
Integrator's Guide
/ OpenIDM 4

Latest update: 4.0.0

Anders Askåsen
Paul Bryan
Mark Craig
Andi Egloff

Laszlo Hordos
Matthias Tristl

Lana Frost
Mike Jang

Daly Chikhaoui

ForgeRock AS
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

Abstract

Guide to configuring and integrating OpenIDM into identity management solutions.
OpenIDM identity management software offers flexible, open source services for
automating management of the identity life cycle.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... viii

1. Who Should Use This Guide ... viii
2. Formatting Conventions .. viii
3. Accessing Documentation Online .. ix
4. Using the ForgeRock.org Site ... ix

1. Architectural Overview .. 1
1.1. OpenIDM Modular Framework ... 1
1.2. Infrastructure Modules ... 3
1.3. Core Services ... 4
1.4. Secure Commons REST Commands .. 5
1.5. Access Layer .. 5

2. Starting and Stopping OpenIDM ... 7
2.1. To Start and Stop OpenIDM ... 7
2.2. Specifying the OpenIDM Startup Configuration .. 8
2.3. Monitoring the Basic Health of an OpenIDM System 10
2.4. Displaying Information About Installed Modules ... 18
2.5. Starting OpenIDM in Debug Mode ... 19
2.6. Running OpenIDM As a Service on Linux Systems .. 20

3. OpenIDM Command-Line Interface ... 23
3.1. Using the configexport Subcommand .. 24
3.2. Using the configimport Subcommand ... 25
3.3. Using the configureconnector Subcommand ... 26
3.4. Using the encrypt Subcommand ... 27
3.5. Using the secureHash Subcommand ... 29
3.6. Using the keytool Subcommand .. 31
3.7. Using the validate Subcommand ... 32
3.8. Using the update Subcommand .. 32

4. OpenIDM Web-Based User Interfaces .. 33
4.1. Configuring OpenIDM from the Admin UI .. 33
4.2. Working With the Self-Service UI ... 36
4.3. Configuring User Self-Service ... 37
4.4. Customizing a UI Template .. 45
4.5. Managing Accounts .. 51
4.6. Configuring Account Relationships ... 55
4.7. Managing Workflows From the Self-Service UI ... 64
4.8. Customizing the UI ... 66
4.9. Changing the UI Theme ... 66
4.10. Using an External System for Password Reset .. 69
4.11. Providing a Logout URL to External Applications .. 70
4.12. Changing the UI Path ... 70
4.13. Disabling the UI ... 71

5. Managing the OpenIDM Repository ... 72
5.1. Understanding the JDBC Repository Configuration File 72
5.2. Using Explicit or Generic Object Mapping With a JDBC Repository 76

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

5.3. Configuring SSL with a JDBC Repository .. 83
5.4. Interacting With the Repository Over REST .. 85

6. Configuring OpenIDM ... 87
6.1. OpenIDM Configuration Objects ... 87
6.2. Changing the Default Configuration ... 90
6.3. Configuring an OpenIDM System for Production .. 90
6.4. Configuring OpenIDM Over REST .. 92
6.5. Using Property Value Substitution In the Configuration 96
6.6. Adding Custom Endpoints .. 98
6.7. Custom Endpoint Example .. 104
6.8. Setting the Script Configuration ... 106
6.9. Calling a Script From a Configuration File ... 108

7. Accessing Data Objects ... 111
7.1. Accessing Data Objects By Using Scripts .. 111
7.2. Accessing Data Objects By Using the REST API .. 112
7.3. Defining and Calling Queries .. 112

8. Managing Users, Groups, Roles and Relationships ... 129
8.1. Creating and Modifying Managed Object Types .. 129
8.2. Working with Managed Users ... 131
8.3. Working With Managed Groups .. 132
8.4. Working With Managed Roles ... 132
8.5. Managing Relationships Between Objects ... 149
8.6. Running Scripts on Managed Objects ... 154
8.7. Encoding Attribute Values .. 155
8.8. Restricting HTTP Access to Sensitive Data ... 157

9. Using Policies to Validate Data ... 160
9.1. Configuring the Default Policy for Managed Objects 160
9.2. Extending the Policy Service .. 164
9.3. Disabling Policy Enforcement ... 167
9.4. Managing Policies Over REST .. 167

10. Configuring Server Logs .. 172
10.1. Log Message Files .. 172
10.2. Specifying the Logging Level .. 172
10.3. Disabling Logs .. 173

11. Connecting to External Resources ... 174
11.1. About OpenIDM and OpenICF .. 174
11.2. Accessing Remote Connectors .. 176
11.3. Configuring Connectors .. 178
11.4. Installing and Configuring Remote Connector Servers 189
11.5. Connectors Supported With OpenIDM 4 ... 199
11.6. Creating Default Connector Configurations ... 231
11.7. Checking the Status of External Systems Over REST 237
11.8. Adding Attributes to Connector Configurations ... 241

12. Synchronizing Data Between Resources .. 243
12.1. Types of Synchronization .. 243
12.2. Defining Your Data Mapping Model .. 244
12.3. Configuring Synchronization Between Two Resources 245

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. v

12.4. Managing Reconciliation Over REST ... 260
12.5. Restricting Reconciliation By Using Queries ... 266
12.6. Restricting Reconciliation to a Specific ID .. 270
12.7. Configuring the LiveSync Retry Policy .. 271
12.8. Disabling Automatic Synchronization Operations 274
12.9. Configuring Synchronization Failure Compensation 275
12.10. Synchronization Situations and Actions ... 276
12.11. Asynchronous Reconciliation ... 287
12.12. Configuring Case Sensitivity For Data Stores .. 289
12.13. Optimizing Reconciliation Performance ... 290
12.14. Correlating Existing Target Objects .. 291
12.15. Scheduling Synchronization .. 298

13. Scheduling Tasks and Events .. 301
13.1. Scheduler Configuration ... 301
13.2. Configuring Persistent Schedules ... 305
13.3. Schedule Examples ... 306
13.4. Managing Schedules Over REST ... 307
13.5. Scanning Data to Trigger Tasks .. 312

14. Managing Passwords ... 319
14.1. Enforcing Password Policy .. 319
14.2. Storing Separate Passwords Per Linked Resource 323
14.3. Generating Random Passwords ... 325
14.4. Synchronizing Passwords Between OpenIDM and an LDAP Server 325

15. Managing Authentication, Authorization and Role-Based Access Control 342
15.1. OpenIDM Authentication .. 342
15.2. Roles and Authentication .. 357
15.3. Authorization .. 358
15.4. Building Role-Based Access Control (RBAC) .. 361

16. Securing & Hardening OpenIDM ... 363
16.1. Accessing the Security Management Service .. 363
16.2. Security Precautions for a Production Environment 370

17. Integrating Business Processes and Workflows .. 382
17.1. BPMN 2.0 and the Activiti Tools ... 382
17.2. Setting Up Activiti Integration With OpenIDM .. 383
17.3. Using Custom Templates for Activiti Workflows .. 389
17.4. Managing Workflows Over the REST Interface ... 390

18. Using Audit Logs ... 405
18.1. Configuring the Audit Service ... 405
18.2. Configuring Audit Event Handlers .. 406
18.3. Audit Log Event Topics ... 413
18.4. Event Topics: Filtering ... 414
18.5. Filtering Audit Logs by Policy ... 419
18.6. Configuring an Audit Exception Formatter .. 419
18.7. Adjusting Audit Write Behavior ... 420
18.8. Generating Reports ... 420
18.9. Purging Obsolete Audit Information .. 421
18.10. Querying Audit Logs Over REST ... 423

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vi

19. Configuring OpenIDM for High Availability ... 437
19.1. Configuring and Adding to a Cluster ... 438
19.2. Configuring an OpenIDM Instance as Part of a Cluster 439
19.3. Managing Scheduled Tasks Across a Cluster .. 442
19.4. Managing Nodes Over REST .. 444

20. Sending Email ... 446
20.1. Sending Mail Over REST .. 449
20.2. Sending Mail From a Script .. 450

21. Accessing External REST Services ... 451
21.1. Invocation Parameters .. 452
21.2. Support for Non-JSON Responses ... 453

22. OpenIDM Project Best Practices .. 456
22.1. Implementation Phases ... 456

23. Troubleshooting ... 459
23.1. OpenIDM Stopped in Background ... 459
23.2. The scr list Command Shows Sync Service As Unsatisfied 459
23.3. JSON Parsing Error .. 460
23.4. System Not Available .. 460
23.5. Bad Connector Host Reference in Provisioner Configuration 461
23.6. Missing Name Attribute .. 461

24. Advanced Configuration ... 463
24.1. Advanced Startup Configuration ... 463

A. File Layout .. 465
B. Ports Used .. 473
C. Data Models and Objects Reference .. 474

C.1. Managed Objects ... 475
C.2. Configuration Objects ... 489
C.3. System Objects .. 492
C.4. Audit Objects ... 492
C.5. Links .. 492

D. Synchronization Reference .. 493
D.1. Object-Mapping Objects ... 493
D.2. Links .. 500
D.3. Queries .. 501
D.4. Reconciliation ... 501
D.5. REST API ... 502

E. REST API Reference ... 504
E.1. URI Scheme ... 505
E.2. Object Identifiers ... 505
E.3. Content Negotiation ... 506
E.4. Supported Operations .. 506
E.5. Conditional Operations ... 510
E.6. Supported Methods .. 510
E.7. REST Endpoints and Sample Commands .. 516
E.8. HTTP Status Codes .. 530

F. Scripting Reference ... 532
F.1. Function Reference .. 532

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vii

F.2. Places to Trigger Scripts .. 550
F.3. Variables Available to Scripts ... 551
F.4. Validating Scripts Over REST ... 555

G. Router Service Reference ... 557
G.1. Configuration ... 557
G.2. Example ... 561

H. Embedded Jetty Configuration .. 563
H.1. Using OpenIDM Configuration Properties in the Jetty Configuration 563
H.2. Jetty Default Settings ... 565
H.3. Registering Additional Servlet Filters ... 565
H.4. Disabling and Enabling Secure Protocols ... 566

I. Authentication and Session Module Configuration Details 568
I.1. OPENAM_SESSION Module Configuration Options 570

J. Audit Configuration Schema ... 573
J.1. OpenIDM Specific Audit Event Topics ... 573
J.2. Commons Audit Event Topics .. 575
J.3. Audit Event Handler Configuration .. 578

K. Release Levels & Interface Stability .. 580
K.1. ForgeRock Product Release Levels ... 580
K.2. ForgeRock Product Interface Stability .. 581

OpenIDM Glossary ... 583
Index ... 586

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. viii

Preface
In this guide you will learn how to integrate OpenIDM as part of a complete identity management
solution.

1. Who Should Use This Guide
This guide is written for systems integrators building identity management solutions based on
OpenIDM services. This guide describes OpenIDM, and shows you how to set up OpenIDM as part of
your identity management solution.

You do not need to be an OpenIDM wizard to learn something from this guide, though a background
in identity management and building identity management solutions can help.

2. Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.

Command-line, terminal sessions are formatted as follows:
$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:
class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. ix

3. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Architectural Overview
OpenIDM Modular Framework

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Architectural Overview

This chapter introduces the OpenIDM architecture, and describes the modules and services that
make up the OpenIDM product.

In this chapter you will learn:

• How OpenIDM uses the OSGi framework as a basis for its modular architecture

• How the infrastructure modules provide the features required for OpenIDM's core services

• What those core services are and how they fit in to the overall architecture

• How OpenIDM provides access to the resources it manages

1.1. OpenIDM Modular Framework
OpenIDM implements infrastructure modules that run in an OSGi framework. It exposes core services
through RESTful APIs to client applications.

The following figure provides an overview of the OpenIDM architecture, which is covered in more
detail in subsequent sections of this chapter.

Architectural Overview
OpenIDM Modular Framework

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

The OpenIDM Modular Architecture

The OpenIDM framework is based on OSGi:

OSGi

OSGi is a module system and service platform for the Java programming language that
implements a complete and dynamic component model. For a good introduction to OSGi, see the
OSGi site. OpenIDM currently runs in Apache Felix, an implementation of the OSGi Framework
and Service Platform.

Servlet

The Servlet layer provides RESTful HTTP access to the managed objects and services. OpenIDM
embeds the Jetty Servlet Container, which can be configured for either HTTP or HTTPS access.

https://www.osgi.org/developer/benefits-of-using-osgi
http://felix.apache.org/
https://www.osgi.org/Specifications/HomePage
https://www.osgi.org/Specifications/HomePage

Architectural Overview
Infrastructure Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

1.2. Infrastructure Modules
OpenIDM infrastructure modules provide the underlying features needed for core services:

BPMN 2.0 Workflow Engine

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

For more information, see "Integrating Business Processes and Workflows".

Task Scanner

OpenIDM provides a task-scanning mechanism that performs a batch scan for a specified
property in OpenIDM data, on a scheduled interval. The task scanner then executes a task when
the value of that property matches a specified value.

For more information, see "Scanning Data to Trigger Tasks".

Scheduler

The scheduler provides a cron-like scheduling component implemented using the Quartz library.
Use the scheduler, for example, to enable regular synchronizations and reconciliations.

For more information, see "Scheduling Tasks and Events".

Script Engine

The script engine is a pluggable module that provides the triggers and plugin points for
OpenIDM. OpenIDM currently supports JavaScript and Groovy.

Policy Service

OpenIDM provides an extensible policy service that applies validation requirements to objects
and properties, when they are created or updated.

For more information, see "Using Policies to Validate Data".

Audit Logging

Auditing logs all relevant system activity to the configured log stores. This includes the data from
reconciliation as a basis for reporting, as well as detailed activity logs to capture operations on
the internal (managed) and external (system) objects.

For more information, see "Using Audit Logs".

Repository

The repository provides a common abstraction for a pluggable persistence layer. OpenIDM
4 supports reconciliation and synchronization with several major external repositories in
production, including relational databases, LDAP servers, and even flat CSV and XML files.

http://www.quartz-scheduler.org

Architectural Overview
Core Services

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

The repository API uses a JSON-based object model with RESTful principles consistent with
the other OpenIDM services. To facilitate testing, OpenIDM includes an embedded instance
of OrientDB, a NoSQL database. You can then incorporate a supported internal repository, as
described in "Installing a Repository For Production" in the Installation Guide.

1.3. Core Services
The core services are the heart of the OpenIDM resource-oriented unified object model and
architecture:

Object Model

Artifacts handled by OpenIDM are Java object representations of the JavaScript object model as
defined by JSON. The object model supports interoperability and potential integration with many
applications, services, and programming languages.

OpenIDM can serialize and deserialize these structures to and from JSON as required. OpenIDM
also exposes a set of triggers and functions that system administrators can define, in either
JavaScript or Groovy, which can natively read and modify these JSON-based object model
structures.

Managed Objects

A managed object is an object that represents the identity-related data managed by OpenIDM.
Managed objects are configurable, JSON-based data structures that OpenIDM stores in its
pluggable repository. The default configuration of a managed object is that of a user, but you can
define any kind of managed object, for example, groups or roles.

You can access managed objects over the REST interface with a query similar to the following:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/..."

System Objects

System objects are pluggable representations of objects on external systems. For example, a user
entry that is stored in an external LDAP directory is represented as a system object in OpenIDM.

System objects follow the same RESTful resource-based design principles as managed objects.
They can be accessed over the REST interface with a query similar to the following:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/system/..."

Architectural Overview
Secure Commons REST Commands

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

There is a default implementation for the OpenICF framework, that allows any connector object
to be represented as a system object.

Mappings

Mappings define policies between source and target objects and their attributes during
synchronization and reconciliation. Mappings can also define triggers for validation,
customization, filtering, and transformation of source and target objects.

For more information, see "Synchronizing Data Between Resources".

Synchronization and Reconciliation

Reconciliation enables on-demand and scheduled resource comparisons between the OpenIDM
managed object repository and source or target systems. Comparisons can result in different
actions, depending on the mappings defined between the systems.

Synchronization enables creating, updating, and deleting resources from a source to a target
system, either on demand or according to a schedule.

For more information, see "Synchronizing Data Between Resources".

1.4. Secure Commons REST Commands
Representational State Transfer (REST) is a software architecture style for exposing resources, using
the technologies and protocols of the World Wide Web. For more information on the ForgeRock REST
API, see "REST API Reference".

REST interfaces are commonly tested with a curl command. Many of these commands are used in
this document. They work with the standard ports associated with Java EE communications, 8080 and
8443.

To run curl over the secure port, 8443, you must include either the --insecure option, or follow the
instructions shown in "Restrict REST Access to the HTTPS Port". You can use those instructions
with the self-signed certificate generated when OpenIDM starts, or with a *.crt file provided by a
certificate authority.

In many examples in this guide, curl commands to the secure port are shown with a --cacert self-
signed.crt option. Instructions for creating that self-signed.crt file are shown in "Restrict REST Access
to the HTTPS Port".

1.5. Access Layer
The access layer provides the user interfaces and public APIs for accessing and managing the
OpenIDM repository and its functions:

Architectural Overview
Access Layer

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

RESTful Interfaces

OpenIDM provides REST APIs for CRUD operations, for invoking synchronization and
reconciliation, and to access several other services.

For more information, see "REST API Reference".

User Interfaces

User interfaces provide password management, registration, self-service, and workflow services.

Starting and Stopping OpenIDM
To Start and Stop OpenIDM

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

Chapter 2

Starting and Stopping OpenIDM
This chapter covers the scripts provided for starting and stopping OpenIDM, and describes how to
verify the health of a system, that is, that all requirements are met for a successful system startup.

2.1. To Start and Stop OpenIDM
By default you start and stop OpenIDM in interactive mode.

To start OpenIDM interactively, open a terminal or command window, change to the openidm directory,
and run the startup script:

• startup.sh (UNIX)

• startup.bat (Windows)

The startup script starts OpenIDM, and opens an OSGi console with a -> prompt where you can issue
console commands.

To stop OpenIDM interactively in the OSGi console, run the shutdown command:
-> shutdown

You can also start OpenIDM as a background process on UNIX and Linux. Follow these steps before
starting OpenIDM for the first time.

1. If you have already started OpenIDM, shut down OpenIDM and remove the Felix cache files under
openidm/felix-cache/:
-> shutdown
...
$ rm -rf felix-cache/*

2. Start OpenIDM in the background. The nohup survives a logout and the 2>&1& redirects standard
output and standard error to the noted console.out file:
$ nohup ./startup.sh > logs/console.out 2>&1&
[1] 2343

To stop OpenIDM running as a background process, use the shutdown.sh script:
$./shutdown.sh
./shutdown.sh
Stopping OpenIDM (2343)

Starting and Stopping OpenIDM
Specifying the OpenIDM Startup Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

Incidentally, the process identifier (PID) shown during startup should match the PID shown during
shutdown.

Note

Although installations on OS X systems are not supported in production, you might want to run OpenIDM on
OS X in a demo or test environment. To run OpenIDM in the background on an OS X system, take the following
additional steps:

• Remove the org.apache.felix.shell.tui-*.jar bundle from the openidm/bundle directory.

• Disable ConsoleHandler logging, as described in "Disabling Logs".

2.2. Specifying the OpenIDM Startup Configuration
By default, OpenIDM starts with the configuration, script, and binary files in the openidm/conf, openidm/
script, and openidm/bin directories. You can launch OpenIDM with a different set of configuration,
script, and binary files for test purposes, to manage different OpenIDM projects, or to run one of the
included samples.

The startup.sh script enables you to specify the following elements of a running OpenIDM instance:

• --project-location or -p /path/to/project/directory

The project location specifies the directory with OpenIDM configuration and script files.

All configuration objects and any artifacts that are not in the bundled defaults (such as custom
scripts) must be included in the project location. These objects include all files otherwise included
in the openidm/conf and openidm/script directories.

For example, the following command starts OpenIDM with the configuration of Sample 1, with a
project location of /path/to/openidm/samples/sample1:
$./startup.sh -p /path/to/openidm/samples/sample1

If you do not provide an absolute path, the project location path is relative to the system property,
user.dir. OpenIDM then sets launcher.project.location to that relative directory path. Alternatively, if
you start OpenIDM without the -p option, OpenIDM sets launcher.project.location to /path/to/openidm/
conf.

Note

When we refer to "your project" in ForgeRock's OpenIDM documentation, we're referring to the value of
launcher.project.location.

• --working-location or -w /path/to/working/directory

Starting and Stopping OpenIDM
Specifying the OpenIDM Startup Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

The working location specifies the directory to which OpenIDM writes its database cache, audit
logs, and felix cache. The working location includes everything that is in the default db/ and audit/,
and felix-cache/ subdirectories.

The following command specifies that OpenIDM writes its database cache and audit data to /Users/
admin/openidm/storage:
$./startup.sh -w /Users/admin/openidm/storage

If you do not provide an absolute path, the path is relative to the system property, user.dir. If you do
not specify a working location, OpenIDM writes this data to the openidm/db, openidm/felix-cache and
openidm/audit directories.

Note that this property does not affect the location of the OpenIDM system logs. To change the
location of the OpenIDM logs, edit the conf/logging.properties file.

You can also change the location of the Felix cache, by editing the conf/config.properties file, or by
starting OpenIDM with the -s option, described later in this section.

• --config or -c /path/to/config/file

A customizable startup configuration file (named launcher.json) enables you to specify how the OSGi
Framework is started.

Unless you are working with a highly customized deployment, you should not modify the
default framework configuration. This option is therefore described in more detail in "Advanced
Configuration".

• --storage or -s /path/to/storage/directory

Specifies the OSGi storage location of the cached configuration files.

You can use this option to redirect output if you are installing OpenIDM on a read-only filesystem
volume. For more information, see "Installing OpenIDM on a Read-Only Volume" in the Installation
Guide. This option is also useful when you are testing different configurations. Sometimes when
you start OpenIDM with two different sample configurations, one after the other, the cached
configurations are merged and cause problems. Specifying a storage location creates a separate
felix-cache directory in that location, and the cached configuration files remain completely separate.

By default, properties files are loaded in the following order, and property values are resolved in the
reverse order:

1. system.properties

2. config.properties

3. boot.properties

If both system and boot properties define the same attribute, the property substitution process
locates the attribute in boot.properties and does not attempt to locate the property in system.properties.

Starting and Stopping OpenIDM
Monitoring the Basic Health of an OpenIDM System

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

You can use variable substitution in any .json configuration file with the install, working and project
locations described previously. You can substitute the following properties:

install.location
install.url
working.location
working.url
project.location
project.url

Property substitution takes the following syntax:
&{launcher.property}

For example, to specify the location of the OrientDB database, you can set the dbUrl property in
repo.orientdb.json as follows:

"dbUrl" : "local:&{launcher.working.location}/db/openidm",

The database location is then relative to a working location defined in the startup configuration.

You can find more examples of property substitution in many other files in your project's conf/
subdirectory.

Note that property substitution does not work for connector reference properties. So, for example,
the following configuration would not be valid:
"connectorRef" : {
 "connectorName" : "&{connectorName}",
 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion" : "&{LDAP.BundleVersion}"
 ...

The "connectorName" must be the precise string from the connector configuration. If you need to specify
multiple connector version numbers, use a range of versions, for example:
"connectorRef" : {
 "connectorName" : "org.identityconnectors.ldap.LdapConnector",
 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion" : "[1.4.0.0,2.0.0.0)",
 ...

2.3. Monitoring the Basic Health of an OpenIDM System
Due to the highly modular, configurable nature of OpenIDM, it is often difficult to assess whether
a system has started up successfully, or whether the system is ready and stable after dynamic
configuration changes have been made.

Starting and Stopping OpenIDM
Basic Health Checks

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

OpenIDM includes a health check service, with options to monitor the status of internal resources.

To monitor the status of external resources such as LDAP servers and external databases, use the
commands described in "Checking the Status of External Systems Over REST".

2.3.1. Basic Health Checks
The health check service reports on the state of the OpenIDM system and outputs this state to the
OSGi console and to the log files. The system can be in one of the following states:

• STARTING - OpenIDM is starting up

• ACTIVE_READY - all of the specified requirements have been met to consider the OpenIDM system
ready

• ACTIVE_NOT_READY - one or more of the specified requirements have not been met and the OpenIDM
system is not considered ready

• STOPPING - OpenIDM is shutting down

You can verify the current state of an OpenIDM system with the following REST call:

 $ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/info/ping"

{
 "_id" : "",
 "state" : "ACTIVE_READY",
 "shortDesc" : "OpenIDM ready"
}

The information is provided by the following script: openidm/bin/defaults/script/info/ping.js.

2.3.2. Getting Current OpenIDM Session Information
You can get more information about the current OpenIDM session, beyond basic health checks, with
the following REST call:

$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request GET \
"https://localhost:8443/openidm/info/login"

Starting and Stopping OpenIDM
Monitoring OpenIDM Tuning and Health Parameters

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

{
 "_id" : "",
 "class" : "org.forgerock.services.context.SecurityContext",
 "name" : "security",
 "authenticationId" : "openidm-admin",
 "authorization" : {
 "id" : "openidm-admin",
 "component" : "repo/internal/user",
 "roles" : ["openidm-admin", "openidm-authorized"],
 "ipAddress" : "127.0.0.1"
 },
 "parent" : {
 "class" : "org.forgerock.caf.authentication.framework.MessageContextImpl",
 "name" : "jaspi",
 "parent" : {
 "class" : "org.forgerock.services.context.TransactionIdContext",
 "id" : "2b4ab479-3918-4138-b018-1a8fa01bc67c-288",
 "name" : "transactionId",
 "transactionId" : {
 "value" : "2b4ab479-3918-4138-b018-1a8fa01bc67c-288",
 "subTransactionIdCounter" : 0
 },
 "parent" : {
 "class" : "org.forgerock.services.context.ClientContext",
 "name" : "client",
 "remoteUser" : null,
 "remoteAddress" : "127.0.0.1",
 "remoteHost" : "127.0.0.1",
 "remotePort" : 56534,
 "certificates" : ""
,
...

The information is provided by the following script: openidm/bin/defaults/script/info/login.js.

2.3.3. Monitoring OpenIDM Tuning and Health Parameters

You can extend OpenIDM monitoring beyond what you can check on the openidm/info/ping and openidm/
info/login endpoints. Specifically, you can get more detailed information about the state of the:

• Operating System on the openidm/health/os endpoint

• Memory on the openidm/health/memory endpoint

• JDBC Pooling, based on the openidm/health/jdbc endpoint

• Reconciliation, on the openidm/health/recon endpoint.

You can regulate access to these endpoints as described in the following section: "access.js".

2.3.3.1. Operating System Health Check

With the following REST call, you can get basic information about the host operating system:

Starting and Stopping OpenIDM
Monitoring OpenIDM Tuning and Health Parameters

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/health/os"
{
 "_id" : "",
 "_rev" : "",
 "availableProcessors" : 1,
 "systemLoadAverage" : 0.06,
 "operatingSystemArchitecture" : "amd64",
 "operatingSystemName" : "Linux",
 "operatingSystemVersion" : "2.6.32-504.30.3.el6.x86_64"
}

From the output, you can see that this particular system has one 64-bit CPU, with a load average of 6
percent, on a Linux system with the noted kernel operatingSystemVersion number.

2.3.3.2. Memory Health Check

With the following REST call, you can get basic information about overall JVM memory use:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/health/memory"
{
 "_id" : "",
 "_rev" : "",
 "objectPendingFinalization" : 0,
 "heapMemoryUsage" : {
 "init" : 1073741824,
 "used" : 88538392,
 "committed" : 1037959168,
 "max" : 1037959168
 },
 "nonHeapMemoryUsage" : {
 "init" : 24313856,
 "used" : 69255024,
 "committed" : 69664768,
 "max" : 224395264
 }
}

The output includes information on JVM Heap and Non-Heap memory, in bytes. Briefly,

• JVM Heap memory is used to store Java objects.

• JVM Non-Heap Memory is used by Java to store loaded classes and related meta-data

Starting and Stopping OpenIDM
Monitoring OpenIDM Tuning and Health Parameters

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

2.3.3.3. JDBC Health Check

With the following REST call, you can get basic information about the status of the configured
internal JDBC database:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/health/jdbc"
{
 "_id" : "",
 "_rev" : "",
 "com.jolbox.bonecp:type=BoneCP-547b64b7-6765-4915-937b-e940cf74ed82" : {
 "connectionWaitTimeAvg" : 0.010752126251079611,
 "statementExecuteTimeAvg" : 0.8933237895474139,
 "statementPrepareTimeAvg" : 8.45602988656923,
 "totalLeasedConnections" : 0,
 "totalFreeConnections" : 7,
 "totalCreatedConnections" : 7,
 "cacheHits" : 0,
 "cacheMiss" : 0,
 "statementsCached" : 0,
 "statementsPrepared" : 27840,
 "connectionsRequested" : 19683,
 "cumulativeConnectionWaitTime" : 211,
 "cumulativeStatementExecutionTime" : 24870,
 "cumulativeStatementPrepareTime" : 3292,
 "cacheHitRatio" : 0.0,
 "statementsExecuted" : 27840
 },
 "com.jolbox.bonecp:type=BoneCP-856008a7-3553-4756-8ae7-0d3e244708fe" : {
 "connectionWaitTimeAvg" : 0.015448195945945946,
 "statementExecuteTimeAvg" : 0.6599738874458875,
 "statementPrepareTimeAvg" : 1.4170901010615866,
 "totalLeasedConnections" : 0,
 "totalFreeConnections" : 1,
 "totalCreatedConnections" : 1,
 "cacheHits" : 0,
 "cacheMiss" : 0,
 "statementsCached" : 0,
 "statementsPrepared" : 153,
 "connectionsRequested" : 148,
 "cumulativeConnectionWaitTime" : 2,
 "cumulativeStatementExecutionTime" : 152,
 "cumulativeStatementPrepareTime" : 107,
 "cacheHitRatio" : 0.0,
 "statementsExecuted" : 231
 }
}

The statistics shown relate to the time and connections related to SQL statements.

Note

To check the health of a JDBC repository, you need to make two changes to your configuration:

Starting and Stopping OpenIDM
Customizing Health Check Scripts

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

• Install a JDBC repository, as described in "Installing a Repository For Production" in the Installation Guide.

• Open the boot.properties file in your project-dir/conf/boot directory, and enable the statistics MBean for
the BoneCP JDBC connection pool:
openidm.bonecp.statistics.enabled=true

2.3.3.4. Reconciliation Health Check
With the following REST call, you can get basic information about the system demands related to
reconciliation:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/health/recon"
{
 "_id" : "",
 "_rev" : "",
 "activeThreads" : 1,
 "corePoolSize" : 10,
 "largestPoolSize" : 1,
 "maximumPoolSize" : 10,
 "currentPoolSize" : 1
}

From the output, you can review the number of active threads used by the reconciliation, as well as
the available thread pool.

2.3.4. Customizing Health Check Scripts
You can extend or override the default information that is provided by creating your own script
file and its corresponding configuration file in openidm/conf/info-name.json. Custom script files can
be located anywhere, although a best practice is to place them in openidm/script/info. A sample
customized script file for extending the default ping service is provided in openidm/samples/infoservice/
script/info/customping.js. The corresponding configuration file is provided in openidm/samples/
infoservice/conf/info-customping.json.

The configuration file has the following syntax:
{
 "infocontext" : "ping",
 "type" : "text/javascript",
 "file" : "script/info/customping.js"
}

The parameters in the configuration file are as follows:

• infocontext specifies the relative name of the info endpoint under the info context. The information
can be accessed over REST at this endpoint, for example, setting infocontext to mycontext/myendpoint

Starting and Stopping OpenIDM
Verifying the State of Health Check Service Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

would make the information accessible over REST at https://localhost:8443/openidm/info/mycontext/
myendpoint.

• type specifies the type of the information source. JavaScript ("type" : "text/javascript") and Groovy
("type" : "groovy") are supported.

• file specifies the path to the JavaScript or Groovy file, if you do not provide a "source" parameter.

• source specifies the actual JavaScript or Groovy script, if you have not provided a "file" parameter.

Additional properties can be passed to the script as depicted in this configuration file (openidm/samples/
infoservice/conf/info-name.json).

Script files in openidm/samples/infoservice/script/info/ have access to the following objects:

• request - the request details, including the method called and any parameters passed.

• healthinfo - the current health status of the system.

• openidm - access to the JSON resource API.

• Any additional properties that are depicted in the configuration file (openidm/samples/infoservice/
conf/info-name.json.)

2.3.5. Verifying the State of Health Check Service Modules

The configurable OpenIDM health check service can verify the status of required modules and
services for an operational system. During system startup, OpenIDM checks that these modules and
services are available and reports on whether any requirements for an operational system have not
been met. If dynamic configuration changes are made, OpenIDM rechecks that the required modules
and services are functioning, to allow ongoing monitoring of system operation.

Examples of Required Modules

OpenIDM checks all required modules. Examples of those modules are shown here:

Starting and Stopping OpenIDM
Verifying the State of Health Check Service Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

 "org.forgerock.openicf.framework.connector-framework"
 "org.forgerock.openicf.framework.connector-framework-internal"
 "org.forgerock.openicf.framework.connector-framework-osgi"
 "org.forgerock.openidm.audit"
 "org.forgerock.openidm.core"
 "org.forgerock.openidm.enhanced-config"
 "org.forgerock.openidm.external-email"
 ...
 "org.forgerock.openidm.system"
 "org.forgerock.openidm.ui"
 "org.forgerock.openidm.util"
 "org.forgerock.commons.org.forgerock.json.resource"
 "org.forgerock.commons.org.forgerock.json.resource.restlet"
 "org.forgerock.commons.org.forgerock.restlet"
 "org.forgerock.commons.org.forgerock.util"
 "org.forgerock.openidm.security-jetty"
 "org.forgerock.openidm.jetty-fragment"
 "org.forgerock.openidm.quartz-fragment"
 "org.ops4j.pax.web.pax-web-extender-whiteboard"
 "org.forgerock.openidm.scheduler"
 "org.ops4j.pax.web.pax-web-jetty-bundle"
 "org.forgerock.openidm.repo-jdbc"
 "org.forgerock.openidm.repo-orientdb"
 "org.forgerock.openidm.config"
 "org.forgerock.openidm.crypto"

Examples of Required Services

OpenIDM checks all required services. Examples of those services are shown here:

 "org.forgerock.openidm.config"
 "org.forgerock.openidm.provisioner"
 "org.forgerock.openidm.provisioner.openicf.connectorinfoprovider"
 "org.forgerock.openidm.external.rest"
 "org.forgerock.openidm.audit"
 "org.forgerock.openidm.policy"
 "org.forgerock.openidm.managed"
 "org.forgerock.openidm.script"
 "org.forgerock.openidm.crypto"
 "org.forgerock.openidm.recon"
 "org.forgerock.openidm.info"
 "org.forgerock.openidm.router"
 "org.forgerock.openidm.scheduler"
 "org.forgerock.openidm.scope"
 "org.forgerock.openidm.taskscanner"

You can replace the list of required modules and services, or add to it, by adding the following lines
to your project's conf/boot/boot.properties file. Bundles and services are specified as a list of symbolic
names, separated by commas:

• openidm.healthservice.reqbundles - overrides the default required bundles.

• openidm.healthservice.reqservices - overrides the default required services.

Starting and Stopping OpenIDM
Displaying Information About Installed Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

• openidm.healthservice.additionalreqbundles - specifies required bundles (in addition to the default list).

• openidm.healthservice.additionalreqservices - specifies required services (in addition to the default
list).

