up auditing for your deployment:

{

"mode": "PRODUCTION"

}

{

"type": "Router",

"config": {

"scanInterval": "disabled"

}

}

Auditing Your Deployment

file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication
file:///home/pptruser/Downloads/build/site/ig/reference/PropertyValueSubstitution.html#ConfigToken
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Router
http://openig.example.com:8080/openig/studio
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html

3 / 59

For more information about each event handler, see Audit Framework.

This section describes how to record access audit events in a CSV file. For information

about the CSV audit event handler, see CsvAuditEventHandler.

Before you start, prepare IG and the sample application as described in the Getting

Started.

1. Add the following route to IG:

1. Linux

2. Windows

Recording Access Audit Events in CSV

The CSV handler does not sanitize messages when writing to CSV log files.

Do not open CSV logs in spreadsheets or other applications that treat data as code.

IMPORTANT

$HOME/.openig/config/routes/30-csv.json

appdata\OpenIG\config\routes\30-csv.json

{

"name": "30-csv",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/csv-

audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.csv.CsvAuditEventHandler",

"config": {

"name": "csv",

"logDirectory": "/tmp/logs",

"buffering": {

"enabled": "true",

file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#CsvAuditEventHandler
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

4 / 59

The route calls an audit service configuration for publishing log messages to the

CSV file, /tmp/logs/access.csv .

2. When a request matches audit , audit events are logged to the CSV file.

The route uses the ForgeRockClientHandler as its handler, to send the X-

ForgeRock-TransactionId header with its requests to external services.

3. Go to http://openig.example.com:8080/home/csv-audit.

The home page of the sample application is displayed, and the file

/tmp/logs/access.csv is updated.

For information about configuring the JMS event handler, see JmsAuditEventHandler.

Before you start, prepare IG as described in the Getting Started.

1. Download the following files:

ActiveMQ binary. IG is tested with ActiveMQ Classic 5.15.11.

ActiveMQ Client. Use a version that corresponds to your ActiveMQ version.

Apache Geronimo J2EE management bundle.

"autoFlush": "true"

},

"topics": [

"access"

]

}

}

],

"config": { }

}

}

],

"auditService": "AuditService",

"handler": "ForgeRockClientHandler"

}

Recording Access Audit Events With a JMS Audit Event Handler

This procedure is an example of how to record access audit events with a JMS audit

event handler configured to use the ActiveMQ message broker. This example is not

tested on all configurations, and can be more or less relevant to your configuration.

IMPORTANT

http://openig.example.com:8080/home/csv-audit
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#JmsAuditEventHandler
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
https://activemq.apache.org/components/classic/download/
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/

5 / 59

hawtbuf-1.11 JAR.

2. Add the files to the configuration:

For IG in standalone mode, create the directory $HOME/.openig/extra ,

where $HOME/.openig is the instance directory, and add .jar files to the

directory.

For IG in web container mode, add .jar files to the web container classpath.

For example, in Jetty use /path/to/jetty/webapps/ROOT/WEB-INF/lib .

3. Create a consumer that subscribes to the audit topic.

From the ActiveMQ installation directory, run the following command:

4. Add the following route to IG:

1. Linux

2. Windows

$./bin/activemq consumer --destination topic://audit

$HOME/.openig/config/routes/30-jms.json

appdata\OpenIG\config\routes\30-jms.json

{

"name": "30-jms",

"MyCapture" : "all",

"baseURI": "http://app.example.com:8081",

"condition" : "${request.uri.path ==

'/activemq_event_handler'}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers" : [

{

"class" :

"org.forgerock.audit.handlers.jms.JmsAuditEventHandler",

"config" : {

"name" : "jms",

"topics": ["access"],

"deliveryMode" : "NON_PERSISTENT",

"sessionMode" : "AUTO",

https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/

6 / 59

When a request matches the /activemq_event_handler route, this

configuration publishes JMS messages containing audit event data to an

ActiveMQ managed JMS topic, and the StaticResponseHandler displays a

message.

5. Access the route on http://openig.example.com:8080/activemq_event_handler.

Depending on how ActiveMQ is configured, audit events are displayed on the

ActiveMQ console or written to file.

"jndi" : {

"contextProperties" : {

"java.naming.factory.initial" :

"org.apache.activemq.jndi.ActiveMQInitialContextFactory",

"java.naming.provider.url" :

"tcp://openam.example.com:61616",

"topic.audit" : "audit"

},

"topicName" : "audit",

"connectionFactoryName" :

"ConnectionFactory"

}

}

}

],

"config" : { }

}

}

],

"auditService": "AuditService",

"handler" : {

"type" : "StaticResponseHandler",

"config" : {

"status" : 200,

"headers" : {

"Content-Type" : ["text/plain"]

},

"reason" : "found",

"entity" : "Message from audited route"

}

}

}

Recording Access Audit Events With a JSON Audit Event Handler

http://openig.example.com:8080/activemq_event_handler

7 / 59

This section describes how to record access audit events with a JSON audit event handler.

For information about configuring the JSON event handler, see JsonAuditEventHandler.

Record Audit Events With a JSON Audit Event Handler

1. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/30-json.json

appdata\OpenIG\config\routes\30-json.json

{

"name": "30-json",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/json-

audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.JsonAuditEventHandler",

"config": {

"name": "json",

"logDirectory": "/tmp/logs",

"topics": [

"access"

],

"fileRetention": {

"rotationRetentionCheckInterval": "1

minute"

},

"buffering": {

"maxSize": 100000,

"writeInterval": "100 ms"

}

}

}

file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#JsonAuditEventHandler

8 / 59

Notice the following features of the route:

The route calls an audit service configuration for publishing log messages

to the JSON file, /tmp/audit/access.audit.json . When a request

matches /home/json-audit , a single line per audit event is logged to the

JSON file.

The route uses the ForgeRockClientHandler as its handler, to send the X-

ForgeRock-TransactionId header with its requests to external services.

2. Go to http://openig.example.com:8080/home/json-audit.

The home page of the sample application is displayed and the file

/tmp/logs/access.audit.json is created or updated with a message. The

following example message is formatted for easy reading, but it is produced as

a single line for each event:

]

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}

{

"_id": "830...-41",

"timestamp": "2019-...540Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-40",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51666

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": "http://openig.example.com:8080/home/json-

audit",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,/;

http://openig.example.com:8080/home/json-audit

9 / 59

This section describes how to record access audit events to standard output. For more

information about the event handler, see JsonStdoutAuditEventHandler.

Before you start, prepare IG and the sample application as described in the Getting

Started.

1. Add the following route to IG:

1. Linux

2. Windows

q=0.8"],

"host": ["openig.example.com:8080"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 212,

"elapsedTimeUnits": "MILLISECONDS"

}

}

Recording Access Audit Events to Standard Output

$HOME/.openig/config/routes/30-jsonstdout.json

appdata\OpenIG\config\routes\30-jsonstdout.json

{

"name": "30-jsonstdout",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/jsonstdout-audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#JsonStdoutAuditEventHandler
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

10 / 59

Notice the following features of the route:

The route matches requests to /home/jsonstdout-audit .

The route calls the audit service configuration for publishing access log

messages to standard output. When a request matches

/home/jsonstdout-audit , a single line per audit event is logged.

Test the Setup

1. Go to http://openig.example.com:8080/home/jsonstdout-audit.

The home page of the sample application is displayed, and a message like this is

published to standard output:

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}

{

"_id": "830...-61",

"timestamp": "2019-...89Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-60",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51876

},

"server": {

http://openig.example.com:8080/home/jsonstdout-audit

11 / 59

Each audit event is identified by a unique transaction ID that can be communicated across

products and recorded for each local event. By using the transaction ID, requests can be

tracked as they traverse the platform, making it easier to monitor activity and to enrich

reports.

The X-ForgeRock-TransactionId header is automatically set in all outgoing HTTP calls

from one ForgeRock product to another. Customers can also set this header themselves

from their own applications or scripts that call into the ForgeRock Identity Platform.

To reduce the risk of malicious attacks, by default IG does not trust transaction ID

headers from client applications.

If you trust the transaction IDs sent by your client applications, consider setting Java

system property org.forgerock.http.TrustTransactionHeader to true . All incoming

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path":

"http://openig.example.com:8080/home/jsonstdout-audit",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,*/

*;q=0.8"],

"host": ["{gatewayUrl}:8080"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 10,

"elapsedTimeUnits": "MILLISECONDS"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}

Trusting Transaction IDs From Other Products

12 / 59

X-ForgeRock-TransactionId headers are trusted, and monitoring or reporting systems

that consume the logs can allow requests to be correlated as they traverse multiple

servers:

When IG is running in standalone mode, add the following system property in

env.sh :

When IG is running in web container mode, set a Java system property. For

information, see the container documentation.

