
1 / 29

These topics let you quickly get a test or demo environment running. They demonstrate

how to configure ForgeRock® Access Management and run the IoT SDK and IoT Gateway

examples.

Evaluate IoT



How ForgeRock IoT can

help you register,

authenticate, and

authorize your IoT

ecosystem.

About IoT



Install the prerequisite

software and get the

examples.

Requirements



Manually register an

identity in AM, for a thing

or the IoT gateway.

Register identities



Use the SDK examples to

authenticate and

request an access token

for a thing.

SDK examples



Use the gateway

examples to start and

authenticate the IoT

Gateway and connect a

thing to it.

Gateway examples

file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/about-iot.html
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/register-identities.html
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/sdk-examples.html
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/gateway-examples.html

2 / 29

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com.

Things are physical objects that can connect with each other, and with other systems

through the Internet, without human intervention. Examples include smart home devices,

such as window sensors and door locks, smart TVs, health and fitness monitors, and road

and speed sensors.

To participate in a connected system, a thing needs an identity that it uses to authenticate.

ForgeRock IoT enables dynamic registration of things with identities, without human

intervention.

As soon as things connect to a network, they become a security concern. You need to be

able to trust and monitor the things that are connected to your network, and accessing

your services or APIs. The ForgeRock® Identity Platform, including ForgeRock IoT,

provides standards-based authorization using the OAuth 2.0 authorization framework. It

gives you a single view of all the identities in your system—customers, employees,

things, and the relationships between them. ForgeRock IoT also lets you manage offline

and constrained devices, and delivers identities to things at the edge of your network,

where the data is being generated.

ForgeRock IoT includes two components:

IoT SDK

The IoT SDK lets a thing (either a physical device or a software service) register and

authenticate without human interaction. When the thing is registered, it is represented

by a digital identity in the ForgeRock Identity Platform, It can then authenticate itself

to interact with the platform tier.

The IoT SDK can communicate directly with the platform, using HTTP(S), or through

the IoT Gateway, using the Constrained Application Protocol (CoAP(S)).

IoT Gateway

The IoT Gateway is an application that lets constrained devices interact with the

ForgeRock Identity Platform, by acting as a proxy between a thing and the Platform. A

constrained device is usually a small device with limited CPU, memory, and power

resources (such as sensors, smart objects, and smart devices).

About IoT

About ForgeRock IoT

https://www.forgerock.com/

3 / 29

This diagram shows the ForgeRock IoT architecture and components:

Edge Tier

Device A Gateway Device

Device B

Platform Tier

ForgeRock Identity Platform

IoT SDK IoT Gateway

IoT SDK

Access Management Directory Services

Identity Management

HTTP/TLS HTTP/TLS

COAP/DTLS

These topics cover what you need to do before evaluating ForgeRock IoT.

Download the following software before you evaluate ForgeRock IoT, and test the

examples:

Go, version 1.21 or later.

Git (to download the source code and run the examples).

Prerequisites

Install the required software

https://golang.org/doc/install
https://git-scm.com/

4 / 29

1. Clone the iot-edge Git repository:

This command creates a directory named iot-edge .

2. Change to the iot-edge directory:

The examples assume that this is your current working directory.

3. The examples also assume that you are working with version 7.4.0 of the code.

Check out the release/v7.4.0 branch:

Before you start, read the Evaluation topics in the AM documentation to set up an AM

instance, with a default configuration.

The examples in this guide assume the following:

AM is installed with the fully qualified domain name am.localtest.me , in a Tomcat

container, listening on port 8080 .

To configure AM, go to http://am.localtest.me:8080/openam/ .

AM is configured with the default configuration, with user amAdmin and password

changeit .

When you have set up a default AM instance, log into the AM admin UI as user amAdmin

with password changeit .

1. Add an IoT service.

The IoT service configures the identity store, adding the required thing attributes to

AM users (for all LDAPv3ForOpenDS and LDAPv3ForForgeRockIAM stores in the

realm). For more information about this service, see IoT service in the AM Reference:

In the Top Level Realm, select Services > Add a Service > IoT Service, and

click Create.

Enable Create OAuth 2.0 Client.

