
1 / 68

User Guide

About ForgeRock Identity Platform™ Software

About Java Agent

Agent Components

Agent Con�guration

Request Flow

Features

Cross-Domain Single Sign-On

Login Redirect

Not Enforced Rules

POST Data Preservation

Continuous Security

Attribute Fetch Modes

Autonomous Mode

Login Attempt Limits

FQDN Checking

Cookie Reset Properties

Caching

Query Parameter Handling

Authentication Failure

Connection Pooling

Con�guration for Load Balancers and Reverse Proxies

Identifying Clients Behind Load Balancers and Reverse Proxies

Agent - Load Balancer/Reverse Proxy - AM

Agent - Load Balancer/Reverse Proxy - Client

Troubleshooting

User Guide

ON THIS PAGE

2 / 68

Questions and Answers

Reference

agentadmin Command

Con�gure Apache HTTP Server As a Reverse Proxy Example

Glossary

This guide describes how to use ForgeRock Access Management Java Agent.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com.

Java Agent is an Access Management add-on component that operates as a Policy

Enforcement Point (PEP) or policy agent for web applications deployed on a Java

container.

Java Agents intercept inbound requests to web applications. Depending on the �lter mode

con�guration, Java Agents interact with AM to:

Ensure that clients provide appropriate authentication.

Enforce AM resource-based policies.

This chapter covers how Java Agents work and how their features can protect web

applications.

Java Agent includes the following main components:

Agent Filter

Intercepts inbound client requests to a resource and processes them based on the

�lter mode of operation.

User Guide

About ForgeRock Identity Platform™ Software

About Java Agent

Agent Components

https://www.forgerock.com/

3 / 68

Agent Application

Deployed as agentapp.war , it is required for authentication and the cross-domain

single sign-on (CDSSO) �ow.

The following components are not part of Java Agent, but they play an important part in

the agent operation:

AM SDKs

A set of APIs required to interact with AM.

Agent Pro�le

A set of con�guration properties that de�ne the agent behavior. The agent pro�le can

be stored in AM’s con�guration store or as a text �le local to the agent installation.

The following image shows the Java Agent components when the agent pro�le is stored in

the AM con�guration store:

Java
container

Access
Management

Request to
protected application

Services

Authentication

Authorization

…

Java
application

Clients

Agent profile
AM

SDK

Agent filter
and

application

1

2

3

4

7

8

5

6

Java Agent uses the con�guration �les described in this section.

The �les must be in a location de�ned by a property added to JAVA_OPTS . For example,

in Tomcat, the agent can take the �le location from bin/setenv.sh , as follows:

Agent Con�guration

JAVA_OPTS="$JAVA_OPTS -

Dopenam.agents.bootstrap.dir=/path/to/agents/agent/agent_instance

4 / 68

This �le de�nes bootstrap parameters. The following information is required in the �le:

Private AM URL:

Used for communication with AM, for example, to retrieve policy information or user

information. The URL is assembled from the following properties, and is required,

even if the agent never contacts AM:

AM Authentication Service Protocol

AM Authentication Service Host Name

AM Authentication Service Port

AM Authentication Service Path

Public AM URL:

This URL must be provided by the user if the AM �rewall rules distinguish between

public and private URL. The agent uses this property to redirect the user’s browser to

public-facing URLs for login. If it is not provided, the AM private URL is used.

Agent Pro�le:

Agent Pro�le Name

Agent Pro�le Realm

Location of Agent Con�guration Repository:

De�nes the agent con�guration mode:

Local con�guration mode

The agent reads its con�guration from AgentConfiguration.properties .

When the agent is in this mode, it ignores changes made to the agent pro�le in

AM.

Depending on the con�guration in the AgentConfiguration.properties �le,

the agent might never need to contact AM. For example, if Autonomous mode is

true , the agent runs independently of an AM instance.

Remote con�guration mode (default)

The agent ignores the con�guration in AgentConfiguration.properties ,

retains the retrieved bootstrap properties, and downloads the con�guration

from AM.

When the �rst user request is made, the agent contacts AM to retrieve the agent

con�guration. If AM is unavailable, the request returns an HTTP 403

/config"

AgentBootstrap.properties

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.protocol.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.port.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.path.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.public.am.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.profile.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.profile.realm.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fallback.mode.enabled.html

5 / 68

Permission denied .

This �le de�nes agent con�guration settings, and overrides any properties set in the

bootstrap �le.

If the value of Location of Agent Con�guration Repository is LOCAL , the agent reads the

AgentConfiguration.properties �le after AgentBootstrap.properties . If the value of

Location of Agent Con�guration Repository is REMOTE , the agent ignores this �le.

In Java Agent 5.7 and earlier versions, this �le was named

OpenSSOAgentConfiguration.properties .

This �le de�nes an encrypted password for the agent pro�le. For more information, see

Encrypted Agent Password.

This �le de�nes the key used to encrypt the agent password. For more information, see

Encryption Key.

Change the agent con�guration in the following ways:

Change the agent bootstrap con�guration

Manually edit AgentBootstrap.properties , and then restart the container running

the agent.

Change the agent con�guration in LOCAL mode

Manually edit the AgentConfiguration.properties �le, and set a value for

Con�guration Reload Interval.

The interval de�nes the number of seconds after which the agent reads the local

property �le, and reloads it if has changed since it was last read.

The value of Location of Agent Con�guration Repository must be LOCAL .

Change the agent con�guration in REMOTE mode

The agent is noti�ed by the WebSocket mechanism when its con�guration is changed

in AM. The agent then re-reads its con�guration from AM within a few seconds.

The value of Location of Agent Con�guration Repository must be REMOTE .

AgentCon�guration.properties

AgentPassword.properties

AgentKey.properties

Changing the Agent Con�guration

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.encrypted.password.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/am.encryption.pwd.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.reload.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html

6 / 68

Change the agent con�guration on the AM console

Go to REALMS > Realm Name > Applications > agents > Java > agent name.

The value of Location of Agent Con�guration Repository must be REMOTE .

When a client requests access to an application resource, the Java Agent intercepts the

request. AM then validates the identity of the client, and their authorization to access the

protected resource.

The following simpli�ed data �ow occurs when an unauthenticated client requests a

resource protected by a Java Agent and AM. The �ow assumes that requests must meet

the requirements of an AM policy. For a detailed diagram, see Single Sign-On in AM’s

Authentication and Single Sign-On Guide.

Java Container

Client

Client

Agent Filter/
Agent Application

Agent Filter/
Agent Application

Web Resource
http://www.example.com

Web Resource
http://www.example.com

Access Management

Access Management

1
Request to http://www.example.com
intercepted by agent fi lter

2 Check not-enforced lists

a l t [Resource or cl ient IP matches not-enforced l ists]

3 Pass through

4 Response

5 Create pre-authentication cookie

6
Set AM login URL
(URL and `goto` parameter for OAuth 2.0 authorize endpoint)

7 Redirect for authentication

8 Authenticate

9 Verify credentials

1 0 Create SSO token

1 1
OAuth 2.0 flow to
create OIDC JWT

1 2 Send self-submitting form with OIDC JWT

1 3
Post form to the agent's endpoint,
which consumes the response

1 4
Set cookie domain to
FQDN of resource

1 5
Redirect to http://www.example.com
intercepted by agent fi lter

1 6 Request OIDC JWT validation

1 7 OIDC JWT is OK

1 8 Request policy decision

1 9 Policy decision is "ALLOW"

2 0 Log policy decision

2 1 Pass through

2 2 Response

1 An unauthenticated client attempts to access a resource, and the agent intercepts the

inbound request.

Request Flow

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/about-sso.html

7 / 68

2 The agent evaluates whether the requested resource or the client IP address matches a

not-enforced rule.

3-4 Alternate Flow. The requested resource or the client IP address matches a not-

enforced rule. The agent allows access to the resource, and the client receives a response

from www.example.com . The �ow ends.

5 The agent creates a pre-authentication cookie to protect against reply attacks. The agent

uses this cookie to track the authentication request to AM. Depending on the

con�guration, the agent may either issue a cookie to track all concurrent authentication

requests, or may issue one cookie for each request.

6 The agent sets the AM login URL, which includes the goto parameter for the OAuth 2.0

authorize endpoint, and

7 The agent redirects the client to log in to AM.

8-12 The client authenticates to AM:

AM’s Authentication Service veri�es the client credentials. AM creates an SSO token,

and OIDC JWT with session information.

AM sends the client a self-submitting form with the OIDC JWT.

13 The client posts the self-submitting form to the agent endpoint, and the Java Agent

consumes it.

14 The agent sets the cookie domain to the FQDN of the resource.

15 The client attempts to access the protected resource again, and the agent intercepts

the request.

16 The agent contacts AM to validate the session contained in the OIDC JWT.

17 AM validates the session.

18 The agent contacts AM’s Policy Service, requesting a decision about whether the client

is authorized to access the resource.

19 AM’s Policy Service returns ALLOW .

20 The agent writes the policy decision to the audit log.

21 The agent enforces the policy decision. Because the Policy Service returned ALLOW ,

the agent performs a pass-through operation to return the resource to the client.

22 The client accesses the resource.

Features

8 / 68

In cross-domain single sign-on, Java Agent processes requests using authentication

provided by AM. Users can access multiple independent services from a single login

session, using the agent to transfer the session ID. The agent and AM can be in the same

domain or in di�erent domains.

The following diagram illustrates the CDSSO �ow:

A M

Client

Client

Java Agent

Java Agent

OAuth 2.0 endpoint

OAuth 2.0 endpoint

Authentication service

Authentication service

JSON/Sessions endpoint

JSON/Sessions endpoint

Policy endpoint

Policy endpoint

1 Unauthenticated request for protected resource

2
Set amFilterCDSSORequest cookie
(org.forgerock.agents.authn.cookie.name)
and redirect ...

3 . . . to oauth2/authorize endpoint.

4 Redirect...

5 ...to AM for authentication

6 Authentication page

7 Submit credentials

8 Authentication success

9 OIDC JWT embedded into self-submitting form

1 0 POST self-submitting form to internal endpoint

1 1
Validate token against amFilterCDSSORequest cookie
Validate OIDC JWT with AM
Gather available user profile data and session info

1 2 Cache JWT/user profile data/session info

1 3

Delete amFilterCDSSORequest cookie
Create am-auth-jwt cookie
(org.forgerock.agents.jwt.cookie.name)
and redirect to ...

1 4 Protected resource

1 5 Retrieve JWT from am-auth-jwt cookie and locate in cache

1 6 Request policy decision

1 7 Decision

1 8
Allow access and return resource,
or deny access and return HTTP 403

When the agent is in local con�guration mode, con�gure the Authentication Redirect URI.

When the agent is in remote con�guration mode, the value is set by the agent

con�guration in AM.

For more information, see Single Sign-On and Implementing CDSSO in AM’s

Authentication and Single Sign-On Guide.

When an unauthenticated user requests access to a protected resource, the agent

redirects the user to log in. The login redirect can be to a speci�c AM instance, an AM site,

or a website. For example, the agent can redirect a user from the france.example.com

domain to log in to the am.france.example.com AM site.

This section describes a default login redirect, and options to con�gure the redirect.

The following image shows the �ow of data during a default login redirect, when an

unauthenticated user requests access to a protected resource. The agent wraps the SSO

Cross-Domain Single Sign-On

Login Redirect

Default Login Redirect

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.redirect.uri.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/about-sso.html
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/about-sso.html#implementing-cdsso

9 / 68

session token inside an OIDC JWT. Authentication requires access to XUI/* , and the

agent requires access to json/authenticate , json/sessions , and json/serverinfo .

Java Container A M

Client

Client

Java Agent

Java Agent

Web Application

Web Application

/oauth2/authorize

/oauth2/authorize

Policy, Session Service

Policy, Session Service

Login page
Authentication service

Login page
Authentication service

1 Request protected resource

2
Not-enforced l ists = no match
User authenticated = no
Enable Custom Login Mode = false

3
Create pre-authentication cookie
and redirect . . .

4 to .../oauth2/authorize endpoint

5 Endpoint requires user interaction

6 Log in

7 Log in

8 Send self-submitting form ...

9
...that POSTs session ID token to
the post-authentication endpoint

1 0
Set cookie domain to FQDN of the
resource, and validate OIDC token

1 1 Set OIDC token as cookie

1 2
Redirect with request to delete
pre-authentication cookie...