To prevent logging of sensitive data for an audit event, the Common Audit Framework

uses a safelist to specify which audit event fields appear in the logs.

By default, only safelisted audit event fields are included in the logs. For information

about how to include non-safelisted audit event fields, or exclude safelisted audit event

fields, see Including or Excluding Audit Event Fields In Logs.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for the

audit event content. The following event fields are safelisted:

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId (Available in IG logs from IG 7.2)

/client

/server

/http/request/secure

/http/request/method

/http/request/path

/http/request/headers/accept

/http/request/headers/accept-api-version

Specify a JVM option

TX_HEADER_OPT="-

Dorg.forgerock.http.TrustTransactionHeader=true"

Include it into the JAVA_OPTS environment variable

export JAVA_OPTS="${TX_HEADER_OPT}"

Safelisting Audit Event Fields for the Logs

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#maint-audit-include-exclude

13 / 59

/http/request/headers/content-type

/http/request/headers/host

/http/request/headers/user-agent

/http/request/headers/x-forwarded-for

/http/request/headers/x-forwarded-host

/http/request/headers/x-forwarded-port

/http/request/headers/x-forwarded-proto

/http/request/headers/x-original-uri

/http/request/headers/x-real-ip

/http/request/headers/x-request-id

/http/request/headers/x-requested-with

/http/request/headers/x-scheme

/request

/response

The safelist is designed to prevent logging of sensitive data for audit events by specifying

which audit event fields appear in the logs. You can add or remove messages from the

logs as follows:

To include audit event fields in logs that are not safelisted, configure the includeIf

property of AuditService.

To exclude safelisted audit event fields from the logs, configure the excludeIf

property of AuditService. For an example, see Exclude Safelisted Audit Event Fields

From Logs.

Exclude Safelisted Audit Event Fields From Logs

1. Set up recording for audit events, as described in Recording Access Audit Events

in JSON, and note the audit event fields in the log file access.audit.json .

2. Replace the route 30-json.json with the following route:

Including or Excluding Audit Event Fields In Logs

Before you include non-safelisted audit event fields in the logs, consider the

impact on security. Including some headers, query parameters, or cookies in

the logs could cause credentials or tokens to be logged, and allow anyone with

access to the logs to impersonate the holder of these credentials or tokens.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#proc-audit-exclude
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-json

14 / 59

{

"name": "30-json-excludeif",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/json-

audit-excludeif$')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"config": {

"filterPolicies": {

"field": {

"excludeIf": [

"/access/http/request/headers/host",

"/access/http/request/path",

"/access/server",

"/access/response"

]

}

}

},

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.JsonAuditEventHandler",

"config": {

"name": "json",

"logDirectory": "/tmp/logs",

"topics": [

"access"

],

"fileRetention": {

"rotationRetentionCheckInterval": "1

minute"

},

"buffering": {

"maxSize": 100000,

"writeInterval": "100 ms"

}

}

}

]

}

}

15 / 59

Notice that the AuditService is configured with an excludeIf property to

exclude audit event fields from the logs.

3. Go to http://openig.example.com:8080/home/json-audit-excludeif.

The home page of the sample application is displayed and the file

/tmp/logs/access.audit.json is updated:

4. Compare the audit event fields in access.audit.json with those produced in

Recording Access Audit Events in JSON, and note that the audit event fields

specified by the excludeIf property no longer appear in the logs.

The following sections describe how to set up and maintain monitoring in your

deployment, to ensure appropriate performance and service availability:

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}

{

"_id": "830...-41",

"timestamp": "2019-...540Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-40",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51666

},

"http": {

"request": {

"secure": false,

"method": "GET",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,*/

*;q=0.8"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

}

}

Monitoring Services

http://openig.example.com:8080/home/json-audit-excludeif
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-json

16 / 59

All ForgeRock products automatically expose a monitoring endpoint to expose metrics in

a standard Prometheus format, and as a JSON format monitoring resource.

In IG, metrics are available for each router, subrouter, and route in the configuration.

When a TimerDecorator is configured, timer metrics are also available.

For information about IG monitoring endpoints and available metrics, see Monitoring.

All ForgeRock products automatically expose a monitoring endpoint where Prometheus

can scrape metrics, in a standard Prometheus format.

When IG is set up as described in the Getting Started, the Prometheus Scrape Endpoint is

available at http://openig.example.com:8080/openig/metrics/prometheus.

By default, no special setup or configuration is required to access metrics at this

endpoint. The following example queries the Prometheus Scrape Endpoint for a route.

Tools such as Grafana are available to create customized charts and graphs based on the

information collected by Prometheus. For more information on installing and running

Grafana, see the Grafana website.

1. Add the following route to IG:

1. Linux

2. Windows

Accessing the Monitoring Endpoints

Monitoring at the Prometheus Scrape Endpoint

$HOME/.openig/config/routes/myroute1.json

appdata\OpenIG\config\routes\myroute1.json

{

"name": "myroute1",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"reason": "OK",

"headers": {

"Content-Type": ["text/plain"]

},

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://openig.example.com:8080/openig/metrics/prometheus
https://grafana.com/

17 / 59

The route contains a StaticResponseHandler to display a simple message.

2. Access the route a few times, on http://openig.example.com:8080/myroute1.

3. Query the Prometheus Scrape Endpoint:

Metrics for myroute1 and _router are displayed:

"entity": "Hello world, from myroute1!"

}

},

"condition": "${find(request.uri.path, '^/myroute1')}"

}

$ curl

"http://openig.example.com:8080/openig/metrics/prometheus"

HELP ig_router_deployed_routes Generated from Dropwizard

metric import (metric=gateway._router.deployed-routes,

type=gauge)

TYPE ig_router_deployed_routes gauge

ig_router_deployed_routes{fully_qualified_name="gateway._r

outer",heap="gateway",name="_router",} 1.0

HELP ig_route_request_active Generated from Dropwizard

metric import

(metric=gateway._router.route.default.request.active,

type=gauge)

TYPE ig_route_request_active gauge

ig_route_request_active{name="default",route="default",rou

ter="gateway._router",} 0.0

HELP ig_route_request_active Generated from Dropwizard

metric import

(metric=gateway._router.route.myroute1.request.active,

type=gauge)

TYPE ig_route_request_active gauge

ig_route_request_active{name="myroute1",route="myroute1",r

outer="gateway._router",} 0.0

HELP ig_route_request_total Generated from Dropwizard

metric import

(metric=gateway._router.route.default.request,

type=counter)

TYPE ig_route_request_total counter

ig_route_request_total{name="default",route="default",rout

er="gateway._router",} 0.0

HELP ig_route_response_error Generated from Dropwizard

http://openig.example.com:8080/myroute1

18 / 59

In standalone mode, Vert.x monitoring is enabled by default to provide

additional metrics for HTTP, TCP, and the internal component pool. The metrics

provide low-level information about requests and responses, such as the

number of bytes, duration, the number of concurrent requests, and so on.

All ForgeRock products expose a monitoring endpoint where metrics are exposed as a

JSON format monitoring resource.

When IG is set up as described in Getting Started, the Common REST Monitoring Endpoint

is available at http://openig.example.com:8080/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=true

By default, no special setup or configuration is required to access metrics at this

endpoint. The following example queries the Common REST Monitoring Endpoint for a

route, and restricts the query to specific metrics only.

Before you start, prepare IG as described in the Getting Started.

1. Set up IG and some example routes, as described in the first few steps of

Monitor the Prometheus Scrape Endpoint.

metric import

(metric=gateway._router.route.default.response.error,

type=counter)

TYPE ig_route_response_error counter

ig_route_response_error{name="default",route="default",rou

ter="gateway._router",} 0.0

HELP ig_route_response_null Generated from Dropwizard

metric import

(metric=gateway._router.route.default.response.null,

type=counter)

TYPE ig_route_response_null counter

ig_route_response_null{name="default",route="default",rout

er="gateway._router",} 0.0

HELP ig_route_response_status_total Generated from

Dropwizard metric import

(metric=gateway._router.route.default.response.status.clie

nt_error, type=counter)

TYPE ig_route_response_status_total counter

ig_route_response_status_total{family="client_error",name=

"default",route="default",router="gateway._router",} 0.0

...