By default, OpenIDM gives the system 15 seconds to start up all the required bundles and services,
before the system readiness is assessed. Note that this is not the total start time, but the time
required to complete the service startup after the framework has started. You can change this
default by setting the value of the servicestartmax property (in milliseconds) in your project's conf/boot/
boot.properties file. This example sets the startup time to five seconds:
openidm.healthservice.servicestartmax=5000

2.4. Displaying Information About Installed Modules
On a running OpenIDM instance, you can list the installed modules and their states by typing the
following command in the OSGi console. (The output will vary by configuration):
-> scr list

 Id State Name
[12] [active] org.forgerock.openidm.endpoint
[13] [active] org.forgerock.openidm.endpoint
[14] [active] org.forgerock.openidm.endpoint
[15] [active] org.forgerock.openidm.endpoint
[16] [active] org.forgerock.openidm.endpoint
 ...
[34] [active] org.forgerock.openidm.taskscanner
[20] [active] org.forgerock.openidm.external.rest
[6] [active] org.forgerock.openidm.router
[33] [active] org.forgerock.openidm.scheduler
[19] [unsatisfied] org.forgerock.openidm.external.email
[11] [active] org.forgerock.openidm.sync
[25] [active] org.forgerock.openidm.policy
[8] [active] org.forgerock.openidm.script
[10] [active] org.forgerock.openidm.recon
[4] [active] org.forgerock.openidm.http.contextregistrator
[1] [active] org.forgerock.openidm.config
[18] [active] org.forgerock.openidm.endpointservice
[30] [unsatisfied] org.forgerock.openidm.servletfilter
[24] [active] org.forgerock.openidm.infoservice
[21] [active] org.forgerock.openidm.authentication
->

To display additional information about a particular module or service, run the following command,
substituting the Id of that module from the preceding list:
-> scr info Id

The following example displays additional information about the router service:
-> scr info 6

Starting and Stopping OpenIDM
Starting OpenIDM in Debug Mode

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

ID: 6
Name: org.forgerock.openidm.router
Bundle: org.forgerock.openidm.core (41)
State: active
Default State: enabled
Activation: immediate
Configuration Policy: optional
Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: modified
Services: org.forgerock.json.resource.JsonResource
Service Type: service
Reference: ref_JsonResourceRouterService_ScopeFactory
 Satisfied: satisfied
 Service Name: org.forgerock.openidm.scope.ScopeFactory
 Multiple: single
 Optional: mandatory
 Policy: dynamic
Properties:
 component.id = 6
 component.name = org.forgerock.openidm.router
 felix.fileinstall.filename = file:/openidm/samples/sample1/conf/router.json
 jsonconfig = {
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/router-authz.js"
 }
 },
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policyFilter.js"
 },
 "methods" : [
 "create",
 "update"
]
 }
]
}
 openidm.restlet.path = /
 service.description = OpenIDM internal JSON resource router
 service.pid = org.forgerock.openidm.router
 service.vendor = ForgeRock AS
->

2.5. Starting OpenIDM in Debug Mode
To debug custom libraries, you can start OpenIDM with the option to use the Java Platform Debugger
Architecture (JPDA):

• Start OpenIDM with the jpda option:

Starting and Stopping OpenIDM
Running OpenIDM As a Service on Linux Systems

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

$ cd /path/to/openidm
$./startup.sh jpda
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Denvironment=PROD -Djava.compiler=NONE
 -Xnoagent -Xdebug -Xrunjdwp:transport=dt_socket,address=5005,server=y,suspend=n
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Listening for transport dt_socket at address: 5005
Using boot properties at /path/to/openidm/conf/boot/boot
.properties
-> OpenIDM version "4.0.0" (revision: xxxx)
OpenIDM ready

The relevant JPDA options are outlined in the startup script (startup.sh).

• In your IDE, attach a Java debugger to the JVM via socket, on port 5005.

Caution

This interface is internal and subject to change. If you depend on this interface, contact ForgeRock support.

2.6. Running OpenIDM As a Service on Linux Systems
OpenIDM provides a script that generates an initialization script to run OpenIDM as a service on
Linux systems. You can start the script as the root user, or configure it to start during the boot
process.

When OpenIDM runs as a service, logs are written to the directory in which OpenIDM was installed.

To run OpenIDM as a service, take the following steps:

1. If you have not yet installed OpenIDM, follow the procedure described in "Installing OpenIDM
Services" in the Installation Guide.

2. Run the RC script:
$ cd /path/to/openidm/bin
$./create-openidm-rc.sh

3. As a user with administrative privileges, copy the openidm script to the /etc/init.d directory:
$ sudo cp openidm /etc/init.d/

4. If you run Linux with SELinux enabled, change the file context of the newly copied script with the
following command:
$ sudo restorecon /etc/init.d/openidm

Starting and Stopping OpenIDM
Running OpenIDM As a Service on Linux Systems

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

You can verify the change to SELinux contexts with the ls -Z /etc/init.d command. For
consistency, change the user context to match other scripts in the same directory with the sudo
 chcon -u system_u /etc/init.d/openidm command.

5. Run the appropriate commands to add OpenIDM to the list of RC services:

• On Red Hat-based systems, run the following commands:
$ sudo chkconfig --add openidm

$ sudo chkconfig openidm on

• On Debian/Ubuntu systems, run the following command:
$ sudo update-rc.d openidm defaults
Adding system startup for /etc/init.d/openidm ..
.
/etc/rc0.d/K20openidm -> ../init.d/
openidm
/etc/rc1.d/K20openidm -> ../init.d/
openidm
/etc/rc6.d/K20openidm -> ../init.d/
openidm
/etc/rc2.d/S20openidm -> ../init.d/
openidm
/etc/rc3.d/S20openidm -> ../init.d/
openidm
/etc/rc4.d/S20openidm -> ../init.d/
openidm
/etc/rc5.d/S20openidm -> ../init.d/openidm

Note the output, as Debian/Ubuntu adds start and kill scripts to appropriate runlevels.

When you run the command, you may get the following warning message: update-rc.d:
 warning: /etc/init.d/openidm missing LSB information. You can safely ignore that message.

6. As an administrative user, start the OpenIDM service:
$ sudo /etc/init.d/openidm start

Alternatively, reboot the system to start the OpenIDM service automatically.

7. (Optional) The following commands stops and restarts the service:
$ sudo /etc/init.d/openidm stop

$ sudo /etc/init.d/openidm restart

If you have set up a deployment of OpenIDM in a custom directory, such as /path/to/openidm/production,
you can modify the /etc/init.d/openidm script.

Open the openidm script in a text editor and navigate to the START_CMD line.

At the end of the command, you should see the following line:

Starting and Stopping OpenIDM
Running OpenIDM As a Service on Linux Systems

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

org.forgerock.commons.launcher.Main -c bin/launcher.json > logs/server.out 2>&1 &"

Include the path to the production directory. In this case, you would add -p production as shown:

org.forgerock.commons.launcher.Main -c bin/launcher.json -p production > logs/server.out 2>&1 &

Save the openidm script file in the /etc/init.d directory. The sudo /etc/init.d/openidm start command
should now start OpenIDM with the files in your production subdirectory.

OpenIDM Command-Line Interface

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

Chapter 3

OpenIDM Command-Line Interface
This chapter describes the basic command-line interface provided with OpenIDM. The command-line
interface includes a number of utilities for managing an OpenIDM instance.

All of the utilities are subcommands of the cli.sh (UNIX) or cli.bat (Windows) scripts. To use the
utilities, you can either run them as subcommands, or launch the cli script first, and then run the
utility. For example, to run the encrypt utility on a UNIX system:
$ cd /path/to/openidm
$./cli.sh
Using boot properties at /path/to/openidm/conf/boot/boot.properties
openidm# encrypt

or
$ cd /path/to/openidm
$./cli.sh encrypt ...

By default, the command-line utilities run with the properties defined in your project's conf/boot/
boot.properties file.

If you run the cli.sh command by itself, it opens an OpenIDM-specific shell prompt:
openidm#

The startup and shutdown scripts are not discussed in this chapter. For information about these
scripts, see "Starting and Stopping OpenIDM".

The following sections describe the subcommands and their use. Examples assume that you are
running the commands on a UNIX system. For Windows systems, use cli.bat instead of cli.sh.

For a list of subcommands available from the openidm# prompt, run the cli.sh help command. The help
and exit options shown below are self-explanatory. The other subcommands are explained in the
subsections that follow:
local:keytool Export or import a SecretKeyEntry.
 The Java Keytool does not allow for exporting or importing SecretKeyEntries.
local:encrypt Encrypt the input string.
local:secureHash Hash the input string.
local:validate Validates all json configuration files in the configuration
 (default: /conf) folder.
basic:help Displays available commands.
basic:exit Exit from the console.
remote:update Update the system with the provided update file.
remote:configureconnector Generate connector configuration.
remote:configexport Exports all configurations.
remote:configimport Imports the configuration set from local file/directory.

OpenIDM Command-Line Interface
Using the configexport Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

The configexport, configimport, and configureconnector subcommands support up to four options:

-u or --user USER[:PASSWORD]

Allows you to specify the server user and password. Specifying a username is mandatory. If you
do not specify a username, the following error is output to the OSGi console: Remote operation
 failed: Unauthorized. If you do not specify a password, you are prompted for one. This option is
used by all three subcommands.

--url URL

The URL of the OpenIDM REST service. The default URL is http://localhost:8080/openidm/. This can
be used to import configuration files from a remote running instance of OpenIDM. This option is
used by all three subcommands.

-P or --port PORT

The port number associated with the OpenIDM REST service. If specified, this option overrides
any port number specified with the --url option. The default port is 8080. This option is used by all
three subcommands.

-r or --replaceall or --replaceAll

Replaces the entire list of configuration files with the files in the specified backup directory. This
option is used with only the configimport command.

3.1. Using the configexport Subcommand
The configexport subcommand exports all configuration objects to a specified location, enabling you
to reuse a system configuration in another environment. For example, you can test a configuration
in a development environment, then export it and import it into a production environment. This
subcommand also enables you to inspect the active configuration of an OpenIDM instance.

OpenIDM must be running when you execute this command.

Usage is as follows:
$./cli.sh configexport --user username:password export-location

For example:
$./cli.sh configexport --user openidm-admin:openidm-admin /tmp/conf

On Windows systems, the export-location must be provided in quotation marks, for example:

C:\openidm\cli.bat configexport --user openidm-admin:openidm-admin "C:\temp\openidm"

Configuration objects are exported as .json files to the specified directory. The command creates
the directory if needed. Configuration files that are present in this directory are renamed as backup
files, with a timestamp, for example, audit.json.2014-02-19T12-00-28.bkp, and are not overwritten. The
following configuration objects are exported:

OpenIDM Command-Line Interface
Using the configimport Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

• The internal repository table configuration (repo.orientdb.json or repo.jdbc.json) and the datasource
connection configuration, for JDBC repositories (datasource.jdbc-default.json)

• Default and custom configuration directories (script.json)

• The log configuration (audit.json)

• The authentication configuration (authentication.json)

• The cluster configuration (cluster.json)

• The configuration of a connected SMTP email server (external.email.json)

• Custom configuration information (info-name.json)

• The managed object configuration (managed.json)

• The connector configuration (provisioner.openicf-*.json)

• The router service configuration (router.json)

• The scheduler service configuration (scheduler.json)

• Any configured schedules (schedule-*.json)

• Standard knowledge-based authentication questions (selfservice.kba.json)

• The synchronization mapping configuration (sync.json)

• If workflows are defined, the configuration of the workflow engine (workflow.json) and the workflow
access configuration (process-access.json)

• Any configuration files related to the user interface (ui-*.json)

• The configuration of any custom endpoints (endpoint-*.json)

• The configuration of servlet filters (servletfilter-*.json)

• The policy configuration (policy.json)

3.2. Using the configimport Subcommand
The configimport subcommand imports configuration objects from the specified directory,
enabling you to reuse a system configuration from another environment. For example, you can
test a configuration in a development environment, then export it and import it into a production
environment.

The command updates the existing configuration from the import-location over the OpenIDM REST
interface. By default, if configuration objects are present in the import-location and not in the existing
configuration, these objects are added. If configuration objects are present in the existing location
but not in the import-location, these objects are left untouched in the existing configuration.

OpenIDM Command-Line Interface
Using the configureconnector Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

If you include the --replaceAll parameter, the command wipes out the existing configuration and
replaces it with the configuration in the import-location. Objects in the existing configuration that are
not present in the import-location are deleted.

Usage is as follows:
$./cli.sh configimport --user username:password [--replaceAll] import-location

For example:
$./cli.sh configimport --user openidm-admin:openidm-admin --replaceAll /tmp/conf

On Windows systems, the import-location must be provided in quotation marks, for example:

C:\openidm\cli.bat configimport --user openidm-admin:openidm-admin --replaceAll "C:\temp\openidm"

Configuration objects are imported as .json files from the specified directory to the conf directory. The
configuration objects that are imported are the same as those for the export command, described in
the previous section.

3.3. Using the configureconnector Subcommand
The configureconnector subcommand generates a configuration for an OpenICF connector.

Usage is as follows:
$./cli.sh configureconnector --user username:password --name connector-name

Select the type of connector that you want to configure. The following example configures a new XML
connector:
$./cli.sh configureconnector --user openidm-admin:openidm-admin --name myXmlConnector
 Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
0. CSV File Connector version 1.5.0.0
1. Database Table Connector version 1.1.0.1
2. Scripted Poolable Groovy Connector version 1.4.2.0
3. Scripted Groovy Connector version 1.4.2.0
4. Scripted CREST Connector version 1.4.2.0
5. Scripted SQL Connector version 1.4.2.0
6. Scripted REST Connector version 1.4.2.0
7. LDAP Connector version 1.4.1.0
8. XML Connector version 1.1.0.2
9. Exit
Select [0..9]: 8
Edit the configuration file and run the command again. The configuration was
saved to /openidm/temp/provisioner.openicf-myXmlConnector.json

The basic configuration is saved in a file named /openidm/temp/provisioner.openicf-connector-name.json.
Edit the configurationProperties parameter in this file to complete the connector configuration. For an
XML connector, you can use the schema definitions in Sample 1 for an example configuration:

OpenIDM Command-Line Interface
Using the encrypt Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

 "configurationProperties" : {
 "xmlFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "createFileIfNotExists" : false,
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xsdIcfFilePath" : "samples/sample1/data/xmlConnectorData.xml"
 },

For more information about the connector configuration properties, see "Configuring Connectors".

When you have modified the file, run the configureconnector command again so that OpenIDM can
pick up the new connector configuration:
$./cli.sh configureconnector --user openidm-admin:openidm-admin --name myXmlConnector
Executing ./cli.sh...
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Configuration was found and read from: /path/to/openidm/temp/provisioner.openicf-myXmlConnector.json

You can now copy the new provisioner.openicf-myXmlConnector.json file to the conf/ subdirectory.

You can also configure connectors over the REST interface, or through the Admin UI. For more
information, see "Creating Default Connector Configurations" and "Adding New Connectors from the
Admin UI".

3.4. Using the encrypt Subcommand
The encrypt subcommand encrypts an input string, or JSON object, provided at the command line.
This subcommand can be used to encrypt passwords, or other sensitive data, to be stored in the
OpenIDM repository. The encrypted value is output to standard output and provides details of the
cryptography key that is used to encrypt the data.

Usage is as follows:
$./cli.sh encrypt [-j] string

The -j option specifies that the string to be encrypted is a JSON object. If you do not enter the string
as part of the command, the command prompts for the string to be encrypted. If you enter the string
as part of the command, any special characters, for example quotation marks, must be escaped.

The following example encrypts a normal string value:

OpenIDM Command-Line Interface
Using the encrypt Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

$./cli.sh encrypt mypassword
Executing ./cli.sh
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "M2913T5ZADlC2ip2imeOyg==",
 "data" : "DZAAAM1nKjQM1qpLwh3BgA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

The following example encrypts a JSON object. The input string must be a valid JSON object:
$./cli.sh encrypt -j {\"password\":\"myPassw0rd\"}
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "M2913T5ZADlC2ip2imeOyg==",
 "data" : "DZAAAM1nKjQM1qpLwh3BgA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

The following example prompts for a JSON object to be encrypted. In this case, you do not need to
escape the special characters:

OpenIDM Command-Line Interface
Using the secureHash Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

$./cli.sh encrypt -j
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input:
{"password":"myPassw0rd"}
^D
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "6e0RK8/4F1EK5FzSZHwNYQ==",
 "data" : "gwHSdDTmzmUXeD6Gtfn6JFC8cAUiksiAGfvzTsdnAqQ=",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

3.5. Using the secureHash Subcommand
The secureHash subcommand hashes an input string, or JSON object, using the specified hash
algorithm. This subcommand can be used to hash password values, or other sensitive data, to be
stored in the OpenIDM repository. The hashed value is output to standard output and provides details
of the algorithm that was used to hash the data.

Usage is as follows:
$./cli.sh secureHash --algorithm [-j] string

The -a or --algorithm option specifies the hash algorithm to use. OpenIDM supports the following hash
algorithms: MD5, SHA-1, SHA-256, SHA-384, and SHA-512. If you do not specify a hash algorithm, SHA-256 is
used.

The -j option specifies that the string to be hashed is a JSON object. If you do not enter the string
as part of the command, the command prompts for the string to be hashed. If you enter the string as
part of the command, any special characters, for example quotation marks, must be escaped.

The following example hashes a password value (mypassword) using the SHA-1 algorithm:

OpenIDM Command-Line Interface
Using the secureHash Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

$./cli.sh secureHash --algorithm SHA-1 mypassword
Executing ./cli.sh...
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN HASHED VALUE-----
{
 "$crypto" : {
 "value" : {
 "algorithm" : "SHA-1",
 "data" : "YNBVgtR/jlOaMm01W8xnCBAj2J+x73iFpbhgMEXl7cOsCeWm"
 },
 "type" : "salted-hash"
 }
}
------END HASHED VALUE------

The following example hashes a JSON object. The input string must be a valid JSON object:
$./cli.sh secureHash --algorithm SHA-1 -j {\"password\":\"myPassw0rd\"}
Executing ./cli.sh...
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN HASHED VALUE-----
{
 "$crypto" : {
 "value" : {
 "algorithm" : "SHA-1",
 "data" : "ztpt8rEbeqvLXUE3asgA3uf5gJ77I3cED2OvOIxd5bi1eHtG"
 },
 "type" : "salted-hash"
 }
}
------END HASHED VALUE------

The following example prompts for a JSON object to be hashed. In this case, you do not need to
escape the special characters:

OpenIDM Command-Line Interface
Using the keytool Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

$./cli.sh secureHash --algorithm SHA-1 -j
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input:
{"password":"myPassw0rd"}
^D
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN HASHED VALUE-----
{
 "$crypto" : {
 "value" : {
 "algorithm" : "SHA-1",
 "data" : "ztpt8rEbeqvLXUE3asgA3uf5gJ77I3cED2OvOIxd5bi1eHtG"
 },
 "type" : "salted-hash"
 }
}
------END HASHED VALUE------

3.6. Using the keytool Subcommand
The keytool subcommand exports or imports secret key values.

The Java keytool command enables you to export and import public keys and certificates, but not
secret or symmetric keys. The OpenIDM keytool subcommand provides this functionality.

Usage is as follows:
$./cli.sh keytool [--export, --import] alias

For example, to export the default OpenIDM symmetric key, run the following command:
$./cli.sh keytool --export openidm-sym-default
 Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
[OK] Secret key entry with algorithm AES
AES:606d80ae316be58e94439f91ad8ce1c0

The default keystore password is changeit. For security reasons, you must change this password in
a production environment. For information about changing the keystore password, see "Change the
Default Keystore Password".

To import a new secret key named my-new-key, run the following command:

OpenIDM Command-Line Interface
Using the validate Subcommand

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

$./cli.sh keytool --import my-new-key
Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
Enter the key:
AES:606d80ae316be58e94439f91ad8ce1c0

If a secret key of that name already exists, OpenIDM returns the following error:
"KeyStore contains a key with this alias"

3.7. Using the validate Subcommand
The validate subcommand validates all .json configuration files in your project's conf/ directory.

Usage is as follows:
$./cli.sh validate
Executing ./cli.sh
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot
.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS

 ...

[Validating] sync.json SUCCESS
[Validating] ui-configuration.json SUCCESS
[Validating] ui-countries.json SUCCESS
[Validating] ui-secquestions.json SUCCESS
[Validating] workflow.json SUCCESS

3.8. Using the update Subcommand
The update subcommand supports updates of OpenIDM 4 for patches and migrations. For an example
of this process, see "Updating OpenIDM" in the Installation Guide.

OpenIDM Web-Based User Interfaces
Configuring OpenIDM from the Admin UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

Chapter 4

OpenIDM Web-Based User Interfaces
OpenIDM provides a customizable, browser-based user interface. The functionality is subdivided into
Administrative and Self-Service User Interfaces.

If you are administering OpenIDM, navigate to the Administrative User Interface, also known as the
Admin UI. If OpenIDM is installed on the local system, you can get to the Admin UI at the following
URL: https://localhost:8443/admin. In the Admin UI, you can configure connectors, customize managed
objects, set up attribute mappings, manage accounts, and more.

The Self-Service User Interface, also known as the Self-Service UI, provides role-based access to
tasks based on BPMN2 workflows, and allows users to manage certain aspects of their own accounts,
including configurable self-service registration. When OpenIDM starts, you can access the Self-
Service UI at https://localhost:8443/.

Warning

The default password for the OpenIDM administrative user, openidm-admin, is openidm-admin. To protect your
deployment in production, change this password.

All users, including openidm-admin, can change their password through the Self-Service UI. After you
have logged in, click Change Password.

4.1. Configuring OpenIDM from the Admin UI
You can set up a basic configuration for OpenIDM with the Administrative User Interface (Admin UI).

Through the Admin UI, you can connect to resources, configure attribute mapping and scheduled
reconciliation, and set up and manage objects, such as users, groups, and devices.

When you log into the Admin UI, the first screen you should see is the Dashboard.

OpenIDM Web-Based User Interfaces
Configuring OpenIDM from the Admin UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

The OpenIDM Administrative UI Dashboard

The Admin UI includes a fixed top menu bar. As you navigate around the Admin UI, you should see
the same menu bar throughout. You can click the Dashboard link on the top menu bar to return to the
Dashboard.

The Dashboard is split into four sections:

• Quick Start cards support one-click access to common administrative tasks, and are described in
detail in the following section.

• Last Reconciliation includes data from the most recent reconciliation between data stores. After
you run a reconciliation, you should see data similar to:

OpenIDM Web-Based User Interfaces
Configuring OpenIDM from the Admin UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

• System Health includes data on current CPU and memory usage.

• Resources include an abbreviated list of configured connectors, mappings, and managed objects.

The Quick Start cards allow quick access to the labeled configuration options, described here:

• Add Connector

Use the Admin UI to connect to external resources. For more information, see "Adding New
Connectors from the Admin UI".

• Create Mapping

Configure synchronization mappings to map objects between resources. For more information, see
"Configuring the Synchronization Mapping".

• Manage Role

Set up managed provisioning or authorization roles. For more information, see "Working With
Managed Roles".

• Add Device

Use the Admin UI to set up managed objects, including users, groups, roles, or even Internet of
Things (IoT) devices. For more information, see "Managing Accounts".

• Set Up Registration

Configure User Self-Registration. You can set up the OpenIDM Self-Service UI login screen, with
a link that allows new users to start a verified account registration process. For more information,
see "Configuring User Self-Service".

• Set Up Password Reset

Configure user self-service Password Reset. You can configure OpenIDM to allow users to reset
forgotten passwords. For more information, see "Configuring User Self-Service".

• Manage User

Allows management of users in the current internal OpenIDM repository. You may have to run a
reconciliation from an external repository first. For more information, see "Working with Managed
Users".

• Set Up System

OpenIDM Web-Based User Interfaces
Working With the Self-Service UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

Configure how OpenIDM works, as it relates to:

• Authentication, as described in "Supported Authentication and Session Modules".

• Audit, as described in "Using Audit Logs".

• Self Service UI, as described in "Changing the UI Path".

• Email, as described in "Sending Email".

• Updates, as described in "Updating OpenIDM" in the Installation Guide.

You can configure more of OpenIDM than what is shown in the Quick Start cards. In the top menu
bar, select the Configure and Manage drop-down menus and see what happens when you select each
option.

4.2. Working With the Self-Service UI
For all users, the Self-Service UI includes Dashboard and Profile links in the top menu bar.

To access the Self-Service UI, start OpenIDM, then navigate to https://localhost:8443/. If you have not
installed a certificate that is trusted by a certificate authority, you are prompted with an Untrusted
Connection warning the first time you log in to the UI.

The Dashboard includes a list tasks assigned to the user who has logged in, tasks assigned to the
relevant group, processes available to be invoked, current notifications for that user, along with
Quick Start cards for that user's profile and password.

https://localhost:8443/

OpenIDM Web-Based User Interfaces
Configuring User Self-Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

The OpenIDM Self-Service UI Dashboard

For examples of these tasks, processes, and notifications, see "Workflow Samples" in the Samples
Guide.

4.3. Configuring User Self-Service
The following sections describe how you can configure three functions of user self-service: User
Registration, Forgotten Username, and Password Reset.

• User Registration: You can configure limited access that allows a current anonymous user to create
their own accounts. To aid in this process, you can configure reCAPTCHA, email validation, and
KBA questions.

OpenIDM Web-Based User Interfaces
Configuring User Self-Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

• Forgotten Username: You can set up OpenIDM to allow users to recover forgotten usernames via
their email addresses or first and last names. OpenIDM can then display that username on the
screen, and / or email such information to that user.

• Password Reset: You can set up OpenIDM to verify user identities via KBA questions. If email
configuration is included, OpenIDM would email a link that allows users to reset their passwords.

If you enable email functionality, the one solution that works for all three self-service functions is to
configure an outgoing email service for OpenIDM, as described in "Sending Email".

Note

If you disable email validation only for user registration, you should perform one of the following actions:

• Disable validation for mail in the managed user schema. Click Configure > Managed Objects > User >
Schema. Under Schema Properties, click Mail, scroll down to Validation Policies, and set Required to false.

• Configure the User Registration template to support user email entries. To do so, use "Customizing the User
Registration Page", and substitute mail for employeeNum.

Without these changes, users who try to register accounts will see a Forbidden Request Error.

You can configure user self-service through the UI and through configuration files.

• In the UI, log into the Admin UI. You can enable these features when you click Configure > User
Registration, Configure > Forgotten Username, and Configure > Password Reset.

• In the command-line interface, copy the following files from samples/misc to your working project-dir/
conf directory:

User Registration: selfservice-registration.json
Forgotten username: selfservice-username.json
Password reset: selfservice-reset.json

Examine the ui-configuration.json file in the same directory. You can activate or deactivate User
Registration and Password Reset by changing the value associated with the selfRegistration and
passwordReset properties:
{
 "configuration" : {
 "selfRegistration" : true,
 "passwordReset" : true,
 "forgotUsername" : true,
 ...

For each of these functions, you can configure several options, including:

OpenIDM Web-Based User Interfaces
Configuring User Self-Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

reCAPTCHA

Google reCAPTCHA helps prevent bots from registering users or resetting passwords on your
system. For Google documentation, see Google reCAPTCHA. For directions on how to configure
reCAPTCHA for user self-service, see "Configuring Google reCAPTCHA".

Email Validation / Email Username

You can configure the email messages that OpenIDM sends to users, as a way to verify identities
for user self-service. For more information, see "Configuring Self-Service Email Messages".

If you configure email validation, you must also configure an outgoing email service in OpenIDM.
To do so, click Configure > System Preferences > Email. For more information, read "Sending
Email".

User Details

You can modify the Identity Email Field associated with user registration; by default, it is set to
mail.

User Query

When configuring password reset and forgotten username functionality, you can modify the
fields that a user is allowed to query. If you do, you may need to modify the HTML templates
that appear to users who request such functionality. For more information, see "Modifying Valid
Query Fields".

Valid Query Fields

Property names that you can use to help users find their usernames or verify their identity,
such as userName, mail, or givenName.

Identity ID Field

Property name associated with the User ID, typically _id.

Identity Email Field

Property name associated with the user email field, typically something like mail or email.

Identity Service URL

The path associated with the identity data store, such as managed/user.

KBA Stage

You can modify Knowledge-based Authentication (KBA) questions. Users can then select the
questions of their choice to help users verify their own identities. For directions on how to
configure KBA questions, see "Configuring Self-Service Questions". For User Registration, you
cannot configure these questions in the Admin UI.

https://www.google.com/recaptcha

OpenIDM Web-Based User Interfaces
Configuring User Self-Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

Registration Form / Password Reset Form

You can change the Identity Service URL for the target repository, to an entry such as managed/
user.

Password Reset Form

You can change the Identity Service URL for the target repository, to an entry such as managed/
user. You can also cite the property associated with user passwords, such as password.

Display Username

For forgotten username retrieval, you can configure OpenIDM to display the username on the
website, instead of (or in addition to) sending that username to the associated email account.

Snapshot Token

OpenIDM User Self-Service uses JWT tokens, with a default token lifetime of 1800 seconds.

You can reorder how OpenIDM works with relevant self-service options, specifically reCAPTCHA,
KBA stage questions, and email validation. Based on the following screen, users who need to reset
their passwords will go through reCAPTCHA, followed by email validation, and then answer any
configured KBA questions.

OpenIDM Web-Based User Interfaces
Common Configuration Details

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

OpenIDM Self-Service UI - Password Reset Sequence

To reorder the steps, either "drag and drop" the options in the Admin UI, or change the sequence in
the associated configuration file, in the project-dir/conf directory.

OpenIDM generates a token for each process. For example, users who forget their usernames and
passwords go through two steps:

• The user goes through the User Registration process gets a JWT token, and has the token lifetime
(default = 1800 seconds) to get to the next step in the process.

• With username in hand, that user may then start the Password Reset process. That user gets a
second JWT token, with the token lifetime configured for that process.

4.3.1. Common Configuration Details

This section describes configuration details common to both User Registration and Password Reset.

OpenIDM Web-Based User Interfaces
Common Configuration Details

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

4.3.1.1. Configuring Self-Service Email Messages
When a user requests a new account, or a Password Reset, you can configure OpenIDM to send that
user an email message, to confirm the request. That email can include a link that the user would
select to continue the process.

You can configure that email message either through the UI or the associated configuration files, as
illustrated in the following excerpt of the selfservice-registration.json file:
{
 "stageConfigs" : {
 {
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "from" : "admin@example.net",
 "subject" : "Register new account",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Create a new username"
 },
 "messageTranslations" : {
 "<h3>This is your confirmation email.</h3><h4>Click to continue</h4>",
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://openidm.example.net:8443/#register/"
 }
...

Note the two languages in the subjectTranslations and messageTranslations code blocks. You can add
translations for languages other than US English en and French fr. Use the appropriate two-letter
code based on ISO 639. End users will see the message in the language configured in their web
browsers.

You can set up similar emails for password reset and forgotten username functionality, in the
selfservice-reset.json and selfservice-username.json files. For templates, see the /path/to/openidm/samples/
misc directory.

One difference between User Registration and Password Reset is in the "verificationLink"; for
Password Reset, the corresponding URL is:
...
 "verificationLink" : "https://openidm.example.net:8443/#passwordReset/"
...

4.3.1.2. Configuring Google reCAPTCHA
To use Google reCAPTCHA, you will need a Google account and your domain name (RFC 2606-
compliant URLs such as localhost and example.com are acceptable for test purposes). Google then
provides a Site key and a Secret key that you can include in the self-service function configuration.

For example, you can add the following reCAPTCHA code block (with appropriate keys as defined
by Google) into the selfservice-registration.json, selfservice-reset.json or the selfservice-username.json
configuration files:

OpenIDM Web-Based User Interfaces
Common Configuration Details

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

{
 "stageConfigs" : [
 {
 "name" : "captcha",
 "recaptchaSiteKey" : "< Insert Site Key Here >",
 "recaptchaSecretKey" : "< Insert Secret Key Here >",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
 },

You may also add the reCAPTCHA keys through the UI.

4.3.1.3. Configuring Self-Service Questions

OpenIDM uses Knowledge-based Authentication (KBA) to help users prove their identity when
they perform the noted functions. In other words, they get a choice of questions configured in the
following file: selfservice.kba.json.

The default version of this file is straightforward:
{
 "questions" : {
 "1" : {
 "en" : "What's your favorite color?",
 "en_GB" : "What is your favourite colour?",
 "fr" : "Quelle est votre couleur préférée?"
 },
 "2" : {
 "en" : "Who was your first employer?"
 }
 }
}

You may change or add the questions of your choice, in JSON format.

At this time, OpenIDM supports editing KBA questions only through the noted configuration
file. However, individual users can configure their own questions and answers, during the User
Registration process.

After a regular user logs into the Self-Service UI, that user can modify, add, and delete KBA questions
under the Profile tab:

OpenIDM Web-Based User Interfaces
The End User and Commons User Self-Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

4.3.1.4. Setting a Minimum Number of Self-Service Questions

In addition, you can set a minimum number of questions that users have to define to register for
their accounts. To do so, open the associated configuration file, selfservice-registration.json, in your
project-dir/conf directory. Look for the code block that starts with kbaSecurityAnswerDefinitionStage:
{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "numberOfAnswersUserMustSet" : 1,
 "kbaConfig" : null
},

In a similar fashion, you can set a minimum number of questions that users have to answer before
OpenIDM allows them to reset their passwords. The associated configuration file is selfservice-
reset.json, and the relevant code block is:
{
 "name" : "kbaSecurityAnswerVerificationStage",
 "kbaPropertyName" : "kbaInfo",
 "identityServiceUrl" : "managed/user",
 "numberOfQuestionsUserMustAnswer" : "1",
 "kbaConfig" : null
},

4.3.2. The End User and Commons User Self-Service

When all self-service features are enabled, OpenIDM includes three links on the self-service login
page: Reset your password, Register, and Forgot Username?.

OpenIDM Web-Based User Interfaces
Customizing a UI Template

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

When the account registration page is used to create an account, OpenIDM normally creates a
managed object in the OpenIDM repository, and applies default policies for managed objects.

4.4. Customizing a UI Template
You may want to customize information included in the Self-Service UI.

These procedures do not address actual data store requirements. If you add text boxes in the UI, it is
your responsibility to set up associated properties in your repositories.

To do so, you should copy existing default template files in the openidm/ui/selfservice/default
subdirectory to associated extension/ subdirectories.

To simplify the process, you can copy some or all of the content from the openidm/ui/selfservice/
default/templates to the openidm/ui/selfservice/extension/templates directory.

You can use a similar process to modify what is shown in the Admin UI.

4.4.1. Customizing User Self-Service Screens

In the following procedure, you will customize the screen that users see during the User Registration
process. You can use a similar process to customize what a user sees during the Password Reset and
Forgotten Username processes.

For user Self-Service features, you can customize options in three files. Navigate to the extension/
templates/user/process subdirectory, and examine the following files:

• User Registration: registration/userDetails-initial.html

• Password Reset: reset/userQuery-initial.html

• Forgotten Username: username/userQuery-initial.html

The following procedure demonstrates the process for User Registration.

Customizing the User Registration Page

1. When you configure user self service, as described in "Configuring User Self-Service", anonymous
users who choose to register will see a screen similar to:

OpenIDM Web-Based User Interfaces
Customizing User Self-Service Screens

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

2. The screen you see is from the following file: userDetails-initial.html, in the selfservice/extension/
templates/user/process/registration subdirectory. Open that file in a text editor.