1 3 ...to protected resource

1 4 Request JWT validation

1 5 validation

1 6 Request policy decision

1 7 ALLOW

1 8 Redirect with cookie...

1 9 . ..to the resource

Figure 1. Data Flow for Default Login Redirect

Set the following properties to redirect a request to a login realm, based on the request

domain:

Enable Custom Login Mode: Leave with the default value of false .

OAuth Login URL List: Map the request domain to the required login realm. When

this property is set, the agent tries to match the request domain to the list of

domains in this property. If there is a match, the agent redirects the user to log in at

the matched URI.

The following image shows the �rst few steps from �gure 1, where the redirect is this

time con�gured with the value in OAuth Login URL List.

Redirect Login to a Realm Based on the Request Domain

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html

10 / 68

Java Container A M

Client

Client

Java Agent

Java Agent

Web Application

Web Application

/oauth2/authorize?realm=blue

/oauth2/authorize?realm=blue

Policy, Session Service

Policy, Session Service

Login page
Authentication service

Login page
Authentication service

1 Request protected resource

2
Not-enforced lists = no match
User authenticated = no
Enable Custom Login Mode = false

OAuth Login URL List = blue.example.com|?realm=blue

3
Create pre-authentication cookie
and redirect . . .

4 to https://openam.example.com:8443/openam/oauth2/authorize?realm=blue

In the following example, unauthenticated requests are redirected to di�erent login

realms according to the request domain:

The requests are directed as follows:

Requests for a resource in blue.example.com are passed to the oauth2/authorize

endpoint to log the user into the blue realm.

Requests for a resource in red.example.com/ruby are passed to the

oauth2/authorize endpoint to log the user into the red realm.

Requests for a resource in red.example.com/yellow/ are passed to the

oauth2/authorize endpoint to log the user into the orange realm.

Requests for a resource in an unmapped domain are passed to the

oauth2/authorize endpoint to log the user in to the speci�ed default realm.

Set the following properties to redirect a request to a di�erent OIDC endpoint, based on

the request domain:

Enable Custom Login Mode: Leave with the default value of false .

OAuth Login URL List: Map the request domain to the required login endpoint. When

this property is set, the agent tries to match the request domain to the list of

domains in this property. If there is a match, the agent redirects the user to the

matched URI for login.

In the following example, unauthenticated requests are redirected to di�erent OIDC

endpoints according to the request domain: domain:

org.forgerock.agents.oauth.login.url.list[0] = blue.example.com|?

realm=blue

org.forgerock.agents.oauth.login.url.list[1] = red.example.com|?

realm=red

org.forgerock.agents.oauth.login.url.list[2] =

red.example.com/yellow|?realm=orange

org.forgerock.agents.oauth.login.url.list[3] = |?realm=default

Redirect Login to an OIDC Endpoint Based on the Request Domain

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html

11 / 68

The requests are directed as follows:

Requests for a resource in red.example.com/yellow , are passed to

https://other.example.com:8081/am/other-idp/oauth2/other-authorize to log

the user in to the orange realm.

Requests for a resource in an unmapped domain are passed to the

oauth2/authorize endpoint to log the user in to the speci�ed default realm.

For legacy deployments that require SSO tokens, redirect the login to a custom login page

to set the SSO token in the user’s browser after authentication. Use the custom

redirection login mode when:

Your environment has customized login pages that expect user sessions to be stored

in SSO tokens instead of in OIDC JWTs.

Users cannot access the AM servers directly in your environment.

Custom login pages are not part of AM’s XUI.

Use the following properties to con�gure custom login redirects:

Enable Custom Login Mode:

Set to true if the custom login page sets an SSO token in the user’s browser

after authentication.

Enable SSO Token Acceptance:

Set to true to prevent the agent from attempting to convert SSO tokens into

OIDC tokens. Use this option to continue to use SSO tokens, when the agent and

the token issuer are in the same domain.

Set to false to allow the agent to convert SSO tokens to OIDC tokens. Use this

option for better security, and in web applications and APIs where the backend

requires user information in form of an OIDC token.

AM Login URL List or Legacy Login URL List

If AM Login URL List is con�gured, the agent redirects the user to the speci�ed

custom login page, and appends a resourceURL parameter to the login

endpoint.

If Legacy Login URL List is con�gured but AM Login URL List is not, the agent

matches the request with the domains and URLs speci�ed by Legacy Login URL

org.forgerock.agents.oauth.login.url.list[2] =

red.example.com/yellow|https://other.example.com:8081/am/other-

idp/oauth2/other-authorize?realm=orange

org.forgerock.agents.oauth.login.url.list[3] = |?realm=default

Redirect Login for Legacy Deployments That Require SSO Tokens

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.accept.sso.tokens.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.agents.config.login.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.agents.config.login.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.agents.config.login.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.url.list.html

12 / 68

List, and redirects the user to the appropriate custom login page.

If neither property is con�gured, authentication fails.

The following image shows a simpli�ed �ow for a custom login redirect, when the agent

uses SSO tokens without converting them to OIDC id_tokens:

Java Container

Client

Client

Agent Filter/
Agent Application

Agent Filter/
Agent Application

Web Resource1
login.example.com

Web Resource1
login.example.com

Web Resource2
custom-login.example.com

Web Resource2
custom-login.example.com

Access Management

Access Management

1 Request to http://login.example.com

2
Not-enforced lists = no match
User authenticated = no
Enable Custom Login Mode = true

3
Match request URL to list of domains in AM Login URL List
append "resourceURL" to the request and redirect to ...

4 ... login page configured in AM Login URL List

5 Log in to http://custom-login.example.com

6
append OIDC parameters
and SSO token

7 Redirect with goto parameter to the agent

8 Log user in

When a login page is in a network that accesses AM through a proxy, �rewall, or other

technology that remaps the AM URL, set Public AM URL to map the AM URL to a URL that

the login page can access.

For example, if AM and the agent communicate on example-internal.com , but the

custom login pages are on example-external.com , con�gure the public AM URL as

https://openam.example-external.com:8443/openam .

It is sometimes necessary to allow unauthenticated users, or to users from speci�c IP

addresses, to access speci�c resources. For example, unauthenticated users should be

able to access the HTML �les for the public front end of a website. Furthermore, allowing

unauthenticated access to non-sensitive resources reduces the overhead of con�rming

each access with AM.

Java Agent manages unauthenticated access through the con�guration of not-enforced

rules. When a not-enforced rule applies to a request, the agent allows the request:

If an unauthenticated user sent the request, the agent does not redirect the user to

log in.

If an authenticated user sent the request, the agent does not request a policy

evaluation from AM.

Redirect Login to Pages Behind a Firewall

Not Enforced Rules

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.public.am.url.html

13 / 68

The following image shows the data �ow when Java Agent evaluates not-enforced rules

for a request, �rst searching for a match in the cache, then in the not enforced lists:

Java Container

Client

Client

Java Agent

Java Agent

www.example.com

www.example.com

Access Management

Access Management

1 Request to http://www.example.com

2 Request matches cache for not-enforced rules?

a l t [Request matches cache for not-enforced rules]

3 Pass through

4 Response

[Request does not match cache for not-enforced rules]

5 Request matches pattern in not-enforced lists?

a l t [Request matches pattern in not-enforced l ists]

6 Cache request match

7 Pass through

8 Response

[Request does not match pattern in not-enforced l ists]

9 Not-enforced lists inverted?

a l t [IP l ist and/or URI l ist are inverted]

1 0 Cache request match

1 1 Pass through

1 2 Response

[IP l ist and/or URI l ist are not inverted]

1 3
Redirect to AM login page
for authentication

1 4 Client authenticates

1. A client requests a resource.

2-4. If the not-enforced URI or IP cache is enabled, the Java Agent checks whether the

request matches any cached results. If the same request from the client previously

matched a not-enforced rule, the Java Agent passes the request without requiring the

client to authenticate.

5. If the caches are not enabled, or the request doesn’t match a cached result, the Java

Agent checks whether the request matches a rule in a not-enforced list.

The Java Agent evaluates every rule in the lists in order, until it �nds the �rst match. When

it �nds a match, it stops evaluating, and does not consider other rules further down the

list even if they provide a better match. Take care to place your most speci�c rules at or

near the beginning of the list.

6-8. The Java Agent caches the result and passes the request without requiring the client

to authenticate.

9-14. If the request doesn’t match a rule in a not-enforced list, the Java Agent checks

whether rules are inverted, and responds as follows:

14 / 68

Not-enforced URI rules Not-enforced IP rules Pass request without

requiring authentication?

Inverted Inverted Yes

Not inverted Not inverted No

Inverted Not inverted No

Not inverted Inverted No

Con�gure not-enforced rules by using the agent properties listed in Not-Enforced Rules in

the Properties Reference, or on the Application tab of the AM console. Con�gure the

following lists of not-enforced rules:

Not-enforced URI rules

Allow access to resources, such as images, stylesheets, or the HTML pages that

provide the public front end of your site.

Not-enforced IP rules

Allow access to your site from an administrative IP address, an internal network

range, or a search engine.

Compound not-enforced URI and IP rules

Allow access based on a combination of resources and IPs. When there are multiple

lists of rules, the agent evaluates them in this order:

1. Compound rules in not-enforced URI and not-enforced IP lists

2. Rules in not-enforced IP lists

3. Rules in not-enforced URI lists

Use the conventions in this section to de�ne not-enforced URI rules and not-enforced IP

rules:

Invert any rule in the not-enforced list by preceding it with the keyword NOT , separated

by a space (blank) character.

In the following example, requests for a .jpg �le in the /private URI require

authentication:

Con�gure Not-Enforced Rules

Conventions for Not-Enforced Rules

Inverting rules

Invert speci�c rules

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#not_enforced

15 / 68

In the following example, the agent defers to AM any request from the network speci�ed

by the 192.168.1.0/24 CIDR notation:

Invert all rules in a not-enforced URI list by setting Invert Not-Enforced IPs to true .

Add * to match all characters in a rule, except the question mark ? character. The

wildcard cannot be escaped.

For more information about using wildcards, see Specifying Resource Patterns with

Wildcards.

Add * to match all characters in a rule, except the question mark ? character. The

wildcard cannot be escaped.

The wildcard spans multiple levels. For example:

Multiple forward slashes do not match a single forward slash. Therefore * matches

mult/iple/dirs , but mult/*/dirs does not match mult/dirs .

Add -*- to match all characters in a rule, except the forward slash / and the

question mark ? character. The wildcard cannot be escaped. Because this wildcard

does not match the / character, it does not span multiple levels in a URI. For

example:

* and -*- wildcards cannot be used in the same rule, but can be used in di�erent

rules in the same list. For example:

NOT /private/*.jpg

NOT 192.168.1.0/24

Invert all rules

Wildcards

Wildcard for not-enforced IP rules

192.168.*

Wildcards for not-enforced URI rules

/images/*

/*.jsp?locale=*

/css/-*-

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.invert.enabled.html
https://backstage.forgerock.com/docs/am/7.1/authorization-guide/configuring-resource-types.html#create-resource-type-xui

16 / 68

Multiple wildcards in the query parameter section of a not-enforced URI rule match

the parameters in any order that they appear in a resource URI. For example, the

following not-enforced URI rule applies to any resource URI that contains a

member_level and location query parameter, in any order:

In following example, the requests would be not-enforced:

If the parameters are not present in the request, the agent evaluates the resource URI

against policies in AM, as usual.

Trailing forward slashes are not recognized as part of a resource name. Therefore,

/images// and /images are equivalent. For more information about using

wildcards, see Specifying Resource Patterns with Wildcards.

Add the keyword REGEX followed by a blank (space) character before the URI or IP

address. For example:

Consider the following points when using regular expressions:

Wildcards and regular expressions cannot be used in the same rule.

Using netmask CIDR notation or IP address ranges and regular expressions is not

supported. However, you can create a regular expression that matches a range of IP

addresses, such as:

/css/-*-

/images/*

/customers/*?*member_level=*&location=*

https://www.example.com/customers/default.jsp?

member_level=silver&location=fr

https://www.example.com/customers/default.jsp?

location=es&member_level=silver

https://www.example.com/customers/default.jsp?

location=uk&vip=true&member_level=gold

Regular expressions

REGEX https?://www\.example\.com/([^/])+/.*\.jpg

REGEX 192\.168\.10\.\d+

https://backstage.forgerock.com/docs/am/7.1/authorization-guide/configuring-resource-types.html#create-resource-type-xui

17 / 68

If an invalid regular expression is speci�ed in a rule, the rule is dropped and an error

message is logged.