Get the examples

git clone https://github.com/ForgeRock/iot-edge.git

cd /path/to/iot-edge

git checkout release/v7.4.0

Install and configure AM

https://backstage.forgerock.com/docs/am/7.2/eval-guide
https://backstage.forgerock.com/docs/am/7.2/eval-guide/step-1-prepare-server.html#prepare-fqdn
http://am.localtest.me:8080/openam/
https://backstage.forgerock.com/docs/am/7.2/reference/global-services-configuration.html#global-iot

5 / 29

The IoT service creates an OAuth 2.0 Client with the given name and default

configuration required to serve as the client for this service. The client is created

without any scope(s), and is used by default for all things that request access

tokens.

If a thing (or group of things) needs a client with different configuration to the

default, you can create a custom client here, and add its name to the thing’s

thingOAuth2ClientName profile attribute.

Enable Create OAuth 2.0 JWT Issuer.

The service creates a Trusted JWT Issuer with the given name and default

configuration required for the IoT Service to act as the Issuer when handling

requests for access tokens.

If you configure the client manually, the JWT issuer must have the following

settings:

JWT Issuer: forgerock-iot-service

Consented Scopes Claim: scope

Resource Owner Identity Claim: sub

The signing/verification key used by this issuer is configured in the secrets

store under am.services.iot.jwt.issuer.signing . It must use the HS256

algorithm.

Click Save Changes.

2. Add an OAuth 2.0 provider service.

The Top Level Realm includes and OAuth 2.0 provider service by default. If you are

using a different realm, select Services > Add a Service > OAuth2 Provider, and

click Create.

If your service will use the introspection feature of the SDK, change the following

settings:

On the Core tab, enable Use Client-Side Access & Refresh Tokens.

On the Advanced tab, select an asymmetric key for the OAuth2 Token

Signing Algorithm.

3. Configure the IoT OAuth 2.0 client:

Go to Applications > OAuth 2.0 > Clients and select the forgerock-iot-

oauth2-client .

In the Scope(s) field, add publish and subscribe .

Advanced use

Advanced use

Advanced use

6 / 29

Save your work.

If you create your own OAUth2 client here, make sure that the client contains the

JWT Bearer , Device Code and Refresh Token grant types, and has a strong

generated password.

4. Create the following authentication trees:

a. A tree that handles authentication only, named auth-tree .

Go to Authentication > Trees and click Create Tree.

Type auth-tree in the Name field, and click Create.

Add an Authenticate Thing node, with the default settings, and save your

work.

b. A tree that handles registration only, named reg-tree :

Go to Authentication > Trees and click Create Tree.

Type reg-tree in the Name field, and click Create.

Add a Register Thing node, and enable Create Identity on that node.

Save your work.

Advanced use

Show me

Show me

7 / 29

c. A tree that handles authentication and registration, named auth-reg-tree :

Go to Authentication > Trees and click Create Tree.

Type auth-reg-tree in the Name field, and click Create.

Add an Authenticate Thing node and a Register Thing node.

On the Register Thing node, enable Create Identity.

Save your work.

5. Add a secret ID mapping.

Go to Configure > Secret Stores and select the default-keystore .

On the Mappings tab, click Add Mapping.

In the Secret ID list, select am.services.iot.cert.verification .

In the Alias field, type es256test and click Add.

Show me

8 / 29

This mapping indicates which key the Register Thing node should use when

verifying the registration certificate. The CA certificate in this example

(es256test) is one of the test certificates included by default in AM.

Click Create to add the mapping.

For more information about mapping secret IDs, see Map and rotate secrets in the

AM documentation.

6. Create a software publisher agent.

Go to Applications > OAuth 2.0 > Software Publisher and click Add

Software Publisher Agent.

Enter these settings, then click Create:

Agent ID: iot-software-publisher

Software publisher secret: Leave blank

Software publisher issuer: https://soft-pub.example.com

Enter these settings, then save your work:

Software statement signing Algorithm: ES256

Public key selector: JWKs

Json Web Key: {"keys":

[{"use":"sig","kty":"EC","kid":"gLcQhotEZygUuVUrt3Z6azql3dVfqQS7l

o3vereyU7Y=","crv":"P-256","alg":"ES256","x":"IUuXjru5zb3ixx23uM-

qYsFX47eQNWJ6jTkHudFpVr4","y":"VDSoP-

7XBc8KLSeVb2fwzg36458AV3a8MrBx1RZHNho"}]}

You can register identities in AM manually, over REST, or dynamically during the

authentication process.

