
1 / 7

This guide shows you how to use the IoT SDK to develop client applications and to

register them with AM. It also shows you how to build the IoT Gateway.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com.

This section shows you how to create a client application for a thing, named Gopher. The

thing is manually registered in AM and authenticated with a username/password

authentication �ow. For more information about the IoT SDK API, refer to the Go package

documentation.

These steps assume that you have installed the required software and cloned the things

GitHub repository:

1. Create a directory structure for your Go project:

2. Create an empty project �le (main.go):

Develop IoT clients

Develop a client

application with the IoT

SDK.

Develop a client

Build the IoT Gateway for

your target system.

Requirements

Develop a client application with the IoT SDK

Develop the application

mkdir -p things/cmd/gopher

https://www.forgerock.com/
https://pkg.go.dev/github.com/ForgeRock/iot-edge/v7/pkg
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html#install-software
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html#get-the-examples
file:///home/pptruser/Downloads/build/site/iot/dev-guide/develop-client.html
file:///home/pptruser/Downloads/build/site/iot/dev-guide/build-gateway.html

2 / 7

3. Open main.go in a text editor, and add the following code:

4. Create a Go module:

cd things

touch cmd/gopher/main.go

package main

import (

"github.com/ForgeRock/iot-edge/v7/pkg/builder"

"github.com/ForgeRock/iot-edge/v7/pkg/callback"

"log"

"net/url"

)

func main() {

amURL, err :=

url.Parse("http://am.localtest.me:8080/openam")

if err != nil {

log.Fatal(err)

}

_, err = builder.Thing().

ConnectTo(amURL).

InRealm("/").

WithTree("Example").

HandleCallbacksWith(

callback.NameHandler{Name: "Gopher"},

callback.PasswordHandler{Password:

"5tr0ngG3n3r@ted"}).

Create()

if err != nil {

log.Fatal(err)

}

log.Println("Gopher successfully authenticated.")

}

go mod init example.com/things && go mod tidy

go: creating new go.mod: module example.com/things

go: to add module requirements and sums:

go mod tidy

go: finding module for package github.com/ForgeRock/iot-

edge/v7/pkg/callback

go: finding module for package github.com/ForgeRock/iot-

3 / 7

This step creates a go.mod �le that speci�es your project dependencies and

versions.

5. Build an executable for your client application:

This step builds an executable gopher application in the things directory.

1. Before you can run the application, you must register an identity for Gopher in AM:

Get an admin SSO token from AM:

Save the tokenId returned in this request as a variable, for example:

Register the Gopher application, with the ID Gopher :

edge/v7/pkg/builder

go: found github.com/ForgeRock/iot-edge/v7/pkg/builder in

github.com/ForgeRock/iot-edge/v7 v7.4.0

go: found github.com/ForgeRock/iot-edge/v7/pkg/callback in

github.com/ForgeRock/iot-edge/v7 v7.4.0

go build example.com/things/cmd/gopher

Run the application

curl \

--header 'X-OpenAM-Username: amAdmin' \

--header 'X-OpenAM-Password: changeit' \

--header 'Content-Type: application/json' \

--header 'Accept-API-Version: resource=2.0, protocol=1.0'

\

--request POST \

'http://am.localtest.me:8080/openam/json/authenticate'

{

"tokenId": "qGAzvBw20z5… AAA.*",

"successUrl": "/openam/console",

"realm": "/"

}

export tokenId=qGAzvBw20z5… AAA.*

echo $tokenId

qGAzvBw20z5… AAA.*

curl \

--header 'Content-Type: application/json' \

4 / 7

--header 'Accept-Api-Version: resource=4.0, protocol=2.1'

\

--cookie "iPlanetDirectoryPro=${tokenId}" \

--data '{

"userPassword": "5tr0ngG3n3r@ted",

"thingType": "device"

}' \

--request PUT \

"http://am.localtest.me:8080/openam/json/realms/root/users

/Gopher"

{

"_id": "Gopher",

"_rev": "-1",

"realm": "/",

"username": "Gopher",

"uid": [

"Gopher"

],

"universalid": [

"id=Gopher,ou=user,dc=openam,dc=forgerock,dc=org"

],

"objectClass": [

"iplanet-am-managed-person",

"inetuser",

"fr-iot",

"sunFMSAML2NameIdentifier",

"inetorgperson",

"devicePrintProfilesContainer",

"iplanet-am-user-service",

"iPlanetPreferences",

"pushDeviceProfilesContainer",

"forgerock-am-dashboard-service",

"organizationalperson",

"top",

"kbaInfoContainer",

"person",

"sunAMAuthAccountLockout",

"oathDeviceProfilesContainer",

"webauthnDeviceProfilesContainer",

"iplanet-am-auth-configuration-service",

"deviceProfilesContainer"

],

"dn": [

"uid=Gopher,ou=people,dc=openam,dc=forgerock,dc=org"

],

5 / 7

Log in to the AM admin UI and select Identities in the Top Level Realm, to refer

to the Gopher identity in the list.

2. Run the executable to authenticate your application to AM:

ForgeRock doesn’t provide binaries for the IoT Gateway. There are simply too many

operating system and architecture combinations to support. The IoT Gateway and the IoT

SDK are developed in the Go programming language primarily because it has easy build

tooling and good support for cross-compilation to target systems.

These steps assume that you have installed the required software and cloned the Things

GitHub repository:

1. On your target system, go to the gateway directory:

2. Build the IoT Gateway binary:

"inetUserStatus": [

"Active"

],

"cn": [

"Gopher"

],

"sn": [

"Gopher"

],

"thingType": [

"device"

],

"createTimestamp": [

"20200831103235Z"

]

}

./gopher

2020/09/01 11:09:49 Gopher successfully authenticated.

Build the ForgeRock IoT Gateway

Build the IoT Gateway on a target system

cd /path/to/iot-edge/cmd/gateway

file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html#install-software
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html#get-the-examples

6 / 7

The IoT Gateway binary is now available at bin/gateway

3. Run the IoT Gateway with the --help �ag for available command-line options:

You can specify a target system with a combination of the $GOOS and $GOARCH

environment variables. This lets you build the IoT Gateway for a variety of operating

system and architecture combinations.

This example runs the IoT Gateway on an arm 32-bit processor (for example, a

Raspberry Pi 3 running in 32-bit mode).

1. Build the IoT Gateway for linux/arm , as follows:

2. For a complete list of environment and cross-compilation targets, refer to the go

Documentation.

For more build options, refer to the go command environment variables.

go build -o ./bin/gateway .

./bin/gateway --help

Usage:

gateway [OPTIONS]

Application Options:

--url= AM URL

--realm= AM Realm

--audience= JWT Audience

--tree= Authentication tree

--name= Gateway name

--address= CoAP Address of Gateway

--key= The file containing the Gateway's signing

key

--kid= The Gateway's signing key ID

--cert= The file containing the Gateway's

certificate

--timeout= Timeout for AM communications (default: 5s)

-d, --debug Switch on debug

Help Options:

-h, --help Show this help message

Cross-compile the IoT Gateway for a target system

GOOS=linux GOARCH=arm go build -o ./bin/linux_arm/gateway .

https://golang.org/doc/install/source#environment
https://golang.org/cmd/go/#hdr-Environment_variables

7 / 7

Copyright © 2010-2023 ForgeRock, all rights reserved.