3. Assume that you want new users to enter an employee ID number when they register.

Create a new form-group stanza for that number. For this procedure, the stanza appears after the
stanza for Last Name (or surname) sn:
<div class="form-group">
 <label class="sr-only" for="input-employeeNum">{{t 'common.user.employeeNum'}}</label>
 <input type="text" placeholder="{{t 'common.user.employeeNum'}}" id="input-employeeNum"
 name="user.employeeNum" class="form-control input-lg" />
</div>

OpenIDM Web-Based User Interfaces
Customizing User Self-Service Screens

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

4. Edit the relevant translation.json file. As this is the customized file for the Self-Service UI, you will
find it in the selfservice/extension/locales/en directory that you set up in "Customizing the UI".

You need to find the right place to enter text associated with the employeeNum property. Look for the
other properties in the userDetails-initial.html file.

The following excerpt illustrates the employeeNum property as added to the translation.json file.
...
"givenName" : "First Name",
"sn" : "Last Name",
"employeeNum" : "Employee ID Number",
...

5. The next time an anonymous user tries to create an account, that user should see a screen similar
to:

OpenIDM Web-Based User Interfaces
Customizing User Self-Service Screens

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

In the following procedure, you will customize what users can modify when they navigate to their
User Profile page:

Adding a Custom Tab to the User Profile Page

If you want to allow users to modify additional data on their profiles, this procedure is for you.

1. Log in to the Self-Service UI. Click the Profile tab. You should see at least the following tabs: Basic
 Info and Password. In this procedure, you will add a Mobile Phone tab.

2. OpenIDM generates the user profile page from the following file: UserProfileTemplate.html.
Assuming you set up custom extension subdirectories, as described in "Customizing a UI

OpenIDM Web-Based User Interfaces
Customizing User Self-Service Screens

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

Template", you should find a copy of this file in the following directory: selfservice/extension/
templates/user.

3. Examine the first few lines of that file. Note how the tablist includes the tabs in the Self-
Service UI user profile. The following excerpt includes a third tab, with the userTelephoneNumberTab
property:
<div class="container">
 <div class="page-header">
 <h1>{{t "common.user.userProfile"}}</h1>
 </div>
 <div class="tab-menu">
 <ul class="nav nav-tabs" role="tablist">
 <li class="active"><a href="#userDetailsTab" role="tab" data-
toggle="tab">{{t "common.user.basicInfo"}}
 {{t "common.user.password"}}</
a>
 <a href="#userTelephoneNumberTab" role="tab" data-
toggle="tab">{{t "common.user.telephoneNumber"}}

 </div>
...

4. Next, you should provide information for the tab. Based on the comments in the file, and the
entries in the Password tab, the following code sets up a Mobile Phone number entry:
<div role="tabpanel" class="tab-pane panel panel-default fr-panel-tab" id="userTelephoneNumberTab">
 <form class="form-horizontal" id="password">
 <div class="panel-body">
 <div class="form-group">
 <label class="col-sm-3 control-label" for="input-telephoneNumber">{{t
 "common.user.telephoneNumber"}}</label>
 <div class="col-sm-6">
 <input class="form-control" type="telephoneNumber" id="input-telephoneNumber"
 name="telephoneNumber" value="" />
 </div>
 </div>
 </div>
 <div class="panel-footer clearfix">
 {{> form/_basicSaveReset}}
 </div>
 </form>
</div>
 ...

Note

For illustration, this procedure uses the HTML tags found in the UserProfileTemplate.html file. You can use
any standard HTML content within tab-pane tags, as long as they include a standard form tag and standard
input fields. OpenIDM picks up this information when the tab is saved, and uses it to PATCH user content.

5. Review the managed.json file. Make sure it is viewable and userEditable as shown in the following
excerpt:

OpenIDM Web-Based User Interfaces
Modifying Valid Query Fields

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

"telephoneNumber" : {
 "type" : "string",
 "title" : "Mobile Phone",
 "viewable" : true,
 "userEditable" : true,
 "pattern" : "^\\+?([0-9\\- \\(\\)])*$"
},

6. Review the result. Log in to the Self-Service UI, and click Profile. Note the entry for the Mobile
Phone tab.

4.4.2. Modifying Valid Query Fields

For Password Reset and Forgotten Username functionality, you may choose to modify Valid Query
Fields, such as those described in "Configuring User Self-Service".

For example, if you click Configure > Password Reset > User Query Form, you can make changes to
Valid Query Fields.

OpenIDM Web-Based User Interfaces
Managing Accounts

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

If you add, delete, or modify any Valid Query Fields, you will have to change the corresponding
userQuery-initial.html file.

Assuming you set up custom extension subdirectories, as described in "Customizing a UI Template",
you can find this file in the following directory: selfservice/extension/templates/user/process.

If you change any Valid Query Fields, you should make corresponding changes.

• For Forgotten Username functionality, you would modify the username/userQuery-initial.html file.

• For Password Reset functionality, you would modify the reset/userQuery-initial.html file.

For a model of how you can change the userQuery-initial.html file, see "Customizing the User
Registration Page".

4.5. Managing Accounts
Only administrative users (with the role openidm-admin) can add, modify, and delete accounts from the
Admin UI. Regular users can modify certain aspects of their own accounts from the Self-Service UI.

4.5.1. Account Configuration

In the Admin UI, you can manage most details associated with an account, as shown in the following
screenshot.

OpenIDM Web-Based User Interfaces
Account Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

Account, UI Configuration

You can configure different functionality for an account under each tab:

Details

The Details tab includes basic identifying data for each user, with two special entries:

Status

By default, accounts are shown as active. To suspend an account, such as for a user who has
taken a leave of absence, set that user's status to inactive.

OpenIDM Web-Based User Interfaces
Account Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

Manager

You can assign a manager from the existing list of managed users.

Password

As an administrator, you can create new passwords for users in the managed user repository.

Provisioning Roles

Used to specify how objects are provisioned to an external system. For more information, see
"Working With Managed Roles".

Authorization Roles

Used to specify the authorization rights of a managed user within OpenIDM. For more
information, see "Working With Managed Roles".

Direct Reports

Users who are listed as managers of others have entries under the Direct Reports tab, as shown
in the following illustration:

OpenIDM Web-Based User Interfaces
Procedures for Managing Accounts

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

Linked Systems

Used to display account information reconciled from external systems.

4.5.2. Procedures for Managing Accounts

With the following procedures, you can add, update, and deactivate accounts for managed objects
such as users.

The managed object does not have to be a user. It can be a role, a group, or even be a physical item
such as an IoT device. The basic process for adding, modifying, deactivating, and deleting other
objects is the same as it is with accounts. However, the details may vary; for example, many IoT
devices do not have telephone numbers.

To Add a User Account

1. Log in to the Admin UI at https://localhost:8443/admin.

2. Click Manage > User.

3. Click New User.

4. Complete the fields on the New User page.

Most of these fields are self-explanatory. Be aware that the user interface is subject to policy
validation, as described in "Using Policies to Validate Data". So, for example, the email address
must be a valid email address, and the password must comply with the password validation
settings that appear if you enter an invalid password.

In a similar way, you can create accounts for other managed objects.

You can review new managed object settings in the managed.json file of your project-dir/conf directory.

In the following procedures, you learn how to update, deactivate, and delete user accounts, as well as
how to view that account in different user resources. You can follow essentially the same procedures
for other managed objects such as IoT devices.

To Update a User Account

1. Log in to the Admin UI at https://localhost:8443/admin as an administrative user.

2. Click Manage > User.

3. Click the Username of the user that you want to update.

4. On the profile page for the user, modify the fields you want to change and click Update.

The user account is updated in the OpenIDM repository.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

To Delete a User Account

1. Log in to the Admin UI at https://localhost:8443/admin as an administrative user.

2. Click Manage > User.

3. Select the checkbox next to the desired Username.

4. Click the Delete Selected button.

5. Click OK to confirm the deletion.

The user is deleted from the internal repository.

To View an Account in External Resources

The Admin UI displays the details of the account in the OpenIDM repository (managed/user). When
a mapping has been configured between the repository and one or more external resources, you can
view details of that account in any external system to which it is linked. As this view is read-only, you
cannot update a user record in a linked system from within the Self-Service UI.

By default, implicit synchronization is enabled for mappings from the managed/user repository to any
external resource. This means that when you update a managed object, any mappings defined in the
sync.json file that have the managed object as the source are automatically executed to update the
target system. You can see these changes in the Linked Systems section of a user's profile.

To view a user's linked accounts:

1. Log in to the Admin UI at https://localhost:8443/admin.

2. Click Manage User > Username > Linked Systems.

3. The Linked Systems panel indicates the external mapped resource or resources.

4. Select the resource in which you want to view the account, from the Linked Resource list.

The user record in the linked resource is displayed.

4.6. Configuring Account Relationships
This section will help you set up relationships between human users and devices, such as IoT devices.

You'll set this up with the help of the Admin UI schema editor, which allows you to create and
customize managed objects such as Users and Devices as well as relationships between managed
objects. You can also create these options in the managed.json file for your project.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

When complete, you will have users who can own multiple unique devices. If you try to assign the
same device to more than one owner, OpenIDM will stop you with an error message.

This section assumes that you've started OpenIDM with "Sample 2b - LDAP Two Way" in the Samples
Guide.

After you've started OpenIDM with "Sample 2b", go through the following procedures, where you
will:

• Set up a managed object named Device, with unique serial numbers for each device. You can
configure the searchable schema of your choice. See "Configuring Schema for a Device" for details.

• Set up a relationship from the Device to the User managed object. See "Configure a Relationship
from the Device Managed Object" for details.

• Set up a reverse relationship from the User to the Device managed object. See "Configure a
Relationship From the User Managed Object" for details.

• Demonstrate the relationships. Assign users to devices. See what happens when you try to assign a
device to more than one user. For details, see "Demonstrating an IoT Relationship".

Configuring Schema for a Device

This procedure illustrates how you might set up a Device managed object, with schema that
configures relationships to users.

After you configure the schema for the Device managed object, you can collect information such as
model, manufacturer, and serial number for each device. In the next procedure, you'll set up an owner
schema property that includes a relationship to the User managed object.

1. Click Configure > Managed Objects > New Managed Object. Give that object an appropriate
IoT name. For this procedure, specify Device. You should also select a managed object icon. Click
Save.

2. You should now see four tabs: Details, Schema, Scripts, and Properties. Click the Schema tab.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

3. The items that you can add to the new managed object depend on the associated properties.

The Schema tab includes the Readable Title of the device; in this case, set it to Device.

4. You can add schema properties as needed in the UI. Click the Property button. Include the
properties shown in the illustration: model, serialNumber, manufacturer, description, and
category.

5. Initially, the new property is named Property 1. As soon as you enter a property name such as
model, OpenIDM changes that property name accordingly.

6. To support UI-based searches of devices, make sure to set the Searchable option to true for
all configured schema properties, unless it includes extensive text, In this case, you should set
Searchable to false for the description property.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

The Searchable option is used in the data grid for the given object. When you click Manage >
Device (or another object such as User), OpenIDM displays searchable properties for that object.

7. After you save the properties for the new managed object type, OpenIDM saves those entries in
the managed.json file in the project-dir/conf directory.

8. Now click Manage > Device > New Device. Add a device as shown in the following illustration.

9. You can continue adding new devices to the managed object, or reconcile that managed object
with another data store. The other procedures in this section assume that you have set up the
devices as shown in the next illustration.

10. When complete, you can review the list of devices. Based on this procedure, click Manage >
Device.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

11. Select one of the listed devices. You'll note that the label for the device in the Admin UI matches
the name of the first property of the device.

You can change the order of schema properties for the Device managed object by clicking
Configure > Managed Object > Device > Schema, and select the property that you want to move
up or down the list.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

Alternatively, you can make the same changes to this (or any managed object schema) in the
managed.json file for your project.

Configure a Relationship from the Device Managed Object

In this procedure, you will add a property to the schema of the Device managed object.

1. In the Admin UI, click Configure > Managed Objects > Device > Schema.

2. Under the Schema tab, add a new property. For this procedure, we call it owner. Unlike other
schema properties, set the Searchable property to false.

3. Scroll down to Validation Policies; click the Type box and select Relationship. This opens
additional relationship options.

4. Set up a Reverse Property Name of IoT_Devices. You'll use that reverse property name in the next
"Configure a Relationship From the User Managed Object".

Be sure to set the Reverse Relationship and Validate options to true, which ensures that each
device is associated with no more than one user.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

5. Scroll down and add a Resource Collection. Set up a link to the managed/user object, with a label
that matches the User managed object.

6. Enable queries of the User managed object by setting Query Filter to true. The Query Filter
value for this Device object allows you to identify the user who "owns" each device. For more
information, see "Common Filter Expressions".

7. Set up fields from managed/user properties. The properties shown in the illustration are just
examples, based on "Sample 2b - LDAP Two Way" in the Samples Guide.

8. Add one or more Sort Keys from the configured fields.

9. Save your changes.

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

Configure a Relationship From the User Managed Object

In this procedure, you will configure an existing User Managed Object with schema to match what
was created in "Configure a Relationship from the Device Managed Object".

With the settings you create, OpenIDM supports a relationship between a single user and multiple
devices. In addition, this procedure prevents multiple users from "owning" any single device.

1. In the Admin UI, click Configure > Managed Objects > User > Schema.

2. Under the Schema tab, add a new property, called IoT_Devices.

3. Make sure the searchable property is set to false, to minimize confusion in the relationship.
Otherwise, you'll see every device owned by every user, when you click Manage > User.

4. For validation policies, you'll set up an array with a relationship. Note how the reverse property
name matches the property that you configured in "Configure a Relationship from the Device
Managed Object".

OpenIDM Web-Based User Interfaces
Configuring Account Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

Be sure to set the Reverse Relationship and Validate options to true, which ensures that no more
than one user gets associated with a specific device.

5. Scroll down to Resource Collection, and add references to the managed/device resource, as shown in
the next illustration.

6. Enter true in the Query Filter text box. In this relationship, OpenIDM will read all information
from the managed/device managed object, with information from the device fields and sort keys that
you configured in "Configure a Relationship from the Device Managed Object".

OpenIDM Web-Based User Interfaces
Managing Workflows From the Self-Service UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

Demonstrating an IoT Relationship

This procedure assumes that you've already taken the steps described in the previous procedures
in this section, specifically, "Configuring Schema for a Device", "Configure a Relationship from the
Device Managed Object", and "Configure a Relationship From the User Managed Object".

This procedure also assumes that you started OpenIDM with "Sample 2b - LDAP Two Way" in the
Samples Guide, and have reconciled to set up users.

1. From the Admin UI, click Manage > User. Select a user, and in this case, click the IoT Devices
tab. See how you can select any of the devices that you may have added in "Configuring Schema
for a Device".

2. Alternatively, try to assign a device to an owner. To do so, click Manage > Device, and select a
device. You'll see either an Add Owner or Update Owner button, which allows you to assign a device to
a specific user.

If you try to assign a device already assigned by a different user, you'll get the following message:
Conflict with Existing Relationship.

4.7. Managing Workflows From the Self-Service UI
The Self-Service UI is integrated with the embedded Activiti worfklow engine, enabling users
to interact with workflows. Available workflows are displayed under the Processes item on the
Dashboard. In order for a workflow to be displayed here, the workflow definition file must be present
in the openidm/workflow directory.

A sample workflow integration with the Self-Service UI is provided in openidm/samples/workflow, and
documented in "Sample Workflow - Provisioning User Accounts" in the Samples Guide. Follow the
steps in that sample for an understanding of how the workflow integration works.

OpenIDM Web-Based User Interfaces
Managing Workflows From the Self-Service UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

General access to workflow-related endpoints is based on the access rules defined in the script/
access.js file. The configuration defined in the conf/process-access.json file determines who can
invoke workflows. By default all users with the role openidm-authorized or openidm-admin can invoke any
available workflow. The default process-access.json file is as follows:
{
 "workflowAccess" : [
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "openidm-authorized"
 }
 },
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "openidm-admin"
 }
 }
]
}

"property"

Specifies the property used to identify the process definition. By default, process definitions are
identified by their _id.

"matches"

A regular expression match is performed on the process definitions, according to the specified
property. The default ("matches" : ".*") implies that all process definition IDs match.

"requiresRole"

Specifies the OpenIDM role that is required for users to have access to the matched process
definition IDs. In the default file, users with the role openidm-authorized or openidm-admin have
access.

To extend the process action definition file, identify the processes to which users should have access,
and specify the qualifying user roles. For example, if you wanted to restrict access to a process
definition whose ID was 567, to users with the role ldap you would add the following to the process-
access.json file:
{
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : "567",
 "requiresRole" : "ldap"
 }
}

OpenIDM Web-Based User Interfaces
Customizing the UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

4.8. Customizing the UI
OpenIDM allows you to customize both the Admin and Self-Service UIs. When you install OpenIDM,
you can find the default UI configuration files in two directories:

• Admin UI: openidm/ui/admin/default

• Self-Service UI: openidm/ui/selfservice/default

OpenIDM looks for custom themes and templates in the following directories:

• Admin UI: openidm/ui/admin/extension

• Self-Service UI: openidm/ui/selfservice/extension

Before starting the customization process, you should create these directories. If you are running
UNIX/Linux, the following commands create a copy of the appropriate subdirectories:
$ cd /path/to/openidm/ui
$ cp -r selfservice/default/. selfservice/extension
$ cp -r admin/default/. admin/extension

OpenIDM also includes templates that may help, in two other directories:

• Admin UI: openidm/ui/admin/default/templates

• Self-Service UI: openidm/ui/selfservice/default/templates

4.9. Changing the UI Theme
You can customize the theme of the user interface. OpenIDM uses the Bootstrap framework. You can
download and customize the OpenIDM UI with the Bootstrap themes of your choice. OpenIDM is also
configured with the Font Awesome CSS toolkit.

Note

If you use Brand Icons from the Font Awesome CSS Toolkit, be aware of the following statement:

All brand icons are trademarks of their respective owners. The use of these trademarks does not indicate
endorsement of the trademark holder by ForgeRock, nor vice versa.

4.9.1. OpenIDM UI Themes and Bootstrap

You can configure a few features of the OpenIDM UI in the ui-themeconfig.json file in your project's
conf/ subdirectory. However, to change most theme-related features of the UI, you must copy target

http://getbootstrap.com
http://fortawesome.github.io/Font-Awesome/
http://fortawesome.github.io/Font-Awesome/icons/

OpenIDM Web-Based User Interfaces
Changing the Default Logo

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

files to the appropriate extension subdirectory, and then modify them as discussed in "Customizing the
UI".

The default configuration files for the Admin and Self-Service UIs are identical for theme
configuration.

By default the UI reads the stylesheets and images from the respective openidm/ui/function/default
directories. Do not modify the files in this directory. Your changes may be overwritten the next time
you update or even patch your system.

To customize your UI, first set up matching subdirectories for your system (openidm/ui/admin/extension
and openidm/ui/selfservice/extension). For example, assume you want to customize colors, logos, and so
on.

You can set up a new theme, primarily through custom Bootstrap CSS files, in appropriate extension/
subdirectories, such as openidm/ui/selfservice/extension/libs and openidm/ui/selfservice/extension/css.

You may also need to update the "stylesheets" listing in the ui-themeconfig.json file for your project, in
the project-dir/conf directory.
...
"stylesheets" : ["css/bootstrap-3.3.5-custom.css", "css/structure.css", "css/theme.css"],
...

You can find these stylesheets in the /css subdirectory.

• bootstrap-3.3.5-custom.css: Includes custom settings that you can get from various Bootstrap
configuration sites, such as the Bootstrap Customize and Download website.

You may find the ForgeRock version of this in the config.json file in the ui/selfservice/default/css/
common/structure/ directory.

• structure.css: Supports configuration of structural elements of the UI.

• theme.css: Includes customizable options for UI themes such as colors, buttons, and navigation bars.

If you want to set up custom versions of these files, copy them to the extension/css subdirectories.

4.9.2. Changing the Default Logo

For the Self-Service UI, you can find the default logo in the openidm/ui/selfservice/default/images
directory. To change the default logo, copy desired files to the openidm/ui/selfservice/extension/images
directory. You should see the changes after refreshing your browser.

To specify a different file name, or to control the size, and other properties of the image file that is
used for the logo, adjust the logo property in the UI theme configuration file for your project: project-
dir/conf/ui-themeconfig.json).

The following change to the UI theme configuration file points to an image file named example-logo.png,
in the openidm/ui/extension/images directory:

http://getbootstrap.com/customize/

OpenIDM Web-Based User Interfaces
Changing the Language of the UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

...
"loginLogo" : {
 "src" : "images/example-logo.png",
 "title" : "Example.com",
 "alt" : "Example.com",
 "height" : "104px",
 "width" : "210px"
},
...

Refresh your browser window for the new logo to appear.

4.9.3. Changing the Language of the UI
Currently, the UI is provided only in US English. You can translate the UI and specify that your own
locale is used. The following example shows how to translate the UI into French:

1. Assuming you set up custom extension subdirectories, as described in "Customizing the UI", you
can copy the default (en) locale to a new (fr) subdirectory as follows:
$ cd /path/to/openidm/ui/selfservice/extension/locales
$ cp -R en fr

The new locale (fr) now contains the default translation.json file:
$ ls fr/
translation.json

2. Translate the values of the properties in the fr/translate.json file. Do not translate the property
names. For example:
...
"UserMessages" : {
 "changedPassword" : "Mot de passe a été modifié",
 "profileUpdateFailed" : "Problème lors de la mise à jour du profil",
 "profileUpdateSuccessful" : "Profil a été mis à jour",
 "userNameUpdated" : "Nom d'utilisateur a été modifié",
....

3. Change the UI configuration to use the new locale by setting the value of the lang property in the
project-dir/conf/ui-configuration.json file, as follows:
"lang" : "fr",

4. Refresh your browser window, and OpenIDM applies your change.

You can also change the labels for accounts in the UI. To do so, navigate to the Schema Properties for
the managed object to be changed.

To change the labels for user accounts, navigate to the Admin UI. Click Configure > Managed Objects
> User, and scroll down to Schema.

Under Schema Properties, select a property and modify the Readable Title. For example, you can
modify the Readable Title for userName to a label in another language, such as Nom d'utilisateur.

OpenIDM Web-Based User Interfaces
Creating a Project-Specific UI Theme

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

4.9.4. Creating a Project-Specific UI Theme

You can create specific UI themes for different projects and then point a particular UI instance to use
a defined theme on startup. To create a complete custom theme, follow these steps:

1. Shut down the OpenIDM instance, if it is running. In the OSGi console, type:
shutdown
->

2. Copy the entire default Self-Service UI theme to an accessible location. For example:
$ cd /path/to/openidm/ui/selfservice
$ cp -r default /path/to/openidm/new-project-theme

3. If desired, repeat the process with the Admin UI; just remember to copy files to a different
directory:
$ cd /path/to/openidm/ui/admin
$ cp -r default /path/to/openidm/admin-project-theme

4. In the copied theme, modify the required elements, as described in the previous sections. Note
that nothing is copied to the extension folder in this case - changes are made in the copied theme.

5. In the conf/ui.context-selfservice.json file, modify the values for defaultDir and extensionDir to the
directory with your new-project-theme:
{
 "enabled" : true,
 "urlContextRoot" : "/",
 "defaultDir" : "&{launcher.install.location}/ui/selfservice/default",
 "extensionDir" : "&{launcher.install.location}/ui/selfservice/extension"
}

6. If you want to repeat the process for the Admin UI, make parallel changes to the project-dir/conf/
ui.context-admin.json file.

7. Restart OpenIDM.
$ cd /path/to/openidm
$./startup.sh

8. Relaunch the UI in your browser. The UI is displayed with the new custom theme.

4.10. Using an External System for Password Reset
By default, the Password Reset mechanism is handled internally, in OpenIDM. You can reroute
Password Reset in the event that a user has forgotten their password, by specifying an external URL
to which Password Reset requests are sent. Note that this URL applies to the Password Reset link on
the login page only, not to the security data change facility that is available after a user has logged in.

OpenIDM Web-Based User Interfaces
Providing a Logout URL to External Applications

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

To set an external URL to handle Password Reset, set the passwordResetLink parameter in the UI
configuration file (conf/ui-configuration.json) file. The following example sets the passwordResetLink to
https://accounts.example.com/account/reset-password:
passwordResetLink: "https://accounts.example.com/reset-password"

The passwordResetLink parameter takes either an empty string as a value (which indicates that no
external link is used) or a full URL to the external system that handles Password Reset requests.

Note

External Password Reset and security questions for internal Password Reset are mutually exclusive. Therefore,
if you set a value for the passwordResetLink parameter, users will not be prompted with any security questions,
regardless of the setting of the securityQuestions parameter.

4.11. Providing a Logout URL to External Applications
By default, a UI session is invalidated when a user clicks on the Log out link. In certain situations
your external applications might require a distinct logout URL to which users can be routed, to
terminate their UI session.

The logout URL is #logout, appended to the UI URL, for example, https://localhost:8443/#logout/.

The logout URL effectively performs the same action as clicking on the Log out link of the UI.

4.12. Changing the UI Path
By default, the self service UI is registered at the root context and is accessible at the URL https:/
/localhost:8443. To specify a different URL, edit the project-dir/conf/ui.context-selfservice.json file,
setting the urlContextRoot property to the new URL.

For example, to change the URL of the self service UI to https://localhost:8443/exampleui, edit the file
as follows:
"urlContextRoot" : "/exampleui",

Alternatively, to change the Self-Service UI URL in the Admin UI, follow these steps:

1. Log in to the Admin UI.

2. Select Configure > System Preferences, and select the Self-Service UI tab.

3. Specify the new context route in the Relative URL field.

OpenIDM Web-Based User Interfaces
Disabling the UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

4.13. Disabling the UI
The UI is packaged as a separate bundle that can be disabled in the configuration before
server startup. To disable the registration of the UI servlet, edit the project-dir/conf/ui.context-
selfservice.json file, setting the enabled property to false:
"enabled" : false,

Managing the OpenIDM Repository
Understanding the JDBC Repository Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

Chapter 5

Managing the OpenIDM Repository
OpenIDM stores managed objects, internal users, and configuration objects in a repository. By
default, OpenIDM uses OrientDB for its internal repository. In production, you must replace OrientDB
with a supported JDBC repository, as described in "Installing a Repository For Production" in the
Installation Guide.

This chapter describes the JDBC repository configuration, the use of mappings in the repository, and
how to configure a connection to the repository over SSL. It also describes how to interact with the
OpenIDM repository over the REST interface.

5.1. Understanding the JDBC Repository Configuration File
OpenIDM provides configuration files for each supported JDBC repository, as well as example
configurations for other repositories. These configuration files are located in the /path/to/openidm/
db/database/conf directory. The configuration is defined in two files:

• datasource.jdbc-default.json, which specifies the connection details to the repository.

• repo.jdbc.json, which specifies the mapping between OpenIDM resources and the tables in the
repository, and includes a number of predefined queries.

Copy the configuration files for your specific database type to your project's conf/ directory.

5.1.1. Understanding the Connection Configuration File

The default database connection configuration file for a MySQL database follows:

{
 "driverClass" : "com.mysql.jdbc.Driver",
 "jdbcUrl" : "jdbc:mysql://localhost:3306/openidm?allowMultiQueries=true&characterEncoding=utf8",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "bonecp"
 }
}

The configuration file includes the following properties:

Managing the OpenIDM Repository
Understanding the Connection Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

driverClass, jndiName, or jtaName

Depending on the mechanism you use to acquire the data source, set one of these properties:

• "driverClass" : string

To use the JDBC driver manager to acquire a data source, set this property, as well as "jdbcUrl",
"username", and "password". The driver class must be the fully qualified class name of the database
driver to use for your database.

Using the JDBC driver manager to acquire a data source is the most likely option, and the only
one supported "out of the box". The remaining options in the sample repository configuration
file assume that you are using a JDBC driver manager.

Example: "driverClass" : "com.mysql.jdbc.Driver"

• "jndiName" : string

If you use JNDI to acquire the data source, set this property to the JNDI name of the data
source.

This option might be relevant if you want to run OpenIDM inside your own web container.

Example: "jndiName" : "jdbc/my-datasource"

• "jtaName" : string

If you use an OSGi service to acquire the data source, set this property to a stringified version
of the OsgiName.

This option would only be relevant in a highly customized deployment, for example, if you
wanted to develop your own connection pool.

Example: "jtaName" : "osgi:service/javax.sql.DataSource/(osgi.jndi.service.name=jdbc/openidm)"

"jdbcUrl"

The connection URL to the JDBC database. The URL should include all of the parameters
required by your database. For example, to specify the encoding in MySQL use
'characterEncoding=utf8'.

Example: "jdbcUrl" : "jdbc:mysql://localhost:3306/openidm?characterEncoding=utf8"

"databaseName"

The name of the database to which OpenIDM connects. By default, this is openidm.

"username"

The username with which to access the JDBC database.

Managing the OpenIDM Repository
Understanding the Database Table Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

"password"

The password with which to access the JDBC database. OpenIDM automatically encrypts clear
string passwords. To replace an existing encrypted value, replace the whole crypto-object value,
including the brackets, with a string of the new password.

"connectionTimeout"

The period of time, in milliseconds, after which OpenIDM should consider an attempted
connection to the database to have failed. The default period is 30000 milliseconds (30 seconds).

"connectionPool"

The library that manages database connection pooling. Currently OpenIDM supports bonecp only.

5.1.2. Understanding the Database Table Configuration

An excerpt from an database table configuration file follows:

{
 "dbType" : "MYSQL",
 "useDataSource" : "default",
 "maxBatchSize" : 100,
 "maxTxRetry" : 5,
 "queries" : {...},
 "commands" : {...},
 "resourceMapping" : {...}
}

The configuration file includes the following properties:

"dbType" : string, optional

The type of database. The database type might affect the queries used and other optimizations.
Supported database types include MYSQL, SQLSERVER, ORACLE, MS SQL, and DB2.

"useDataSource" : string, optional

This option refers to the connection details that are defined in the configuration file, described
previously. The default configuration file is named datasource.jdbc-default.json. This is the file that
is used by default (and the value of the "useDataSource" is therefore "default"). You might want to
specify a different connection configuration file, instead of overwriting the details in the default
file. In this case, set your connection configuration file datasource.jdbc-name.json and set the value
of "useDataSource" to whatever name you have used.

"maxBatchSize"

The maximum number of SQL statements that will be batched together. This parameter allows
you to optimize the time taken to execute multiple queries. Certain databases do not support
batching, or limit how many statements can be batched. A value of 1 disables batching.

Managing the OpenIDM Repository
Understanding the Database Table Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

"maxTxRetry"

The maximum number of times that a specific transaction should be attempted before that
transaction is aborted.

"queries"

Enables you to create predefined queries that can be referenced from the configuration. For
more information about predefined queries, see "Parameterized Queries". The queries are divided
between those for "genericTables" and those for "explicitTables".

The following sample extract from the default MySQL configuration file shows two credential
queries, one for a generic mapping, and one for an explicit mapping. Note that the lines have
been broken here for legibility only. In a real configuration file, the query would be all on one
line.

"queries" : {
 "genericTables" : {
 "credential-query" : "SELECT fullobject FROM ${_dbSchema}.${_mainTable}
 obj INNER JOIN ${_dbSchema}.${_propTable} prop ON
 obj.id = prop.${_mainTable}_id INNER JOIN ${_dbSchema}.objecttypes
 objtype ON objtype.id = obj.objecttypes_id WHERE prop.propkey='/userName'
 AND prop.propvalue = ${username} AND objtype.objecttype = ${_resource}",
 ...
 "explicitTables" : {
 "credential-query" : "SELECT * FROM ${_dbSchema}.${_table}
 WHERE objectid = ${username} and accountStatus = 'active'",
 ...
 }
}

Options supported for query parameters include the following:

• A default string parameter, for example:
openidm.query("managed/user", { "_queryId": "for-userName", "uid": "jdoe" });

For more information about the query function, see "openidm.query(resourceName, params,
fields)".

• A list parameter (${list:propName}).

Use this parameter to specify a set of indeterminate size as part of your query. For example:
WHERE targetObjectId IN (${list:filteredIds})

• An integer parameter (${int:propName}).

Use this parameter if you need query for non-string values in the database. This is particularly
useful with explicit tables.

Managing the OpenIDM Repository
Using Explicit or Generic Object Mapping With a JDBC Repository

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

"commands"

Specific commands configured for to managed the database over the REST interface. Currently,
only two default commands are included in the configuration:

• purge-by-recon-expired

• purge-by-recon-number-of

Both of these commands assist with removing stale reconciliation audit information from the
repository, and preventing the repository from growing too large. For more information about
repository commands, see "Running Queries and Commands on the Repository".

"resourceMapping"

Defines the mapping between OpenIDM resource URIs (for example, managed/user) and JDBC
tables. The structure of the resource mapping is as follows:

"resourceMapping" : {
 "default" : {
 "mainTable" : "genericobjects",
 "propertiesTable" : "genericobjectproperties",
 "searchableDefault" : true
 },
 "genericMapping" : {...},
 "explicitMapping" : {...}
}

The default mapping object represents a default generic table in which any resource that does not
have a more specific mapping is stored.

The generic and explicit mapping objects are described in the following section.

5.2. Using Explicit or Generic Object Mapping With a JDBC
Repository
For JDBC repositories, there are two ways of mapping OpenIDM objects to the database tables:

• Generic mapping, which allows arbitrary objects to be stored without special configuration or
administration.

• Explicit mapping, which allows for optimized storage and queries by explicitly mapping objects to
tables and columns in the database.

These two mapping strategies are discussed in the following sections.

Managing the OpenIDM Repository
Using Generic Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

5.2.1. Using Generic Mappings

Generic mapping speeds up development, and can make system maintenance more flexible by
providing a more stable database structure. However, generic mapping can have a performance
impact and does not take full advantage of the database facilities (such as validation within the
database and flexible indexing). In addition, queries can be more difficult to set up.

In a generic table, the entire object content is stored in a single large-character field named fullobject
in the mainTable for the object. To search on specific fields, you can read them by referring to them
in the corresponding properties table for that object. The disadvantage of generic objects is that,
because every property you might like to filter by is stored in a separate table, you must join to that
table each time you need to filter by anything.

The following diagram shows a pared down database structure for the default generic table, and
indicates the relationship between the main table and the corresponding properties table for each
object.

Managing the OpenIDM Repository
Using Generic Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

Generic Tables Entity Relationship Diagram

These separate tables can make the query syntax particularly complex. For example, a simple query
to return user entries based on a user name would need to be implemented as follows:
SELECT fullobject FROM ${_dbSchema}.${_mainTable} obj INNER JOIN ${_dbSchema}.${_propTable} prop
 ON obj.id = prop.${_mainTable}_id INNER JOIN ${_dbSchema}.objecttypes objtype
 ON objtype.id = obj.objecttypes_id WHERE prop.propkey='/userName' AND prop.propvalue = ${uid}
 AND objtype.objecttype = ${_resource}",

The query can be broken down as follows:

1. Select the full object from the main table:

Managing the OpenIDM Repository
Using Generic Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

SELECT fullobject FROM ${_dbSchema}.${_mainTable} obj

2. Join to the properties table and locate the object with the corresponding ID:
INNER JOIN ${_dbSchema}.${_propTable} prop ON obj.id = prop.${_mainTable}_id

3. Join to the object types table to restrict returned entries to objects of a specific type. For example,
you might want to restrict returned entries to managed/user objects, or managed/role objects:
INNER JOIN ${_dbSchema}.objecttypes objtype ON objtype.id = obj.objecttypes_id

4. Filter records by the userName property, where the userName is equal to the specified uid and the
object type is the specified type (in this case, managed/user objects):
WHERE prop.propkey='/userName'
AND prop.propvalue = ${uid}
AND objtype.objecttype = ${_resource}",

The value of the uid field is provided as part of the query call, for example:
openidm.query("managed/user", { "_queryId": "for-userName", "uid": "jdoe" });

Tables for user definable objects use a generic mapping by default.