These examples show how to register identities manually. Dynamic registration is

covered in the IoT SDK examples and IoT Gateway examples:

1. Before you can register an identity, get an admin SSO token from AM as follows:

Register identities

curl \

--header 'Content-Type: application/json' \

--header 'X-OpenAM-Username: amAdmin' \

--header 'X-OpenAM-Password: changeit' \

--header 'Accept-API-Version: resource=2.0, protocol=1.0' \

--request POST \

'http://am.localtest.me:8080/openam/json/authenticate'

https://backstage.forgerock.com/docs/am/7.2/security-guide/secret-mapping.html#secret-mapping
https://soft-pub.example.com/
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/sdk-examples.html
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/gateway-examples.html

9 / 29

2. Save the tokenId returned in this request as a variable, for example:

3. Set the ID of the thing or gateway you are registering as a variable. The examples

use manual-thing and manual-gateway as IDs:

4. Register an identity for the thing or gateway. These examples set a number of

sample fields (thingKeys) for the thing or gateway you are registering:

{

"tokenId": "yLiS5J55N…​lMxAAA.*",

"successUrl": "/openam/console",

"realm": "/"

}

export tokenId=yLiS5J55N…​lMxAAA.*

echo $tokenId

yLiS5J55N…​lMxAAA.*

Set the ID for a thing

export ID=manual-thing

echo $ID

manual-thing

Set the ID for a gateway

export ID=manual-gateway

echo $ID

manual-gateway

Register a thing

curl \

--request PUT \

--header 'Content-Type: application/json' \

--header 'Accept-Api-Version: resource=4.0, protocol=2.1' \

--cookie "iPlanetDirectoryPro=${tokenId}" \

--data '{

"userPassword": "5tr0ngG3n3r@ted",

"thingType": "device",

"thingKeys": "{\"keys\":

[{\"use\":\"sig\",\"kty\":\"EC\",\"kid\":\"cbnztC8J_l2feNf0a

TFBDDQJuvrd2JbLPoOAxHR2N8o=\",\"crv\":\"P-

256\",\"alg\":\"ES256\",\"x\":\"wjC9kMzwIeXNn6lsjdqplcq9aCWp

AOZ0af1_yruCcJ4\",\"y\":\"ihIziCymBnU8W8m5zx69DsQr0sWDiXsDMq

04lBmfEHw\"}]}"

10 / 29

}' \

"http://am.localtest.me:8080/openam/json/realms/root/users/$

{ID}"

{

"_id": "manual-thing",

"_rev": "-1",

"realm": "/",

"username": "manual-thing",

"objectClass": [

"iplanet-am-managed-person",

"inetuser",

"fr-iot",

"sunFMSAML2NameIdentifier",

"inetorgperson",

"devicePrintProfilesContainer",

"pushDeviceProfilesContainer",

"iPlanetPreferences",

"iplanet-am-user-service",

"forgerock-am-dashboard-service",

"organizationalperson",

"top",

"kbaInfoContainer",

"oathDeviceProfilesContainer",

"person",

"webauthnDeviceProfilesContainer",

"sunAMAuthAccountLockout",

"deviceProfilesContainer",

"iplanet-am-auth-configuration-service"

],

"dn": [

"uid=manual-

thing,ou=people,dc=openam,dc=forgerock,dc=org"

],

"cn": [

"manual-thing"

],

"thingKeys": [

"{\"keys\":

[{\"use\":\"sig\",\"kty\":\"EC\",\"kid\":\"cbnztC8J_l2feNf0a

TFBDDQJuvrd2JbLPoOAxHR2N8o=\",\"crv\":\"P-

256\",\"alg\":\"ES256\",\"x\":\"wjC9kMzwIeXNn6lsjdqplcq9aCWp

AOZ0af1_yruCcJ4\",\"y\":\"ihIziCymBnU8W8m5zx69DsQr0sWDiXsDMq

04lBmfEHw\"}]}"

],

"createTimestamp": [

11 / 29

Log in to the AM admin UI and select Identities in the Top Level Realm. You

should see the manual-thing in the list.