Monitoring the Common REST Monitoring Endpoint

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://openig.example.com:8080/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/monitoring.html#proc-monitor-prometheus

19 / 59

2. Query the Common REST Monitoring Endpoint:

Metrics for myroute1 and _router are displayed:

$ curl "http://openig.example.com:8080/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=true"

{

"result" : [{

"_id" : "gateway._router.deployed-routes",

"value" : 1.0,

"_type" : "gauge"

}, {

"_id" : "gateway._router.route.default.request",

"count" : 204,

"_type" : "counter"

}, {

"_id" : "gateway._router.route.default.request.active",

"value" : 0.0,

"_type" : "gauge"

}, {

. . .

_id" :

"gateway._router.route.myroute1.response.status.unknown",

"count" : 0,

"_type" : "counter"

}, {

"_id" : "gateway._router.route.myroute1.response.time",

"count" : 204,

"max" : 0.420135,

"mean" : 0.08624678327176545,

"min" : 0.045079999999999995,

"p50" : 0.070241,

"p75" : 0.096049,

"p95" : 0.178534,

"p98" : 0.227217,

"p99" : 0.242554,

"p999" : 0.420135,

"stddev" : 0.046611762381930474,

"m15_rate" : 0.2004491450567003,

"m1_rate" : 2.8726563452698075,

"m5_rate" : 0.5974045160056258,

20 / 59

In standalone mode, Vert.x monitoring is enabled by default to provide

additional metrics for HTTP, TCP, and the internal component pool. The metrics

provide low-level information about requests and responses, such as the

number of bytes, duration, the number of concurrent requests, and so on.

3. Change the query to access metrics only for myroute1 :

http://openig.example.com:8080/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+"gateway._router.route.

myroute1";.

Note that metric for the router, "_id" : "gateway._router.deployed-

routes" , is no longer displayed.

Supported only for IG in standalone mode.

In standalone mode, Vert.x monitoring is enabled by default to provide metrics for HTTP,

TCP, and the internal component pool. The metrics provide low-level information about

requests and responses, such as the number of bytes, duration, the number of

concurrent requests, and so on.

To disable Vert.x monitoring, add the following lines to admin.json , and restart IG:

For more information, see AdminHttpApplication (admin.json).

"mean_rate" : 0.010877725092634833,

"duration_units" : "milliseconds",

"rate_units" : "calls/second",

"total" : 17.721825,

"_type" : "timer"

}],

"resultCount" : 11,

"pagedResultsCookie" : null,

"totalPagedResultsPolicy" : "EXACT",

"totalPagedResults" : 11,

"remainingPagedResults" : -1

}

Monitoring Vert.x Metrics

{

"vertx": {

"metricsEnabled": false

}

}

http://openig.example.com:8080/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication

21 / 59

By default, no special credentials or privileges are required for read-access to the

Prometheus Scrape Endpoint and Common REST Monitoring Endpoint.

To protect the monitoring endpoints, add an admin.json file to your configuration, with

a filter declared in the heap and named MetricsProtectionFilter . The following

procedure gives an example of how to manage access to the monitoring endpoints.

1. Add the following script to the IG configuration as

$HOME/.openig/scripts/groovy/BasicAuthResourceServerFilter.groovy

(on Windows, appdata

\OpenIG\scripts\groovy\BasicAuthResourceServerFilter.groovy):

Protecting the Monitoring Endpoints

/*

* Copyright 2020 ForgeRock AS. All Rights Reserved

*

* Use of this code requires a commercial software

license with ForgeRock AS.

* or with one of its affiliates. All use shall be

exclusively subject

* to such license between the licensee and ForgeRock

AS.

*/

/**

* This script is a simple implementation of HTTP Basic

Authentication on

* server side.

* It expects the following arguments:

* - realm: the realm to display when the user-agent

prompts for

* username and password if none were provided.

* - username: the expected username

* - password: the expected password

*/

import static

org.forgerock.util.promise.Promises.newResultPromise;

import java.nio.charset.Charset;

import org.forgerock.util.encode.Base64;

String authorizationHeader =

22 / 59

The script is a simple implementation of the HTTP Basic Authentication

mechanism.

For information about scripting filters and handlers, see Extend IG.

2. Add the following route to IG:

1. Linux

2. Windows

1. Standalone mode

2. Web container mode

request.getHeaders().getFirst("Authorization");

if (authorizationHeader == null) {

// No credentials provided, reply that they are

needed.

Response response = new

Response(Status.UNAUTHORIZED);

response.getHeaders().put("WWW-Authenticate",

"Basic realm=\"" + realm + "\"");

return newResultPromise(response);

}

String expectedAuthorization = "Basic " +

Base64.encode((username + ":" +

password).getBytes(Charset.defaultCharset()))

if (!expectedAuthorization.equals(authorizationHeader))

{

return newResultPromise(new

Response(Status.FORBIDDEN));

}

// Credentials are as expected, let's continue

return next.handle(context, request);

$HOME/.openig/config/admin.json

appdata\OpenIG\config\admin.json

{

"prefix": "openig",

"connectors": [

{ "port": 8080 }

],

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html

23 / 59

3. Restart IG to reload the configuration.

"heap": [

{

"name": "ClientHandler",

"type": "ClientHandler"

},

{

"name": "MetricsProtectionFilter",

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "BasicAuthResourceServerFilter.groovy",

"args": {

"realm": "/",

"username": "metric",

"password": "password"

}

}

}

]

}

{

"heap": [{

"name": "ClientHandler",

"type": "ClientHandler"

}, {

"name": "MetricsProtectionFilter",

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "BasicAuthResourceServerFilter.groovy",

"args": {

"realm": "/",

"username": "metric",

"password": "password"

}

}

}],

"prefix": "openig"

}

24 / 59

Log messages in IG and third-party dependencies are recorded using the Logback

implementation of the Simple Logging Facade for Java (SLF4J) API. The following log levels

are supported: TRACE , DEBUG , INFO , WARN , ERROR , ALL , and OFF . For a full description

of the options for logging, see the Logback website.

By default, log messages are recorded with the following configuration:

When IG starts, log messages for IG and third-party dependencies, such as the

ForgeRock Common Audit framework, are displayed on the console and written to

$HOME/.openig/logs/route-system.log , where $HOME/.openig is the instance

directory.

When a route is accessed, log messages for requests and responses passing through

the route are written to a log file in $HOME/.openig/logs , and named by the route

name or filename, where $HOME/.openig is the instance directory.

For more information, see Capturing Log Messages for Routes and

CaptureDecorator.

By default, log messages with the level INFO or higher are recorded, with the titles

and the top line of the stack trace. Messages on the console are highlighted with a

color related to their log level.

The content and format of logs in IG is defined by the reference logback.xml delivered

with IG. This file defines the following configuration items for logs:

A root logger to set the overall log level, and to write all log messages to the SIFT

and STDOUT appenders.

A STDOUT appender to define the format of log messages on the console.

A SIFT appender to separate log messages according to the key routeId , to define

when log files are rolled, and to define the format of log messages in the file.

An exception logger, called LogAttachedExceptionFilter , to write log messages for

exceptions attached to responses.

Managing Logs

Default Logging Behavior

<?xml version="1.0" encoding="UTF-8"?>

<!--

Copyright 2016-2022 ForgeRock AS. All Rights Reserved

Use of this code requires a commercial software license with

ForgeRock AS.

or with one of its affiliates. All use shall be exclusively

http://logback.qos.ch/index.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html#logging-capture
file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html#CaptureDecorator

25 / 59

subject

to such license between the licensee and ForgeRock AS.

-->

<configuration>

<!--

Prevent log flow attacks, by limiting repeated log messages.

Configuration properties:

* AllowedRepetitions (int): Threshold above which repeated

messages are no longer logged.

* CacheSize (int): When CacheSize is reached, remove the

oldest entry.

-->

<!--<turboFilter

class="ch.qos.logback.classic.turbo.DuplicateMessageFilter" />-->

<!-- Allow configuration of JUL loggers within this file,

without performance impact -->

<contextListener

class="ch.qos.logback.classic.jul.LevelChangePropagator" />

<appender name="STDOUT"

class="ch.qos.logback.core.ConsoleAppender">

<encoder>

<pattern>%nopex[%thread] %highlight(%-5level)

%boldWhite(%logger{35}) @%mdc{routeId:-system} -

%replace(%message){'([\r\n])(.)',

'$1[CONTINUED]$2'}%n%highlight(%replace(%rootException{short})

{'(^|[\r\n])(.)', '$1[CONTINUED]$2'})</pattern>

</encoder>

</appender>

<appender name="SIFT"

class="ch.qos.logback.classic.sift.SiftingAppender">

<discriminator>

<key>routeId</key>

<defaultValue>system</defaultValue>

</discriminator>

<sift>

<!-- Create a separate log file for each <key> -->

<appender name="FILE-${routeId}"

class="ch.qos.logback.core.rolling.RollingFileAppender">

<file>${instance.dir}/logs/route-${routeId}.log</file>

26 / 59

To change the logging behavior, create a new logback file at

$HOME/.openig/config/logback.xml , and restart IG. The custom Logback file overrides

the default configuration.