The following sample generic mapping object illustrates how managed/ objects are stored in a generic
table:
"genericMapping" : {
 "managed/*" : {
 "mainTable" : "managedobjects",
 "propertiesTable" : "managedobjectproperties",
 "searchableDefault" : true,
 "properties" : {
 "/picture" : {
 "searchable" : false
 }
 }
 }
 },

mainTable (string, mandatory)

Indicates the main table in which data is stored for this resource.

The complete object is stored in the fullobject column of this table. The table includes an
entityType foreign key that is used to distinguish the different objects stored within the table. In
addition, the revision of each stored object is tracked, in the rev column of the table, enabling
multi version concurrency control (MVCC). For more information, see "Manipulating Managed
Objects Programmatically".

propertiesTable (string, mandatory)

Indicates the properties table, used for searches.

Managing the OpenIDM Repository
Using Generic Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

The contents of the properties table is a defined subset of the properties, copied from the
character large object (CLOB) that is stored in the fullobject column of the main table. The
properties are stored in a one-to-many style separate table. The set of properties stored here is
determined by the properties that are defined as searchable.

The stored set of searchable properties makes these values available as discrete rows that can be
accessed with SQL queries, specifically, with WHERE clauses. It is not otherwise possible to query
specific properties of the full object.

The properties table includes the following columns:

• ${_mainTable}_id corresponds to the id of the full object in the main table, for example,
manageobjects_id, or genericobjects_id.

• propkey is the name of the searchable property, stored in JSON pointer format (for example /
mail).

• proptype is the data type of the property, for example java.lang.String. The property type is
obtained from the Class associated with the value.

• propvalue is the value of property, extracted from the full object that is stored in the main table.

Regardless of the property data type, this value is stored as a string, so queries against it
should treat it as such.

searchableDefault (boolean, optional)

Specifies whether all properties of the resource should be searchable by default. Properties that
are searchable are stored and indexed. You can override the default for individual properties in
the properties element of the mapping. The preceding example indicates that all properties are
searchable, with the exception of the picture property.

For large, complex objects, having all properties searchable implies a substantial performance
impact. In such a case, a separate insert statement is made in the properties table for each
element in the object, every time the object is updated. Also, because these are indexed fields, the
recreation of these properties incurs a cost in the maintenance of the index. You should therefore
enable searchable only for those properties that must be used as part of a WHERE clause in a
query.

properties

Lists any individual properties for which the searchable default should be overridden.

Note that if an object was originally created with a subset of searchable properties, changing this
subset (by adding a new searchable property in the configuration, for example) will not cause the
existing values to be updated in the properties table for that object. To add the new property to
the properties table for that object, you must update or recreate the object.

Managing the OpenIDM Repository
Improving Search Performance for Generic Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

5.2.2. Improving Search Performance for Generic Mappings

All properties in a generic mapping are searchable by default. In other words, the value of the
searchableDefault property is true unless you explicitly set it to false. Although there are no individual
indexes in a generic mapping, you can improve search performance by setting only those properties
that you need to search as searchable. Properties that are searchable are created within the
corresponding properties table. The properties table exists only for searches or look-ups, and has a
composite index, based on the resource, then the property name.

The sample JDBC repository configuration files (db/database/conf/repo.jdbc.json) restrict searches
to specific properties by setting the searchableDefault to false for managed/user mappings. You must
explicitly set searchable to true for each property that should be searched. The following sample
extract from repo.jdbc.json indicates searches restricted to the userName property:
"genericMapping" : {
 "managed/user" : {
 "mainTable" : "manageduserobjects",
 "propertiesTable" : "manageduserobjectproperties",
 "searchableDefault" : false,
 "properties" : {
 "/userName" : {
 "searchable" : true
 }
 }
 }
},

With this configuration, OpenIDM creates entries in the properties table only for userName properties
of managed user objects.

If the global searchableDefault is set to false, properties that do not have a searchable attribute
explicitly set to true are not written in the properties table.

5.2.3. Using Explicit Mappings

Explicit mapping is more difficult to set up and maintain, but can take complete advantage of the
native database facilities.

An explicit table offers better performance and simpler queries. There is less work in the reading and
writing of data, since the data is all in a single row of a single table. In addition, it is easier to create
different types of indexes that apply to only specific fields in an explicit table. The disadvantage of
explicit tables is the additional work required in creating the table in the schema. Also, because
rows in a table are inherently more simple, it is more difficult to deal with complex objects. Any non-
simple key:value pair in an object associated with an explicit table is converted to a JSON string and
stored in the cell in that format. This makes the value difficult to use, from the perspective of a query
attempting to search within it.

Note that it is possible to have a generic mapping configuration for most managed objects, and to
have an explicit mapping that overrides the default generic mapping in certain cases. The sample

Managing the OpenIDM Repository
Using Explicit Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

configuration provided in /path/to/openidm/db/mysql/conf/repo.jdbc-mysql-explicit-managed-user.json has a
generic mapping for managed objects, but an explicit mapping for managed user objects.

OpenIDM uses explicit mapping for internal system tables, such as the tables used for auditing.

Depending on the types of usage your system is supporting, you might find that an explicit mapping
performs better than a generic mapping. Operations such as sorting and searching (such as those
performed in the default UI) tend to be faster with explicitly-mapped objects, for example.

The following sample explicit mapping object illustrates how internal/user objects are stored in an
explicit table:
"explicitMapping" : {
 "internal/user" : {
 "table" : "internaluser",
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : "rev",
 "password" : "pwd",
 "roles" : "roles"
 }
 },
 ...
}

<resource-uri> (string, mandatory)

Indicates the URI for the resources to which this mapping applies, for example, "internal/user".

table (string, mandatory)

The name of the database table in which the object (in this case internal users) is stored.

objectToColumn (string, mandatory)

The way in which specific managed object properties are mapped to columns in the table.

The mapping can be a simple one to one mapping, for example "userName": "userName", or a more
complex JSON map or list. When a column is mapped to a JSON map or list, the syntax is as
shown in the following examples:
"messageDetail" : { "column" : "messagedetail", "type" : "JSON_MAP" }

or
"roles": { "column" : "roles", "type" : "JSON_LIST" }

Caution

Support for data types in columns is restricted to String (VARCHAR in the case of MySQL). If you use a different
data type, such as DATE or TIMESTAMP, your database must attempt to convert from String to the other data type.
This conversion is not guaranteed to work.

Managing the OpenIDM Repository
Configuring SSL with a JDBC Repository

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

If the conversion does work, the format might not be the same when it is read from the database as it was when
it was saved. For example, your database might parse a date in the format 12/12/2012 and return the date in the
format 2012-12-12 when the property is read.

5.3. Configuring SSL with a JDBC Repository
To configure SSL with a JDBC repository, you need to import the CA certificate file for the server
into the OpenIDM truststore. That certificate file could have a name like ca-cert.pem. If you have a
different genuine or self-signed certificate file, substitute accordingly.

To import the CA certificate file into the OpenIDM truststore, use the keytool command native to the
Java environment, typically located in the /path/to/jre-version/bin directory. On some UNIX-based
systems, /usr/bin/keytool may link to that command.

Preparing OpenIDM for SSL with a JDBC Repository

1. Import the ca-cert.pem certificate into the OpenIDM truststore file with the following command:
$ keytool \
 -importcert \
 -trustcacerts \
 -file ca-cert.pem \
 -alias "DB cert" \
 -keystore /path/to/openidm/security/truststore

You're prompted for a keystore password. Be sure to use the same password as is shown in the
boot.properties file for your project. The default is:
openidm.keystore.password=changeit

After entering a keystore password, you're prompted with the following question. Assuming
you've included an appropriate ca-cert.pem file, enter yes.
Trust this certificate? [no]:

2. Open the repository connection configuration file, datasource.jdbc-default.json .

Look for the jdbcUrl properties. You should see a jdbc URL. Add a
?characterEncoding=utf8&useSSL=true to the end of that URL.

The jdbcUrl that you configure depends on your JDBC repository. The following entries correspond
to appropriate jdbcURL properties for MySQL, MSSQL, PostgreSQL, and Oracle DB, respectively:

"jdbcUrl" : "jdbc:mysql://localhost:3306/openidm?characterEncoding=utf8&useSSL=true"

"jdbcUrl" : "jdbc:sqlserver://localhost:1433;instanceName=default;
 databaseName=openidm;applicationName=OpenIDM?characterEncoding=utf8&useSSL=true"

Managing the OpenIDM Repository
Configuring SSL with a JDBC Repository

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

"jdbcUrl" : "jdbc:postgresql://localhost:5432/openidm?characterEncoding=utf8&useSSL=true"

"jdbcUrl" : "jdbc:oracle:thin:@//localhost:1521/openidm?characterEncoding=utf8&useSSL=true"

3. Open your project's conf/config.properties file. Find the org.osgi.framework.bootdelegation property.
Make sure that property includes a reference to the javax.net.ssl option. If you started with the
default version of config.properties that line should now read as follows:
org.osgi.framework.bootdelegation=sun.*,com.sun.*,apple.*,com.apple.*,javax.net.ssl

4. Open your project's conf/system.properties file. Add the following line to that file. If appropriate,
substitute the path to your own truststore:
Set the truststore
javax.net.ssl.trustStore=&{launcher.install.location}/security/truststore

Even if you are setting up this instance of OpenIDM as part of a cluster, you still need to
configure this initial truststore. After this instance joins a cluster, the SSL keys in this particular
truststore are replaced. For more information on clustering, see "Configuring OpenIDM for High
Availability".

5. Only if you are using MySQL, add the client certificate and key to the OpenIDM keystore:

a. Create the client certificate file, client.packet, with the following command:
$ openssl \
 pkcs12 \
 -export \
 -inkey client-key.pem \
 -in client-cert.pem \
 -out client.packet

In this case, the openssl command imports a client key, client-key.pem, with input data from
the same file, exporting output to a client certificate file named client.packet, in PKCS12
format.

b. When you're prompted to Enter Export Password:, make sure it matches the openidm.keystore
.password setting in your project's boot.properties file.

Warning

If the export password you enter does not match the existing OpenIDM keystore password, OpenIDM
will not provide the client certificate when negotiating the SSL connection.

c. Add the client certificate to the OpenIDM keystore:

Managing the OpenIDM Repository
Interacting With the Repository Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

$ keytool \
 -importkeystore \
 -srckeystore client.packet \
 -srcstoretype pkcs12 \
 -destkeystore /path/to/openidm/security/keystore.jceks \
 -storetype JCEKS

This command should prompt you for the source and destination keystore password, which
should also match the openidm.keystore.password setting in your project's boot.properties file.

If you are successful, you will see the following message:
Entry for alias 1 successfully imported.
Import command completed: 1 entries successfully imported, 0 entries failed or cancelled

5.4. Interacting With the Repository Over REST
The OpenIDM repository is accessible over the REST interface, at the openidm/repo endpoint.

In general, you must ensure that external calls to the openidm/repo endpoint are protected. Native
queries and free-form command actions on this endpoint are disallowed by default, as the endpoint
is vulnerable to injection attacks. For more information, see "Running Queries and Commands on the
Repository".

5.4.1. Changing the Repository Password

In the case of an embedded OrientDB repository, the default username and password are admin and
admin. You can change the default password, by sending the following POST request on the repo
endpoint:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/repo?_action=updateDbCredentials&user=admin&password=newPassword"

You must restart OpenIDM for the change to take effect.

5.4.2. Running Queries and Commands on the Repository

Free-form commands and native queries on the repository are disallowed by default and should
remain so in production to reduce the risk of injection attacks.

Common filter expressions, called with the _queryFilter keyword, enable you to form arbitrary queries
on the repository, using a number of supported filter operations. For more information on these
filter operations, see "Constructing Queries". Parameterized or predefined queries and commands

Managing the OpenIDM Repository
Running Queries and Commands on the Repository

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

(using the _queryId and _commandId keywords) can be authorized on the repository for external calls if
necessary. For more information, see "Parameterized Queries".

Running commands on the repository is supported primarily from scripts. Certain scripts that interact
with the repository are provided by default, for example, the scripts that enable you to purge the
repository of reconciliation audit records.

You can define your own commands, and specify them in the database table configuration file (either
repo.orientdb.json or repo.jdbc.json). In the following simple example, a command is called to clear out
UI notification entries from the repository, for specific users.

The command is defined in the repository configuration file, as follows:
"commands" : {
"delete-notifications-by-id" : "DELETE FROM ui_notification WHERE receiverId = ${username}"
...
},

The command can be called from a script, as follows:
openidm.action("repo/ui/notification", "command", {},
{ "commandId" : "delete-notifications-by-id", "userName" : "scarter"});

Exercise caution when allowing commands to be run on the repository over the REST interface, as
there is an attached risk to the underlying data.

Configuring OpenIDM
OpenIDM Configuration Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

Chapter 6

Configuring OpenIDM
OpenIDM configuration is split between .properties and container configuration files, and also
dynamic configuration objects. Most of OpenIDM's configuration files are stored in your project's
conf/ directory, as described in "File Layout".

OpenIDM stores configuration objects in its internal repository. You can manage the configuration
by using REST access to the configuration objects, or by using the JSON file-based views.
Several aspects of the configuration can also be managed by using the Admin UI, as described in
"Configuring OpenIDM from the Admin UI".

6.1. OpenIDM Configuration Objects
OpenIDM exposes internal configuration objects in JSON format. Configuration elements can be
either single instance or multiple instance for an OpenIDM installation.

6.1.1. Single Instance Configuration Objects

Single instance configuration objects correspond to services that have at most one instance per
installation. JSON file views of these configuration objects are named object-name.json.

The following list describes the single instance configuration objects:

• The audit configuration specifies how audit events are logged.

• The authentication configuration controls REST access.

• The cluster configuration defines how one OpenIDM instance can be configured in a cluster.

• The endpoint configuration controls any custom REST endpoints.

• The info configuration points to script files for the customizable information service.

• The managed configuration defines managed objects and their schemas.

• The policy configuration defines the policy validation service.

• The process access configuration defines access to configured workflows.

• The repo.repo-type configuration such as repo.orientdb or repo.jdbc configures the internal repository.

Configuring OpenIDM
Single Instance Configuration Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

• The router configuration specifies filters to apply for specific operations.

• The script configuration defines the parameters that are used when compiling, debugging, and
running JavaScript and Groovy scripts.

• The sync configuration defines the mappings that OpenIDM uses when it synchronizes and
reconciles managed objects.

• The ui configuration defines the configurable aspects of the default user interfaces.

• The workflow configuration defines the configuration of the workflow engine.

OpenIDM stores managed objects in the repository, and exposes them under /openidm/managed. System
objects on external resources are exposed under /openidm/system.

The following image shows the paths to objects in the OpenIDM namespace.

Configuring OpenIDM
Multiple Instance Configuration Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

OpenIDM Namespaces and Object Paths

6.1.2. Multiple Instance Configuration Objects

Multiple instance configuration objects correspond to services that can have many instances per
installation. Multiple instance configuration objects are named objectname/instancename, for example,
provisioner.openicf/xml.

JSON file views of these configuration objects are named objectname-instancename.json, for example,
provisioner.openicf-xml.json.

Configuring OpenIDM
Changing the Default Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

OpenIDM provides the following multiple instance configuration objects:

• Multiple schedule configurations can run reconciliations and other tasks on different schedules.

• Multiple provisioner.openicf configurations correspond to the resources connected to OpenIDM.

• Multiple servletfilter configurations can be used for different servlet filters such as the Cross
Origin and GZip filters.

6.2. Changing the Default Configuration
When you change OpenIDM's configuration objects, take the following points into account:

• OpenIDM's authoritative configuration source is the internal repository. JSON files provide a view
of the configuration objects, but do not represent the authoritative source.

OpenIDM updates JSON files after making configuration changes, whether those changes are made
through REST access to configuration objects, or through edits to the JSON files.

• OpenIDM recognizes changes to JSON files when it is running. OpenIDM must be running when
you delete configuration objects, even if you do so by editing the JSON files.

• Avoid editing configuration objects directly in the internal repository. Rather, edit the configuration
over the REST API, or in the configuration JSON files to ensure consistent behavior and that
operations are logged.

• OpenIDM stores its configuration in the internal database by default. If you remove an OpenIDM
instance and do not specifically drop the repository, the configuration remains in effect for a new
OpenIDM instance that uses that repository. For testing or evaluation purposes, you can disable
this persistent configuration in the conf/system.properties file by uncommenting the following line:
openidm.config.repo.enabled=false

Disabling persistent configuration means that OpenIDM will store its configuration in memory only.
You should not disable persistent configuration in a production environment.

6.3. Configuring an OpenIDM System for Production
Out of the box, OpenIDM is configured to make it easy to install and evaluate. Specific configuration
changes are required before you deploy OpenIDM in a production environment.

6.3.1. Configuring a Production Repository
By default, OpenIDM uses OrientDB for its internal repository so that you do not have to install a
database in order to evaluate OpenIDM. Before you use OpenIDM in production, you must replace
OrientDB with a supported repository.

Configuring OpenIDM
Disabling Automatic Configuration Updates

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

For more information, see "Installing a Repository For Production" in the Installation Guide.

6.3.2. Disabling Automatic Configuration Updates

By default, OpenIDM polls the JSON files in the conf directory periodically for any changes to the
configuration. In a production system, it is recommended that you disable automatic polling for
updates to prevent untested configuration changes from disrupting your identity service.

To disable automatic polling for configuration changes, edit the conf/system.properties file for your
project, and uncomment the following line:
openidm.fileinstall.enabled=false

This setting also disables the file-based configuration view, which means that OpenIDM reads its
configuration only from the repository.

Before you disable automatic polling, you must have started the OpenIDM instance at least once to
ensure that the configuration has been loaded into the repository. Be aware, if automatic polling is
enabled, OpenIDM immediately uses changes to scripts called from a JSON configuration file.

When your configuration is complete, you can disable writes to configuration files. To do so, add the
following line to the conf/config.properties file for your project:
felix.fileinstall.enableConfigSave=false

6.3.3. Communicating Through a Proxy Server

To set up OpenIDM to communicate through a proxy server, you need to use JVM parameters that
identify the proxy host system, and the OpenIDM port number.

If you've configured OpenIDM behind a proxy server, include JVM properties from the following table,
in the OpenIDM startup script:

JVM Proxy Properties

JVM Property Example Values Description
-Dhttps.proxyHost proxy.example.com, 192.168.0.1 Hostname or IP address of the proxy

server
-Dhttps.proxyPort 8443, 9443 Port number used by OpenIDM

If an insecure port is acceptable, you can also use the -Dhttp.proxyHost and -Dhttp.proxyPort options.
You can add these JVM proxy properties to the value of OPENIDM_OPTS in your startup script (startup.sh
or startup.bat):
Only set OPENIDM_OPTS if not already set
[-z "$OPENIDM_OPTS"] && OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dhttps.proxyHost=localhost -
Dhttps.proxyPort=8443"

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

6.4. Configuring OpenIDM Over REST
OpenIDM exposes configuration objects under the /openidm/config context path.

You can list the configuration on the local host by performing a GET https://localhost:8443/openidm/
config. The examples shown in this section are based on first OpenIDM sample, described in "First
OpenIDM Sample - Reconciling an XML File Resource" in the Samples Guide.

The following REST call includes excerpts of the default configuration for an OpenIDM instance
started with Sample 1:
$ curl \
 --request GET \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --cacert self-signed.crt \
 https://localhost:8443/openidm/config
{
 "_id" : "",
 "configurations" : [{
 "_id" : "endpoint/usernotifications",
 "pid" : "endpoint.95b46fcd-f0b7-4627-9f89-6f3180c826e4",
 "factoryPid" : "endpoint"
 }, {
 "_id" : "router",
 "pid" : "router",
 "factoryPid" : null
 },
 ...
 {
 "_id" : "endpoint/reconResults",
 "pid" : "endpoint.ad3f451c-f34e-4096-9a59-0a8b7bc6989a",
 "factoryPid" : "endpoint"
 }, {
 "_id" : "endpoint/gettasksview",
 "pid" : "endpoint.bc400043-f6db-4768-92e5-ebac0674e201",
 "factoryPid" : "endpoint"
 },
 ...
 {
 "_id" : "workflow",
 "pid" : "workflow",
 "factoryPid" : null
 }, {
 "_id" : "ui.context/selfservice",
 "pid" : "ui.context.537a5838-217b-4f67-9301-3fde19a51784",
 "factoryPid" : "ui.context"
 }]
}

Single instance configuration objects are located under openidm/config/object-name. The following
example shows the Sample 1 audit configuration:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

 "https://localhost:8443/openidm/config/audit"
{
 "_id" : "audit",
 "auditServiceConfig" : {
 "handlerForQueries" : "repo",
 "availableAuditEventHandlers" : [
 "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RouterAuditEventHandler"
],
 "filterPolicies" : {
 "value" : {
 "excludeIf" : [
 "/access/http/request/headers/Authorization",
 "/access/http/request/headers/X-OpenIDM-Password",
 "/access/http/request/cookies/session-jwt",
 "/access/http/response/headers/Authorization",
 "/access/http/response/headers/X-OpenIDM-Password"
],
 "includeIf" : []
 }
 }
 },
 "eventHandlers" : [{
 "class" : "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config" : {
 "name" : "csv",
 "logDirectory" : "/root/openidm/audit",
 "topics" : ["access", "activity", "recon", "sync", "authentication", "config"]
 }
 }, {
 "class" : "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "config" : {
 "name" : "repo",
 "topics" : ["access", "activity", "recon", "sync", "authentication", "config"]
 }
 }],
 "eventTopics" : {
 "config" : {
 "filter" : {
 "actions" : ["create", "update", "delete", "patch", "action"]
 }
 },
 "activity" : {
 "filter" : {
 "actions" : ["create", "update", "delete", "patch", "action"]
 },
 "watchedFields" : [],
 "passwordFields" : ["password"]
 }
 },
 "exceptionFormatter" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/audit/stacktraceFormatter.js"
 }
}

Multiple instance configuration objects are found under openidm/config/object-name/instance-name.

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

The following example shows the configuration for the XML connector provisioner shown in the first
OpenIDM sample. The output has been cropped for legibility:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/config/provisioner.openicf/xml"
{
 "_id" : "provisioner.openicf/xml",
 "name" : "xmlfile",
 "connectorRef" : {
 "bundleName" : "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion" : "1.1.0.2",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector"
 },
 ...
 "configurationProperties" : {
 "xsdIcfFilePath" : "/root/openidm/samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "/root/openidm/samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "/root/openidm/samples/sample1/data/xmlConnectorData.xml"
 },
 "syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
 },
 "objectTypes" : {
 "account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {
 "description" : {
 "type" : "string",
 "nativeName" : "__DESCRIPTION__",
 "nativeType" : "string"
 },
 ...
 "roles" : {
 "type" : "string",
 "required" : false,
 "nativeName" : "roles",
 "nativeType" : "string"
 }
 }
 }
 },
 "operationOptions" : { }
}

You can change the configuration over REST by using an HTTP PUT or HTTP PATCH request to
modify the required configuration object.

The following example uses a PUT request to modify the configuration of the scheduler service,
increasing the maximum number of threads that are available for the concurrent execution of
scheduled tasks:

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "threadPool": {
 "threadCount": "20"
 },
 "scheduler": {
 "executePersistentSchedules": "&{openidm.scheduler.execute.persistent.schedules}"
 }
}' \
 "https://localhost:8443/openidm/config/scheduler"
{
 "_id" : "scheduler",
 "threadPool": {
 "threadCount": "20"
 },
 "scheduler": {
 "executePersistentSchedules": "true"
 }
}

The following example uses a PATCH request to reset the number of threads to their original value.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PATCH \
 --data '[
 {
 "operation" : "replace",
 "field" : "/threadPool/threadCount",
 "value" : "10"
 }
]' \
 "https://localhost:8443/openidm/config/scheduler"
{
 "_id": "scheduler",
 "threadPool": {
 "threadCount": "10"
 },
 "scheduler": {
 "executePersistentSchedules": "true"
 }
}

For more information about using the REST API to update objects, see "REST API Reference".

Configuring OpenIDM
Using Property Value Substitution In the Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

6.5. Using Property Value Substitution In the Configuration
In an environment where you have more than one OpenIDM instance, you might require a
configuration that is similar, but not identical, across the different OpenIDM hosts. OpenIDM
supports variable replacement in its configuration which means that you can modify the effective
configuration according to the requirements of a specific environment or OpenIDM instance.

Property substitution enables you to achieve the following:

• Define a configuration that is specific to a single OpenIDM instance, for example, setting the
location of the keystore on a particular host.

• Define a configuration whose parameters vary between different environments, for example, the
URLs and passwords for test, development, and production environments.

• Disable certain capabilities on specific nodes. For example, you might want to disable the workflow
engine on specific instances.

When OpenIDM starts up, it combines the system configuration, which might contain specific
environment variables, with the defined OpenIDM configuration properties. This combination makes
up the effective configuration for that OpenIDM instance. By varying the environment properties, you
can change specific configuration items that vary between OpenIDM instances or environments.

Property references are contained within the construct &{ }. When such references are found,
OpenIDM replaces them with the appropriate property value, defined in the boot.properties file.

Using Separate OpenIDM Environments

The following example defines two separate OpenIDM environments - a development environment
and a production environment. You can specify the environment at startup time and, depending on
the environment, the database URL is set accordingly.

The environments are defined by adding the following lines to the conf/boot.properties file:
PROD.location=production
DEV.location=development

The database URL is then specified as follows in the repo.orientdb.json file:
{
 "dbUrl" : "plocal:./db/&{&{environment}.location}-openidm",
 ...
}

The effective database URL is determined by setting the OPENIDM_OPTS environment variable when you
start OpenIDM. To use the production environment, start OpenIDM as follows:
$ export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Denvironment=PROD"
$./startup.sh

To use the development environment, start OpenIDM as follows:

Configuring OpenIDM
Using Property Value Substitution With System Properties

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

$ export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Denvironment=DEV"
$./startup.sh

6.5.1. Using Property Value Substitution With System Properties
You can use property value substitution in conjunction with the system properties, to modify the
configuration according to the system on which the OpenIDM instance runs.

Custom Audit Log Location

The following example modifies the audit.json file so that the log file is written to the user's directory.
The user.home property is a default Java System property:
{
 "logTo" : [
 {
 "logType" : "csv",
 "location" : "&{user.home}/audit"
 }
]
}

You can define nested properties (that is a property definition within another property definition) and
you can combine system properties and boot properties.

Defining Different Ports in the Configuration

The following example uses the user.country property, a default Java system property. The example
defines specific LDAP ports, depending on the country (identified by the country code) in the boot
.properties file. The value of the LDAP port (set in the provisioner.openicf-ldap.json file) depends on the
value of the user.country system property.

The port numbers are defined in the boot.properties file as follows:
openidm.NO.ldap.port=2389
openidm.EN.ldap.port=3389
openidm.US.ldap.port=1389

The following excerpt of the provisioner.openicf-ldap.json file shows how the value of the LDAP port is
eventually determined, based on the system property:
"configurationProperties" :
 {
 "credentials" : "Passw0rd",
 "port" : "&{openidm.&{user.country}.ldap.port}",
 "principal" : "cn=Directory Manager",
 "baseContexts" :
 [
 "dc=example,dc=com"
],
 "host" : "localhost"
 }

Configuring OpenIDM
Limitations of Property Value Substitution

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 98

6.5.2. Limitations of Property Value Substitution

Note the following limitations when you use property value substitution:

• You cannot reference complex objects or properties with syntaxes other than string. Property
values are resolved from the boot.properties file or from the system properties and the value of these
properties is always in string format.

Property substitution of boolean values is currently only supported in stringified format, that is,
resulting in "true" or "false".

• Substitution of encrypted property values is not supported.

6.6. Adding Custom Endpoints
You can customize OpenIDM to meet the specific requirements of your deployment by adding your
own RESTful endpoints. Endpoints are configured in files named conf/endpoint-name.json, where name
generally describes the purpose of the endpoint.

A sample custom endpoint configuration is provided in the openidm/samples/customendpoint directory. The
use of this sample is described in "Custom Endpoint Example". Custom endpoints in OpenIDM can be
written either in JavaScript or Groovy. The sample includes three files:

conf/endpoint-echo.json

Provides the configuration for the endpoint.

script/echo.js

Supports an endpoint script written in JavaScript.

script/echo.groovy

Supports an endpoint script written in Groovy.

Endpoint configuration files have a certain structure. They may cite scripts written in JavaScript or
Groovy.

The endpoint configuration file may include a context property that specifies the route to the endpoint.

The cited scripts include defined request and context global variables.

Note

This section uses the term context in two different ways.

In an endpoint configuration file, the context property specifies the route to an endpoint. For more information,
see "The Components of a Custom Endpoint Configuration File".

Configuring OpenIDM
The Components of a Custom Endpoint Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 99

In scripts, including the scripts found in the samples/customendpoint/script directory, context is a variable,
described in more detail in "The Components of a Custom Endpoint Script File".

Warning

If you create a custom endpoint, we recommend that you set up read requests that do not impact the state of
the resource, either on the client or the server.

OpenIDM READ endpoints are safe from Cross Site Request Forgery (CSRF) exploits, as they are inherently
read-only. That is consistent with the Guidelines for Implementation of REST, from the US National Security
Agency, as "... CSRF protections need only be applied to endpoints that will modify information in some way."

6.6.1. The Components of a Custom Endpoint Configuration File

The sample custom endpoint configuration file (/path/to/openidm/samples/customendpoint/conf/endpoint-
echo.json) depicts a typical endpoint, the contents of which are shown here:
{
 "file" : "echo.groovy",
 "type" : "groovy",
 "_file" : "echo.js",
 "_type" : "text/javascript"
}

The following list describes each property in typical custom endpoint configuration files:

type

string, required

A comment that specifies the type of script to be executed. The following types are supported:
text/javascript and groovy.

file or source

Either a path to a script file, or an actual script, inline.

The script files associated with this sample, echo.js and echo.groovy, support requests using all
ForgeRock RESTful CRUD operations: CREATE, READ, UPDATE, DELETE, PATCH, ACTION, and
QUERY.

context

Requests are dispatched, routed, handled, processed, and more, in a context.

You can also include a context property in an endpoint configuration file.

As the context is not included in the default endpoint-echo.json file, OpenIDM takes the name of the
endpoint from the name of the file. In this case, the endpoint is endpoint/echo.

Configuring OpenIDM
The Components of a Custom Endpoint Script File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 100

With a context, the endpoint configuration file includes the route to the endpoint. For an example,
see the endpoint-linkedView.json file in the /path/to/openidm/conf/ directory. The code shown here
identifies the route as endpoint/linkedView/*:
{
 "context": "endpoint/linkedView/*",
 "type" : "text/javascript",
 "source" : "require('linkedView').fetch(request.resourcePath);"
}

In this case, the endpoint/linkedview/* route matches the following patterns:
endpoint/linkedView/managed/user/bjensen
endpoint/linkedView/system/ldap/account/bjensen

However, it does not work with the following patterns:
endpoint/linkedView/
endpoint/linkedView

To specify that endpoint, you would need to either remove the context or include it as follows:
"context": "endpoint/linkedView"

6.6.2. The Components of a Custom Endpoint Script File

The custom endpoint script files in the samples/customendpoint/script directory can provide insight into
ForgeRock RESTful CRUD operations: CREATE, READ, UPDATE, DELETE, PATCH, ACTION, and
QUERY.

Examine the request options in each of these files. The request object represents the framework-level
CREST request, as described in "REST API Reference".

Each CREST request is associated with a method, which may be create, read, update, delete, patch, action
or query.

Each method is associated with different sets of properties. Details for each property are included after
the excerpts from the echo.js and echo.groovy files.

As an example, look at the following create excerpt from the echo.js file:
if (request.method === "create") {
 return {
 method: "create",
 resourceName: request.resourcePath,
 newResourceId: request.newResourceId,
 parameters: request.additionalParameters,
 content: request.content,
 context: context.current
 };

For contrast, examine the following query excerpt from the echo.groovy file:

Configuring OpenIDM
The Components of a Custom Endpoint Script File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 101

else if (request instanceof QueryRequest) {
 // query results must be returned as a list of maps
 return [
 [
 method: "query",
 resourceName: request.resourcePath,
 pagedResultsCookie: request.pagedResultsCookie,
 pagedResultsOffset: request.pagedResultsOffset,
 pageSize: request.pageSize,
 queryExpression: request.queryExpression,
 queryId: request.queryId,
 queryFilter: request.queryFilter.toString(),
 parameters: request.additionalParameters,
 context: context.toJsonValue().getObject()
]
]
}

Depending on the request method, the associated request object may include the following properties:

resourceName

The local identifier, without the endpoint/ prefix, such as echo.

newResourceId

An identifier associated with a new resource, associated with the create method.

revision

The revision level associated with the method used, relative to a newResourceId.

parameters

The sample code returns request parameters from an HTTP GET with ?param=x, as "parameters":
{"param":"x"}.

content

Content based on the latest version of the object, using getObject.

A query request in both files includes additional parameters. For information about the query
parameters, see "Constructing Queries". For information about the paging parameters,
pagedResultsCookie, pagedResultsOffset, and pageSize, see "Paging and Counting Query Results".

6.6.2.1. More on the context in a Custom Endpoint Script

The context property includes detail that varies depending on the context type:

security

Provides authentication / authorization data.

Configuring OpenIDM
The Components of a Custom Endpoint Script File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 102

http

Provides data from the HTTP request.

router

Provides data on where the information is sent.

JavaScript and Groovy access these context structures in different ways. The term shown is the
JavaScript access method; the definition includes the Groovy access method.

context.current

In Groovy, known as context.

The current context in which a script or a script-hook handles the request.

context.http

In Groovy, known as one of the following:

 context.asContext(org.forgerock.json.resource.servlet.HttpContext.class)
 context.getContext("http")

The HTTP context.

context.security

In Groovy, known as one of the following:

 context.asContext(org.forgerock.json.resource.SecurityContext.class)
 context.getContext("security")

The security context.

6.6.2.2. Custom Endpoint Scripts and request Objects

With a custom endpoint, you can configure OpenIDM to accept different REST requests.

The endpoint configuration file specifies a script (either inline with the source property, or in a
separate file identified with the file property). The script is invoked with a global request variable in
its scope.

All processes within OpenIDM are initiated with a request. Requests can come either from the
REST API (see "REST API Reference") or internally, from a script, using the router service (see
"Router Service Reference". Regardless of what initiates the process, the details of the request are
represented in the same way - within an object named request.

Most request types include a complex object that stores the details required for that particular
request. For example, when you start an action process over the REST interface, you might want to

Configuring OpenIDM
The Components of a Custom Endpoint Script File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 103

include certain detailed information for that action. You include this information as a JSON string in
the POST body. The HTTP request header Content-type describes this string as application/json.

Consider the following REST request:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data { "name": "bob"} \
 "https://localhost:8443/openidm/endpoint/test?_action=myAction"

This request includes the string '{ "name": "bob"}' as the HTTP post body. OpenIDM expects this to be
a JSON string, and will deserialize it into an object. The object is accessed using request.content.

6.6.2.3. Custom Endpoint Scripts, Contexts, and Chains
Custom endpoints include contexts that may be wrapped in different layers, analogous to the way
network packets can be wrapped at ascending network levels.