"20220629131020Z"

],

"uid": [

"manual-thing"

],

"universalid": [

"id=manual-thing,ou=user,dc=openam,dc=forgerock,dc=org"

],

"inetUserStatus": [

"Active"

],

"sn": [

"manual-thing"

],

"thingType": [

"device"

]

}

Register a gateway

curl \

--request PUT \

--header 'Content-Type: application/json' \

--header 'Accept-Api-Version: resource=4.0, protocol=2.1' \

--cookie "iPlanetDirectoryPro=${tokenId}" \

--data '{

"userPassword": "5tr0ngG3n3r@ted",

"thingType": "gateway",

"thingKeys": "{\"keys\":

[{\"use\":\"sig\",\"kty\":\"EC\",\"kid\":\"cbnztC8J_l2feNf0a

TFBDDQJuvrd2JbLPoOAxHR2N8o=\",\"crv\":\"P-

256\",\"alg\":\"ES256\",\"x\":\"wjC9kMzwIeXNn6lsjdqplcq9aCWp

AOZ0af1_yruCcJ4\",\"y\":\"ihIziCymBnU8W8m5zx69DsQr0sWDiXsDMq

04lBmfEHw\"}]}"

}' \

"http://am.localtest.me:8080/openam/json/realms/root/users/$

{ID}"

{

"_id": "manual-gateway",

"_rev": "-1",

"realm": "/",

12 / 29

"username": "manual-gateway",

"objectClass": [

"iplanet-am-managed-person",

"inetuser",

"fr-iot",

"sunFMSAML2NameIdentifier",

"inetorgperson",

"devicePrintProfilesContainer",

"iplanet-am-user-service",

"iPlanetPreferences",

"pushDeviceProfilesContainer",

"forgerock-am-dashboard-service",

"organizationalperson",

"top",

"kbaInfoContainer",

"person",

"sunAMAuthAccountLockout",

"oathDeviceProfilesContainer",

"webauthnDeviceProfilesContainer",

"iplanet-am-auth-configuration-service",

"deviceProfilesContainer"

],

"dn": [

"uid=manual-

gateway,ou=people,dc=openam,dc=forgerock,dc=org"

],

"cn": [

"manual-gateway"

],

"thingKeys": [

"{\"keys\":

[{\"use\":\"sig\",\"kty\":\"EC\",\"kid\":\"cbnztC8J_l2feNf0a

TFBDDQJuvrd2JbLPoOAxHR2N8o=\",\"crv\":\"P-

256\",\"alg\":\"ES256\",\"x\":\"wjC9kMzwIeXNn6lsjdqplcq9aCWp

AOZ0af1_yruCcJ4\",\"y\":\"ihIziCymBnU8W8m5zx69DsQr0sWDiXsDMq

04lBmfEHw\"}]}"

],

"createTimestamp": [

"20200826104156Z"

],

"uid": [

"manual-gateway"

],

"universalid": [

"id=manual-

13 / 29

Log in to the AM admin UI and select Identities in the Top Level Realm. You

should see the manual-gateway in the list.

The IoT SDK examples demonstrate how to:

Authenticate a thing after manual registration

Authenticate a thing with dynamic registration

Request a user token for an authenticated thing

These examples assume that you have downloaded the example repository and that the

iot-edge directory is your current directory.

This example authenticates a thing and requests an access token for the thing. The thing

must have an asymmetric key pair for signing. This is provided in the /path/to/iot-

edge/examples/resources directory. The source code for this example is in

/path/to/iot-edge/examples/thing/simple/main.go .

This sequence diagram shows how the thing is authenticated for the session:

gateway,ou=user,dc=openam,dc=forgerock,dc=org"

],

"inetUserStatus": [

"Active"

],

"sn": [

"manual-gateway"

],

"thingType": [

"gateway"

]

}

IoT SDK examples

Authenticate a thing after manual registration

file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html#get-the-examples

14 / 29

Manufacturer

Manufacturer

Thing

Thing

Access Management

Access Management

Directory Services

Directory Services

generate key pair

retrieve thing public key

create thing identity with public key

activate

authenticate
with signed JWT

get public key

verify JWT

return session token

Before you run the example, register the thing manually (using manual-thing as the

thing’s ID).

Then, run the thing/manual-registration example:

The thing is now authenticated to AM and has received an access token.

The Register Thing node supports multiple registration methods, specified in the node’s

JWT Registration Method property. These examples show the different methods.

cd /path/to/iot-edge

./run.sh example "thing/manual-registration" \

-name "manual-thing" \

-url "http://am.localtest.me:8080/openam" \

-tree "auth-tree"

Creating Thing manual-thing…​ Done

Requesting access token…​ Done

Access token: uk6gfxEwO4Qq8pDaijcD9ssmyqk

Expires in: 3599

Scope(s): [publish]

Authenticate a thing with dynamic registration

file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/register-identities.html

15 / 29

This example registers a new identity, authenticates the thing, and requests an access

token for the thing. The thing must have an asymmetric key pair for signing, and a CA-

signed X.509 certificate that contains the key pair’s public key. These are provided in the

/path/to/iot-edge/examples/resources directory. The source code for this example is

in /path/to/iot-edge/examples/thing/dynamic-registration/pop-cert/main.go .