Add one or more of the following keywords to the not-enforced rule to apply it when the

incoming request uses a speci�c HTTP method: GET , HEAD , POST , PUT , PATCH , DELETE ,

OPTIONS , TRACE .

By default, no HTTP method is speci�ed for a rule, and all methods are not-enforced for

that rule. When one or more HTTP methods are speci�ed, only those methods are not-

enforced; methods that are not speci�ed are enforced.

The following example does not require authentication for any request method to

192.168.10.* :

The following example does not require authentication for GET requests to /public , but

does require authentication for other HTTP methods:

To specify a list of methods, add a comma-delimited list of methods, followed by a blank

(space) character before the item to match.

To invert a method, precede it with an exclamation point ! character. The following

examples require authentication for POST requests, but not for other HTTPS methods:

REGEX 192\.168\.10\.(10|\d)

HTTP Methods

192.168.10.*

GET /public/*

GET,POST /public/*

GET,POST,PUT /examples/notenforced/*.jpg

GET,REGEX https?://www\.example\.com/([^/])+/.*\.jpg

NOT,GET,REGEX 192\.168\.10\.\d+

POST 192.168.10.*

GET 192.168.10.1-192.168.10.254 192.168.0.1

POST,PUT 192.168.1.0/24

!POST /public/*

18 / 68

Unrecognized keywords in a rule are ignored and do not invalidate the rest of the rule.

Use the following syntax to apply not-enforced rules when the incoming request has a

named cookie with a speci�ed value:

Name: Cookie name

Value: Cookie value to search for.

Modi�ers: One or more modi�ers to change the lookup method:

c : (For not-enforced URI rules only) Perform a case-insensitive search for the

cookie name. By default, the search is case-sensitive.

i : Perform a case-insensitive search for the cookie value. By default, the search

is case-sensitive.

r : Treat the string in Value as a regular expression.

The following example does not require authentication for requests to

/private/admin/images/ , when the request contains a cookie named login_result

(case-insensitive), with the value VALID (case-insensitive):

The following example does not require authentication for requests to 192.168.* when

a cookie present on the request has the name login_result and the case-insensitive

value VALID :

Combine cookie �lters with other �lters, such as HTTP methods. Combining a HEADER

and COOKIE expression in the same rule implies a logical AND; both expressions must

match in order to apply. To apply the rules as a logical OR, create two separate rules.

The following example does not require authentication for GET, POST, and PUT requests

to the /other/records/ folder, when the request contains a cookie named internal

(case-sensitive), with a value that matches the regular expression .*ID (case-insensitive):

!POST 192.168.1.0/24

Cookie values

COOKIE(Name/Value/Modifiers) Not Enforced URIs

COOKIE(Name/Value/Modifiers) Not Enforced IPs

COOKIE(login_result/VALID/ci) /private/admin/images/*

COOKIE(login_result/VALID/i) 192.168.*

19 / 68

The following example does not require authentication for GET , POST , and PUT HTTP

requests from the client IP range 192.168.* , when there is a cookie named internal ,

with a value that matches the regular expression .*ID :

Use the following syntax to apply not-enforced rules when the incoming request has a

named header with a speci�ed value:

Name: Header name.

Value: Header value to search for.

Modi�ers

i : Perform a case-insensitive search for the header value. By default, the

search is case-sensitive.

r : Treat the string in Value as a regular expression.

The following example does not require authentication for access to .txt �les in

/yearly/2021/ when the request contains a header named ID (case-insensitive), with

the value validated (case-insensitive):

The following example does not require authentication for access to the IP range

192.168.* when the request includes a header named ID with the case-insensitive

value validated :

Combine cookie �lters with other �lters, such as HTTP methods. Combining a HEADER

and COOKIE expression in the same rule implies a logical AND; both expressions must

match. To apply the rules as a logical OR, create two separate rules.

GET,POST,COOKIE(internal/.*ID/ri),PUT /other/records/*.html

GET,POST,COOKIE(internal/.*ID/r),PUT 192.168.*

Header values

HEADER(Name/Value/Modifiers) Not Enforced URIs

HEADER(Name/Value/Modifiers) Not Enforced IPs

HEADER(ID/validated/i) /yearly/2021/*.txt

HEADER(ID/validated/i) 192.168.*

20 / 68

The following example does not require authentication for GET , POST , and PUT requests

to HTML resources in the /other/records/ folder when the request contains a header

named internal (case-insensitive), with a value that matches the regular expression

.*ID (case-insensitive):

The following example does not require authentication for GET , POST , and PUT requests

from the IP address range 192.168.* , when the request contains a header named

internal (case-insensitive), with a value that matches the regular expression .*ID

(case-insensitive):

Con�gure compound not-enforced rules to combine not-enforced URI and IP rules in a

single rule.

Con�gure rules in either Not-Enforced Client IP List or Not-Enforced URIs, using an IP rule

or list of IP rules, a delimiter, and an URI rule or list of URI rules.

In the following example, the agent does not enforce HTTP requests from the IP range

192.168.1.1-192.168.4.3 to any �le in the /images URI:

Consider the following points for compound rules:

Place keywords, such as HTTP methods, NOT , and REGEX , at the beginning of the

compound rule. Keywords a�ect both the IP and the URI rules.

In the following example, the agent does not enforce GET or POST HTTP requests

from the IP range 192.168.1.1-192.168.4.3 , to any �le (*) in the /images URI.

In the following example, the agent defers to AM any request to a method except

POST , from any IP address in the 192.168.1 subnet, to any �le in the /private

URI.

Check that both sides of a rule using the REGEX keyword can be parsed as a regular

expression.

GET,POST,HEADER(internal/.*ID/ri),PUT /other/records/*.html

Compound rules

192.168.1.1-192.168.4.3 | /images/*

GET,POST 192.168.1.1-192.168.4.3 | /images/*

NOT,!POST 192.168.1.* | /private/*

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html

21 / 68

In the following example, the delimiter is && , because the | character can lead to

invalid regular expressions:

For information about con�guring a di�erent delimiter, see Not-Enforced Compound

Rule Separator.

The agent caches hits and misses for each resource accessed.

Caching is enabled if either Enable Not-Enforced IP Cache or Enable Not-Enforced

URIs Cache is true .

The cache size takes the biggest value of Max Entries in Not-Enforced IP Cache or

Max Entries in Not-Enforced URI Cache.

URLs de�ned in Not-Enforced URIs can contain any number of extended ASCII characters.

The agent container automatically percent-encodes extended characters, before the agent

is called.

By default, Java Agent uses UTF-8 to percent-encode extended characters in the resource

paths of not-enforced rules. To change the character encoding, set Container Character

Encoding.

In the following example, the agent does not enforce authentication or request policy

evaluation for HTTP requests to the URL http://www.example.com/forstå :

Note how the extended ASCII character å can be entered without encoding.

By default, Java Agent uses ISO-8859-1 to encode extended characters in HTTP query

parameters of not-enforced rules. To change the character encoding, set Container

Parameter Encoding.

When POST data preservation is enabled, and an unauthenticated client posts HTML form

data to a protected resource, the agent stores the data in its cache, and redirects the client

POST,REGEX 192\.168\.10\.(10|\d) && \/images\/([^/])+\.*\.jpg

Extended characters

Extended characters in the resource path of a not-enforced rule

org.forgerock.agents.notenforced.uri.list=http://www.example.com/

forstå/*

Extended characters in HTTP query parameters of a not-enforced rule

POST Data Preservation

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.compound.separator.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.cache.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.cache.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.container.encoding.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.container.param.encoding.html

22 / 68

to the login screen. After successful authentication, the agent recovers the data stored in

the cache, and automatically submits it to the protected resource.

Use POST data preservation in environments where clients submit form data, and have

short-lived sessions.

The following image shows a simpli�ed data �ow, when an unauthenticated client POSTs

data to a protected web application:

Java Container

Client

Client

Agent Filter/
Agent Application

Agent Filter/
Agent Application

Web Resource
http://www.example.com

Web Resource
http://www.example.com

Access Management

Access Management

1 POST data to http://www.example.com

2
Cache POST data and create identifiers:
-First unique identifier for goto URL in auth response
-Second unique identifier in cookie

3
Redirect for authentication
Provide first unique identifier and cookie

4 Authentication request with first unique identifier and cookie

5 Authentication response with first unique identifier in goto URL, and cookie

6
Validate both identifiers
Recover POST data from endpoint in goto URL

7 Self submitting form, including POST data, which . . .

. . . POSTs to http://www.example.com

Java Agent guarantees the integrity of the data, and the authenticity of the client as

follows:

1. An unauthenticated client requests a POST to a protected resource.

2. The agent caches the POST data, and generates the following unique identi�ers:

An identi�er in the goto URL for the authentication response

An identi�er in a cookie

The use of two unique identi�ers provides robust security, because a hacker must

steal the goto URL and the cookie.

3. The agent redirects the client to AM for authentication, and includes the cookie in the

redirect.

4. The client authenticates with AM.

5. AM provides an authentication response to the goto URL with the unique identi�er,

and includes the cookie.

6. The agent validates both identi�ers, and recovers the POST data from the dummy

internal endpoint given in the goto URL.

If the goto URL contains the incorrect identi�er, or cannot provide a cookie

containing the correct second identi�er (for example, because it has expired), the

agent denies the request.

23 / 68

The presence of the unique identi�er in the goto URL ensures that requests at the

URL can be individually identi�ed. Additionally, the code makes it more di�cult to

hijack user data, because there is little chance of guessing the code within the login

window.

7. The agent sends a self-submitting form to the client browser, that includes the form

data the user attempted to post in step 1. The self-submitting form POSTs to the

protected resource.

Con�gure POST data preservation by using the agent properties listed in POST Data

Preservation in the Properties Reference, or on the Advanced tab of the AM console.

The following image shows a simpli�ed data �ow during a CSRF attack on an

authenticated client when POST data preservation is disabled. In this limited scenario, the

agent SameSite setting is enough to defend the web application:

Con�gure POST Data Preservation

Defend Against CSRF Attacks When Using POST Data Preservation

Cross-site request forgery attacks (CSRF or XSRF) can be a cause of serious

vulnerabilities in web applications. It is the responsibility of the protected application

to implement countermeasures against such attacks, because Java Agent cannot

provide generic protection against CSRF. ForgeRock recommends following the latest

guidance from the OWASP CSRF Prevention Cheat Sheet.

When POST data preservation is enabled, captured POST data that is replayed

appears to come from the same origin as the protected application, not from the site

that originated the request. Therefore, CSRF defenses that rely solely on checking the

origin of requests, such as SameSite cookies or Origin headers, are not reliable.

ForgeRock strongly recommend using token-based mitigations against CSRF, and

relying on other measures only as a defense in depth, in accordance with OWASP

guidance.

WARNING

CSRF Attack When POST Data Preservation Is Disabled

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#post_data_preservation
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

24 / 68

Java Container

Client
client.example.com

Client
client.example.com

Java Agent
agent.example.com

Java Agent
agent.example.com

Web Application
webapp.example.com

Web Application
webapp.example.com

rogue.example.com

rogue.example.com

Client authenticated with AM - cookie domain=client.example.com, SameSite=strict

1 GET rogue.example.com

2 POST data to webapp.example.com

3
POST data to webapp.example.com

Originating from rogue.example.com

4 Redirect for authentication

5
Already authenticated with
Cookie domain=client.example.com
SameSite=strict

6 Get webapp.example.com

7 SameSite rules not sat isfied

8 HTTP 403/Forbidden

The following image shows a simpli�ed data �ow during a CSRF attack on an

authenticated client when POST data preservation is enabled. In this scenario, the

SameSite setting is not enough to defend the web application:

Java Container

Client
client.example.com

Client
client.example.com

Java Agent
agent.example.com

Java Agent
agent.example.com

Web Application
webapp.example.com

Web Application
webapp.example.com

rogue.example.com

rogue.example.com

Client authenticated with AM - cookie domain=client.example.com, SameSite=strict

1 GET rogue.example.com

2 POST data to webapp.example.com

3
POST data to webapp.example.com

Originating from rogue.example.com

4
Cache malicious POST data and create identifiers:
-First unique identifier for goto URL in auth response
-Second unique identifier in cookie

5
Redirect for authentication
Provide PDP identifier and cookie

6
Already authenticated with
Cookie domain=client.example.com
SameSite=strict

7
Immediately rePOST data to webapp.example.com

Originating from rogue.example.com

8
Validate PDP identifier and cookie
Recover malicious POST data from PDP cache

9
Self submitting form including
malicious POST data from PDP cache

1 0
SameSite rules are sat isfied because
data originates from PDP cache

1 1 ... POSTs malicious data to webapp.example.com

CSRF Attack When POST Data Preservation Is Enabled

Continuous Security

25 / 68

When a user requests a resource through AM, excluding proxies and load balancers, the

Java Agent is usually the �rst point of contact. Because Java Agent is closer to the user

than AM, and outside the �rewalls that separate the user and AM, the Java Agent can

sometimes gather information about the request, which AM cannot access.

