
User Guide
/ Java Agents 5.6

Latest update: 5.6.3

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2019 ForgeRock AS.

Abstract

Guide to installing and managing ForgeRock® Access Management Java agents.
ForgeRock Access Management provides open source authentication, authorization,
entitlement, and federation software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... iv
1. Introducing Java Agents .. 1

Java Agent Components .. 1
Configuration Location .. 2
Request Process Flow ... 3
Java Agent Features .. 5

2. Preparing for Installation .. 18
Downloading and Unzipping Java Agents ... 18
Configuring Access Management Servers to Communicate With Java Agents 19
Creating Agent Profiles ... 21
Supporting Load Balancers and Reverse Proxies Between AM and the Agents 24

3. Configuring Environments With Load Balancers and Reverse Proxies 25
Regarding Communication Between AM and Agents .. 27
Regarding Communication Between Clients and Agents 29

4. Installing Java Agents .. 37
Installing the Tomcat Java Agent ... 37
Installing the JBoss Java Agent .. 44
Installing the Jetty Java Agent ... 51
Installing the WebLogic Java Agent ... 58
Installing the WebSphere Java Agent .. 66

5. Post-Installation Tasks ... 74
Configuring the Agent Filter ... 74
Configuring Audit Logging .. 77
Configuring Performance Monitoring .. 80
Configuring Java Agents for SSL Communication .. 82
Supporting Load Balancers and Reverse Proxies Between Clients and Agents 83

6. Upgrading Java Agents .. 85
7. Removing Java Agents ... 87

Removing the Tomcat Java Agent .. 87
Removing the JBoss Java Agent ... 88
Removing the Jetty Java Agent .. 90
Removing the WebLogic Java Agent .. 91
Removing the WebSphere Java Agent .. 93

8. Troubleshooting ... 96
9. Reference .. 99

Configuring Java Agent Properties .. 99
Configuring Agent Authenticators .. 170
Monitoring Reference .. 170
Command-Line Tool Reference .. 191
Configuring Apache HTTP Server as a Reverse Proxy Example 194

A. Getting Support .. 196
Glossary ... 197

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. iv

Preface
This guide shows you how to install ForgeRock Access Management Java agents, as well as how to
integrate with ForgeRock Access Management. Read the Release Notes before you get started.

This guide is written for anyone installing Java agents to interface with supported Java web
application containers.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing Java Agents
Java Agent Components

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing Java Agents
A Java agent is an Access Management add-on component that operates as a Policy Enforcement
Point (PEP) or policy agent for applications deployed on a Java container.

Java agents intercept inbound requests to applications. Depending on the filter mode configuration,
Java agents interact with AM to:

• Ensure that clients provide appropriate authentication.

• Enforce AM resource-based policies.

This chapter covers how Java agents work and how their features can protect your applications.

Java Agent Components
Java agents comprise two main components; the agent filter and the agent application:

• Agent Filter. Intercepts inbound client requests to a resource and processes them based on the
filter mode of operation.

• Agent Application. Deployed as agentapp.war, it is required for authentication and the cross-domain
single sign-on (CDSSO) flow.

The following components are not strictly part of the Java agent, but they play an important part in
the agent's operation:

• AM SDKs. Provide a set of APIs required to interact with AM.

• Agent Profile. Contains a set of configuration properties that define the agent's behavior. The agent
profile can be stored in AM's configuration store or as a text file local to the agent installation.

The following picture illustrates the Java agent's components when the agent profile is stored in the
AM configuration store:

Introducing Java Agents
Configuration Location

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 2

Java Agent Main Components

Java

container
Access

Management

Request to
protected application

Services

Authentication

Authorization

…

Java

application

Clients

Agent profile
AM

SDK

Agent filter

and

applicat ion

1

2
3

4

7

8

5

6

Configuration Location
Java agents have two sets of properties:

Configuration properties

Configuration properties determine the behavior of the Java agent. AM stores configuration
properties either centrally or locally:

• Centralized configuration

Introducing Java Agents
Request Process Flow

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 3

AM stores the Java agent properties in the AM configuration store. Storing the agent
configuration centrally allows you to configure your agents by using the AM console, the
ssoadm command, and the REST API. This is the default configuration location mode.

To access the centralized agent configuration in the AM console, navigate to Realms > Realm
Name > Applications > Agents > Java > Agent Name.

For more information on creating centrally-stored agent profiles, see "Creating Agent Profiles".

• Local configuration

The Java agent installer creates the /path/to/java_agents/agent_type/agent_instance/
OpenSSOAgentConfiguration.properties file to store configuration properties locally. To manage the
configuration, edit the file to add properties, remove properties, and change values. You cannot
update this file using the AM console, the ssoadm command, or the REST API.

Bootstrap properties

Bootstrap properties enable Java agents to connect to an AM instance. These properties are
required regardless of whether the configuration properties are stored centrally in AM or locally
on the agent installation.

The agent installer creates the /path/to/java_agents/agent_type/agent_instance/config/
OpenSSOAgentBootstrap.properties file, which contains the bootstrap properties.

For more information on setting the Location of Agent Configuration Repository, see Profile Properties.

Request Process Flow
Suppose you wanted to withdraw money from your bank account using an ATM. The ATM would not
allow you to access your account unless you identified yourself to the bank with your card and PIN
number. For a joint account, you may also require additional authorization to access the funds.

Java agents work on a similar premise. When a client requests access to an application resource,
the Java agent intercepts the request. Then, AM validates the identity of the client as well as their
authorization to access the protected resource.

The following sequence diagram shows the flow that occurs when an unauthenticated client requests
a resource protected by a Java agent and AM. The diagram assumes that the filter mode is set to ALL
and is simplified 1 to show only the relevant steps in the flow.

1For a detailed diagram, see About Cross-Domain Single Sign-On in the ForgeRock Access Management Authentication and
Single Sign-On Guide.

../../../am/6.5/authentication-guide/#about-cross-domain-sso

Introducing Java Agents
Request Process Flow

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 4

Java Agent Process Flow

Java Agent Process Flow

Java Cont a iner

Client

Client

Agent Filter/
Agent Applicat ion

Agent Filter/
Agent Applicat ion

Web Resource

Web Resource

Access Managem ent

Access Managem ent

1 Request to ht tp://www.exam ple.com
intercepted by agent filter

2 Check not -enforced lists

alt [Resource or client IP m at ches not -enforced list s]

3 Pass through

4 Response from ht tp://www.exam ple.com

5 Redirect to AM login page
for authent icat ion

6 Client authent icates

7
Verify credent ials
and create valid
OIDC JWT

8 Send self-subm it t ing form
with OIDC JWT

9 Post form to the agent 's endpoint ,
which consum es the response

1 0 Set cookie dom ain to
FQDN of resource

1 1 Redirect to ht tp://www.exam ple.com
intercepted by agent filter

1 2 Request OIDC JWT
validat ion

1 3 OIDC JWT is OK

1 4 Request policy decision

1 5 Policy decision is
"ALLOW"

1 6 Log policy decision

1 7 Pass through

1 8 Response from
ht tp://www.exam ple.com

Introducing Java Agents
Java Agent Features

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 5

1. An unauthenticated client attempts to access a resource at www.example.com. The agent filter
intercepts the inbound request.

2. Java agents evaluate whether the requested resource or the client IP address matches any rule
contained in the not-enforced lists.

3. Alternate Flow. The requested resource or the client IP address matches a not-enforced rule. The
Java agent allows access to the resource.

4. Alternate Flow. The client receives a response from www.example.com. The flow ends.

5. The requested resource or the client IP address does not match a not-enforced rule. The Java
agent redirects the client to log in to AM.

6. The client authenticates to AM.

7. AM's Authentication Service verifies the client's credentials and creates a valid OpenID Connect
(OIDC) JSON Web Token (JWT) with session information.

8. AM sends the client a self-submitting form with the OIDC JWT.

9. The client posts the self-submitting form to the agent's endpoint, and the Java agent consumes it.

10. The Java agent sets the cookie domain to the FQDN of the resource.

11. The client attempts to access the protected resource again, and the Java agent filter intercepts
the request.

12. The Java agent contacts AM to validate the session contained in the OIDC JWT.

13. AM validates the session.

14. The Java agent contacts AM's Policy Service, requesting a decision about whether the client is
authorized to access the resource.

15. AM's Policy Service returns ALLOW.

16. The Java agent writes the policy decision to the audit log.

17. The Java agent enforces the policy decision. Since the Policy Service returned ALLOW, the Java
agent performs a pass-through operation to return the resource to the client.

18. The client accesses the resource at www.example.com.

Java Agent Features
Java agents provide a number of features to help you protect your applications. The following table
contains a list of the features and the sections were you can have more information about each one:

Introducing Java Agents
Not-Enforced Lists

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 6

• Not-Enforced Lists

• Notification System

• Attribute Fetch Modes

• Login Attempt Limits

• FQDN Checking

• Cookie Reset Properties

• Cross-Domain Single Sign-On

• POST Data Preservation

• Continuous Security

• Redirection and Conditional Redirection

• Caching Capabilities

• Query Parameter Handling

Not-Enforced Lists

Java agents provide the capability to bypass authentication and grant immediate access to resources
not requiring protection, thus speeding up agent operation.

You can configure different lists of not-enforced rules depending on the needs of your deployment:

• Not-Enforced URI Lists

Configure not-enforced URI lists to allow access to resources, such as images, stylesheets, or the
HTML pages that comprise the public front end of your site.

• Not-Enforced IP Lists

Configure not-enforced IP lists to allow access to your site from an administrative IP address, an
internal network range, or a search engine.

• Compound Not-Enforced URI and IP Lists

Configure compound URI and IP not-enforced lists when you require more control over access.

To evaluate access, the Java agent constructs a list of compound rules, a list of simple URI rules, and
a list of simple IP rules. The lists are evaluated in the following order:

1. Compound rules in both Not-Enforced URIs and Not-Enforced Client IP List properties

Introducing Java Agents
Notification System

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 7

2. IP rules in the Not-Enforced Client IP List property

3. URI rules in the Not-Enforced URIs property

The first time the Java agent receives a request for a resource, it needs to evaluate if the request
is for a protected resource or for a not-enforced resource. To make this decision, the agent tries to
match the request with the patterns specified in the not-enforced lists.

The Java agent evaluates every rule in the lists in order until it finds the first match. It does not
process any other rule, even though a rule further down the list might provide a better match.
Because of this, place your most specific rules at or near the beginning of the list.

To speed up future requests, the Java agent caches whether the resource hit or miss any not-enforced
rule. Therefore, if a request for the same resource reaches the agent again, the agent checks the
result of the rules evaluation in the cache instead of running the rules again.

If no rule matches, the Java agent decides whether to grant access or defer to AM based on the
configuration of the Invert Not-Enforced IPs and the Invert Not-Enforced URIs properties. See the
following table for an analysis of the possibilities.

Not-Enforced Default Access for Non-Matching Requests

 Not-Enforced Client IP
List Property

Not-Enforced URIs Property Outcome

Inverted? No No Defer to AM
Inverted? Yes Yes Grant access
Inverted? Yes No Defer to AM
Inverted? No Yes Defer to AM

In the preceding table, if the Not-Enforced Client IP List and Not-Enforced URIs properties are not
inverted (the Not-Enforced IP Invert List and Invert Not-Enforced URIs properties are set to false),
the Java agent defers any unmatched request to AM for authorization.

Not-Enforced lists support wildcards, regular expressions, and the possibility of specify HTTP
methods for fine-tuning the rules.

For more information about configuring not-enforced lists and other related properties, see Not-
Enforced URI Processing Properties.

Notification System

AM can notify Java agents of configuration and session state changes through WebSockets. Java
agents can subscribe to up to three notification feeds:

• Configuration Notifications. When the administrator makes a change to a hot-swappable Java agent
configuration property, AM sends a notification to the agent to reread the agent profile from AM.

Introducing Java Agents
Attribute Fetch Modes

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 8

Configuration notifications are applicable when you store the agent profile in AM's configuration
data store. For more information about enabling configuration notifications, see Profile Properties.

• Session Notifications. When a client logs out or a CTS-based session expires, AM sends a
notification to the Java agent to remove that entry from the session cache. For more information
about enabling session notifications, see Session Client Service Properties.

• Policy Notifications. When an administrator changes a policy, AM sends a notification to the Java
agent to flush the policy cache. For more information about enabling policy notifications, see Policy
Client Service Properties.

The AM advanced server configuration property, org.forgerock.openam.notifications.agents.enabled,
controls whether the AM server sends notifications to connected Java agents. This property is
enabled by default.

Enabling notifications affects the validity of the Java agent caches. For more information, see
"Caching Capabilities".

Note

Ensure that load balancers and reverse proxies configured in your environment support WebSockets.

Attribute Fetch Modes
Java agents provide the capability to fetch and inject user information into HTTP headers, request
objects, and cookies and pass them on to the protected client applications. The client applications can
then personalize content using these attributes in their web pages or responses.

Specifically, you can configure the type of attributes to be fetched and the associated mappings for
the attributes names used on AM to those values used in the containers. The Java agent securely
fetches the user and session data from the authenticated user as well as policy response attributes.

For more details, see Session Attributes Processing Properties.

Login Attempt Limits
When the client does not present a valid SSO token, the Java agent will redirect the user to the login
URL configured in AM. The Java agent can be configured to limit the login attempts made to the Java
agent to mitigate any redirect loops that may result in an error page presented to the end-user.

You can use the com.sun.identity.agents.config.login.attempt.limit property to specify a non-zero value
for the number of login attempts. For example, if the property is set to 3, then the Java agent will
block the access request to the protected resource on the fourth login request.

You can also limit the number of redirections the Java agent can take for a single browser session by
setting the com.sun.identity.agents.config.redirect.attempt.limit.

For more details, see General Properties.

Introducing Java Agents
FQDN Checking

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 9

FQDN Checking
Java agents require that clients accessing protected resources use valid URLs with fully qualified
domain names (FQDNs). If invalid URLs are referenced, policy evaluation can fail as the FQDN will
not match the requested URL, leading to blocked access to the resource. Misconfigured URLs can
also result in incorrect policy evaluation for subsequent access requests.

There are cases where clients may specify resource URLs that differ from the FQDNs stored in AM
policies; for example, in load balanced and virtual host environments. To handle these cases, the Java
agent supports FQDN Checking properties: FQDN Default and FQDN Virtual Host Map properties.

The FQDN Default property specifies the default URL with valid hostname. The property ensures that
the Java agent can redirect to a URL with a valid hostname should it discover an invalid URL in the
client request.

The FQDN Virtual Host Map property stores map keys and their corresponding values, allowing invalid
URLs, load balanced URLs, and virtual host URLs to be correctly mapped to valid URLs. Each entry in
the Map has precedence over the FQDN Default setting, so that if no valid URLs exist in the FQDN Virtual
 Host Map property, the Java agent redirects to the value specified in the FQDN Default property.

If you want the Java agent to redirect to a URL other than the one specified in the FQDN Default
property, then it is good practice to include any anticipated invalid URLs in the FQDN Virtual Host Map
property and map it to a valid URL.

For more details, see Fully Qualified Domain Name Checking Properties.

Cookie Reset Properties
AM provides cookie reset properties that the Java agent carries out prior to redirecting the client to a
login page for authentication.

Cookie reset is typically used when multiple parallel authentication mechanisms are in play with the
Java agent and another authentication system. The Java agent can reset the cookies set by the other
mechanism before redirecting the client to a login page.

The cookie reset properties include a name list specifying all of the cookies that will reset, a domain
map specifying the domains set for each cookie, and a path map specifying the path from which the
cookie will be reset.

If you have enabled attribute fetching using cookies to retrieve user data, it is good practice to use
cookie reset, which will reset once you want to access an enforced URL without a valid session.

For more details, see Cookie Reset Properties.

Cross-Domain Single Sign-On
Cross-domain single sign-on (CDSSO) is an AM capability that lets users access multiple independent
services from a single login session, using the Java agent to transfer a validated session ID on a single
DNS domain or across domains.

Introducing Java Agents
POST Data Preservation

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 10

Without AM's CDSSO, single sign-on cannot be implemented across domains; the session cookie from
one domain would not be accessible from another domain. For example, in a configuration where the
AM server (openam.example.com) is in a different DNS domain than the Java agent (myapp.website.com),
single sign-on would not be possible.

Java agents work in CDSSO mode by default, regardless of the DNS domain of the AM servers and
the DNS domain of the agents.

For more information and implementation details, see About Single Sign-On and Configuring Cross-
Domain Single Sign-On in the ForgeRock Access Management Authentication and Single Sign-On
Guide.

POST Data Preservation

Java agents can preserve HTML form data submitted as an HTTP POST by unauthenticated clients.

At a high level, when an unauthenticated client posts HTML form data to a protected resource, the
Java agent stores the data in its cache and redirects the client to the login screen. Upon successful
authentication, the agent recovers the data stores in the cache and autosubmits it to the protected
resource.

Consider enabling POST data preservation if users or clients in your environment submit large
amounts of data, such as blog posts and wiki pages, and their sessions are short-lived.

Java agents guarantee the integrity of the data and the authenticity of the client as follows:

• Each unauthenticated form POST to a protected resource generates a random unique identifier as
the dummy internal endpoint from which the client recovers the POST data after authentication.
This identifier is then placed into an encrypted cookie and provided to the client.

• During authentication, the client is provided with a one-time code placed in a different cookie that
is also stored with the POST data in the cache. If the client cannot provide the code (because the
cookie is missing) or the code differs from the one stored with the POST data, the Java agent denies
access to the endpoint.

To mitigate against DoS attacks, manage the time the data lives in the cache and the size of the cache
itself, either by limiting the total number of entries it can hold or the total size of the data held.

For more information about the POST data preservation cache and its properties, see "Caching
Capabilities" and POST Data Preservation Properties.

Continuous Security

Because Java agents are the first point of contact between users and your business applications,
they can collect inbound login requests' cookie and header information which an AM server-side
authorization script can then process.

../../../am/6.5/authentication-guide/#about-sso
../../../am/6.5/authentication-guide/#sec-cdsso
../../../am/6.5/authentication-guide/#sec-cdsso
../../../am/6.5/authorization-guide#sec-scripted-policy-condition
../../../am/6.5/authorization-guide#sec-scripted-policy-condition

Introducing Java Agents
Redirection and Conditional Redirection

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 11

For example, you may decide that only incoming requests containing the InternalNetwork cookie can
access intranet resources outside working hours.

For more information about configuring continuous security properties, see Continuous Security
Properties.

Redirection and Conditional Redirection

Java agents provide the capability to redirect users to a specific AM instance, an AM site, or a
website other than AM. You can also redirect users based on the incoming request URL. Conditional
redirection is available for login and logout requests.

For example, you can configure the Java agent such that any login request made from the france.
example.com domain is redirected to the openam.france.example.com AM site. You can also configure the
Java agent to redirect any user to a specific page after logout.

You may also decide to configure conditional login redirection to specify the realm to which users
must authenticate.

Java agents support the following redirection modes:

• Default Redirection Login Mode

• Custom Redirection Login Mode

Default Redirection Login Mode

By default, Java Agents 5.x and AM use OpenID Connect (OIDC) JSON web tokens (JWT) for
authentication. Unauthenticated users are redirected to the oauth2/authorize endpoint. This endpoint
invokes both the XUI and other endpoints within AM, such as:

• oauth2/authorize

• json/authenticate

• json/sessions

• json/serverinfo

• XUI/*

Unauthenticated users must be able to reach, at least, AM's oauth2/authorize endpoint.

When configuring the default redirection login mode, consider the following points:

• Ensure that the Allow Custom Login Mode property is disabled (org.forgerock.openam.agents.config.
allow.custom.login is set to false).

• Configure the following property:

Introducing Java Agents
Redirection and Conditional Redirection

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 12

• AM Conditional Login URL (org.forgerock.openam.agents.config.conditional.login.url)

For more information, see Login URL Properties.

• The login flow is as follows:

1. The agent receives a request to access a page from an unauthenticated user.

2. The agent matches the request with the domains and URLs specified by the org.forgerock.openam.
agents.config.conditional.login.url property, and redirects the user to the appropriate custom
login page.

During the redirection process, the agent appends a number of OIDC parameters to the
request2.

3. The user logs in to the custom login page.

4. The custom login page redirects back to the agent and provides, at least, the OIDC parameters
appended during the redirection process.

5. The agent contacts AM to log the user into the appropriate realm.

Custom Redirection Login Mode

Java Agents support a custom login redirection mode by configuring the custom login mode property
org.forgerock.openam.agents.config.allow.custom.login.

When this property is set to true, the agent expects the custom login page to set an SSO token in the
user's browser after authentication. The agent will present the SSO token to AM, which would then
convert it into an OIDC JWT.

Use the custom redirection login mode when:

• Your environment has customized login pages that expect user sessions to be stored in SSO tokens
instead of in OIDC JWTs.

• Your environment is configured so the users cannot access the AM servers directly.

• Your environment is configured so the custom login pages are not part of AM's XUI.

Note

You should use the default redirection login mode when designing new environments. The custom redirection
login mode is meant as an aid to support environments upgrading from earlier versions of the agents.

When configuring the custom redirection login mode, consider the following points:

2For more information, see the implementation details included in the AM Conditional Login URL property.

Introducing Java Agents
Caching Capabilities

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 13

• Ensure that the Allow Custom Login Mode property is enabled (the org.forgerock.openam.agents.config.
allow.custom.login property is set to true).

• Configure the public AM URL in the org.forgerock.agents.public.am.url bootstrap property if the
custom pages are in a network that can only access AM using a proxy, a firewall, or any other
technology that remaps the AM URL to one accessible by the custom login pages.

Consider an example where the traffic between AM and the agent happens through the example-
internal.com network, but the custom login pages are on the example-external.com domain. In this
case, you would configure https://openam.example-external.com:8443/openam as the public AM
URL.

• Configure one of the following properties:

• AM Login URL (com.sun.identity.agents.config.login.url)

• org.forgerock.openam.agents.config.conditional.custom.login.url

For more information, see Login URL Properties.

• The login flow is as follows:

1. The agent receives a request to access a page from an unauthorized user.

2. The agent checks the custom login redirection mode properties:

• If configured, the agent redirects the user to the custom login page specified by the AM Login
URL property.

• If not configured, the agent matches the request with the domains and URLs specified by the
org.forgerock.openam.agents.config.conditional.custom.login.url property, and redirects the user
to the appropriate custom login page.

During the redirection process, the agent appends a goto parameter and a nonce to the request.

3. The user logs in to the custom login page.

4. The custom login page sets an SSO token in AM's session cookie (by default, iPlanetDirectoryPro)
in the user's browser and redirects back to the agent using the goto parameter provided.

If the agent is unable to access AM's session cookie, or if the session cookie contains an invalid
SSO token, the login process will fail.

5. The agent contacts AM to log the user in to the appropriate realm and convert the SSO token
into an OIDC JWT.

Caching Capabilities

Java agents allocate memory from the Java heap space in the web container to the following caches:

Introducing Java Agents
Caching Capabilities

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 14

Configuration Cache

When a Java agent with centralized configuration starts up, it makes a call to AM to retrieve a
copy of the Java agent profile and stores it in the cache. The information stored in the cache is
valid until one of the following events occurs:

• AM notifies the Java agent of changes to hot-swappable Java agent configuration properties.
The agent flushes the configuration cache and rereads the agent profile from AM.

• The Java agent restarts.

• The Java agent rereads the configuration from AM or from local files at the frequency specified
by the com.sun.identity.agents.config.load.interval property.

If notifications and the com.sun.identity.agents.config.load.interval property are disabled, cached
configuration remains valid until the Java agent restarts.

Session Cache

After authentication, AM presents the client with a JWT containing session information. The agent
stores part of that session information in the cache. A session stored in the session cache is valid
until one of the following events occurs:

• The session contained in the JWT expires.

• The client logs out from AM, and session notifications are enabled.

• The session reaches the expiration time specified by the org.forgerock.openam.agents.config.
active.session.cache.ttl.minutes property.

Policy Decision Cache

When a client attempts to access a protected resource, the Java agent checks whether there is a
policy decision cached for the resource:

• If the client's session is valid, the Java agent requests a policy decision from AM and then
enforces it.

• If the client's session is not valid, the Java agent redirects the client to AM for authentication
regardless of why the session is invalid. The agent does not specify the reason why the client
needs to authenticate.

Once the client authenticates, the Java agent requests policy decision to AM and enforces it.

Policy decisions are valid in the cache until one of the following events occur:

Session and Policy Validity in Cache

Event What is invalidated?
Session contained in the JWT expires Session and policy

decisions related to the
session

Introducing Java Agents
Caching Capabilities

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 15

Event What is invalidated?
Client logs out from AM (and session notifications are enabled) Session and policy

decisions related to the
session

Policy decision reaches the expiration time specified by the com.sun.identity.
agents.polling.interval property

Policy decision

Administrator makes a change to policy configuration (and policy notifications are
enabled)

All sessions and all policy
decisions

Important

A Java agent that loses connectivity to AM cannot request policy decisions. Therefore, the Java agent
denies access to inbound requests that do not have a policy decision cached until the connection is
restored.

Not-Enforced Lists Hit and Miss Caches

The first time the Java agent receives a request for a resource, it matches the request and the
client's IP address against the rules specified in the not-enforced lists.

Java agents maintain a hit cache and a miss cache for each of the not-enforced lists specified
in "Not-Enforced Lists". To speed up future requests, the agent stores whether the resource hit
or missed not-enforced rules in the corresponding caches. Therefore, if a request for the same
resource reaches the agent again, the agent replays the result of the rules' evaluation stored in
the caches instead of re-evaluating the request.

Entries stored in the hit and miss caches do not expire unless AM notifies the agent about
configuration changes in the not-enforced lists properties.

For more information about not-enforced cache lists, see "Not-Enforced Lists", Not-Enforced URI
Processing Properties, and Not-Enforced IP Processing Properties.

POST Data Preservation Cache

When POST data preservation is enabled, the Java agent caches HTML form data submitted as an
HTTP POST by unauthenticated clients.

The POST data expires either when the client recovers the information from the cache or after
the time interval specified by the com.sun.identity.agents.config.postdata.preserve.cache.entry.ttl
property.

For more information about POST data preservation and its properties, see "POST Data
Preservation" and POST Data Preservation Properties.

OpenID Connect JSON Web Token (JWT) Cache

Decoding JWTs into JSON objects is a CPU-intensive operation. To reduce the amount of
processing required on each request, Java agents cache decoded JWTs.

Introducing Java Agents
Query Parameter Handling

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 16

When a Java agent receives a request for a resource, it passes the JWT through a fast hashing
algorithm that creates a 128-bit hash unique for that JWT. Then the agent determines if the hash
is in the JWT cache. One of the following scenarios occur:

• The hash is in the cache. The Java agent retrieves the decoded JWT from the cache and
continues processing the request.

• The hash is not in the cache. The Java agent decodes the JWT and stores it and its hash in the
cache. Then it continues processing the request.

JWTs in the cache expire after the time interval specified by the org.forgerock.openam.agents.config.
jwt.cache.ttl.minutes property.

For information about the properties that control the JWT cache, see Profile Properties.

Query Parameter Handling

By default, Java agents consider any query parameters to be part of the URL, and insert the entire
string into the policy decision cache. For example, the agent will insert each of the following URLs in
the cache, even though the root URL is the same:
http://agent.example.com:8080/protected/resource.jsp
http://agent.example.com:8080/protected/resource.jsp?a=value1
http://agent.example.com:8080/protected/resource.jsp?b=value2

Applications adding new parameters to the URL on every request would fill the Java agent's policy
cache without actually using it, which in turn causes the agent to request policy decision to AM each
time.

To prevent this behavior, Java agents can be configured to either retain nominated URL parameters
(for example, to remove all but those that are added as part of the policy evaluation) or to discard
them (for example, to remove all parameters added by the angular.js framework).

To retain nominated query parameters, configure one of the following properties:

• Retain Query Parameters (org.forgerock.openam.agents.config.conditional.wanted.http.url.params)

• Regular Expression Retain Query Parameters (org.forgerock.openam.agents.config.conditional.wanted.
http.url.params.regexp)

To remove nominated query parameters, configure one of the following properties:

• Remove Query Parameters (org.forgerock.openam.agents.config.conditional.unwanted.http.url.params)

• Regular Expression Remove Query Parameters (org.forgerock.openam.agents.config.conditional.
unwanted.http.url.params.regexp)

The properties are mutually exclusive and Java agents check them in the following order of
precedence:

Introducing Java Agents
Query Parameter Handling

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 17

1. Remove Query Parameters

2. Regular Expression Remove Query Parameters

3. Retain Query Parameters

4. Regular Expression Retain Query Parameters

Warning

Java agents strip the nominated query parameters from the URL before taking the following actions:

• Asking AM for policy evaluation

• Checking the not-enforced lists

Ensure the policies defined in AM and the not-enforced rules configured for the agent do not expect a
parameter that has been removed.

For more information about these properties, see Query Parameter Handling Properties.

Preparing for Installation
Downloading and Unzipping Java Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 18

Chapter 2

Preparing for Installation
This chapter covers tasks to perform before installing Java agents in your environment. The following
table contains a list of the tasks:

Task Section
Download Java agent binaries Section
Secure communications between AM and the Java
agents

Section

Create agent profiles Section
Configure your environment when communication
between AM and agents happens behind load
balancers or reverse proxies

Section

Downloading and Unzipping Java Agents
Navigate to the ForgeRock BackStage website and choose the agent to download based on your
version, architecture, and operating system requirements. Remember to verify the checksum of the
downloaded file against the checksum posted on the download page.

Unzip the file in the directory where you plan to store the Java agent's configuration and log files. The
following directories are extracted:

bin

The agentadmin installation and configuration program. For more information about the tool, see
"Command-Line Tool Reference"

config

Configuration templates used by the agentadmin command during installation

data

Not used

etc

Configuration templates used during installation

https://backstage.forgerock.com/downloads/browse/am/latest/java-agents

Preparing for Installation
Configuring Access Management Servers to Communicate With Java Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 19

installer-logs

Location of log files written during installation

legal-notices

Licensing information including third-party licenses

lib

Shared libraries used by the Java agent

locale

Property files used by the installation program

README

README file containing platform and install information for the agent

Configuring Access Management Servers to Communicate
With Java Agents
AM communicates all authentication and authorization information to Java agents using OpenID
Connect (OIDC) JSON web tokens (JWT). To secure the integrity of the JSON payload (outlined in the
JSON Web Algorithm specification RFC 7518), AM and the Java agent support signing the tokens for
communication with the RS256 algorithm.

AM also uses an HMAC signing key to protect requested ACR claims values between sending the user
to the authentication endpoint, and returning from successful authentication.

By default, AM uses a demo key and an autogenerated secret for these purposes. For production
environments, perform the steps in one of the following procedures to create new key aliases and
configure them in AM:

• "To Configure Access Management Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.0 or
earlier"

• "To Configure Access Management Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.5 or
later"

To Configure Access Management Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.0 or
earlier

By default, AM 6.0 or earlier signs the JWTs with the test key alias provided in AM's JCEKS keystore
and sign the claims with a secret autogenerated at time.