As an example, start with a request such as the following:
GET https://localhost:8443/openidm/endpoint/echo?queryId=query-all-ids&_para=foo

A request at an endpoint starts with a root context, associated with a specific context ID, and the org
.forgerock.json.resource.RootContext context.

The root context is wrapped in the security context that holds the authentication and authorization
detail for the request. The associated class is org.forgerock.json.resource.SecurityContext, with an
authenticationId user name such as openidm-admin, and associated roles such as openidm-authorized.

That security context is further wrapped by the HTTP context, with the target URI. The class is org
.forgerock.json.resource.HttpContext, and it is associated with the normal parameters of a REST call,
including a user agent, authorization token, and method.

The HTTP context is then further wrapped by one or more server/router context(s). That class is org
.forgerock.json.resource.RouterContext, with an endpoint URI. You may see several layers of server and
router contexts.

6.6.2.4. Additional Custom Endpoint Script Parameters
The query request method includes two additional parameters. You can review how this works in
"Sample 2c - Synchronizing LDAP Group Membership" in the Samples Guide.

The final statement in the script is the return value. In the following example, there is no return
keyword, and the value of the last statement (x) is returned:
var x = "Sample return";
functioncall();
x

Configuring OpenIDM
Custom Endpoint Example

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 104

6.6.2.5. Set Up Exceptions in Scripts
When you create a custom script, you may need to build exception-handling logic. If you want to see
meaningful messages in REST responses and in logs, there are language-specific ways of throwing
errors which contain those details, as discussed in this section.

For a script written in JavaScript, you should comply with the following format:
throw {
 "code": 400, // any valid HTTP error code
 "message": "custom error message",
 "detail" : {
 "var": parameter1,
 "complexDetailObject" : [
 "detail1",
 "detail2"
]
 }
}

If you comply with this format, any exceptions will identify the noted HTTP error code, a standard
error message such as Internal Server Error, a custom error message that can help you diagnose the
error, and any additional detail that you think might be helpful.

For a script written in Groovy, if you have a list of supported operations, you should comply with the
following format:
import org.forgerock.json.resource.ResourceException
import org.forgerock.json.JsonValue

throw new ResourceException(404, "Your error message").setDetail(new JsonValue([
 "var": "parameter1",
 "complexDetailObject" : [
 "detail1",
 "detail2"
]
]))

6.7. Custom Endpoint Example
The following example uses the sample provided in the openidm/samples/customendpoint directory,
copied to the openidm/conf and openidm/script directories. The output from the query shows the request
structure. The output has been cropped for legibility:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/endpoint/echo?_queryId=query-all-ids"
{
 "result" : [{
 "method" : "query",
 ...

Configuring OpenIDM
Custom Endpoint Example

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 105

 "parameters" : { },
 "context" : {
 "parent" : {
 ...
 "parent" : {
 "parent" : null,
 "name" : "root",
 "rootContext" : true,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "name" : "security",
 "authenticationId" : "openidm-admin",
 "authorization" : {
 "id" : "openidm-admin",
 "component" : "repo/internal/user",
 "roles" : ["openidm-admin", "openidm-authorized"]
 },
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "headers" : {
 "X-OpenIDM-Username" : ["openidm-admin"],
 "Host" : ["localhost:8443"],
 "Accept" : ["*/*"],
 "X-OpenIDM-Password" : ["openidm-admin"],
 "User-Agent" : ["curl/7.19.7 (x86_64-redhat-linux-gnu)
 libcurl/7.19.7 NSS/3.14.0.0 zlib/1.2.3 libidn/1.18
 libssh2/1.4.2"]
 },
 "parameters" : {
 "_queryId" : ["query-all-ids"],
 "_prettyPrint" : ["true"]
 },
 "external" : true,
 "name" : "http",
 "method" : "GET",
 "path" : "https://localhost:8443/openidm/endpoint/echo",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "name" : "apiInfo",
 "apiVersion" : "2.3.1-SNAPSHOT",
 "apiName" : "org.forgerock.commons.json-resource-servlet",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "name" : "server",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "uriTemplateVariables" : { },
 "name" : "router",
 "matchedUri" : "endpoint/echo",
 "baseUri" : "endpoint/echo",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 }
 }],
 ...

Configuring OpenIDM
Setting the Script Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 106

}

You must protect access to any custom endpoints by configuring the appropriate authorization for
those contexts. For more information, see "Authorization".

6.8. Setting the Script Configuration
The script configuration file (conf/script.json) enables you to modify the parameters that are used
when compiling, debugging, and running JavaScript and Groovy scripts.

The default script.json file includes the following parameters:

properties

Any custom properties that should be provided to the script engine.

ECMAScript

Specifies JavaScript debug and compile options. JavaScript is an ECMAScript language.

• javascript.recompile.minimumInterval - minimum time after which a script can be recompiled.

The default value is 60000, or 60 seconds. This means that any changes made to scripts will
not get picked up for up to 60 seconds. If you are developing scripts, reduce this parameter to
around 100 (100 milliseconds).

Groovy

Specifies compilation and debugging options related to Groovy scripts. Many of these options
are commented out in the default script configuration file. Remove the comments to set these
properties:

• groovy.warnings - the log level for Groovy scripts. Possible values are none, likely, possible, and
paranoia.

• groovy.source.encoding - the encoding format for Groovy scripts. Possible values are UTF-8 and US-
ASCII.

• groovy.target.directory - the directory to which compiled Groovy classes will be output. The
default directory is install-dir/classes.

• groovy.target.bytecode - the bytecode version that is used to compile Groovy scripts. The default
version is 1.5.

• groovy.classpath - the directory in which the compiler should look for compiled classes. The
default classpath is install-dir/lib.

Configuring OpenIDM
Setting the Script Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 107

To call an external library from a Groovy script, you must specify the complete path to the .jar
file or files, as a value of this property. For example:

"groovy.classpath" : "/&{launcher.install.location}/lib/http-builder-0.7.1.jar:
 /&{launcher.install.location}/lib/json-lib-2.3-jdk15.jar:
 /&{launcher.install.location}/lib/xml-resolver-1.2.jar:
 /&{launcher.install.location}/lib/commons-collections-3.2.1.jar",

• groovy.output.verbose - specifies the verbosity of stack traces. Boolean, true or false.

• groovy.output.debug - specifies whether debugging messages are output. Boolean, true or false.

• groovy.errors.tolerance - sets the number of non-fatal errors that can occur before a compilation
is aborted. The default is 10 errors.

• groovy.script.extension - specifies the file extension for Groovy scripts. The default is .groovy.

• groovy.script.base - defines the base class for Groovy scripts. By default any class extends groovy
.lang.Script.

• groovy.recompile - indicates whether scripts can be recompiled. Boolean, true or false, with
default true.

• groovy.recompile.minimumInterval - sets the minimum time between which Groovy scripts can be
recompiled.

The default value is 60000, or 60 seconds. This means that any changes made to scripts will
not get picked up for up to 60 seconds. If you are developing scripts, reduce this parameter to
around 100 (100 milliseconds).

• groovy.target.indy - specifies whether a Groovy indy test can be used. Boolean, true or false, with
default true.

• groovy.disabled.global.ast.transformations - specifies a list of disabled Abstract Syntax
Transformations (ASTs).

sources

Specifies the locations in which OpenIDM expects to find JavaScript and Groovy scripts that are
referenced in the configuration.

The following excerpt of the script.json file shows the default locations:

http://docs.groovy-lang.org/latest/html/documentation/invokedynamic-support.html

Configuring OpenIDM
Calling a Script From a Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 108

...
"sources" : {
 "default" : {
 "directory" : "&{launcher.install.location}/bin/defaults/script"
 },
 "install" : {
 "directory" : "&{launcher.install.location}"
 },
 "project" : {
 "directory" : "&{launcher.project.location}"
 },
 "project-script" : {
 "directory" : "&{launcher.project.location}/script"
 }
...

Note

The order in which locations are listed in the sources property is important. Scripts are loaded from the
bottom up in this list, that is, scripts found in the last location on the list are loaded first.

6.9. Calling a Script From a Configuration File
You can call a script from within a configuration file by providing the script source, or by referencing
a file that contains the script source. For example:
{
 "type" : "text/javascript",
 "source": string
}

or
{
 "type" : "text/javascript",
 "file" : file location
}

type

string, required

Specifies the type of script to be executed. Supported types include text/javascript, and groovy.

source

string, required if file is not specified

Specifies the source code of the script to be executed.

file

string, required if source is not specified

Configuring OpenIDM
Calling a Script From a Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 109

Specifies the file containing the source code of the script to execute.

The following sample excerpts from configuration files indicate how scripts can be called.

The following example (included in the sync.json file) returns true if the employeeType is equal to
external, otherwise returns false. This script can be useful during reconciliation to establish whether a
target object should be included in the reconciliation process, or should be ignored:
"validTarget": {
 "type" : "text/javascript",
 "source": "target.employeeType == 'external'"
}

The following example (included in the sync.json file) sets the __PASSWORD__ attribute to defaultpwd when
OpenIDM creates a target object:
"onCreate" : {
 "type" : "text/javascript",
 "source": "target.__PASSWORD__ = 'defaultpwd'"
}

The following example (included in the router.json file) shows a trigger to create Solaris home
directories using a script. The script is located in the file, project-dir/script/createUnixHomeDir.js:
{
 "filters" : [{
 "pattern" : "^system/solaris/account$",
 "methods" : ["create"],
 "onResponse" : {
 "type" : "text/javascript",
 "file" : "script/createUnixHomeDir.js"
 }
 }]
}

Often, script files are reused in different contexts. You can pass variables to your scripts to
provide these contextual details at runtime. You pass variables to the scripts that are referenced in
configuration files by declaring the variable name in the script reference.

The following example of a scheduled task configuration calls a script named triggerEmailNotification
.js. The example sets the sender and recipient of the email in the schedule configuration, rather than
in the script itself:
{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0/1 * * * ?",
 "invokeService" : "script",
 "invokeContext" : {
 "script": {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js",
 "fromSender" : "admin@example.com",
 "toEmail" : "user@example.com"
 }
 }
}

Configuring OpenIDM
Calling a Script From a Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 110

Tip

In general, you should namespace variables passed into scripts with the globals map. Passing variables in this
way prevents collisions with the top-level reserved words for script maps, such as file, source, and type. The
following example uses the globals map to namespace the variables passed in the previous example.
"script": {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js",
 "globals" : {
 "fromSender" : "admin@example.com",
 "toEmail" : "user@example.com"
 }
}

Script variables are not necessarily simple key:value pairs. A script variable can be any arbitrarily
complex JSON object.

Accessing Data Objects
Accessing Data Objects By Using Scripts

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 111

Chapter 7

Accessing Data Objects

OpenIDM supports a variety of objects that can be addressed via a URL or URI. You can access data
objects by using scripts (through the Resource API) or by using direct HTTP calls (through the REST
API).

The following sections describe these two methods of accessing data objects, and provide information
on constructing and calling data queries.

7.1. Accessing Data Objects By Using Scripts
OpenIDM's uniform programming model means that all objects are queried and manipulated in the
same way, using the Resource API. The URL or URI that is used to identify the target object for
an operation depends on the object type. For an explanation of object types, see "Data Models and
Objects Reference". For more information about scripts and the objects available to scripts, see
"Scripting Reference".

You can use the Resource API to obtain managed, system, configuration, and repository objects, as
follows:

val = openidm.read("managed/organization/mysampleorg")
val = openidm.read("system/mysystem/account")
val = openidm.read("config/custom/mylookuptable")
val = openidm.read("repo/custom/mylookuptable")

For information about constructing an object ID, see "URI Scheme".

You can update entire objects with the update() function, as follows:

openidm.update("managed/organization/mysampleorg", object)
openidm.update("system/mysystem/account", object)
openidm.update("config/custom/mylookuptable", object)
openidm.update("repo/custom/mylookuptable", object)

You can apply a partial update to a managed or system object by using the patch() function:

openidm.patch("managed/organization/mysampleorg", rev, value)

The create(), delete(), and query() functions work the same way.

Accessing Data Objects
Accessing Data Objects By Using the REST API

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 112

7.2. Accessing Data Objects By Using the REST API
OpenIDM provides RESTful access to data objects via ForgeRock's Common REST API. To access
objects over REST, you can use a browser-based REST client, such as the Simple REST Client for
Chrome, or RESTClient for Firefox. Alternatively you can use the curl command-line utility.

For a comprehensive overview of the REST API, see "REST API Reference".

To obtain a managed object through the REST API, depending on your security settings and
authentication configuration, perform an HTTP GET on the corresponding URL, for example https://
localhost:8443/openidm/managed/organization/mysampleorg.

By default, the HTTP GET returns a JSON representation of the object.

In general, you can map any HTTP request to the corresponding openidm.method call. The following
example shows how the parameters provided in an openidm.query request correspond with the key-
value pairs that you would include in a similar HTTP GET request:

Reading an object using the Resource API:
openidm.query("managed/user", { "_queryId": "query-all-ids" }, ["userName","sn"])

Reading an object using the REST API:
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/managed/user?_queryId=query-all-ids&_fields=userName,sn"

7.3. Defining and Calling Queries
OpenIDM supports an advanced query model that enables you to define queries, and to call them
over the REST or Resource API. Three types of queries are supported, on both managed, and system
objects:

• Common filter expressions

• Parameterized, or predefined queries

• Native query expressions

Each of these mechanisms is discussed in the following sections.

7.3.1. Common Filter Expressions
The ForgeRock REST API defines common filter expressions that enable you to form arbitrary queries
using a number of supported filter operations. This query capability is the standard way to query data
if no predefined query exists, and is supported for all managed and system objects.

http://curl.haxx.se/

Accessing Data Objects
Parameterized Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 113

Common filter expressions are useful in that they do not require knowledge of how the object is
stored and do not require additions to the repository configuration.

Common filter expressions are called with the _queryFilter keyword. The following example uses a
common filter expression to retrieve managed user objects whose user name is Smith:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 'https://localhost:8443/openidm/managed/user?_queryFilter=userName+eq+"smith"'

The filter is URL encoded in this example. The corresponding filter using the resource API would be:
openidm.query("managed/user", { "_queryFilter" : '/userName eq "smith"' });

Note that, this JavaScript invocation is internal and is not subject to the same URL-encoding
requirements that a GET request would be. Also, because JavaScript supports the use of single
quotes, it is not necessary to escape the double quotes in this example.

For a list of supported filter operations, see "Constructing Queries".

Note that using common filter expressions to retrieve values from arrays is currently not supported.
If you need to search within an array, you should set up a predefined (parameterized) in your
repository configuration. For more information, see "Parameterized Queries".

7.3.2. Parameterized Queries

Managed objects in the supported OpenIDM repositories can be accessed using a parameterized
query mechanism. Parameterized queries on repositories are defined in the repository configuration
(repo.*.json) and are called by their _queryId.

Parameterized queries provide precise control over the query that is executed. Such control might be
useful for tuning, or for performing database operations such as aggregation (which is not possible
with a common filter expression.)

Parameterized queries provide security and portability for the query call signature, regardless of the
backend implementation. Queries that are exposed over the REST interface must be parameterized
queries to guard against injection attacks and other misuse. Queries on the officially supported
repositories have been reviewed and hardened against injection attacks.

For system objects, support for parameterized queries is restricted to _queryId=query-all-ids. There
is currently no support for user-defined parameterized queries on system objects. Typically,
parameterized queries on system objects are not called directly over the REST interface, but are
issued from internal calls, such as correlation queries.

A typical query definition is as follows:

"query-all-ids" : "select _openidm_id from ${unquoted:_resource}"

Accessing Data Objects
Native Query Expressions

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 114

To call this query, you would reference its ID, as follows:

?_queryId=query-all-ids

The following example calls query-all-ids over the REST interface:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

7.3.3. Native Query Expressions

Native query expressions are supported for all managed objects and system objects, and can be
called directly, rather than being defined in the repository configuration.

Native queries are intended specifically for internal callers, such as custom scripts, and should be
used only in situations where the common filter or parameterized query facilities are insufficient. For
example, native queries are useful if the query needs to be generated dynamically.

The query expression is specific to the target resource. For repositories, queries use the native
language of the underlying data store. For system objects that are backed by OpenICF connectors,
queries use the applicable query language of the system resource.

Native queries on the repository are made using the _queryExpression keyword. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryExpression=select+from+managed_user"

Unless you have specifically enabled native queries over REST, the previous command returns a 403
access denied error message. Native queries are not portable and do not guard against injection
attacks. Such query expressions should therefore not be used or made accessible over the REST
interface or over HTTP in production environments. They should be used only via the internal
Resource API. If you want to enable native queries over REST for development, see "Protect Sensitive
REST Interface URLs".

Alternatively, if you really need to expose native queries over HTTP, in a selective manner, you can
design a custom endpoint to wrap such access.

7.3.4. Constructing Queries

The openidm.query function enables you to query OpenIDM managed and system objects. The query
syntax is openidm.query(id, params), where id specifies the object on which the query should be
performed and params provides the parameters that are passed to the query, either _queryFilter or
_queryID. For example:

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 115

var params = {
 '_queryFilter' : 'givenName co "' + sourceCriteria + '" or ' + 'sn co "' + sourceCriteria + '"'
};
var results = openidm.query("system/ScriptedSQL/account", params)

Over the REST interface, the query filter is specified as _queryFilter=filter, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/managed/user?_queryFilter=userName+eq+"Smith"'

Note the use of double-quotes around the search term: Smith. In _queryFilter expressions, string values
must use double-quotes. Numeric and boolean expressions should not use quotes.

When called over REST, you must URL encode the filter expression. The following examples show the
filter expressions using the resource API and the REST API, but do not show the URL encoding, to
make them easier to read.

Note that, for generic mappings, any fields that are included in the query filter (for example
userName in the previous query), must be explicitly defined as searchable, if you have set the global
searchableDefault to false. For more information, see "Improving Search Performance for Generic
Mappings".

The filter expression is constructed from the building blocks shown in this section. In these
expressions the simplest json-pointer is a field of the JSON resource, such as userName or id. A JSON
pointer can, however, point to nested elements.

Note

You can also use the negation operator (!) to help construct a query. For example, a _queryFilter=!(userName
+eq+"jdoe") query would return every userName except for jdoe.

You can set up query filters with one of the following types of expressions.

7.3.4.1. Comparison Expressions

• Equal queries (see "Querying Objects That Equal the Given Value")

• Contains queries (see "Querying Objects That Contain the Given Value")

• Starts with queries (see "Querying Objects That Start With the Given Value")

• Less than queries (see "Querying Objects That Are Less Than the Given Value")

• Less than or equal to queries (see "Querying Objects That Are Less Than or Equal to the Given
Value")

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 116

• Greater than queries (see "Querying Objects That Are Greater Than the Given Value")

• Greater than or equal to queries (see "Querying Objects That Are Greater Than or Equal to the
Given Value")

7.3.4.1.1. Querying Objects That Equal the Given Value

This is the associated JSON comparison expression: json-pointer eq json-value.

Review the following example:
"_queryFilter" : '/givenName eq "Dan"'

The following REST call returns the user name and given name of all managed users whose first
name (givenName) is "Dan":
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/managed/user?_queryFilter=givenName+eq+"Dan"&_fields=userName,givenName'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 3,
 "result": [
 {
 "givenName": "Dan",
 "userName": "dlangdon"
 },
 {
 "givenName": "Dan",
 "userName": "dcope"
 },
 {
 "givenName": "Dan",
 "userName": "dlanoway"
 }
}

7.3.4.1.2. Querying Objects That Contain the Given Value

This is the associated JSON comparison expression: json-pointer co json-value.

Review the following example:
"_queryFilter" : '/givenName co "Da"'

The following REST call returns the user name and given name of all managed users whose first
name (givenName) contains "Da":
$ curl \

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 117

 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/managed/user?_queryFilter=givenName+co+"Da"&_fields=userName,givenName'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 10,
 "result": [
 {
 "givenName": "Dave",
 "userName": "djensen"
 },
 {
 "givenName": "David",
 "userName": "dakers"
 },
 {
 "givenName": "Dan",
 "userName": "dlangdon"
 },
 {
 "givenName": "Dan",
 "userName": "dcope"
 },
 {
 "givenName": "Dan",
 "userName": "dlanoway"
 },
 {
 "givenName": "Daniel",
 "userName": "dsmith"
 }
,
...
}

7.3.4.1.3. Querying Objects That Start With the Given Value

This is the associated JSON comparison expression: json-pointer sw json-value.

Review the following example:
"_queryFilter" : '/sn sw "Jen"'

The following REST call returns the user names of all managed users whose last name (sn) starts with
"Jen":

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 118

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/managed/user?_queryFilter=sn+sw+"Jen"&_fields=userName'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 4,
 "result": [
 {
 "userName": "bjensen"
 },
 {
 "userName": "djensen"
 },
 {
 "userName": "cjenkins"
 },
 {
 "userName": "mjennings"
 }
]
}

7.3.4.1.4. Querying Objects That Are Less Than the Given Value

This is the associated JSON comparison expression: json-pointer lt json-value.

Review the following example:
"_queryFilter" : '/employeeNumber lt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is lower
than 5000:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+lt+5000&_fields=userName
,employeeNumber'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 4999,
 "result": [
 {
 "employeeNumber": 4907,
 "userName": "jnorris"
 },
 {
 "employeeNumber": 4905,
 "userName": "afrancis"
 },

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 119

 {
 "employeeNumber": 3095,
 "userName": "twhite"
 },
 {
 "employeeNumber": 3921,
 "userName": "abasson"
 },
 {
 "employeeNumber": 2892,
 "userName": "dcarter"
 }
...
]
}

7.3.4.1.5. Querying Objects That Are Less Than or Equal to the Given Value

This is the associated JSON comparison expression: json-pointer le json-value.

Review the following example:
"_queryFilter" : '/employeeNumber le 5000'

The following REST call returns the user names of all managed users whose employeeNumber is 5000 or
less:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+le+5000&_fields=userName
,employeeNumber'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 5000,
 "result": [
 {
 "employeeNumber": 4907,
 "userName": "jnorris"
 },
 {
 "employeeNumber": 4905,
 "userName": "afrancis"
 },
 {
 "employeeNumber": 3095,
 "userName": "twhite"
 },
 {
 "employeeNumber": 3921,
 "userName": "abasson"
 },
 {
 "employeeNumber": 2892,

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 120

 "userName": "dcarter"
 }
...
]
}

7.3.4.1.6. Querying Objects That Are Greater Than the Given Value

This is the associated JSON comparison expression: json-pointer gt json-value

Review the following example:
"_queryFilter" : '/employeeNumber gt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is higher
than 5000:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+gt+5000&_fields=userName
,employeeNumber'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 1458,
 "result": [
 {
 "employeeNumber": 5003,
 "userName": "agilder"
 },
 {
 "employeeNumber": 5011,
 "userName": "bsmith"
 },
 {
 "employeeNumber": 5034,
 "userName": "bjensen"
 },
 {
 "employeeNumber": 5027,
 "userName": "cclarke"
 },
 {
 "employeeNumber": 5033,
 "userName": "scarter"
 }
...
]
}

7.3.4.1.7. Querying Objects That Are Greater Than or Equal to the Given Value

This is the associated JSON comparison expression: json-pointer ge json-value.

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 121

Review the following example:
"_queryFilter" : '/employeeNumber ge 5000'

The following REST call returns the user names of all managed users whose employeeNumber is 5000 or
greater:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+ge+5000&_fields=userName
,employeeNumber'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 1457,
 "result": [
 {
 "employeeNumber": 5000,
 "userName": "agilder"
 },
 {
 "employeeNumber": 5011,
 "userName": "bsmith"
 },
 {
 "employeeNumber": 5034,
 "userName": "bjensen"
 },
 {
 "employeeNumber": 5027,
 "userName": "cclarke"
 },
 {
 "employeeNumber": 5033,
 "userName": "scarter"
 }
...
]
}

7.3.4.2. Presence Expressions

The following examples show how you can build filters using the following types of presence
expressions.

Evaluates to true when a json-pointer pr matches any object in which the json-pointer is present, and
contains a non-null value. Review the following example:
"_queryFilter" : '/mail pr'

The following REST call returns the mail addresses for all managed users who have a mail property in
their entry:

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 122

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/managed/user?_queryFilter=mail+pr&_fields=mail'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 2,
 "result": [
 {
 "mail": "jdoe@exampleAD.com"
 },
 {
 "mail": "bjensen@example.com"
 }
]
}

The presence filter is not currently supported for system objects. To query for presence on a system
object, specify any attribute that exists for all entries, such as the uid on an LDAP system, and use
the starts with (sw) filter, with an empty value. For example, the following query returns the uid of all
users in an LDAP system:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'http://localhost:8443/openidm/system/ldap/account?_queryFilter=uid+sw+""&_fields=uid'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 2,
 "result": [
 {
 "uid": "jdoe"
 },
 {
 "uid": "bjensen"
 }
]
}

Evaluates to false for elements that are present with a null value, and for elements that are missing.

7.3.4.3. Literal Expressions

A literal expression is a boolean:

• true matches any object in the resource.

• false matches no object in the resource.

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 123

For example, you can list the _id of all managed objects as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET
 'https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 2,
 "result": [
 {
 "_id": "d2e29d5f-0d74-4d04-bcfe-b1daf508ad7c"
 },
 {
 "_id": "709fed03-897b-4ff0-8a59-6faaa34e3af6"
 }
]
}

Note

Literal expressions (true and false) can be used only in queries on managed objects. Queries on system objects
cannot use literal expressions. To replicate the behavior of a _queryFilter=true query on a system resource, you
can use the sw filter, with a value of "". For example, the following query returns all user accounts in an LDAP
system:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/system/ldap/account?_queryFilter=sn+sw+""'

7.3.4.4. Complex Expressions

You can combine expressions using the boolean operators and, or, and ! (not). The following example
queries managed user objects located in London, with last name Jensen:

Accessing Data Objects
Paging and Counting Query Results

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 124

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/managed/user/?_queryFilter=city+eq+"London"+and+sn+eq
+"Jensen"&_fields=userName,givenName,sn'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 3,
 "result": [
 {
 "sn": "Jensen",
 "givenName": "Clive",
 "userName": "cjensen"
 },
 {
 "sn": "Jensen",
 "givenName": "Dave",
 "userName": "djensen"
 },
 {
 "sn": "Jensen",
 "givenName": "Margaret",
 "userName": "mjensen"
 }
]
}

7.3.5. Paging and Counting Query Results

The common filter query mechanism supports paged query results for managed objects, and for some
system objects, depending on the system resource.

Predefined queries must be configured to support paging, in the repository configuration. For
example:

"query-all-ids" : "select _openidm_id from ${unquoted:_resource} SKIP ${unquoted:_pagedResultsOffset}
 LIMIT ${unquoted:_pageSize}",

The query implementation includes a configurable count policy that can be set per query. Currently,
counting results is supported only for predefined queries, not for filtered queries.

The count policy can be one of the following:

• NONE - to disable counting entirely for that query.

• EXACT - to return the precise number of query results. Note that this has a negative impact on query
performance.

• ESTIMATE - to return a best estimate of the number of query results in the shortest possible time. This
number generally correlates with the number of records in the index.

Accessing Data Objects
Paging and Counting Query Results

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 125

If no count policy is specified, the policy is assumed to be NONE. This prevents the overhead of counting
results, unless a result count is specifically required.

The following query returns the first three records in the managed user repository:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids&_pageSize=3"
{
 "result": [
 {
 "_id": "scarter",
 "_rev": "1"
 },
 {
 "_id": "bjensen",
 "_rev": "1"
 },
 {
 "_id": "asmith",
 "_rev": "1"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": "3",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Notice that no counting is done in this query, so the returned value the of "totalPagedResults" and
"remainingPagedResults" fields is -1.

To specify that either an EXACT or ESTIMATE result count be applied, add the "totalPagedResultsPolicy" to
the query.

The following query is identical to the previous query but includes a count of the total results in the
result set.

Accessing Data Objects
Paging and Counting Query Results

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 126

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-
ids&_pageSize=3&_totalPagedResultsPolicy=EXACT"
{
 "result": [
 {
 "_id": "scarter",
 "_rev": "1"
 },
 {
 "_id": "bjensen",
 "_rev": "1"
 },
 {
 "_id": "asmith",
 "_rev": "1"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": "3",
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 4,
 "remainingPagedResults": -1
}

Note that the totalPagedResultsPolicy is EXACT for this query. To return an exact result count, a
corresponding count query must be defined in the repository configuration. The following excerpt of
the default repo.orientdb.json file shows the predefined query-all-ids query, and its corresponding count
query:

"query-all-ids" : "select _openidm_id, @version from ${unquoted:_resource}
 SKIP ${unquoted:_pagedResultsOffset} LIMIT ${unquoted:_pageSize}",
"query-all-ids-count" : "select count(_openidm_id) AS total from ${unquoted:_resource}",

The following paging parameters are supported:

_pagedResultsCookie

Opaque cookie used by the server to keep track of the position in the search results. The format
of the cookie is a string value.

The server provides the cookie value on the first request. You should then supply the cookie
value in subsequent requests until the server returns a null cookie, meaning that the final page of
results has been returned.

Paged results are enabled only if the _pageSize is a non-zero integer.

_pagedResultsOffset

Specifies the index within the result set of the number of records to be skipped before the first
result is returned. The format of the _pagedResultsOffset is an integer value. When the value of

Accessing Data Objects
Sorting Query Results

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 127

_pagedResultsOffset is greater than or equal to 1, the server returns pages, starting after the
specified index.

This request assumes that the _pageSize is set, and not equal to zero.

For example, if the result set includes 10 records, the _pageSize is 2, and the _pagedResultsOffset
is 6, the server skips the first 6 records, then returns 2 records, 7 and 8. The _pagedResultsCookie
value would then be 8 (the index of the last returned record) and the _remainingPagedResults value
would be 2, the last two records (9 and 10) that have not yet been returned.

If the offset points to a page beyond the last of the search results, the result set returned is
empty.

Note that the totalPagedResults and _remainingPagedResults parameters are not supported for all
queries. Where they are not supported, their returned value is always -1.

_pageSize

An optional parameter indicating that query results should be returned in pages of the specified
size. For all paged result requests other than the initial request, a cookie should be provided with
the query request.

The default behavior is not to return paged query results. If set, this parameter should be an
integer value, greater than zero.

7.3.6. Sorting Query Results

For common filter query expressions, you can sort the results of a query using the _sortKeys
parameter. This parameter takes a comma-separated list as a value and orders the way in which the
JSON result is returned, based on this list.

The _sortKeys parameter is not supported for predefined queries.

The following query returns all users with the givenName Dan, and sorts the results alphabetically,
according to surname (sn):

Accessing Data Objects
Sorting Query Results

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 128

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/system/ldap/account?_queryFilter=givenName+eq+"Dan"&_fields=givenName
,sn&_sortKeys=sn'
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 3,
 "result": [
 {
 "sn": "Cope",
 "givenName": "Dan"
 },
 {
 "sn": "Langdon",
 "givenName": "Dan"
 },
 {
 "sn": "Lanoway",
 "givenName": "Dan"
 }
]
}

Managing Users, Groups, Roles and Relationships
Creating and Modifying Managed Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 129

Chapter 8

Managing Users, Groups, Roles and
Relationships
OpenIDM provides a default schema for typical managed object types, such as users and roles, but
does not control the structure of objects that you want to store in the OpenIDM repository. You can
modify or extend the schema for the default object types, and you can set up a new managed object
type for any item that can be collected in a data set. For example, with the right schema, you can set
up any device associated with the Internet of Things (IoT).

Managed objects and their properties are defined in your project's conf/managed.json file.

This chapter describes how to work with the default managed object types and how to create new
object types as required by your deployment. For more information about the OpenIDM object model,
see "Data Models and Objects Reference".

8.1. Creating and Modifying Managed Object Types
If the managed object types provided in the default configuration are not sufficient for your
deployment, you can create any number of new managed object types.

The easiest way to create a new managed object type is to use the Admin UI, as follows:

1. Navigate to the Admin UI URL (https://localhost:8443/admin) then select Configure > Managed
Objects > New Managed Object.

2. Enter a name for the new managed object and, optionally, an icon that will be displayed for that
object type in the UI.

Click Save.

3. Select the Scripts tab and specify any scripts that should be applied on various events associated
with that object type, for example, when an object of that type is created, updated or deleted.

4. Specify the schema for the object type, that is, the properties that make up the object, and any
policies or restrictions that must be applied to the property values.

Click the JSON button on the Schema tab to display the properties in JSON format. You can also
create a new managed object type by adding its configuration, in JSON, to your project's conf/
managed.json file. The following excerpt of the managed.json file shows the configuration of a "Phone"
object, that was created through the UI.

Managing Users, Groups, Roles and Relationships
Creating and Modifying Managed Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 130

{
 "name": "Phone",
 "schema": {
 "$schema": "http://forgerock.org/json-schema#",
 "type": "object",
 "properties": {
 "brand": {
 "description": "The supplier of the mobile phone",
 "title": "Brand",
 "viewable": true,
 "searchable": true,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "minLength": "",
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 },
 "assetNumber": {
 "description": "The asset tag number of the mobile device",
 "title": "Asset Number",
 "viewable": true,
 "searchable": true,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "minLength": "",
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 },
 "model": {
 "description": "The model number of the mobile device, such as 6 plus, Galaxy S4",
 "title": "Model",
 "viewable": true,
 "searchable": false,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "minLength": "",
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 }
 },
 "required": [],
 "order": [
 "brand",
 "assetNumber",
 "model"
]
 }
}

You can add any arbitrary properties to the schema of a new managed object type. A property
definition typically includes the following fields:

Managing Users, Groups, Roles and Relationships
Working with Managed Users

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 131

• name - the name of the property

• title - the name of the property, in human-readable language, used to display the property in the UI

• description - a description of the property

• viewable - specifies whether this property is viewable in the object's profile in the UI). Boolean, true
or false (true by default).

• searchable - specifies whether this property can be searched in the UI. A searchable property is
visible within the Managed Object data grid in the Self-Service UI. Note that for a property to
be searchable in the UI, it must be indexed in the repository configuration. For information on
indexing properties in a repository, see "Using Explicit or Generic Object Mapping With a JDBC
Repository".

Boolean, true or false (false by default).

• userEditable - specifies whether users can edit the property value in the UI. This property applies
in the context of the self-service UI, where users are able to edit certain properties of their own
accounts. Boolean, true or false (false by default).

• minLength - the minimum number of characters that the value of this property must have.

• pattern - any specific pattern to which the value of the property must adhere. For example, a
property whose value is a date might require a specific date format.

• policies - any policy validation that must be applied to the property. For more information on
managed object policies, see "Configuring the Default Policy for Managed Objects".

• required - specifies whether or the property must be supplied when an object of this type is created.
Boolean, true or false.

• type - the data type for the property value; can be String, Array, Boolean, Integer, Number, Object, or
Resource Collection.

• isVirtual - specifies whether the property takes a static value, or whether its value is calculated "on
the fly" as the result of a script. Boolean, true or false.

• returnByDefault - for non-core attributes (virtual attributes and relationship fields), specifies whether
the property will be returned in the results of a query on an object of this type if it is not explicitly
requested. Virtual attributes and relationship fields are not returned by default. Boolean, true or
false.

8.2. Working with Managed Users
User objects that are stored in OpenIDM's repository are referred to as managed users. For a
JDBC repository, OpenIDM stores managed users in the managedobjects table. A second table,
managedobjectproperties, serves as the index table. For an OrientDB repository, managed users are
stored in the managed_user table.

Managing Users, Groups, Roles and Relationships
Working With Managed Groups

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 132

OpenIDM provides RESTful access to managed users, at the context path /openidm/managed/user. For
more information, see "Getting Started With the OpenIDM REST Interface" in the Installation Guide.