This sequence diagram shows how the thing is registered and authenticated for the

session:

Manufacturer\
Certificate Authority

Manufacturer\
Certificate Authority

Thing

Thing

Access Management

Access Management

Directory Services

Directory Services

Secrets Store

Secrets Store

generate key pair

retrieve thing public key

create and sign certificate
containing thing public key

add CA verification key

activate

register with signed
JWT and certificate

get CA verification key

verify certificate and JWT

create identity
with public key

return session token

The example assumes the following node configuration in the auth-reg-tree :

Authenticate Thing node

JWT Authentication Method : Proof of Possession

Issue Restricted Token enabled

Register Thing node

JWT Registration Method : Proof of Possession & Certificate

Create Identity enabled

From the iot-edge directory, run the thing/dynamic-registration/pop-cert

example:

Proof-of-possession and certificate

16 / 29

The thing is now registered with the ID dynamic-thing . It is authenticated to AM and has

received an access token.

Log in to the AM admin UI and select Identities in the Top Level Realm to see the

dynamic-thing in the list.

This example registers a new identity, authenticates the thing, and requests an access

token for the thing. The thing must have an asymmetric key pair for signing, and a

software statement that contains the key pair’s public key in the jwks claim.

The source code for this example is in /path/to/iot-edge/examples/thing/dynamic-

registration/pop-sw-stmt/main.go .

This sequence diagram shows how the thing is registered and authenticated for the

session:

cd /path/to/iot-edge

./run.sh example "thing/dynamic-registration/pop-cert" \

-name "dynamic-thing" \

-url "http://am.localtest.me:8080/openam" \

-tree "auth-reg-tree"

Creating Thing dynamic-thing…​ Done

Requesting access token…​ Done

Access token: 9szFZrb006z1L7KF_dJCLNMsVPw

Expires in: 3599

Scope(s): [publish]

Proof-of-possession and software statement

https://datatracker.ietf.org/doc/html/rfc7591#section-2.3

17 / 29

Manufacturer\
Software Publisher

Manufacturer\
Software Publisher

Thing

Thing

Access Management

Access Management

Directory Services

Directory Services

generate key pair

retrieve thing public key

add key pair
and software statement

add software statement verification keys

activate

register with signed
JWT and software statement

verify software
statement and JWT

create identity
with public key

return session token

Change the registration method in the Register Thing node. The example assumes the

following node configuration in the auth-reg-tree :

Authenticate Thing node

JWT Authentication Method : Proof of Possession

Issue Restricted Token enabled

Register Thing node

JWT Registration Method : Proof of Possession & Software Statement

Create Identity enabled

If you have already run the Proof-of-possession and certificate example, delete the

dynamic-thing identity in the AM admin UI before you run this example.

From the iot-edge directory, run the thing/dynamic-registration/pop-sw-stmt

example:

cd /path/to/iot-edge

./run.sh example "thing/dynamic-registration/pop-sw-stmt" \

-name "dynamic-thing" \

-url "http://am.localtest.me:8080/openam" \

18 / 29

The thing is now registered with the ID dynamic-thing . It is authenticated to AM and has

received an access token.

Log in to the AM admin UI and select Identities in the Top Level Realm to see the

dynamic-thing in the list.

This example registers a thing with a unique ID, rather than a specified name. After

registration, the ID is retrieved and used to authenticate the thing. When the thing is

authenticated, the flow requests an access token for the thing.

The flow mimics OAuth 2.0 Dynamic Registration and OAuth 2.0 JWT Bearer

Authentication to request an access token, using a standard API.

The thing must have an asymmetric key pair for signing, and a software statement that

contains the key pair’s public key in the jwks claim.

The source code for this example is in /path/to/iot-edge/examples/thing/dynamic-

registration/sw-stmt/main.go .