Perform the following steps to create and set up a new key and a new secret in AM 6.0 or earlier:

https://tools.ietf.org/html/rfc7518

Preparing for Installation
Configuring Access Management Servers to Communicate With Java Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 20

1. Create the following aliases in one of the secret stores configured in AM, for example, the default
JCEKS keystore:

a. Create an RSA key pair.

For more information about creating a key alias in the AM keystore, see the section Creating
Key Aliases of the ForgeRock Access Management Setup and Maintenance Guide.

b. Create an HMAC secret.

2. In the AM console, navigate to Configure > Global Services > OAuth2 Provider.

3. Perform the following actions:

a. Replace the test key alias in the ID Token Signing Key Alias for Agent Clients field with the
new RSA key alias.

b. Replace the value in the Authenticity Secret field with the new HMAC secret.

Note that you may already have a secret configured for this secret ID, since it is also used for
signing certain OpenID Connect ID tokens and remote consent requests.

c. Save your changes.

No further configuration is required in the agents.

To Configure Access Management Secret IDs for the Agents' OAuth 2.0 Provider in AM 6.5 or
later

By default, AM 6.5 or later is configured to:

• Sign the JWTs with the secret mapped to the am.global.services.oauth2.oidc.agent.idtoken.signing
secret ID. This secret ID defaults to the rsajwtsigningkey key alias provided in AM's JCEKS keystore.

• Sign the claims with the secret mapped to the am.services.oauth2.jwt.authenticity.signing secret ID.
This secret ID defaults to the hmacsigningtest key alias available in AM's JCEKS keystore.

Perform the following steps to create and set up new keys on a keystore secret store:

1. Create the following aliases in one of the secret stores configured in AM, for example, the default
JCEKS keystore:

a. Create an RSA key pair.

b. Create an HMAC secret.

2. In the AM console, navigate to Configure > Secret Stores > Keystore Secret Store Name >
Mappings.

3. Configure the following secret IDs:

../../../am/6.5/maintenance-guide#creating-new-keys
../../../am/6.5/maintenance-guide#creating-new-keys

Preparing for Installation
Creating Agent Profiles

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 21

a. Configure the new RSA key alias in the am.global.services.oauth2.oidc.agent.idtoken.signing
secret ID.

b. Configure the new HMAC secret in the am.services.oauth2.jwt.authenticity.signing secret ID.

Note that you may already have a secret configured for this secret ID, since it is also used
for signing certain OpenID Connect ID tokens and remote consent requests. For more
information, see Secret ID Mapping Defaults in the ForgeRock Access Management Setup
and Maintenance Guide.

c. Save your changes.

For more information about secret stores, see the chapter Setting Up Secret Stores of the
ForgeRock Access Management Setup and Maintenance Guide.

No further configuration is required in the agents.

Creating Agent Profiles
A Java agent requires a profile to connect to and communicate with AM, regardless of whether it is
stored centrally in AM or on the agent installation.

To Create an Agent Profile in AM Using the Console

Create an agent profile using the AM console by performing the following steps:

1. In the AM console, navigate to Realms > Realm Name > Applications > Agents > Java, and then
select the Add Java Agent button in the Agent tab.

2. Complete the web form using the following hints:

Agent ID

The ID of the agent profile. This ID is used during the agent installation.

Agent URL

The URL the Java agent protects, such as http://www.example.com:8080/agentapp.

In centralized configuration mode, the Agent URL is used to populate the agent profile for
services, such as notifications.

Server URL

The full URL to an AM instance. If AM is deployed in a site configuration (behind a load
balancer), enter the site URL.

../../../am/6.5/maintenance-guide#sec-secret-id-mappings
../../../am/6.5/maintenance-guide#chap-maint-secretstores

Preparing for Installation
Creating Agent Profiles

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 22

In centralized configuration mode, Server URL is used to populate the agent profile for use
with as login, logout, naming, and cross-domain SSO.

Password

The password the agent uses to authenticate to AM. Use this password when installing an
agent.

To Create an Agent Profile Using the ssoadm Command

You can create an agent profile in AM using the ssoadm command-line tool. You do so by specifying
the agent properties either as a list of attributes, or by using an agent properties file as shown below.

Perform the following steps to create an agent profile using the ssoadm command:

1. Make sure the ssoadm command is installed. See the section Installing and Using the Tools in the
ForgeRock Access Management Install Guide.

2. Create a password file, for example $HOME/.pwd.txt. The file should only contain the password
string, on a single line.

The password file must be read-only for the user who creates the agent profile, and must not be
accessible to other users:
$ chmod 400 $HOME/.pwd.txt

3. Create the agent profile, specifying --agenttype J2EEAgent:

../../../am/6.5/install-guide/#install-openam-admin-tools

Preparing for Installation
Delegating Agent Profile Creation

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 23

$ ssoadm create-agent \
 --realm / \
 --agentname MyJavaEEAgent \
 --agenttype J2EEAgent \
 --adminid amadmin \
 --password-file $HOME/.pwd.txt \
 --datafile MyJavaEEAgent.properties

Agent configuration was created.

4. Review the new profile in the AM console under Realms > Realm Name > Applications > Agents
> Java > Agent Name.

To Create an Agent Profile Group and Inherit Settings

Agent profile groups let you set up multiple agents that inherit settings from the group. To create a
new agent profile group, perform the following steps:

1. In the AM console, navigate to Realms > Realm Name > Applications > Agents > Java.

2. Select New in the Group table, and provide a name for the group and the URL to the AM server in
which to store the profile.

After creating the group profile, you can select the link to the new group profile to fine-tune the
configuration.

3. Inherit group settings by selecting your agent profile, and then selecting the group name in the
Group drop-down list near the top of the profile page.

You can then adjust inheritance by clicking Inheritance Settings on the AM Services agent profile
tab.

Delegating Agent Profile Creation

If you want to create agent profiles when installing Java agents, then you need the credentials of an
AM user who can read and write agent profiles.

You can use the AM administrator account when creating agent profiles. If you delegate agent
installation, then you might not want to share AM administrator credentials with everyone who
installs Java agents.

To Create Agent Administrators for a Realm

Follow these steps to create agent administrator users for a realm:

1. In the AM console, navigate to Realms > Realm Name > Subjects.

2. Under Group click New... and create a group for agent administrators.

Preparing for Installation
Supporting Load Balancers and Reverse Proxies Between AM and the Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 24

3. Switch to the Privileges tab for the realm, and click the name of the group you created.

4. Select Read and write access to all configured agents, and then Save your work.

5. Return to the Subjects tab, and under User create as many agent administrator users as needed.

6. For each agent administrator user, edit the user profile.

Under the Group tab of the user profile, add the user to agent profile administrator group, and
then Save your work.

7. Provide each system administrator who installs Java agents with their agent administrator
credentials.

When installing the Java agent with the --custom-install option, the system administrator
can choose the option to create the profile during installation, and then provide the agent
administrator user name and the path to a read-only file containing the agent administrator
password. For silent installs, you can add the --acceptLicense option to auto-accept the software
license agreement.

Supporting Load Balancers and Reverse Proxies Between AM
and the Agents
When your environment has reverse proxies or load balancers configured between the agents and
AM, you must perform additional configuration in both AM and your environment before installing
the agents.

Failure to do so may cause the agent installation to fail, or it may compromise the agent's
functionality.

For more information, see "Configuring Environments With Load Balancers and Reverse Proxies".

Configuring Environments With Load Balancers and Reverse Proxies

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 25

Chapter 3

Configuring Environments With Load
Balancers and Reverse Proxies
When working with AM and agents, the most common deployment scenario is to configure a load
balancer and a reverse proxy between the clients and the agents, and another load balancer and
reverse proxy between the agent and an AM site, as shown in the following diagram:

Configuring Environments With Load Balancers and Reverse Proxies

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 26

Java Agents in Environments with Load Balancers and Reverse Proxies

Access

Managem ent

Access

Managem ent

Access

Managem ent

HTTPS

HTTPS

ClientsClientsClients

HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

Agent

Protected

Resource

Java Container
HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

Usually, you want to anonymize client traffic as it gets into your network by using a reverse proxy,
then balance the load among different application servers and agents.

AM sites are usually deployed behind a load balancer so the load can be spread among different
instances. A reverse proxy may be deployed in front of the AM site to protect its APIs, too.

Note that the reverse proxy and the load balancer may be the same entity. In very complex
environments, there may be more than the depicted load balancers and reverse proxies deployed in
the network.

Configuring Environments With Load Balancers and Reverse Proxies
Regarding Communication Between AM and Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 27

In any case, when installing Java agents in an environment with load balancers or reverse proxies,
you must consider the communication between the clients and the Java agents, and between the
agents and the AM servers.

Refer to the following sections for more information:

• "Regarding Communication Between AM and Agents".

• "Regarding Communication Between Clients and Agents".

Regarding Communication Between AM and Agents
Before attempting to install Java agents in an environment where AM is behind a load balancer,
reverse proxy, or both, consider the following points:

Agent's IP Address and/or FQDN

When a load balancer or a reverse proxy is configured between AM and the Java agents, the
agents' IP addresses and FQDNs are concealed by the load balancer/reverse proxy's own IP or
FQDN. As a result, AM cannot determine the agents' base URL as expected.

This could cause trouble during the installation process and also hinder functionality such as
redirection using the goto parameter.

Therefore, you must configure the following:

• The load balancer or reverse proxy, to forward the agents' IP address and/or FQDN in a header.

• The AM site, to recover the forwarded headers. For more information, see "Configuring AM to
Use Forwarded Headers".

Note

A load balancer or reverse proxy conceals the AM instances' IP addresses and FQDNs. When installing Java
agents, use the load balancer or reverse proxy IP address or FQDN as the point of contact for the AM site.

AM Sessions and Session Stickiness

When Java agents communicate with an AM site that is behind a load balancer, you can improve
policy evaluation performance by setting up AM's sticky cookie (by default, amlbcookie) to the AM's
server ID. For more information, see Configuring Site Sticky Load Balancing in the ForgeRock
Access Management Installation Guide.

Important

When configuring multiple agents behind a load balancer or reverse proxy, you must take into
consideration whether you use one or multiple agent profiles, since it impacts sticky load balancer
requirements:

../../../am/6.5/install-guide/#configure-site-load-balancing

Configuring Environments With Load Balancers and Reverse Proxies
Configuring AM to Use Forwarded Headers

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 28

• If the agents are configured with multiple agent profiles you must configure sticky load balancing. This
is because the agent profile name is contained in the OpenID Connect JWT the agent and AM use to
communicate. Without session stickiness, there is no way to make sure that the appropriate JWT ends in
the appropriate Java agent instance.

• If multiple agents are configured with the same agent profile, you can decide whether to configure sticky
load balancing or not depending on other requirements of your environment.

WebSockets

Your load balancers and reverse proxies must support the WebSocket protocol for communication
between the Java agents and the AM servers.

For more information, refer to the load balancer or proxy documentation.

Tip

For an example of how to configure Apache HTTP as a reverse proxy, see "Configuring Apache HTTP Server as
a Reverse Proxy Example".

Configuring AM to Use Forwarded Headers

When Java agents are behind a load balancer or reverse proxy, you must configure AM to recover the
forwarded headers that expose the agents' real IP address or FQDN.

To Configure Access Management to Use Forwarded Headers

To configure how AM obtains the base URL of Java agents, use the Base URL Source service:

1. Log in to the AM console as an administrative user, such as amAdmin.

2. Navigate to Realms > Realm Name > Services.

3. Select Add a Service, select Base URL Source, and then select Create, leaving the fields empty.

4. Configure the service with the following properties:

• Base URL Source: X-Forwarded-* headers

This property allows AM to retrieve the base URL from the Forwarded header field in the HTTP
request. The Forwarded HTTP header field is standardized and specified in RFC 7239.

• Context path: AM's deployment uri. For example, /openam.

Leave the rest of the fields empty.

http://tools.ietf.org/html/rfc7239

Configuring Environments With Load Balancers and Reverse Proxies
Regarding Communication Between Clients and Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 29

Tip

For more information about the Base URL Source service, see Base URL Source in the ForgeRock Access
Management Reference.

5. Save your changes.

Regarding Communication Between Clients and Agents
When your environment has load balancers or reverse proxies between clients and agents, you must
consider the following points:

Client's IP Address and/or FQDNs

When configuring Java agents behind a load balancer or reverse proxy, the clients' IP addresses
and FQDNs are hidden by the load balancer's IP or FQDN, which results in agents not being able
to determine the clients' base URLs.

Therefore, you must configure the load balancer or reverse proxy to forward the client's IP
address and/or the client's FQDN in a header. Failure to do so will will prevent the agent from
performing policy evaluation, and applying not-enforced and conditional login/logout rules.

For more information, see "Configuring Client Identification Properties".

POST Data Preservation

When using POST data preservation, you must use sticky load balancing to ensure that the client
always hits the same agent and, therefore, their saved POST data.

Java agents provide properties to set either a sticky cookie or a URL query string for load
balancers and reverse proxies.

For more information, see "Configuring POST Data Preservation for Load Balancers or Reverse
Proxies".

Java Containers FQDNs, Ports, and Protocols

When the protected Java containers and their agents are behind a load balancer or reverse proxy,
it is imperative that the agent is configured to match the load balancer FQDN, port, and protocol.

Failure to do so would make the agent to return HTTP 403 errors when clients request access to
resources.

There are two use-cases:

../../../am/6.5/reference/#global-baseurl

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 30

• The load balancer or reverse proxy forwards requests and responses between clients and
protected Java containers only. In this case, ports and protocols configured in the Java
container match those on the load balancer or reverse proxy, but FQDNs do not.

• The load balancer or reverse proxy also performs SSL offloading, terminating the SSL traffic
and converting the requests reaching the Java container to HTTP. This reduces the load on
the protected containers, since the processing of the public key is usually done by a hardware
accelerator.

In this case, neither ports, protocols, or FQDNs match.

For more information about matching FQDNs, ports and protocols, see "Matching Protected Java
Container Ports, Protocols, and FQDNs".

Matching Protected Java Container Ports, Protocols, and FQDNs

When the protocol and port configured on the load balancer or reverse proxy differ from those
configured on the protected Java container, you must override them in the Java agent configuration.
The following diagram illustrates this scenario:

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 31

Different Protocol, Port, and FQDN

ht tps://www.exam ple.com :443

ClientsClientsClients

ht tp://app1.internal.com :80 ht tp://app2.internal.com :80

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Reverse
Proxy

Load
Balancer

Java Container

In this case, configure the Java agents following the steps in "To Override Protocol, Host, and Port".

When the protocol and port configured on the load balancer or reverse proxy match those configured
on the protected Java container, you must map the agent host name to the load balancer or reverse
proxy host name. The following diagram illustrates this scenario:

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 32

Same Protocol and Port, Different FQDN

ht tps://www.exam ple.com :443

ClientsClientsClients

ht tps://app1.internal.com :443 ht tps://app2.internal.com :443

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Java Container

Reverse
Proxy

Load
Balancer

In this case, configure the Java agents following the steps in "To Map the Agent Host Name to the
Load Balancer or Reverse Proxy Host Name".

Configuring Environments With Load Balancers and Reverse Proxies
Matching Protected Java Container Ports, Protocols, and FQDNs

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 33

To Override Protocol, Host, and Port

Use the alternate Java agent URL properties to override the agent protocol, host, and port with that
of the load balancer or reverse proxy.

Important

The Java agent configuration for SSL offloading has the side effect of preventing FQDN checking and mapping.
As a result, URL rewriting and redirection does not work correctly when the Java agent is accessed directly and
not through the load balancer or proxy. This should not be a problem for client traffic, but potentially could be
an issue for applications accessing the protected container directly, from behind the load balancer.

This procedure explains how to do so for a centralized Java agent profile configured in the AM
console. The steps also mention the properties for Java agent profiles that rely on local, file-based
configurations:

1. Log in to the AM console as an administrative user with rights to modify the Java agent profile.

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name > Advanced.

3. Set the Alternative Agent Host Name to that of the load balancer or reverse proxy. For example,
lb.example.com.

The equivalent property setting is com.sun.identity.agents.config.agent.host=lb.example.com.

4. Set the Alternative Agent Port number to that of the load balancer or proxy. For example, 80.

The equivalent property setting is com.sun.identity.agents.config.agent.port=80.

5. Set the Alternative Agent Protocol to that of the load balancer or proxy. For example, http or
https.

The equivalent property setting is com.sun.identity.agents.config.agent.protocol=https.

6. Save your work.

7. Restart the Java container where the agent is installed.

To Map the Agent Host Name to the Load Balancer or Reverse Proxy Host Name

When protocols and port numbers match, configure fully qualified domain name (FQDN) mapping.

This procedure explains how to do so for a centralized Java agent profile configured in the AM
console. The steps also mention the properties for Java agent profiles that rely on local, file-based
configurations:

1. Log in to the AM console as an administrative user with rights to modify the Java agent profile.

Configuring Environments With Load Balancers and Reverse Proxies
Configuring Client Identification Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 34

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name.

3. In the Global tab, enable FQDN Check.

The equivalent property setting is com.sun.identity.agents.config.fqdn.check.enable=true.

4. Set the FQDN Default field to the fully qualified domain name of the load balancer or proxy, such
as lb.example.com, rather than the protected container FQDN where the Java agent is installed.

The equivalent property setting is com.sun.identity.agents.config.fqdn.default=lb.example.com.

5. Append the FQDN of the load balancer or proxy to the Agent Root URL for CDSSO field.

The equivalent property setting is sunIdentityServerDeviceKeyValue[n]=lb.example.com.

6. Map the load balancer or proxy FQDN to the FQDN where the Java agent is installed in the
FQDN Virtual Host Map key-pair map. For example, set the key agent.example.com (protected Java
container) and a value lb.example.com (load balancer or proxy).

The equivalent property setting is com.sun.identity.agents.config.fqdn.mapping[agent.example.com]=lb.
example.com.

7. Save your work.

8. Restart the Java container where the agent is installed.

Configuring Client Identification Properties

After configuring your proxies or load balancers to forward the client's FQDN and/or IP address,
configure the Java agents to check the appropriate headers.

To Configure the Java Agent Client Identification Properties

This procedure explains how to configure the client identification properties for a centralized Java
agent profile configured in the AM console. The steps also mention the properties for Java agent
profiles that rely on local, file-based configurations:

1. Log in to the AM console with a user that has permissions to modify the Java agent profile.

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name > Advanced.

3. (Optional) In the Client IP Address Header field, configure the name of the header containing the
IP address of the client. For example, X-Forwarded-For.

Configure this property if your AM policies are IP address-based, you configured the agent for
not-enforced IP rules, or if you configured the agent to take any decision based on the client's IP
address.

The equivalent property setting is com.sun.identity.agents.config.client.ip.header=X-Forwarded-For.

Configuring Environments With Load Balancers and Reverse Proxies
Configuring POST Data Preservation for Load Balancers or Reverse Proxies

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 35

4. (Optional) In the Client Hostname Header field, configure the name of the header containing the
FQDN of the client. For example, X-Forwarded-Host.

Configure this property if your AM policies are URL-based, you configured the agent for not-
enforced URL rules, or if you configured the agent to take any decision based on the client's URL.

The equivalent property setting is com.sun.identity.agents.config.client.hostname.header=X-Forwarded-
Host.

5. Save your changes.

Configuring POST Data Preservation for Load Balancers or Reverse Proxies

When configuring POST data preservation behind a load balancer or a reverse proxy, you must
configure both your load balancer/reverse proxy and the Java agents for session stickiness.

This procedure explains how to configure the client identification properties for a centralized Java
agent profile configured in the AM console. The steps also mention the properties for Java agent
profiles that rely on local, file-based configurations:

To Configure POST Data Preservation Stickiness Properties

1. Log in to the AM console with a user that has permissions to modify the Java agent profile.

2. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name > Advanced.

3. Decide whether the Java agent should create a cookie or append a string to the URL to assist with
sticky load balancing.

In the PDP Stickysession mode drop-down menu, configure one of the following options:

• Cookie. The Java agent will create a cookie for POST data preservation session stickiness. The
contents of the cookie is configured in the next step.

• URL. The Java agent will append to the URL a string specified in the next step.

The equivalent property setting is com.sun.identity.agents.config.postdata.preserve.stickysession.
mode=[Cookie|URL].

4. In the PDP Stickysession key-value field, configure a key-pair value separated by the = character.

For example, specifying lb=myserver either sets a cookie called lb with myserver as a value, or
appends lb=myserver to the URL query string.

The equivalent property setting is com.sun.identity.agents.config.postdata.preserve.stickysession.
value=lb=myserver.

5. Save your changes.

Configuring Environments With Load Balancers and Reverse Proxies
Configuring POST Data Preservation for Load Balancers or Reverse Proxies

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 36

6. Configure your load balancer or reverse proxy to ensure session stickiness when the cookie or
URL query parameter are present.

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 37

Chapter 4

Installing Java Agents
Install Java agents in web application containers to police access to your web sites, web applications,
and resources. Java agents depend on AM for all authentication and authorization decisions. The
primary responsibility of Java agents is to enforce what AM decides in a way that is unobtrusive to the
user.

When installing Java agents, consider the following points:

• Configurations where AM and the Java agent are installed in the same container are not supported.

• A single Java agent installation can hold multiple agent instances. Therefore, install only one Java
agent per application server and configure as many agent instances as you require. Installing more
than one Java agent in an application server is not supported.

The following table contains a list of sections containing information to install Java agents on
supported platforms:

Task Section
Install Java agents on Apache Tomcat Section
Install Java agents on Red Hat JBoss Section
Install Java agents on Eclipse Jetty Section
Install Java agents on Oracle WebLogic Section
Install Java agents on IBM WebSphere Section

Installing the Tomcat Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.6 on Tomcat.

Before You Install

1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java
Agents".

2. Consider the following points before installing the Tomcat Java agent:

• Install Tomcat before you install the agent.

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 38

• All of the Tomcat scripts must be present in the $CATALINA_HOME/bin directory. The Tomcat
Windows executable installer does not include the scripts, for example. If the scripts are not
present in your installation, copy the contents of the bin directory from a .zip download of
Tomcat of the same version as the one you installed.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing the Tomcat Java Agent

Complete the following procedures to install the Tomcat Java Agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 39

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the Tomcat Java Agent

1. Shut down the Tomcat server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/tomcat_agent/bin/agentadmin --install --acceptLicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the Tomcat configuration folder. For example, /path/to/apache-tomcat/conf.
Enter the complete path to the directory which is used by Tomcat Server to
store its configuration Files. This directory uniquely identifies the
Tomcat Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Tomcat Server Config Directory Path
[/opt/apache-tomcat-6.0.14/conf]: /path/to/apache-tomcat/conf

c. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

d. Enter the $CATALINA_HOME environment variable specifying the path to the root of the Tomcat
server. For example, /path/to/apache-tomcat.

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 40

$CATALINA_HOME environment variable is the root of the tomcat
installation.
[? : Help, < : Back, ! : Exit]
Enter the $CATALINA_HOME environment variable: /path/to/apache-tomcat

e. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

f. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, TomcatAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: TomcatAgent

g. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

h. Enter the path to the password file you created as part of the pre-installation procedure. For
example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the install:

SUMMARY OF YOUR RESPONSES

Tomcat Server Config Directory : /path/to/tomcat/conf

AM server URL : https://openam.example.com:8443/openam
$CATALINA_HOME environment variable : /path/to/tomcat

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : TomcatAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Installing Java Agents
Installing the Tomcat Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 41

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/tomcat_agent/Agent_001/config/
OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/tomcat_agent/Agent_001/config/
OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/tomcat_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/tomcat_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/tomcat_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

Upon successful completion, the installer adds the agent configuration to the Tomcat
configuration, and also set up the configuration and log directories for the agent.

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/tomcat_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the agent, allowing it to connect to AM and download its configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug.out debug file resides. Useful in troubleshooting agent
issues.

Installing Java Agents
Installing the Tomcat Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 42

6. Review Tomcat's global web.xml file and your application's web.xml files and configure the agent
filter.

7. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the Tomcat Java Agent Silently

To install the Tomcat Java agent silently you must create a response file containing the installation
parameters, and then provide it to the agentadmin command.

The following is an example of the response file:
Agent User Response File
CONFIG_DIR= /usr/local/apache-tomcat-9.0.11/conf
AM_SERVER_URL= https://openam.example.com:8443/openam
CATALINA_HOME= /usr/local/apache-tomcat-9.0.11
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= TomcatAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the Tomcat Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

../../../am/6.5/authorization-guide/#authz-implementation-console

Installing Java Agents
Installing the Tomcat Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 43

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the Tomcat Java Agent Silently

1. Review the information in "Before You Install".

2. Shut down the Tomcat server where you plan to install the agent.

3. Make sure that AM is running.

4. Make sure you have a response file ready. For example, response-file. For more information, see
"Installing the Tomcat Java Agent Silently".

5. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

6. Review Tomcat's global web.xml file and your application's web.xml files and configure the agent
filter.

../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 44

Installing the JBoss Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.6 on JBoss. All the
examples assume that you are using the agent on JBoss, but the procedures are the same for WildFly.

Before You Install

1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java
Agents".

Agent binaries for JBoss and WildFly are the same.

2. Consider the following points before installing JBoss Java agents:

• Install JBoss before installing the agent.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing the JBoss Java Agent

Complete the following procedures to install the JBoss Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 45

proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the JBoss Java Agent

1. Shut down the JBoss server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the JBoss Java agent:
$ /path/to/java_agents/jboss_agent/bin/agentadmin --install --acceptlicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the JBoss installation directory. For example, /path/to/jboss.
Enter the complete path to the home directory of the JBoss instance.
[? : Help, ! : Exit]
Enter the path to the JBoss installation: /path/to/jboss

c. Enter the JBoss deployment mode. Supported modes are domain, which allows you to manage
multiple server instances from a single control point, or standalone, which is a single JBoss
instance.
Enter the name of the deployment mode of the JBoss installation that you wish
to use with this agent. Supported values are: domain, standalone.
[? : Help, < : Back, ! : Exit]
Enter the deployment mode of JBoss [standalone]: standalone

If you chose domain, enter the name of the JBoss domain:

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 46

Enter the name of the profile to use in domain mode.
[? : Help, < : Back, ! : Exit]
Enter the profile name: mydomain

d. Decide if you want to deploy the Java agent as a global JBoss module. If you want to include
application-specific modules, enter false.
Enter true if you'd like to deploy the policy agent as a global JBoss module.
[? : Help, < : Back, ! : Exit]
Install agent as global module? [true]:true

e. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

f. Enter the Java agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

g. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, JBossAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: JBossAgent

h. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 47

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

i. Enter the path to the password file that you created as part of the pre-installation procedure.
For example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the install:

SUMMARY OF YOUR RESPONSES

JBoss home directory : /path/to/jboss/
JBoss deployment mode: standalone
Install agent as global module: true
AM server URL : https://openam.example.com:8443/openam

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : JBossAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/jboss_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/jboss_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/jboss_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/jboss_agent/Agent_001/logs/debug

Installing Java Agents
Installing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 48

Install log file location:
/path/to/java_agents/jboss_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

Upon successful completion, the installer updates the JBoss configuration, adds the Java agent
application under JBOSS_HOME/server/standalone/deployments, and also sets up configuration and log
directories for the Java agent.

5. Take note of the configuration files and log locations.

Each Java agent instance that you install on the system has its own numbered configuration and
logs directory. The first Java agent instance configuration files and logs are thus located under
the directory java_agents/jboss_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing it to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug file resides. Useful in troubleshooting Java agent issues.

6. To protect an application in the container, configure the agent filter.

7. (Optional) If you responded false to the Deploy the policy agent as a global JBoss module question
during the installation process, perform the following steps:

a. Add the following line to the /path/to/protected/app/META-INF/MANIFEST.MF file of the application:
Dependencies: org.forgerock.openam.agent

b. Create a /path/to/protected/app/WEB-INF/jboss-deployment-structure.xml file with the following
content:

Installing Java Agents
Installing the JBoss Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 49

<?xml version="1.0"?>
 <jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <deployment>
 <dependencies>
 <module name="org.forgerock.openam.agent" >
 <imports>
 <include path="META-INF**"/>
 <include path="org**"/>
 </imports>
 </module>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

8. (Optional) If you responded domain to the Enter the name of the deployment mode question during the
installation process, you must manually deploy the java_agents/jboss_agent/etc/agentapp.war file to
JBoss.

The reason manual deployment is required when running JBoss in domain mode is that the agent
installer uses auto-deployment capabilities provided by the JBoss deployment scanner. The
deployment scanner is used only in standalone mode. When running JBoss in standalone mode, it
is not necessary to manually deploy the agentapp.war file.

9. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the JBoss Java Agent Silently

To install the JBoss Java agent silently, you must create a response file containing the installation
parameters that you will then provide to the agentadmin command.

The following is an example of the response file to install the agent when JBoss is configured in
standalone mode:
Agent User Response File
HOME_DIR= /usr/share/JBoss_7
INSTANCE_NAME= standalone
GLOBAL_MODULE= true
INSTALL_PROFILE_NAME=
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= JBossAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

The INSTALL_PROFILE_NAME variable is only used when the INSTANCE_NAME is set to domain, and it specifies the
name of the JBoss domain profile.

Installing Java Agents
Installing the JBoss Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 50

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the JBoss Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 51

$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the JBoss Java Agent Silently

1. Review the information in "Before You Install" before proceeding.

2. Shut down the JBoss server where you plan to install the agent.

3. Make sure AM is running.

4. Make sure you have a response file ready. For example, response-file. For more information, see
"Installing the JBoss Java Agent Silently".

5. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

6. To protect an application in the container, configure the agent filter.

7. If you configured the GLOBAL_MODULE variable as false in the response file, add the following line to
the META-INF/MANIFEST.MF file of the application:
Dependencies: org.forgerock.openam.agent

8. If you configured the INSTANCE_NAME variable as domain in the response file, you must manually
deploy the java_agents/jboss_agent/etc/agentapp.war file to JBoss.

The reason manual deployment is required when running JBoss in domain mode is that the agent
installer uses auto-deployment capabilities provided by the JBoss deployment scanner. The
deployment scanner is used only in standalone mode. When running JBoss in standalone mode, it
is not necessary to manually deploy the agentapp.war file.

Installing the Jetty Java Agent
f This section covers prerequisites and installation procedures for Java Agents 5.6 on Jetty.

Before You Install

1. Download the Java agent from BackStage. For more information, see "Downloading and Unzipping
Java Agents".

2. Consider the following points before installing the Jetty Java agent:

• Install Jetty before you install the agent.