When the Java Agent requests a policy decision from AM, it can include this information in

an environment map , a set of name/value pairs that describe the request IP and DNS

name, along with other, optional, information.

In the Java Agent, use continuous security to con�gure an environment map. In AM, use

server-side authorization scripts to access the environment map, and write scripted

conditions based on cookies and headers in the request.

For information about server-side authorization scripts, see Scripting a Policy Condition

in AM’s Authorization Guide.

In the Java Agent, use the continuous security properties Client Hostname Header and

Client IP Address Header to con�gure an environment map with custom keys.

The environment map has the following parts:

requestIp

The IP address of the inbound request, determined as follows:

If Client IP Address Header is con�gured, the Java Agent extracts the IP address

from the header.

Otherwise, it uses the Java function HttpServletRequest.getRemoteAddr to

determine the IP address.

This entry is always created in the map.

requestDNSName

The host name address of the inbound request, determined as follows:

If Client Hostname Header is con�gured, the Java Agent extracts the host name

from the header.

Otherwise, it uses the Java function HttpServletRequest.getRemoteHost to

determine the host name address.

This entry is always created in the map.

Other variable names

An array of cookie or header values, con�gured by the continuous security properties

Client Hostname Header and Client IP Address Header.

An entry is created for each value speci�ed in the continuous security properties.

Environment Maps With Customizable Keys

https://backstage.forgerock.com/docs/am/7.1/authorization-guide/scripted-policy-condition.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html

26 / 68

In the following example, the continuous security properties are con�gured to map

values for the ssid cookie and User-Agent header to �elds in an environment map:

If the incoming request contains an ssid cookie and a User-Agent header, the

environment map takes the value of the cookie and header, as shown in this example:

In the Java Agent, use the continuous security properties GET Parameter List for URL

Policy Env, POST Parameter List for URL Policy Env, and JSession Parameter List for URL

Policy Env to con�gure an environment map with �xed keys.

For information about properties to con�gure attribute fetching, see the Properties

Reference.

Java Agent can fetch and inject user information into HTTP headers, request objects, and

cookies, and pass them on to client web applications. The client web applications can

personalize content using these attributes in their web pages or responses.

You can con�gure the type of attributes to fetch, and map the attribute names used on

AM to the values used in the containers. The agent securely fetches the user and session

data from the authenticated user, as well as policy response attributes.

In autonomous mode, the agent operates independently of AM, without needing to

contact an AM instance. Agents allow access to resources as de�ned in not-enforced lists;

otherwise, they deny access.

Agents evaluate not-enforced rules that use the following features:

URLs, IP addresses, IP address ranges, and compound rules.

org.forgerock.agents.continuous.security.cookies.map[ssid]=mySsid

org.forgerock.agents.continuous.security.headers.map[User-

Agent]=myUser-Agent

requestIp=192.16.8.0.1

requestDnsName=client.example.com

mySsid=77xe99f4zqi1l99z

myUser-Agent=Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0)

like Gecko

Environment Maps With Fixed Keys

Attribute Fetch Modes

Autonomous Mode

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.continuous.security.get.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.continuous.security.post.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.continuous.security.http.session.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html

27 / 68

Rules applied to speci�c HTTP methods.

Inverted not-enforced rules, by using properties.

Inverted not-enforced rules, by using inline logical operators.

Rules that use regular expressions.

Rules applied in the presence of named cookies with speci�ed values.

Because the agent does not attempt to contact AM, the following functionality is not

available in autonomous mode:

Noti�cations

Remote auditing

Pro�le attributes

Session attributes

Response attributes

Continuous security

To enable autonomous mode, in the bootstrap properties �le,

AgentBootstrap.properties , set Autonomous mode to true , and restart the Java

container where the agent is installed.

For information about properties to con�gure attempt limits, see the Properties

Reference.

When a client does not present a valid SSO token, the Java Agent redirects the user to the

login URL con�gured in AM. To mitigate redirect loops that can result in an error page

presented to the end-user, con�gure the to limit the number login attempts.

Con�gure the following properties to limit login attempts and redirects:

Login Attempt Limit, to specify a non-zero value for the number of login attempts.

For example, if the property is set to 3, then the agent blocks the fourth login

request.

Redirect Attempt Limit, to limit the number of redirections the agent can take for a

single browser session.

Because the agent does not contact AM when it starts in autonomous mode, the

value of Location of Agent Con�guration Repository must be LOCAL .

IMPORTANT

Login Attempt Limits

FQDN Checking

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fallback.mode.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.login.attempt.limit.count.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.redirect.attempt.limit.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html

28 / 68

For information about properties to con�gure FQDN checking, see the Properties

Reference.

Clients must use valid URLs with fully quali�ed domain names (FQDNs) to access

resources. If a client uses an invalid URL, policy evaluation can fail because the FQDN

does not match the requested URL, and the request fails. Miscon�gured URLs can also

cause incorrect policy evaluation for subsequent access requests.

In load-balanced and virtual host environments, clients can specify resource URLs that

di�er from the FQDNs stored in AM policies. The Java Agent provides the following

properties:

Default FQDN: Speci�es a default URL with valid hostname. If the agent �nds an

invalid URL in the client request, it redirects the request to this URL.

FQDN Map: Maps invalid URLs, load balanced URLs, and virtual host URLs to valid

URLs. Each entry in the map has precedence over the FQDN default.

To prevent redirects to the FQDN default, map all anticipated invalid URLs.

For information about properties to con�gure cookie reset, see the Properties Reference.

AM provides cookie reset properties that the Java Agent carries out prior to redirecting the

client to a login page for authentication.

Cookie reset is typically used when multiple parallel authentication mechanisms are in

play with the agent and another authentication system. The agent can reset cookies set by

the other mechanism before redirecting the client to a login page.

The cookie reset properties include the following:

List of cookies that can be reset

Domain map specifying the domains for each cookie

Path map specifying the path from which the cookie is reset

If you have enabled attribute fetching using cookies to retrieve user data, it is good

practice to use cookie reset, which will reset once you want to access an enforced URL

without a valid session.

Java Agent allocates memory from the Java heap space in the web container to the

following caches:

Cookie Reset Properties

Caching

Con�guration Cache

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.default.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html

29 / 68

When the agent starts up in remote con�guration mode, it retrieves a copy of the agent

pro�le from AM, and stores it in the cache. The cached information is valid until one of

the following events occurs:

AM noti�es the agent of changes to hot-swappable agent con�guration properties.

The agent �ushes the con�guration cache and rereads the agent pro�le from AM.

The agent restarts.

The agent rereads the con�guration from AM or from local �les at the frequency

speci�ed by Con�guration Reload Interval.

If the reload interval is disabled, and noti�cations are disabled, the cached con�guration

remains valid until the agent restarts.

After authentication, AM presents the client with a JWT, containing session information.

The agent stores part of that session information in the cache.

A session stored in the session cache is valid until one of the following events occur:

The session contained in the JWT expires.

The client logs out from AM, and session noti�cations are enabled.

The session reaches the expiration time speci�ed by Session Cache TTL.

When a client attempts to access a protected resource, the agent checks whether there is

a policy decision cached for the resource:

If the client session is valid, the agent requests a policy decision from AM and then

enforces it.

If the client session is not valid, the agent redirects the client to AM for

authentication, regardless of why the session is invalid. The agent does not specify

the reason why the client needs to authenticate.

After the client authenticates, the agent requests policy decision from AM and

enforces it.

Policy decisions are valid in the cache until one of the following events occur:

Session and Policy Validity in Cache

Event What is invalidated?

Session contained in the JWT expires Session and policy decisions related to the

session

Session Cache

Policy Decision Cache

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.reload.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.session.cache.ttl.minutes.html

30 / 68

Event What is invalidated?

Client logs out from AM (and session

noti�cations are enabled)

Session and policy decisions related to the

session

Policy decision reaches the expiration

time speci�ed by Policy Cache TTL

Policy decision

Administrator makes a change to policy

con�guration (and policy noti�cations are

enabled)

All sessions and all policy decisions

The �rst time the agent receives a request for a resource, it matches the request and the

client’s IP address against the rules speci�ed in the not-enforced lists.

Java Agent maintains a cache of hit and miss for each of the not-enforced lists speci�ed in

Not-Enforced Rules.

To speed up future requests, the agent stores whether the resource hit or missed not-

enforced rules in the corresponding caches. Therefore, if a request for the same resource

reaches the agent again, the agent replays the result of the rule evaluations stored in the

caches, instead of re-evaluating the request.

Entries stored in the hit and miss caches do not expire unless AM noti�es the agent about

con�guration changes in the not-enforced lists.

When POST data preservation is enabled, the agent caches HTML form data submitted as

an HTTP POST by unauthenticated clients.

The POST data expires either when the client recovers the information from the cache or

after the time interval speci�ed in POST Data Preservation Cache TTL.

For more information, see POST Data Preservation.

A Java Agent that loses connectivity to AM cannot request policy decisions.

Therefore, the agent denies access to inbound requests that do not have a policy

decision cached until the connection is restored.

IMPORTANT

Not-Enforced Lists Hit and Miss Caches

POST Data Preservation Cache

OpenID Connect JSON Web Token (JWT) Cache

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.policy.cache.ttl.minutes.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/features.html#not-enforced-rules
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.ttl.minutes.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/features.html#about-PDP

31 / 68

Decoding JWTs into JSON objects is a CPU-intensive operation. To reduce the amount of

processing required on each request, agents cache decoded JWTs.

When an agent receives a request for a resource, it passes the JWT through a fast hashing

algorithm that creates a 128-bit hash unique for that JWT. Then the agent determines if

the hash is in the JWT cache. One of the following scenarios occur:

The hash is in the cache. The agent retrieves the decoded JWT from the cache and

continues processing the request.

The hash is not in the cache. The agent decodes the JWT and stores it and its hash in

the cache. Then it continues processing the request.

JWTs in the cache expire after the time interval speci�ed by JWT Cache TTL.

For information about properties to con�gure query parameter handling, see the

Properties Reference.

By default, Java Agent considers any query parameters to be part of the URL, and inserts

the entire string into the policy decision cache. For example, the agent inserts each of the

following URLs in the cache, even though the root URL is the same:

Web applications that add new parameters to the URL on every request would �ll the

agent’s policy cache without actually using it, which in turn causes the agent to request

policy decision to AM each time.

To prevent this behavior, con�gure agents to do one of the following:

Retain nominated URL parameters. For example, remove all except that are added as

part of the policy evaluation.

Con�gure one of the following properties:

Query Parameter List for Policy Evaluation

Regex Query Parameters List for Policy Evaluation

Discard nominated URL parameters. For example, to remove all parameters added

by the angular.js framework.

Con�gure one of the following properties:

Remove Query Parameters List for Policy Evaluation

Regex Remove Query Parameters List for Policy Evaluation

Query Parameter Handling

http://agent.example.com:8080/protected/resource.jsp

http://agent.example.com:8080/protected/resource.jsp?a=value1

http://agent.example.com:8080/protected/resource.jsp?b=value2

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.jwt.cache.ttl.minutes.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.wanted.http.url.param.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.wanted.http.url.params.regexp.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.unwanted.http.url.param.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.unwanted.http.url.params.regex.list.html

32 / 68

The properties are mutually exclusive, and the agent checks them in the following order

of precedence:

1. Remove Query Parameters

2. Regular Expression Remove Query Parameters

3. Retain Query Parameters

4. Regular Expression Retain Query Parameters

For information about properties to con�gure noti�cations for authentication failure, see

Authentication Failure.