This sequence diagram shows how the thing is registered and authenticated for the

session:

-tree "auth-reg-tree"

Creating Thing dynamic-thing…​ Done

Requesting access token…​ Done

Access token: RXDEVQBY6YgZNnX07FEtJRKd_Sg

Expires in: 3599

Scope(s): [publish]

Software statement

https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7591#section-2.3

19 / 29

Manufacturer\
Software Publisher

Manufacturer\
Software Publisher

Thing

Thing

Access Management

Access Management

Directory Services

Directory Services

generate key pair

retrieve thing public key

add key pair
and software statement

add software statement verification keys

activate

register with
software statement

verify software statement

generate unique ID

create identity
with public key

return session token

request thing attributes

thing unique ID

authenticate with
client assertion

verify client assertion

return session token

Change the configuration of the auth-tree and the reg-tree as follows:

In the auth-tree set these values on the Authenticate Thing node:

JWT Authentication Method : Client Assertion

Issue Restricted Token disabled

In the reg-tree set these values on the Register Thing node:

JWT Registration Method : Software Statement

Create Identity enabled

Under Default Attribute Values, click Add, then set thingType as the KEY

and device as the VALUE

20 / 29

From the iot-edge directory, run the thing/dynamic-registration/sw-stmt example:

The thing is now registered with the ID dynamic-thing . It is authenticated to AM and has

received an access token.

Log in to the AM admin UI and select Identities in the Top Level Realm to see the new

identity in the list. The identity will have a unique ID, such as aa3373b1-93ef-49d0-bbbf-

b95dcab6691b .

This example creates a new identity with a specified name, authenticates the thing, and

requests an access token for the thing. The thing must have an asymmetric key pair for

signing. No trusted third party is used in this flow, so you should use this registration

method only if the thing that is registering is already trusted.

The source code for this example is in /path/to/iot-edge/examples/thing/dynamic-

registration/pop/main.go .

This sequence diagram shows how the thing is registered and authenticated for the

session:

cd /path/to/iot-edge

./run.sh example "thing/dynamic-registration/sw-stmt" \

-url "http://am.localtest.me:8080/openam" \

-audience

"http://am.localtest.me:8080/openam/oauth2/access_token" \

-reg-tree "reg-tree" \

-auth-tree "auth-tree"

Register thing using Software Statement…​ Done

Requesting attributes…​ Done

Attributes: {map[_id:862b8345-d9cd-4931-911a-e8743c3d28cb

thingConfig:[] thingKeys:[{"keys":

[{"kty":"EC","kid":"veziPUQYgKIj0GTML2e2A4epDK_hfFqBZvAJhNzOjYs="

,"use":"sig","alg":"ES256","x":"n3DAs6v4YF3t0SzlV4wtRambjLBR4hige

hgBuMpSf00","y":"sP7JHsDIlF3W334wgSHl9rxSbN1TMg_tYOU9lUC2l1A","cr

v":"P-256"}]}]]}

Authenticate thing using Client Assertion…​ Done

Requesting access token…​ Done

Access token: UOVU_dN04HiEWiqd-1P0Fn4QGmY

Expires in: 3599

Scope(s): [publish]

Proof-of-possession

21 / 29

Thing

Thing

Access Management

Access Management

Directory Services

Directory Services

generate key pair

activate

register with signed JWT

verify JWT

create identity
with public key

return session token

In the auth-reg-tree , change the configuration as follows:

Authenticate Thing node

JWT Authentication Method : Proof of Possession

Issue Restricted Token enabled

Register Thing node

JWT Registration Method : Proof of Possession

Create Identity enabled

If you have already run a previous registration example that created a named identity,

delete the dynamic-thing identity in the AM admin UI before you run this example.

From the iot-edge directory, run the thing/dynamic-registration/pop example:

cd /path/to/iot-edge

./run.sh example "thing/dynamic-registration/pop" \

-name "dynamic-thing" \

-url "http://am.localtest.me:8080/openam" \

-tree "auth-reg-tree"

Creating Thing dynamic-thing…​ Done

Requesting access token…​ Done

Access token: n3cYnvOSq15s2wzSwKyTuQbkoD8

Expires in: 3599

Scope(s): [publish]

22 / 29

The thing is now registered with the ID dynamic-thing . It is authenticated to AM and has

received an access token.

Log in to the AM admin UI and select Identities in the Top Level Realm to see the

dynamic-thing in the list.

This example creates a new identity for a thing, using dynamic registration, and then

authenticates it. When the thing is authenticated, it requests a user access token using the

OAuth 2.0 Device Authorization Grant. The access token authorizes the thing to access a

user’s resources, or act on behalf of the user, as specified by the scope granted by the

user.

The example demonstrates how the thing can manage the access token’s lifecycle by

introspecting and refreshing the token.

To request a user token, a user must be registered and authenticated before approving

the request. When you run the example, the user is directed to a URL to perform the

authorization. This example assumes that user bjensen is authenticated and accepts the

request.