8.3. Working With Managed Groups
OpenIDM provides support for a managed group object. For a JDBC repository, OpenIDM stores
managed groups with all other managed objects, in the managedobjects table, and uses the
managedobjectproperties for indexing. For an OrientDB repository, managed groups are stored in the
managed_group table.

The managed group object is not provided by default. To use managed groups, add an object similar
to the following to your conf/managed.json file:
{
 "name" : "group"
},

With this addition, OpenIDM provides RESTful access to managed groups, at the context path /openidm
/managed/group.

For an example of a deployment that uses managed groups, see "Sample 2d - Synchronizing LDAP
Groups" in the Samples Guide.

8.4. Working With Managed Roles
OpenIDM supports two types of roles:

• Provisioning roles - used to specify how objects are provisioned to an external system.

• Authorization roles - used to specify the authorization rights of a managed object internally, within
OpenIDM.

Provisioning roles are always created as managed role objects, at the context path openidm/managed/
role/role-name. Provisioning roles are assigned to managed user objects as values of the object's roles
property.

Authorization roles can be created either as managed role objects (at the context path openidm/managed
/role/role-name) or as internal role objects (at the context path openidm/repo/internal/role/role-name).
Authorization roles are assigned to managed user objects as values of the object's authzRoles property.

Both provisioning roles and authorization roles use the relationships mechanism to link the role
object, and the managed object to which the role applies. For more information about relationships
between objects, see "Managing Relationships Between Objects".

This section describes how to create and use managed roles, either managed provisioning roles, or
managed authorization roles. For more information about authorization roles, and how OpenIDM
controls authorization to its own endpoints, see "Authorization".

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 133

Managed roles are defined like any other managed object, and are assigned to managed users by
using the relationships mechanism.

A managed role can be assigned directly, as a static value of the user's roles or authzRoles attribute, or
indirectly, through a script or a rule that assigns the role value. For example, a user might acquire an
indirect role such as sales-role, if that user is in the sales organization.

A managed user's roles and authzRoles attributes take an array of references as a value, where the
references point to the managed role objects. For example, if user bjensen has been assigned two
provisioning roles (employee and supervisor), the value of bjensen's roles attribute would look something
like the following:
"roles": [
 {
 "_ref": "managed/role/employee",
 "_refProperties": {
 "_id": "c090818d-57fd-435c-b1b1-bb23f47eaf09",
 "_rev": "1"
 }
 },
 {
 "_ref": "managed/role/supervisor",
 "_refProperties": {
 "_id": "4961912a-e2df-411a-8c0f-8e63b62dbef6",
 "_rev": "1"
 }
 }
]

Note that the _ref property points to the managed role object that has been assigned to the managed
user object.

The following sections describe how to create, read, update, and delete managed role objects, and
how to assign roles to users. For information about how roles are used to provision users to external
systems, see "Working With Role Assignments". For a sample that demonstrates the basic CRUD
operations on roles, see "Roles Samples - Demonstrating the OpenIDM Roles Implementation" in the
Samples Guide.

8.4.1. Creating, Listing, Assigning, and Deleting Roles

Managed role objects are stored in the repository and are accessible at the context path /openidm/
managed/role. This section describes how to manipulate managed roles over the REST interface, and by
using the Admin UI.

8.4.1.1. Creating a Managed Role

The easiest way to create a new managed role is by using the Admin UI. Select Manage > Role and
click New Role on the Role List page. Enter a name and description for the new role and click Create.

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 134

Select the Managed Assignments tab to add assignments to the role. This assumes that you have
already created the required assignments that should be associated with the role. For more
information, see "Working With Role Assignments".

To create a new managed role over REST, send a PUT or POST request to the /openidm/managed/role
context path. The following example creates a new managed role named employee:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --request PUT \
 --data '{
 "name" : "employee",
 "description" : "Role assigned to workers on the company payroll"
 }' \
 "https://localhost:8443/openidm/managed/role/employee"
{
 "_id": "employee",
 "_rev": "1",
 "name": "employee",
 "description": "Role assigned to workers on the company payroll",
 "assignments": []
}

At this stage, the employee role has no corresponding assignments. Assignments are what enables
the provisioning logic to the external system. Assignments are created and maintained as
separate managed objects, and are referred to within role definitions. For more information about
assignments, see "Working With Role Assignments".

8.4.1.2. Listing Existing Roles

You can display a list of all configured managed roles over REST or by using the Admin UI.

To list the managed roles in the Admin UI, select Manage > Role.

To list the managed roles over REST, query the openidm/managed/role endpoint. The following example
shows the employee role that you created in the previous section:

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 135

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/role?_queryFilter=true"
{
 "result": [
 {
 "_id": "employee",
 "_rev": "1",
 "name": "employee",
 "description": "Role assigned to workers on the company payroll",
 "assignments": []
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

8.4.1.3. Assigning a Managed Role to a User

Roles are assigned to users through the relationship mechanism. Relationships are essentially
references from one managed object to another, in this case from a managed user object to a
managed role object. For more information about relationships, see "Managing Relationships
Between Objects".

You can assign a role to a managed user in two ways:

• Update the value of the user object's roles property (if the role is a provisioning role) or authzRoles
property (if the role is an authorization role).

• Update the value of the role object's members property to reference the user object.

Both of these actions can be achieved by using the Admin UI, or over REST.

Using the Admin UI

• Select Manage > User and click on the user to whom you want to assign the role.

Select the Provisioning Roles tab, select the role from the dropdown list, click Add Role, and
click Save.

Over the REST interface

Use one of the following methods to assign a role to a user object:

• Update the user object to refer to the role object.

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 136

The following sample command assigns the employee role to user scarter:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --request PATCH \
 --data '[
 {
 "operation": "replace",
 "field": "/roles/-",
 "value": [{"_ref" : "managed/role/employee"}]
 }
]' \
 "https://localhost:8443/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "2",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By XML1",
 "userName": "scarter@example.com",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/employee",
 "_refProperties": {
 "_id": "026536cf-dcb7-4224-960b-3bdb259a4f0c",
 "_rev": "1"
 }
 }
],
 "effectiveAssignments": [],
 "roles": [
 {
 "_ref": "managed/role/employee",
 "_refProperties": {
 "_id": "026536cf-dcb7-4224-960b-3bdb259a4f0c",
 "_rev": "1"
 }
 }
]
}

Note that scarter's roles and effectiveRoles attributes have been updated with a reference to the
new role. For more information about effective roles and effective assignments, see "Effective
Roles and Effective Assignments".

• Update the role object to refer to the user object.

The following sample command makes scarter a member of the employee role:

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 137

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --request PATCH \
 --data '[
 {
 "operation": "add",
 "field": "/members/-",
 "value": [{"_ref" : "managed/user/scarter"}]
 }
]' \
 "https://localhost:8443/openidm/managed/role/employee"
{
 "_id": "employee",
 "_rev": "3",
 "name": "employee",
 "description": "Role assigned to workers on the company payroll"
}

Note that the members attribute of a role is not returned by default in the output. To show all
members of a role, you must specifically request the relationship properties in your query. The
following sample command lists the members of the employee role (currently only scarter):
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/role/employee?_fields=*_ref"
{
 "_id": "employee",
 "_rev": "3",
 "members": [
 {
 "_ref": "managed/user/scarter",
 "_refProperties": {
 "_id": "44f7062a-62b5-4d8a-8ada-cea1881bc68a",
 "_rev": "5"
 }
 }
],
 "assignments": []
}

8.4.1.4. Querying the Roles Assigned to a User

The easiest way to check what roles are assigned to a managed user object is to look at that object in
the Admin UI. Select Manage > User and click on the user whose role or roles you want to see.

To obtain a list of roles assigned to a user, over the REST interface, you can query the user's roles
property. The following sample query shows that bjensen has one assigned role, managed/role/employee:

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 138

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/bjensen/roles?_queryFilter=true"
{
 "result": [
 {
 "_ref": "managed/role/employee",
 "_refProperties": {
 "_id": "daf12ce0-b059-4c07-b364-c9e3b1d2255f",
 "_rev": "5"
 }
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

8.4.1.5. Deleting a User's Managed Roles

Exactly like assigning roles, you can remove a user's managed roles in two ways:

• Update the value of the user object's roles property (if the role is a provisioning role) or authzRoles
property (if the role is an authorization role).

• Update the value of the role object's members property to remove the reference to that user object.

Both of these actions can be achieved by using the Admin UI, or over REST.

Using the Admin UI

Use one of the following methods to remove a user's managed roles:

• Select Manage > User and click on the user whose role or roles you want to remove.

Select the Provisioning Roles tab, click the X icon next to the role that you want to remove, and
click Save.

• Select Manage > Role and click on the role whose members you want to remove.

Click the Users tab, select the users whose membership you want to remove and click Remove
Users.

Over the REST interface

Use one of the following methods to remove a role from a user object:

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 139

• Update the user object to remove the reference to the role object.

The following sample command removes the employee role from user scarter:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PATCH \
 --data '[
 {
 "operation": "remove",
 "field": "/roles/0"
 }
]' \
 "https://localhost:8443/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "6",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "userName": "scarter@example.com",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": [],
 "roles": []
}

Note that this command assumes scarter has no other provisioning roles, and effectively
overwrites scarter's roles attribute with an empty array. If there are other provisioning roles
that should be retained, include the reference to those roles in the value field.

• Update the role object to remove the reference to the user object.

The following sample command removes scarter's membership from the employee role:

Managing Users, Groups, Roles and Relationships
Creating, Listing, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 140

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PATCH \
 --data '[
 {
 "operation": "replace",
 "field": "/members",
 "value": []
 }
]' \
 "https://localhost:8443/openidm/managed/role/employee"
{
 "_id": "employee",
 "_rev": "3",
 "name": "employee",
 "description": "Role assigned to workers on the company payroll"
}

8.4.1.6. Deleting a Role Definition

You can delete a managed provisioning or authorization role by using the Admin UI, or over the REST
interface.

To delete a role by using the Admin UI, select Manage > Role, select the role you want to remove,
and click Delete.

To delete a managed role over the REST interface, simply delete that managed object. The following
command deletes the employee role created in the previous section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/managed/role/employee"
{
 "_id": "employee",
 "_rev": "5",
 "name": "employee",
 "description": "Role assigned to workers on the company payroll",
 "assignments": []
}

Note

You cannot delete a role if it is currently assigned to one or more managed users. If you attempt to delete a
role that is assigned to a user (either over the REST interface, or by using the Admin UI), OpenIDM returns an

Managing Users, Groups, Roles and Relationships
Working With Role Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 141

error. The following command indicates an attempt to remove the employee role while it is still assigned to user
scarter:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/managed/role/employee"
{
 "code":409,
 "reason":"Conflict",
 "message":"Cannot delete a role that is currently assigned"
 }

8.4.2. Working With Role Assignments

Authorization roles control access to OpenIDM itself. Provisioning roles define rules for how attribute
values are updated on external systems. These rules are configured through assignments that are
attached to a provisioning role definition. The purpose of an assignment is to provision an attribute or
set of attributes, based on an object's role membership.

The synchronization mapping configuration between two resources (defined in the sync.json file)
provides the basic account provisioning logic (how an account is mapped from a source to a target
system). Role assignments provide additional provisioning logic that is not covered in the basic
mapping configuration. The attributes and values that are updated by using assignments might
include group membership, access to specific external resources, and so on. A group of assignments
can collectively represent a role.

Assignment objects are created, updated and deleted like any other managed object, and are
attached to a role by using the relationships mechanism, in much the same way as a role is assigned
to a user. Assignment objects are stored in the repository and are accessible at the context path /
openidm/managed/assignment.

This section describes how to manipulate managed assignments over the REST interface, and by
using the Admin UI. When you have created an assignment, and attached it to a role definition,
all user objects that reference that role definition will, as a result, reference the corresponding
assignment in their effectiveAssignments attribute.

8.4.2.1. Creating an Assignment Object

The easiest way to create a new managed assignment is by using the Admin UI, as follows:

1. Select Manage > Assignment and click New Assignment on the Assignment List page.

2. Enter a name and description for the new assignment, and select the mapping to which the
assignment should apply. The mapping indicates the target resource, that is, the resource on
which the attributes specified in the assignment will be adjusted.

Managing Users, Groups, Roles and Relationships
Working With Role Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 142

3. Click Add Assignment.

4. Select the Attributes tab and select the attribute or attributes whose values will be adjusted by
this assignment. In the text field, specify what the value of the attribute should be, when this
assignment is applied.

5. Select the assignment operation from the dropdown list:

• Merge With Target - the attribute value will be added to any existing values for that attribute.
This operation first merges the value of the source object attribute with the existing target
attribute, then adds the value(s) from the assignment. If duplicate values are found (for
attributes that take a list as a value), each value is included only once in the resulting target.
The mergeWithTarget assignment operation is used only with complex attribute values like arrays
and objects, and does not work with strings or numbers.

• Remove From Target - the attribute value will be removed from the existing value or values for that
attribute.

• Replace Target - the attribute value will overwrite any existing values for that attribute. The value
from the assignment becomes the authoritative source for the attribute.

• No Operation - the assignment will not affect the attribute value on the target system.

Select the unassignment operation from the dropdown list. Currently, only Remove From Target is
supported, which means that the attribute value is removed from the system object when the
user is no longer a member of the role, or when the assignment itself is removed from the role
definition.

6. Optionally, click the Events tab to specify any scriptable events associated with this assignment.

The assignment and unassigment operations described in the previous step operate at the
attribute level. That is, you specify what should happen with each attribute affected by the
assignment when the assignment is applied to a user, or removed from a user.

The scriptable On assignment and On unassignment events operate at the assignment level,
rather than the attribute level. You define scripts here to apply additional logic or operations that
should be performed when a user (or other object) receives or loses an entire assignment. This
logic can be anything that is not restricted to an operation on a single attribute.

To create a new managed assignment over REST, send a PUT or POST request to the /openidm/managed/
assignment context path.

The following example creates a new managed assignment named employee. The JSON payload in this
example shows the following:

• The assignment is applied for the mapping managedUser_systemLdapAccounts, so attributes will be
updated on the external LDAP system specified in this mapping.

• The name of the attribute on the external system whose value will be set is employeeType and its value
will be set to Employee.

Managing Users, Groups, Roles and Relationships
Working With Role Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 143

• When the assignment is applied during a sync operation, the attribute value Employee will be added
to any existing values for that attribute. When the assignment is removed (if the role is deleted, or
if the managed user is no longer a member of that role), the attribute value Employee will be removed
from the values of that attribute.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --request PUT \
 --data '{
 "name" : "employee",
 "description": "Assignment for employees.",
 "mapping" : "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": "Employee",
 "assignmentOperation" : "mergeWithTarget",
 "unassignmentOperation" : "removeFromTarget"
 }
]
 }' \
 "https://localhost:8443/openidm/managed/assignment/employee"
{
 "_id": "employee",
 "_rev": "1",
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": "Employee",
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

8.4.2.2. Adding an Assignment to a Role

When you have created a managed role object, and a managed assignment object, you reference the
assignment from the role, in much the same way as a user object references a role.

You can update a role definition to include one or more assignments, either by using the Admin UI, or
over the REST interface.

Using the Admin UI

Select Manage > Role and click on the role to which you want to add an assignment.

Managing Users, Groups, Roles and Relationships
Working With Role Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 144

Select the Managed Assignments tab, then select the assignment that you want to add to the role
and click Save.

Over the REST interface

Update the role definition to include a reference to the assignment in the assignments property of
the role. The following sample command adds the employee assignment to the employee role that was
created in the previous section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PATCH \
 --data '[
 {
 "operation" : "add",
 "field" : "/assignments/-",
 "value" : { "_ref": "managed/assignment/employee" }
 }
]' \
 "https://localhost:8443/openidm/managed/role/employee"
{
 "_id": "employee",
 "_rev": "2",
 "name": "employee",
 "description": "Role assigned to workers on the company payroll",
 "assignments": [
 {
 "_ref": "managed/assignment/employee",
 "_refProperties": {
 "_id": "e72544a7-7aa6-4c5f-baf5-eec4781f710d",
 "_rev": "1"
 }
 }
]
}

To remove an assignment from a role definition, remove the reference to the assignment object from
the role's assignments property.

8.4.2.3. Deleting a Managed Assignment

You can delete a managed assignment object by using the Admin UI, or over the REST interface.

To delete an assignment by using the Admin UI, select Manage > Assignment, select the assignment
you want to remove, and click Delete.

To delete a managed assignment over the REST interface, simply delete that managed object. The
following command deletes the employee assignment created in the previous section:

Managing Users, Groups, Roles and Relationships
Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 145

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/managed/assignment/employee"
 {
 "_id": "employee",{
 "_id": "employee",
 "_rev": "1",
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": "Employee",
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Note

You can delete an assignment, even if it is referenced by a managed role. When the assignment is removed,
any users to whom the corresponding roles were assigned will no longer have that assignment in their list of
effectiveAssignments. For more information about effective roles and effective assignments, see "Effective
Roles and Effective Assignments".

8.4.3. Effective Roles and Effective Assignments

Effective roles and effective assignments are virtual properties of a managed user object. Their
values are calculated on the fly by the openidm/bin/defaults/script/roles/effectiveRoles.js and openidm/
bin/defaults/script/roles/effectiveAssignments.js scripts. These scripts are triggered every time a role
definition is changed, an assignment is added or changed, or when a user is added to or removed
from a role's list of members.

The following excerpt of a managed.json file shows how these two virtual properties are constructed for
each managed user object:

Managing Users, Groups, Roles and Relationships
Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 146

{
 "name" : "effectiveRoles",
 "type" : "virtual",
 "onRetrieve" : {
 "type" : "text/javascript",
 "file" : "roles/effectiveRoles.js",
 "rolesPropName" : "roles"
 }
},
{
 "name" : "effectiveAssignments",
 "type" : "virtual",
 "onRetrieve" : {
 "type" : "text/javascript",
 "file" : "roles/effectiveAssignments.js",
 "effectiveRolesPropName" : "effectiveRoles"
 }
}

When a role references an assignment, and a user object references the role, that user object
automatically references the assignment in its list of effective assignments.

Do not change the default effectiveRoles.js and effectiveAssignments.js scripts. If you need to change
the logic that calculates effectiveRoles and effectiveAssignments, create your own custom script and
include a reference to it in your project's conf/managed.json file. For more information about using
custom scripts, see "Scripting Reference".

The effectiveRoles attribute lists the specific role definitions that are referenced in the user object's
roles attribute. By default, the effective roles script supports only direct role assignments.

To set up a dynamic role assignment, you need a custom script that overrides the default
effectiveRoles.js script. For more information, see "Adding Support for Dynamic Assignments".

The synchronization engine reads the calculated value of the effectiveAssignments attribute when
it processes the managed user object. The target system is updated according to the configured
assignmentOperation for each assignment.

By default, the effectiveRoles.js script uses the roles attribute of a user entry to derive the direct roles
assigned to the user. The effectiveAssignments.js script uses the virtual effectiveRoles attribute from
the user object to calculate that user's effective assignments.

When a role is assigned to a user entry, OpenIDM calculates the effectiveRoles and effectiveAssignments
for that user from the definition of the role. The previous set of examples showed the creation of
a role employee that referenced an assignment employee and was assigned to bjensen's user entry.
Querying that user entry would show the following effective roles and effective assignments:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/bjensen&_fields=userName,roles,effectiveRoles
,effectiveAssignments"

Managing Users, Groups, Roles and Relationships
Adding Support for Dynamic Assignments

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 147

{
 "result": [
 {
 "_rev": "4",
 "userName": "bjensen",
 "roles": [
 {
 "_ref": "managed/role/employee",
 "_refProperties": {
 "_id": "daf12ce0-b059-4c07-b364-c9e3b1d2255f",
 "_rev": "5"
 }
 }
],
 "effectiveRoles": [
 {
 "_ref": "managed/role/employee",
 "_refProperties": {
 "_id": "daf12ce0-b059-4c07-b364-c9e3b1d2255f",
 "_rev": "5"
 }
 }
],
 "effectiveAssignments": [
 {
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": "employee",
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
],
 "_id": "employee",
 "_rev": "2"
 }
]
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

In this example, synchronizing the managed/user repository with the external LDAP system defined in
the mapping should populate user bjensen's employeeType attribute in LDAP with the value employee.

8.4.4. Adding Support for Dynamic Assignments

Although support for dynamic role assignments is not included in the default configuration, you can
add such support with a custom script, as follows:

Managing Users, Groups, Roles and Relationships
Managed Role Object Script Hooks

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 148

1. Create a roles directory in your project's script directory and copy the default effective roles
script to that new directory:
$ mkdir project-dir/script/roles/
$ cp /path/to/openidm/bin/defaults/script/roles/effectiveRoles.js \
 project-dir/script/roles/

The new script will override the default effective roles script.

2. Modify the effective roles script to include the references to the roles that you want to assign
dynamically.

For example, the following addition to the effectiveRoles.js script assigns the roles dynamic-role1
and dynamic-role2 to all active users (managed user objects whose accountStatus value is active).
This example assumes that you have already created the managed roles, dynamic-role1 and dynamic-
role2, and their corresponding assignments:

// This is the location to expand to dynamic roles,
// project role script return values can then be added via
// effectiveRoles = effectiveRoles.concat(dynamicRolesArray);

if (object.accountStatus === 'active') {
 effectiveRoles = effectiveRoles.concat([
 {"_ref": "managed/role/dynamic-role1"},
 {"_ref": "managed/role/dynamic-role2"}
]);
}

3. (Optional) To apply changes to the dynamic assignment rules to existing users, run a
reconciliation operation on those users.

If you make any of the following changes to dynamic role assignments, you must perform a manual
reconciliation of all affected users before the changes take effect:

• If you create a new dynamic role definition.

• If you change the definition of an existing dynamic role.

• If you change a dynamic assignment rule.

Alternatively, you can modify or synchronize a user entry, in which case, all dynamic role assignments
are reassessed automatically.

8.4.5. Managed Role Object Script Hooks

Like any other object, a managed role object has script hooks that enable you to configure role
behavior. The default role object definition in conf/managed.json includes the following script hooks:

Managing Users, Groups, Roles and Relationships
Managing Relationships Between Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 149

{
 "name" : "role",
 "onDelete" : {
 "type" : "text/javascript",
 "file" : "roles/onDelete-roles.js"
 },
 "onSync" : {
 "type" : "text/javascript",
 "source" : "require('roles/onSync-roles').syncUsersOfRoles(resourceName, oldObject, newObject,
 ['members']);"
 },
...

When a role object is deleted, the onDelete script hook calls the bin/default/script/roles/onDelete-roles
.js script.

When a role object is synchronized, the onSync hook causes a synchronization operation on all
managed objects that reference the role.

8.5. Managing Relationships Between Objects
OpenIDM enables you to define relationships between two managed objects. Managed roles are
implemented using relationship objects, but you can create a variety of relationship objects, as
required by your deployment.

8.5.1. Defining a Relationship Type
Relationship objects are defined in your project's managed object configuration file (conf/managed.json).
By default, OpenIDM provides a relationship object named manager, that enables you to configure a
management relationship between two managed user objects. The manager relationship object is a
good example from which to understand how relationship objects work.

The default manager relationship object is configured as follows:
"manager" : {
 "type" : "relationship",
 "returnByDefault" : false,
 "description" : "",
 "title" : "Manager",
 "viewable" : true,
 "searchable" : false,
 "properties" : {
 "_ref" : { "type" : "string" },
 "_refProperties": {
 "type": "object",
 "properties": {
 "_id": { "type": "string" }
 }
 }
},

All relationship objects have the following configurable properties:

Managing Users, Groups, Roles and Relationships
Establishing a Relationship Between Two Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 150

type (string)

The object type. Must be relationship for a relationship object.

returnByDefault (boolean true, false)

Specifies whether the relationship object should be returned in the result of a read or search
query on the managed object that has the relationship, if it is not explicitly requested. By default,
relationship objects are not returned, unless they are explicitly requested.

description (string, optional)

An optional string that provides additional information about the relationship object.

title (string)

Used by the UI to refer to the relationship object.

viewable (boolean, true, false)

Specifies whether the relationship object is visible as a field in the UI. The default value is true.

searchable (boolean, true, false)

Specifies whether values of the relationship object can be searched, in the UI. For example, if
you set this property to true on the manager relationship object, a user will be able to search for
managed user entries using the manager field as a filter.

_ref (JSON object)

Specifies how the relationship between two managed objects is referenced.

In the relationship object definition, the value of this property is { "type" : "string" }. In a
managed user entry, the value of the _ref property is the reference to the other resource. The _ref
property is described in more detail in "Establishing a Relationship Between Two Objects".

_refProperties (JSON object)

Specifies any required properties from the relationship object that should be included in the
managed object. The _refProperties field includes a unique ID (_id) and the revision (_rev) of the
object. _refProperties can also contain arbitrary fields to support metadata within the relationship.

8.5.2. Establishing a Relationship Between Two Objects
When you have defined a relationship type, (such as the manager relationship, described in the
previous section), you can reference that relationship from a managed user object, using the _ref
property.

For example, imagine that you are creating a new user, psmith, and that psmith's manager will be
bjensen. You would add psmith's user entry, and reference bjensen's entry with the _ref property, as
follows:

Managing Users, Groups, Roles and Relationships
Validating Relationships Between Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 151

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "If-None-Match: *" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "sn":"Smith",
 "userName":"psmith",
 "givenName":"Patricia",
 "displayName":"Patti Smith",
 "description" : "psmith - new user",
 "mail" : "psmith@example.com",
 "phoneNumber" : "0831245986",
 "password" : "Passw0rd",
 "manager" : {"_ref" : "managed/user/bjensen"}
 }' \
"https://localhost:8443/openidm/managed/user/psmith"
{
 "_id": "psmith",
 "_rev": "1",
 "sn": "Smith",
 "userName": "psmith",
 "givenName": "Patricia",
 "displayName": "Patti Smith",
 "description": "psmith - new user",
 "mail": "psmith@example.com",
 "phoneNumber": "0831245986",
 "accountStatus": "active",
 "effectiveRoles": null,
 "effectiveAssignments": [],
 "roles": []
}

Note that the relationship information is not returned by default in the command-line output.

Any change to a relationship object triggers a synchronization operation on any other managed
objects that are referenced by the relationship object. For example, OpenIDM maintains referential
integrity by deleting the relationship reference, if the object referred to by that relationship is
deleted. In our example, if bjensen's user entry is deleted, the corresponding reference in psmith's
manager property is removed.

8.5.3. Validating Relationships Between Objects

Optionally, you can specify that a relationship between two objects must be validated when the
relationship is created. For example, you can indicate that a user object cannot reference a role
object, if that object does not exist.

When you create a new relationship type, validation is disabled by default as it entails a query to the
relationship object that can be expensive, if it is not required. To configure validation of a referenced
relationship, set "validate": true in the object configuration (in managed.json). The managed.json files
provided with OpenIDM enable validation for the following relationships:

Managing Users, Groups, Roles and Relationships
Working With Bi-Directional Relationships

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 152

• For user objects ‒ roles, managers, and reports

• For role objects ‒ members and assignments

• For assignment objects ‒ roles

The following configuration of the manager relationship object enables validation, and prevents a user
object from referencing a manager that has not already been created:
"manager" : {
 "type" : "relationship",
 ...
 "validate" : true,

8.5.4. Working With Bi-Directional Relationships

In some cases, it is useful to define a relationship between two objects in both directions. For
example, a relationship between a user and his manager might indicate a reverse relationship
between the manager and her direct report. Reverse relationships are particularly useful in querying.
For example, you might want to query jdoe's user object to discover who his manager is, or query
bjensen's user object to discover all the users who report to bjensen.

A reverse relationship is declared in the managed object configuration (conf/managed.json). Consider
the following sample excerpt of the default managed object configuration:
"roles" : {
 "description" : "",
 "title" : "Provisioning Roles",
 ...
 "type" : "array",
 "items" : {
 "type" : "relationship",
 "validate": false,
 "reverseRelationship" : true,
 "reversePropertyName" : "members",
 ...

The roles object is a relationship object. So, you can refer to a managed user's roles by referencing
the role object definition. However, the roles object is also a reverse relationship object
("reverseRelationship" : true) which means that you can list all user objects that reference that
role object. In other words, you can list all members of the role. The members property is therefore the
reversePropertyName.

8.5.5. Viewing Relationships Over REST

By default, information about relationships is not returned as the result of a GET request on a
managed object. You must explicitly include the relationship property in the request, for example:

Managing Users, Groups, Roles and Relationships
Viewing Relationships Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 153

$ curl
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/psmith?_fields=manager"
{
 "_id": "psmith",
 "_rev": "1",
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refProperties": {
 "_id": "e15779ad-be54-4a1c-b643-133dd9bb2e99",
 "_rev": "1"
 }
 }
}

To obtain more information about the referenced object (psmith's manager, in this case), you can
include additional fields from the referenced object in the query, using the syntax object/property (for
a simple string value) or object/*/property (for an array of values).

The following example returns the email address and contact number for psmith's manager:
$ curl
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/psmith?_fields=manager/mail,manager/phoneNumber"
{
 "_id": "psmith",
 "_rev": "1",
 "phoneNumber": "1234567",
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refProperties": {
 "_id": "e15779ad-be54-4a1c-b643-133dd9bb2e99",
 "_rev": "1"
 },
 "mail": "bjensen@example.com",
 "phoneNumber": "1234567"
 }
}

You can query all the relationships associated with a managed object by querying the reference
(*_ref) property of the object. For example, the following query shows all the objects that are
referenced by psmith's entry:

Managing Users, Groups, Roles and Relationships
Running Scripts on Managed Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 154

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/psmith?_fields=*_ref"
{
 "_id": "psmith",
 "_rev": "1",
 "roles": [],
 "authzRoles": [
 {
 "_ref": "repo/internal/role/openidm-authorized",
 "_refProperties": {
 "_id": "8e7b2c97-dfa8-4eec-a95b-b40b710d443d",
 "_rev": "1"
 }
 }
],
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refProperties": {
 "_id": "3a246327-a972-4576-b6a6-7126df780029",
 "_rev": "1"
 }
 }
}

8.6. Running Scripts on Managed Objects
OpenIDM provides a number of hooks that enable you to manipulate managed objects using scripts.
These scripts can be triggered during various stages of the lifecycle of the managed object, and are
defined in the managed objects configuration file (managed.json).

The scripts can be triggered when a managed object is created (onCreate), updated (onUpdate),
retrieved (onRetrieve), deleted (onDelete), validated (onValidate), or stored in the repository
(onStore). A script can also be triggered when a change to a managed object triggers an implicit
synchronization operation (onSync).

In addition, OpenIDM supports the use of post-action scripts for managed objects, including after the
creation of an object is complete (postCreate), after the update of an object is complete (postUpdate),
and after the deletion of an object (postDelete).

The following sample extract of a managed.json file runs a script to calculate the effective assignments
of a managed object, whenever that object is retrieved from the repository:

Managing Users, Groups, Roles and Relationships
Encoding Attribute Values

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 155

"effectiveAssignments" : {
 "type" : "array",
 "title" : "Effective Assignments",
 "viewable" : false,
 "returnByDefault" : true,
 "isVirtual" : true,
 "onRetrieve" : {
 "type" : "text/javascript",
 "file" : "roles/effectiveAssignments.js",
 "effectiveRolesPropName" : "effectiveRoles"
 },
 "items" : {
 "type" : "object"
 }
},

8.7. Encoding Attribute Values
OpenIDM supports two methods of encoding attribute values for managed objects - reversible
encryption and the use of salted hashing algorithms. Attribute values that might be encoded include
passwords, authentication questions, credit card numbers, and social security numbers. If passwords
are already encoded on the external resource, they are generally excluded from the synchronization
process. For more information, see "Managing Passwords".

You configure attribute value encoding, per schema property, in the managed object configuration (in
your project's conf/managed.json file). The following sections show how to use reversible encryption and
salted hash algorithms to encode attribute values.

8.7.1. Encoding Attribute Values With Reversible Encryption

The following excerpt of a managed.json file shows a managed object configuration that encrypts and
decrypts the password attribute using the default symmetric key:

Managing Users, Groups, Roles and Relationships
Encoding Attribute Values by Using Salted Hash Algorithms

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 156

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private",
 ...
 }
]
}

Tip

To configure encryption of properties by using the Admin UI:

1. Select Configure > Managed Objects, and click on the object type whose property values you want to
encrypt (for example User).

2. On the Properties tab, select the property whose value should be encrypted and select the Encrypt
checkbox.

For information about encrypting attribute values from the command-line, see "Using the encrypt
Subcommand".

8.7.2. Encoding Attribute Values by Using Salted Hash Algorithms

To encode attribute values with salted hash algorithms, add the secureHash property to the attribute
definition, and specify the algorithm that should be used to hash the value. OpenIDM supports the
following hash algorithms:

MD5
SHA-1
SHA-256
SHA-384
SHA-512

The following excerpt of a managed.json file shows a managed object configuration that hashes the
values of the password attribute using the SHA-1 algorithm:

Managing Users, Groups, Roles and Relationships
Restricting HTTP Access to Sensitive Data

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 157

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "secureHash" : {
 "algorithm" : "SHA-1"
 },
 "scope" : "private",
 ...
 }
]
}

Tip

To configure hashing of properties by using the Admin UI:

1. Select Configure > Managed Objects, and click on the object type whose property values you want to hash
(for example User).

2. On the Properties tab, select the property whose value must be hashed and select the Hash checkbox.

3. Select the algorithm that should be used to hash the property value.

OpenIDM supports the following hash algorithms:

MD5
SHA-1
SHA-256
SHA-384
SHA-512

For information about hashing attribute values from the command-line, see "Using the secureHash
Subcommand".

8.8. Restricting HTTP Access to Sensitive Data
You can protect specific sensitive managed data by marking the corresponding properties as private.
Private data, whether it is encrypted or not, is not accessible over the REST interface. Properties that
are marked as private are removed from an object when that object is retrieved over REST.

To mark a property as private, set its scope to private in the conf/managed.json file.

Managing Users, Groups, Roles and Relationships
Restricting HTTP Access to Sensitive Data

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 158

The following extract of the managed.json file shows how HTTP access is prevented on the password and
securityAnswer properties:
{
 "objects": [
 {
 "name": "user",
 "schema": {
 "id" : "http://jsonschema.net",
 "title" : "User",
 ...
 "properties": {
 ...
 {
 "name": "securityAnswer",
 "encryption": {
 "key": "openidm-sym-default"
 },
 "scope" : "private"
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }'
 "scope" : "private"
 }
 },
 ...
 }
]
}

Tip

To configure private properties by using the Admin UI:

1. Select Configure > Managed Objects, and click on the object type whose property values you want to make
private (for example User).

2. On the Properties tab, select the property that must be private and select the Private checkbox.

A potential caveat with using private properties is that private properties are removed if an object
is updated by using an HTTP PUT request. A PUT request replaces the entire object in the repository.
Because properties that are marked as private are ignored in HTTP requests, these properties are
effectively removed from the object when the update is done. To work around this limitation, do not
use PUT requests if you have configured private properties. Instead, use a PATCH request to update only
those properties that need to be changed.

For example, to update the givenName of user jdoe, you could run the following command:

Managing Users, Groups, Roles and Relationships
Restricting HTTP Access to Sensitive Data

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 159

$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--header "Content-Type: application/json"
 \
--request POST
 \
--data '[
 {
 "operation":"replace",
 "field":"/givenName",
 "value":"Jon"
 }
]' \
"https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=jdoe"

Note

The filtering of private data applies only to direct HTTP read and query calls on managed objects. No automatic
filtering is done for internal callers, and the data that these callers choose to expose.