To take into account edits to logback.xml , stop and restart IG, or edit the

configuration parameter to add a scan and an interval:

<rollingPolicy

class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy"

>

<!-- Rotate files daily -->

<fileNamePattern>${instance.dir}/logs/route-${routeId}-

%d{yyyy-MM-dd}.%i.log</fileNamePattern>

<!-- each file should be at most 100MB, keep 30 days

worth of history, but at most 3GB -->

<maxFileSize>100MB</maxFileSize>

<maxHistory>30</maxHistory>

<totalSizeCap>3GB</totalSizeCap>

</rollingPolicy>

<encoder>

<pattern>%nopex%date{"yyyy-MM-dd'T'HH:mm:ss,SSSXXX",

UTC} | %-5level | %thread | %logger{20} | @%mdc{routeId:-system}

| %replace(%message%n%xException){'([\r\n])(.)',

'$1[CONTINUED]$2'}</pattern>

</encoder>

</appender>

</sift>

</appender>

<!-- Disable logs of exceptions attached to responses by

defining 'level' to OFF -->

<logger

name="org.forgerock.openig.filter.LogAttachedExceptionFilter"

level="INHERITED" />

<root level="${ROOT_LOG_LEVEL:-INFO}">

<appender-ref ref="SIFT" />

<appender-ref ref="STDOUT" />

</root>

</configuration>

Using a Custom Logback File

27 / 59

The logback.xml file is scanned after both of the following criteria are met:

The specified number of logging operations have occurred, where the default is 16.

The scanPeriod has elapsed.

If the custom logback.xml contains errors, messages like these are displayed on the

console but log messages are not recorded:

The global log level is set by default to INFO by the following line of the default

logback.xml :

When IG is running in standalone mode, change the global log level as follows:

To persist the log level for all future IG instances:

Add an environment variable in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory:

Alternatively, add a system property in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory:

If both an environment variable and system property is set, the system property

takes precedence.

To persist the log level for IG instances launched from the same shell, add an

environment variable in the shell before you start IG:

<configuration scan="true" scanPeriod="5 seconds">

14:38:59,667 |-ERROR in

ch.qos.logback.core.joran.spi.Interpreter@20:72 …​

14:38:59,690 |-ERROR in

ch.qos.logback.core.joran.action.AppenderRefAction …​

Changing the Global Log Level

<root level="${ROOT_LOG_LEVEL:-INFO}">

export ROOT_LOG_LEVEL=DEBUG

export JAVA_OPTS="-DROOT_LOG_LEVEL=DEBUG"

$ export ROOT_LOG_LEVEL=DEBUG

28 / 59

To persist the log level for a single IG instance:

When IG is running in web container mode, add an environment variable on the

command line when you start the web container:

1. Linux

2. Windows

To change the log level for a single object type without changing it for the rest of the

configuration, edit logback.xml to add a logger defined by the fully qualified class name

or package name of the object, and set its log level.

The following line in logback.xml sets the ClientHandler log level to ERROR , but does

not change the log level of other classes or packages:

To facilitate debugging, in logback.xml add loggers defined by the fully qualified

package name or class name of the object. For example, add loggers for the following

areas:

Expression resolution org.forgerock.openig.el

org.forgerock.openig.resolver

Session management with

JwtSession

org.forgerock.openig.jwt

OAuth 2.0 and OpenID

Connect and token

resolution and validation

org.forgerock.openig.filter.oauth2

$ /path/to/identity-gateway/bin/start.sh $HOME/.openig

$ ROOT_LOG_LEVEL=DEBUG /path/to/identity-gateway/bin/start.sh

$HOME/.openig

$ export ROOT_LOG_LEVEL=DEBUG

C:> set ROOT_LOG_LEVEL=DEBUG

Changing the Log Level for Different Object Types

<logger name="org.forgerock.openig.handler.ClientHandler"

level="ERROR" />

29 / 59

AM policies, SSO, CDSSO,

and user profiles

org.forgerock.openig.openam

org.forgerock.openig.tools

SAML org.forgerock.openig.handler.saml

UMA org.forgerock.openig.uma

WebSocket tunnelling org.forgerock.openig.websocket

Secret resolution org.forgerock.secrets.propertyresolver

org.forgerock.secrets.jwkset

org.forgerock.secrets.keystore

org.forgerock.secrets.oauth2

org.forgerock.openig.secrets.Base64EncodedSecret

Store

AllowOnlyFilter org.forgerock.openig.filter.allow.AllowOnlyFilte

r.<filter_name>

Condition of a route org.forgerock.openig.handler.router.RouterHandle

r

To change the format of log messages, edit logback.xml to change the pattern of the log

messages in the encoder part of the SIFT appender.

The following lines add the date to log messages:

For more information about what information you can include in the logs, and its format,

see PatternLayoutEncoder and Layouts in the Logback documentation.

The logger object provides access to a unique SLF4J logger instance for scripts. Events are

logged as defined in by a dedicated logger in logback.xml , and are included in the logs

with the name of with the scriptable object.

To log events for scripts:

Changing the Log Message Format

<encoder>

<pattern>%d{yyyyMMdd-HH:mm:ss} | %-5level | %thread |

%logger{20} | %message%n%xException</pattern>

</encoder>

Logging In Scripts

https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/layouts.html
https://www.slf4j.org/api/org/slf4j/Logger.html

30 / 59

Add logger objects to the script to enable logging at different levels. For example,

add some of the following logger objects:

Add a logger to logback.xml to reference the scriptable object and set the log level.

The logger is defined by the type and name of the scriptable object that references

the script, as follows:

ScriptableFilter:

org.forgerock.openig.filter.ScriptableFilter.filter_name

ScriptableHandler:

org.forgerock.openig.handler.ScriptableHandler.handler_name

ScriptableThrottlingPolicy:

org.forgerock.openig.filter.throttling.ScriptableThrottlingPolicy.th

rottling_policy_name

ScriptableAccessTokenResolver:

org.forgerock.openig.filter.oauth2.ScriptableAccessTokenResolver.acc

ess_token_resolver_name

For example, the following logger logs trace-level messages for a ScriptableFilter named

cors_filter :

The resulting messages in the logs contain the name of the scriptable object:

During setup and configuration, it can be helpful to display log messages from the

BaseUriDecorator. To record a log message each time a request URI is rebased , edit

logback.xml to add a logger defined by the fully qualified class name of the

BaseUriDecorator appended by the name of the baseURI decorator:

logger.error("ERROR")

logger.warn("WARN")

logger.info("INFO")

logger.debug("DEBUG")

logger.trace("TRACE")

<logger

name="org.forgerock.openig.filter.ScriptableFilter.cors_filter"

level="TRACE" />

14:54:38:307 | TRACE | http-nio-8080-exec-6 |

o.f.o.f.S.cors_filter | TRACE

Logging the BaseUriDecorator

31 / 59

Each time a request URI is rebased, a log message similar to this is created:

To stop recording log messages for exceptions, edit logback.xml to set the level to OFF :

To capture the context or entity of inbound and outbound messages for a route, or for an

individual handler or filter in the route, configure a CaptureDecorator. Captured

information is written to SLF4J logs.

For more information about the decorator configuration, see CaptureDecorator.

Studio provides an easy way to capture messages while developing your configuration.

The following image illustrates the capture points where you can log messages on a

route:

<logger

name="org.forgerock.openig.decoration.baseuri.BaseUriDecorator.ba

seURI" level="TRACE" />

12:27:40| TRACE | http-nio-8080-exec-3 | o.f.o.d.b.B.b.

{Router}/handler| Rebasing request to http://app.example.com:8081

Switching Off Exception Logging

<logger

name="org.forgerock.openig.filter.LogAttachedExceptionFilter"

level="OFF" />

Capturing the Context or Entity of Messages for Routes

During debugging, consider using a CaptureDecorator to capture the entity and

context of requests and responses. However, increased logging consumes resources,

such as disk space, and can cause performance issues. In production, reduce logging

by disabling the CaptureDecorator properties captureEntity and

captureContext , or setting maxEntityLength .

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html#CaptureDecorator

32 / 59

Inbound requests

ForgeRock Identity Platform

User agent
Protected

application
ForgeRock Identity Gateway

Inbound responses

Outbound requests

Outbound responses

ForgeRock Identity Platform requests ForgeRock Identity Platform responses

Figure 1. Capturing Log Messages for Routes

Capture Messages on a Route in Studio

1. In Studio, select  ROUTES, and then select a route with the  icon.

2. On the left side of the screen, select  Capture, and then select capture options.

You can capture the body and context of messages passing to and from the user

agent, the protected application, and the ForgeRock Identity Platform.

3. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the route

is there.

4. Access the route, and then check $HOME/.openig/logs for a log file named by

the route, where $HOME/.openig is the instance directory. The log file should

contain the messages defined by your capture configuration.

To keep log files clean and readable, and to prevent log flow attacks, limit the number of

repeat log messages. Add a custom logback.xml with a DuplicateMessageFilter . This

filter detects duplicate messages, and after the specified number of repetitions, drops

repeated messages.

The following example allows 5 repetitions of a log message, and holds the last 10

repeated messages in the cache:

The DuplicateMessageFilter has the following limitations:

Limit Repetitive Log Messages

<turboFilter

class="ch.qos.logback.classic.turbo.DuplicateMessageFilter"

allowedRepetitions="5" CacheSize="10" />

33 / 59

Filters out all duplicate messages. It does not filter per logger, or logger instance, or

logger name.

Detects repetition of raw messages, meaning that the following example messages

are considered as repetition:

Does not limit the lifespan of the cache. After the specified number of repetitions is

reached, the repeated log messages never appear again, even if they are frequently

hit.

Tune deployments in the following steps:

1. Consider the issues that impact the performance of a deployment. See Defining

Performance Requirements and Constraints.

2. Tune and test the downstream servers and applications:

a. Tune the downstream web container and JVM to achieve performance targets.

b. Test downstream servers and applications in a pre-production environment,

under the expected load, and with common use cases.

c. Make sure that the configuration of the downstream web container can form the

basis for IG and its container.

3. Tune IG and its web container:

a. Optimize IG performance, throughput, and response times. See Tuning IG.

b. Configure IG connections to downstream services and protected applications.

See Tuning the ClientHandler/ReverseProxyHandler.

c. Configure connections in the IG web container. See Tuning IG’s Tomcat

Container.

d. Configure the IG JVM to support the required throughput. See Tuning IG’s JVM.

4. Increase hardware resources as required, and then re-tune the deployment.

The following figure shows an example configuration for IG, its container, and the

container for the protected app:

logger.debug("Hello {}.", name0);

logger.debug("Hello {}.", name1);

Tuning Performance

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-req
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-IG
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-ClientHandler
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-tomcat
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-java

34 / 59

When you consider performance requirements, bear in mind the following points:

The capabilities and limitations of downstream services or applications on your

performance goals.

The increase in response time due to the extra network hop and processing, when IG

is inserted as a proxy in front of a service or application.

The constraint that downstream limitations and response times places on IG and its

container.

A service level objective (SLO) is a target that you can measure quantitatively. Where

possible, define SLOs to set out what performance your users expect. Even if your first

version of an SLO consists of guesses, it is a first step towards creating a clear set of

measurable goals for your performance tuning.

When you define SLOs, bear in mind that IG can depend on external resources that can

impact performance, such as AM’s response time for token validation, policy evaluation,

and so on. Consider measuring remote interactions to take dependencies into account.

Consider defining SLOs for the following metrics of a route:

Average response time for a route.

The response time is the time to process and forward a request, and then receive,

process, and forward the response from the protected application.

The average response time can range from less than a millisecond, for a low latency

connection on the same network, to however long it takes your network to deliver

Defining Performance Requirements and Constraints

Service Level Objectives

35 / 59

the response.

Distribution of response times for a route.

Because applications set timeouts based on worst case scenarios, the distribution of

response times can be more important than the average response time.

Peak throughput.

The maximum rate at which requests can be processed at peak times. Because

applications are limited by their peak throughput, this SLO is arguably more

important than an SLO for average throughput.

Average throughput.

The average rate at which requests are processed.

Metrics are returned at the monitoring endpoints. For information about monitoring

endpoints, see Monitoring. For examples of how to set up monitoring in IG, see

Monitoring Services.

With your defined SLOs, inventory the server, networks, storage, people, and other

resources. Estimate whether it is possible to meet the requirements, with the resources at

hand.

Before you can improve the performance of your deployment, establish an accurate

benchmark of its current performance. Consider creating a deployment scenario that you

can control, measure, and reproduce.

For information about running benchmark tests on IG as part of ForgeOps, refer to

ForgeOps' CDM Benchmarks.

Consider the following recommendations for improving performance, throughput, and

response times. Adjust the tuning to your system workload and available resources, and

then test suggestions before rolling them out into production.

Log messages in IG and third-party dependencies are recorded using the Logback

implementation of the Simple Logging Facade for Java (SLF4J) API. By default, logging

level is INFO.

Available Resources

Benchmarks

Tuning IG

Logs

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/monitoring.html
https://backstage.forgerock.com/docs/forgeops/7.1/deployment/benchmark/overview.html/

36 / 59

To reduce the number of log messages, consider setting the logging level to error . For

information, see Managing Logs.

IG creates a TemporaryStorage object to buffer content during processing. For

information about this object and its default values, see TemporaryStorage.

Messages bigger than the buffer size are written to disk, consuming I/O resources and

reducing throughput.

The default size of the buffer is 64 KB. If the number of concurrent messages in your

application is generally bigger than the default, consider allocating more heap memory or

changing the initial or maximum size of the buffer.

To change the values, add a TemporaryStorage object named TemporaryStorage , and

use non-default values.

When caches are enabled, IG can reuse cached information without making additional or

repeated queries for the information. This gives the advantage of higher system

performance, but the disadvantage of lower trust in results.

During service downtime, the cache is not updated, and important notifications can be

missed, such as for the revocation of tokens or the update of policies, and IG can

continue to use outdated tokens or policies.

When caches are disabled, IG must query a data store each time it needs data. This gives

the disadvantage of lower system performance, and the advantage of higher trust in

results.

When you configure caches in IG, make choices to balance your required performance

with your security needs.

IG provides the following caches:

Session cache

After a user authenticates with AM, this cache stores information about the session. IG

can reuse the information without asking AM to verify the session token (SSO token or

CDSSO token) for each request.

If WebSocket notifications are enabled, the cache evicts entries based on session

notifications from AM, making the cache content more accurate (trustable).

By default, the session information is not cached. To increase performance, consider

enabling and configuring the cache. For more information, see sessionCache in

AmService.

Buffering Message Content

Cache

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#TemporaryStorage
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#AmService

37 / 59

Policy cache

After an AM policy decision, this cache stores the decision. IG can reuse the policy

decision without repeatedly asking AM for a new policy decision.

If WebSocket notifications are enabled, the cache evicts entries based on policy

notifications from AM, making the cache content more accurate (trustable).

By default, policy decisions are not cached. To increase performance, consider

enabling and configuring the cache. For more information, see

PolicyEnforcementFilter.

User profile cache

When the UserProfileFilter retrieves user information, it caches it. IG can reuse the

cached data without repeatedly querying AM to retrieve it.

By default, profile attributes are not cached. To increase performance, consider

enabling and configuring the cache. For more information, see UserProfileFilter.

Access token cache

After a user presents an access_token to the OAuth2ResourceServerFilter, this cache

stores the token. IG can reuse the token information without repeatedly asking the

authorization server to verify the access_token for each request.

By default, access_tokens are not cached. To increase performance by caching

access_tokens, consider configuring a cache in one of the following ways:

Configure a CacheAccessTokenResolver for a cache based on Caffeine. For more

information, see CacheAccessTokenResolver.

Configure the cache property of OAuth2ResourceServerFilter. For more

information, see OAuth2ResourceServerFilter

Open ID Connect user information cache

When a downstream filter or handler needs user information from an OpenID

Connect provider, IG fetches it lazily. By default, IG caches the information for 10

minutes to prevent repeated calls over a short time.

For more information, see cacheExpiration in OAuth2ClientFilter.

All caches provide similar configuration properties for timeout, defining the duration to

cache entries. When the timeout is lower, the cache is evicted more frequently, and

consequently, the performance is lower but the trust in results is higher. Consider your

requirements for performance and security when you configure the timeout properties

for each cache.

By default, IG receives WebSocket notifications from AM for the following events:

WebSocket Notifications

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#PolicyEnforcementFilter
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#UserProfileFilter
file:///home/pptruser/Downloads/build/site/ig/reference/AccessTokenResolvers.html#CacheAccessTokenResolver
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#OAuth2ResourceServerFilter
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#OAuth2ClientFilter

38 / 59

When a user logs out of AM, or when the AM session is modified, closed, or times

out. IG can use WebSocket notifications to evict entries from the session cache.