This sequence diagram shows how the thing is authorized for the session:

User

User

Thing

Thing

Access Management

Access Management

register & authenticate

session token

get user & device code

user & device code

verification URL & user code

loop

poll for authorization with device code

return authorization_pending

authenticate & approve access

user access token

Request a user token for an authenticated thing

https://backstage.forgerock.com/docs/am/7.2/oauth2-guide/oauth2-device-flow.html

23 / 29

In the auth-reg-tree , change the configuration as follows:

Authenticate Thing node

JWT Authentication Method : Proof of Possession

Issue Restricted Token enabled

Register Thing node

JWT Registration Method : Proof of Possession & Certificate

Create Identity enabled

1. Run the thing/user-token example:

cd /path/to/iot-edge

./run.sh example "thing/user-token" \

-name "user-authorized-thing" \

-url "http://am.localtest.me:8080/openam" \

-tree "auth-reg-tree"

Creating Thing user-authorized-thing…​ Done

Requesting user code…​ Done

User code response: {

"device_code":"code",

"user_code":"code",

"verification_uri":"http://am.localtest.me:8080/openam/oauth2/

device/user",

"verification_uri_complete":"http://am.localtest.me:8080/opena

m/oauth2/device/user?user_code=code",

"expires_in":300,

"interval":5

}

Creating Thing user-authorized-thing…​ Done

Requesting user code…​ Done

User code response: {

"device_code":"eyJ0eXAiOiJKV1QiLC…​p4GQHM",

"user_code":"Y6GPhHpt",

"verification_uri":"http://am.localtest.me:8080/openam/oauth2/

device/user",

"verification_uri_complete":"http://am.localtest.me:8080/opena

24 / 29

2. Go to http://am.localtest.me:8080/openam/oauth2/device/user?

user_code=Y6GPhHpt and click Confirm.

You are redirected to a screen that lets you confirm the authentication request:

3. Click Allow.

The thing is now authenticated to AM and has received an access token. The output

shows the complete flow.

m/oauth2/device/user?user_code=Y6GPhHpt",

"expires_in":300,

"interval":5}

Requesting user access token…​ To authorise the request, go to

http://am.localtest.me:8080/openam/oauth2/device/user?

user_code=Y6GPhHpt

Done

Access token response: {

"access_token": "I46b6E7k8xHyQPRcJ_Izcas1GVc",

"expires_in": 3599,

"refresh_token": "W9Yjr_7SEsnccw3x50f7o8PbWLs",

"scope": "subscribe publish",

"token_type": "Bearer"

}

http://am.localtest.me:8080/openam/oauth2/device/user?user_code=Y6GPhHpt
http://am.localtest.me:8080/openam/oauth2/device/user?user_code=Y6GPhHpt

25 / 29

Introspecting access token to get more information…​ Done

Introspection response: {

"active": true,

"auditTrackingId": "403dafaf-e367-4ef5-a485-e20fa44fbf0c-

998197",

"authGrantId": "tQKArSNFxEJKX_PLFVcHGTKqby8",

"auth_level": 0,

"client_id": "forgerock-iot-oauth2-client",

"exp": 1656586652,

"iss": "http://am.localtest.me:8080/openam/oauth2",

"realm": "/",

"scope": "subscribe publish",

"sub": "(usr!bjensen)",

"subname": "bjensen",

"token_type": "Bearer",

"user_id": "bjensen",

"username": "bjensen"

}

Refreshing access token with reduced scope…​ Done

Access token response: {

"access_token": "fI4KL7Ui2CjkvtULGMDfw0CDXSk",

"expires_in": 3599,

"refresh_token": "FJ5mfvvB8eMtj7MOj2t4MSKOUsQ",

"scope": "publish",

"token_type": "Bearer"

}

Introspecting access token to get more information…​ Done

Introspection response: {

"active": true,

"auditTrackingId": "403dafaf-e367-4ef5-a485-e20fa44fbf0c-

998250",

"authGrantId": "tQKArSNFxEJKX_PLFVcHGTKqby8",

"auth_level": 0,

"client_id": "forgerock-iot-oauth2-client",

"exp": 1656586652,

"iss": "http://am.localtest.me:8080/openam/oauth2",

"realm": "/",

"scope": "publish",

"sub": "(usr!bjensen)",

"subname": "bjensen",

"token_type": "Bearer",

"user_id": "bjensen",

26 / 29

The gateway examples demonstrate how to:

Authenticate the gateway after manual registration

Authenticate the gateway with dynamic registration

Connect a thing to the gateway

These examples assume that you have downloaded the example repository and that the

iot-edge directory is your current directory.