Using Policies to Validate Data
Configuring the Default Policy for Managed Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 160

Chapter 9

Using Policies to Validate Data

OpenIDM provides an extensible policy service that enables you to apply specific validation
requirements to various components and properties. This chapter describes the policy service, and
provides instructions on configuring policies for managed objects.

The policy service provides a REST interface for reading policy requirements and validating
the properties of components against configured policies. Objects and properties are validated
automatically when they are created, updated, or patched. Policies are generally applied to user
passwords, but can also be applied to any managed or system object, and to internal user objects.

The policy service enables you to accomplish the following tasks:

• Read the configured policy requirements of a specific component.

• Read the configured policy requirements of all components.

• Validate a component object against the configured policies.

• Validate the properties of a component against the configured policies.

The OpenIDM router service limits policy application to managed, system, and internal user objects.
To apply policies to additional objects, such as the audit service, you must modify your project's conf/
router.json file. For more information about the router service, see "Router Service Reference".

A default policy applies to all managed objects. You can configure this default policy to suit your
requirements, or you can extend the policy service by supplying your own scripted policies.

9.1. Configuring the Default Policy for Managed Objects
Policies applied to managed objects are configured in two files:

• A policy script file (openidm/bin/defaults/script/policy.js) that defines each policy and specifies how
policy validation is performed. For more information, see "Understanding the Policy Script File".

• A managed object policy configuration element, defined in your project's conf/managed.json file,
that specifies which policies are applicable to each managed resource. For more information, see
"Understanding the Policy Configuration Element".

Using Policies to Validate Data
Understanding the Policy Script File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 161

Note

The configuration for determining which policies apply to resources other than managed objects is defined in
your project's conf/policy.json file. The default policy.json file includes policies that are applied to internal
user objects, but you can extend the configuration in this file to apply policies to system objects.

9.1.1. Understanding the Policy Script File
The policy script file (openidm/bin/defaults/script/policy.js) separates policy configuration into two
parts:

• A policy configuration object, which defines each element of the policy. For more information, see
"Policy Configuration Objects".

• A policy implementation function, which describes the requirements that are enforced by that
policy.

Together, the configuration object and the implementation function determine whether an object is
valid in terms of the applied policy. The following excerpt of a policy script file configures a policy
that specifies that the value of a property must contain a certain number of capital letters:

...
{ "policyId" : "at-least-X-capitals",
 "policyExec" : "atLeastXCapitalLetters",
 "clientValidation": true,
 "validateOnlyIfPresent":true,
 "policyRequirements" : ["AT_LEAST_X_CAPITAL_LETTERS"]
},
...

policyFunctions.atLeastXCapitalLetters = function(fullObject, value, params, property) {
 var isRequired = _.find(this.failedPolicyRequirements, function (fpr) {
 return fpr.policyRequirement === "REQUIRED";
 }),
 isNonEmptyString = (typeof(value) === "string" && value.length),
 valuePassesRegexp = (function (v) {
 var test = isNonEmptyString ? v.match(/[(A-Z)]/g) : null;
 return test !== null && test.length >= params.numCaps;
 }(value));

 if ((isRequired || isNonEmptyString) && !valuePassesRegexp) {
 return [{ "policyRequirement" : "AT_LEAST_X_CAPITAL_LETTERS", "params" : {"numCaps":
 params.numCaps} }];
 }

 return [];
}
...

To enforce user passwords that contain at least one capital letter, the policyId from the preceding
example is applied to the appropriate resource (managed/user/*). The required number of capital

Using Policies to Validate Data
Understanding the Policy Script File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 162

letters is defined in the policy configuration element of the managed object configuration file (see
"Understanding the Policy Configuration Element".

9.1.1.1. Policy Configuration Objects

Each element of the policy is defined in a policy configuration object. The structure of a policy
configuration object is as follows:
{
 "policyId" : "minimum-length",
 "policyExec" : "propertyMinLength",
 "clientValidation": true,
 "validateOnlyIfPresent": true,
 "policyRequirements" : ["MIN_LENGTH"]
}

• policyId - a unique ID that enables the policy to be referenced by component objects.

• policyExec - the name of the function that contains the policy implementation. For more information,
see "Policy Implementation Functions".

• clientValidation - indicates whether the policy decision can be made on the client. When
"clientValidation": true, the source code for the policy decision function is returned when the client
requests the requirements for a property.

• validateOnlyIfPresent - notes that the policy is to be validated only if it exists.

• policyRequirements - an array containing the policy requirement ID of each requirement that is
associated with the policy. Typically, a policy will validate only one requirement, but it can validate
more than one.

9.1.1.2. Policy Implementation Functions

Each policy ID has a corresponding policy implementation function that performs the validation.
Implementation functions take the following form:

function <name>(fullObject, value, params, propName) {
 <implementation_logic>
}

• fullObject is the full resource object that is supplied with the request.

• value is the value of the property that is being validated.

• params refers to the params array that is specified in the property's policy configuration.

• propName is the name of the property that is being validated.

The following example shows the implementation function for the required policy:

Using Policies to Validate Data
Understanding the Policy Configuration Element

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 163

function required(fullObject, value, params, propName) {
 if (value === undefined) {
 return [{ "policyRequirement" : "REQUIRED" }];
 }
 return [];
}

9.1.2. Understanding the Policy Configuration Element

The configuration of a managed object property (in the managed.json file) can include a policies
element that specifies how policy validation should be applied to that property. The following excerpt
of the default managed.json file shows how policy validation is applied to the password and _id properties
of a managed/user object:
{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 "id" : "http://jsonschema.net",
 ...
 "properties" : {
 "_id" : {
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : false,
 "policies" : [
 {
 "policyId" : "cannot-contain-characters",
 "params" : {
 "forbiddenChars" : ["/"]
 }
 }
]
 },
 "password" : {
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "minLength" : 8,
 "userEditable" : true,
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 {
 "policyId" : "at-least-X-numbers",
 "params" : {
 "numNums" : 1
 }

Using Policies to Validate Data
Configuring Policy Validation in the UI

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 164

 },
 {
 "policyId" : "cannot-contain-others",
 "params" : {
 "disallowedFields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 },
 {
 "policyId" : "re-auth-required",
 "params" : {
 "exceptRoles" : [
 "system",
 "openidm-admin",
 "openidm-reg",
 "openidm-cert"
]
 }
 }
]
 },

Note that the policy for the _id property references the function cannot-contain-characters, that is
defined in the policy.js file. The policy for the password property references the at-least-X-capitals, at
-least-X-numbers, cannot-contain-others, and re-auth-required functions that are defined in the policy.js
file. The parameters that are passed to these functions (number of capitals required, and so forth) are
specified in the same element.

9.1.3. Configuring Policy Validation in the UI

The Admin UI provides rudimentary support for applying policy validation to managed object
properties. To configure policy validation for a managed object type update the configuration of the
object type in the UI. For example, to specify validation policies for specific properties of managed
user objects, select Configure > Managed Objects then click on the User object. Scroll down to the
bottom of the Managed Object configuration, then update, or add, a validation policy. The Policy field
here refers to a function that has been defined in the policy script file. For more information, see
"Understanding the Policy Script File". You cannot define additional policy functions by using the UI.

9.2. Extending the Policy Service
You can extend the policy service by adding custom scripted policies, and by adding policies that are
applied only under certain conditions.

Using Policies to Validate Data
Adding Custom Scripted Policies

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 165

9.2.1. Adding Custom Scripted Policies

If your deployment requires additional validation functionality that is not supplied by the default
policies, you can add your own policy scripts to your project's script directory, and reference them
from your project's conf/policy.json file.

Do not modify the default policy script file (openidm/bin/defaults/script/policy.js) as doing so might
result in interoperability issues in a future release. To reference additional policy scripts, set the
additionalFiles property conf/policy.json.

The following example creates a custom policy that rejects properties with null values. The policy is
defined in a script named mypolicy.js:
var policy = { "policyId" : "notNull",
 "policyExec" : "notNull",
 "policyRequirements" : ["NOT_NULL"]
}

addPolicy(policy);

function notNull(fullObject, value, params, property) {
 if (value == null) {
 var requireNotNull = [
 {"policyRequirement": "NOT_NULL"}
];
 return requireNotNull;
 }
 return [];
}

The mypolicy.js policy is referenced in the policy.json configuration file as follows:
{
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policy.js",
 "additionalFiles" : ["script/mypolicy.js"],
 "resources" : [
 {
...

9.2.2. Adding Conditional Policy Definitions

You can extend the policy service to support policies that are applied only under specific conditions.
To apply a conditional policy to managed objects, add the policy to your project's managed.json file. To
apply a conditional policy to other objects, add it to your project's policy.json file.

The following excerpt of a managed.json file shows a sample conditional policy configuration for the
"password" property of managed user objects. The policy indicates that sys-admin users have a more
lenient password policy than regular employees:
{
 "objects" : [

Using Policies to Validate Data
Adding Conditional Policy Definitions

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 166

 {
 "name" : "user",
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 "type" : "string",
 ...
 "conditionalPolicies" : [
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.org === 'sys-admin')"
 },
 "dependencies" : ["org"],
 "policies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["90"]
 }
 }
]
 },
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.org === 'employees')"
 },
 "dependencies" : ["org"],
 "policies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["30"]
 }
 }
]
 }
],
 "fallbackPolicies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["7"]
 }
 }
]
 }

To understand how a conditional policy is defined, examine the components of this sample policy.

There are two distinct scripted conditions (defined in the condition elements). The first condition
asserts that the user object is a member of the sys-admin org. If that assertion is true, the max-age
policy is applied to the password attribute of the user object, and the maximum number of days that a
password may remain unchanged is set to 90.

Using Policies to Validate Data
Disabling Policy Enforcement

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 167

The second condition asserts that the user object is a member of the employees org. If that assertion
is true, the max-age policy is applied to the password attribute of the user object, and the maximum
number of days that a password may remain unchanged is set to 30.

In the event that neither condition is met (the user object is not a member of the sys-admin org or the
employees org), an optional fallback policy can be applied. In this example, the fallback policy also
references the max-age policy and specifies that for such users, their password must be changed after
7 days.

The dependencies field prevents the condition scripts from being run at all, if the user object does not
include an org attribute.

Note

This example assumes that a custom max-age policy validation function has been defined, as described in
"Adding Custom Scripted Policies".

9.3. Disabling Policy Enforcement
Policy enforcement is the automatic validation of data when it is created, updated, or patched. In
certain situations you might want to disable policy enforcement temporarily. You might, for example,
want to import existing data that does not meet the validation requirements with the intention of
cleaning up this data at a later stage.

You can disable policy enforcement by setting openidm.policy.enforcement.enabled to false in your
project's conf/boot/boot.properties file. This setting disables policy enforcement in the back-end only,
and has no impact on direct policy validation calls to the Policy Service (which the UI makes to
validate input fields). So, with policy enforcement disabled, data added directly over REST is not
subject to validation, but data added with the UI is still subject to validation.

You should not disable policy enforcement permanently, in a production environment.

9.4. Managing Policies Over REST
You can manage the policy service over the REST interface, by calling the REST endpoint https://
localhost:8443/openidm/policy, as shown in the following examples.

9.4.1. Listing the Defined Policies

The following REST call displays a list of all the policies defined in policy.json (policies for objects
other than managed objects). The policy objects are returned in JSON format, with one object for
each defined policy ID:

Using Policies to Validate Data
Listing the Defined Policies

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 168

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/policy"
{
 "_id": "",
 "resources": [
 {
 "resource": "repo/internal/user/*",
 "properties": [
 {
 "name": "_id",
 "policies": [
 {
 "policyId": "cannot-contain-characters",
 "params": {
 "forbiddenChars": [
 "/"
]
 },
 "policyFunction": "\nfunction (fullObject, value, params,
 property)
...

To display the policies that apply to a specific resource, include the resource name in the URL. For
example, the following REST call displays the policies that apply to managed users:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/policy/managed/user/*"
{
 "_id": "*",
 "resource": "managed/user/*",
 "properties": [
 {
 "name": "_id",
 "conditionalPolicies": null,
 "fallbackPolicies": null,
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
],
 "policies": [
 {
 "policyId": "cannot-contain-characters",
 "params": {
 "forbiddenChars": [
 "/"
]
...

Using Policies to Validate Data
Validating Objects and Properties Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 169

9.4.2. Validating Objects and Properties Over REST
To verify that an object adheres to the requirements of all applied policies, include the validateObject
action in the request.

The following example verifies that a new managed user object is acceptable, in terms of the policy
requirements:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "sn":"Jones",
 "givenName":"Bob",
 "_id":"bjones",
 "telephoneNumber":"0827878921",
 "passPhrase":null,
 "mail":"bjones@example.com",
 "accountStatus":"active",
 "userName":"bjones@example.com",
 "password":"123"
 }' \
 "https://localhost:8443/openidm/policy/managed/user/bjones?_action=validateObject"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 },
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the object is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the user password does not meet the validation
requirements.

Using Policies to Validate Data
Validating Objects and Properties Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 170

Use the validateProperty action to verify that a specific property adheres to the requirements of a
policy.

The following example checks whether Barbara Jensen's new password (12345) is acceptable:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{ "password" : "12345" }' \
 "https://localhost:8443/openidm/policy/managed/user/bjensen?_action=validateProperty"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 },
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the password is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the minimum length and the minimum number of
capital letters.

Validating a property that does fulfil the policy requirements returns a true result, for example:

Using Policies to Validate Data
Validating Objects and Properties Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 171

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{ "password" : "1NewPassword" }' \
 "https://localhost:8443/openidm/policy/managed/user/bjensen?_action=validateProperty"
{
 "result": true,
 "failedPolicyRequirements": []
}

Configuring Server Logs
Log Message Files

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 172

Chapter 10

Configuring Server Logs

In this chapter, you will learn about server logging, that is, the messages that OpenIDM logs related
to server activity.

Server logging is separate from auditing. Auditing logs activity on the OpenIDM system, such
as access and synchronization. For information about audit logging, see "Using Audit Logs". To
configure server logging, edit the logging.properties file in your project-dir/conf directory.

10.1. Log Message Files
The default configuration writes log messages in simple format to openidm/logs/openidm*.log files,
rotating files when the size reaches 5 MB, and retaining up to 5 files. Also by default, OpenIDM
writes all system and custom log messages to the files.

You can modify these limits in the following properties in the logging.properties file for your project:
Limiting size of output file in bytes:
java.util.logging.FileHandler.limit = 5242880

Number of output files to cycle through, by appending an
integer to the base file name:
java.util.logging.FileHandler.count = 5

10.2. Specifying the Logging Level
By default, OpenIDM logs messages at the INFO level. This logging level is specified with the following
global property in conf/logging.properties:
.level=INFO

You can specify different separate logging levels for individual server features which override the
global logging level. Set the log level, per package to one of the following:
SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

Configuring Server Logs
Disabling Logs

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 173

For example, the following setting decreases the messages logged by the embedded PostgreSQL
database:
reduce the logging of embedded postgres since it is very verbose
ru.yandex.qatools.embed.postgresql.level = SEVERE

Set the log level to OFF to disable logging completely (see in "Disabling Logs"), or to ALL to capture all
possible log messages.

If you use logger functions in your JavaScript scripts, set the log level for the scripts as follows:
org.forgerock.openidm.script.javascript.JavaScript.level=level

You can override the log level settings, per script, with the following setting:
org.forgerock.openidm.script.javascript.JavaScript.script-name.level

For more information about using logger functions in scripts, see "Logging Functions".

Important

It is strongly recommended that you do not log messages at the FINE or FINEST levels in a production
environment. Although these levels are useful for debugging issues in a test environment, they can result in
accidental exposure of sensitive data. For example, a password change patch request can expose the updated
password in the Jetty logs.

10.3. Disabling Logs
You can also disable logs if desired. For example, before starting OpenIDM, you can disable
ConsoleHandler logging in your project's conf/logging.properties file.

Just set java.util.logging.ConsoleHandler.level = OFF, and comment out other references to
ConsoleHandler, as shown in the following excerpt:

 # ConsoleHandler: A simple handler for writing formatted records to System.err
 #handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
 handlers=java.util.logging.FileHandler
 ...
 # --- ConsoleHandler ---
 # Default: java.util.logging.ConsoleHandler.level = INFO
 java.util.logging.ConsoleHandler.level = OFF
 #java.util.logging.ConsoleHandler.formatter = ...
 #java.util.logging.ConsoleHandler.filter=...

Connecting to External Resources
About OpenIDM and OpenICF

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 174

Chapter 11

Connecting to External Resources

This chapter describes how to connect to external resources such as LDAP, Active Directory, flat files,
and others. Configurations shown here are simplified to show essential aspects. Not all resources
support all OpenIDM operations; however, the resources shown here support most of the CRUD
operations, and also reconciliation and LiveSync.

In OpenIDM, resources are external systems, databases, directory servers, and other sources of
identity data that are managed and audited by the identity management system. To connect to
resources, OpenIDM loads the Identity Connector Framework, OpenICF. OpenICF aims to avoid the
need to install agents to access resources, instead using the resources' native protocols. For example,
OpenICF connects to database resources using the database's Java connection libraries or JDBC
driver. It connects to directory servers over LDAP. It connects to UNIX systems by using ssh.

11.1. About OpenIDM and OpenICF
OpenICF provides a common interface to allow identity services access to the resources that contain
user information. OpenIDM loads the OpenICF API as one of its OSGi modules. OpenICF uses
connectors to separate the OpenIDM implementation from the dependencies of the resource to which
OpenIDM is connecting. A specific connector is required for each remote resource. Connectors can
run either locally or remotely.

Local connectors are loaded by OpenICF as regular bundles in the OSGi container. Remote
connectors must be executed on a remote connector server. Most connectors can be run locally.
However, a remote connector server is required when access libraries that cannot be included as
part of the OpenIDM process are needed. If a resource, such as Microsoft Active Directory, does not
provide a connection library that can be included inside the Java Virtual Machine, OpenICF can use
the native .dll with a remote .NET connector server. In other words, OpenICF connects to Active
Directory through a remote connector server that is implemented as a .NET service.

Connections to remote connector servers are configured in a single connector info provider
configuration file, located in your project's conf/ directory.

Connectors themselves are configured through provisioner files. One provisioner file must exist for
each connector. Provisioner files are named provisioner.openicf-name where name corresponds to the
name of the connector, and are also located in the conf/ directory.

A number of sample connector configurations are available in the openidm/samples/provisioners
directory. To use these connectors, edit the configuration files as required, and copy them to your
project's conf/ directory.

http://openicf.forgerock.org/

Connecting to External Resources
About OpenIDM and OpenICF

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 175

The following figure shows how OpenIDM connects to resources by using connectors and remote
connector servers. The figure shows one local connector (LDAP) and two remote connectors (Scripted
SQL and PowerShell). In this example, the remote Scripted SQL connector uses a remote Java
connector server. The remote PowerShell connector always requires a remote .NET connector server.

How OpenIDM Uses the OpenICF Framework and Connectors

Tip

Connectors that use the .NET framework must run remotely. Java connectors can be run locally or remotely.
You might run a Java connector remotely for security reasons (firewall constraints), for geographical reasons,

Connecting to External Resources
Accessing Remote Connectors

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 176

or if the JVM version that is required by the connector conflicts with the JVM version that is required by
OpenIDM.

11.2. Accessing Remote Connectors
When you configure a remote connector, you use the connector info provider service to connect
through a remote connector server. The connector info provider service configuration is stored in
the file project-dir/conf/provisioner.openicf.connectorinfoprovider.json. A sample configuration file is
provided in the openidm/samples/provisioners/ directory. To use this sample configuration, edit the file
as required, and copy it to your project's conf/ directory.

The sample connector info provider configuration is as follows:
{
 "remoteConnectorServers" :
 [
 {
 "name" : "dotnet",
 "host" : "127.0.0.1",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "protocol" : "websocket",
 "key" : "Passw0rd"
 }
]
}

You can configure the following remote connector server properties:

name

string, required

The name of the remote connector server object. This name is used to identify the remote
connector server in the list of connector reference objects.

host

string, required

The remote host to connect to.

port

integer, optional

The remote port to connect to. The default remote port is 8759.

heartbeatInterval

integer, optional

Connecting to External Resources
Accessing Remote Connectors

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 177

The interval, in seconds, at which heartbeat packets are transmitted. If the connector server is
unreachable based on this heartbeat interval, all services that use the connector server are made
unavailable until the connector server can be reached again. The default interval is 60 seconds.

useSSL

boolean, optional

Specifies whether to connect to the connector server over SSL. The default value is false.

timeout

integer, optional

Specifies the timeout (in milliseconds) to use for the connection. The default value is 0, which
means that there is no timeout.

protocol

string

Version 1.5.0.0 of the OpenICF framework supports a new communication protocol with remote
connector servers. This protocol is enabled by default, and its value is websocket in the default
configuration.

For compatibility reasons, you might want to enable the legacy protocol for specific remote
connectors. For example, if you deploy the connector server on a Java 5 or 6 JVM, you must
use the old protocol. In this case, remove the protocol property from the connector server
configuration.

For the .NET connector server, the service with the new protocol listens on port 8759 and the
service with the legacy protocol listens on port 8760 by default.

For the Java connector server, the service listens on port 8759 by default, for both the new and
legacy protocols. The new protocol runs by default. To run the service with the legacy protocol,
you must change the main class that is executed in the ConnectorServer.sh or ConnectorServer.bat
file. The class that starts the websocket protocol is MAIN_CLASS=org.forgerock.openicf.framework.server
.Main. The class that starts the legacy protocol is MAIN_CLASS=org.identityconnectors.framework.server
.Main. To change the port on which the Java connector server listens, change the connectorserver
.port property in the openicf/conf/ConnectorServer.properties file.

Caution

Currently, the new, default protocol has specific known issues. You should therefore run the 1.5 .NET
Connector Server in legacy mode, with the old protocol, as described in "Running the .NET Connector
Server in Legacy Mode".

key

string, required

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 178

The secret key, or password, to use to authenticate to the remote connector server.

To run remotely, the connector .jar itself must be copied to the openicf/bundles directory, on the
remote machine.

11.3. Configuring Connectors
Connectors are configured through the OpenICF provisioner service. Each connector configuration is
stored in a file in your project's conf/ directory, and accessible over REST at the openidm/conf endpoint.
Configuration files are named project-dir/conf/provisioner.openicf-name where name corresponds to
the name of the connector. A number of sample connector configurations are available in the openidm/
samples/provisioners directory. To use these connector configurations, edit the configuration files as
required, and copy them to your project's conf directory.

If you are creating your own connector configuration files, do not include additional dash characters (
-) in the connector name, as this might cause problems with the OSGi parser. For example, the name
provisioner.openicf-hrdb.json is fine. The name provisioner.openicf-hr-db.json is not.

The following example shows a connector configuration for an XML file resource:
{
 "name" : "xml",
 "connectorRef" : connector-ref-object,
 "producerBufferSize" : integer,
 "connectorPoolingSupported" : boolean, true/false,
 "poolConfigOption" : pool-config-option-object,
 "operationTimeout" : operation-timeout-object,
 "configurationProperties" : configuration-properties-object,
 "syncFailureHandler" : sync-failure-handler-object,
 "resultsHandlerConfig" : results-handler-config-object,
 "objectTypes" : object-types-object,
 "operationOptions" : operation-options-object
}

The name property specifies the name of the system to which you are connecting. This name must be
alphanumeric.

11.3.1. Setting the Connector Reference Properties
The following example shows a connector reference object:
{
 "bundleName" : "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion" : "1.1.0.2",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector",
 "connectorHostRef" : "host"
}

bundleName

string, required

Connecting to External Resources
Setting the Connector Reference Properties

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 179

The ConnectorBundle-Name of the OpenICF connector.

bundleVersion

string, required

The ConnectorBundle-Version of the OpenICF connector. The value can be a single version (such
as1.4.0.0) or a range of versions, which enables you to support multiple connector versions in a
single project.

You can specify a range of versions as follows:

• [1.1.0.0,1.4.0.0] indicates that all connector versions from 1.1 to 1.4, inclusive, are supported.

• [1.1.0.0,1.4.0.0) indicates that all connector versions from 1.1 to 1.4, including 1.1 but
excluding 1.4, are supported.

• (1.1.0.0,1.4.0.0] indicates that all connector versions from 1.1 to 1.4, excluding 1.1 but
including 1.4, are supported.

• (1.1.0.0,1.4.0.0) indicates that all connector versions from 1.1 to 1.4, exclusive, are supported.

When a range of versions is specified, OpenIDM uses the latest connector that is available within
that range. If your project requires a specific connector version, you must explicitly state the
version in your connector configuration file, or constrain the range to address only the version
that you need.

connectorName

string, required

The connector implementation class name.

connectorHostRef

string, optional

If the connector runs remotely, the value of this field must match the name field
of the RemoteConnectorServers object in the connector server configuration file
(provisioner.openicf.connectorinfoprovider.json). For example:
...
 "remoteConnectorServers" :
 [
 {
 "name" : "dotnet",
...

If the connector runs locally, the value of this field can be one of the following:

Connecting to External Resources
Setting the Pool Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 180

• If the connector .jar is installed in openidm/connectors/, the value must be "#LOCAL". This is
currently the default, and recommended location.

• If the connector .jar is installed in openidm/bundle/ (not recommended), the value must be
"osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager".

11.3.2. Setting the Pool Configuration

The poolConfigOption specifies the pool configuration for poolable connectors only (connectors that
have "connectorPoolingSupported" : true). Non-poolable connectors ignore this parameter.

The following example shows a pool configuration option object for a poolable connector:
{
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
}

maxObjects

The maximum number of idle and active instances of the connector.

maxIdle

The maximum number of idle instances of the connector.

maxWait

The maximum time, in milliseconds, that the pool waits for an object before timing out. A value of
0 means that there is no timeout.

minEvictableIdleTimeMillis

The maximum time, in milliseconds, that an object can be idle before it is removed. A value of 0
means that there is no idle timeout.

minIdle

The minimum number of idle instances of the connector.

11.3.3. Setting the Operation Timeouts

The operation timeout property enables you to configure timeout values per operation type. By
default, no timeout is configured for any operation type. A sample configuration follows:

Connecting to External Resources
Setting the Connection Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 181

{
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
}

operation-name

Timeout in milliseconds

A value of -1 disables the timeout.

11.3.4. Setting the Connection Configuration

The configurationProperties object specifies the configuration for the connection between the
connector and the resource, and is therefore resource specific.

The following example shows a configuration properties object for the default XML sample resource
connector:
"configurationProperties" : {
 "xsdIcfFilePath" : "&{launcher.project.location}/data/resource-schema-1.xsd",
 "xsdFilePath" : "&{launcher.project.location}/data/resource-schema-extension.xsd",
 "xmlFilePath" : "&{launcher.project.location}/data/xmlConnectorData.xml"
}

property

Individual properties depend on the type of connector.

11.3.5. Setting the Synchronization Failure Configuration

The syncFailureHandler object specifies what should happen if a LiveSync operation reports a failure for
an operation. The following example shows a synchronization failure configuration:
{
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
}

maxRetries

positive integer or -1, required

Connecting to External Resources
Configuring How Results Are Handled

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 182

The number of attempts that OpenIDM should make to process a failed modification. A value of
zero indicates that failed modifications should not be reattempted. In this case, the post retry
action is executed immediately when a LiveSync operation fails. A value of -1 (or omitting the
maxRetries property, or the entire syncFailureHandler object) indicates that failed modifications
should be retried an infinite number of times. In this case, no post retry action is executed.

postRetryAction

string, required

The action that should be taken if the synchronization operation fails after the specified number
of attempts. The post retry action can be one of the following:

• logged-ignore indicates that OpenIDM should ignore the failed modification, and log its
occurrence.

• dead-letter-queue indicates that OpenIDM should save the details of the failed modification in a
table in the repository (accessible over REST at repo/synchronisation/deadLetterQueue/provisioner-
name).

• script specifies a custom script that should be executed when the maximum number of retries
has been reached.

For more information, see "Configuring the LiveSync Retry Policy".

11.3.6. Configuring How Results Are Handled

The resultsHandlerConfig object specifies how OpenICF returns results. These configuration properties
depend on the connector type and on the interfaces that are implemented by that connector type. For
information the interfaces that each connector supports, see the OpenICF Connector Configuration
Reference.

The following example shows a results handler configuration object:
{
 "enableNormalizingResultsHandler" : true,
 "enableFilteredResultsHandler" : false,
 "enableCaseInsensitiveFilter" : false,
 "enableAttributesToGetSearchResultsHandler" : false
}

enableNormalizingResultsHandler

boolean

If the connector implements the attribute normalizer interface, you can enable this interface
by setting this configuration property to true. If the connector does not implement the attribute
normalizer interface, the value of this property has no effect.

http://openicf.forgerock.org/doc/config-reference
http://openicf.forgerock.org/doc/config-reference

Connecting to External Resources
Specifying the Supported Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 183

enableFilteredResultsHandler

boolean

If the connector uses the filtering and search capabilities of the remote connected system, you
can set this property to false. If the connector does not use the remote system's filtering and
search capabilities (for example, the CSV file connector), you must set this property to true,
otherwise the connector performs an additional, case-sensitive search, which can cause problems.

enableCaseInsensitiveFilter

boolean

By default, the filtered results handler (described previously) is case-sensitive. If the filtered
results handler is enabled, you can use this property to enable case-insensitive filtering. If you
do not enable case-insensitive filtering, a search will not return results unless the case matches
exactly. For example, a search for lastName = "Jensen" will not match a stored user with lastName :
 jensen.

enableAttributesToGetSearchResultsHandler

boolean

By default, OpenIDM determines which attributes should be retrieved in a search. If the
enableAttributesToGetSearchResultsHandler property is set to true the OpenICF framework removes
all attributes from the READ/QUERY response, except for those that are specifically requested.
For performance reasons, you should set this property to false for local connectors and to true for
remote connectors.

11.3.7. Specifying the Supported Object Types

The object-types configuration specifies the objects (user, group, and so on) that are supported by the
connector. The property names set here define the objectType that is used in the URI. For example:
system/systemName/objectType

This configuration is based on the JSON Schema with the extensions described in the following
section.

Attribute names that start or end with __ are regarded as special attributes. These attributes are
specific to the resource type and are used by OpenICF for particular purposes, such as __NAME__, used
as the naming attribute for objects on a resource.

The following excerpt shows the configuration of an account object type:
{
 "account" :
 {

http://tools.ietf.org/html/draft-zyp-json-schema-03

Connecting to External Resources
Specifying the Supported Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 184

 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "nativeName" : "__NAME__",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_LONG",
 "flags" :
 [
 "NOT_CREATABLE",
 "NOT_UPDATEABLE",
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "groups" :
 {
 "type" : "array",
 "items" :
 {
 "type" : "string",
 "nativeType" : "string"
 },
 "nativeName" : "__GROUPS__",
 "nativeType" : "string",
 "flags" :
 [
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "givenName" : {
 "type" : "string",
 "nativeName" : "givenName",
 "nativeType" : "string"
 },
 }
 }
}

OpenICF supports an __ALL__ object type that ensures that objects of every type are included in a
synchronization operation. The primary purpose of this object type is to prevent synchronization
errors when multiple changes affect more than one object type.

For example, imagine a deployment synchronizing two external systems. On system A, the
administrator creates a user, jdoe, then adds the user to a group, engineers. When these changes are
synchronized to system B, if the __GROUPS__ object type is synchronized first, the synchronization will
fail, because the group contains a user that does not yet exist on system B. Synchronizing the __ALL__
object type ensures that user jdoe is created on the external system before he is added to the group
engineers.

The __ALL__ object type is assumed by default - you do not need to declare it in your provisioner
configuration file. If it is not declared, the object type is named __ALL__. If you want to map a different

Connecting to External Resources
Specifying the Supported Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 185

name for this object type, declare it in your provisioner configuration. The following excerpt from a
sample provisioner configuration uses the name allobjects:
"objectTypes": {
 "allobjects": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__ALL__",
 "type": "object",
 "nativeType": "__ALL__"
 },
...

A LiveSync operation invoked with no object type assumes an object type of __ALL__. For example, the
following call invokes a LiveSync operation on all defined object types in an LDAP system:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap?_action=liveSync"

Note

Using the __ALL__ object type requires a mechanism to ensure the order in which synchronization changes are
processed. Servers that use the cn=changelog mechanism to order sync changes (such as OpenDJ, Oracle DSEE,
and the legacy Sun Directory Server) cannot use the __ALL__ object type by default, and must be forced to use
time stamps to order their sync changes. For these LDAP server types, set useTimestampsForSync to true in the
provisioner configuration.

LDAP servers that use timestamps by default (such as Active Directory GCs and OpenLDAP) can use the __ALL__
object type without any additional configuration. Active Directory and Active Directory LDS, which use Update
Sequence Numbers, can also use the __ALL__ object type without additional configuration.

11.3.7.1. Extending the Object Type Configuration

nativeType

string, optional

The native OpenICF object type.

The list of supported native object types is dependent on the resource, or on the connector. For
example, an LDAP connector might have object types such as __ACCOUNT__ and __GROUP__.

11.3.7.2. Extending the Property Type Configuration

nativeType

string, optional

Connecting to External Resources
Specifying the Supported Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 186

The native OpenICF attribute type.

The following native types are supported:
JAVA_TYPE_BIGDECIMAL
JAVA_TYPE_BIGINTEGER
JAVA_TYPE_BYTE
JAVA_TYPE_BYTE_ARRAY
JAVA_TYPE_CHAR
JAVA_TYPE_CHARACTER
JAVA_TYPE_DATE
JAVA_TYPE_DOUBLE
JAVA_TYPE_FILE
JAVA_TYPE_FLOAT
JAVA_TYPE_GUARDEDBYTEARRAY
JAVA_TYPE_GUARDEDSTRING
JAVA_TYPE_INT
JAVA_TYPE_INTEGER
JAVA_TYPE_LONG
JAVA_TYPE_OBJECT
JAVA_TYPE_PRIMITIVE_BOOLEAN
JAVA_TYPE_PRIMITIVE_BYTE
JAVA_TYPE_PRIMITIVE_DOUBLE
JAVA_TYPE_PRIMITIVE_FLOAT
JAVA_TYPE_PRIMITIVE_LONG
JAVA_TYPE_STRING

Note

The JAVA_TYPE_DATE property is deprecated. Functionality may be removed in a future release. This
property-level extension is an alias for string. Any dates assigned to this extension should be formatted per
ISO 8601.

nativeName

string, optional

The native OpenICF attribute name.

flags

string, optional

The native OpenICF attribute flags. OpenICF supports the following attribute flags:

• MULTIVALUED - specifies that the property can be multivalued. This flag sets the type of the
attribute as follows:
"type" : "array"

If the attribute type is array, an additional items field specifies the supported type for the objects
in the array. For example:

Connecting to External Resources
Specifying the Supported Object Types

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 187

"groups" :
 {
 "type" : "array",
 "items" :
 {
 "type" : "string",
 "nativeType" : "string"
 },

• NOT_CREATABLE, NOT_READABLE, NOT_RETURNED_BY_DEFAULT, NOT_UPDATEABLE

In some cases, the connector might not support manipulating an attribute because the attribute
can only be changed directly on the remote system. For example, if the name attribute of an
account can only be created by Active Directory, and never changed by OpenIDM, you would
add NOT_CREATABLE and NOT_UPDATEABLE to the provisioner configuration for that attribute.

Certain attributes such as LDAP groups or other calculated attributes might be expensive to
read. You might want to avoid returning these attributes in a default read of the object, unless
they are explicitly requested. In this case, you would add the NOT_RETURNED_BY_DEFAULT flag to the
provisioner configuration for that attribute.