To limit the amount of information available to malicious users, by default Java Agent

returns an HTTP 400 message when it or AM cannot authenticate the end user, regardless

of the reason.

If, for example the agent returns an "unknown user" message, malicious users can use

that information to try with di�erent user names until the error message changes to, for

example, "wrong password".

The following table summarizes reasons for the agent to return an HTTP 400 message:

Reason Code Meaning

AUTHN_BOOKKEEPING_COOKI

E_MISSING

The agent cannot �nd the authentication tracking cookie,

de�ned in Pre-Authentication Cookie Name.

This error can happen if the user successfully

authenticates, but clicks the back button of the browser

to return to the previous page.

Java Agent strips nominated query parameters from the URL before taking the

following actions:

Asking AM for policy evaluation

Checking the not-enforced lists

Ensure the policies de�ned in AM, and the not-enforced rules con�gured for the

agent, do not expect a parameter that has been removed.

WARNING

Authentication Failure

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#authentication_failure
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.cookie.name.html

33 / 68

Reason Code Meaning

NONCE_MISSING The agent found the authentication tracking cookie, but it

cannot �nd the unique identi�er of the authentication

request inside the cookie.

This error can happen if the user successfully

authenticates, but clicks the back button of the browser

to return to the previous page.

BAD_AUDIENCE The audience in the JWT does not correspond to the

audience in the cookie entry.

This error can happen if all agents working in a cluster

do not have the same Agent Pro�le Name.

NO_TOKEN The agent cannot �nd the session ID token.

TOKEN_EXPIRED The agent found the session ID token, but it is past its

expiry date.

AM_SAYS_INVALID The agent found the session ID token, the expiry time is

correct, but AM returns that the ID token is invalid.

JWT_INVALID The agent found the session ID token, but cannot parse

it.

EXCEPTION The agent found the session ID token, but threw an

exception while parsing it.

Alternatively, the agent cannot connect to AM to validate

the ID token, maybe due to a network outage.

An HTTP 400 message is not always helpful for debugging the agent �ow or when

another web application depends on the error message. To customize agent bahaviour,

con�gure the following:

A URL or URI where the agent redirects the end user after the authentication failure.

This way, you can control the message that the agent displays to the end user.

User-friendly messages that are mapped to the di�erent conditions that may cause

the agent to return an HTTP 400 message.

For information about properties to con�gure noti�cations for authentication failure, see

the Properties Reference.

Use connection pooling to control the number of connections made by the Java Agent to

AM. When AM is available over a high-bandwidth connection, connection pooling could

Connection Pooling

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html

34 / 68

possibly reduce performance.

Most environments deploy a load balancer and reverse proxy between the agent and

clients, and another between the agent and AM, as shown in the following diagram:

Access
Management

Access
Management

Access

Management

HTTPS

HTTPS

ClientsClientsClients

HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

Agent

Protected

Resource

Java Container
HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

The reverse proxy and the load balancer can be the same entity. In complex

environments, multiple load balancers and reverse proxies can be deployed in the

network.

When a load balancer or reverse proxy is situated in the request path between the agent

and a client, the agent does not have direct access to the IP address or hostname of the

client. The agent cannot identify the client.

For load balancers and reverse proxies that support provision of the client IP and

hostname in HTTP headers, con�gure the following properties:

Client IP Address Header

Client Hostname Header

Con�guration for Load Balancers and Reverse Proxies

Identifying Clients Behind Load Balancers and Reverse Proxies

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html

35 / 68

When there are multiple load balancers or reverse proxies in the request path, the header

values can include a comma-separated list of values, where the �rst value represents the

client, as in client,next-proxy,first-proxy .

When a reverse proxy is situated between the agent and AM, it protects the AM APIs.

When a load balancer is situated between the agent and AM, it regulates the load between

di�erent instances of AM.

Consider the points in this section when installing Java Agent in an environment where

AM is behind a load balancer or a reverse proxy.

The load balancer or reverse proxy conceals the IP addresses and FQDNs of the agent

and of AM. Consequently, AM cannot determine the agent base URL.

Do the following to prevent problems during installation, or with redirection using the

goto parameter:

Con�gure the load balancer or reverse proxy to forward the agent IP address and/or

FQDN in a header.

Con�gure AM to recover the forwarded headers. For more information, see

Con�guring AM to Use Forwarded Headers.

Install the agent using the IP address or FQDN of the load balancer or reverse proxy

as the point of contact for the AM site.

Improve the performance of policy evaluation by setting AM’s sticky cookie (by default,

amlbcookie) to the AM’s server ID. For more information, see Con�guring Site Sticky

Load Balancing in AM’s Setup Guide.

When con�guring multiple agents, consider the impact on sticky load balancer

requirements of using one or multiple agent pro�les:

If the agents are con�gured with multiple agent pro�les, con�gure sticky load

balancing. This is because the agent pro�le name is contained in the OpenID Connect

JWT, used by the agent and AM for communication. Without session stickiness, there

is no way to make sure that the appropriate JWT ends in the appropriate agent

instance.

If multiple agents are con�gured with the same agent pro�le, decide whether to

con�gure sticky load balancing depending on other requirements of your

Agent - Load Balancer/Reverse Proxy - AM

Agent’s IP Address and/or FQDN

AM Sessions and Session Stickiness

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#am-forwarded-headers
https://backstage.forgerock.com/docs/am/7.1/setup-guide/configure-lb.html#configure-lb-stateful

36 / 68

environment.

For communication between the agents and the AM servers, the load balancers and

reverse proxies must support the WebSocket protocol. For more information, see the

load balancer or proxy documentation.

When a load balancer or reverse proxy is situated between the agent and AM, con�gure

AM to recover the forwarded headers that expose the agents' real IP address or FQDN.

1. Log in to the AM console as an administrative user, such as amAdmin .

2. Select Realms > Realm Name > Services.

3. Select Add a Service > Base URL Source > Create, leaving the �elds empty.

4. Con�gure the service with the following properties:

Base URL Source: X-Forwarded-* headers

This property allows AM to retrieve the base URL from the Forwarded

header �eld in the HTTP request. The Forwarded HTTP header �eld is

standardized and speci�ed in RFC 7239.

Context path: AM’s deployment URI. For example, /openam .

Leave the other �elds empty.

For more information about the Base URL Source service, see Base URL

Source in AM’s Reference.

5. Save your changes.

When a reverse proxy is situated between the agent and client, it renders anonymous the

client tra�c that enters the network.

When a load balancer is situated between the agent and client, it regulates the load

between the agents and the containers.

WebSockets

For an example of how to con�gure Apache HTTP as a reverse proxy, see Con�gure

Apache Server As a Reverse Proxy Example.

TIP

Con�gure AM to Use Forwarded Headers

Agent - Load Balancer/Reverse Proxy - Client

https://tools.ietf.org/html/rfc7239
https://backstage.forgerock.com/docs/am/7.1/reference/global-services-configuration.html#global-baseurl
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/reference.html#configure-apache-server

37 / 68

Consider the points in this section when installing Java Agent in an environment where

clients are behind a load balancer or a reverse proxy:

The load balancer or reverse proxy conceals the IP addresses and FQDNs of the agent

and clients. Consequently, the agent cannot determine the client base URL.

Con�gure the load balancer or reverse proxy to forward the client IP address and/or the

client FQDN in a header. Failure to do so prevents the agent from performing policy

evaluation, and applying not-enforced and conditional login/logout rules.

For more information, see Con�guring Client Identi�cation Properties.

For POST data preservation, use sticky load balancing to ensure that the client always hits

the same agent and, therefore, their saved POST data.

Agents provide properties to set either sticky cookie or URL query string for load

balancers and reverse proxies.

For more information, see Con�guring POST Data Preservation for Load Balancers or

Reverse Proxies.

The load balancer or reverse proxy performs SSL o�oading, terminating the SSL tra�c

and converting the requests reaching the Java container to HTTP. This reduces the load on

the protected containers, because the public key is usually processed by a hardware

accelerator.

The following diagram shows the agent connected to a client through a reverse proxie

and load balancer. The agent connection to the reverse proxy and load balancer is on

HTTP and port 80. The client connection is on HTTPS and port 443.

Forward Client’s IP Address and/or FQDNs

Use Sticky Load Balancing With POST Data Preservation

Override Protocol, Host, and Port After SSL O�oading

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-client-properties
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-POST-data

38 / 68

https://www.example.com:443

ClientsClientsClients

http://agent1.internal.com:80 http://agent2.internal.com:80

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Reverse
Proxy

Load
Balancer

Java Container

After SSL o�oading, the host, port, and protocol of the request is changed to match the

request received by the agent; it no longer matches the request from the client, as shown

in the following data �ow. The agent uses this URL for the redirect_url from the OAuth 2.0

�ow, which causes the request to fail.

Java Container

Client Load balancer/Reverse proxy
Agent Filter/

Agent Application
Web App (HTTPS)

https://www.example.com:443 AM

1
Request to
https://www.example.com:443

2
Request to
http://agent1.internal.com:80
SSL termination (HTTPS->HTTP)

3
Create pre-authentication cookie with original URL
http://agent1.internal.com:80

4
Set AM login URL
(URL and `goto` parameter for OAuth 2.0 authorize endpoint)

5 Redirect for authentication

6 Redirect for authentication

7 Authentication with AM

8
Redirect to
http://agent1.internal.com:80

9
Redirect to
http://agent1.internal.com:80

1 0 HTTP 403

In the following �ow, the agent overrides the host, port, and protocol for subsequent

redirects:

39 / 68

Java Container

Client

Client

Load balancer/Reverse proxy
https://www.example.com:443/app

Load balancer/Reverse proxy
https://www.example.com:443/app

Agent
http://agent1.internal.com:80

Agent
http://agent1.internal.com:80

Web Application (HTTPS)
https://www.example.com:443

Web Application (HTTPS)
https://www.example.com:443

AM

AM

1
Request to
https://www.example.com:443

2
Request to
http://agent1.internal.com:80
SSL termination (HTTPS -> HTTP)

3
Create pre-authentication cookie with original URL
http://agent1.internal.com:80

4
Set AM login URL
(URL and `goto` parameter for OAuth 2.0 authorize endpoint)

5
Apply alternate port/host/protocol
https://www.example.com:443

6 Redirect for authentication

7 Redirect for authentication

8 Authentication with AM

9
Redirect to alternate
port/host/protocol
https://www.example.com:443

1 0
Redirect to alternate
port/host/protocol
https://www.example.com:443

1 1
Redirect to alternate
port/host/protocol
https://www.example.com:443

For this scenario, con�gure the agent as described in To Override Protocol, Host, and

Port.

The load balancer or reverse proxy forwards requests and responses between clients and

protected Java containers only. In this case, ports and protocols con�gured in the Java

container match those on the load balancer or reverse proxy, but FQDNs do not.

The following diagram illustrates this scenario:

Match FQDNs for Request Forwarding

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-different-protocol-and-port

40 / 68

https://www.example.com:443

ClientsClientsClients

https://agent1.internal.com:443 https://agent2.internal.com:443

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Java Container

Reverse
Proxy

Load
Balancer

For this scenario, con�gure the agent as described in To Map the Agent Host Name to the

Load Balancer or Reverse Proxy Host Name.

Use the alternate agent URL properties to override the agent protocol, host, and port

with that of the load balancer or reverse proxy.

The agent in this example is in remote con�guration mode, but the steps mention

properties for agents in local con�guration mode.

1. Log in to the AM console as an administrative user with rights to modify the

agent pro�le.

Override Protocol, Host, and Port

Agent con�guration for SSL o�oading prevents FQDN checking and mapping.

Consequently, URL rewriting and redirection do not work correctly when the

agent is accessed directly and not through the load balancer or proxy. This

should not be a problem for client tra�c, but could be a problem for web

applications accessing the protected container directly, from behind the load

balancer.

IMPORTANT

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-same-protocol-and-port
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode

41 / 68

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name >

Advanced.

3. Set Alternative Agent Host Name to that of the load balancer or reverse

proxy. For example, lb.example.com .