For an example of setting up session cache eviction, see Use WebSocket Notifications

to Evict the Session Info Cache.

When AM creates, deletes, or changes a policy decision. IG can use WebSocket

notifications to evict entries from the policy cache.

For an example of setting up cache eviction, see Using WebSocket Notifications to

Evict the Policy Cache.

If the WebSocket connection is lost, during the time the WebSocket is not connected, IG

behaves as follows:

Responds to session service calls with an empty SessionInfo result.

When the SingleSignOn filter recieves an empty SessionInfo call, it concludes that the

user is not logged in, and triggers a login redirect.

Responds to policy evaluations with a deny policy result.

By default, IG waits for five seconds before trying to re-establish the connection. If it can’t

re-establish the connection, it keeps trying every five seconds.

To disable WebSocket notifications, or change any of the parameters, configure the

notifications property in AmService. For information, see AmService.

The ClientHandler/ReverseProxyHandler communicates as a client to a downstream

third-party service or protected application. The performance of the communication is

determined by the following parameters:

The number of available connections to the downstream service or application.

Number of IG worker threads allocated to service inbound requests, and manage

propagation to the downstream service or application.

The connection timeout, or maximum time to connect to a server-side socket, before

timing out and abandoning the connection attempt.

The socket timeout, or the maximum time a request is expected to take before a

response is received, after which the request is deemed to have failed.

Configure IG in conjunction with the Tomcat container, as follows:

Tuning the ClientHandler/ReverseProxyHandler

ClientHandler/ReverseProxyHandler Tuning in Web Container Mode

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html#evict-session-cache
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep.html#pep-evict-cache
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#AmService

39 / 59

For BIO Connector (Tomcat 3.x to 8.x), configure maxThreads in Tomcat to be close

to the number of configured Tomcat connections.

Because IG uses an asynchronous threading model, the numberOfWorkers in

ClientHandler/ReverseProxyHandler can be much lower. The asynchronous threads

are freed up immediately after the request is propagated, and can service another

blocking Tomcat request thread.

To take advantage of IG’s asynchronous thread model, configure Tomcat to use a

non-blocking, NIO or NIO2 connector, instead of a BIO connector.

For NIO connectors, align numberOfWorkers in IG with maxThreads in Tomcat.

Because NIO connectors use an asynchronous threading model, the maxThreads in

Tomcat can be much lower than for a BIO connector.

To identify the throughput plateau, test in a pre-production performance environment,

with realistic use cases. Increment numberOfWorkers from its default value of one thread

per JVM core, up to a large maximum value based on the number of concurrent

connections.

Configure IG in conjunction with IG’s first-class Vert.x configuration, and the vertx

property of admin.json . For more information, see AdminHttpApplication (admin.json).

Vert.x Options for Tuning

Object Vert.x Option Description

IG (first-class) gatewayUnits The number of Vert.x

Verticle instances to

deploy. Each instance

operates on the same port

on its own event-loop

thread. This setting

effectively determines the

number of cores that IG

operates across, and

therefore, the number of

available threads.

Default: The number of

cores.

ClientHandler/ReverseProxyHandler Tuning in Standalone Mode

file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication

40 / 59

Object Vert.x Option Description

root.vertx eventLoopPoolSize The number of available

event-loop threads to be

supplied to instances.

Specify a value greater

than that for

gatewayUnits .

Default: 20

root.connectors.

<connector>.vertx

acceptBacklog The maximum number of

connections to queue

before refusing requests.

sendBufferSize TCP connection send

buffer size. Set this

property according to the

available RAM and

required number of

concurrent connections.

receiveBufferSize TCP receive buffer size. Set

this property according to

the available RAM and

required number of

concurrent connections.

Vert.x Options for Troubleshooting Performance

Object Vert.x Option Description

41 / 59

Object Vert.x Option Description

root.vertx blockedThreadCheckInter

val and

blockedThreadCheckInter

valUnit

Interval at which Vert.x

checks for blocked threads

and logs a warning.

Default: One second.

maxEventLoopExecuteTim

e and

maxEventLoopExecuteTime

Unit

Maximum time executing

before Vert.x logs a

warning.

Default: Two seconds.

warningExceptionTime

and

warningExceptionTimeUni

t

Threshold at which

warning logs are

accompanied by a stack

trace to identify causes.

Default: Five seconds.

logActivity Log network activity.

Configure the Tomcat container in conjunction with IG, as described in Tuning the

ClientHandler/ReverseProxyHandler.

To take advantage of IG’s asynchronous thread model, configure Tomcat to use a non-

blocking, NIO or NIO2 connector. Consider configuring the following connector attributes:

maxConnections

connectionTimeout

soTimeout

acceptCount

executor

maxThreads

minSpareThreads

For more information, see Apache Tomcat 9 Configuration Reference and Apache Tomcat

8 Configuration Reference.

Tuning IG’s Tomcat Container

Set the Maximum Number of File Descriptors and Processes Per

User

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-ClientHandler
http://tomcat.apache.org/tomcat-9.0-doc/config/http.html
http://tomcat.apache.org/tomcat-8.0-doc/config/http.html

42 / 59

Each IG instance in your environment should have access to at least 65,536 file

descriptors to handle multiple client connections.

Ensure that every IG instance is allocated enough file descriptors. For example, use the

ulimit -n command to check the limits for a particular user:

It may also be necessary to increase the number of processes available to the user

running the IG processes.

For example, use the ulimit -u command to check the process limits for a user:

Refer to your operating system’s documentation for instructions on how to display and

increase the file descriptors or process limits for the operating system and for a given

user.

Start tuning the JVM with default values, and monitor the execution, paying particular

attention to memory consumption, and GC collection time and frequency. Incrementally

adjust the configuration, and retest to find the best settings for memory and garbage

collection.

Make sure that there is enough memory to accommodate the peak number of required

connections, and make sure that timeouts in IG and its container support latency in

downstream servers and applications.

IG makes low memory demands, and consumes mostly YoungGen memory. However,

using caches, or proxying large resources, increases the consumption of OldGen

memory. For information about how to optimize JVM memory, see the Oracle

documentation.

$ su - iguser

$ ulimit -n

$ su - iguser

$ ulimit -u

Before increasing the file descriptors for the IG instance, ensure that the total

amount of file descriptors configured for the operating system is higher than

65,536.

If the IG instance uses all of the file descriptors, the operating system will run out of

file descriptors. This may prevent other services from working, including those

required for logging in the system.

IMPORTANT

Tuning IG’s JVM

43 / 59

Consider these points when choosing a JVM:

Find out which version of the JVM is available. More recent JVMs usually contain

performance improvements, especially for garbage collection.

Choose a 64-bit JVM if you need to maximize available memory.

Consider these points when choosing a GC:

Test GCs in realistic scenarios, and load them into a pre-production environment.

Choose a GC that is adapted to your requirements and limitations. Consider

comparing the Garbage-First Collector (G1) and Parallel GC in typical business use

cases.

The G1 is targeted for multi-processor environments with large memories. It

provides good overall performance without the need for additional options. The G1

is designed to reduce garbage collection, through low-GC latency. It is largely self-

tuning, with an adaptive optimization algorithm.

The Parallel GC aims to improve garbage collection by following a high-throughput

strategy, but it requires more full garbage collections.

For more information, see Best practice for JVM Tuning with G1 GC

The following sections give an overview of how to manage rotation of encryption keys

and signing keys, and include examples for key rotation based on use cases from the

Gateway Guide.

Key rotation is the process of generating a new version of a key, assigning that version as

the active key to encrypt or sign new messages, or as a valid key to decrypt or validate

messages, and then deprovisioning the old key.

Regular key rotation is a security consideration that is sometimes required for internal

business compliance. Regularly rotate keys to:

Limit the amount of data protected by a single key.

Reduce dependence on specific keys, making it easier to migrate to stronger

algorithms.

Rotating Keys

About Key Rotation

Why Rotate Keys

https://backstage.forgerock.com/knowledge/kb/article/a75965340
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface

44 / 59

Prepare for when a key is compromised. The first time you try key rotation shouldn’t

be during a real-time recovery.

Key revocation is a type of key rotation, done exceptionally if you suspect that a key has

been compromised.

The following steps outline the process for key rotation and revocation for keys managed

by a KeyStoreSecretStore or HsmSecretStore:

1. Create new asymmetric keys for signing and encryption, using OpenSSL, Keytool, or

another key creation mechanism.

2. Provision the message consumer with the private portion of the new encryption key,

and the public portion of the new signing key.

The message consumer can now decrypt and verify messages with the old key and

the new key.

3. Provision the message producer, with the public portion of the new encryption key,

and the private portion of the signing key. The message producer starts encrypting

and signing messages with the new key, and stops using the old key.