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 52

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

• Command-line examples in this chapter show Jetty accessed remotely. If you are following the
examples and have issues accessing Jetty remotely, you might have to change filter settings in
the deployment descriptor file, such as /path/to/jetty/webapps/test/WEB-INF/web.xml, as shown in
the following example:
 <filter>
 <filter-name>TestFilter</filter-name>
 <filter-class>com.acme.TestFilter</filter-class>
 <init-param>
 <param-name>remote</param-name>
 <param-value>true</param-value> <!-- default: false -->
 </init-param>
</filter>

Installing the Jetty Java Agent
Complete the following procedures to install the Jetty Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 53

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the Jetty Java Agent

1. Shut down the Jetty server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/jetty_agent/bin/agentadmin --install --acceptLicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the Jetty configuration directory. For example, /path/to/jetty/etc.
Enter the complete path to the directory which is used by Jetty Server to store
its configuration Files. This directory uniquely identifies the Jetty
Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Jetty Server Config Directory Path [/opt/jetty/etc]: /path/to/jetty/etc

c. Enter the path to the Jetty root directory. For example, /path/to/jetty.
This is the root of the Jetty installation.
[? : Help, < : Back, ! : Exit]
Enter the Jetty home directory path: /path/to/jetty

d. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 54

setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

e. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentadmin

f. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, JettyAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: JettyAgent

g. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

h. Enter the path to the password file you created as part of the pre-installation procedure. For
example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the installer:

SUMMARY OF YOUR RESPONSES

Jetty Server Config Directory : /path/to/jetty/etc
AM server URL : https://openam.example.com:8443/openam
Jetty installation directory. : /path/to/jetty

Installing Java Agents
Installing the Jetty Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 55

Agent URL : https://www.example.com:8443/agentapp
Agent Profile name : JettyAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/jetty_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/jetty_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/jetty_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/jetty_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/jetty_agent/installer-logs/audit/install.log

 Thank you for using AM Policy Agent

Upon successful completion, the installer updates Jetty's start.jar to reference the agent, sets up
the agent web application, and also sets up configuration and log directories for the agent.

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/jetty_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing the agent to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

Installing Java Agents
Installing the Jetty Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 56

logs/debug/

Debug directory where the debug.out debug file resides. Useful in troubleshooting Java agent
issues.

6. To protect an application in the container, configure the agent filter.

7. (Optional) If you have a policy configured, you can test the agent installation. For example, try to
browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the Jetty Java Agent Silently

To install the Jetty Java agent silently, you must create a response file contanining the installation
parameters and then provide it to the agentadmin command.

The following is an example of the response file:
Agent User Response File
CONFIG_DIR= /usr/local/jetty-distribution-9.4.7/etc
JETTY_HOME= /usr/local/jetty-distribution-9.4.7
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= JettyAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the Java agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the Jetty Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

Installing Java Agents
Installing the Jetty Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 57

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To install the Jetty Java Agent Silently

1. Check the information in "Before You Install".

2. Shut down the Jetty server where you plan to install the agent.

3. Make sure that AM is running.

4. Make sure you have a response file ready. For example, response-file. For more information, see
"Installing the Jetty Java Agent Silently".

5. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

6. To protect an application in the container, configure the agent filter.

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 58

Installing the WebLogic Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.6 on WebLogic.

Before You Install
1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java

Agents".

2. Consider the following points before installing the WebLogic Java agent:

• Install WebLogic before you install the agent.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

Installing the WebLogic Java Agent
Complete the following procedures to install the WebLogic Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 59

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebLogic Java Agent

1. Shut down the WebLogic server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/weblogic_agent/bin/agentadmin --install --acceptlicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the startWebLogic.sh file of the WebLogic domain where you want to install
the agent. For example, /Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh.
Enter the path to the location of the script used to start the WebLogic domain.
Please ensure that the agent is first installed on the admin server instance
before installing on any managed server instance.
[? : Help, ! : Exit]
Enter the Startup script location
[/usr/local/bea/user_projects/domains/base_domain/startWebLogic.sh]: /Oracle_Home/user_projects/
domains/base_domain/startWebLogic.sh

c. Enter the path to the WebLogic installation directory. For example, /path/to/weblogic.

Enter the WebLogic home directory
[? : Help, < : Back, ! : Exit]
Enter the WebLogic home directory [/usr/local/bea/wlserver_10.0]: /path/to/weblogic

d. Enter the AM URL. For example, https://openam.example.com:8443/openam.

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 60

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

e. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

f. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, WebLogicAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: WebLogicAgent

g. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

h. Enter the path to the password file that you created as part of the pre-installation procedure.
For example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 61

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit from the install:
$ /path/to/java_agents/weblogic_agent/bin/agentadmin --install --acceptLicense

SUMMARY OF YOUR RESPONSES

Startup script location :
/Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh
WebLogic Server instance name : AdminServer
WebLogic home directory : /path/to/weblogic
AM server URL : https://openam.example.com:8443/openam

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : WebLogicAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/weblogic_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/weblogic_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/weblogic_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/weblogic_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/weblogic_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

5. Take note of the configuration files and log locations.

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/weblogic_agent/Agent_001/:

Installing Java Agents
Installing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 62

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing the agent to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug file resides. Useful in troubleshooting agent issues.

6. The agent requires sourcing before it will work properly. There are two ways to source:

• Manually source the file containing the agent environment settings for WebLogic before
starting the application server.
$. /path/to/setAgentEnv_AdminServer.sh

• Or edit the startWebLogic.sh script to set the sourcing needed for the agent, by adding these
lines after the code block shown. Add the setAgentEnv_AdminServer.sh line to the following
location in the file. The drawback to this approach is that it could be overwritten, as noted in
the file:
$ cat /path/to/startWebLogic.sh
...
Any changes to this script may be lost when adding extensions to this
configuration.
DOMAIN_HOME="/opt/Oracle/Middleware/user_projects/domains/base_domain"
 . /path/to/setAgentEnv_AdminServer.sh
${DOMAIN_HOME}/bin/startWebLogic.sh $*

Note

If the sourcing is not set properly, the following message appears:
<Error> <HTTP> <cent.example.com>
<AdminServer> <[STANDBY] ExecuteThread: '5' for queue: 'weblogic.kernel.
Default (self-tuning)'> <<WLS Kernel>> <><> <> <1360800613441>
<BEA-101165> <Could not load user defined filter in web.xml:
ServletContext@1761850405[app:agentapp module:agentapp.war path:null
spec-version:null] com.sun.identity.agents.filter.AmAgentFilter.
java.lang.ClassNotFoundException:
com.sun.identity.agents.filter.AmAgentFilter

7. Start the WebLogic server.

Installing Java Agents
Installing the WebLogic Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 63

8. Deploy the /path/to/java_agents/weblogic_agent/etc/agentapp.war agent application in WebLogic.

9. To protect an application in the container, configure the agent filter.

10. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the WebLogic Java Agent Silently
To install the WebLogic Java agent silently, you must create a response file containing the installation
parameters that you will then provide to the agentadmin command.

The following is an example of the response file:
Agent User Response File
STARTUP_SCRIPT= /Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh
SERVER_NAME= AdminServer
WEBLOGIC_HOME_DIR= /usr/local/weblogic12
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= WebLogicAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the Java agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedures to install the WebLogic Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

../../../am/6.5/authorization-guide/#authz-implementation-console

Installing Java Agents
Installing the WebLogic Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 64

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebLogic Java Agent Silently

1. Review the information in "Before You Install".

2. Shut down the WebLogic server where you plan to install the agent.

3. Make sure AM is running.

4. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

5. The agent requires sourcing before it will work properly. There are two ways to source:

• Manually source the file containing the agent environment settings for WebLogic before
starting the application server.
$. /path/to/setAgentEnv_AdminServer.sh

• Or edit the startWebLogic.sh script to set the sourcing needed for the agent, by adding these
lines after the code block shown. Add the setAgentEnv_AdminServer.sh line to the following

../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the WebLogic Java Agent in Multi-Server Domains

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 65

location in the file. The drawback to this approach is that it could be overwritten, as noted in
the file:
$ cat /path/to/startWebLogic.sh
...
Any changes to this script may be lost when adding extensions to this
configuration.
DOMAIN_HOME="/opt/Oracle/Middleware/user_projects/domains/base_domain"
. /path/to/setAgentEnv_AdminServer.sh
${DOMAIN_HOME}/bin/startWebLogic.sh $*

6. Start the WebLogic Server.

7. Deploy the /path/to/java_agents/weblogic_agent/etc/agentapp.war agent application in WebLogic.

8. To protect an application in the container, configure the agent filter.

Installing the WebLogic Java Agent in Multi-Server Domains

In many WebLogic domains, the administration server provides a central point for controlling and
managing the configuration of the managed servers that host protected applications.

If WebLogic-managed servers run on different hosts, you must create separate agent profiles
and perform separate installations for each so that AM can send notifications to the appropriate
addresses.

To Install the WebLogic Java Agent on Administration and Managed Servers

For multi-server WebLogic domains, install the Java agent as follows:

1. If servers are on different hosts, create agent profiles for each server where you plan to install
the agent.

The steps are described under "Installing the WebLogic Java Agent".

2. Prepare your protected web applications by adding the agent filter configuration as described in
"Configuring the Agent Filter for an Application".

3. Use the agentadmin command to install the agent either interactively, or silently on each server
in the domain:

• For interactive installation, follow the instructions in "To Install the WebLogic Java Agent".

• For silent installation, follow the instructions in "Installing the WebLogic Java Agent Silently".

4. On each managed server in the domain, update the classpath to include agent .jar files.

In WebLogic Node Manager console, navigate to Environment > Servers > server > Server Start
> Class Path, and then edit the classpath as in the following example, but all on a single line:

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 66

/path/to/java_agents/weblogic_agent/lib/agent.jar:
/path/to/java_agents/weblogic_agent/lib/openssoclientsdk.jar:
 ...
/path/to/java_agents/weblogic_agent/locale:
/path/to/java_agents/weblogic_agent/Agent_001/config:
$CLASSPATH

Replace the paths in the example with the actual paths for your domain.

5. Restart the managed servers.

Installing the WebSphere Java Agent
This section covers prerequisites and installation procedures for Java Agents 5.6 on WebSphere.

Before You Install

1. Download the agent from BackStage. For more information, see "Downloading and Unzipping Java
Agents".

2. Consider the following points before installing the WebSphere Java agent:

• Install WebSphere before you install the agent.

• Install a supported version of the Java runtime environment, as described in "Java
Requirements" in the Release Notes. Set the JAVA_HOME environment variable accordingly. The
agent installer requires Java.
$ echo $JAVA_HOME
/path/to/java

• If you are using IBM Java, perform the following procedure:

To Install With IBM Java

The WebSphere Java agent runs with IBM Java. To install the agent using IBM Java on platforms
other than AIX, you must change the agentadmin script to use the IBM Java Cryptography
Extensions (JCE).

Note that line breaks and continuation marker (\) characters have been manually added to the
following examples to aid display in the documentation. These are not required when editing the
script.

1. Open the file bin/agentadmin for editing.

2. Edit the line that calls the AdminToolLauncher jar file to move the $AGENT_OPTS environment
variable before the classpath is set:

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 67

Before:
$JAVA_VM -classpath "$AGENT_CLASSPATH" $AGENT_OPTS \
 com.sun.identity.install.tools.launch.AdminToolLauncher $*

After:
$JAVA_VM $AGENT_OPTS -classpath "$AGENT_CLASSPATH" \
 com.sun.identity.install.tools.launch.AdminToolLauncher $*

3. Save your work.

You can now install the WebSphere Java agent with IBM Java as described in "Installing the
WebSphere Java Agent".

Installing the WebSphere Java Agent

Complete the following procedures to install the WebSphere Java agent:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 68

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:
$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebSphere Java Agent

1. Shut down the WebSphere server where you plan to install the agent.

2. Make sure AM is running.

3. Run agentadmin --install to install the agent:
$ /path/to/java_agents/websphere_agent/bin/agentadmin --install --acceptlicense

a. When you run the command, you will be prompted to read and accept the software license
agreement for the agent installation. You can suppress the license agreement prompt by
including the --acceptLicence parameter. The inclusion of the option indicates that you have
read and accepted the terms stated in the license. To view the license agreement, open
<server-root>/legal-notices/license.txt.

b. Enter the path to the configuration directory of the server instance for the WebSphere node.
For example, /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/
DefaultNode01/servers/server1.
Enter the fully qualified path to the configuration directory of the Server
Instance for the WebSphere node.
[? : Help, ! : Exit]
Enter the Instance Config Directory
[/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/config/cells/<hostname>Node01Cell/nodes/
<hostname>Node01/servers/server1]: /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/
DefaultCell01/nodes/DefaultNode01/servers/server1

c. Enter the name of the server instance where the agent will be installed. For example, server1.
Enter the Server Instance name.
[? : Help, < : Back, ! : Exit]
Enter the Server Instance name [server1]: server1

d. Enter the path to the WebSphere install directory. For example, /path/to/WebSphere/AppServer.
Enter the WebSphere Install Root directory.
[? : Help, < : Back, ! : Exit]
Enter the WebSphere Install Root directory
[/opt/IBM/WebSphere/AppServer]: /path/to/WebSphere/AppServer

e. Enter the AM URL. For example, https://openam.example.com:8443/openam.

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 69

To balance agent connections to an AM site, configure the URL of the load balancer in front
of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the
proxy URL instead. For example, https://proxy.example.com:443/openam. For more information about
setting up the environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse
Proxy Example".

Enter the URL where the AM server is running. Please include the
deployment URI also as shown below:
(http://openam.sample.com:58080/openam)
[? : Help, < : Back, ! : Exit]
AM server URL: https://openam.example.com:8443/openam

f. Enter the agent URL. For example, http://www.example.com:8080/agentapp.
Enter the Agent URL. Please include the deployment URI also as shown below:
(http://agent1.sample.com:1234/agentapp)
[? : Help, < : Back, ! : Exit]
Agent URL: http://www.example.com:8080/agentapp

g. Enter the agent profile name that you created in AM as part of the pre-installation procedure.
For example, WebSphereAgent.
Enter the Agent profile name
[? : Help, < : Back, ! : Exit]
Enter the Agent Profile name: WebSphereAgent

h. Enter the realm in which the specified agent profile exists.

Press ENTER to accept the default value of /, signifying the top-level realm.

Note

If you specify the Accept Empty value (^) option, the top-level realm is assumed.

Enter the Agent profile realm
[? : Help, < : Back, ! : Exit, ^ : Accept Empty value]
Enter the Agent Profile realm [/]:

i. Enter the path to the password file that you created as part of the pre-installation procedure.
For example, /tmp/pwd.txt.
Enter the path to a file that contains the password to be used for identifying
the Agent.
[? : Help, < : Back, ! : Exit]
Enter the path to the password file: /tmp/pwd.txt

Installing Java Agents
Installing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 70

4. Review a summary of your responses and select an action to continue: install, go back a step,
start over, or exit:

SUMMARY OF YOUR RESPONSES

Instance Config Directory :
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1

Instance Server name : server1
WebSphere Install Root Directory : /path/to/WebSphere/AppServer
AM server URL : https://openam.example.com:8443/openam

Agent URL : http://www.example.com:8080/agentapp
Agent Profile name : WebSphereAgent
Agent Profile Realm : /
Agent Profile Password file name : /tmp/pwd.txt

Verify your settings above and decide from the choices below.
1. Continue with Installation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

...

SUMMARY OF AGENT INSTALLATION

Agent instance name: Agent_001
Agent Bootstrap file location:
/path/to/java_agents/websphere_agent/Agent_001/config/
 OpenSSOAgentBootstrap.properties
Agent Configuration file location
/path/to/java_agents/websphere_agent/Agent_001/config/
 OpenSSOAgentConfiguration.properties
Agent Audit directory location:
/path/to/java_agents/websphere_agent/Agent_001/logs/audit
Agent Debug directory location:
/path/to/java_agents/websphere_agent/Agent_001/logs/debug

Install log file location:
/path/to/java_agents/websphere_agent/installer-logs/audit/install.log

Thank you for using AM Policy Agent

Upon successful completion, the installer updates the WebSphere configuration, copies the
agent libraries to WebSphere's external library directory, and also sets up configuration and log
directories for the agent.

5. Take note of the configuration files and log locations.

Installing Java Agents
Installing the WebSphere Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 71

Each agent instance that you install on the system has its own numbered configuration and
logs directory. The first agent's configuration and logs are thus located under the directory
java_agents/websphere_agent/Agent_001/:

config/OpenSSOAgentBootstrap.properties

Used to bootstrap the Java agent, allowing the agent to connect to AM and download its
configuration.

config/OpenSSOAgentConfiguration.properties

Only used if you configured the Java agent to use local configuration.

logs/audit/

Operational audit log directory, only used if remote logging to AM is disabled.

logs/debug/

Debug directory where the debug file resides. Useful in troubleshooting agent issues.

6. Restart the WebSphere server.

7. Deploy the /path/to/java_agents/websphere_agent/etc/agentapp.war agent application in WebSphere.

8. To protect an application in the container, configure the agent filter.

9. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Installing the WebSphere Java Agent Silently

To install the WebSphere Java agent silently, you must create a response file containing the
installation parameters that you will then provide to the agentadmin command.

The following is an example of the response file:
Agent User Response File
SERVER_INSTANCE_DIR= /opt/IBM/WebSphere/AppServer/profiles/AppSrv01/config/cells/DefaultCell01/nodes/
DefaultNode01/servers/server1
SERVER_INSTANCE_NAME= server1
HOME_DIRECTORY= /opt/IBM/WebSphere/AppServer
AM_SERVER_URL= https://openam.example.com:8443/openam
AGENT_URL= http://www.example.com:8080/agentapp
AGENT_PROFILE_NAME= WebSphereAgent
AGENT_PROFILE_REALM= /
AGENT_PASSWORD_FILE= /tmp/pwd.txt

Installing Java Agents
Installing the WebSphere Java Agent Silently

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 72

To balance agent connections to an AM site, set the AM_SERVER_URL variable as the URL of the load
balancer in front of the AM site.

Note

If your environment has a reverse proxy configured between AM and the agent, set the AM URL to the proxy
URL instead. For example, https://proxy.example.com:443/openam. For more information about setting up the
environment for reverse proxies, see "Configuring Apache HTTP Server as a Reverse Proxy Example".

You can also create this file automatically when installing the Java agent by running the agentadmin
command with the --saveResponse option. For example:
$ agentadmin --install --saveResponse response-file

Complete the following procedure to install the WebSphere Java agent silently:

To Complete Pre-Installation Tasks

Perform the following steps to create the configuration required by the Java agent before installing it:

1. Create at least one policy in AM to protect resources with the agent, as described in the
procedure Implementing Authorization Using the Access Management Console.

2. Create an agent profile in AM, required by the Java agent to connect and communicate with AM.
For more information, see "Creating Agent Profiles".

3. Ensure that the key pair configured for signing the OpenID Connect JWTs exchanged between
AM and the Java agents is not the default test key pair. For more information, see "Configuring
Access Management Servers to Communicate With Java Agents".

4. Configure AM to protect the cross-domain single sign-on (CDSSO) session cookie from hijacking.
For more information, see Implementing Cross-Domain Single Sign-On in the ForgeRock Access
Management Authentication and Single Sign-On Guide.

5. Consider the communication between the agents and the AM servers, and between the agents
and the clients when installing agents in environments with load balancers and/or reverse
proxies. For more information, see "Configuring Environments With Load Balancers and Reverse
Proxies".

6. Create a text file containing only the password specified when creating the agent profile, and
protect it:

Windows example:
C:\> echo password > pwd.txt

In Windows Explorer, right-click the password file, for example pwd.txt, select Read-Only, and
then click OK.

UNIX example:

../../../am/6.5/authorization-guide/#authz-implementation-console
../../../am/6.5/authentication-guide#sec-cdsso

Installing Java Agents
Notes About WebSphere Network Deployment

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 73

$ echo password > /tmp/pwd.txt

$ chmod 400 /tmp/pwd.txt

To Install the WebSphere Java Agent Silently

1. Check the information in "Before You Install".

2. Shut down the WebSphere server where you plan to install the agent.

3. Make sure AM is running.

4. Run the agentadmin command with the --useResponse option. For example:
$ agentadmin --install --acceptLicense --useResponse response-file

5. Start the WebSphere server.

6. Deploy the /path/to/java_agents/websphere_agent/etc/agentapp.war agent application in WebSphere.

7. To protect an application in the container, configure the agent filter.

8. (Optional) If you have a policy configured, you can test your agent installation. For example, try
to browse to a resource that your agent protects. You should be redirected to AM to authenticate,
for example, as user demo, password changeit. After you authenticate, AM then redirects you back
to the resource you tried to access.

Notes About WebSphere Network Deployment

When using WebSphere Application Server Network Deployment, you must install WebSphere
Java agents on the Deployment Manager, on each Node Agent, and on each Application Server.
Installation requires that you stop and then restart the Deployment Manager, each Node Agent, and
each Application Server in the Network Deployment.

Before installation, synchronize each server configuration with the profile saved by the Deployment
Manager using the syncNode command. After agent installation, copy the server configuration
for each node stored in server.xml to the corresponding Deployment Manager profile. After you
have synchronized the configurations, you must restart the Deployment Manager for the Network
Deployment.

Post-Installation Tasks
Configuring the Agent Filter

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 74

Chapter 5

Post-Installation Tasks
This chapter covers tasks to perform after installing Java agents in your environment. The following
table contains a list of the tasks:

Task Section
Configure the agent filter and mode of operation.
You must configure the agent filter to protect your
applications

Section

Configure Java agents to log audit messages Section
Configure Java agents to provide performance
monitoring metrics.

Section

Configure Java agents to communicate with AM using
HTTPS

Section

Configure your environment when communication
between clients and agents happens behind load
balancers or reverse proxies

Section

Configuring the Agent Filter
The agent filter is a servlet that intercepts inbound client requests to a resource and processes them
based on the filter mode of operation.

Configuring the agent filter is a two-step process:

• Configuring the Agent Filter for an Application

• Configuring the Agent Filter's Mode of Operation

Configuring the Agent Filter for an Application

The agent filter is configured in the application's web.xml file. Therefore, to protect several
applications in the same container, you must configure the agent filter in each application.

Consider the following example configuration:

Post-Installation Tasks
Configuring the Agent Filter's Modes of Operation

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 75

<filter>
 <filter-name>Agent</filter-name>
 <display-name>AM Agent</display-name>
 <description>AM Agent Filter</description>
 <filter-class>com.sun.identity.agents.filter.AmAgentFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>Agent</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>ERROR</dispatcher>
</filter-mapping>

The agent filter's configuration requires two elements:

• filter. Defines the unique identifier of the filter and the filter class. It contains the following
elements:

• filter-name. The value is a string, for example, Agent.

• display-name. The value is a string, for example, AM Agent. The container's management console may
use this string as an identifier for the filter.

• description. The value is a string, for example, AM Agent Filter. The container's management
console may use this string as description for the filter.

• filter-class. The value is the agent filter class, com.sun.identity.agents.filter.AmAgentFilter.

• filter-mapping. Defines the resources protected by the filter. It contains the following elements:

• filter-name. The value must match the value of the filter-name element defined in the filter
element.

• url-pattern. The value defines the resources that the agent protects. For example, set the value to
/* to protect every resource in the application.

• dispatcher. Optional. Set one or more dispatcher elements to protect the Java container dispatchers
as well as the application.

Refer to the container vendor's documentation for more information about the container's
dispatchers.

If you configure additional filters in the web.xml file, ensure the agent filter is defined first.

Configuring the Agent Filter's Modes of Operation

The agent filter's behavior when processing requests is based on the filter mode of operation.

Post-Installation Tasks
Configuring the Agent Filter's Modes of Operation

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 76

The agent filter mode can be set either globally, which applies to all context paths protected by the
agent, or on a per-context path level, overriding the global setting.

The filter mode can be set to one of the following values:

Agent Filter Modes

Filter Mode Requires
Authentication?

Requires
Authorization?

Comments

URL_POLICY Yes Yes AM performs the following tasks:

• Issues an OIDC JWT to the client after successful
authentication a

• Checks resource-based policies to evaluate whether the
client can access the resource b

SSO_ONLY Yes No AM issues an OIDC JWT to the client after successful
authentication.

NONE No No This mode disables the agent filter from taking any action on
incoming requests. If logging is enabled, the agent filter logs
all incoming requests for auditing purposes.

ALL Yes Yes This mode behaves in the same way as the URL_POLICY mode
and is kept for backward-compatibility purposes.

J2EE_POLICY - - This mode does not apply to Java Agents 5.6, but it shows
in the AM 5.5 agent profile page for backward-compatibility
purposes.

a For more information about AM authentication mechanisms, see ForgeRock Access Management Authentication and Single
Sign-On Guide.
b For more information about AM policies, see ForgeRock Access Management Authorization Guide.

If neither the global or per-context paths filter mode are specified, the agent uses the default value,
URL_POLICY.

To Configure the Agent Filter Mode

1. Navigate to Realms > Realm Name > Applications > Agents > Java > Agent Name.

2. On the Global tab, change the mode in the Agent Filter Mode (com.sun.identity.agents.config.
filter.mode) property:

• To set the global filter mode, enter the mode name in the Value field, for example SSO_ONLY,
and then click Add.

• To override the filter mode for a particular context path, enter the name of the context path
in the Key field, for example BankApp, enter the mode name in the Value field, for example URL_
POLICY, and then click Add.

../../../am/6.5/authentication-guide/#authn-features
../../../am/6.5/authentication-guide/#authn-features
../../../am/6.5/authorization-guide/#what-is-authz-policies

Post-Installation Tasks
Configuring Audit Logging

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 77

Setting the Agent Filter Mode

3. Save your changes.

Configuring Audit Logging
Java agents support logging audit events for security, troubleshooting, and regulatory compliance.
You can store agent audit event logs in the following ways:

• Remotely. Log audit events to the audit event handler configured in the AM realm. In a site
comprised of several AM servers, Java agents write audit logs to the AM server that satisfies the
agent's request for client authentication or resource authorization.

Java agents cannot log audit events remotely if:

• AM's Audit Logging Service is disabled.

• No audit event handler is configured in the realm where the agent is configured.

• All audit event handlers configured in the realm where the agent is configured are disabled.

For more information about audit logging in AM, see the chapter Setting Up Audit Logging in the
ForgeRock Access Management Setup and Maintenance Guide.

• Locally. Log audit events in JSON format to a file in the Java agent installation directory, /
java_agents/agent_type/logs/audit/.

• Locally and remotely. Log audit events:

• To a file in the agent installation directory.

• To the audit event handler configured in the AM realm in which the agent profile is configured.

The following is an example of an agent log record:
{
 "timestamp":"2017-10-30T11:56:57Z",
 "eventName":"AM-ACCESS-OUTCOME",

../../../am/6.5/maintenance-guide/#chap-maint-audit-logging

Post-Installation Tasks
Configuring Audit Logging

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 78

 "transactionId":"608831c4-7351-4277-8a5f-b1a83fe2277e",
 "userId":"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "trackingIds":[
 "fd5c8ccf-7d97-49ba-a775-76c3c06eb933-82095",
 "fd5c8ccf-7d97-49ba-a775-76c3c06eb933-82177"
],
 "component":"Java Policy Agent",
 "realm":"/",
 "server":{
 "ip":"127.0.0.1",
 "port":8020
 },
 "client":{
 "ip":"127.0.0.1",
 "port":55180
 },
 "request":{
 "protocol":"HTTP/1.1",
 "operation":"GET"
 },
 "http":{
 "request":{
 "secure":false,
 "method":"GET",
 "path":"http://my.example.com:8020/examples/",
 "headers":{
 "referer":[
 "https://openam.example.com:8443/openam/oauth2/authorize?scope[...]"
],
 "accept-language":[
 "en,en-US;q=0.8,da;q=0.6,fr;q=0.4"
],
 "host":[
 "my.example.com:8020"
],
 "upgrade-insecure-requests":[
 "1"
],
 "connection":[
 "keep-alive"
],
 "cache-control":[
 "max-age=0"
],
 "accept-encoding":[
 "gzip, deflate"
],
 "user-agent":[
 "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko)
[...]"
],
 "accept":[
 "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8"
]
 },
 "cookies":{
 "am-auth-jwt":"eyJ0eXAiOiJKV1QiLCJhbGciOi[...]"
 "i18next":"en",
 "amlbcookie":"01",

Post-Installation Tasks
Configuring Audit Logging

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 79

 "iPlanetDirectoryPro":"Ts2zDkGUqgtkoxR[...]"
 }
 }
 },
 "response":{
 "status":"DENIED"
 },
 "_id":"fd5c8ccf-7d97-49ba-a775-76c3c06eb933-81703"
}

Note

Local audit logs do not have an _id attribute, which is an internal AM id.

The audit log format adheres to the log structure shared across the ForgeRock Identity Platform.
For more information about the audit log format, see the section Audit Logging File Format in the
ForgeRock Access Management Setup and Maintenance Guide.

Java agents support propagation of the transaction ID across the ForgeRock platform using the HTTP
header X-ForgeRock-TransactionId. For more information about configuring the header, see ForgeRock
Access Management Setup and Maintenance Guide.

By default, Java agents do not write audit log records. To configure audit logging, perform the
following procedure:

To Configure Audit Logging

The procedure assumes the agent uses centralized configuration. Property names are also provided
for local configuration agents.

1. In the AM console, navigate to Realms > Realm Name > Applications > Agents > Java > Agent
Name > Global > Audit.

2. In the Audit Access Type property (com.sun.identity.agents.config.audit.accesstype), select the type
of messages to log. For example, select LOG_ALL to log access allowed and access denied events.

3. In the Audit Log Location property (com.sun.identity.agents.config.log.disposition), select whether
to write the audit logs locally to the agent installation (LOCAL), remotely to AM (REMOTE), or to both
places (ALL). For example, keep REMOTE to log audit events to the AM instances.

4. (Optional) If you chose to log audit messages locally, enable the Rotate Local Audit Log property
(com.sun.identity.agents.config.local.log.rotate) to rotate the audit log files upon reaching a
maximum size.

5. (Optional) If you enabled the Rotate Local Audit Log property (com.sun.identity.agents.config.
local.log.size), specify the maximum size of the audit log files in the Local Audit Log Rotation Size
property.

../../../am/6.5/maintenance-guide/#sec-maint-audit-ref
../../../am/6.5/maintenance-guide/#configuring-trusttransactionheader-system-property
../../../am/6.5/maintenance-guide/#configuring-trusttransactionheader-system-property

Post-Installation Tasks
Configuring Performance Monitoring

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 80

Configuring Performance Monitoring
This section covers how to monitor the performance of Java agents.

You can monitor the performance of agents through the following interfaces:

Prometheus Monitoring

Prometheus is third-party software used for gathering and processing monitoring data.

For information about installing and running Prometheus, see the Prometheus documentation.

You can configure Java agents to expose an endpoint which Prometheus scrapes to obtain
performance metrics from your protected applications.

Configure Prometheus to monitor the metrics endpoint exposed by the agent by using the
prometheus.yml configuration file. For more information on configuring Prometheus, see the
Prometheus configuration documentation.

Tip

Prometheus provides monitoring and processing for the information provided by Java agents, but further
analysis and visualization may be desired. In this case, you can use tools such as Grafana to create
customized charts and graphs based on the information collected by Prometheus.

Example Grafana dashboards can be downloaded from the ForgeRock BackStage website.

For more information on installing and running Grafana, see the Grafana website.

For information on enabling Prometheus monitoring, see "To Expose an Endpoint for Common
REST and Prometheus Metrics".

ForgeRock® Common REST Monitoring

You can configure Java agents to expose an endpoint that allows REST clients to gather metrics
about your protected applications, in JSON format.

For information on enabling Common REST monitoring, see "To Expose an Endpoint for Common
REST and Prometheus Metrics".

CSV File-based Monitoring

You can write the metrics to comma-separated value (CSV) files, without having to expose an
endpoint.