The equivalent property setting is

org.forgerock.agents.agent.hostname=lb.example.com .

4. Set Alternative Agent Port to that of the load balancer or proxy. For example,

80 .

The equivalent property setting is org.forgerock.agents.agent.port=80 .

5. Set Alternative Agent Protocol to that of the load balancer or proxy. For

example, http or https .

The equivalent property setting is

org.forgerock.agents.agent.protocol=https .

6. Save your work.

7. Restart the Java container where the agent is installed.

When protocols and port numbers match, con�gure FQDN mapping.

The agent in this example is in remote con�guration mode, but the steps mention

properties for agents in local con�guration mode.

1. Log in to the AM console as an administrative user with rights to modify the Java

agent pro�le.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name.

3. In the Global tab, enable FQDN Check.

The equivalent property setting is

org.forgerock.agents.fqdn.check.enabled=true .

4. Set the FQDN Default �eld to the fully quali�ed domain name of the load

balancer or proxy, such as lb.example.com , rather than the protected

container FQDN where the Java agent is installed.

The equivalent property setting is

org.forgerock.agents.fqdn.default=lb.example.com .

5. Append the FQDN of the load balancer or proxy to the �eld Agent Root URL for

CDSSO.

Map the Agent Host Name to the Load Balancer or Reverse Proxy Host Name

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode

42 / 68

6. Map the load balancer or proxy FQDN to the FQDN where the agent is installed

in the FQDN Virtual Host Map key-pair map. For example, set the key

agent.example.com (protected Java container) and a value lb.example.com

(load balancer or proxy).

The equivalent property setting is

org.forgerock.agents.fqdn.map[agent.example.com]=lb.example.com .

7. Save your work.

8. Restart the Java container where the agent is installed.

After con�guring proxies or load balancers to forward the client FQDN and/or IP address,

con�gure the agents to check the appropriate headers.

This procedure explains how to con�gure the client identi�cation properties.

The agent in this example is in remote con�guration mode, but the steps mention

properties for agents in local con�guration mode.

1. Log in to the AM console with a user that has permissions to modify the Java

agent pro�le.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name >

Advanced.

3. In the Client IP Address Header �eld, con�gure the name of the header

containing the IP address of the client. For example, X-Forwarded-For .

Con�gure this property if your AM policies are IP address-based, you con�gured

the agent for not-enforced IP rules, or if you con�gured the agent to take any

decision based on the client’s IP address.

The equivalent property setting is

org.forgerock.agents.http.header.containing.ip.address=X-Forwarded-

For .

4. In the Client Hostname Header �eld, con�gure the name of the header

containing the FQDN of the client. For example, X-Forwarded-Host .

Con�gure this property if your AM policies are URL-based, you con�gured the

agent for not-enforced URL rules, or if you con�gured the agent to take any

decision based on the client’s URL.

The equivalent property setting is

org.forgerock.agents.http.header.containing.remote.hostname=X-

Forwarded-Host .

Con�gure Client Identi�cation Properties

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode

43 / 68

5. Save your changes.

Con�gure the load balancer or reverse proxy and the agents for session stickiness.

The agent in this example is in remote con�guration mode, but the steps mention

properties for agents in local con�guration mode.

1. Log in to the AM console as a user with permission to modify the agent pro�le.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name >

Advanced.

3. Decide whether the agent should create a cookie or append a string to the URL

to assist with sticky load balancing.

In PDP Sticky session mode, con�gure one of the following options:

Cookie: The agent creates a cookie for POST data preservation session

stickiness. The contents of the cookie is con�gured in the next step.

URL: The agent appends to the URL a string speci�ed in the next step.

The equivalent property setting is

org.forgerock.agents.pdp.sticky.session.mode=Cookie|URL] .

4. In the POST Data Preservation Sticky Session Key Value property, con�gure a

key-pair value separated by the = character.

For example, specifying lb=myserver either sets a cookie called lb with

myserver as a value, or appends lb=myserver to the URL query string.

The equivalent property setting is

org.forgerock.agents.pdp.sticky.session.value=lb=myserver .

5. Save your changes.

6. Con�gure your load balancer or reverse proxy to ensure session stickiness

when the cookie or URL query parameter are present.

ForgeRock provides support services, professional services, training through ForgeRock

University, and partner services to help you set up and maintain your deployments. For

information about getting support, see Getting support.

When you are trying to solve a problem, save time by asking the following questions:

Con�gure POST Data Preservation for Load Balancers or Reverse Proxies

Troubleshooting

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.sticky.session.value.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/release-notes/support.html

44 / 68

How do you reproduce the problem?

What behavior do you expect, and what behavior do you see?

When did the problem start occurring?

Are their circumstances in which the problem does not occur?

Is the problem permanent, intermittent, getting better, getting worse, or staying the

same?

If you contact ForgeRock for help, include the following information with your request:

Description of the problem, including when the problem occurs and its impact on

your operation.

The product version and build information.

Steps you took to reproduce the problem.

Relevant access and error logs, stack traces, and core dumps.

Description of the environment, including the following information:

Machine type

Operating system and version

Web server or container and version

Java version

Patches or other software that might a�ect the problem

Question:

I am trying to install a Java agent, connecting to AM over HTTPS, and seeing the

following error:

Questions and Answers

Cannot Install Over HTTPs

AM server URL: https://openam.example.com:8443/openam

WARNING: Unable to connect to OpenAM server URL. Please specify

the

correct OpenAM server URL by hitting the Back button (<) or

if the OpenAM

server URL is not started and you want to start it later, please

proceed with

the installation.

If OpenAM server is SSL enabled and the root CA certificate for

the OpenAM

45 / 68

What should I do?

Answer:

The Java platform includes certi�cates from many certi�cate authorities (CAs). If,

however, you run your own CA, or you use self-signed certi�cates for HTTPS on the

web application container where you run AM, then the agentadmin command cannot

trust the certi�cate presented during connection to AM, and so cannot complete

installation correctly.

After setting up the web application container where you run AM to use HTTPS, get the

certi�cate to trust in a certi�cate �le. The certi�cate you want is that of the CA who

signed the container certi�cate, or the certi�cate itself if the container certi�cate is self-

signed.

Copy the certi�cate �le to the system where you plan to install the Java agent. Import

the certi�cate into a trust store that you will use during Java agent installation. If you

import the certi�cate into the default trust store for the Java platform, then the

agentadmin command can recognize it without additional con�guration.

Export and import of self-signed certi�cates is demonstrated in Con�guring AM’s

Container for HTTPS of AM’s Installation Guide.

Question:

I am trying to install the WebSphere Java agent on Linux. The system has IBM Java.

When I run agentadmin --install , the script fails to encrypt the password from the

password �le, ending with this message:

What should I do?

Answer:

Edit agentadmin to use IBMJCE, and then try again. For information, see Install With

IBM Java.

server certificate has been not imported into installer JVMs key

store (see

installer-logs/debug/Agent.log for detailed exception), import

the root

CA certificate and restart the installer; or continue

installation without

verifying OpenAM server URL.

Cannot Install WebSphere Java agent on Linux

ERROR: An unknown error has occurred (null). Please try again.

https://backstage.forgerock.com/docs/am/7.1/install-guide/configure-container-HTTPS.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/install.html#install-with-ibm-jvm

46 / 68

Question:

I have client-based (stateless) sessions con�gured in AM, and I am getting in�nite

redirection loops. In the debug.log �le I can see messages similar to the following:

What is happening?

Answer:

This redirection loop happens because the client-based (stateless) session cookie is

surpassing the maximum supported browser header size. Because the cookie is

incomplete, AM cannot validate it.

To ensure the session cookie does not surpass the browser supported size, con�gure

either signing and compression or encryption and compression. For more information,

see AM’s Security Guide.

Question:

I have upgraded my agent and I see the following message in the agent log:

What should I do?

Answer:

Java Agent accept only requests sent to the URL speci�ed by the Agent Root URL for

CDSSO property. For example, http://agent.example.com:8080/ .

As a security measure, agents prevent you from accessing the agent on URLs not

de�ned in the Agent Root URL for CDSSO property. Add entries to this property when:

In�nite Redirection Loops With Stateless Sessions

<timestamp> +0000 ERROR [c53...348]state identifier not present

in authentication state

<timestamp> +0000 WARNING [c53...348]unable to verify pre-

authentication cookie

<timestamp> +0000 WARNING

[c53...348]convert_request_after_authn_post(): unable to

retrieve pre-authentication request data

<timestamp> +0000 DEBUG [c53...348] exit status: forbidden (3),

HTTP status: 403, subrequest 0

Redirection URI Error After Upgrade

redirect_uri_mismatch. The redirection URI provided does not

match a pre-registered value.

https://backstage.forgerock.com/docs/am/7.1/security-guide/session-state-configure-cookie-security.html#policy_agent5_client-based

47 / 68

Con�guring Alternative Agent Protocol to access the agent through di�erent

protocols. For example, http://agent.example.com/ and

https://agent.example.com/ .

Con�guring Alternative Agent Host Name to access the agent through di�erent

virtual host names. For example, http://agent.example.com/ and

http://internal.example.com/ .

Con�guring Alternative Agent Port Number to access the agent through di�erent

ports. For example, http://agent.example.com/ and

http://agent.example.com:8080/ .

Question:

After installing a Java Agent on WebSphere, accessing a URL for a folder in a protected

web application such as http://openam.example.com:9080/test/ results in Error

404: SRVE0190E: File not found: {0} , and redirection fails. What should I do to

work around this problem?

Answer:

Perform the following steps to work around the problem, by setting the WebSphere

custom property com.ibm.ws.webcontainer.invokeFiltersCompatibility=true :

1. In the WebSphere administrative console, browse to Servers > Server Types, and

then click WebSphere application servers.

2. Click the server to apply the custom property to.

3. Navigate to Con�guration > Container settings > Web Container Settings > Web

container.

4. Under Con�guration > Additional Properties, click Custom Properties.

5. In the Custom Properties page, click New.

6. In the settings page, enter the Name

com.ibm.ws.webcontainer.invokeFiltersCompatibility and Value true for

the custom property.

Some properties are case-sensitive.

7. Click Apply or OK as applicable.

8. Click Save in the Message box that appears.

9. Restart the server for the custom property to take e�ect.

For more information, see the IBM documentation, Setting webcontainer custom

properties.

File Not Found Errors After WebSphere Installation

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.protocol.html
https://agent.example.com/
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.port.html
http://www-01.ibm.com/support/docview.wss?uid=swg21284395

48 / 68

The agentadmin command manages Java Agent installation. It requires a Java runtime

environment.

The command supports the following options:

--install

Installs a new agent instance.

Usage: agentadmin --install [--useResponse | --saveResponse file-name] [-

-acceptLicence]

When the command is used without options, the installation process prompts for the

following information:

Con�rmation that you have read and accepted the software license agreement.

Information about the container installation.

The URL to the AM instance. The Java Agent con�rms that it can log in to AM by

using the pro�le name and password provided during installation. If

unsuccessful, the installation stops with an error.

The URL to the Java Agent instance. The Java Agent con�rms that it can access the

host and port of the URL. If the port is busy, it prompts the user to stop the

container.

The Java Agent pro�le name in AM.

The AM realm containing the Java Agent pro�le.

The path to the �le containing the Java Agent password.

--useResponse

Run in silent mode by specifying all the responses in the �le-name �le. When

this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Save all the supplied responses in a response �le speci�ed by �le-name.

--acceptLicense

Con�rms automatically that you have read and accept the software license

agreement, without prompting you to agree. To view the license agreement,

open <server-root>/legal-notices/license.txt.file-name .

--forceInstall

Installs a new Java Agent instance, without checking the AM URL or Java Agent URL.

Reference

agentadmin Command

49 / 68

Usage: agentadmin --forceInstall [--useResponse | --saveResponse file-

name] [--acceptLicence]

When the command is used without options, the installation process prompts for the

following information:

Con�rmation that you have read and accepted the software license agreement.

Information about the container installation.

The URL to the AM instance. The Java Agent does not con�rm that it can log in to

AM. Take care to provide a valid URL.

The URL to the Java Agent instance. The Java Agent does not con�rm that it can

access the URL. Take care to provide a valid URL.

The Java Agent pro�le name in AM.

The AM realm containing the Java Agent pro�le.