4. Deprovision the message consumer with the private portion of the old encryption

key, and the public portion of the old signing key. The message consumer can no

longer decrypt and verify messages with the old key.

To ensure that no messages or users are impacted, wait until messages encrypted or

signed with the corresponding old key are out of the system before you deprovision

the old key.

5. Deprovision the message producer, with the public portion of the old encryption

key, and the private portion of old signing key.

To decide when to revoke a key, consider the following points:

If limited use of the old keys can be tolerated, provision the new keys and then

deprovision the old keys. Messages produced before the new keys are provisioned

are impacted.

If use of the old keys cannot be tolerated, deprovision the old keys before you

provision the new keys. The system is unusable until new keys are provisioned.

When keys are provided by a JWK Set from AM, the key rotation is transparent to IG. AM

generates a key ID (kid) for each key it exposes at the jwk_uri . For more information,

see Mapping and Rotating Secrets in AM’s Security Guide.

Key Rotation Steps

Key Rotation for JwkSetSecretStore

https://backstage.forgerock.com/docs/am/7.1/security-guide/secret-mapping.html

45 / 59

When IG processes a request with a JWT containing a kid , IG uses the kid to identify

the key in the JWK Set. If the kid is available at the jwk_uri on AM, IG processes the

request. Otherwise, IG tries all compatible secrets from the JWK Set. If none of the secrets

work, the JWT is rejected.

This example extends the example in Validate Signed Access_Tokens With the

StatelessAccessTokenResolver and KeyStoreSecretStore to rotate the keys that sign an

access_token and verify the signature.

Rotate Keys For Stateless Access_Tokens Signed With a

KeyStoreSecretStore

Before you start, set up and test the example in Validate Signed Access_Tokens With

the StatelessAccessTokenResolver and KeyStoreSecretStore.

1. Set up the new keys:

a. Generate a new private key called signature-key-new , and a

corresponding public certificate called x509certificate-new.pem :

b. Convert the private key and certificate files into a new PKCS12 keystore file:

Rotating Keys For Stateless Access_Tokens Signed With a

KeyStoreSecretStore

$ openssl req -x509 \

-newkey rsa:2048 \

-nodes \

-subj

"/CN=openig.example.com/OU=example/O=com/L=fr/ST=fr/C=f

r" \

-keyout keystore_directory/signature-key-new.key \

-out keystore_directory/x509certificate-new.pem \

-days 365

... writing new private key to

'keystore_directory/signature-key-new.key'

$ openssl pkcs12 \

-export \

-in keystore_directory/x509certificate-new.pem \

-inkey keystore_directory/signature-key-new.key \

-out keystore_directory/keystore-new.p12 \

-passout pass:password \

-name signature-key-new

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-stateless-signed-ksss
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-stateless-signed-ksss

46 / 59

c. List the keys in the new keystore:

d. Import the new keystore into keystore.p12 , so that keystore.p12

contains both keys:

e. List the keys in keystore.p12 , to make sure that it contains the new and

old keys:

2. Set up AM:

a. Copy the updated keystore to AM:

i. Copy keystore.p12 to AM:

$ keytool -list \

-keystore "keystore_directory/keystore-new.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: signature-key-new

$ keytool -importkeystore

-srckeystore keystore_directory/keystore-new.p12

-srcstoretype pkcs12

-srcstorepass password

-destkeystore keystore_directory/keystore.p12

-deststoretype pkcs12

-deststorepass password

Entry for alias signature-key-new successfully imported

...

$ keytool -list \

-keystore "keystore_directory/keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: signature-key

Alias name: signature-key-new

$ cp keystore_directory/keystore.p12

47 / 59

ii. List the keys in the updated AM keystore:

iii. Restart AM to update the keystore cache.

b. Update the KeyStoreSecretStore on AM:

i. In AM, select  Secret Stores > keystoresecretstore.

ii. Select the Mappings tab, and in am.services.oauth2.stateless

.signing.RSA add the alias signature-key-new .

The mapping now contains two aliases, but the alias signature-key is

still the active alias. AM still uses signature-key to sign tokens.

iii. Drag signature-key-new above signature-key .

AM now uses signature-key-new to sign tokens.

3. Set up IG:

a. Import the public certificate to the IG keystore, with the alias

verification-key-new :

b. List the keys in the IG keystore:

am_keystore_directory/AM_keystore.p12

$ keytool -list \

-keystore "am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: signature-key

Alias name: signature-key-new

$ keytool -import \

-trustcacerts \

-rfc \

-alias verification-key-new \

-file "keystore_directory/x509certificate-new.pem" \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storetype PKCS12 \

-storepass "password"

...

Trust this certificate? [no]: yes

Certificate was added to keystore

48 / 59

c. In rs-stateless-signed-ksss.json , edit the KeyStoreSecretStore

mapping with the new verification key:

If the Router scanInterval is disabled, restart IG to reload the route.

IG can now check the authenticity of access_tokens signed with

verification-key , the old key, and verification-key-new , the new key.

However, AM signs with the old key.

4. Test the setup:

a. Get an access_token for the demo user, using the scope myscope :

b. Display the token:

c. Access the route by providing the token returned in the previous step:

$ keytool -list \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: verification-key

Alias name: verification-key-new

"mappings": [

{

"secretId":

"stateless.access.token.verification.key",

"aliases": ["verification-key", "verification-key-

new"]

}

]

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=myscope" \

http://openam.example.com:8088/openam/oauth2/access_tok

en | jq -r ".access_token")

$ echo ${mytoken}

49 / 59

Deprovision Old Keys

1. Remove signature-key from the AM keystore:

a. Delete the key from the keystore:

b. List the keys in the AM keystore to make sure that signature-key is

removed:

c. Restart AM.

2. Remove verification-key from the IG keystore:

a. Delete the key from the keystore:

b. List the keys in the IG keystore to make sure that verification-key is

removed:

$ curl -v http://openig.example.com:8080/rs-stateless-

signed-ksss --header "Authorization: Bearer ${mytoken}"

...

Decoded access_token: {

sub=demo,

cts=OAUTH2_STATELESS_GRANT,

...

$ keytool -delete \

-keystore "am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-alias signature-key

$ keytool -list \

-keystore "am_keystore_directory/AM_keystore-new.p12" \

-storepass "password" \

-storetype PKCS12

$ keytool -delete \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-alias verification-key

$ keytool -list \

-keystore "ig_keystore_directory/IG_keystore.p12" \

50 / 59

3. In AM, delete the mapping for signature-key from keystoresecretstore .

4. In IG, delete the mapping for verification-key from the route rs-stateless-

signed-ksss.json . If the Router scanInterval is disabled, restart IG to reload

the route.

This section builds on the example in Share JWT Session Between Multiple Instances of IG

to rotate a key used in a shared JWT session.

When a JWT session is shared between multiple instances of IG, the instances are able to

share the session information for load balancing and failover.

Before you start, set up the example in Set Up Shared Secrets for Multiple Instances

of IG, where three instances of IG share a JwtSession and use the same authenticated

encryption key. Instance 1 acts as a load balancer, and generates a session. instances

2 and 3 access the session information.

1. Test the setup with the existing key, symmetric-key :

a. Access instance 1 to generate a session:

b. Using the JWT cookie returned in the previous step, access instance 2:

-storepass "password" \

-storetype PKCS12

Rotating Keys In a Shared JWT Session

$ curl -v http://openig.example.com:8001/log-in-and-

generate-session

GET /log-in-and-generate-session HTTP/1.1

...

HTTP/1.1 200 OK

Content-Length: 84

Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com;

HttpOnly

...

Sam Carter logged IN. (JWT session generated)

$ curl -v

http://openig.example.com:8001/webapp/browsing?one --

header "cookie:IG=<JWT cookie>"

file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-sharesecrets
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#proc-jwtsession-sharesecrets

51 / 59

Note that instance 2 can access the session info.

c. Using the JWT cookie again, access instance 3:

Note that instance 3 can access the session info.

2. Commission a new key:

a. Generate a new encryption key, called symmetric-key-new , in the existing

keystore:

b. Make sure that the keystore contains the old key and the new key:

GET /webapp/browsing?one HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance2)

$ curl -v

http://openig.example.com:8001/webapp/browsing?two --

header "Cookie:IG=<JWT cookie>"

GET /webapp/browsing?two HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance3)

$ keytool \

-genseckey \

-alias symmetric-key-new

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12 \

-keyalg HmacSHA512 \

-keysize 512

$ keytool \

-list \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

52 / 59

c. Add the key alias to instance1-loadbalancer.json , instance2-

retrieve-session-username.json , and instance3-retrieve-session-

username.json , for each IG instance, as follows:

If the Router scanInterval is disabled, restart IG to reload the route.