When enabled, the monitoring .csv files are written the same directory as the agent instance
debug files, for example in /path/to/java_agents/tomcat_agent/Agent_001/logs/debug/.

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://backstage.forgerock.com/downloads/browse/am/latest/java-agents
https://grafana.com

Post-Installation Tasks
Configuring Performance Monitoring

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 81

For information on enabling CSV monitoring, see "To Enable Saving Metrics to CSV Files".

To Expose an Endpoint for Common REST and Prometheus Metrics

Common REST and Prometheus performance metrics are provided by an endpoint configured in the
protected application's web.xml file. The endpoint must be accessible to the REST client or Prometheus
server that will be making use of the performance data.

To configure an agent instance to expose the endpoint for metrics, perform the following steps:

1. For each protected application that will expose metrics, edit the application's web.xml file.

The following Tomcat example exposes a base endpoint named /metrics:
<servlet>
 <servlet-name>AgentMonitoring</servlet-name>
 <servlet-class>org.forgerock.http.servlet.HttpFrameworkServlet</servlet-class>
 <init-param>
 <param-name>application-loader</param-name>
 <param-value>guice</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>AgentMonitoring</servlet-name>
 <url-pattern>/metrics/*</url-pattern>
</servlet-mapping>

You can choose any name for the exposed base endpoint, but you must ensure it does not conflict
with any of the builtin agent endpoints, for example /sunwCDSSORedirectURI.

2. Allow access to the base endpoint used for monitoring applications protected by the agent by
using one of the following methods:

• Create a Not Enforced URI rule for the base endpoint.

For example:
/metrics/

Note that this would allow open access to the metrics base endpoint.

For more information, see Not-Enforced URI Processing Properties.

• Create a Compound Not-Enforced URI and IP rule for the base endpoint.

A Compound Not-Enforced URI and IP rule can allow access from only the IP addresses of the
REST clients or Prometheus server.

For example, the following rule allows access to the /metrics endpoint to HTTP requests that
come from the IP address range from 192.168.1.1 to 192.168.1.3:
192.168.1.1-192.168.1.3 | */metrics/*

Post-Installation Tasks
Configuring Java Agents for SSL Communication

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 82

HTTP requests from other IP addresses would not be able to access the metrics base
endpoint.

For more information, see Not-Enforced IP Processing Properties.

• Create an authorization policy in AM to restrict access to the metrics base endpoint.

Note that the metric base endpoint does not require login credentials. You can use a policy to
ensure that requests to the endpoints are authenticated against the AM instance.

For more information, see Configuring Policies in the ForgeRock Access Management 6.5
Authorization Guide.

3. The Common REST performance monitoring endpoint will now be available under the path used
by the protected application, for example https://mydomain.example.com/myapp/metrics/crest.

Configure your REST clients to access the endpoint to gather performance metric data. Ensure
you include the relevant credentials if you are protecting the endpoint by using policies in AM.

4. (Optional) The Prometheus performance monitoring endpoint is available under the path used by
the protected application, for example https://mydomain.example.com/myapp/metrics/prometheus.

Configure your Prometheus server to access the endpoint to gather performance metric data.
Ensure you include the relevant credentials if you are protecting the endpoint by using policies in
AM.

To Enable Saving Metrics to CSV Files

• Writing monitoring metrics to CSV files is enabled by setting the org.forgerock.agents.config.
monitoring.to.csv property:

• To configure the agent to write metric information to CSV files, set the org.forgerock.agents.
config.monitoring.to.csv property to true.

• To prevent the agent writing metric information to CSV files, set the org.forgerock.agents.
config.monitoring.to.csv property to false.

For information on where to set agent properties, see "Configuration Location".

For reference information on Java Agent performance metrics, see "Monitoring Reference".

Configuring Java Agents for SSL Communication
For security reasons, your environment may require that your Java agents communicate with AM over
SSL. To configure the agents, perform the steps in the following procedure:

../../../am/6.5/authorization-guide/#configure-policies-with-console

Post-Installation Tasks
Supporting Load Balancers and Reverse Proxies Between Clients and Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 83

To Configure Java Agents for SSL Communication

1. Import a CA certificate in the JDK truststore, usually $JAVA_HOME/jre/lib/security/cacerts. The
certificate should be either the same one configured for SSL purposes in the container where AM
is installed, or one signed with the same CA root certificate. For example:
$ keytool \
-import \
-trustcacerts \
-alias agentcert \
-file /path/to/cacert.pem \
-keystore $JAVA_HOME/jre/lib/security/cacerts

Ensure all containers where AM is installed trust the certificate stored in the JDK truststore, and
that the JDK trusts the certificates stored on the containers where AM is installed.

2. Edit the /path/to/java_agents/agent_type/agent_instance/config/OpenSSOAgentBootstrap.properties file and
add the following properties:

• javax.net.ssl.trustStore. Specifies the full path to the JDK truststore.

• javax.net.ssl.trustStorePassword. Specifies the password of the truststore.

For example:
javax.net.ssl.trustStore=/Library/Java/JavaVirtualMachines/jdk1.8.0_101.jdk/Contents/Home/jre/lib/
security/cacerts
javax.net.ssl.trustStorePassword=changeit

Note

For backward-compatibility purposes, you can also provide the truststore and the password to the agent by
specifying them as Java properties in the container's start-up sequence. For example, add them to Tomcat's
$CATALINA_OPS variable instead of specifying them in the OpenSSOAgentBootstrap.properties file:
$ export CATALINA_OPTS="$CATALINA_OPTS \
-Djavax.net.ssl.trustStore=$JAVA_HOME/jre/lib/security/cacerts \
-Djavax.net.ssl.trustStorePassword=changeit"

3. Restart the Java agent.

Supporting Load Balancers and Reverse Proxies Between
Clients and Agents
When your environment has reverse proxies or load balancers configured between the agents and the
clients, you must perform additional configuration in the agents to account for the anonymization of
both the clients and the agents.

Post-Installation Tasks
Supporting Load Balancers and Reverse Proxies Between Clients and Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 84

Failure to do so may cause policy evaluation and other agent features to fail.

For more information, see "Configuring Environments With Load Balancers and Reverse Proxies".

Upgrading Java Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 85

Chapter 6

Upgrading Java Agents
The process of upgrading a Java agent consist of uninstalling the old agent and installing a new one.
There is no requirement to create a new agent profile.

To upgrade Java agents, perform the following procedure:

To Upgrade Java Agents

1. Refer to the Release Notes for information about changes in support and functionality.

2. Back up the agent installation and the application container configuration directories. For
example:
$ cp -r /path/to/java_agents/tomcat_v7_agent /path/to/backup
$ cp -r /path/to/tomcat/webapps/agentapp /path/to/backup

If the configuration is stored centrally in AM, back it up as described in the ForgeRock Access
Management Maintenance Guide.

3. Redirect client traffic away from the protected application.

4. Stop the web application container where the Java agent is installed.

5. Remove the old Java agent.

For example, to remove an old Tomcat Java agent, see "Removing the Tomcat Java Agent". If the
uninstall process has changed, refer to the version of the Java Agent Guide that corresponds to
your Java agent.

6. Install the new agent.

For example, to install a Tomcat Java agent, see "Installing the Tomcat Java Agent".

The installer creates new OpenSSOAgentConfiguration.properties and OpenSSOAgentBootstrap.properties
files containing adequate properties for the particular agent version.

7. Review the agent configuration:

• If the agent configuration is stored in the AM configuration store, review the Release Notes and
the ForgeRock Access Management Release Notes to check what is new and possible changes
to AM and the agent. Then, adjust the agent configuration if required using the AM console.

../../../am/6.5/maintenance-guide#sec-maint-backup-restore
../../../am/6.5/maintenance-guide#sec-maint-backup-restore
../../../am/6.5/release-notes

Upgrading Java Agents

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 86

• If the agent configuration is stored locally, review the OpenSSOAgentConfiguration.properties file.
Use the backed-up copy of the configuration file for guidance, and the Release Notes and the
ForgeRock Access Management Release Notes to check what is new and possible changes to
AM and the agent. Then, update the file manually to contain the properties required for your
environment.

The OpenSSOAgentBootstrap.properties file created by the installer already contain bootstrap
properties relevant to the new version of the agent.

8. Ensure the communication between AM and the Java agent is secured with the appropriate keys.
For more information, see "Configuring Access Management Servers to Communicate With Java
Agents".

9. Start the web application container where the agent is installed.

10. Validate that the Java agent is performing as expected.

For example, navigate to a protected page on the web site and confirm whether you can access it
according to your configuration.

11. Allow client traffic to flow to the protected application.

../../../am/6.5/release-notes

Removing Java Agents
Removing the Tomcat Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 87

Chapter 7

Removing Java Agents
The following table contains a list of sections containing information about removing Java agents on
supported platforms:

Task Section
Remove Java agents on Apache Tomcat Section
Remove Java agents on Red Hat JBoss Section
Remove Java agents on Eclipse Jetty Section
Remove Java agents on Oracle WebLogic Section
Remove Java agents on IBM WebSphere Section

Removing the Tomcat Java Agent
Complete the following procedure to remove the Tomcat Java agent:

To Remove the Tomcat Java Agent

1. Shut down the Tomcat server where the agent is installed.

2. Run the agentadmin command with the --listAgents option to output a list of installed agent
instances. For example:
$ agentadmin --listAgents

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
Tomcat Server Config Directory: /path/to/apache-tomcat/conf

Make a note of the agent configuration details of the instance you want to remove.

3. Run the agentadmin command with the --uninstall option.
$ agentadmin --uninstall

a. Enter the path of the Tomcat installation directory. For example, /path/to/apache-tomcat/conf.

Removing Java Agents
Removing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 88

Enter the complete path to the directory which is used by Tomcat Server to
store its configuration Files. This directory uniquely identifies the
Tomcat Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Tomcat Server Config Directory Path
[/opt/apache-tomcat-6.0.14/conf]: /path/to/apache-tomcat/conf

b. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

SUMMARY OF YOUR RESPONSES

Tomcat Server Config Directory : /path/to/apache-tomcat/conf

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1
DONE.

Removing the Agent jar/locale files from the classloader directory ...DONE.

Deleting the config directory
/path/to/java_agents/tomcat_agent/Agent_001/config
...DONE.

Removing OpenAM Tomcat Agent Realm from Server XML file :
/path/to/apache-tomcat/conf/server.xml ...DONE.

Removing filter from Global deployment descriptor file :
/path/to/apache-tomcat/conf/web.xml ...DONE.

Removing OpenAM Tomcat Agent Filter and Form login authentication from Web
applications ...DONE.

Uninstall log file location:
/path/to/java_agents/tomcat_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Removing the JBoss Java Agent
Complete the following procedure to remove the JBoss Java agent:

To Remove the JBoss Java Agent

1. Shut down the JBoss server where the agent is installed.

Removing Java Agents
Removing the JBoss Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 89

2. Run the agentadmin command with the --listAgents option to output a list of installed agent
instances. For example:
$ agentadmin --listAgents
The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
JBoss home directory: /path/to/jboss
JBoss domain profile name: null
JBoss deployment mode: standalone

Make a note of the agent configuration details of the instance you want to remove.

3. Run the agentadmin command with the --uninstall option.
$ agentadmin --uninstall

a. Enter the path to the JBoss installation directory. For example, /path/to/jboss.
Enter the complete path to the home directory of the JBoss instance.
[? : Help, ! : Exit]
Enter the path to the JBoss installation: /path/to/jboss

b. Enter the deployment mode of the JBoss installation to uninstall. Possible values are domain or
standalone.
Enter the name of the deployment mode of the JBoss installation that you wish
to use with this agent. Supported values are: domain, standalone.
[? : Help, < : Back, ! : Exit]
Enter the deployment mode of JBoss [standalone]: standalone

c. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

Removing Java Agents
Removing the Jetty Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 90

SUMMARY OF YOUR RESPONSES

JBoss home directory : /path/to/jboss
JBoss deployment mode : standalone

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

Removing Agent settings from
/path/to/jboss/standalone/configuration/standalone.xml
file ...DONE.
DONE.
DONE.

Deleting the config directory
/path/to/java_agents/jboss_agent/Agent_001/config ...DONE.

Uninstall log file location:
/path/to/java_agents/jboss_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent.

Removing the Jetty Java Agent
Complete the following procedure to remove the Jetty Java agent:

To Remove the Jetty Java Agent

1. Shut down the Jetty server where the agent is installed.

2. Run the agentadmin command with the --listAgents options to output a list of installed agent
instances. For example:
$./agentadmin --listAgents

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
Jetty Server Config Directory:
/path/to/jetty/etc

Make a note of the agent configuration details of the instance you want to remove.

a. Run the agentadmin command with the --uninstall option.
$ agentadmin --uninstall

Removing Java Agents
Removing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 91

b. Enter the path of the Jetty configuration directory. For example, /path/to/jetty/etc.
Enter the complete path to the directory which is used by Jetty Server to store
its configuration Files. This directory uniquely identifies the Jetty
Server instance that is secured by this Agent.
[? : Help, ! : Exit]
Enter the Jetty Server Config Directory Path [/opt/jetty/etc]: /path/to/jetty/etc

c. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

SUMMARY OF YOUR RESPONSES

Jetty Server Config Directory :
/path/to/jetty/

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

Removing the agent classpath from start.conf file ...DONE.

Deleting the config directory
/path/to/java_agents/jetty_agent/Agent_001/config
...DONE.

Removing Login configuration files: amlogin.conf amlogin.xml...DONE.

Removing Agent app...DONE.

Uninstall log file location:
/path/to/java_agents/jetty_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Removing the WebLogic Java Agent
Complete the following procedure to remove the WebLogic Java agent:

To Remove the WebLogic Java Agent

1. Shut down the WebLogic server where the agent is installed.

2. Run the agentadmin with the --listAgents option to output a list of installed agent instances. For
example:

Removing Java Agents
Removing the WebLogic Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 92

The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
WebLogic Server instance name: AdminServer
Startup script location:
/Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh

Make a note of the agent configuration details of the instance you want to remove.

3. Run the agentadmin with the --uninstall option.
$ agentadmin --uninstall

a. Enter the path to the startWebLogic.sh file of the WebLogic domain where you want to install
the agent. For example, /Oracle_Home/user_projects/domains/base_domain/startWebLogic.sh.
Enter the path to the location of the script used to start the WebLogic domain.
Please ensure that the agent is first installed on the admin server instance
before installing on any managed server instance.
[? : Help, ! : Exit]
Enter the Startup script location
[/usr/local/bea/user_projects/domains/base_domain/startWebLogic.sh]: /Oracle_Home/user_projects/
domains/base_domain/startWebLogic.sh

b. Enter the name of the WebLogic instance. For example, AdminServer.
Enter the name of the WebLogic Server instance secured by the agent.
[? : Help, < : Back, ! : Exit]
Enter the WebLogic Server instance name [AdminServer]: AdminServer

c. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

Removing Java Agents
Removing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 93

SUMMARY OF YOUR RESPONSES

Startup script location :
/path/to/weblogic/mydomain/startWebLogic.sh
WebLogic Server instance name : AdminServer

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1

Remove amauthprovider.jar from
/path/to/weblogic/server/lib/mbeantypes
...DONE.

Deleting the config directory
/path/to/java_agents/weblogic_vs_agent/Agent_001/config
...DONE.

UnConfigure
/path/to/weblogic/mydomain/setAgentEnv_AdminServer.sh
...DONE.

Uninstall log file location:
/path/to/java_agents/weblogic_vs_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Removing the WebSphere Java Agent
Complete the following procedure to remove the WebSphere Java Agent:

To Remove the WebSphere Java Agent

1. Shut down the WebSphere server where the agent is installed.

2. Run the agentadmin command with the --listAgents option to output a list of installed agent
instances. For example:
The following agents are configured on this Application Server.

The following are the details for agent Agent_001 :-
WebSphere Install Root Directory: /path/to/WebSphere/AppServer
Instance Server name: server1
Instance Config Directory:
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1

Make a note of the agent configuration details of the instance you want to remove.

Removing Java Agents
Removing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 94

3. Run the agentadmin command with the --uninstall option:
$ agentadmin --uninstall

a. Enter the path to the configuration directory of the server instance for the WebSphere node.
For example, /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/
DefaultNode01/servers/server1.
Enter the fully qualified path to the configuration directory of the Server
Instance for the WebSphere node.
[? : Help, ! : Exit]
Enter the Instance Config Directory
[/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/config/cells/<hostname>Node01Cell/nodes/
<hostname>Node01/servers/server1]: /path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/
DefaultCell01/nodes/DefaultNode01/servers/server1

b. Enter the name of the server instance where the agent will be removed. For example, server1.
Enter the Server Instance name.
[? : Help, < : Back, ! : Exit]
Enter the Server Instance name [server1]: server1

c. Enter the path to the WebSphere install directory. For example, /path/to/WebSphere/AppServer.
Enter the WebSphere Install Root directory.
[? : Help, < : Back, ! : Exit]
Enter the WebSphere Install Root directory
[/opt/IBM/WebSphere/AppServer]: /path/to/WebSphere/AppServer

d. Review a summary of your responses and select an action to continue: uninstall, go back a
step, start over, or exit:

Removing Java Agents
Removing the WebSphere Java Agent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 95

SUMMARY OF YOUR RESPONSES

Instance Config Directory :
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1

Instance Server name : server1
WebSphere Install Root Directory : /path/to/WebSphere/AppServer

Verify your settings above and decide from the choices below.
1. Continue with Uninstallation
2. Back to the last interaction
3. Start Over
4. Exit
Please make your selection [1]: 1
Remove jars from /path/to/WebSphere/AppServer/lib/ext...DONE.

Deleting the config directory
/path/to/java_agents/websphere_agent/Agent_001/config ...DONE.

Unconfigure server.xml file
/path/to/WebSphere/AppServer/profiles/AppServ01/config/cells/DefaultCell01/nodes/DefaultNode01/
servers/server1/server.xml
...DONE.

Uninstall log file location:
/path/to/java_agents/websphere_agent/installer-logs/audit/uninstall.log

Thank you for using AM Policy Agent

Troubleshooting

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 96

Chapter 8

Troubleshooting
This chapter offers solutions to issues that may occur during installation of AM Java agents.

Solutions to Common Issues
Q: I am trying to install a Java agent, connecting to AM over HTTPS, and seeing the following error:

AM server URL: https://openam.example.com:8443/openam

WARNING: Unable to connect to OpenAM server URL. Please specify the
correct OpenAM server URL by hitting the Back button (<) or if the OpenAM
server URL is not started and you want to start it later, please proceed with
the installation.
If OpenAM server is SSL enabled and the root CA certificate for the OpenAM
server certificate has been not imported into installer JVMs key store (see
installer-logs/debug/Agent.log for detailed exception), import the root
CA certificate and restart the installer; or continue installation without
verifying OpenAM server URL.

What should I do?

A: The Java platform includes certificates from many certificate authorities (CAs). If, however, you
run your own CA, or you use self-signed certificates for HTTPS on the web application container
where you run AM, then the agentadmin command cannot trust the certificate presented during
connection to AM, and so cannot complete installation correctly.

After setting up the web application container where you run AM to use HTTPS, get the
certificate to trust in a certificate file. The certificate you want is that of the CA who signed the
container certificate, or the certificate itself if the container certificate is self-signed.

Copy the certificate file to the system where you plan to install the Java agent. Import the
certificate into a trust store that you will use during Java agent installation. If you import the
certificate into the default trust store for the Java platform, then the agentadmin command can
recognize it without additional configuration.

Export and import of self-signed certificates is demonstrated in the ForgeRock Access
Management Install Guide section Using Self-Signed Certificates.

Q: I am trying to install the WebSphere Java agent on Linux. The system has IBM Java. When I run
agentadmin --install, the script fails to encrypt the password from the password file, ending with
this message:
ERROR: An unknown error has occurred (null). Please try again.

../../../am/6.5/install-guide/#sec-install-self-signed-certificates

Troubleshooting

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 97

What should I do?

A: You must edit agentadmin to use IBMJCE, and then try again.

See "To Install With IBM Java".

Q: I have client-based (stateless) sessions configured in AM, and I am getting infinite redirection
loops. In the debug.log file I can see messages similar to the following:

2018-03-15 16:23:10.538 +0000 ERROR [c5319caa-beeb-5a44-a098-d5575e768348]state identifier not
 present in authentication state
2018-03-15 16:23:10.538 +0000 WARNING [c5319caa-beeb-5a44-a098-d5575e768348]unable to verify pre-
authentication cookie
2018-03-15 16:23:10.538 +0000 WARNING [c5319caa-beeb-5a44-a098-
d5575e768348]convert_request_after_authn_post(): unable to retrieve pre-authentication request data
2018-03-15 16:23:10.538 +0000 DEBUG [c5319caa-beeb-5a44-a098-d5575e768348] exit status: forbidden
 (3), HTTP status: 403, subrequest 0

What is happening?

A: In this case, the redirection loop happens because the client-based (stateless) session cookie is
surpassing the maximum supported browser header size. Since the cookie is incomplete, AM
cannot validate it.

To ensure the session cookie does not surpass the browser supported size, configure either
signing and compression or encryption and compression.

For more information, see the ForgeRock Access Management Authentication and Single Sign-
On Guide.

Q: I have upgraded my agent and I see the following message in the Java agent log:
redirect_uri_mismatch. The redirection URI provided does not match a pre-registered value.

What should I do?

A: Java agents 5.6 only accept requests sent to the URL specified by the Agent Root URL for
CDSSO property. For example, http://agent.example.com:8080/.

As a security measure, Java agents prevent you from accessing the agent on URLs not defined in
the Agent Root URL for CDSSO property. Add entries to this property when:

• Configuring the Alternative Agent Protocol (com.sun.identity.agents.config.agent.protocol)
property to access the agent through different protocols. For example, http://agent.example.com/
and https://agent.example.com/.

• Configuring the Alternative Agent Host Name (com.sun.identity.agents.config.agent.host)
property to access the agent through different virtual host names. For example, http://agent.
example.com/ and http://internal.example.com/.

../../../am/6.5/authentication-guide#policy_agent5_client-based
../../../am/6.5/authentication-guide#policy_agent5_client-based

Troubleshooting

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 98

• Configuring the Alternative Agent Port Name (com.sun.identity.agents.config.agent.port)
property to access the agent through different ports. For example, http://agent.example.com/ and
http://agent.example.com:8080/.

Q: After installing a Java agent on WebSphere, accessing a URL for a folder in a protected
application such as http://openam.example.com:9080/test/ results in Error 404: SRVE0190E: File not
 found: {0}, and redirection fails. What should I do to work around this problem?

A: Perform the following steps to work around the problem, by setting the WebSphere custom
property com.ibm.ws.webcontainer.invokeFiltersCompatibility=true:

1. In the WebSphere administrative console, browse to Servers > Server Types, and then click
WebSphere application servers.

2. Click the server to apply the custom property to.

3. Navigate to Configuration > Container settings > Web Container Settings > Web container.

4. Under Configuration > Additional Properties, click Custom Properties.

5. In the Custom Properties page, click New.

6. In the settings page, enter the Name com.ibm.ws.webcontainer.invokeFiltersCompatibility and
Value true for the custom property.

Some properties are case-sensitive.

7. Click Apply or OK as applicable.

8. Click Save in the Message box that appears.

9. Restart the server for the custom property to take effect.

See the IBM documentation on Setting webcontainer custom properties for additional
information.

http://www-01.ibm.com/support/docview.wss?uid=swg21284395

Reference
Configuring Java Agent Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 99

Chapter 9

Reference
This reference section covers Java agent and agent authenticator configuration properties.

Configuring Java Agent Properties
When you create the agent profile, you can choose whether to store the agent configuration in AM's
configuration store or locally to the agent installation 1. This section covers centralized configuration,
indicating the corresponding properties for use in a local configuration file where applicable. 2

After changing properties specified as "Hot-swap: no", you must restart the container where the Java
agent is installed for the changes to take effect.

Configuring Bootstrap Properties

These properties are set in the config/OpenSSOAgentBootstrap.properties file.

am.encryption.pwd

When using an encrypted password, set this to the encryption key used to encrypt the agent
profile password.

com.iplanet.am.naming.url

 This property does not apply to Java Agents 5.6.

com.iplanet.am.service.secret

When using a plain text password, set this to the password for the agent profile, and leave am.
encryption.pwd blank.

When using an encrypted password, set this to the encrypted version of the password for the
agent profile. Use the command ./agentadmin --encrypt agentInstance passwordFile to get the
encrypted version.

Default: not set
1 See "Configuration Location" for more information about the agent configuration.
2The configuration file syntax is the same as of a standard Java properties file. See java.util.Properties.load() for a description
of the format.

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load%28java.io.Reader%29

Reference
Configuring Bootstrap Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 100

org.forgerock.agents.public.am.url

Specifies the full URL of AM when it is behind a proxy during the custom login redirection flow.
For example, protocol://public_am_fqdn:port/openam.

Use this property both of the following points are true:

• Your environment uses custom login pages (non-OIDC-compliant flows), and the custom login
pages are not in the same domain as the agent.

• Your custom login pages are in a network that can only access AM using a proxy, a firewall, or
any other technology that remaps the AM URL to one accessible by the custom login pages.

Consider an example where the traffic between AM and the agent happens through the example-
internal.com network, but the custom login pages are on the example-external.com domain. The
traffic between the custom pages and AM is translated from am.example-internal.com into am.example-
external.com.

You would configure https://am.example-external.com:8443/openam as the public AM URL.

The default value is a combination of the values of the com.iplanet.am.server.host, com.iplanet.
am.server.port, com.iplanet.am.server.protocol, and com.iplanet.am.services.deploymentDescriptor
properties.

com.iplanet.am.services.deploymentDescriptor

Specifies the URI under which AM is deployed, such as /openam.

Default: not set

com.iplanet.services.debug.directory

Specifies the full path of the directory where the Java agent writes debug log files.

Default: /path/to/agent/agent_type/agent_instance/logs/debug

com.sun.identity.agents.app.username

Specifies the agent profile name.

Default: not set

com.sun.identity.agents.config.local.logfile

Specifies the full path of the Java agent's audit log file.

Default: /path/to/agent/agent_type/agent_instance/logs/audit/amAgent_AM_FQDN_PORT.log

com.sun.identity.agents.config.lock.enable

When true, specifies that an agent restart is required to allow agent configuration changes, even
for hot-swappable parameters.

Reference
Configuring Bootstrap Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 101

Default: false

com.sun.identity.agents.config.organization.name

Specifies the realm name where the agent authenticates to AM.

Default: / (top-level realm)

com.sun.identity.agents.config.profilename

Specifies the profile name used to fetch agent configuration data. Unless multiple Java agents use
the same credentials to authenticate, this is the same as com.sun.identity.agents.app.username.

Default: not set

com.sun.identity.agents.config.service.resolver

 This property does not apply to Java Agents 5.6.

com.sun.services.debug.mergeall

When on, the Java agent writes all debug messages to a single file under com.iplanet.services.debug.
directory.

Default: on

javax.net.ssl.trustStore

Specifies the full path to the JVM truststore. Use this property to enable SSL communication with
AM.

For more information, see "Configuring Java Agents for SSL Communication".

Default: not set

javax.net.ssl.trustStorePassword

Specifies the password of the truststore defined by the javax.net.ssl.trustStore property.

For more information, see "Configuring Java Agents for SSL Communication".

Default: not set

org.forgerock.agents.prometheus.monitoring.enabled

When true enables the Prometheus performance monitoring endpoint.

For more information, see "Configuring Bootstrap Properties".

Default: true

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 102

org.forgerock.openam.url.connectTimeout

Sets the TCP connection timeout for outbound HTTP connections created by the Java agent. file.

Default: not set

Configuring Global Properties

This section covers global Java agent properties. After creating the agent profile, access these
properties in the AM console by navigating to Realms > Realm Name > Applications > Agents > Java
> Agent Name > Global.

This section describes the following property groups:

• Profile Properties

• General Properties

• User Mapping Properties

• Audit Properties

• Fully Qualified Domain Name Checking Properties

Profile Properties

Group

For assigning the Java agent to a previously configured group in order to inherit selected
properties from the group.

Password

Specifies the password used when creating the password file and when installing the Java agent.

If you change this password, you must modify manually the password of the bootstrap property
com.iplanet.am.service.secret. For more information, see "Configuring Bootstrap Properties".

Status

Specifies the status of the agent configuration.

Agent Notification URL

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

When creating an agent profile, the AM console configures a default value for this property to
maintain compatibility with earlier versions of the Java agent. The default value can be safely
removed.

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 103

Property: com.sun.identity.client.notification.url

Location of Agent Configuration Repository

Specifies whether the Java agent configuration runs in local or centralized mode. For background
information on these modes, see "Configuration Location".

To configure local mode, make sure the com.sun.identity.agents.config.repository.location=local is in
the bootstrap properties file.

Note

At startup, the agent always reads the bootstrap properties file, and then the configuration properties
file 3. The agent's behavior then depends entirely on the value of the com.sun.identity.agents.config.
repository.location property.

If the property is set to LOCAL, the agent will use all of the properties it has retrieved and continue working.

If the property is set to CENTRALIZED or is not defined at all, the agent will ignore all values from the
configuration properties file, and while retaining the retrieved bootstrap properties, download its
configuration from AM.

To revert to centralized mode, remove the com.sun.identity.agents.config.repository.location
property in the bootstrap file, and then restart the agent's container.

Default: centralized

Property: com.sun.identity.agents.config.repository.location

Configuration Reload Interval

Specifies the time interval in seconds after which the Java agent reloads the agent profile. The
behavior of this property is determined by the agent profile's configuration location:

• Centralized configuration. The Java agent reloads the configuration from AM.

• Local configuration. The Java agent reloads the configuration from the local files if the local
files have been modified.

Tip

Notifications ensure that Java agents with centralized configuration reload the configuration when
the administrator makes a change to a hot-swappable configuration property. Enable this property if
notifications are disabled or if the Java agent stores its configuration locally.

Set the property to 0 to disable it.
3These files are /path/to/java_agents/agent_type/agent_instance/config/OpenSSOAgentBootstrap.properties and /
path/to/java_agents/agent_type/agent_instance/OpenSSOAgentConfiguration.properties, respectively.

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 104

Default: 0

Property: com.sun.identity.agents.config.load.interval

Hot-swap: yes

Agent Configuration Change Notification

Specifies whether AM sends a notification to the Java agent to reread the agent profile after a
change to a hot-swappable property. This property only applies when you store the agent profile
in AM's configuration data store.

Default: true

Property: com.sun.identity.agents.config.change.notification.enable

Hot-swap: no

Web Socket Connection Interval

Specifies the time in minutes after which Java agents reopen their WebSocket connection to AM.
This property helps ensure a balanced distribution of connections across the AM servers on the
site.

Default: 30

Property: org.forgerock.openam.agents.config.balance.websocket.connection.interval.in.minutes

Hot-swap: yes

JWT Cookie Name

Specifies the name of the cookie that holds the OpenID Connect JSON web token (JWT) on the
user's browser.

Before changing the name of this cookie, consider the following points:

• This cookie is only used by the Java agent and is never presented to AM.

• The name of this cookie must be unique across the set of cookies the user's browser receives,
since some browsers behave in unexpected ways when receiving several cookies with the same
name. For example, you should not set the JWT cookie name to iPlanetDirectoryPro, which is the
default name of AM's session cookie.