The path to the �le containing the Java Agent password.

--useResponse

Run in silent mode by specifying all the responses in the �le-name �le. When

this option is used, agentadmin runs in non-interactive mode.

--saveResponse

Save all the supplied responses in a response �le speci�ed by �le-name.

--acceptLicense

Con�rms automatically that you have read and accept the software license

agreement, without prompting you to agree. To view the license agreement,

open <server-root>/legal-notices/license.txt.file-name .

--custom-install

Installs a new agent instance, specifying advanced con�guration options.

Usage: agentadmin --custom-install [--useResponse | --saveResponse file-

name] [--acceptLicence]

--useResponse

Run in silent mode by specifying all the responses in the �le-name �le. When this

option is used, agentadmin runs in non-interactive mode.

--saveResponse

Save all the supplied responses in a response �le speci�ed by �le-name.

--acceptLicense

Con�rms automatically that you have read and accept the software license

agreement, without prompting you to agree. To view the license agreement, open

<server-root>/legal-notices/license.txt.file-name .

--uninstall

50 / 68

Uninstalls an existing agent instance.

Usage: agentadmin --uninstall [--useResponse | --saveResponse file-name]

--useResponse

Run in silent mode by specifying all the responses in the �le-name �le. When this

option is used, agentadmin runs in non-interactive mode.

--saveResponse

Save all the supplied responses in a response �le speci�ed by �le-name.

--version

Displays the version information.

--uninstallAll

Uninstalls all the agent instances.

--listAgents

Displays details of all the con�gured agents.

--agentInfo

Displays information about the agent corresponding to the speci�ed agent-id.

Usage: agentadmin --agentInfo agent-id

Example: agentadmin --agentInfo agent_001

--encrypt

Encrypts a given string.

Usage: agentadmin --encrypt agent-instance password-file

agent-instance

Agent instance identi�er. The encryption functionality requires the use of agent

instance speci�c encryption key present in its con�guration �le.

password-�le

File containing the password to encrypt.

--getEncryptKey

Generates an agent encryption key.

This section provides an example of how to con�gure Apache as a reverse proxy between

AM and the agent. You can use any reverse proxy that supports the WebSocket protocol.

Refer to the Apache documentation to con�gure Apache for load balancing and any other

requirement for your environment.

Con�gure Apache HTTP Server As a Reverse Proxy Example

51 / 68

Agent

Protected

Resource

Java Container

HTTPS

ClientsClientsClients

Access
Management

Access
Management

Access

Management

HTTPS

Secure
Web

Socket

HTTP

Web
Socket

Reverse
Proxy

Figure 2. Reverse Proxy Configured Between the Agent and AM

Note that the communication protocol changes from HTTPS to HTTP.

Configure Apache as a Reverse Proxy Example

1. In your deployed reverse proxy instance, locate the httpd.conf �le.

2. Add the following modules required for a proxy con�guration:

The mod_proxy_wstunnel.so module is required to support the WebSocket

protocol used for noti�cation between AM and the agents.

3. Add the proxy con�guration inside the VirtualHost context, and set the

following directives:

Modules required for proxy

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_http_module modules/mod_proxy_http.so

LoadModule proxy_wstunnel_module

modules/mod_proxy_wstunnel.so

<VirtualHost 192.168.1.1>

...

Proxy Config

RequestHeader set X-Forwarded-Proto "https" 1

ProxyPass "/openam/notifications"

"ws://openam.example.com:8080/openam/notifications"

Upgrade=websocket 2

ProxyPass "/openam"

"http://openam.example.com:8080/openam" 3

ProxyPassReverseCookieDomain "openam.internal.example.com"

52 / 68

1 RequestHeader: If the proxy is con�gured for https, set to https .

Otherwise, set to http . A later step con�gures AM to recognize the

forwarded header and use it in the goto parameter, to redirect back to the

Java Agent after authentication.

2 ProxyPass: Allow WebSocket tra�c between AM and the Java Agent. If

HTTPS is con�gured between the proxy and AM, use wss instead of ws .

3 ProxyPass: Allow HTTP tra�c between AM and the agent.

4 ProxyPassReverseCookieDomain: Rewrite the domain string of Set-Cookie

headers in this format: internal domain (AM’s domain) public domain

(proxy’s domain) .

5 ProxyPassReverse: Set to the same value con�gured for the ProxyPass

directive.

4. Restart the reverse proxy instance.

5. Con�gure AM to recover the forwarded header con�gured in the reverse proxy.

Also, review other con�gurations that may be required in an environment that

uses reverse proxies. For more information, see Communication Between AM

and Agents

This section describes how to add a custom task handler to the list of handlers, and

provides example handlers. At startup, Java Agent tries to instantiate the speci�ed service

resolver class. If unsuccessful, it instantiates the original service resolver.

1. Place com.sun.identity.agents.arch.ServiceResolver on the classpath.

2. Add com.sun.identity.agents.arch.ServiceResolver to the bootstrap

property Service Resolver Class Name.

Use the following functions to return a list of class names to customize the task handler:

"proxy.example.com" 4

ProxyPassReverse "/openam"

"http://openam.example.com:8080/openam" 5

...

</VirtualHost>

Implement a Custom Task Handler

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#comms-am-agents
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.service.resolver.class.name.html

53 / 68

Function When to execute the

class

What the class must

implement

List<String>

getPreInboundTaskHandle

rs()

Before all other inbound

task handlers

IAmFilterTaskHandler

List<String>

getPostInboundTaskHandl

ers()

After all other inbound task

handlers

IAmFilterTaskHandler

List<String>

getPreSelfRedirectHandl

ers()

Before all other self-

redirect task handlers

IAmFilterTaskHandler

List<String>

getPostSelfRedirectHand

lers()

After all other self-redirect

task handlers

IAmFilterTaskHandler

List<String>

getPreFilterResultHandl

ers()

Before all other result

handlers

IAmFilterResultHandler

List<String>

getPostFilterResultHand

lers()

After all other result

handlers

IAmFilterResultHandler .

If the named handler classes are not on the classpath, or do not implement the required

interface, then:

Handler instantiation fails.

A message is logged at ERROR level.

The agent abandons processing and returns an HTTP 500, e�ectively denying all

requests.

When a handler list is built, make sure that any isActive function implemented by your

custom handler returns true , if appropriate. Any handler returning false is evicted.

For each InboundTaskHandler and SelfRedirectHandler, the process function is invoked

until a non-null value, such as continue or block , is returned. The non-null value

becomes the result for that resource access. Returning a null value indicates to carry on

to the other handlers.

For FilterResultHandlers, returning a null value causes an error.

Example Custom Filter Result Task Handler

54 / 68

/*

* Copyright 2019-2021 ForgeRock AS. All Rights Reserved

*

* Use of this code requires a commercial software license

with ForgeRock AS.

* or with one of its affiliates. All use shall be exclusively

subject

* to such license between the licensee and ForgeRock AS.

*/

package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;

import com.sun.identity.agents.arch.Manager;

import com.sun.identity.agents.filter.AmFilterMode;

import com.sun.identity.agents.filter.AmFilterRequestContext;

import com.sun.identity.agents.filter.AmFilterResult;

import com.sun.identity.agents.filter.AmFilterResultHandler;

/**

* This is an example of a custom filter result task handler

*/

@SuppressWarnings("unused")

public class CustomFilterResultTaskHandler extends

AmFilterResultHandler {

public CustomFilterResultTaskHandler(Manager manager) {

super(manager);

}

@Override

public boolean isActive() {

return true;

}

@Override

public String getHandlerName() {

return "CustomFilterResultTaskHandler";

}

55 / 68

@Override

public AmFilterResult process(AmFilterRequestContext

context, AmFilterResult result) {

String applicationName =

Utils.getApplicationName(context);

AmFilterMode amFilterMode =

AgentConfiguration.getTheFilterMode(applicationName);

HttpServletRequest request =

context.getHttpServletRequest();

logTrace("Hello from {}, application name {}, filter

mode {}, {} {}, result {}",

getHandlerName(), applicationName,

amFilterMode,

request.getMethod(), request.getRequestURI(),

result.toString());

// Must return the result parameter, unless you have a

really good reason not to.

return result;

}

}

Example Custom Self-Redirect Task Handler

/*

* Copyright 2019-2021 ForgeRock AS. All Rights Reserved

*

* Use of this code requires a commercial software license

with ForgeRock AS.

* or with one of its affiliates. All use shall be exclusively

subject

* to such license between the licensee and ForgeRock AS.

*/

package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

56 / 68

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;

import com.sun.identity.agents.arch.AgentException;

import com.sun.identity.agents.arch.Manager;

import com.sun.identity.agents.filter.AmFilterMode;

import com.sun.identity.agents.filter.AmFilterRequestContext;

import com.sun.identity.agents.filter.AmFilterResult;

import com.sun.identity.agents.filter.AmFilterTaskHandler;

import com.sun.identity.agents.filter.IBaseAuthnContext;

/**

* This is an example of a custom self-redirect task handler.

It is essentially the same as the inbound task

* handler.

*/

@SuppressWarnings("unused")

public class CustomSelfRedirectTaskHandler extends

AmFilterTaskHandler {

public CustomSelfRedirectTaskHandler(Manager manager) {

super(manager);

}

@Override

public void initialize(IBaseAuthnContext context) throws

AgentException {

super.initialize(context);

}

@Override

public boolean isActive() {

return true;

}

@Override

public String getHandlerName() {

return "Custom self redirect task handler";

}

@Override

public AmFilterResult process(AmFilterRequestContext

context) {

String applicationName =

57 / 68

Utils.getApplicationName(context);

AmFilterMode amFilterMode =

AgentConfiguration.getTheFilterMode(applicationName);

HttpServletRequest request =

context.getHttpServletRequest();

logTrace("Hello from {}, application name {}, filter

mode {}, {} {}",

getHandlerName(), applicationName,

amFilterMode,

request.getMethod(), request.getRequestURI());

// return null to continue to the other task handlers

(until one returns a non null value)

// return AmFilterResultStatus.STATUS_CONTINUE to

grant access (continue to the next filter after the agent)

// return AmFilterResultStatus.STATUS_REDIRECT to

redirect somewhere else

// return AmFilterResultStatus.STATUS_FORBIDDEN to

deny access

// return AmFilterResultStatus.STATUS_SERVE_DATA to

serve up data to the browser

// return AmFilterResultStatus.STATUS_SERVER_ERROR to

abort the request with a 500 server error

//

return null;

}

}

Example Custom Inbound Task Handler

/*

* Copyright 2019-2021 ForgeRock AS. All Rights Reserved

*

* Use of this code requires a commercial software license

with ForgeRock AS.

* or with one of its affiliates. All use shall be exclusively

subject

* to such license between the licensee and ForgeRock AS.

*/

package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

58 / 68

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;

import com.sun.identity.agents.arch.AgentException;

import com.sun.identity.agents.arch.Manager;

import com.sun.identity.agents.filter.AmFilterMode;

import com.sun.identity.agents.filter.AmFilterRequestContext;

import com.sun.identity.agents.filter.AmFilterResult;

import com.sun.identity.agents.filter.AmFilterTaskHandler;

import com.sun.identity.agents.filter.IBaseAuthnContext;

/**

* This is an example of a custom inbound task handler

*/

@SuppressWarnings("unused")

public class CustomInboundTaskHandler extends

AmFilterTaskHandler {

public CustomInboundTaskHandler(Manager manager) {

super(manager);

}

@Override

public void initialize(IBaseAuthnContext context) throws

AgentException {

super.initialize(context);

}

@Override

public boolean isActive() {

return true;

}

@Override

public String getHandlerName() {

return "Custom inbound task handler";

}

@Override

public AmFilterResult process(AmFilterRequestContext

context) {

59 / 68

String applicationName =

Utils.getApplicationName(context);

AmFilterMode amFilterMode =

AgentConfiguration.getTheFilterMode(applicationName);

HttpServletRequest request =

context.getHttpServletRequest();

logTrace("Hello from {}, application name {}, filter

mode {}, {} {}",

getHandlerName(), applicationName,

amFilterMode,

request.getMethod(), request.getRequestURI());

// return null to continue to the other task handlers

(until one returns a non null value)

// return AmFilterResultStatus.STATUS_CONTINUE to

grant access (continue to the next filter after the agent)

// return AmFilterResultStatus.STATUS_REDIRECT to

redirect somewhere else

// return AmFilterResultStatus.STATUS_FORBIDDEN to

deny access

// return AmFilterResultStatus.STATUS_SERVE_DATA to

serve up data to the browser

// return AmFilterResultStatus.STATUS_SERVER_ERROR to

abort the request with a 500 server error

//

return null;

}

}

Example of How to Override the ServiceResolver Class

/*

* Copyright 2019-2021 ForgeRock AS. All Rights Reserved

*

* Use of this code requires a commercial software license

with ForgeRock AS.