This example starts the gateway, and authenticates it. The gateway must have an

asymmetric key pair for signing. This is provided in the /path/to/iot-

edge/examples/resources directory. The source code for this example is in

/path/to/iot-edge/cmd/gateway/main.go .

Before you run the example:

Register the gateway manually (using manual-gateway as the ID)

In the auth-tree , make sure that the Authenticate Thing node has the following

configuration:

JWT Authentication Method : Proof of Possession

Issue Restricted Token enabled

1. Start the gateway:

"username": "bjensen"

}

IoT Gateway examples

Authenticate the gateway after manual registration

cd /path/to/iot-edge

./run.sh gateway \

--name "manual-gateway" \

--url "http://am.localtest.me:8080/openam" \

--audience "/" \

--realm "/" \

--tree "auth-tree" \

--kid "cbnztC8J_l2feNf0aTFBDDQJuvrd2JbLPoOAxHR2N8o=" \

--key "$(pwd)/examples/resources/eckey1.key.pem" \

--address ":5683" \

file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/before-you-start.html#get-the-examples
file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/register-identities.html

27 / 29

The gateway is now started and has authenticated itself to AM.

2. In a separate terminal window, connect a thing to the gateway.

3. To stop the gateway process, press Ctrl+C in the terminal window where the process

is running.

This example registers an identity for the gateway, then starts the gateway, and

authenticates it. The gateway must have an asymmetric key pair for signing, and a CA-

signed X.509 certificate that contains the key pair’s public key. This is provided in the

/path/to/iot-edge/examples/resources directory. The source code for this example is

in /path/to/iot-edge/cmd/gateway/main.go :

1. Start the gateway:

--debug

commandline options

url: http://am.localtest.me:8080/openam

realm: /

tree: auth-tree

name: manual-gateway

address: :5683

key: /path/to/iot-edge/examples/resources/eckey1.key.pem

kid: cbnztC8J_l2feNf0aTFBDDQJuvrd2JbLPoOAxHR2N8o=

certificate:

timeout 5s

debug: true

IoT Gateway server started.

Authenticate the gateway with dynamic registration

cd /path/to/iot-edge

./run.sh gateway \

--name "dynamic-gateway" \

--url "http://am.localtest.me:8080/openam" \

--audience "/" \

--realm "/" \

--tree "auth-reg-tree" \

--key "$(pwd)/examples/resources/eckey1.key.pem" \

--cert "$(pwd)/examples/resources/dynamic-gateway.cert.pem" \

--address ":5683" \

--debug

commandline options

url: http://am.localtest.me:8080/openam

realm: /

tree: reg-tree

http://am.localtest.me:8080/openam
http://am.localtest.me:8080/openam

28 / 29

The gateway is now registered, with the ID dynamic-gateway , and has started and

authenticated itself to AM.

2. In a separate terminal window, connect a thing to the gateway.

3. To stop the gateway process, press Ctrl+C in the terminal window where the process

is running.

This example connects a thing to the gateway. When the thing has connected, it can

authenticate to AM and request an access token. The source code for this example is in

/path/to/iot-edge/examples/thing/manual-registration/main.go .

Before you run the example, register the thing manually (using manual-thing as the

thing’s ID). Then, run the thing/manual-registration example to connect the thing to

the gateway:

name: dynamic-gateway

address: :5683

key: /path/to/iot-

edge/examples/resources/eckey1.key.pem

kid:

certificate: /path/to/iot-

edge/examples/resources/dynamic-gateway.cert.pem

timeout 5s

debug: true

IoT Gateway server started.

Connect a thing to the gateway

cd /path/to/iot-edge

./run.sh example "thing/manual-registration" \

-name "manual-thing" \

-url "coap://:5683"

Creating Thing manual-thing…​ Done

Requesting access token…​ RequestAccessToken response: {

"access_token":"vHJDYCBkOjih90PWGAw0KcsCzpU",

"scope":"publish",

"token_type":"Bearer",

"expires_in":3599

}

Done

Access token: vHJDYCBkOjih90PWGAw0KcsCzpU

Expires in: 3599

Scope(s): [publish]

file:///home/pptruser/Downloads/build/site/iot/evaluation-guide/register-identities.html

29 / 29

Copyright © 2010-2023 ForgeRock, all rights reserved.