Default: am-auth-jwt

Property: org.forgerock.openam.agents.config.jwt.name

Hot-swap: yes

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 105

JWT Cache Size (Not yet in the AM console)4

Specifies the maximum number of decoded OpenID Connect JWTs the Java agent stores in the
cache. When the cache fills up, it evicts items on a last-accessed basis.

Default: 1000

Property: org.forgerock.openam.agents.config.jwt.cache.size

JWT Cache Timeout (Not yet in the AM console)4

Specifies the time interval in minutes after which a JWT in the Java agent's cache expires.

Default: 30

Property: org.forgerock.openam.agents.config.jwt.cache.ttl.minutes

Convert SSO Tokens into OpenID Connect JWTs (Not yet in the AM console)4

Specifies whether the agent should convert SSO tokens (iPlanetDirectoryPro cookies) into OpenID
Connect JWTs, to make them compliant with the agent's default login redirection mode.

Set this property when your end users access resources protected by both Java Agents 3.5.x
(which use SSO tokens) and 5.x (which use OpenID Connect JWTs). Converting the SSO token
to a JWT will ensure a seamless experience to the user without additional redirection or re-
authentication.

When this property is enabled, the agent makes a request to AM to exchange the SSO token for a
JWT.

Tip

The client application is responsible for appending the JWT to subsequent calls to protected resources.
Failure to do so will cause the agent to request additional JWTs from AM.

Default: false

Property: com.forgerock.agents.accept.ipdp.cookie

Hot-swap: yes

Exchanged SSO Token Cache Time to Live (Not yet in the AM console)4

Specifies how long to cache the results of exchanging an SSO token for a JWT, in minutes.

The returned JWT is cached against the relevant SSO token. If the same SSO token is presented
in the future, but before the cache expires, the agent does not need to request a new JWT from
AM. Instead, it retrieves the correct JWT from its cache.

4Set this property as a custom property in AM, by navigating to Realms > Realm Name > Applications > Agents > Java >
Agent Name > Advanced > Custom Properties.

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 106

Default: 5

Property: org.forgerock.agents.sso.exchange.cache.ttl.minutes

Exchanged SSO Token Cache Max Records (Not yet in the AM console)4

Specifies the maximum number of entries allowed when caching the results of exchanging an
SSO token for a JWT, in minutes.

If the maximum number of records is reached, the oldest records in the cache are overwritten.

Default: 100

Property: org.forgerock.agents.sso.exchange.cache.size

Agent Root URL for CDSSO

The Java agent root URL for CDSSO. The valid value is in the format protocol://hostname:port/
where protocol represents the protocol used, such as http or https, hostname represents the host
name of the system where the Java agent resides, and port represents the port number on which
the Java agent is installed. The slash following the port number is required.

If the server where the Java agent is installed has virtual host names, add URLs with the virtual
host names to this list as well. AM checks that goto URLs match one of the Java agent root URLs
for CDSSO.

Default: agent-root-URL

Property: sunIdentityServerDeviceKeyValue[n]

General Properties

Agent Filter Mode

Specifies the agent filter's mode of operation. The mode can be set to one of the following values:

Agent Filter Modes

Filter Mode Requires
Authentication?

Requires
Authorization?

Comments

URL_POLICY Yes Yes AM performs the following tasks:

• Issues an OIDC JWT to the client after successful
authentication a

• Checks resource-based policies to evaluate whether the
client can access the resource b

SSO_ONLY Yes No AM issues an OIDC JWT to the client after successful
authentication.

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 107

Filter Mode Requires
Authentication?

Requires
Authorization?

Comments

NONE No No This mode disables the agent filter from taking any action on
incoming requests. If logging is enabled, the agent filter logs
all incoming requests for auditing purposes.

ALL Yes Yes This mode behaves in the same way as the URL_POLICY mode
and is kept for backward-compatibility purposes.

J2EE_POLICY - - This mode does not apply to Java Agents 5.6, but it shows
in the AM 5.5 agent profile page for backward-compatibility
purposes.

a For more information about AM authentication mechanisms, see ForgeRock Access Management Authentication and Single
Sign-On Guide.
b For more information about AM policies, see ForgeRock Access Management Authorization Guide.

For more information, see "Configuring the Agent Filter".

Default: ALL

Property: com.sun.identity.agents.config.filter.mode

Hot-swap: yes

Idle Timeout Window (Not yet in the AM console)4

Specifies the time interval, in minutes, the agent will wait before making a call to AM to refresh a
the session's idle timeout.

Sessions in AM have an idle timeout after which they expire. In general, when users access
protected resources through an agent, the agent requests a policy decision on behalf of that user,
which resets the idle timeout.

When the agent does not need to reach out to AM frequently, for example, when policy evaluation
is already cached, sessions may unexpectedly expire in AM due to idle timeout before the user
has finished accessing the application.

Agents make one call per active user session at the end of the time interval, provided that the
user is actively accessing the application or site. If the user does not access the application
during the configured window interval time, the agent will not make the call to AM at the end of
the interval. Eventually, if the user is inactive for enough time, AM will log them out when the
session reaches its idle timeout.

Configuring the idle timeout window to a short value, such as one minute, achieves a good
balance between making additional calls to AM and providing a good user experience.

Increase this value only if the performance impact of making an extra call to AM every minute is
noticeable enough in your environment.

Default: 1

../../../am/6.5/authentication-guide/#authn-features
../../../am/6.5/authentication-guide/#authn-features
../../../am/6.5/authorization-guide/#what-is-authz-policies
../../../am/6.5/authentication-guide#global-session-dynamic-attributes

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 108

Property: org.forgerock.agents.idle.time.window.minutes

Hot-swap: yes

HTTP Session Binding

When enabled, the Java agent invalidates the HTTP session upon login failure, when the user has
no SSO session, or when the principal user name does not match the SSO user name.

Default: true

Property: com.sun.identity.agents.config.httpsession.binding

Login Attempt Limit

When set to a value other than zero, this defines the maximum number of failed login attempts
allowed during a single browser session, after which the Java agent blocks requests from the
user.

Default: 0

Property: com.sun.identity.agents.config.login.attempt.limit

Custom Response Header

Specifies the custom headers the Java agent sets for the client. The key is the header name.
The value is the header value. For example, com.sun.identity.agents.config.response.header[Cache-
Control]=no-cache.

Default: not set

Property: com.sun.identity.agents.config.response.header[HEADER_NAME]=HEADER_VALUE

Redirect Attempt Limit

When set to a value other than zero, this defines the maximum number of redirects allowed for a
single browser session, after which the Java agent blocks the request.

Default: 0

Property: com.sun.identity.agents.config.redirect.attempt.limit

Agent Debug Level

Specifies the level of detail of the agent debug logs.

Valid values for the property are:

• all

• error

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 109

• info

• message

• warning

Set this property to all for fine-grain details.

Default: error

Property: com.iplanet.services.debug.level

Export Monitoring Metrics to CSV (Not yet in the AM console)4

When true, enables the export of Java agent performance monitoring metrics to comma-separated
value (CSV) files.

The monitoring .csv files are written the same directory as the agent instance debug files, for
example in /path/to/java_agents/tomcat_agent/Agent_001/logs/debug/.

Default: false

Property: org.forgerock.agents.config.monitoring.to.csv

User Mapping Properties

User Mapping Mode

Specifies the mechanism used to determine the user ID. This property can take four values:

• USER_ID. The Java agent reads the property com.sun.identity.agents.config.user.principal:

• If true, the Java agent sets the principal user name as the user ID.

• If false, the user ID is set to the value of the session property specified by the com.sun.identity.
agents.config.user.token property as the user ID.

• PROFILE_ATTRIBUTE. The user ID is set to the value of a named profile attribute, as specified by the
com.sun.identity.agents.config.user.attribute.name property.

• HTTP_HEADER. The user ID is set to the value of a named HTTP header, as specified by the com.sun.
identity.agents.config.user.attribute.name property.

• SESSION_PROPERTY. The user ID is set to the value of a named session property, as specified by the
com.sun.identity.agents.config.user.attribute.name property.

If the user ID cannot be set, the user will not be logged in and access requests will be denied.

Default: USER_ID

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 110

Property: com.sun.identity.agents.config.user.mapping.mode

User Attribute Name

Specifies the data store attribute that contains the user ID.

Default: employeenumber

Property: com.sun.identity.agents.config.user.attribute.name

User Principal Flag

When enabled, AM uses both the principal user name and also the user ID for authentication.

Default: false

Property: com.sun.identity.agents.config.user.principal

User Token Name

Specifies the session property name for the authenticated user's ID.

Default: USER_ID

Property: com.sun.identity.agents.config.user.token

Audit Properties

Audit Access Types

Specify the type of messages to log. Valid values include:

• LOG_NONE. Disable audit logging.

• LOG_ALLOW. Log access allowed events.

• LOG_DENY. Log access denied events.

• LOG_BOTH. Log access allowed and access denied events.

Default: LOG_NONE

Property: com.sun.identity.agents.config.audit.accesstype

Hot-swap: yes

Audit Log Location

Specifies the location where the Java agent audit message logs. Valid values include:

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 111

• REMOTE. Log audit event messages to the audit event handler configured in the AM realm.

• LOCAL. Log audit event messages locally to the agent installation.

• ALL. Log audit event messages to the audit event handler configured in the AM realm and locally
to the agent installation.

Default: REMOTE

Property: com.sun.identity.agents.config.log.disposition

Hot-swap: yes

Remote Log File Name

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.remote.logfile

Rotate Local Audit Log

When enabled, rotate local audit log files that have reached the size specified by the Local Audit
Log Rotation Size property.

Default: false

Property: com.sun.identity.agents.config.local.log.rotate

Hot-swap: yes

Local Audit Log Rotation Size

Specifies the maximum size in bytes of the local audit log files. When audit log rotation is
enabled, the Java agent rotates the log file when it reaches this size.

Default: 52428800

Property: com.sun.identity.agents.config.local.log.size

Hot-swap: yes

Fully Qualified Domain Name Checking Properties

FQDN Check

Enables checking of FQDN default value and FQDN map values.

Default: false

Reference
Configuring Global Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 112

Property: com.sun.identity.agents.config.fqdn.check.enable

FQDN Default

FQDN users should use to access resources.

This property ensures that when users access protected resources on the web server without
specifying the FQDN, the Java agent can redirect the users to URLs containing the correct FQDN.

Note

If you add any FQDN to this property, you must also add it to the Agent Root URL for CDSSO property.

Default: agent-root-URL

Property: com.sun.identity.agents.config.fqdn.default

FQDN Virtual Host Map

Maps virtual, invalid, or partial hostnames, and IP addresses to the FQDN to access protected
resources. The property allows Java agents to redirect users to the FQDN and receive cookies
belonging to the domain. It also ensures that invalid FQDN values that can cause the application
server to become unusable or render resources inaccessible get properly mapped to the FQDN.

The property accepts an invalid_hostname and a validN Map Key value. The invalid_hostname
maps an invalid or a partial hostname, or an IP address to a FQDN. The validN (where N = 1, 2,
3 ...) Map Key maps virtual hostnames to a FQDN.

com.sun.identity.agents.config.fqdn.mapping[invalid_hostname] = valid_hostname
com.sun.identity.agents.config.fqdn.mapping[validN] = valid_hostname

For example, to map the partial hostname myserver to myserver.mydomain.example, enter myserver in the
Map Key field, enter myserver.mydomain.example in the Corresponding Map Value field and then click
Add. This corresponds to:

com.sun.identity.agents.config.fqdn.mapping[myserver] = myserver.mydomain.example

To address a server as xyz.hostname.com, when the actual name of the server is abc.hostname.com,
enter valid1 in the Map Key field, enter xyz.hostname.example in the Corresponding Map Value field
and then click Add. This corresponds to:

com.sun.identity.agents.config.fqdn.mapping[valid1] = xyz.hostname.com

If you have multiple virtual servers rst.hostname.com, uvw.hostname.com, and xyz.hostname.com pointing
to the same actual server abc.hostname.com and each virtual server has its own policies defined, the
properties can be defined as:

com.sun.identity.agents.config.fqdn.mapping[valid1] = rst.hostname.com

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 113

com.sun.identity.agents.config.fqdn.mapping[valid2] = uvw.hostname.com
com.sun.identity.agents.config.fqdn.mapping[valid3] = xyz.hostname.com

Default: not set

Property: com.sun.identity.agents.config.fqdn.mapping

Configuring Application Properties

After creating the agent profile, access the following properties in the AM console by navigating to
Realms > Realm Name > Applications > Agents > Java > Agent Name > Application.

This section describes the following property groups:

• Login Processing Properties

• Logout Processing Properties

• Access Denied URI Processing Properties

• Not-Enforced Processing Properties

• Not-Enforced URI Processing Properties

• Not-Enforced IP Processing Properties

• Profile Attributes Processing Properties

• Response Attributes Processing Properties

• Common Attributes Fetching Processing Properties

• Session Attributes Processing Properties

• Privilege Attributes Processing Properties

• Custom Authentication Processing Properties

• Continuous Security Properties

• Query Parameter Handling Properties

Login Processing Properties

Login Form URI

Specifies the list of absolute URIs corresponding to a protected application's web.xml form-login-
page element, such as /myApp/jsp/login.jsp.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 114

Default: not set

Property: com.sun.identity.agents.config.login.form

Login Error URI

Specifies the list of absolute URIs corresponding to a protected application's web.xml form-error-
page element, such as /myApp/jsp/error.jsp.

Default: not set

Property: com.sun.identity.agents.config.login.error.uri

Use Internal Login

When enabled, the Java agent uses the internal default content file for the login.

Default: true

Property: com.sun.identity.agents.config.login.use.internal

Login Content File Name

Full path name to the file containing custom login content when Use Internal Login is enabled.

Default: FormLoginContent.txt

Property: com.sun.identity.agents.config.login.content.file

Logout Processing Properties

Application Logout Handler

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.logout.application.handler

Application Logout URI

Specifies request URIs that indicate logout events. The key is the web application name. The
value is the application logout URI.

To set a global logout URI for applications without other logout URIs defined, leave the key empty
and set the value to the global logout URI, /logout.jsp.

To set a logout URI for a specific application, set the key to the name of the application, and the
value to the application logout page.

Default: not set

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 115

Property: com.sun.identity.agents.config.logout.uri

Logout Request Parameter

Specifies parameters in the HTTP request that indicate logout events. The key is the web
application name. The value is the logout request parameter.

To set a global logout request parameter for applications without other logout request
parameters defined, leave the key empty and set the value to the global logout request
parameter, logoutparam.

To set a logout request parameter for a specific application, set the key to the name of the
application, and the value to the application logout request parameter, such as logoutparam.

Default: not set

Property: com.sun.identity.agents.config.logout.request.param

Logout Introspect Enabled

When enabled, the Java agent checks the HTTP request body to locate the Logout Request
Parameter you set.

Default: disabled

Property: com.sun.identity.agents.config.logout.introspect.enabled

Logout Entry URI

Specifies the URIs to return after successful logout and subsequent authentication. The key is the
web application name. The value is the URI to return.

To set a global logout entry URI for applications without other logout entry URIs defined, leave
the key empty and set the value to the global logout entry URI, /welcome.html.

To set a logout entry URI for a specific application, set the key to the name of the application, and
the value to the application logout entry URI, such as /myApp/welcome.html.

Default: not set

Property: com.sun.identity.agents.config.logout.entry.uri

Access Denied URI Processing Properties

Resource Access Denied URI

Specifies the URIs of custom pages to return when access is denied. The key is the web
application name. The value is the custom URI.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 116

To set a global custom access denied URI for applications without other custom access denied
URIs defined, leave the key empty and set the value to the global custom access denied URI, /
sample/accessdenied.html.

To set a custom access denied URI for a specific application, set the key to the name of the
application, and the value to the application access denied URI, such as /myApp/accessdenied.html.

Default: not set

Property: com.sun.identity.agents.config.access.denied.uri

Not-Enforced Processing Properties

Not-Enforced Compound Rules Separator

Specifies a delimiter for the not-enforced compound rules. The delimiter can be a single character
or a string. For example, setting the delimiter to && allows compound rules to be specified as:
GET 10.5.1.5 100.2.21.36 && /public/*
REGEX 10\.4\.3\.5 && [^/]+\/free.jpg

Default: |

Property:org.forgerock.openam.agents.config.notenforced.rule.compound.separator

Not-Enforced URI Processing Properties

For more information about not-enforced rule evaluation and caching, see "Not-Enforced Lists".

Not-Enforced URIs

Specifies a space-delimited list of URIs for which no authentication is required. For example:
/public/* /images/*

If you are using a local configuration file rather than the administration console, use the following
format when specifying not-enforced URIs, where n is a unique, incrementing integer:
com.sun.identity.agents.config.notenforced.uri[n]=Not enforced URI Rule

If the URI contains spaces or other reserved characters, you must percent-encode (often referred
to as URL encoding) them. For example, /my%20public%20app/.

To fine-tune the not-enforced URI list, the Java agent supports inverting rules, and using regular
expressions and wildcards. You can also filter based on HTTP methods, and cookie and header
values:

• Inverting Rules

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 117

Not-enforced URI rules can be inverted either by rule or by property:

• By rule. Invert any rule in the Not-Enforced URIs property by preceding it with the keyword
NOT, separated by a space (blank) character. In the following example, the agent will defer to
AM any request of a .jpg file in the /private URI:
NOT /private/*.jpg

• By property. Invert all the rules in the Not-Enforced URIs property by setting the Invert Not-
Enforced URIs property to true.

• Wildcards, Regular Expressions, HTTP Methods, Cookie and Header Values

For finer control over the filtering of not-enforced URI rules, you can create rules that use
wildcards or regular expressions, and that filter HTTP methods, cookie values, and headers.

• Wildcards

Not-Enforced URI rules support two types of wildcards:

• The * wildcard matches all characters except the question mark ? character. It cannot be
escaped, and spans multiple levels in a URI. For example:
/images/*
/*.jsp?locale=*

Multiple forward slashes do not match a single forward slash, so * matches mult/iple/dirs,
yet mult/*/dirs does not match mult/dirs.

• The -*- wildcard matches all characters except the forward slash / and the question mark ?
character. It cannot be escaped. Because it does not match the / character, the -*- wildcard
does not span multiple levels in a URI. For example:
/css/-*-

When using wildcards on not-enforced URI rules, consider the following points:

• The use of the * and -*- wildcards in the same rule is not supported. However, you can use
them in different rules in the same list. For example:
/css/-*-
/images/*

• Multiple wildcards in the query parameter section of a not-enforced URI rule will match the
parameters in any order that they might appear in a resource URI. For example:
/customers/*?*member_level=*location=*

The not-enforced URI rule above will apply to any resource URI that contains a member_level
and location query parameter, in any order. In this example, the following requests would
be not-enforced:

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 118

https://www.example.com/customers/default.jsp?member_level=silver&location=fr
https://www.example.com/customers/default.jsp?location=es&member_level=silver
https://www.example.com/customers/default.jsp?location=uk&vip=true&member_level=gold

If the parameters are not present, the agent falls back to evaluating the resource URI
against policies in AM, as usual.

• Trailing forward slashes are not recognized as part of a resource name. Therefore, /images//
and /images are equivalent.

For more information on wildcard usage, see Specifying Resource Patterns with Wildcards.

• Regular Expressions

To use regular expressions in a not-enforced URI rule, add the keyword REGEX followed by a
blank (space) character before the URI to match. For example:
REGEX https?://www\.example\.com/([^/])+/.*\.jpg

When using regular expressions in a not-enforced URI list, consider the following points:

• The use of 'classic' wildcards and regular expressions in the same rule is not supported.

• If an invalid regular expression is specified in a rule, the rule is dropped and an error
message will show in the logs.

• HTTP Methods

Specify not-enforced HTTP methods by adding one of the following keywords: GET, HEAD, POST,
PUT, PATCH, DELETE, OPTIONS, and TRACE.

By default, if no HTTP method is specified for a particular rule, all methods are not-enforced
for that rule. For example, the following rule does not enforce every supported HTTP method
for any file contained in /public:
/public/*

To specify which methods should not be enforced, add a comma-delimited list of methods
followed by a blank (space) character before the URL to match. For example:
GET,POST /public/*
GET,POST,PUT /examples/notenforced/*.jpg
GET,REGEX https?://www\.example\.com/([^/])+/.*\.jpg

Any method that is not specified will be enforced.

Methods can be inverted by adding an exclamation mark ! character in front of them. For
example, all methods but POST are not enforced in the following example:
!POST /public/*

https://backstage.forgerock.com/docs/am/7/authorization-guide/#policy-patterns-wildcards

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 119

Unrecognized keywords in a rule are ignored and do not invalidate the rest of the rule.

• Cookie Values

You can create not-enforced rules that only apply when the incoming request has a named
cookie, with a specified value.

The syntax for specifying rules that apply to cookies with a specified value is as follows:
COOKIE(Name/Value/Modifiers) Not Enforced URIs

Where:

Name

Specifies the name of the cookie to inspect for the specified value.

The name of the cookie is case-sensitive.

Value

Specifies a string to look for in the value field of the specified cookie.

Modifiers

Specify one or more of the following optional modifiers to alter the method for looking up
the value:

i

Perform a case-insensitive comparison.

r

Treat the string specified in Value as a regular expression.

For example, to allow access to all resources in /private/admin/images/ when there is a cookie
named login_result (case-sensitive) present on the request that has a value VALID, ignoring
case, specify a rule similar to the following:
COOKIE(login_result/VALID/i) /private/admin/images/*

You can combine cookie filters with other filters, such as HTTP methods.

For example, the following rule allows GET, POST, and PUT HTTP requests to HTML resources
in the /other/records/ folder, providing that there is a cookie named internal (case-sensitive)
present, and it has a value that matches the regular expression .*ID - that is; strings that end
with ID - ignoring case:
GET,POST,COOKIE(internal/.*ID/ri),PUT /other/records/*.html

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 120

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND
is applied, such that both expressions must match in order to apply. To apply the rules as a
logical OR, create two separate rules.

• Header Values

You can create not-enforced rules that only apply when the incoming request has a named
header, with a specified value.

The syntax for specifying rules that apply to headers with a specified value is as follows:
HEADER(Name/Value/Modifiers) Not Enforced URIs

Where:

Name

Specifies the name of the header to inspect for the specified value.

The name of the header is not case-sensitive.

Value

Specifies a string to look for in the value field of the specified header.

Modifiers

Specify one or more of the following optional modifiers to alter the method for looking up
the value:

i

Perform a case-insensitive string comparison.

r

Treat the string specified in Value as a regular expression.

For example, to allow access to all TXT files in /yearly/2019/ when there is a header named ID
present on the request that has a value validated, ignoring case, specify a rule similar to the
following:
HEADER(ID/validated/i) /yearly/2019/*.txt

You can combine cookie filters with other filters, such as HTTP methods.

For example, the following rule allows GET, POST, and PUT HTTP requests to HTML resources in
the /other/records/ folder, providing that there is a header named internal present, and it has
a value that matches the regular expression .*ID - that is; strings that end with ID - ignoring
case:

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 121

GET,POST,HEADER(internal/.*ID/ri),PUT /other/records/*.html

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND
is applied, such that both expressions must match in order to apply. To apply the rules as a
logical OR, create two separate rules.

• Compound Not-Enforced Rules

Compound not-enforced rules allow you to combine not-enforced URI and IP rules in a single
rule. They can be configured either in the Not-Enforced URIs or the Not-Enforced Client IP List
properties.

To write not-enforced URI and IP rules, follow the guidelines explained in Not-Enforced IP
Processing Properties and Not-Enforced URI Processing Properties.

The format for compound rules requires the IP rule or list of IP rules, a delimiter, by default
the horizontal line | character, and the URI rule or list of URI rules. Blank (space) characters
around the delimiter are optional. For example:
192.168.1.1-192.168.4.3 | /images/*

In the example, the agent will not enforce any HTTP requests coming from the ip range 192.168.
1.1-192.168.4.3 to any file (*) in the /images URI.

When configuring compound rules, consider the following points:

• Keywords, such as HTTP methods, NOT, and REGEX, are required at the beginning of the
compound rule, and affect both the IP and the URI rules. For example:
GET,POST 192.168.1.1-192.168.4.3 | /images/*

In the preceding example, the agent will not enforce GET and POST HTTP requests coming from
the ip range 192.168.1.1-192.168.4.3 to any file (*) in the /images URI.
NOT,!POST 192.168.1.* | /private/*

In the preceding example, the agent will defer to AM (NOT keyword) any request done to all
supported HTTP methods but POST (!) coming from any ip address in the 192.168.1 subnet to
any file (*) in the /private URI.

• When working with the REGEX keyword, ensure both sides of the rule can be parsed as a
regular expression. For example:
POST,REGEX 192\.168\.10\.(10|\d) && \/images\/([^/])+\.*\.jpg

Note that the delimiter in the previous example is &&. This is because the | character can
lead to invalid regular expressions. To configure a different delimiter, see the Not-Enforced
Compound Rules Multi-Value Separator property in Not-Enforced Processing Properties.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 122

• When dealing with compound rules, the agent caches hits and misses for each resource
accessed. IP and URI not-enforced lists have a property each to enable or disable their
caches; for compound rules, caching is enabled if either the IP or URI not-enforced cache is
enabled. The size of its cache has the size of the larger of the two IP or URI cache sizes.

For more information about not-enforced rule evaluation and caching, see "Not-Enforced
Lists".

• Encoding Internationalized Resource Identifiers (IRIs)

To match a resource that uses non-ASCII characters, percent-encode the resource when
creating the rule.

For example, to match resources under an IRI such as http://www.example.com/forstå, specify the
following percent-encoded rule:
/forst%C3%A5/*

Default: not set

Property: com.sun.identity.agents.config.notenforced.uri[n]

Invert Not-Enforced URIs

When set to true, enforce policy for the URIs and patterns specified in the Not-Enforced URIs
property instead of allowing access to them without authentication.

Note

ForgeRock recommends using the NOT keyword to invert specific rules in the Not-Enforced URI list, instead
of inverting all rules by setting the Invert Not-Enforced URIs property to true.

Default: false

Property: com.sun.identity.agents.config.notenforced.uri.invert

Not-Enforced URIs Cache Enabled

When set to true, the agent caches evaluation (hits and misses) of the not-enforced URI list. When
configuring many rules (in the hundreds) this setting should be enabled.

For more information about not-enforced caching, see "Not-Enforced Lists".

Default: true

Property: com.sun.identity.agents.config.notenforced.uri.cache.enable

Not-Enforced URIs Cache Size

When caching is enabled, this limits the number of not-enforced URIs cached.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 123

Default: 10000

Property: com.sun.identity.agents.config.notenforced.uri.cache.size

Refresh Session Idle Time

When set to true, the agent resets the CTS-based session idle time when granting access to a not-
enforced URI, prolonging the time before the user must authenticate again. This setting has no
effect on users with client-based (stateless) sessions.

Default: false

Property: com.sun.identity.agents.config.notenforced.refresh.session.idletime

Not-Enforced IP Processing Properties

For more information about not-enforced rule evaluation and caching, see "Not-Enforced Lists".

Not-Enforced Client List

Specifies a space-delimited list of IP addresses or network CIDR notation for which no
authentication is required.

Supported values are IPV4 and IPV6 addresses, IPV4 and IPV6 ranges of addresses delimited by
the - character, and network ranges specified in CIDR notation. For example:
192.168.1.0/24 192.168.100.0/24
2001:5c0:9168:0:0:0:0:2/128
192.168.1.1-192.168.4.3
2001:5c0:9168:0:0:0:0:1-2001:5c0:9168:0:0:0:0:2

If you are using a local configuration file rather than the administration console, use the following
format when specifying not-enforced client lists, where n is a unique, incrementing integer:
com.sun.identity.agents.config.notenforced.ip[n]=Not enforced IP Rule

To fine-tune the not-enforced IP list, the Java agent supports inverting rules, using regular
expressions and wildcards, and specifying HTTP methods:

• Inverting Rules

Not-enforced IP rules can be inverted either by rule or by property:

• By rule. Invert any rule in the Not-Enforced Client IP List property by preceding it with the
keyword NOT, separated by a space (blank) character. In the following example, the agent will
defer to AM any request from the network specified by the 192.168.1.0/24 CIDR notation:
NOT 192.168.1.0/24

• By property. Invert all the rules in the Not-Enforced Client IP List property by setting the Not-
Enforced IP Invert List to true.

• Wildcards, Regular Expressions, and HTTP Methods

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 124

For finer control over the filtering of not-enforced IP rules, use wildcards, regular expressions,
HTTP methods, cookie values, and headers:

• Wildcards

The * wildcard matches all characters except the question mark ? character, and cannot be
escaped. For example:
192.168.*

For more information on wildcard usage, see Specifying Resource Patterns with Wildcards.

• Regular Expressions

To use regular expressions in a not-enforced IP rule, add the keyword REGEX followed by a
blank (space) character before the URI to match. For example:
REGEX 192\.168\.10\.\d+

When using regular expressions in a not-enforced IP list, consider the following points:

• The use of wildcards and regular expressions in the same rule is not supported.

• The use of netmask CIDR notation or ip address ranges and regular expressions is not
supported. However, you can create a regular expression that matches a range of IP
addresses, such as:
REGEX 192\.168\.10\.(10|\d)

• If an invalid regular expression is specified in a rule, the rule is dropped and an error
message will show in the logs.

• HTTP Methods

Specify not-enforced HTTP methods by adding one of the following keywords: GET,HEAD, POST,
PUT, PATCH, DELETE, OPTIONS, and TRACE.

By default, if no HTTP method is specified for a particular rule, all methods are not-enforced
for that rule. For example, the following rule does not enforce every supported HTTP method
for the ips specified by 192.168.10.*:
192.168.10.*

To specify which methods should not be not-enforced, add a comma-delimited list of methods
followed by a blank (space) character before the URL to match. For example:
NOT,GET,REGEX 192\.168\.10\.\d+
POST 192.168.10.*
GET 192.168.10.1-192.168.10.254 192.168.0.1
POST,PUT 192.168.1.0/24

../../../am/6.5/authorization-guide/#policy-patterns-wildcards

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 125

Any method that is not specified will be enforced.

Methods can be inverted by adding an exclamation point ! character in front of them. For
example, all methods but POST are enforced in the following example:
!POST 192.168.1.0/24

Unrecognized keywords in a rule are ignored and do not invalidate the rest of the rule.

• Cookie Values

You can create not-enforced rules that only apply when the incoming request has a named
cookie, with a specified value.

The syntax for specifying rules that apply to cookies with a specified value is as follows:
COOKIE(Name/Value/Modifiers) Not Enforced IPs

Where:

Name

Specifies the name of the cookie to inspect for the specified value.

The name of the cookie is case-sensitive.

Value

Specifies a string to look for in the value field of the specified cookie.

Modifiers

Specify one or more of the following optional modifiers to alter the method for looking up
the value:

i

Perform a case-insensitive comparison.

r

Treat the string specified in Value as a regular expression.