* or with one of its affiliates. All use shall be exclusively

subject

* to such license between the licensee and ForgeRock AS.

*/

package com.sun.identity.agents.custom;

60 / 68

import java.util.ArrayList;

import java.util.List;

import com.sun.identity.agents.arch.ServiceResolver;

/**

* This is an example of how to override the ServiceResolver

class to provide your own custom task handlers. To use

* this example class, place the following in the custom

properties on the advanced tab in the Java Agents profile:

* <p></p>

*

org.forgerock.agents.service.resolver.class.name=com.sun.ident

ity.agents.custom.CustomServiceResolverExample

* <p></p>

* and restart the agent.

*/

@SuppressWarnings("unused")

public class CustomServiceResolverExample extends

ServiceResolver {

@Override

public List<String> getPreInboundTaskHandlers() {

List<String> result = new ArrayList<>();

result.add(CustomInboundTaskHandler.class.getName());

return result;

}

@Override

public List<String> getPostInboundTaskHandlers() {

return new ArrayList<>();

}

@Override

public List<String> getPreSelfRedirectHandlers() {

List<String> result = new ArrayList<>();

result.add(CustomSelfRedirectTaskHandler.class.getName());

return result;

}

@Override

public List<String> getPostSelfRedirectHandlers() {

return new ArrayList<>();

}

61 / 68

Access control

Control to grant or to deny access to a resource.

Account lockout

The act of making an account temporarily or permanently inactive after successive

authentication failures.

Actions

De�ned as part of policies, these verbs indicate what authorized identities can do to

resources.

Advice

In the context of a policy decision denying access, a hint to the policy enforcement

point about remedial action to take that could result in a decision allowing access.

Agent administrator

User having privileges only to read and write agent pro�le con�guration information,

typically created to delegate agent pro�le creation to the user installing a web or Java

agent.

Agent Filter

A servlet that intercepts inbound client requests to a resource, and processes them

according to the value of Agent Filter Mode Map.

Application

A service exposing protected resources. See Web Application.

@Override

public List<String> getPreFilterResultHandlers() {

List<String> result = new ArrayList<>();

result.add(CustomFilterResultTaskHandler.class.getName());

return result;

}

@Override

public List<String> getPostFilterResultHandlers() {

return new ArrayList<>();

}

}

Glossary

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.filter.mode.map.html

62 / 68

In AM policies, an application is a template that constrains the policies that govern

access to protected resources. An application can have zero or more policies.

Application type

Application types act as templates for creating policy applications. Application types

de�ne the following:

A preset list of actions and functional logic, such as policy lookup and resource

comparator logic.

Internal normalization, indexing logic, and comparator logic for applications.

Attribute-based access control (ABAC)

Access control that is based on attributes of a user, such as how old a user is or

whether the user is a paying customer.

Authentication

The act of con�rming the identity of a principal.

Authentication chaining

A series of authentication modules con�gured together which a principal must

negotiate as con�gured in order to authenticate successfully.

Authentication level

Positive integer associated with an authentication module, usually used to require

success with more stringent authentication measures when requesting resources

requiring special protection.

Authentication module

AM authentication unit that handles one way of obtaining and verifying credentials.

Authorization

The act of determining whether to grant or to deny a principal access to a resource.

Authorization Server

In OAuth 2.0, issues access tokens to the client after authenticating a resource owner

and con�rming that the owner authorizes the client to access the protected resource.

AM can play this role in the OAuth 2.0 authorization framework.

Auto-federation

Arrangement to federate a principal’s identity automatically based on a common

attribute value shared across the principal’s pro�les at di�erent providers.

Autonomous Mode

The agent operates independently of AM, without needing to contact an AM instance.

Agents allow access to resources as de�ned in not-enforced lists; otherwise, they deny

access.

Bulk federation

63 / 68

Batch job permanently federating user pro�les between a service provider and an

identity provider based on a list of matched user identi�ers that exist on both

providers.

Centralized con�guration mode

Replaced by remote con�guration mode.

Circle of trust

Group of providers, including at least one identity provider, who have agreed to trust

each other to participate in a SAML v2.0 provider federation.

Client

In OAuth 2.0, requests protected web resources on behalf of the resource owner

given the owner’s authorization. AM can play this role in the OAuth 2.0 authorization

framework.

Client-based OAuth 2.0 tokens

After a successful OAuth 2.0 grant �ow, AM returns a token to the client. This di�ers

from CTS-based OAuth 2.0 tokens, where AM returns a reference to token to the client.

Client-based sessions

AM sessions for which AM returns session state to the client after each request, and

require it to be passed in with the subsequent request. For browser-based clients, AM

sets a cookie in the browser that contains the session information.

For browser-based clients, AM sets a cookie in the browser that contains the session

state. When the browser transmits the cookie back to AM, AM decodes the session

state from the cookie.

Conditions

De�ned as part of policies, these determine the circumstances under which a policy

applies.

Environmental conditions re�ect circumstances like the client IP address, time of day,

how the subject authenticated, or the authentication level achieved.

Subject conditions re�ect characteristics of the subject like whether the subject

authenticated, the identity of the subject, or claims in the subject’s JWT.

Con�guration datastore

LDAP directory service holding AM con�guration data.

Cross-domain single sign-on (CDSSO)

AM capability allowing single sign-on across di�erent DNS domains.

CTS-based OAuth 2.0 tokens

After a successful OAuth 2.0 grant �ow, AM returns a reference to the token to the

client, rather than the token itself. This di�ers from client-based OAuth 2.0 tokens,

where AM returns the entire token to the client.

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode

64 / 68

CTS-based sessions

AM sessions that reside in the Core Token Service’s token store. CTS-based sessions

might also be cached in memory on one or more AM servers. AM tracks these

sessions in order to handle events like logout and timeout, to permit session

constraints, and to notify web applications involved in SSO when a session ends.

Delegation

Granting users administrative privileges with AM.

Entitlement

Decision that de�nes the following:

Which resource names can and cannot be accessed for a given identity in the

context of a particular web application.

Which actions are allowed and denied.

Related advice and attributes.

Extended metadata

Federation con�guration information speci�c to AM.

Extensible Access Control Markup Language (XACML)

Standard, XML-based access control policy language, including a processing model for

making authorization decisions based on policies.

Federation

Standardized means for aggregating identities, sharing authentication and

authorization data information between trusted providers, and allowing principals to

access services across di�erent providers without authenticating repeatedly.

Fedlet

Service provider application capable of participating in a circle of trust and allowing

federation without installing all of AM on the service provider side; AM lets you create

Java Fedlets.

Hot swappable

Refers to con�guration properties for which changes can take e�ect without restarting

the container where AM runs.

Identity

Set of data that uniquely describes a person or a thing such as a device or a web

application.

Identity federation

Linking of a principal’s identity across multiple providers.

Identity provider (IdP)

Entity that produces assertions about a principal (such as how and when a principal

authenticated, or that the principal’s pro�le has a speci�ed attribute value).

65 / 68

Identity repository

Data store holding user pro�les and group information; di�erent identity repositories

can be de�ned for di�erent realms.

Java Agent

Java web application installed in a web container that acts as a policy enforcement

point. The Java Agent �lters requests to other applications in the container, using

policies based on web application resource URLs.

Local con�guration mode

The agent reads its con�guration from the AgentConfiguration.properties �le. See

also remote con�guration mode.

The con�guration mode is de�ned by Location of Agent Con�guration Repository.

Metadata

Federation con�guration information for a provider.

Policy

Set of rules that de�ne who is granted access to a protected resource when, how, and

under what conditions.

Policy agent

Java, web, or custom agent that intercepts requests for resources, directs principals to

AM for authentication, and enforces policy decisions from AM.

Policy Administration Point (PAP)

Entity that manages and stores policy de�nitions.

Policy Decision Point

Entity that evaluates access rights and then issues authorization decisions.

Policy Enforcement Point (PEP)

Entity that intercepts a request for a resource and then enforces policy decisions from

a policy decision point.

Policy Information Point (PIP)

Entity that provides extra information, such as user pro�le attributes that a policy

decision point needs in order to make a decision.

Principal

Represents an entity that has been authenticated (such as a user, a device, or a web

application), and is therefore distinguished from other entities.

When a Subject successfully authenticates, AM associates the Subject with the

Principal.

protected resource

A resource that is not matched by a "not enforced" rule.

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-subject

66 / 68

Privilege

In the context of delegated administration, a set of administrative tasks that can be

performed by speci�ed identities in a given realm.

Provider federation

Agreement among providers to participate in a circle of trust.

Realm

AM unit for organizing con�guration and identity information.

Realms can be used, for example, when di�erent parts of an organization have

di�erent web applications and identity stores, and when di�erent organizations use

the same AM deployment.

Administrators can delegate realm administration. The administrator assigns

administrative privileges to users, allowing them to perform administrative tasks

within the realm.

Remote con�guration mode

The agent ignores the con�guration in AgentConfiguration.properties , retains the

retrieved bootstrap properties, and downloads the con�guration from AM. See also

local con�guration mode.

The con�guration mode is de�ned by Location of Agent Con�guration Repository.

Resource

Something a user can access over the network such as a web page.

De�ned as part of policies, these can include wildcards in order to match multiple

actual resources.

Resource owner

In OAuth 2.0, entity who can authorize access to protected web resources, such as an

end user.

Resource server

In OAuth 2.0, server hosting protected web resources, capable of handling access

tokens to respond to requests for such resources.

Response attributes

De�ned as part of policies, these allow AM to return additional information in the

form of "attributes" with the response to a policy decision.

Role based access control (RBAC)

Access control that is based on whether a user has been granted a set of permissions

(a role).

Security Assertion Markup Language (SAML)

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html

67 / 68

Standard, XML-based language for exchanging authentication and authorization data

between identity providers and service providers.

Service provider (SP)

Entity that consumes assertions about a principal (and provides a service that the

principal is trying to access).

Authentication Session

The interval while the user or entity is authenticating to AM.

Session

The interval that starts after the user has authenticated and ends when the user logs

out, or when their session is terminated. For browser-based clients, AM manages user

sessions across one or more web applications by setting a session cookie. See also

CTS-based sessions and Client-based sessions.

Session high availability

Capability that lets any AM server in a clustered deployment access shared, persistent

information about users' sessions from the CTS token store. The user does not need

to log in again unless the entire deployment goes down.

Session token

Unique identi�er issued by AM after successful authentication. For a CTS-based

sessions, the session token is used to track a principal’s session.

Single log out (SLO)

Capability to end a session once, and thereby end the session across multiple web

applications.

Single sign-on (SSO)

Capability to authenticate once and gain access to multiple web applications, without

authenticating again.

Site

Group of AM servers con�gured the same way, accessed through a load balancer

layer. The load balancer handles failover to provide service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata

Standard federation con�guration information that you can share with other access

management software.

Stateless Service

Stateless services do not store any data locally to the service. When the service

requires data to perform any action, it requests it from a data store. For example, a

stateless authentication service stores session state for logged-in users in a database.

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-client-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session

68 / 68

This way, any server in the deployment can recover the session from the database

and service requests for any user.

All AM services are stateless unless otherwise speci�ed. See also Client-based sessions

and CTS-based sessions.

Subject

Entity that requests access to a resource .

When an identity successfully authenticates, AM associates the identity with the

Principal that distinguishes it from other identities. An identity can be associated with

multiple principals.

Identity store

Data storage service holding principals' pro�les; underlying storage can be an LDAP

directory service or a custom IdRepo implementation.

Web Agent

Native library installed in a web server that acts as a policy enforcement point with

policies based on web page URLs.

Web Application

An application that runs on a web server, that is accessed by the user through a web

browser. The web application exposes protected resources.

Copyright © 2010-2023 ForgeRock, all rights reserved.

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-client-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-principal