The active key is symmetric-key , and the valid key is symmetric-key-new .

d. Test the setup again, as described in step 1, and make sure that instances 2

and 3 can still access the session information.

3. Make the new key the active key for generating sessions:

a. In instance1-loadbalancer.json , change the order of the keys to make

symmetric-key-new the active key, and symmetric-key the valid key:

Don’t change instance2-retrieve-session-username.json or

instance3-retrieve-session-username.json .

b. Test the setup again, as described in step 1, and make sure that instances 2

and 3 can still access the session information.

Instance 1 creates the session using the new active key, symmetric-key-

new .

Because symmetric-key-new is declared as a valid key in instances 2 and

3, the instances can still access the session. It isn’t necessary to make

symmetric-key-new the active key.

4. Decommission the old key:

a. Remove the old key from all of the routes, as follows:

-storetype PKCS12

...

Your keystore contains 2 entries

symmetric-key, ...

symmetric-key-new ...

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key", "symmetric-key-new"]

}]

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key-new", "symmetric-key"]

}]

53 / 59

Key symmetric-key-new is the only key in the routes.

b. Remove the old key, symmetric-key , from the keystore:

i. Delete symmetric-key :

ii. Make sure that the keystore contains only symmetric-key-new :

c. Test the setup again, as described in step 1, and make sure that instances 2

and 3 can still access the session information.

ForgeRock provides support services, professional services, training through ForgeRock

University, and partner services to help you set up and maintain your deployments.

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key-new"]

}]

$ keytool \

-delete \

-alias symmetric-key \

-keystore

/path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12 \

-keypass password

$ keytool \

-list \

-keystore

/path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12

...

Your keystore contains 1 entry

symmetric-key-new ...

Troubleshooting

Getting Support

54 / 59

ForgeRock provides support services, professional services, training through ForgeRock

University, and partner services to assist you in setting up and maintaining your

deployments. For a general overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers

and partners. For details on ForgeRock’s support offering, including support plans and

service level agreements (SLAs), visit https://www.forgerock.com/support.

ForgeRock publishes comprehensive documentation online:

The ForgeRock Knowledge Base offers a large and increasing number of up-to-date,

practical articles that help you deploy and manage ForgeRock software.

While many articles are visible to everyone, ForgeRock customers have access to

much more, including advanced information for customers using ForgeRock

software in a mission-critical capacity.

ForgeRock product documentation, such as this document, aims to be technically

accurate and complete with respect to the software documented. It is visible to

everyone and covers all product features and examples of how to use them.

When you are trying to solve a problem, save time by asking the following questions:

How do you reproduce the problem?

What behavior do you expect, and what behavior do you see?

When did the problem start occurring?

Are their circumstances in which the problem does not occur?

Is the problem permanent, intermittent, getting better, getting worse, or staying the

same?

If you contact ForgeRock for help, include the following information with your request:

The product version and build information. If IG is running in development mode,

and set up as described in the Getting Started, access the information at

http://openig.example.com:8080/openig/api/info.

Description of the problem, including when the problem occurs and its impact on

your operation.

Steps you took to reproduce the problem.

Relevant access and error logs, stack traces, and core dumps.

Description of the environment, including the following information:

Machine type

Operating system and version

Getting Info About the Problem

https://www.forgerock.com/
https://www.forgerock.com/support
https://backstage.forgerock.com/knowledge/kb
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

55 / 59

Web server or container and version

Java version

Patches or other software that might affect the problem

Displaying resources

By default, ForgeRock Access Management 5 and later writes cookies to the fully

qualified domain name of the server; for example, openam.example.com .

Therefore, a host-based cookie, rather than a domain-based cookie, is set.

Consequently, after authentication through Access Management, requests can be

redirected to Access Management instead of to the resource.

To resolve this issue, add a cookie domain to the Access Management

configuration. For example, in the Access Management console, go to Configure >

Global Services > Platform, and add the domain example.com .

When the sample application is used with IG in the documentation examples, the

sample application must serve static resources, such as the .css. Add the following

route to the IG configuration, as:

1. Linux

2. Windows

Define an entity for the response, as in the following example:

Troubleshooting

Requests redirected to AM instead of to the resource

Sample application not displayed correctly

$HOME/.openig/config/routes/static-resources.json

appdata\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

StaticResponseHandler results in a blank page

56 / 59

Using routes

If you get the message no handler to dispatch to , consider the following

points:

Make sure that your routes include a condition configuration to match the

request. For more information, see Set Route Conditions.

If requests might not match any condition, consider adding a default route to

provide a default handler when no condition is met. For more information, see

Adding a Default Route.

If you see the following error, you have specified "handler": "Router2" in

config.json or in the route, but no handler configuration object named Router2

exists:

Make sure you have added an entry for the handler, and that you have correctly

spelled its name.

{

"name": "AccessDeniedHandler",

"type": "StaticResponseHandler",

"config": {

"status": 403,

"reason": "Forbidden",

"headers": {

"Content-Type": ["text/html"]

},

"entity": "<html><body><p>User does not have

permission</p></body></html>"

}

}

No handler to dispatch to

Object not found in heap

org.forgerock.json.fluent.JsonValueException: /handler:

object Router2 not found in heap

at

org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:351)

at

org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:334)

at

org.forgerock.openig.heap.HeapImpl.getHandler(HeapImpl.java:5

38)

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/routing.html#route-conditions
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#add-default-route

57 / 59

When the JSON for a route is not valid, IG does not load the route. Instead, a

description of the error appears in the log.

Use a JSON editor or JSON validation tool such as JSONLint to make sure that your

JSON is valid.

IG loads all configurations at startup, and, by default, periodically reloads changed

route configurations.

If you make changes to a route that result in an invalid configuration, IG logs errors,

but it keeps the previous, correct configuration, and continues to use the old route.

IG only uses the new configuration after you save a valid version or when you

restart IG.

Of course, if you restart IG with an invalid route configuration, then IG tries to load

the invalid route at startup and logs an error. In that case, if there is no default

handler to accept any incoming request for the invalid route, then you see an error,

No handler to dispatch to .

IG returns an exception if it loads a route for which it can’t resolve a requirement.

For example, when you load a route that uses an AmService object, the object must

be available in the AM configuration.

If you add routes to a configuration when the environment is not ready, rename the

route to prevent IG from loading it. For example, rename a route as follows:

If necessary, restart IG to reload the configuration. When you have configured the

environment, change the file extension back to .json .

Using Studio

Studio deploys and undeploys routes through a main router named _router ,

which is the name of the main router in the default configuration. If you use a

custom config.json , make sure that it contains a main router named _router .

For information about creating routes in Studio, see the Studio Guide.

Extra or missing character / invalid JSON

Route not used

Skip routes

$ mv $HOME/.openig/config/routes/03-sql.json

$HOME/.openig/config/routes/03-sql.inactive

Can't deploy routes in Studio

http://jsonlint.com/
file:///home/pptruser/Downloads/build/site/ig/studio-guide/preface.html#preface

58 / 59

Understanding timeout errors

(Not supported for IG in standalone mode.) If SocketTimeoutException errors

occur in the logs when you try to download large files, in your

ReverseProxyHandler or ClientHandler, increase soTimeout and set

asyncBehavior to streaming .

Problem: After a request is sent to IG, IG seems to hang. An HTTP 502 Bad Gateway

error is produced, and the IG log is flushed with SocketTimeoutException warnings.

Possible cause: The baseURI configuration is missing or causes the request to

return to IG, so IG can’t produce a response to the request.

Possible solution: Configure the baseURI to use a different host and port to IG.

Other problems

Make sure that the user running IG can read the flat file. Remember that values

include spaces and tabs between the separator, so make sure the values are not

padded with spaces.

The following error can be encountered when using an AssignmentFilter as

described in AssignmentFilter and setting a string value for one of the headers.

All headers are stored in lists so the header must be addressed with a subscript. For

example, rather than trying to set request.headers['Location'] for a redirect in

the response object, you should instead set request.headers['Location'][0] . A

header without a subscript leads to the error above.

Timeout downloading large files

Log is flushed with timeout exception warnings on sending a request

Incorrect values in the flat files

Problem accessing URLs

HTTP ERROR 500

Problem accessing /myURL . Reason:

java.lang.String cannot be cast to java.util.List

Caused by:

java.lang.ClassCastException: java.lang.String cannot

be cast to java.util.List

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#AssignmentFilter

59 / 59

Copyright © 2010-2023 ForgeRock, all rights reserved.