For example, to allow access from 192.168.* when there is a cookie named login_result (case-
sensitive) present on the request that has a value VALID, ignoring case, specify a rule similar to
the following:
COOKIE(login_result/VALID/i) 192.168.*

You can combine cookie filters with other filters, such as HTTP methods.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 126

For example, the following rule allows GET, POST, and PUT HTTP requests from the client IP
range 192.168.*, providing that there is a cookie named internal (case-sensitive) present, and
it has a value that matches the regular expression .*ID - that is; strings that end with ID -
ignoring case:
GET,POST,COOKIE(internal/.*ID/ri),PUT 192.168.*

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND
is applied, such that both expressions must match in order to apply. To apply the rules as a
logical OR, create two separate rules.

• Header Values

You can create not-enforced rules that only apply when the incoming request has a named
header, with a specified value.

The syntax for specifying rules that apply to headers with a specified value is as follows:
HEADER(Name/Value/Modifiers) Not Enforced IPs

Where:

Name

Specifies the name of the header to inspect for the specified value.

The name of the header is not case-sensitive.

Value

Specifies a string to look for in the value field of the specified header.

Modifiers

Specify one or more of the following optional modifiers to alter the method for looking up
the value:

i

Perform a case-insensitive string comparison.

r

Treat the string specified in Value as a regular expression.

For example, to allow access to the IP range 192.168.* when there is a header named ID
present on the request that has a value validated, ignoring case, specify a rule similar to the
following:
HEADER(ID/validated/i) 192.168.*

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 127

You can combine cookie filters with other filters, such as HTTP methods.

For example, the following rule allows GET, POST, and PUT HTTP requests from the IP address
range 192.168.*, providing that there is a header named internal present, and it has a value
that matches the regular expression .*ID - that is; strings that end with ID - ignoring case:
GET,POST,HEADER(internal/.*ID/ri),PUT 192.168.*

Note that combining a HEADER and COOKIE expression in the same rule implies a logical AND
is applied, such that both expressions must match in order to apply. To apply the rules as a
logical OR, create two separate rules.

• Compound Not-Enforced Rules

Compound not-enforced rules allow you to combine not-enforced URI and IP rules in a single
rule. They can be configured either in the Not-Enforced URIs or the Not-Enforced Client IP List
properties.

To write not-enforced URI and IP rules, follow the guidelines explained in Not-Enforced IP
Processing Properties and Not-Enforced URI Processing Properties.

The format for compound rules requires the IP rule or list of IP rules, a delimiter, by default
the horizontal line | character, and the URI rule or list of URI rules. Blank (space) characters
around the delimiter are optional. For example:
192.168.1.1-192.168.4.3 | /images/*

In the example, the agent will not enforce any HTTP requests coming from the ip range 192.168.
1.1-192.168.4.3 to any file (*) in the /images URI.

When configuring compound rules, consider the following points:

• Keywords, such as HTTP methods, NOT, and REGEX, are required at the beginning of the
compound rule, and affect both the IP and the URI rules. For example:
GET,POST 192.168.1.1-192.168.4.3 | /images/*

In the preceding example, the agent will not enforce GET and POST HTTP requests coming from
the ip range 192.168.1.1-192.168.4.3 to any file (*) in the /images URI.
NOT,!POST 192.168.1.* | /private/*

In the preceding example, the agent will defer to AM (NOT keyword) any request done to all
supported HTTP methods but POST (!) coming from any ip address in the 192.168.1 subnet to
any file (*) in the /private URI.

• When working with the REGEX keyword, ensure both sides of the rule can be parsed as a
regular expression. For example:
POST,REGEX 192\.168\.10\.(10|\d) && \/images\/([^/])+\.*\.jpg

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 128

Note that the delimiter in the previous example is &&. This is because the | character can
lead to invalid regular expressions. To configure a different delimiter, see the Not-Enforced
Compound Rules Multi-Value Separator property in Not-Enforced Processing Properties.

• When dealing with compound rules, the agent caches hits and misses for each resource
accessed. IP and URI not-enforced lists have a property each to enable or disable their
caches; for compound rules, caching is enabled if either the IP or URI not-enforced cache is
enabled. The size of its cache has the size of the larger of the two IP or URI cache sizes.

For more information about not-enforced rule evaluation and caching, see "Not-Enforced
Lists".

• Encoding Internationalized Resource Identifiers (IRIs)

To match a resource that uses non-ASCII characters, percent-encode the resource when
creating the rule.

For example, to match resources under an IRI such as http://www.example.com/forstå, specify the
following percent-encoded rule:
/forst%C3%A5/*

Default: not set

Property: com.sun.identity.agents.config.notenforced.ip[n]

Not-Enforced IP Invert List

When set to true, enforce policy for the IPs specified in the Not-Enforced Client IP List property
instead of allowing access to them without authentication.

Note

ForgeRock recommends using the NOT keyword to invert specific rules in the Not-Enforced Client IP List,
instead of inverting all the rules by setting the Not-Enforced IP Invert List property to true.

Default: false

Property: com.sun.identity.agents.config.notenforced.ip.invert

Not-Enforced IP Cache Flag

When set to true, the agent caches evaluation (hits and misses) of the not-enforced IP list. When
configuring many rules (in the hundreds), this setting must be enabled.

For more information about not-enforced caching, see "Not-Enforced Lists".

Default:true

Property: com.sun.identity.agents.config.notenforced.ip.cache.enable

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 129

Not-Enforced IP Cache Size

When caching is enabled, this limits the number of not-enforced addresses cached.

Default: 10000

Property: com.sun.identity.agents.config.notenforced.ip.cache.size

Profile Attributes Processing Properties

Profile Attribute Fetch Mode

When set to HTTP_COOKIE or HTTP_HEADER, profile attributes are introduced into the cookie or the
headers, respectively. When set to REQUEST_ATTRIBUTE, profile attributes are part of the HTTP
request.

Property: com.sun.identity.agents.config.profile.attribute.fetch.mode

Profile Attribute Mapping

Maps the profile attributes to HTTP headers for the currently authenticated user. Map Keys are
attribute names, and Map Values are HTTP header names. The user profile can be stored in LDAP
or any other arbitrary data store.

To populate the value of profile attribute CN under CUSTOM-Common-Name: enter CN in the Map Key
field, and enter CUSTOM-Common-Name in the Corresponding Map Value field. This corresponds to com.
sun.identity.agents.config.profile.attribute.mapping[cn]=CUSTOM-Common-Name.

In most cases, in a destination application where an HTTP header name shows up as a request
header, it is prefixed by HTTP_, lower case letters become upper case, and hyphens (-) become
underscores (_). For example, common-name becomes HTTP_COMMON_NAME.

Property: com.sun.identity.agents.config.profile.attribute.mapping

Response Attributes Processing Properties

Response Attribute Fetch Mode

When set to HTTP_COOKIE or HTTP_HEADER, response attributes are introduced into the cookie or the
headers, respectively. When set to REQUEST_ATTRIBUTE, response attributes are part of the HTTP
request.

Property: com.sun.identity.agents.config.response.attribute.fetch.mode

Response Attribute Mapping

Maps the policy response attributes to HTTP headers for the currently authenticated user. The
response attribute is the attribute in the policy response to be fetched.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 130

To populate the value of response attribute uid under CUSTOM-User-Name: enter uid in the Map Key
field, and enter CUSTOM-User-Name in the Corresponding Map Value field. This corresponds to com.
sun.identity.agents.config.response.attribute.mapping[uid]=Custom-User-Name.

In most cases, in a destination application where an HTTP header name shows up as a request
header, it is prefixed by HTTP_, lower case letters become upper case, and hyphens (-) become
underscores (_). For example, response-attr-one becomes HTTP_RESPONSE_ATTR_ONE.

Property: com.sun.identity.agents.config.response.attribute.mapping

Common Attributes Fetching Processing Properties

Cookie Separator Character

Specifies the separator for multiple values of the same attribute when it is set as a cookie.

Default: |

Property: com.sun.identity.agents.config.attribute.cookie.separator

Fetch Attribute Date Format

Specifies the java.text.SimpleDateFormat of date attribute values used when an attribute is set in an
HTTP header.

Default: EEE, d MMM yyyy hh:mm:ss z.

Property: com.sun.identity.agents.config.attribute.date.format

Attribute Cookie Encode

When enabled, attribute values are URL-encoded before being set as a cookie.

Default: true

Property: com.sun.identity.agents.config.attribute.cookie.encode

Session Attributes Processing Properties

Session Attribute Fetch Mode

When set to HTTP_COOKIE or HTTP_HEADER, session attributes are introduced into the cookie or the
headers, respectively. When set to REQUEST_ATTRIBUTE, session attributes are part of the HTTP
request.

Property: com.sun.identity.agents.config.session.attribute.fetch.mode

Session Attribute Mapping

Maps session attributes to HTTP headers for the currently authenticated user. The session
attribute is the attribute in the session to be fetched.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 131

To populate the value of session attribute UserToken under CUSTOM-userid: enter UserToken in the Map
Key field, and enter CUSTOM-userid in the Corresponding Map Value field. This corresponds to com.
sun.identity.agents.config.session.attribute.mapping[UserToken]=CUSTOM-userid.

In most cases, in a destination application where an HTTP header name shows up as a request
header, it is prefixed by HTTP_, lower case letters become upper case, and hyphens (-) become
underscores (_). For example, success-url becomes HTTP_SUCCESS_URL.

Property: com.sun.identity.agents.config.session.attribute.mapping

Privilege Attributes Processing Properties

 The following properties do not apply to Java Agents 5.6, although they may appear in the AM
console:

Default Privileged Attribute

Property: com.sun.identity.agents.config.default.privileged.attribute

Privileged Attribute Type

Property: com.sun.identity.agents.config.privileged.attribute.type

Privileged Attributes To Lower Case

Property: com.sun.identity.agents.config.privileged.attribute.tolowercase

Privileged Session Attribute

Property: com.sun.identity.agents.config.privileged.session.attribute

Enable Privileged Attribute Mapping

Property: com.sun.identity.agents.config.privileged.attribute.mapping.enable

Privileged Attribute Mapping

Property: com.sun.identity.agents.config.privileged.attribute.mapping

Custom Authentication Processing Properties

 The following properties do not apply to Java Agents 5.6, although they may appear in the AM
console:

Custom Authentication Handler

Property: com.sun.identity.agents.config.auth.handler

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 132

Custom Logout Handler

Property: com.sun.identity.agents.config.logout.handler

Custom Verification Handler

Property: com.sun.identity.agents.config.verification.handler

Continuous Security Properties

For more information about continuous security, see "Continuous Security".

Continuous Security Cookies

Maps cookie values available in inbound resource requests to entries in the environmental
conditions map, which Java agents send to AM during policy evaluation.

This property has the format [cookie_name]=map_entry_name, where:

• [cookie_name] specifies the name of the cookie in the inbound request.

• map_entry_name specifies the name of the entry within the environmental conditions map that
contains the value of cookie_name.

Example:

org.forgerock.openam.agents.config.continuous.security.cookies[trackingcookie1]=myCookieEntry

Java agents add entries from both of the continuous security properties into the environmental
conditions map, which AM's authorization framework accesses during policy evaluation.

Use server-side authorization scripts to:

• Access the map's contents

• Write scripted conditions based on cookies and headers in the request

For more information about server-side authorization scripts in AM, see the ForgeRock Access
Management Authorization Guide.

When you specify continuous security properties, Java agents generate environmental condition
entries in the map as follows:

Key Value
requestIp a Contains the inbound request's IP address. The Java agent determines the IP as

follows:

• If the com.sun.identity.agents.config.client.ip.header property is
configured, the agent extracts the IP address from the header.

../../../am/6.5/authorization-guide#sec-scripted-policy-condition
../../../am/6.5/authorization-guide#sec-scripted-policy-condition

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 133

Key Value
• If the com.sun.identity.agents.config.client.ip.header property is not

configured, the agent uses the HttpServletRequest.getRemoteAddr Java
function to determine the IP address.

requestDNSName b Contains the inbound request's host name. The Java agent determines the host
name as follows:

• If the com.sun.identity.agents.config.client.hostname.header property is
configured, the agent extracts the host name from the header.

• If the com.sun.identity.agents.config.client.hostname.header property is
not configured, the agent uses the HttpServletRequest.getRemoteHost Java
function to determine the host name.

variable_name c Contains an array of cookie or header values.
aThe requestIp entry is created in the map regardless of how the continuous security properties are configured.
bThe requestDNSName entry is created in the map regardless of how the continuous security properties are configured.
c There may be as many variable_name entries as values specified in the continuous security properties.

Consider the following example:

org.forgerock.openam.agents.config.continuous.security.cookies[ssid]=mySsid
org.forgerock.openam.agents.config.continuous.security.headers[User-Agent]=myUser-Agent

Assuming the incoming request contains an ssid cookie and an User-Agent header, the
environmental conditions map would contain the following variables:

• requestIp, containing the IP address of the client. For example, 192.16.8.0.1.

• requestDNSName, containing the host name of the client. For example, client.example.com.

• mySsid, containing the value of the ssid cookie. For example, 77xe99f4zqi1l99z.

• myUser-Agent, containing the value of the from header. For example, Mozilla/5.0 (Windows NT 6.3;
 Trident/7.0; rv:11.0) like Gecko.

Default: not set

Property: org.forgerock.openam.agents.config.continuous.security.cookies[cookie_name]=map_entry_name

Continuous Security Headers

Maps header values in inbound resource requests to entries in the environmental conditions map,
which Java agents send to AM during policy evaluation.

This property has the format [header_name]=map_entry_name, where:

• [header_name] specifies the name of the header in the inbound request.

• map_entry_name specifies the name of the entry within the environmental conditions map that
contains the value of header_name.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 134

Example:

org.forgerock.openam.agents.config.continuous.security.headers[User-Agent]=myUserAgentHeaderEntry

Java agents add entries from both of the continuous security properties into the environmental
conditions map, which AM's authorization framework accesses during policy evaluation.

Use server-side authorization scripts to:

• Access the map's contents

• Write scripted conditions based on cookies and headers in the request

For more information about server-side authorization scripts in AM, see the ForgeRock Access
Management Authorization Guide.

When you specify continuous security properties, Java agents generate environmental condition
entries in the map as follows:

Key Value
requestIp a Contains the inbound request's IP address. The Java agent determines the IP as

follows:

• If the com.sun.identity.agents.config.client.ip.header property is
configured, the agent extracts the IP address from the header.

• If the com.sun.identity.agents.config.client.ip.header property is not
configured, the agent uses the HttpServletRequest.getRemoteAddr Java
function to determine the IP address.

requestDNSName b Contains the inbound request's host name. The Java agent determines the host
name as follows:

• If the com.sun.identity.agents.config.client.hostname.header property is
configured, the agent extracts the host name from the header.

• If the com.sun.identity.agents.config.client.hostname.header property is
not configured, the agent uses the HttpServletRequest.getRemoteHost Java
function to determine the host name.

variable_name c Contains an array of cookie or header values.
aThe requestIp entry is created in the map regardless of how the continuous security properties are configured.
bThe requestDNSName entry is created in the map regardless of how the continuous security properties are configured.
c There may be as many variable_name entries as values specified in the continuous security properties.

Consider the following example:

org.forgerock.openam.agents.config.continuous.security.cookies[ssid]=mySsid
org.forgerock.openam.agents.config.continuous.security.headers[User-Agent]=myUser-Agent

../../../am/6.5/authorization-guide#sec-scripted-policy-condition
../../../am/6.5/authorization-guide#sec-scripted-policy-condition

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 135

Assuming the incoming request contains an ssid cookie and an User-Agent header, the
environmental conditions map would contain the following variables:

• requestIp, containing the IP address of the client. For example, 192.16.8.0.1.

• requestDNSName, containing the host name of the client. For example, client.example.com.

• mySsid, containing the value of the ssid cookie. For example, 77xe99f4zqi1l99z.

• myUser-Agent, containing the value of the from header. For example, Mozilla/5.0 (Windows NT 6.3;
 Trident/7.0; rv:11.0) like Gecko.

Default: not set

Property: org.forgerock.openam.agents.config.continuous.security.headers[header_name]=map_entry_name

Query Parameter Handling Properties

For more information about how the Java agent handles query parameters, see "Query Parameter
Handling".

Remove Query Parameters (Not yet in the AM console)4

Specifies a list of query parameters to be removed from a URL for policy decision and caching
purposes. The property has the format [Domain/path] | parameter[,parameter...] with no spaces
between values. Specify values as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 136

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• parameter[,parameter...]

Specifies a comma-separated list of query parameters to remove from the incoming request
URL.

Consider the following constraints when constructing the list of parameters:

• Add a comma (,) character at the beginning or the end of the list to remove all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Add the asterisk (*) character to the list to remove all parameters, including unnamed ones.

The remaining parameters (those that do not match the list of parameters) are sorted
alphabetically.

Examples:
org.forgerock.openam.agents.config.conditional.unwanted.http.url.params[0]=myapp.example.com/
customers|location,lang
org.forgerock.openam.agents.config.conditional.unwanted.http.url.params[1]=example.com/customers|*

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
lang, will be cached by the agent as http://myapp.example.com/customers?area=1343456&country=uk, where
both lang and the unnamed parameter are removed and the rest of the parameters are sorted
alphabetically.

Property: org.forgerock.openam.agents.config.conditional.unwanted.http.url.params[n]

Hot-swap: Yes

Regular Expression Remove Query Parameters (Not yet in the AM console)4

Specifies a list of regular expressions the agent uses to match query parameters to be removed
from a URL for policy decision and caching purposes. The property has the format [Domain/path]
 | regular_expression[,regular_expression...] with no spaces between values. Specify values as
follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 137

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• regular_expression[,regular_expression...]

Specifies a comma-separated list of regular expressions the agent uses to match query
parameters to be removed from the incoming request URL.

Consider the following constraints when constructing your list of regular expressions:

• Add a comma (,) character at the beginning or the end of the list to remove all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Consider creating multiple simple regular expressions instead of a single complicated one.

The remaining parameters (those that do not match the list of parameters) are sorted
alphabetically.

Examples:
org.forgerock.openam.agents.config.conditional.unwanted.http.url.params.regexp[0]=myapp.example.com|
b.*,gp(a|p|s),
org.forgerock.openam.agents.config.conditional.unwanted.http.url.params.regexp[1]=|.*

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 138

coun.*?, will be cached by the agent as http://myapp.example.com/customers?=bristol&lang=en_GB, where
both country and unnamed parameter are removed and the remaining parameters are sorted
alphabetically.

Property: org.forgerock.openam.agents.config.conditional.unwanted.http.url.params.regexp[n]

Hot-swap: Yes

Retain Query Parameters (Not yet in the AM console)4

Specifies a list of query parameters to be retained for policy decision and caching purposes. The
property has the format [Domain/path] | parameter[,parameter...] with no spaces between values.
Specify values as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• parameter[,parameter...]

Specifies a comma-separated list of query parameters to retain from the incoming request URL.

Consider the following constraints when constructing the list of parameters:

Reference
Configuring Application Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 139

• Add a comma (,) character at the beginning or the end of the list to retain all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Add the asterisk (*) character to the list to retain all parameters, including unnamed ones.

The remaining parameters (those that match the list of parameters) are sorted alphabetically.

Examples:
org.forgerock.openam.agents.config.conditional.wanted.http.url.params[0]=myapp.example.com/news|area
org.forgerock.openam.agents.config.conditional.wanted.http.url.params[1]=example.com/news|
area,country,location,

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
lang, will be cached by the agent as http://myapp.example.com/customers?=bristol&lang=en_GB, where
both lang and the unnamed parameter are retained and sorted alphabetically.

Property: org.forgerock.openam.agents.config.conditional.wanted.http.url.params[n]

Hot-swap: Yes

Regular Expression Retain Query Parameters (Not yet in the AM console)4

Specifies a list of regular expressions the agent uses to match query parameters to be retained
for policy decision and caching purposes. The property has the format [Domain/path] | regular_
expression[,regular_expression...] with no spaces between values. Specify values as follows:

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

Reference
Configuring SSO Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 140

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• regular_expression[,regular_expression...]

Specifies a comma-separated list of regular expressions the agent uses to match query
parameters to be retained from the incoming request URL.

Consider the following constraints when constructing your list of regular expressions:

• Add a comma (,) character at the beginning or the end of the list to retain all unnamed
parameters. For example, myapp.example.com/customers|,lang would match both lang and any
unnamed parameters.

• Consider creating multiple simple regular expressions instead of a single complicated one.

The remaining parameters (those that match the list of parameters) are sorted alphabetically.

Examples:
org.forgerock.openam.agents.config.conditional.wanted.http.url.params.regexp[0]=example.com/market|
regist.*
org.forgerock.openam.agents.config.conditional.wanted.http.url.params.regexp[1]=myapp.example.com/
register|,.*

For example, an incoming URL request such as http://myapp.example.com/customers?
country=uk&=bristol&lang=en_GB&area=1343456 that matches a rule such as myapp.example.com/customers|,
coun.*?, will be cached by the agent as http://myapp.example.com/customers?=bristol,country=uk, where
both country and the unnamed parameter are retained and sorted alphabetically.

Property: org.forgerock.openam.agents.config.conditional.wanted.http.url.params.regexp[n]

Hot-swap: Yes

Configuring SSO Properties

This section covers SSO Java agent properties. After creating the agent profile, you access these
properties in the AM console under Realms > Realm Name > Applications > Agents > Java > Agent
Name > SSO.

This section describes the following property groups:

Reference
Configuring SSO Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 141

• Cookie Properties

• Caching Properties

• Cross-Domain SSO Properties

• Cookie Reset Properties

Cookie Properties

Cookie Name

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.iplanet.am.cookie.name

HTTPOnly Cookie (Not yet in the AM console)4

Agents with this property set to true mark cookies as HTTPOnly to prevent scripts and third-party
programs from accessing the cookies.

Default: true

Property: com.sun.identity.cookie.httponly

Caching Properties

SSO Cache Enable

 This property does not apply to Java Agents 5.6, although it may appear in the AM console

Property: com.sun.identity.agents.config.amsso.cache.enable

Cross-Domain SSO Properties

Cross-Domain SSO

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

CDSSO is always enabled.

Property: com.sun.identity.agents.config.cdsso.enable

CDSSO Redirect URI

Specifies a URI the Java agent uses to process CDSSO requests.

Default: /agent_URI/sunwCDSSORedirectURI

Property: com.sun.identity.agents.config.cdsso.redirect.uri

Reference
Configuring SSO Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 142

CDSSO Servlet URL

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.cdsso.cdcservlet.url

CDSSO Clock Skew

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: >com.sun.identity.agents.config.cdsso.clock.skew

CDSSO Trusted ID Provider

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.cdsso.trusted.id.provider

CDSSO Secure Enable

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.cdsso.secure.enable

CDSSO Domain List

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.cdsso.domain[n]

Cookie Reset Properties

Cookie Reset

When enabled, Java agents reset cookies in the response before redirecting to authentication.

Default: false

Property: com.sun.identity.agents.config.cookie.reset.enable

Cookie Reset Name List

List of cookies to reset if Cookie Reset is enabled.

Default: not set

Property: com.sun.identity.agents.config.cookie.reset.name

Cookie Reset Domain Map

Specifies how names from the Cookie Reset Name List correspond to cookie domain values when
the cookie is reset.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 143

Default: not set

Property: com.sun.identity.agents.config.cookie.reset.domain

Cookie Reset Path Map

Specifies how names from the Cookie Reset Name List correspond to cookie paths when the
cookie is reset.

Default: not set

Property: com.sun.identity.agents.config.cookie.reset.path

Configuring AM Services Properties

This section covers AM services' Java agent properties. After creating the agent profile, you access
these properties in the AM console under Realms > Realm Name > Applications > Agents > Java >
Agent Name > AM Services.

This section describes the following property groups:

• Login URL Properties

• Logout URL Properties

• Authentication Service Properties

• Policy Client Service Properties

• User Data Cache Service Properties

• Session Client Service Properties

Login URL Properties

For more information, see "Redirection and Conditional Redirection".

Allow Custom Login Mode (Not yet in the AM console)4

Specifies whether the agent should use the default or the custom login mode when redirecting
unauthenticated users.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

• true. Custom login redirection mode enabled (Non-OIDC compliant login flow). Use with the
following properties:

• OpenAM Login URL (com.sun.identity.agents.config.login.url)

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 144

• org.forgerock.openam.agents.config.conditional.custom.login.url

• false. Default login redirection mode enabled (OIDC compliant login flow). Use with the
following properties:

• OpenAM Conditional Login URL (org.forgerock.openam.agents.config.conditional.login.url)

Property: org.forgerock.openam.agents.config.allow.custom.login

Default: false

OpenAM Login URL

When configured, specifies the URL of a custom login page to which the agent redirects incoming
users without sufficient credentials so that they can authenticate.

Important

You must add the custom login page to either the not-enforced IP or URI lists.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

The login URL has the format URL[?realm=realm_name?parameter1=value1&...], where:

• URL is the custom login page to where the agent redirects the unauthenticated user.

• [?realm=realm_name¶meter1=value1&...] specifies optional parameters that the agent will pass to
the custom login page, for example, the AM realm where the user should log to.

You do not need to specify the realm in the login URL if any of the following conditions is true:

• The custom login page itself sets the realm parameter, for example, because it lets the
user choose it. In this case, you must ensure the custom login page always returns a realm
parameter to the agent.

• The realm that the agent is logging the user into has DNS aliases configured in AM.

AM logs the user into the realm whose DNS alias matches the incoming request URL. For
example, an inbound request from the http://marketplace.example.com URL logs in the marketplace
realm if the realm alias is set to marketplace.example.com.

• The users should always log in to the Top Level Realm.

Even if you decide to specify the realm by default, this parameter can be overwritten by the
custom login page if, for example, the user can choose the realm for authentication.

You can specify as many parameters your custom login pages require.

Example:

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 145

https://login.example.com/login.jsp?realm=marketplace¶m1=value1

In some versions of AM you may be able to configure more than one value for this property, but
only the first value is honored.

Important

When the agent redirects the user to the custom login page, it appends a goto parameter (as configured
in the com.sun.identity.agents.config.redirect.param property) with the agent's CDSSO endpoint and a
nonce parameter.

The following is an example of a redirection from the agent to a custom login page:
http://login.example.com/login.jsp?realm=marketplace¶m1=value1&goto=http
%3A%2F%2Fagent.example.com%3A8020%2Flogin%2Fendpoint%3Fnonce
%3Df2fc384a07b7668e05fc6c26c01edf1bac8a3b55%26realm%3Dmarketplace

Note that the goto parameter is URL encoded. If the realm parameter is configured in the redirection rule,
it is also appended to the goto parameter.

Once the user has logged in, the custom login page must redirect back to the agent. To avoid redirection
loops and login failures, consider the following constraints:

• You must ensure that the custom login page redirects back to the agent using the URL contained in the
goto parameter, and that the request contains the nonce parameter.

• You must set the realm parameter in the redirection request to the agent if the users should not log in to
AM's Top Level Realm.

For example, you could use the realm specified in the redirection request from the agent to the custom
login pages (if configured in the conditional redirection rule), or the custom login page can let the user
chose to which realm authenticate to.

The following is an example of a redirection from a custom login page to the agent:
http://agent.example.com:8020/login/endpoint?
nonce=f2fc384a07b7668e05fc6c26c01edf1bac8a3b55&realm=marketplace

There is one exception; if the realm where the agent should log the user in to has DNS alias configured,
AM will log in the user to the realm whose DNS alias matches the incoming request URL. For example,
an inbound request from the http://marketplace.example.com URL will be logged in to the marketplace
realm if the realm alias is set to marketplace.example.com, whether there is a realm parameter or not.

Default: AM_URL/AM_URI/UI/Login

Property: com.sun.identity.agents.config.login.url

Hot-swap: Yes

OpenAM Conditional Login URL

Conditionally redirect users based on the incoming request header or URL. If the incoming
request URL matches a specified request header or domain name, the Java agent redirects the
request to an specific URL. That specific URL can be an AM instance, site, or a different website.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 146

Important

When redirecting incoming login requests to a custom login page, you must add it to either the not-
enforced IP or URI lists.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

If the FQDN Check property (com.sun.identity.agents.config.fqdn.check.enable) is enabled, the Java
agent iterates through the list of URLs until it finds an appropriate redirect URL that matches the
FQDN check values. Otherwise, the Java agent redirects the user to the URL configured in the
conditional redirect rules.

Conditional redirects have the format [Request-Header:value|Domain/path]|[URL][?
realm=value&module=value2&service=value3], with no spaces between values. Specify values in
conditional redirects as follows:

• Request-Header

Specifies the HTTP request header, which can take the following format:

• A specific case-insensitive HTTP request header, followed by a colon ':', then its value without
line breaks. For example, X-Source:LAN.

If the header is defined but with no value, then any value is acceptable. For example, X-
realm1:.

The agent processes any rule in alphabetical order starting with header name, then header
values in alphabetical order, and then request headers with zero-length values (i.e., no value).

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 147

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• URL

Specifies the URL to which redirect incoming login requests. The URL may be an AM instance,
an AM site, or a website other than AM.

When redirecting to AM, specify the URL of an AM instance or site in the format
protocol://FQDN[:port]/URI/oauth2/authorize, where the port is optional if it is 80 or 443. For
example, https://openam.example.com/openam/oauth2/authorize.

When redirecting to a website other than AM, specify a URL in the format
protocol://FQDN[:port]/URI, where the port is optional if it is 80 or 443. For example, https://
myweb.example.com/authApp.

If the redirection URL is not specified, the Java agent redirects the request to the AM instance
or site specified by the following bootstrap properties:
com.iplanet.am.server.protocol://com.iplanet.am.server.host:com.iplanet.am.server.port/
com.iplanet.am.services.deploymentDescriptor

• ?realm=value

Specifies the AM realm into which the agent logs users. For example, ?realm=marketplace.

You do not need to specify the realm in the login URL if any of the following conditions is true:

• The custom login page itself sets the realm parameter, for example, because it lets the
user choose it. In this case, you must ensure the custom login page always returns a realm
parameter to the agent.

• The realm that the agent is logging the user into has DNS aliases configured in AM.

AM logs the user into the realm whose DNS alias matches the incoming request URL. For
example, an inbound request from the http://marketplace.example.com URL logs in the marketplace
realm if the realm alias is set to marketplace.example.com.

• The users should always log in to the Top Level Realm.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 148

Even if you decide to specify the realm by default, this parameter can be overwritten by the
custom login page if, for example, the user can choose the realm for authentication.

• &module=value2&service=value3¶m1=value1...

Specifies parameters that can be added to the URL, such as:

• module, which specifies the authentication module the user authenticates against. For
example, ?module=myAuthModule.

• service, which specifies an authentication chain or tree the user authenticates against. For
example, ?service=myAuthChain.

• Any other parameters your custom login pages require.

Chain parameters with an & character, for example, realm=value&service=value.

Important

Java agent requests contain a number of parameters required by AM's oauth2/authorize endpoint. You
must ensure that the custom login page redirects back to the agent using the URL contained in the goto
parameter, and that the request contains the following parameters:

• response_type=id_token

• scope=openid

• response_mode=form_post

• nonce=one_off_code

• client_id=agent_profile_name

• agent_realm=agent_realm_name

• redirect_uri=agent_CDSSO_endpoint

The following is an example of the call that should reach AM:

https://openam.example.com:443/openam/oauth2/authorize
?scope=openid
&response_type=id_token
&agent_realm=%2F
&redirect_uri=http%3A%2F%2Fopenam.example.com%3A9080%2Ffrqa%2FsunwCDSSORedirectURI
&nonce=sf2fc384a07b7668e05fc6c26c01edf1bac8a3b55
&client_id=myJEEAgent
&response_mode=form_post

Failure to maintain these parameters when redirecting to AM may cause unexpected problems, such as
redirect loops.

You must also set the realm parameter in the redirection request made to the agent if users should not log
in to AM's Top Level Realm.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 149

For example, you could use the realm specified in the redirection request from the agent to the custom
login pages (if configured in the conditional redirection rule), or the custom login page can let the user
chose to which realm authenticate to, and then pass the realm parameter to the redirection to the agent.

There is one exception; if the realm where the agent should log in the user has DNS alias configured, AM
will log in the user to the realm whose DNS alias matches the incoming request URL. For example, an
inbound request from the http://marketplace.example.com URL will be logged in the marketplace realm if
the realm alias is set to marketplace.example.com.

Examples using the Request-Header Format

The following examples use the request headers format to set redirection to the conditional login
URL. The first example redirects the user only if the HTTP header contains the field X-Source with
the value LAN. The second example redirects the user only if the HTTP header contains the field X-
Source with the value extranet. The third example redirects the user if the HTTP header contains
the field X-Realm1 with any value.
org.forgerock.openam.agents.config.conditional.login.url[0]=X-Source:LAN|?realm=red&domain=LAN
org.forgerock.openam.agents.config.conditional.login.url[1]=X-Source:extranet|?realm=blue
org.forgerock.openam.agents.config.conditional.login.url[2]=X-Realm1:|?realm=green

Important

Be careful when specifying request headers with no values as it may lead to unexpected results.

Rules are applied in alphabetical order of header name, then sub-sorted by alphabetical order of header
value. Zero length value always sorts last. For example, if you specify a redirection with an X-Source header
with value A and another redirection with the header X-Domain with no value, any incoming request with the
X-Domain header triggers before the X-Source, due to alphabetical header precedence.
org.forgerock.openam.agents.config.conditional.login.url[0]=X-Domain:A|http://
openam.example.com:8080/conditional/login.jsp?product=A
org.forgerock.openam.agents.config.conditional.login.url[1]=X-Domain:|http://
openam.example.com:8020/extended/conditional/login.jsp?product=Undefined
org.forgerock.openam.agents.config.conditional.login.url[1]=X-Source:A|http://
openam.example.com:8020/conditional/login.jsp?source=A

Examples using the Domain/Path Format

The following examples use the Domain/Path format to set redirection to the conditional login
URL. The first example redirects the user if the parent domain is example.com. The second example
redirects the user if the FQDN is myapp.domain.com. The third example redirects the user if the
domain and path match sales.example.com/marketplace. The last example redirects the user for any
incoming request.
org.forgerock.openam.agents.config.conditional.login.url[0]=example.com|https://openam.example.com/
openam/oauth2/authorize
org.forgerock.openam.agents.config.conditional.login.url[1]=myapp.domain.com|https://
openam2.example.com/openam/oauth2/authorize?realm=sales
org.forgerock.openam.agents.config.conditional.login.url[2]=sales.example.com/marketplace|?
realm=marketplace
org.forgerock.openam.agents.config.conditional.login.url[3]=|https://openam3.example.com/openam/
oauth2/authorize?realm=customers&module=myAuthModule

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 150

Default: not set

Property: org.forgerock.openam.agents.config.conditional.login.url[n]=[Request-Header:value|Domain]|
[URL][?realm=value&module=value2&service=value3]

Hot-swap: Yes

Custom Conditional Login URL (Not yet in the AM console)4

Conditionally redirect users based on the incoming request header or URL. If the incoming
request URL matches a specified request header or domain name, the Java agent redirects the
request to an specific URL. That specific URL can be an AM instance, site, or a different website.

Important

When redirecting incoming login requests to a custom login page, you must add it to either the not-
enforced IP or URI lists.

Before configuring this property, ensure you have read "Redirection and Conditional
Redirection".

Use this property only if the AM Login URL (com.sun.identity.agents.config.login.url) is empty.

If the FQDN Check property (com.sun.identity.agents.config.fqdn.check.enable) is enabled, the Java
agent iterates through the list of URLs until it finds an appropriate redirect URL that matches the
FQDN check values. Otherwise, the Java agent redirects the user to the URL configured in the
conditional redirect rules.

Conditional redirects have the format [Request-Header:value|Domain/path]|[URL?
realm=value¶meter1=value1...], with no spaces between values. Specify values in conditional
redirects as follows:

• Request-Header

Specifies the HTTP request header, which can take the following format:

• A specific case-insensitive HTTP request header, followed by a colon ':', then its value without
line breaks. For example, X-Source:LAN.

If the header is defined but with no value, then any value is acceptable. For example, X-
realm1:.

The agent processes any rule in alphabetical order starting with header name, then header
values in alphabetical order, and then request headers with zero-length values (i.e., no value).

• Domain/path

Specifies the incoming request URL. It can take the following values:

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 151

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• URL

Specifies the URL to which redirect incoming login requests. The URL may be an AM instance,
an AM site, or a website other than AM.

Specify a URL in the format protocol://FQDN[:port]/URI, where the port is optional if it is 80 or
443. For example:

https://myweb.example.com/authApp/login.jsp
https://openam.example.com:8443/openam/XUI/#login/
https://openam.example.com:8443/openam/customlogin/login.jsp

If the redirection URL is not specified, the Java agent redirects the request to the AM instance
or site specified by the following bootstrap properties:
com.iplanet.am.server.protocol://com.iplanet.am.server.host:com.iplanet.am.server.port/
com.iplanet.am.services.deploymentDescriptor

• ?realm=value

Specifies the AM realm into which the agent logs the users. For example, ?realm=marketplace.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 152

When redirecting to AM's XUI, use an ampersand (&) character instead of a question mark (?)
character. For example, https://openam.example.com:8443/openam/XUI/#login/&realm=marketplace

You do not need to specify the realm in the login URL if any of the following conditions is true:

• The custom login page itself sets the realm parameter, for example, because it lets the
user choose it. In this case, you must ensure the custom login page always returns a realm
parameter to the agent.

• The realm that the agent is logging the user into has DNS aliases configured in AM.

AM logs the user into the realm whose DNS alias matches the incoming request URL. For
example, an inbound request from the http://marketplace.example.com URL logs in the marketplace
realm if the realm alias is set to marketplace.example.com.

• The users should always log in to the Top Level Realm.

Even if you decide to specify the realm by default, this parameter can be overwritten by the
custom login page if, for example, the user can choose the realm for authentication.

• ¶meter1=value1...

Specifies parameters that can be added to the URL. You can add as many parameters as your
custom login pages need.

Chain parameters with an & character, for example,
realm=value¶meter1=value1¶meter2=value2.

Important

When the agent redirects the user to the custom login page, it appends a goto parameter (as configured
in the com.sun.identity.agents.config.redirect.param property) with the agent's CDSSO endpoint and a
nonce parameter.

The following is an example of a redirection from the agent to a custom login page:

http://login.example.com/login.jsp?realm=marketplace¶m1=value1&goto=http
%3A%2F%2Fagent.example.com%3A8020%2Flogin%2Fendpoint%3Fnonce
%3Df2fc384a07b7668e05fc6c26c01edf1bac8a3b55%26realm%3Dmarketplace

Note that the goto parameter is URL encoded. If the realm parameter is configured in the redirection rule,
it is also appended to the goto parameter.

Once the user has logged in, the custom login page must redirect back to the agent. To avoid redirection
loops and login failures, consider the following constraints:

• You must ensure that the custom login page redirects back to the agent using the URL contained in the
goto parameter, and that the request contains the nonce parameter.

• You must set the realm parameter in the redirection request to the agent if the users should not log in to
AM's Top Level Realm.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 153

For example, you could use the realm specified in the redirection request from the agent to the custom
login pages (if configured in the conditional redirection rule), or the custom login page can let the user
chose to which realm authenticate to.

The following is an example of a redirection from a custom login page to the agent:

http://agent.example.com:8020/login/endpoint?
nonce=f2fc384a07b7668e05fc6c26c01edf1bac8a3b55&realm=marketplace

There is one exception; if the realm where the agent should log the user in to has DNS alias configured,
AM will log in the user to the realm whose DNS alias matches the incoming request URL. For example,
an inbound request from the http://marketplace.example.com URL will be logged in to the marketplace
realm if the realm alias is set to marketplace.example.com, whether there is a realm parameter or not.

Examples using the Request-Header Format

The following examples use the request headers format to set redirection to the custom login
URL. The first example triggers only if the HTTP header contains the field X-Domain with the value
A. The second example redirects the user if the HTTP header contains the field X-Domain with the
any value.
org.forgerock.openam.agents.config.conditional.custom.login.url[0]=X-Domain:A|http://
openam.example.com:8080/custom/login.jsp?product=A
org.forgerock.openam.agents.config.conditional.custom.login.url[1]=X-Domain:|http://
openam.example.com:8020/extended/custom/login.jsp?product=Undefined

Important

Be careful when specifying request headers with no values as it may lead to unexpected results.

Rules are applied in alphabetical order of header name, then sub-sorted by alphabetical order of header
value. Zero length value always sorts last. For example, if you specify a redirection with an X-Source header
with value A and another redirection with the header X-Domain with no value, any incoming request with the
X-Domain header triggers before the X-Source, due to alphabetical header precedence.

org.forgerock.openam.agents.config.conditional.custom.login.url[0]=X-Domain:A|http://
openam.example.com:8080/custom/login.jsp?product=A
org.forgerock.openam.agents.config.conditional.custom.login.url[1]=X-Domain:|http://
openam.example.com:8020/extended/custom/login.jsp?product=Undefined
org.forgerock.openam.agents.config.conditional.custom.login.url[1]=X-Source:A|http://
openam.example.com:8020/custom/login.jsp?source=A

Examples using the Domain/Path Format

The following examples use the Domain/Path format to set redirection to the custom login URL.
The first example redirects the user if the parent domain is example.com. The second example
redirects the user if the FQDN is myapp.domain.com. The third example redirects the user if the
domain and path match sales.example.com/marketplace. The last example redirects the user for any
incoming request.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 154

org.forgerock.openam.agents.config.conditional.custom.login.url[0]=example.com|https://
openam.example.com/openam/XUI/#login&realm=customers
org.forgerock.openam.agents.config.conditional.custom.login.url[1]=myapp.domain.com|https://
login.example.com/apps/login.jsp?realm=sales
org.forgerock.openam.agents.config.conditional.custom.login.url[2]=sales.example.com/marketplace|?
realm=marketplace
org.forgerock.openam.agents.config.conditional.login.custom.url[3]=|https://login.example.com/apps/
login.jsp?realm=sales&isblue=true&carowner=true

Property: org.forgerock.openam.agents.config.conditional.custom.login.url[n]= [Request-
Header:value|Domain/path]|[URL][?realm=value¶meter1=value1]

Hot-swap: Yes

Login URL Prioritized

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.login.url.prioritized

Login URL Probe

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.login.url.probe.enabled

Login URL Probe Timeout

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.login.url.probe.timeout

Logout URL Properties

OpenAM Logout URL

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.logout.url

OpenAM Conditional Logout URL

Conditionally redirect users based on the incoming request header or URL. If the incoming
request URL matches a request header or specified domain name, the Java agent redirects the
request to an specific URL. That specific URL can be an AM instance, site, or a different website.

If the FQDN Check property (com.sun.identity.agents.config.fqdn.check.enable) is enabled, the Java
agent iterates through the list of URLs until it finds an appropriate redirect URL that matches the
FQDN check values. Otherwise, the Java agent redirects the user to the URL configured in the
conditional redirect rules.

Conditional redirects have the format [Requester-Header:value|Domain/path]|[URL][?realm=value], with
no spaces between values. Specify values in conditional redirects as follows:

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 155

• Request-Header

Specifies the HTTP request header, which can take the following format:

• A specific case-insensitive HTTP request header, followed by a colon ':', then its value without
line breaks. For example, X-Source:LAN.

The agent processes any rule in alphabetical order starting with header name, and then
header values in alphabetical order.

• Domain/path

Specifies the incoming request URL. It can take the following values:

• A domain. For example, example.com.

When you specify a domain, Java agents match both the domain itself and its subdomains. For
example, example.com matches mydomain.example.com and www.example.com.

Domains can also include path information, for example, example.com/market, but cannot specify
ports.

• A subdomain. For example, mydomain.example.com.

When you specify a subdomain, Java agents match the domain, the subdomain, and any sub-
subdomain. For example, mydomain.example.com matches true.mydomain.example.com, too.

Subdomains can include path information, for example, mydomain.example.com/secure, but cannot
specify ports.

• A path. For example, /myapp.

• No value, in which case nothing is specified before the | character and the rule applies to
every incoming request.

Note

It is possible to specify both the Request-Header and Domain/path login formats in an incoming request
via the agent properties. If both formats are specified, the Request-Header entries are applied first. If
none of the headers in the incoming request match, the Domain/path entries will be applied.

• URL

Specifies the URL to which redirect incoming logout requests. The URL may be an AM instance,
an AM site, or a website other than AM.

When redirecting to AM, specify the URL of an AM instance or site in the format
protocol://FQDN[:port]/URI/oauth2/authorize, where the port is optional if it is 80 or 443. For
example, https://openam.example.com/openam/oauth2/authorize.

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 156

When redirecting to a website other than AM, specify a URL in the format
protocol://FQDN[:port]/URI, where the port is optional if it is 80 or 443. For example, https://
myweb.example.com/authApp.

If the redirection URL is not specified, the Java agent redirects the request to the AM instance
or site specified by the following bootstrap properties:
com.iplanet.am.server.protocol://com.iplanet.am.server.host:com.iplanet.am.server.port/
com.iplanet.am.services.deploymentDescriptor

• ?realm=value

Specifies the realm the user should log out from. For example, realm=marketplace.

The realm can also be specified in the URL. For example, if the user should log out from the /
customers realm, construct the URL as https://openam.example.com/openam/oauth2/realms/root/realms/
customers/authorize and do not add the realm parameter.

Examples using the Request-Header Format

The following examples use the request headers format to set redirection to the conditional
logout URL. The first example redirects the user only if the HTTP header contains the field X-
Source with the value LAN. The second example redirects the user only if the HTTP header contains
the field X-Source with the value extranet.
com.sun.identity.agents.config.logout.uri[0]= X-source:LAN|/examples/lan_logout.html
com.sun.identity.agents.config.logout.uri[1]= X-source:extranet|/banking/extranet_logout.html

Examples using the Domain/Path Format

The following examples use the Domain/Path format to set redirection to the conditional logout
URL. The first example redirects the user if the parent domain is example.com. The second example
redirects the user if the domain and path match sales.example.com/marketplace. The last example
redirects the user for any incoming request.
org.forgerock.openam.agents.config.conditional.logout.url[0]=example.com|https://openam.example.com/
openam/oauth2/authorize
org.forgerock.openam.agents.config.conditional.logout.url[2]=sales.example.com/marketplace|?
realm=marketplace
org.forgerock.openam.agents.config.conditional.logout.url[3]=|https://openam3.example.com/openam/
oauth2/authorize?realm=customers

Property: org.forgerock.openam.agents.config.conditional.logout.url[n]= [Request-Header:value|Domain/
path]|[URL][?realm=value]

Hot-swap: Yes

Logout URL Prioritized

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.logout.url.prioritized

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 157

Logout URL Probe

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.logout.url.probe.enabled

Logout URL Probe Timeout

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.logout.url.probe.timeout

Authentication Service Properties

OpenAM Authentication Service Protocol

Specifies the protocol used by the AM authentication service.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: AM_PROTOCOL

Property: com.iplanet.am.server.protocol

Hot-swap: no

OpenAM Authentication Service Host Name

Specifies the AM authentication service host name.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: AM_FQDN

Property: com.iplanet.am.server.host

Hot-swap: no

OpenAM Authentication Service Port

Specifies the AM authentication service port number.

Note that this is a bootstrap property. If you need to change it manually, configure it in the
OpenSSOAgentBootstrap.properties file.

Default: AM_PORT

Property: com.iplanet.am.server.port

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 158

Hot-swap: no

Policy Client Service Properties

Realm

Realm where AM starts policy evaluation for this Java agent.

Edit this property when AM should start policy evaluation in a realm other than the Top Level
Realm, /, when handling policy decision requests from this Java agent.

This property is recognized by AM, not the agent.

Default: / (top-level realm)

Property: org.forgerock.openam.agents.config.policy.evaluation.realm

Hot-swap: yes

Application

The name of the policy set where AM looks for policies to evaluate for this Java agent.

Edit this property when AM should look for policies that belong to a policy set other than
iPlanetAMWebAgentService when handling policy decision requests from this Java agent.

This property is recognized by AM, not the agent.

Default: iPlanetAMWebAgentService

Property: org.forgerock.openam.agents.config.policy.evaluation.application

Hot-swap: yes

Enable Policy Notifications

Specifies whether AM notifies the Java agent when the administrator changes a policy.

Default: true

Property: com.sun.identity.agents.notification.enabled

Hot-swap: no

Policy Client Polling Interval

Specifies the time in minutes after which policy cache entries expire.

Default: 3

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 159

Property: com.sun.identity.agents.polling.interval

Hot-swap: no

Active Session Cache Timeout (Not yet in the AM console)4

Specifies the time interval in minutes after which an active session expires in the Java agent's
cache. The session cache holds information about logged in users, such as session properties and
profile attributes.

If the value is not set, the Java agent sets the property to five times the value of the com.sun.
identity.agents.polling.interval property.

Default: 3

Property: org.forgerock.openam.agents.config.active.session.cache.ttl.minutes

Hot-Swap: yes

Policy Client Cache Mode

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.policy.client.cacheMode

Policy Client Boolean Action Values

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.policy.client.booleanActionValues

Policy Client Resource Comparators

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.policy.client.resourceComparators

Policy Client Clock Skew

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.policy.client.clockSkew

URL Policy Env GET Parameters

Specifies the list of HTTP GET request parameters whose names and values the Java agent sets in
the environment map for URL policy evaluation by the AM server.

Default: not set

Property: com.sun.identity.agents.config.policy.env.get.param

Reference
Configuring AM Services Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 160

URL Policy Env POST Parameters

Specifies the list of HTTP POST request parameters whose names and values the Java agent sets
in the environment map for URL policy evaluation by the AM server.

Default: not set

Property: com.sun.identity.agents.config.policy.env.post.param

URL Policy Env jsession Parameters

Specifies the list of HTTP session attributes whose names and values the Java agent sets in the
environment map for URL policy evaluation by the AM server.

Default: not set

Property: com.sun.identity.agents.config.policy.env.jsession.param

Use HTTP-Redirect for composite advice

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.policy.advice.use.redirect

User Data Cache Service Properties

Enable Notification of User Data Caches

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.idm.remote.notification.enabled

User Data Cache Polling Time

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.iplanet.am.sdk.remote.pollingTime

Enable Notification of Service Data Caches

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.sm.notification.enabled

Service Data Cache Time

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.sm.cacheTime

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 161

Session Client Service Properties

Enable Client Polling

Specifies whether the Java agent must poll AM to retrieve information about events such as
logouts.

If set to FALSE, the Java Agent instead subscribes to receive notifications by using websockets.

Default: FALSE

Property: com.iplanet.am.session.client.polling.enable

Hot-swap: yes

Client Polling Period

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.iplanet.am.session.client.polling.period

Configuring Miscellaneous Properties

This section covers miscellaneous Java agent properties. After creating the agent profile, you access
these properties in the AM console under Realms > Realm Name > Applications > Agents > Java >
Agent Name > Miscellaneous.

This section describes the following property groups:

• Locale Properties

• Port Check Processing Properties

• Bypass Principal List Properties

• Agent Password Encryptor Properties

• Ignore Path Info Properties

• Deprecated Agent Properties

Locale Properties

Locale Language

The default language for the agent.

Default: en

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 162

Property: com.sun.identity.agents.config.locale.language

Hot-swap: no

Locale Country

The default country for the agent.

Default: US

Property: com.sun.identity.agents.config.locale.country

Hot-swap: no

Port Check Processing Properties

Port Check Enable

When enabled, activate port checking, correcting requests on the wrong port.

Default: false

Property: com.sun.identity.agents.config.port.check.enable

Port Check File

Specifies the name of the file containing the content to handle requests on the wrong port when
port checking is enabled.

Default: PortCheckContent.txt

Property: com.sun.identity.agents.config.port.check.file

Port Check Setting

Specifies which ports correspond to which protocols. The Java agent uses the map when handling
requests with invalid port numbers during port checking.

Default: 8080 http

Property: com.sun.identity.agents.config.port.check.setting

Bypass Principal List Properties

Bypass Principal List

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.bypass.principal

Reference
Configuring Miscellaneous Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 163

Agent Password Encryptor Properties

Encryption Provider

Specifies the class the agent uses for encryption and decryption purposes, for example, org.
forgerock.openam.shared.security.crypto.AESWrapEncryption.

Default: com.iplanet.services.util.JCEEncryption

Property: com.iplanet.security.encryptor

Ignore Path Info Properties

Ignore Path Info in Request URL

When enabled, strip the path information from the request URL while doing not-enforced list
checks and URL policy evaluation. This property is designed to prevent a user from accessing a
URI by appending the matching pattern in the policy or not-enforced list.

For example, if the not-enforced list includes /*.gif, then stripping path info from the request
URL prevents access to http://host/index.html by using http://host/index.html?hack.gif.

Default: false

Property: com.sun.identity.agents.config.ignore.path.info

Deprecated Agent Properties

Goto Parameter Name

Allows you to rename the goto parameter. The Java agent appends the requested URL to the
renamed parameter during redirection. Rename the parameter when your application requires a
parameter other than goto.

Consider the following example:
com.sun.identity.agents.config.redirect.param=goto2

A valid redirection URL using the goto2 parameter may look similar to the following:
https://www.example.com:8443/accessDenied.html?goto2=http%3A%2F%www.example.com%3A8020%managers
%2Findex.jsp

In this example, the URL appended to the goto2 parameter is the URL that the user tried to access
when the Java agent redirected the request to the accessDenied.html page. Note that you configure
the access denied page using the Access Denied URI Processing (com.sun.identity.agents.config.
access.denied.uri) property.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 164

Default: goto

Property: com.sun.identity.agents.config.redirect.param

Legacy User Agent Support Enable

When enabled, provide support for legacy browsers.

Default: false

Property: com.sun.identity.agents.config.legacy.support.enable

Legacy User Agent List

List of header values that identify legacy browsers. Entries can use the wildcard character, *.

Default: Mozilla/4.7*

Property: com.sun.identity.agents.config.legacy.user.agent

Legacy User Agent Redirect URI

Specifies a URI the Java agent uses to redirect legacy user agent requests.

Default: agent_URI/sunwLegacySupportURI

Property: com.sun.identity.agents.config.legacy.redirect.uri

Configuring Advanced Properties

This section covers advanced Java agent properties. After creating the agent profile, you access these
properties in the AM console under Realms > Realm Name > Applications > Agents > Java > Agent
Name > Advanced.

This section describes the following property groups:

• Client Identification Properties

• Web Service Processing Properties

• Alternate Agent URL Properties

• JBoss Application Server Properties

• Cross-Site Scripting Detection Properties

• POST Data Preservation Properties

• Custom Properties

Reference
Configuring Advanced Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 165

Client Identification Properties

If the Java agent is behind a proxy or load balancer, then the Java agent can get client IP and host
name values from the proxy or load balancer. For proxies and load balancers that support providing
the client IP and host name in HTTP headers, you can use the following properties.

When multiple proxies or load balancers sit in the request path, the header values can include a
comma-separated list of values with the first value representing the client, as in client,next-proxy,
first-proxy.

Client IP Address Header

HTTP header name that holds the IP address of the client.

If the Java agent is behind a proxy or load balancer, then the Java agent can get client IP address
values from the proxy or load balancer. Use this property if the proxy or load balancer supports
providing the IP address in an HTTP header.

Default: not set

Property: com.sun.identity.agents.config.client.ip.header

Client Hostname Header

HTTP header name that holds the hostname of the client.

If the Java agent is behind a proxy or load balancer, then the Java agent can get client host name
values from the proxy or load balancer. Use this property if the proxy or load balancer supports
providing the host name in an HTTP header.

When multiple proxies or load balancers sit in the request path, the header values can include a
comma-separated list of values with the first value representing the client, as in client,next-proxy,
first-proxy.

Default: not set

Property: com.sun.identity.agents.config.client.hostname.header

Web Service Processing Properties

 The following properties do not apply to Java Agents 5.6, although they may appear in the AM
console:

Web Service Enable

Property: com.sun.identity.agents.config.webservice.enable

Reference
Configuring Advanced Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 166

Web Service End Points

Property: com.sun.identity.agents.config.webservice.endpoint

Web Service Process GET Enable

Property: com.sun.identity.agents.config.webservice.process.get.enable

Web Service Authenticator

Property: com.sun.identity.agents.config.webservice.authenticator

Web Service Response Processor

Property: com.sun.identity.agents.config.webservice.responseprocessor

Web Service Internal Error Content File

Property: com.sun.identity.agents.config.webservice.internalerror.content

Web Service Authorization Error Content File

Property: com.sun.identity.agents.config.webservice.autherror.content

Alternate Agent URL Properties

Alternative Agent Host Name

Specifies the host name of the Java agent protected server to show to client browsers, rather than
the actual host name.

After configuring this property, you must add an entry to the Agent Root URL for CDSSO
property with the new hostname. Failure to do so may result in redirection loops or redirect_uri_
mismatch errors.

Default: not set

Property: com.sun.identity.agents.config.agent.host

Alternative Agent Port Name

Specifies the port number of the Java agent protected server to show to client browsers, rather
than the actual port number.

After configuring this property, you must add an entry to the Agent Root URL for CDSSO
property with the new port. Failure to do so may result in redirection loops or redirect_uri_
mismatch errors.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 167

Default: not set

Property: com.sun.identity.agents.config.agent.port

Alternative Agent Protocol

Specifies the protocol used to contact the Java agent from the browser client browsers, rather
than the actual protocol used by the server. Either http or https.

After configuring this property, you must add an entry to the Agent Root URL for CDSSO
property with the new protocol. Failure to do so may result in redirection loops or redirect_uri_
mismatch errors.

Default: not set

Property: com.sun.identity.agents.config.agent.protocol

JBoss Application Server Properties

WebAuthentication Available

 This property does not apply to Java Agents 5.6, although it may appear in the AM console.

Property: com.sun.identity.agents.config.jboss.webauth.available

Cross-Site Scripting Detection Properties

Possible XSS code elements

Specifies strings that, when found in the request, cause the agent to redirect the client to an
error page.

Default: not set

Property: com.sun.identity.agents.config.xss.code.elements

XSS detection redirect URI

Maps applications to URIs of customized pages to which to redirect clients upon detection of XSS
code elements.

For example, to redirect clients of MyApp to /myapp/error.html, enter MyApp as the Map Key and /
myapp/error.html as the Corresponding Map Value.

Default: not set

Property: com.sun.identity.agents.config.xss.redirect.uri

Reference
Configuring Advanced Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 168

POST Data Preservation Properties

For more information about POST data Preservation, see "POST Data Preservation".

POST Data Preservation enabled

Enables HTTP POST data preservation, storing POST data before redirecting the browser to the
login screen, and then auto-submitting the same POST after successful authentication to the
original URL.

For more information, see "POST Data Preservation".

Default: false

Property: com.sun.identity.agents.config.postdata.preserve.enable

Missing PDP entry URI

Specifies a list of application-specific URIs if the referenced Post Data Preservation entry cannot
be found in the local cache because it has exceeded its POST entry TTL. Either the Java agent
redirects to a URI in this list, or it shows an HTTP 403 Forbidden error.

Default: not set

Property: com.sun.identity.agents.config.postdata.preserve.cache.noentry.url

PDP entry TTL

POST data storage lifetime in the PDP cache, in milliseconds.

Default: 300000

Property: com.sun.identity.agents.config.postdata.preserve.cache.entry.ttl

PDP Stickysession mode

Specifies whether to create a cookie, or to append a query string to the URL to assist with sticky
load balancing.

Default: URL

Property: com.sun.identity.agents.config.postdata.preserve.stickysession.mode

PDP Stickysession key-value

Specifies the key-value pair for stickysession mode. For example, a setting of lb=myserver either
sets an lb cookie with myserver value, or adds lb=myserver to the URL query string.

Reference
Configuring Advanced Properties

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 169

Default: not set

Property: com.sun.identity.agents.config.postdata.preserve.stickysession.value

PDP Maximum Number of Cache Entries

Specifies the maximum number of entries to hold in the PDP cache. Old entries in the cache are
discarded if the cache reaches the maximum number of entries.

Limiting the amount of entries in the PDP cache mitigates against DoS attacks. If a malicious user
posts a large amount of information to the cache, the cache will grow to the maximum number of
entries rather than consume all available memory.

Default: 1000

Property: com.sun.identity.agents.config.postdata.preserve.cache.entry.max.entries

PDP Maximum Cache Size

Specifies the maximum size of the PDP cache in megabytes. Old entries in the cache are
discarded if the cache reaches the maximum size.

Limiting the size of the PDP cache mitigates against DoS attacks. If a malicious user posts a
large amount of information to the cache, the cache will grow to the maximum size rather than
consume all available memory.

Note

If both PDP Cache Maximum Size and PDP Cache Maximum Number of Entries properties are set, the PDP
Cache Maximum Number of Entries property is ignored.

Default: -1 (cache in MBs is not created)

Property: org.forgerock.openam.agents.config.postdata.preserve.cache.entry.max.total.size.mb

Custom Properties

Custom Properties

Additional properties to augment the set of properties supported by the Java agent. Custom
properties can be specified as follows:

• customproperty=custom-value1

• customlist[0]=customlist-value-0

• customlist[1]=customlist-value-1

Reference
Configuring Agent Authenticators

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 170

• custommap[key1]=custommap-value-1

• custommap[key2]=custommap-value-2

Tip

Add any property that is not yet in the AM console as a custom property.

Property: com.sun.identity.agents.config.freeformproperties

Configuring Agent Authenticators
An agent authenticator has read-only access to multiple agent profiles defined in the same realm,
typically allowing an agent to read web service agent profiles.

After creating the agent profile, access agent properties in the AM console navigatin to Realms >
Realm Name > Applications > Agents > Agent Authenticator > Agent Name.

Password

Specifies the password the agent uses to connect to AM.

Status

Specifies whether the agent profile is active, and so can be used.

Agent Profiles allowed to Read

Specifies which agent profiles the agent authenticator can read in the realm.

Agent Root URL for CDSSO

Specifies the list of agent root URLs for CDSSO. The valid value is in the format
protocol://hostname:port/ where protocol represents the protocol used, such as http or https,
hostname represents the host name of the system where the agent resides, and port represents
the port number on which the agent is installed. The slash following the port number is required.

If your agent system also has virtual host names, add URLs with the virtual host names to this list
as well. AM checks that goto URLs match one of the agent root URLs for CDSSO.

Property: sunIdentityServerDeviceKeyValue[n]=protocol://hostname:port/

Monitoring Reference
This section contains reference information for the metric types, and monitoring metrics.

Reference
Monitoring Metric Types

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 171

Monitoring Metric Types

This section describes the monitoring metric types that are available in Java Agents. The available
types are:

• Timer

• Gauge

• DistinctCounter

Timer

Metric that combines both rate and duration information.

• Fields

When using the Common REST interface, the Timer metric type has the following fields:

Field Description
_id The metric ID.
_type The metric type.
count The number of events recorded for this metric.
total The sum of the durations recorded for this metric.
min The minimum duration recorded for this metric.
max The maximum duration recorded for this metric.
mean The mean average duration recorded for this metric.
stddev The standard deviation of durations recorded for this metric.
duration_units The units used for measuring the durations in the metric.
p50 50% of the durations recorded are at or below this value.
p75 75% of the durations recorded are at or below this value.
p95 95% of the durations recorded are at or below this value.
p98 98% of the durations recorded are at or below this value.
p99 99% of the durations recorded are at or below this value.
p999 99.9% of the durations recorded are at or below this value.
m1_rate The one-minute average rate.
m5_rate The five-minute average rate.
m15_rate The fifteen-minute average rate.
mean_rate The average rate.
rate_units The units used for measuring the rate of the metric.

Reference
Monitoring Metric Types

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 172

Note

Duration-based values, such as min, max, and p50, are weighted towards newer data. By representing
approximately the last five minutes of data, the timers make it easier to see recent changes in behavior,
rather than a uniform average of recordings since the server was started.

The following is an example of the requests.granted.not-enforced metric from the Common REST
endpoint:
{
 "_id" : "requests.granted.not-enforced",
 "_type" : "timer",
 "count" : 486,
 "total" : 80.0,
 "min" : 0.0,
 "max" : 1.0,
 "mean" : 0.1905615495053855,
 "stddev" : 0.39274399467782056,
 "duration_units" : "milliseconds",
 "p50" : 0.0,
 "p75" : 0.0,
 "p95" : 1.0,
 "p98" : 1.0,
 "p99" : 1.0,
 "p999" : 1.0,
 "m1_rate" : 0.1819109974890356,
 "m5_rate" : 0.05433445522996721,
 "m15_rate" : 0.03155662103953588,
 "mean_rate" : 0.020858521722211427,
 "rate_units" : "calls/second"
}

• Prometheus Fields

The Prometheus endpoint does not provide rate-based statistics, as rates can be calculated from
the time-series data.

When using the Prometheus interface, the Timer metric type has the following fields:

Field Description
TYPE The metric ID, and type. Note that the Timer metric type is reported as a

Summary type. Formatted as a comment.
_count The number of events recorded.
_total The sum of the durations recorded.
{quantile="0.5"} 50% of the durations are at or below this value.
{quantile="0.75"} 75% of the durations are at or below this value.
{quantile="0.95"} 95% of the durations are at or below this value.
{quantile="0.98"} 98% of the durations are at or below this value.

Reference
Monitoring Metric Types

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 173

Field Description
{quantile="0.99"} 99% of the durations are at or below this value.
{quantile="0.999"} 99.9% of the durations are at or below this value.

Note

Duration-based quantile values are weighted towards newer data. By representing approximately the last
five minutes of data, the timers make it easier to see recent changes in behavior, rather than a uniform
average of recordings since the server was started.

The following is an example of the ja_requests{access=granted,decision=allowed-by-policy} metric
from the Prometheus endpoint:
TYPE ja_requests_seconds summary
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.5",}
 0.013000000000000001
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.75",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.95",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.98",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.99",}
 0.022000000000000002
ja_requests_seconds{access="granted",decision="allowed-by-policy",quantile="0.999",}
 1.1380000000000001
ja_requests_count{access="granted",decision="allowed-by-policy",} 7.0
ja_requests_seconds_total{access="granted",decision="allowed-by-policy",} 1.21

Gauge

Metric for a numerical value that can increase or decrease. The value for a gauge is calculated
when requested, and represents the state of the metric at that specific time.

• Fields

When using the Common REST interface, the Timer metric type has the following fields:

Field Description
_id The metric ID.
_type The metric type.
value The current value of the metric.

The following is an example of the jvm.used-memory metric from the Common REST endpoint:
{
 "_id" : "jvm.used-memory",
 "_type" : "gauge",
 "value" : 2.13385216E9
}

Reference
Monitoring Metric Types

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 174

• Prometheus Fields

When using the Prometheus interface, the Timer metric type has the following fields:

Field Description
TYPE The metric ID, and type. Formatted as a comment.
{Metric ID} The current value. Large values may be represented in scientific E-notation.

The following is an example of the ja_jvm_used_memory_bytes metric from the Prometheus
endpoint:
TYPE ja_jvm_used_memory_bytes gauge
ja_jvm_used_memory_bytes 1.418723328E9

DistinctCounter

Metric providing an estimate of the number of unique values recorded.

For example, this could be used to estimate the number of unique users who have authenticated,
or unique client IP addresses.

Note

The DistinctCounter metric is calculated per instance of AM, and cannot be aggregated across multiple
instances to get a site-wide view.

• Fields

When using the Common REST interface, the DistinctCounter metric type has the following
fields:

Field Description
_id The metric ID.
_type The metric type. Note that the distinctCounter type is reported as a gauge

type. The output formats are identical.
value The calculated estimate of the number of unique values recorded in the

metric.

The following is an example of the authentication.unique-uuid.success metric from the Common
REST endpoint:
{
 "_id" : "authentication.unique-uuid.success",
 "_type" : "gauge",
 "value" : 3.0
}

• Prometheus Fields

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 175

When using the Prometheus interface, the distinctCounter metric type has the following fields:

Field Description
TYPE The metric ID, and type. Note that the distinctCounter type is reported as a

gauge type. The output formats are identical. Formatted as a comment.
{Metric ID} The calculated estimate of the number of unique values recorded in the

metric.

The following is an example of the ja_notenforced_ip_unmatched_cache_size metric from the
Prometheus endpoint:
TYPE ja_notenforced_ip_unmatched_cache_size gauge
ja_notenforced_ip_unmatched_cache_size 3.0

Monitoring Metrics
Java agents expose the monitoring metrics described in this section.

Audit Handler Metrics
Java Agents expose the following audit handler-related monitoring metrics:

audit.access.generate

Time taken to generate an audit object. (Timer)

Prometheus name:
ja_audit_generate{topic=access}

audit.handler.<handler-type>.default.access.<outcome>

Time taken to audit outcomes, both locally to the agent and remotely in AM. (Timer)

Prometheus name:
ja_audit{handler-type=<handler-type>,name=default,topic=access,outcome=<outcome>}

Labels:

<handler-type>

am-delegate. Remote auditing performed by AM. (Prometheus: am_delegate)

json. Local audit logging using JSON.

<outcome>

success

failure

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 176

Endpoint and REST SDK Metrics
Java Agents expose the following endpoint and REST SDK-related monitoring metrics:

session-info

Time taken to retrieve user session information from AM. (Timer)

Prometheus name:
ja_session_info

user-profile

Time taken to retrieve the user profile information from AM. (Timer)

Prometheus name:
ja_user_profile

policy-decision

Time taken to retrieve policy decisions from AM. (Timer)

Prometheus name:
ja_policy_decision

JSON Web Token (JWT) Metrics
Java Agents expose the following JWT-related monitoring metrics:

jwt.cache.size

The size of the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache_size

jwt.cache.eviction

The eviction count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache_eviction

jwt.cache.load-count

The load count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache_load_count

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 177

jwt.cache.load-time

The load time for the JWT cache, in milliseconds. (Gauge)

Prometheus name:
ja_jwt_cache_load_time

jwt.cache.hit

The hit count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache{outcome=hit}

jwt.cache.miss

The miss count for the JWT cache. (Gauge)

Prometheus name:
ja_jwt_cache{outcome=miss}

JVM Metrics
Java agents expose the JVM-related monitoring metrics covered in this section.

Tip

To get the metric name used by Prometheus, prepend ja_ to the names below, and replace period (.) and
hyphen (-) characters with underscore (_) characters. For example, the jvm.available-cpus metric is named ja_
jvm_available_cpus in Prometheus.

JVM Metrics by Name

Name Description
jvm.available-cpus Number of processors available to the Java virtual

machine. (Gauge)
jvm.class-loading.loaded Number of classes loaded since the Java virtual

machine started. (Gauge)
jvm.class-loading.unloaded Number of classes unloaded since the Java virtual

machine started. (Gauge)
jvm.garbage-collector.PS-MarkSweep.count Number of collections performed by the "parallel

scavenge mark sweep" garbage collection algorithm.
(Gauge)

jvm.garbage-collector.PS-MarkSweep.time Approximate accumulated time taken by the "parallel
scavenge mark sweep" garbage collection algorithm.
(Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 178

Name Description
jvm.garbage-collector.PS-Scavenge.count Number of collections performed by the "parallel

scavenge" garbage collection algorithm. (Gauge)
jvm.garbage-collector.PS-Scavenge.time Approximate accumulated time taken by the "parallel

scavenge" garbage collection algorithm. (Gauge)
jvm.memory-usage.heap.init Amount of heap memory that the Java virtual machine

initially requested from the operating system. (Gauge)
jvm.memory-usage.heap.max Maximum amount of heap memory that the Java

virtual machine will attempt to use. (Gauge)
jvm.memory-usage.heap.committed Amount of heap memory that is committed for the

Java virtual machine to use. (Gauge)
jvm.memory-usage.heap.used Amount of heap memory used by the Java virtual

machine. (Gauge)
jvm.memory-usage.total.init Amount of memory that the Java virtual machine

initially requested from the operating system. (Gauge)
jvm.memory-usage.total.max Maximum amount of memory that the Java virtual

machine will attempt to use. (Gauge)
jvm.memory-usage.non-heap.init Amount of non-heap memory that the Java virtual

machine initially requested from the operating
system. (Gauge)

jvm.memory-usage.non-heap.max Maximum amount of non-heap memory that the Java
virtual machine will attempt to use. (Gauge)

jvm.memory-usage.non-heap.committed Amount of non-heap memory that is committed for the
Java virtual machine to use. (Gauge)

jvm.memory-usage.non-heap.used Amount of non-heap memory used by the Java virtual
machine. (Gauge)

jvm.memory-usage.pools.Code-Cache.init Amount of "code cache" memory that the Java virtual
machine initially requested from the operating
system. (Gauge)

jvm.memory-usage.pools.Code-Cache.max Maximum amount of "code cache" memory that the
Java virtual machine will attempt to use. (Gauge)

jvm.memory-usage.pools.Code-Cache.committed Amount of "code cache" memory that is committed for
the Java virtual machine to use. (Gauge)

jvm.memory-usage.pools.Code-Cache.used Amount of "code cache" memory used by the Java
virtual machine. (Gauge)

jvm.memory-usage.pools.Compressed-Class-Space.init Amount of "compressed class space" memory that
the Java virtual machine initially requested from the
operating system. (Gauge)

jvm.memory-usage.pools.Compressed-Class-Space.init Maximum amount of "compressed class space"
memory that the Java virtual machine will attempt to
use. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 179

Name Description
jvm.memory-usage.pools.Compressed-Class-Space.
committed

Amount of "compressed class space" memory that
is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.Compressed-Class-Space.used Amount of "compressed class space" memory used by
the Java virtual machine. (Gauge)

jvm.memory-usage.pools.Metaspace.init Amount of "metaspace" memory that the Java virtual
machine initially requested from the operating
system. (Gauge)

jvm.memory-usage.pools.Metaspace.max Maximum amount of "metaspace" memory that the
Java virtual machine will attempt to use. (Gauge)

jvm.memory-usage.pools.Metaspace.committed Amount of "metaspace" memory that is committed for
the Java virtual machine to use. (Gauge)

jvm.memory-usage.pools.Metaspace.used Amount of "metaspace" memory used by the Java
virtual machine. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.init Amount of "parallel scavenge eden space" memory
that the Java virtual machine initially requested from
the operating system. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.max Maximum amount of "parallel scavenge eden space"
memory that the Java virtual machine will attempt to
use. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.committed Amount of "parallel scavenge eden space" memory
that is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.PS-Eden-Space.used-after-gc Amount of "parallel scavenge eden space" memory
after the last time garbage collection recycled unused
objects in this memory pool. (Gauge)

jvm.memory-usage.pools.PS-Eden-Space.used Amount of "parallel scavenge eden space" memory
used by the Java virtual machine. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.init Amount of "parallel scavenge old generation" memory
that the Java virtual machine initially requested from
the operating system. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.max Maximum amount of "parallel scavenge old
generation" memory that the Java virtual machine will
attempt to use. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.committed Amount of "parallel scavenge old generation" memory
that is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.PS-Old-Gen.used-after-gc Amount of "parallel scavenge old generation" memory
after the last time garbage collection recycled unused
objects in this memory pool. (Gauge)

jvm.memory-usage.pools.PS-Old-Gen.used Amount of "parallel scavenge old generation" memory
used by the Java virtual machine. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 180

Name Description
jvm.memory-usage.pools.PS-Survivor-Space.init Amount of "parallel scavenge survivor space" memory

that the Java virtual machine initially requested from
the operating system. (Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.max Maximum amount of "parallel scavenge survivor
space" memory that the Java virtual machine will
attempt to use. (Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.committed Amount of "parallel scavenge survivor space" memory
that is committed for the Java virtual machine to use.
(Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.used-
after-gc

Amount of "parallel scavenge survivor space" memory
after the last time garbage collection recycled unused
objects in this memory pool. (Gauge)

jvm.memory-usage.pools.PS-Survivor-Space.used Amount of "parallel scavenge survivor space" memory
used by the Java virtual machine. (Gauge)

jvm.memory-usage.total.committed Amount of memory that is committed for the Java
virtual machine to use. (Gauge)

jvm.memory-usage.total.used Amount of memory used by the Java virtual machine.
(Gauge)

jvm.thread-state.blocked.count Number of threads in the BLOCKED state. (Gauge)
jvm.thread-state.count Number of live threads including both daemon and

non-daemon threads. (Gauge)
jvm.thread-state.daemon.count Number of live daemon threads. (Gauge)
jvm.thread-state.new.count Number of threads in the NEW state. (Gauge)
jvm.thread-state.runnable.count Number of threads in the RUNNABLE state. (Gauge)
jvm.thread-state.terminated.count Number of threads in the TERMINATED state.

(Gauge)
jvm.thread-state.timed_waiting.count Number of threads in the TIMED_WAITING state.

(Gauge)
jvm.thread-state.waiting.count Number of threads in the WAITING state. (Gauge)

Not Enforced Rule Metrics

Java Agents expose the following not enforced rule-related monitoring metrics:

notenforced-uri.matched.cache.size

The size of the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_size

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 181

notenforced-uri.matched.cache.eviction

The eviction count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_eviction

notenforced-uri.matched.cache.load-count

The load count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_load_count

notenforced-uri.matched.cache.load-time

The load time for the not-enforced URI matched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache_load_time

notenforced-uri.matched.cache.hit

The hit count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache{outcome=hit}

notenforced-uri.matched.cache.miss

The miss count for the not-enforced URI matched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_matched_cache{outcome=miss}

notenforced-uri.unmatched.cache.size

The size of the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache_size

notenforced-uri.unmatched.cache.eviction

The eviction count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 182

ja_notenforced_uri_unmatched_cache_eviction

notenforced-uri.unmatched.cache.load-count

The load count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache_load_count

notenforced-uri.unmatched.cache.load-time

The load time for the not-enforced URI unmatched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache_load_time

notenforced-uri.unmatched.cache.hit

The hit count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache{outcome=hit}

notenforced-uri.unmatched.cache.miss

The miss count for the not-enforced URI unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_uri_unmatched_cache{outcome=miss}

notenforced-ip.matched.cache.size

The size of the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache_size

notenforced-ip.matched.cache.eviction

The eviction count for the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache_eviction

notenforced-ip.matched.cache.load-count

The load count for the not-enforced IP matched cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 183

Prometheus name:
ja_notenforced_ip_matched_cache_load_count

notenforced-ip.matched.cache.load-time

The load time for the not-enforced IP matched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache_load_time

notenforced-ip.matched.cache.hit

The hit count for the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache{outcome=hit}

notenforced-ip.matched.cache.miss

The miss count for the not-enforced IP matched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_matched_cache{outcome=miss}

notenforced-ip.unmatched.cache.size

The size of the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache_size

notenforced-ip.unmatched.cache.eviction

The eviction count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache_eviction

notenforced-ip.unmatched.cache.load-count

The load count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache_load_count

notenforced-ip.unmatched.cache.load-time

The load time for the not-enforced IP unmatched cache, in milliseconds. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 184

Prometheus name:
ja_notenforced_ip_unmatched_cache_load_time

notenforced-ip.unmatched.cache.hit

The hit count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache{outcome=hit}

notenforced-ip.unmatched.cache.miss

The miss count for the not-enforced IP unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_ip_unmatched_cache{outcome=miss}

notenforced-compound.matched.cache.size

The size of the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_size

notenforced-compound.matched.cache.eviction

The eviction count for the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_eviction

notenforced-compound.matched.cache.load-count

The load count for the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_load_count

notenforced-compound.matched.cache.load-time

The load time for the not-enforced compound matched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache_load_time

notenforced-compound.matched.cache.hit

The hit count for the not-enforced compound matched cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 185

Prometheus name:
ja_notenforced_compound_matched_cache{outcome=hit}

notenforced-compound.matched.cache.miss

The miss count for the not-enforced compound matched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_matched_cache{outcome=miss}

notenforced-compound.unmatched.cache.size

The size of the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_size

notenforced-compound.unmatched.cache.eviction

The eviction count for the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_eviction

notenforced-compound.unmatched.cache.load-count

The load count for the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_load_count

notenforced-compound.unmatched.cache.load-time

The load time for the not-enforced compound unmatched cache, in milliseconds. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache_load_time

notenforced-compound.unmatched.cache.hit

The hit count for the not-enforced compound unmatched cache. (Gauge)

Prometheus name:
ja_notenforced_compound_unmatched_cache{outcome=hit}

notenforced-compound.unmatched.cache.miss

The miss count for the not-enforced compound unmatched cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 186

Prometheus name:
ja_notenforced_compound_unmatched_cache{outcome=miss}

Policy Decision Metrics

Java Agents expose the following policy decision-related monitoring metrics:

policy-decision.cache.size

The size of the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache_size

policy-decision.cache.eviction

The eviction count for the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache_eviction

policy-decision.cache.load-count

The load count for the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache_load_count

policy-decision.cache.load-time

The load time for the policy decision cache, in milliseconds. (Gauge)

Prometheus name:
ja_policy_decision_cache_load_time

policy-decision.cache.hit

The hit count for the policy decision cache. (Gauge)

Prometheus name:
ja_policy_decision_cache{outcome=hit}

policy-decision.cache.miss

The miss count for the policy decision cache. (Gauge)

Prometheus name:

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 187

ja_policy_decision_cache{outcome=miss}

POST Data Preservation (PDP) Metrics
Java Agents expose the following PDP-related monitoring metrics:

pdp.cache.size

The size of the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache_size

pdp.cache.eviction

The eviction count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache_eviction

pdp.cache.load-count

The load count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache_load_count

pdp.cache.load-time

The load time for the post-data preservation cache, in milliseconds. (Gauge)

Prometheus name:
ja_pdp_cache_load_time

pdp.cache.hit

The hit count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache{outcome=hit}

pdp.cache.miss

The miss count for the post-data preservation cache. (Gauge)

Prometheus name:
ja_pdp_cache{outcome=miss}

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 188

Request Metrics

Java Agents expose the following request-related monitoring metrics:

requests.<access>.<decision>

Rate of granted/denied requests and their decision. (Timer)

Prometheus name:
ja_requests{access=<access>,decision=<decision>}

Labels:

<access>

granted

denied

<decision>

not-enforced. Request matched a not enforced rule.

no-valid-token. Request did not have a valid SSO token or an OpenID Connect JSON Web
Token.

allowed-by-policy. Request matched a policy, which allowed access.

denied-by-policy. Request matched a policy, which denied access.

am-unavailable. The AM instance was not reachable.

agent-exception. An internal error (exception) occurred within the agent.

Session Information Metrics

Java Agents expose the following session information-related monitoring metrics:

session-info.cache.size

The size of the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache_size

session-info.cache.eviction

The eviction count for the session information cache. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 189

Prometheus name:
ja_session_info_cache_eviction

session-info.cache.load-count

The load count for the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache_load_count

session-info.cache.load-time

The load time for the session information cache, in milliseconds. (Gauge)

Prometheus name:
ja_session_info_cache_load_time

session-info.cache.hit

The hit count for the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache{outcome=hit}

session-info.cache.miss

The miss count for the session information cache. (Gauge)

Prometheus name:
ja_session_info_cache{outcome=miss}

Websocket Metrics

Java Agents expose the following websocket-related monitoring metrics:

websocket.last-received

The number of milliseconds since anything was received over the websocket, for example a ping
or a notification. (Gauge)

Prometheus name:
ja_websocket_last_received

websocket.last-sent

The number of milliseconds since anything was sent over the websocket. (Gauge)

Reference
Monitoring Metrics

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 190

Prometheus name:
ja_websocket_last_sent

websocket.config-change.received

The number of configuration change notifications received. Note that some may be ignored if the
realm or agent name are not applicable. (DistinctCounter)

Prometheus name:
ja_websocket_config_change_received

websocket.config-change.processed

The number of configuration change notifications processed, that were not ignored.
(DistinctCounter)

Prometheus name:
ja_websocket_config_change_processed

websocket.policy-change.received

The number of policy change notifications received. Note that some may be ignored if the realm
or agent name are not applicable. (DistinctCounter)

Prometheus name:
ja_websocket_policy_change_received

websocket.policy-change.processed

The number of policy change notifications processed, that were not ignored. (DistinctCounter)

Prometheus name:
ja_websocket_policy_change_processed

websocket.session-logout.received

The number of session logout notifications received. Note that some may be ignored if the realm
or agent name are not applicable. (DistinctCounter)

Prometheus name:
ja_websocket_session_logout_received

websocket.session-logout.processed

The number of session logout notifications processed, that were not ignored. (DistinctCounter)

Prometheus name:

Reference
Command-Line Tool Reference

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 191

ja_websocket_session_logout_processed

websocket.ping-pong

The ping/pong round trip time. (Timer)

Prometheus name:
ja_websocket_ping_pong

Command-Line Tool Reference

Reference

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 192

Name
agentadmin — manage the installation of Java agents

Synopsis

agentadmin {options}

Description

This command manages Java Agent installations. The agentadmin command requires a Java runtime
environment.

Options

The following options are supported.

--install

Installs a new agent instance.

Usage: agentadmin --install [--useResponse | --saveResponse file-name]

--useResponse

Use this option to install in silent mode by specifying all the responses in the file-name file.
When this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Use this option to save all the supplied responses in a response file specified by file-name.

--custom-install

Installs a new agent instance, specifying additional configuration options such as the key used to
encrypt passwords.

Usage: agentadmin --custom-install [--useResponse | --saveResponse file-name]

--useResponse

Use this option to install in silent mode by specifying all the responses in the file-name file.
When this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Use this option to save all the supplied responses to the file-name file.

Reference

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 193

--acceptLicense

Auto-accepts the software license agreement. If this option is present on the command line with
the --install or --custom-install option, the license agreement prompt is suppressed and the agent
installation continues. To view the license agreement, open <server-root>/legal-notices/license.txt.

--uninstall

Uninstalls an existing agent instance.

Usage: agentadmin --uninstall [--useResponse | --saveResponse file-name]

--useResponse

Use this option to uninstall in silent mode by specifying all the responses in the file-name file.
When this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Use this option to save all the supplied responses to the file-name file.

--version

Displays the version information.

--uninstallAll

Uninstalls all the agent instances.

--listAgents

Displays details of all the configured agents.

--agentInfo

Displays details of the agent corresponding to the specified agent-id.

Example: agentadmin --agentInfo agent_001

--encrypt

Encrypts a given string.

Usage: agentadmin --encrypt agent-instance password-file

agent-instance

Agent instance identifier. The encryption functionality requires the use of agent instance
specific encryption key present in its configuration file.

password-file

File containing the password to encrypt.

Reference
Configuring Apache HTTP Server as a Reverse Proxy Example

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 194

--getEncryptKey

Generates an agent encryption key.

Configuring Apache HTTP Server as a Reverse Proxy Example
This section demonstrates a possible configuration of Apache as a reverse proxy between AM and the
agent, but you can use any reverse proxy that supports the WebSocket protocol.

Reverse Proxy Configured Between the Agent and AM

Agent

Protected

Resource

Java Container

HTTPS

ClientsClientsClients

Access

Managem ent

Access

Managem ent

Access

Managem ent

HTTPS

Secure
Web

Socket

HTTP

Web
Socket

Reverse
Proxy

Note that the communication protocol changes from HTTPS to HTTP.

To Configure Apache as a Reverse Proxy Example

This procedure demonstrates how to configure Apache as a reverse proxy between an agent and a
single AM instance. Refer to the Apache documentation to configure Apache for load balancing and
any other requirement for your environment:

1. Locate the httpd.conf file in your deployed reverse proxy instance.

2. Add the modules required for a proxy configuration as follows:

Reference
Configuring Apache HTTP Server as a Reverse Proxy Example

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 195

Modules required for proxy
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_wstunnel_module modules/mod_proxy_wstunnel.so

The mod_proxy_wstunnel.so module is required to support the WebSocket protocol used for
notification between AM and the agents.

3. Add the proxy configuration inside the VirtualHost context. Consider the following directives:
<VirtualHost 192.168.1.1>
...
Proxy Config
RequestHeader set X-Forwarded-Proto "https"
ProxyPass "/openam/notifications" "ws://openam.example.com:8080/openam/notifications"
 Upgrade=websocket
ProxyPass "/openam" "http://openam.example.com:8080/openam"
ProxyPassReverseCookieDomain "openam.internal.example.com" "proxy.example.com"
ProxyPassReverse "/openam" "http://openam.example.com:8080/openam"
...
</VirtualHost>

Key:

RequestHeader. Set this directive to https or http depending on the proxy configuration. If
the proxy is configured for https, as in the example depicted in the diagram above, set the
directive to https. Otherwise, set it to http.

In a future step you will configure AM to recognize the forwarded header and use it in the
goto parameter for redirecting back to the agent after authentication.
ProxyPass. Set this directive to allow WebSocket traffic between AM and the agent.

If you have HTTPS configured between the proxy and AM, set the directive to use the wss
protocol instead of ws.
ProxyPass. Set this directive to allow HTTP traffic between AM and the agent.
ProxyPassReverseCookieDomain. Set this directive to rewrite the domain string in Set-Cookie
headers in the format internal domain (AM's domain) public domain (proxy's domain).
ProxyPassReverse. Set this directive to the same value configured for the ProxyPass directive.

For more information about configuring Apache as a reverse proxy, refer to the Apache
documentation.

4. Restart the reverse proxy instance.

5. Configure AM to recover the forwarded header you configured in the reverse proxy. Also, review
other configurations that may be required in an environment that uses reverse proxies. For more
information, see "Regarding Communication Between AM and Agents"

https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html
https://httpd.apache.org/docs/2.4/howto/reverse_proxy.html

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 196

Appendix A. Getting Support

ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

https://www.forgerock.com
https://www.forgerock.com/support
https://backstage.forgerock.com/knowledge/kb

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 197

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 198

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 199

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 200

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 201

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

User Guide Java Agents 5.6 (2020-05-21)
Copyright © 2011-2019 ForgeRock AS. All rights reserved. 202

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	User Guide
	Table of Contents
	Preface
	Chapter 1. Introducing Java Agents
	Java Agent Components
	Configuration Location
	Request Process Flow
	Java Agent Features
	Not-Enforced Lists
	Notification System
	Attribute Fetch Modes
	Login Attempt Limits
	FQDN Checking
	Cookie Reset Properties
	Cross-Domain Single Sign-On
	POST Data Preservation
	Continuous Security
	Redirection and Conditional Redirection
	Default Redirection Login Mode
	Custom Redirection Login Mode

	Caching Capabilities
	Query Parameter Handling

	Chapter 2. Preparing for Installation
	Downloading and Unzipping Java Agents
	Configuring Access Management Servers to Communicate With Java Agents
	Creating Agent Profiles
	Delegating Agent Profile Creation

	Supporting Load Balancers and Reverse Proxies Between AM and the Agents

	Chapter 3. Configuring Environments With Load Balancers and Reverse Proxies
	Regarding Communication Between AM and Agents
	Configuring AM to Use Forwarded Headers

	Regarding Communication Between Clients and Agents
	Matching Protected Java Container Ports, Protocols, and FQDNs
	Configuring Client Identification Properties
	Configuring POST Data Preservation for Load Balancers or Reverse Proxies

	Chapter 4. Installing Java Agents
	Installing the Tomcat Java Agent
	Before You Install
	Installing the Tomcat Java Agent
	Installing the Tomcat Java Agent Silently

	Installing the JBoss Java Agent
	Before You Install
	Installing the JBoss Java Agent
	Installing the JBoss Java Agent Silently

	Installing the Jetty Java Agent
	Before You Install
	Installing the Jetty Java Agent
	Installing the Jetty Java Agent Silently

	Installing the WebLogic Java Agent
	Before You Install
	Installing the WebLogic Java Agent
	Installing the WebLogic Java Agent Silently
	Installing the WebLogic Java Agent in Multi-Server Domains

	Installing the WebSphere Java Agent
	Before You Install
	Installing the WebSphere Java Agent
	Installing the WebSphere Java Agent Silently
	Notes About WebSphere Network Deployment

	Chapter 5. Post-Installation Tasks
	Configuring the Agent Filter
	Configuring the Agent Filter for an Application
	Configuring the Agent Filter's Modes of Operation

	Configuring Audit Logging
	Configuring Performance Monitoring
	Configuring Java Agents for SSL Communication
	Supporting Load Balancers and Reverse Proxies Between Clients and Agents

	Chapter 6. Upgrading Java Agents
	Chapter 7. Removing Java Agents
	Removing the Tomcat Java Agent
	Removing the JBoss Java Agent
	Removing the Jetty Java Agent
	Removing the WebLogic Java Agent
	Removing the WebSphere Java Agent

	Chapter 8. Troubleshooting
	Chapter 9. Reference
	Configuring Java Agent Properties
	Configuring Bootstrap Properties
	Configuring Global Properties
	Configuring Application Properties
	Configuring SSO Properties
	Configuring AM Services Properties
	Configuring Miscellaneous Properties
	Configuring Advanced Properties

	Configuring Agent Authenticators
	Monitoring Reference
	Monitoring Metric Types
	Monitoring Metrics
	Audit Handler Metrics
	Endpoint and REST SDK Metrics
	JSON Web Token (JWT) Metrics
	JVM Metrics
	Not Enforced Rule Metrics
	Policy Decision Metrics
	POST Data Preservation (PDP) Metrics
	Request Metrics
	Session Information Metrics
	Websocket Metrics

	Command-Line Tool Reference
	agentadmin

	Configuring Apache HTTP Server as a Reverse Proxy Example

	Appendix A. Getting Support
	Glossary