• REQUIRED - specifies that the property is required in create operations. This flag sets the required
property of an attribute as follows:
"required" : true

Note

Do not use the dash character (-) in property names, like last-name. Dashes in names make JavaScript syntax
more complex. If you cannot avoid the dash, write source['last-name'] instead of source.last-name in your
JavaScript scripts.

11.3.7.3. OpenICF Special Attributes

OpenICF includes a number of special attributes, that all begin and end with __ (for example __NAME__,
and __UID__). These special attributes are essentially functional aliases for specific attributes or
object types. The purpose of the special attributes is to enable a connector developer to create a
contract regarding how a property can be referenced, regardless of the application that is using
the connector. In this way, the connector can map specific object information between an arbitrary
application and the resource, without knowing how that information is referenced in the application.

The special attributes are used extensively in the generic LDAP connector, which can be used
with OpenDJ, Active Directory, OpenLDAP, and other LDAP directories. Each of these directories
might use a different attribute name to represent the same type of information. For example, Active
Directory uses unicodePassword and OpenDJ uses userPassword to represent the same thing, a user's
password. The LDAP connector uses the special OpenICF __PASSWORD__ attribute to abstract that
difference.

Connecting to External Resources
Configuring the Operation Options

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 188

For a list of the special attributes, see the corresponding Javadoc.

11.3.8. Configuring the Operation Options

The operationOptions object enables you to deny specific operations on a resource. For example, you
can use this configuration object to deny CREATE and DELETE operations on a read-only resource to avoid
OpenIDM accidentally updating the resource during a synchronization operation.

The following example defines the options for the "SYNC" operation:
"operationOptions" : {
 {
 "SYNC" :
 {
 "denied" : true,
 "onDeny" : "DO_NOTHING",
 "objectFeatures" :
 {
 "__ACCOUNT__" :
 {
 "denied" : true,
 "onDeny" : "THROW_EXCEPTION",
 "operationOptionInfo" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "FIX_ME",
 "type" : "object",
 "properties" :
 {
 "_OperationOption-float" :
 {
 "type" : "number",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_FLOAT"
 }
 }
 }
 },
 "__GROUP__" :
 {
 "denied" : false,
 "onDeny" : "DO_NOTHING"
 }
 }
 }
 }
...

The OpenICF Framework supports the following operations:

• AUTHENTICATE: AuthenticationApiOp

• CREATE: CreateApiOp

• DELETE: DeleteApiOp

http://openicf.forgerock.org/apidocs/org/identityconnectors/framework/common/objects/OperationalAttributeInfos.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/AuthenticationApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/CreateApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/DeleteApiOp.html

Connecting to External Resources
Installing and Configuring Remote Connector Servers

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 189

• GET: GetApiOp

• RESOLVEUSERNAME: ResolveUsernameApiOp

• SCHEMA: SchemaApiOp

• SCRIPT_ON_CONNECTOR: ScriptOnConnectorApiOp

• SCRIPT_ON_RESOURCE: ScriptOnResourceApiOp

• SEARCH: SearchApiOp

• SYNC: SyncApiOp

• TEST: TestApiOp

• UPDATE: UpdateApiOp

• VALIDATE: ValidateApiOp

The operationOptions object has the following configurable properties:

denied

boolean, optional

This property prevents operation execution if the value is true.

onDeny

string, optional

If denied is true, then the service uses this value. Default value: DO_NOTHING.

• DO_NOTHING: On operation the service does nothing.

• THROW_EXCEPTION: On operation the service throws a ForbiddenException exception.

11.4. Installing and Configuring Remote Connector Servers
Connectors that use the .NET framework must run remotely. Java connectors can run locally or
remotely. Connectors that run remotely require a connector server to enable OpenIDM to access the
connector.

For a list of supported versions, and compatibility between versions, see "Supported Connectors,
Connector Servers, and Plugins" in the Release Notes.

This section describes the steps to install a .NET connector server and a remote Java Connector
Server.

http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/GetApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ResolveUsernameApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SchemaApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ScriptOnConnectorApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ScriptOnResourceApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SearchApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SyncApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/TestApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/UpdateApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ValidateApiOp.html

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 190

11.4.1. Installing and Configuring a .NET Connector Server

A .NET connector server is useful when an application is written in Java, but a connector bundle
is written using C#. Because a Java application (for example, a J2EE application) cannot load C#
classes, you must deploy the C# bundles under a .NET connector server. The Java application can
communicate with the C# connector server over the network, and the C# connector server acts as a
proxy to provide access to the C# bundles that are deployed within the C# connector server, to any
authenticated application.

By default, the connector server outputs log messages to a file named connectorserver.log, in the C:
\path\to\openicf directory. To change the location of the log file set the initializeData parameter in the
configuration file, before you install the connector server. For example, the following excerpt sets the
log directory to C:\openicf\logs\connectorserver.log:
<add name="file"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="C:\openicf\logs\connectorserver.log"
 traceOutputOptions="DateTime">
 <filter type="System.Diagnostics.EventTypeFilter" initializeData="Information"/>
 </add>

Important

Version 1.5 of the .NET connector server includes a new communication protocol that is enabled by default.
Currently the new protocol has specific known stability issues. You should therefore run the 1.5 .NET connector
server in legacy mode, with the old protocol, as described in "Running the .NET Connector Server in Legacy
Mode".

Installing the .NET Connector Server

1. Download the OpenICF .NET Connector Server from the ForgeRock BackStage site.

The .NET connector server is distributed in two formats. The .msi file is a wizard that installs the
Connector Server as a Windows Service. The .zip file is simply a bundle of all the files required to
run the Connector Server.

• If you do not want to run the Connector Server as a Windows service, download and extract
the .zip file, then move on to "Configuring the .NET Connector Server".

• If you have deployed the .zip file and then decide to run the Connector Server as a service,
install the service manually with the following command:
.\ConnectorServerService.exe /install /serviceName service-name

Then proceed to "Configuring the .NET Connector Server".

• To install the Connector Server as a Windows service automatically, follow the remaining
steps in this section.

2. Execute the openicf-zip--dotnet.msi installation file and complete the wizard.

https://backstage.forgerock.com/

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 191

You must run the wizard as a user who has permissions to start and stop a Windows service,
otherwise the service will not start.

When you choose the Setup Type, select Typical unless you require backward compatibility with
the 1.4.0.0 connector server. If you need backward compatibility, select Custom, and install the
Legacy Connector Service.

When the wizard has completed, the Connector Server is installed as a Windows Service.

3. Open the Microsoft Services Console and make sure that the Connector Server is listed there.

The name of the service is OpenICF Connector Server, by default.

Running the .NET Connector Server in Legacy Mode

1. If you are installing the .NET Connector Server from the .msi distribution, select Custom for the
Setup Type, and install the Legacy Connector Service.

2. If you are installing the .NET Connector Server from the .zip distribution, launch the Connector
Server by running the ConnectorServer.exe command, and not the ConnectorServerService.exe
command.

3. Adjust the port parameter in your OpenIDM remote connector server configuration file. In legacy
mode, the connector server listens on port 8760 by default.

4. Remove the "protocol" : "websocket", from your OpenIDM remote connector server configuration
file to specify that the connector server should use the legacy protocol.

5. In the commands shown in "Configuring the .NET Connector Server", replace
ConnectorServerService.exe with ConnectorServer.exe.

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 192

Configuring the .NET Connector Server

After you have installed the .NET Connector Server, as described in the previous section, follow these
steps to configure the Connector Server:

1. Make sure that the Connector Server is not currently running. If it is running, use the Microsoft
Services Console to stop it.

2. At the command prompt, change to the directory where the Connector Server was installed:
c:\> cd "c:\Program Files (x86)\ForgeRock\OpenICF"

3. Run the ConnectorServerService /setkey command to set a secret key for the Connector Server.
The key can be any string value. This example sets the secret key to Passw0rd:
ConnectorServerService /setkey Passw0rd
Key has been successfully updated.

This key is used by clients connecting to the Connector Server. The key that you set here must
also be set in the OpenIDM connector info provider configuration file (conf/provisioner.openicf
.connectorinfoprovider.json). For more information, see "Configuring OpenIDM to Connect to
the .NET Connector Server".

4. Edit the Connector Server configuration.

The Connector Server configuration is saved in a file named ConnectorServerService.exe.Config (in
the directory in which the Connector Server is installed).

Check and edit this file, as necessary, to reflect your installation. Specifically, verify that the
baseAddress reflects the host and port on which the connector server is installed:
<system.serviceModel>
 <services>
 <service name="Org.ForgeRock.OpenICF.Framework.Service.WcfServiceLibrary.WcfWebsocket">
 <host>
 <baseAddresses>
 <add baseAddress="http://0.0.0.0:8759/openicf" />
 </baseAddresses>
 <host>
 </service>
 </services>
</system.serviceModel>

The baseAddress specifies the host and port on which the Connector Server listens, and is set
to http://0.0.0.0:8759/openicf by default. If you set a host value other than the default 0.0.0.0,
connections from all IP addresses other than the one specified are denied.

If Windows firewall is enabled, you must create an inbound port rule to open the TCP port for
the connector server (8759 by default). If you do not open the TCP port, OpenIDM will be unable
to contact the Connector Server. For more information, see the Microsoft documentation on
creating an inbound port rule.

http://technet.microsoft.com/en-us/library/cc947814(v=ws.10).aspx

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 193

5. Optionally, configure the Connector Server to use SSL:

a. Use an existing CA certificate, or use the makecert utility to create an exportable self-signed
Root CA Certificate:
c:\"Program Files (x86)"\"Windows Kits"\8.1\bin\x64\makecert.exe
 ^
-pe -r -sky signature -cy authority -a sha1 -n "CN=Dev Certification Authority"
 ^
-ss Root -sr LocalMachine -sk RootCA signroot.cer

b. Create an exportable server authentication certificate:
c:\"Program Files (x86)"\"Windows Kits"\8.1\bin\x64\makecert.exe
 ^
-pe -sky exchange -cy end -n "CN=localhost" -b 01/01/2015 -e 01/01/2050 -eku 1.3.6.1.5.5.7.3.1
 ^
-ir LocalMachine -is Root -ic signroot.cer -ss My -sr localMachine -sk server
 ^
-sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12 server.cer

c. Retrieve and set the certificate thumbprint:

 c:\Program Files (x86)\ForgeRock\OpenICF>ConnectorServerService.exe /setCertificate
Select certificate you want to use:
Index Issued To Thumbprint
----- --------- -------------------------
 0) localhost 4D01BE385BF079DD4B9C5A416E7B535904855E0A

Certificate Thumbprint has been successfully updated to 4D01BE385BF079DD4B9C5A416E7B535904855E0A.

d. Bind the certificate to the Connector Server port. For example:
netsh http add sslcert ipport=0.0.0.0:8759 ^
certhash=4D01BE385BF079DD4B9C5A416E7B535904855E0A ^
appid={bca0631d-cab1-48c8-bd2a-eb049d7d3c55}

e. Execute Service as a non-administrative user:
netsh http add urlacl url=https://+:8759/ user=EVERYONE

f. Change the Connector Server configuration to use HTTPS and not HTTP:
<add baseAddress="https://0.0.0.0:8759/openicf" />

6. Check the trace settings, in the same Connector Server configuration file, under the system
.diagnostics item:

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 194

<system.diagnostics>
 <trace autoflush="true" indentsize="4">
 <listeners>
 <remove name="Default" />
 <add name="console" />
 <add name="file" />
 </listeners>
 </trace>
 <sources>
 <source name="ConnectorServer" switchName="switch1">
 <listeners>
 <remove name="Default" />
 <add name="file" />
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="switch1" value="Information" />
 </switches>
 <sharedListeners>
 <add name="console" type="System.Diagnostics.ConsoleTraceListener" />
 <add name="file" type="System.Diagnostics.TextWriterTraceListener"
 initializeData="logs\ConnectorServerService.log"
 traceOutputOptions="DateTime">
 <filter type="System.Diagnostics.EventTypeFilter" initializeData="Information" />
 </add>
 </sharedListeners>
</system.diagnostics>

The Connector Server uses the standard .NET trace mechanism. For more information about
tracing options, see Microsoft's .NET documentation for System.Diagnostics.

The default trace settings are a good starting point. For less tracing, set the EventTypeFilter's
initializeData to Warning or Error. For very verbose logging set the value to Verbose or All. The
logging level has a direct effect on the performance of the Connector Servers, so take care when
setting this level.

Starting the .NET Connector Server

Start the .NET Connector Server in one of the following ways:

1. Start the server as a Windows service, by using the Microsoft Services Console.

Locate the connector server service (OpenICF Connector Server), and click Start the service or Restart
 the service.

The service is executed with the credentials of the "run as" user (System, by default).

2. Start the server as a Windows service, by using the command line.

In the Windows Command Prompt, run the following command:
net start ConnectorServerService

http://msdn.microsoft.com/en-us/library/15t15zda(v=vs.71).aspx

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 195

To stop the service in this manner, run the following command:
net stop ConnectorServerService

3. Start the server without using Windows services.

In the Windows Command Prompt, change directory to the location where the Connector Server
was installed. The default location is c:\> cd "c:\Program Files (x86)\ForgeRock\OpenICF".

Start the server with the following command:
ConnectorServerService.exe /run

Note that this command starts the Connector Server with the credentials of the current user. It
does not start the server as a Windows service.

Configuring OpenIDM to Connect to the .NET Connector Server

The connector info provider service configures one or more remote connector servers to which
OpenIDM can connect. The connector info provider configuration is stored in a file named project-dir/
conf/provisioner.openicf.connectorinfoprovider.json. A sample connector info provider configuration file
is located in openidm/samples/provisioners/.

To configure OpenIDM to use the remote .NET connector server, follow these steps:

1. Start OpenIDM, if it is not already running.

2. Copy the sample connector info provider configuration file to your project's conf/ directory:
$ cd /path/to/openidm
$ cp samples/provisioners/provisioner.openicf.connectorinfoprovider.json project-dir/conf/

3. Edit the connector info provider configuration, specifying the details of the remote connector
server:
"remoteConnectorServers" : [
 {
 "name" : "dotnet",
 "host" : "192.0.2.0",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "protocol" : "websocket",
 "key" : "Passw0rd"
 }

Configurable properties are as follows:

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 196

name

Specifies the name of the connection to the .NET connector server. The name can be any
string. This name is referenced in the connectorHostRef property of the connector configuration
file (provisioner.openicf-ad.json).

host

Specifies the IP address of the host on which the Connector Server is installed.

port

Specifies the port on which the Connector Server listens. This property matches the
connectorserver.port property in the ConnectorServerService.exe.config file.

For more information, see "Configuring the .NET Connector Server".

useSSL

Specifies whether the connection to the Connector Server should be secured. This property
matches the "connectorserver.usessl" property in the ConnectorServerService.exe.config file.

timeout

Specifies the length of time, in seconds, that OpenIDM should attempt to connect to the
Connector Server before abandoning the attempt. To disable the timeout, set the value of this
property to 0.

protocol

Version 1.5.0.0 of the OpenICF framework supports a new communication protocol with
remote connector servers. This protocol is enabled by default, and its value is websocket in the
default configuration.

Currently, the new, default protocol has specific known issues. You should therefore run the
1.5 .NET Connector Server in legacy mode, with the old protocol, as described in "Running
the .NET Connector Server in Legacy Mode".

key

Specifies the connector server key. This property matches the key property in the
ConnectorServerService.exe.config file. For more information, see "Configuring the .NET
Connector Server".

The string value that you enter here is encrypted as soon as the file is saved.

Connecting to External Resources
Installing and Configuring a Remote Java Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 197

11.4.2. Installing and Configuring a Remote Java Connector Server
In certain situations, it might be necessary to set up a remote Java Connector Server. This section
provides instructions for setting up a remote Java Connector Server on Unix/Linux and Windows.

Installing a Remote Java Connector Server for Unix/Linux

1. Download the OpenICF Java Connector Server from the ForgeRock Backstage site.

2. Change to the appropriate directory and unpack the zip file. The following command unzips the
file in the current directory:
$ unzip openicf-zip-1.5.0.0.zip

3. Change to the openicf directory:
$ cd path/to/openicf

4. The Java Connector Server uses a key property to authenticate the connection. The default key
value is changeit. To change the value of the secret key, run a command similar to the following.
This example sets the key value to Passw0rd:
$ cd /path/to/openicf
$ bin/ConnectorServer.sh /setkey Passw0rd
Key has been successfully updated.

5. Review the ConnectorServer.properties file in the /path/to/openicf/conf directory, and make any
required changes. By default, the configuration file has the following properties:
connectorserver.port=8759
connectorserver.libDir=lib
connectorserver.usessl=false
connectorserver.bundleDir=bundles
connectorserver.loggerClass=org.forgerock.openicf.common.logging.slf4j.SLF4JLog
connectorserver.key=xOS4IeeE6eb/AhMbhxZEC37PgtE\=

The connectorserver.usessl parameter indicates whether client connections to the connector server
should be over SSL. This property is set to false by default.

To secure connections to the connector server, set this property to true and set the following
properties before you start the connector server:
java -Djavax.net.ssl.keyStore=mySrvKeystore -Djavax.net.ssl.keyStorePassword=Passw0rd

6. Start the Java Connector Server:
$ bin/ConnectorServer.sh /run

The connector server is now running, and listening on port 8759, by default.

Log files are available in the /path/to/openicf/logs directory.
$ ls logs/
Connector.log ConnectorServer.log ConnectorServerTrace.log

https://backstage.forgerock.com

Connecting to External Resources
Installing and Configuring a Remote Java Connector Server

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 198

7. If required, stop the Java Connector Server by pressing CTRL-C.

Installing a Remote Java Connector Server for Windows

1. Download the OpenICF Java Connector Server from the ForgeRock Backstage site.

2. Change to the appropriate directory and unpack the zip file.

3. In a Command Prompt window, change to the openicf directory:
C:\>cd C:\path\to\openicf\bin

4. If required, secure the communication between OpenIDM and the Java Connector Server. The
Java Connector Server uses a key property to authenticate the connection. The default key value is
changeit.

To change the value of the secret key, use the bin\ConnectorServer.bat /setkey command. The
following example sets the key to Passw0rd:
c:\path\to\openicf>bin\ConnectorServer.bat /setkey Passw0rd
lib\framework\connector-framework.jar;lib\framework\connector-framework-
internal
.jar;lib\framework\groovy-all.jar;lib\framework\icfl-over-slf4j.jar;lib\framework
\slf4j-api.jar;lib\framework\logback-core.jar;lib\framework\logback-classic.jar

5. Review the ConnectorServer.properties file in the path\to\openicf\conf directory, and make any
required changes. By default, the configuration file has the following properties:
connectorserver.port=8759
connectorserver.libDir=lib
connectorserver.usessl=false
connectorserver.bundleDir=bundles
connectorserver.loggerClass=org.forgerock.openicf.common.logging.slf4j.SLF4JLog
connectorserver.key=xOS4IeeE6eb/AhMbhxZEC37PgtE\=

6. You can either run the Java Connector Server as a Windows service, or start and stop it from the
command-line.

• To install the Java Connector Server as a Windows service, run the following command:
c:\path\to\openicf>bin\ConnectorServer.bat /install

If you install the connector server as a Windows service you can use the Microsoft Services
Console to start, stop and restart the service. The Java Connector Service is named
OpenICFConnectorServerJava.

To uninstall the Java Connector Server as a Windows service, run the following command:
c:\path\to\openicf>bin\ConnectorServer.bat /uninstall

7. To start the Java Connector Server from the command line, enter the following command:
c:\path\to\openicf>bin\ConnectorServer.bat /run

https://backstage.forgerock.com

Connecting to External Resources
Connectors Supported With OpenIDM 4

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 199

The connector server is now running, and listening on port 8759, by default.

Log files are available in the \path\to\openicf\logs directory.

8. If required, stop the Java Connector Server by pressing ^C.

11.5. Connectors Supported With OpenIDM 4
OpenIDM 4 provides several connectors by default, in the path/to/openidm/connectors directory. The
supported connectors that are not bundled with OpenIDM, and a number of additional connectors,
can be downloaded from the OpenICF community site.

This section describes the connectors that are supported for use with OpenIDM 4, and provides
instructions for installing and configuring these connectors. For instructions on building connector
configurations interactively, see "Creating Default Connector Configurations".

11.5.1. Generic LDAP Connector

The generic LDAP connector is based on JNDI, and can be used to connect to any LDAPv3-compliant
directory server, such as OpenDJ, Active Directory, SunDS, Oracle Directory Server Enterprise
Edition, IBM Security Directory Server, and OpenLDAP.

OpenICF does provide a legacy Active Directory connector, but you should use the generic LDAP
connector in Active Directory deployments, unless your deployment has specific requirements that
prevent you from doing so. Using the generic LDAP connector avoids the need to install a remote
connector server in the overall deployment. In addition, the generic LDAP connector has significant
performance advantages over the Active Directory connector.

OpenIDM 4 bundles version 1.4.1.0 of the LDAP connector. Three sample LDAP connector
configurations are provided in the path/to/openidm/samples/provisioners/ directory:

• provisioner.openicf-opendjldap.json provides a sample LDAP connector configuration for an OpenDJ
directory server.

• provisioner.openicf-adldap.json provides a sample LDAP connector configuration for an Active
Directory server.

• provisioner.openicf-adldsldap.json provides a sample LDAP connector configuration for an Active
Directory Lightweight Directory Services (AD LDS) server.

You should be able to adapt one of these sample configurations for any LDAPv3-compliant server.

The connectorRef configuration property provides information about the LDAP connector bundle, and is
the same in all three sample LDAP connector configurations:

http://openicf.forgerock.org/connectors/

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 200

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion": "[1.4.0.0,2.0.0.0)"
 }
}

The connectorHostRef property is optional, if you use the connector .jar provided in openidm/connectors,
and you use a local connector server.

The following excerpt shows the configuration properties in the sample LDAP connector for OpenDJ.
These properties are described in detail later in this section. For additional information on the
properties that affect synchronization, see "Controlling What the LDAP Connector Synchronizes":
"configurationProperties" : {
 "host" : "localhost",
 "port" : 1389,
 "ssl" : false,
 "startTLS" : false,
 "principal" : "cn=Directory Manager",
 "credentials" : "password",
 "baseContexts" : [
 "dc=example,dc=com"
],
 "baseContextsToSynchronize" : [
 "dc=example,dc=com"
],
 "accountSearchFilter" : null,
 "accountSynchronizationFilter" : null,
 "groupSearchFilter" : null,
 "groupSynchronizationFilter" : null,
 "passwordAttributeToSynchronize" : null,
 "synchronizePasswords" : false,
 "removeLogEntryObjectClassFromFilter" : true,
 "modifiersNamesToFilterOut" : [],
 "passwordDecryptionKey" : null,
 "changeLogBlockSize" : 100,
 "attributesToSynchronize" : [],
 "changeNumberAttribute" : "changeNumber",
 "passwordDecryptionInitializationVector" : null,
 "filterWithOrInsteadOfAnd" : false,
 "objectClassesToSynchronize" : [
 "inetOrgPerson"
],
 "vlvSortAttribute" : "uid",
 "passwordAttribute" : "userPassword",
 "useBlocks" : false,
 "maintainPosixGroupMembership" : false,
 "failover" : [],
 "readSchema" : true,
 "accountObjectClasses" : [
 "top",
 "person",
 "organizationalPerson",
 "inetOrgPerson"

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 201

],
 "accountUserNameAttributes" : [
 "uid"
],
 "groupMemberAttribute" : "uniqueMember",
 "passwordHashAlgorithm" : null,
 "usePagedResultControl" : true,
 "blockSize" : 100,
 "uidAttribute" : "dn",
 "maintainLdapGroupMembership" : false,
 "respectResourcePasswordPolicyChangeAfterReset" : false
},

host

The host name or IP address of the server on which the LDAP instance is running.

port

The port on which the LDAP server listens for LDAP requests. The sample configuration specifies
a default port of 1389.

ssl

If true, the specified port listens for LDAPS connections.

If you use the LDAP connector over SSL, set the ssl property to true, and the port to 636 in the
connector configuration file. You must also specify the path to a truststore in your project's conf/
system.properties file. A truststore is provided by default at openidm/security/truststore. Add the
following line to the system.properties file, substituting the path to your own truststore if you do
not want to use the default:
Set the truststore
javax.net.ssl.trustStore=/path/to/openidm/security/truststore

startTLS

Specifies whether to use the startTLS operation to initiate a TLS/SSL session. To use startTLS,
set "startTLS":true, and "ssl":false. Your connection should use the insecure LDAP port (typically
389 or 1389 for an OpenDJ server).

principal

The bind DN that is used to connect to the LDAP server.

credentials

The password of the principal that is used to connect to the LDAP server.

baseContexts

One or more starting points in the LDAP tree that will be used when searching the tree. Searches
are performed when discovering users from the LDAP server or when looking for the groups of

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 202

which a user is a member. During reconciliation operations, OpenIDM searches through the base
contexts listed in this property for changes. (See also "Controlling What the LDAP Connector
Synchronizes").

baseContextsToSynchronize

One or more starting points in the LDAP tree that will be used to determine if a change should be
synchronized. During LiveSync operations, OpenIDM searches through the base contexts listed
in this property for changes. If no value is specified here, the values in listed in the baseContexts
property are used. (See also "Controlling What the LDAP Connector Synchronizes").

accountSynchronizationFilter

Used during synchronization actions to filter out LDAP accounts. (See also "Controlling What the
LDAP Connector Synchronizes").

accountObjectClasses

This property lists all the object classes that represent an account. If this property has
multiple values, an OR filter is used to determine the affected entries. For example, if the value
of this property is ["organizationalPerson", "inetOrgPerson"], any entry with the object class
organizationalPerson OR the object class inetOrgPerson is considered as an account entry. The value
of this property must not include the top object class.

accountSearchFilter

Search filter that user accounts must match. (See also "Controlling What the LDAP Connector
Synchronizes").

accountUserNameAttributes

Attributes holding the account's user name. Used during authentication to find the LDAP entry
matching the user name.

attributesToSynchronize

List of attributes used during object synchronization. OpenIDM ignores change log updates that
do not include any of the specified attributes. If empty, OpenIDM considers all changes. (See also
"Controlling What the LDAP Connector Synchronizes").

blockSize

Block size for simple paged results and VLV index searches, reflecting the maximum number of
entries retrieved at any one time.

changeLogBlockSize

Block size used when fetching change log entries.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 203

changeNumberAttribute

Change log attribute containing the last change number.

failover

LDAP URLs specifying alternative LDAP servers to connect to if OpenIDM cannot connect to the
primary LDAP server specified in the host and port properties.

filterWithOrInsteadOfAnd

In most cases, the filter to fetch change log entries is AND-based. If this property is set, the filter
ORs the required change numbers instead.

groupMemberAttribute

LDAP attribute holding members for non-POSIX static groups.

groupSearchFilter

Search filter that group entries must match.

maintainLdapGroupMembership

If true, OpenIDM modifies group membership when entries are renamed or deleted.

In the sample LDAP connector configuration file provided with OpenIDM, this property is set
to false. This means that LDAP group membership is not modified when entries are renamed or
deleted in OpenIDM. To ensure that entries are removed from LDAP groups when the entries
are deleted, set this property to true or enable referential integrity on the LDAP server. For
information about configuring referential integrity in OpenDJ, see Configuring Referential
Integrity in the OpenDJ Administration Guide.

maintainPosixGroupMembership

If true, OpenIDM modifies POSIX group membership when entries are renamed or deleted.

modifiersNamesToFilterOut

Use this property to avoid loops caused by changes made to managed user objects being
synchronized. For more information, see "Controlling What the LDAP Connector Synchronizes".

objectClassesToSynchronize

OpenIDM synchronizes only entries that have these object classes. See also "Controlling What the
LDAP Connector Synchronizes".

passwordAttribute

Attribute to which OpenIDM writes the predefined PASSWORD attribute.

https://backstage.forgerock.com/#!/docs/opendj/current/admin-guide#referential-integrity
https://backstage.forgerock.com/#!/docs/opendj/current/admin-guide#referential-integrity

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 204

passwordAttributeToSynchronize

OpenIDM synchronizes password values on this attribute.

passwordDecryptionInitializationVector

This is a legacy attribute, and its value should remain set to null. To configure password
synchronization between an LDAP server and OpenIDM, use one of the password synchronization
plugins, described in "Synchronizing Passwords Between OpenIDM and an LDAP Server".

passwordDecryptionKey

This is a legacy attribute, and its value should remain set to null. To configure password
synchronization between an LDAP server and OpenIDM, use one of the password synchronization
plugins, described in "Synchronizing Passwords Between OpenIDM and an LDAP Server".

passwordHashAlgorithm

Hash password values with the specified algorithm, if the LDAP server stores them in clear text.

The hash algorithm can be one of the following:

• NONE - Clear text

• WIN-AD - Used for password changes to Active Directory

• SHA - Secure Hash Algorithm

• SHA-1 - A 160-bit hash algorithm that resembles the MD5 algorithm

• SSHA - Salted SHA

• MD5 - A 128-bit message-digest algorithm

• SMD5 - Salted MD5

readSchema

If true, read the schema from the LDAP server.

This property is used only during the connector setup, to generate the object types.

If this property is false, the LDAP connector provides a basic default schema that can manage
LDAP users and groups. The default schema maps inetOrgPerson to the OpenICF __ACCOUNT__
property, and groupOfUniqueNames to the OpenICF __GROUP__ property. The following LDAP object
classes are also included in the default schema:

organization

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 205

organizationalUnit
person
organizationalPerson
account
groupOfNames

removeLogEntryObjectClassFromFilter

If true, the filter to fetch change log entries does not contain the changeLogEntry object class, and
OpenIDM expects no entries with other object types in the change log. The default setting is true.

respectResourcePasswordPolicyChangeAfterReset

If true, bind with the Password Expired and Password Policy controls, and throw
PasswordExpiredException and other exceptions appropriately.

synchronizePasswords

This is a legacy attribute, and its value should remain set to false. To configure password
synchronization between an LDAP server and OpenIDM, use one of the password synchronization
plugins, described in "Synchronizing Passwords Between OpenIDM and an LDAP Server".

uidAttribute

Specifies the LDAP attribute that should be used as the immutable ID (_UID_) for the entry. For an
OpenDJ resource, you should use the entryUUID. You can use the DN as the UID attribute but note
that this is not immutable.

useBlocks

If useBlocks is false, no pagination is used. If useBlocks is true, the connector uses block-based LDAP
controls, either the simple paged results control, or the virtual list view control, depending on the
setting of the usePagedResultControl property.

usePagedResultControl

Taken into account only if useBlocks is true. If usePagedResultControl is false, the connector uses the
virtual list view (VLV) control, if it is available. If usePagedResultControl is true, the connector uses
the simple paged results control for search operations.

useTimestampsForSync

If true, use timestamps for LiveSync operations, instead of the change log.

By default, the LDAP connector has a change log strategy for LDAP servers that support a change
log (such as OpenDJ and Oracle Directory Server Enterprise Edition). If the LDAP server does not
support a change log, or if the change log is disabled, LiveSync for create and modify operations
can still occur, based on the timestamps of modifications.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 206

vlvSortAttribute

Attribute used as the sort key for virtual list view.

11.5.1.1. Controlling What the LDAP Connector Synchronizes

To control the set of LDAP entries that are affected by reconciliation and automatic synchronization
operations, set the following properties in the provisioner configuration. Automatic synchronization
operations includes LiveSync (synchronization of changes from the LDAP server to OpenIDM) and
implicit sync (synchronization from the OpenIDM repository to the LDAP server).

baseContexts

The starting points in the LDAP tree that are used when searching the directory tree, for
example, dc=example,dc=com. These base contexts must include the set of users and the set of
groups that must be searched during reconciliation operations.

baseContextsToSynchronize

The starting points in the LDAP tree that are used to determine if a change should be
synchronized. This property is used only for automatic synchronization operations. Only entries
that fall under these base contexts are considered during synchronization operations.

accountSearchFilter

Only user accounts that match this filter are searched, and therefore affected by reconciliation
and synchronization operations. If you do not set this property, all accounts within the base
contexts specified previously are searched.

accountSynchronizationFilter

This property is used during reconciliation and automatic synchronization operations, and filters
out any LDAP accounts that you specifically want to exclude from these operations.

objectClassesToSynchronize

During automatic synchronization operations, only the object classes listed here are considered
for changes. OpenIDM ignores change log updates (or changes to managed objects) which do not
have any of the object classes listed here. If this property is not set, OpenIDM considers changes
to all attributes specified in the mapping.

attributesToSynchronize

During automatic synchronization operations, only the attributes listed here are considered for
changes. Objects that include these attributes are synchronized. Objects that do not include
these attributes are ignored. If this property is not set, OpenIDM considers changes to all
attributes specified in the mapping. Automatic synchronization includes LiveSync and implicit
synchronization operations. For more information, see "Types of Synchronization"

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 207

This attribute works only with LDAP servers that log changes in a change log, not with servers
(such as Active Directory) that use other mechanisms to track changes.

modifiersNamesToFilterOut

This property enables you to define a list of DNs. During synchronization operations, the
connector ignores changes made by these DNs.

When a managed user object is updated, and that change is synchronized to the LDAP server, the
change made on the LDAP server is recorded in the change log. A LiveSync operation picks up
the change, and attempts to replay the change on the managed user object, effectively resulting
in a loop of updates.

To avoid this situation, you can specify a unique user in your LDAP directory, that will be
used only for the LDAP connector. The unique user must be something other than cn=directory
 manager, for example cn=openidmuser. You can then include that user DN as the value of
modifiersNamesToFilterOut. When a change is made through the LDAP connector, and that change
is recorded in the change log, the modifier's name (cn=openidmuser) is flagged and OpenIDM does
not attempt to replay the change back to the managed user repository. So you are effectively
indicating that OpenIDM should not synchronized changes back to managed user that originated
from managed user, thus preventing the update loop.

This attribute works only with LDAP servers that log changes in a change log, not with servers
(such as Active Directory) that use other mechanisms to track changes.

11.5.1.2. Using the Generic LDAP Connector With Active Directory
The LDAP connector provides new functionality for managing Active Directory users and groups.
Among other changes, the new connector can handle the following operational attributes to manage
Active Directory accounts:

• ENABLE - uses the userAccountControl attribute to get or set the account status of an object.

The LDAP connector reads the userAccountControl to determine if an account is enabled or disabled.
The connector modifies the value of the userAccountControl attribute if OpenIDM changes the value of
__ENABLE__.

• __ACCOUNT_EXPIRES__ - gets or sets the accountExpires attribute of an Active Directory object.

• __LOCK_OUT__ - uses the msDS-User-Account-Control-Computed system attribute to check if a user account
has been locked.

If OpenIDM sets the __LOCK_OUT__ to FALSE, the LDAP connector sets the Active Directory lockoutTime
to 0 to unlock the account.

If OpenIDM sets the __LOCK_OUT__ to TRUE, the LDAP connector ignores the change and logs a
message.

• __PASSWORD_EXPIRED__ - uses the msDS-User-Account-Control-Computed system attribute to check if a user
password has expired.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 208

To force password expiration (to force a user to change their password when they next log
in), pwdLastSet must be set to 0. The LDAP connector sets pwdLastSet to 0, if OpenIDM sets
__PASSWORD_EXPIRED__ to TRUE.

To remove password expiration, pwdLastSet must be set to 0 and then -1. This sets the value
of pwdLastSet to the current time. The LDAP connector sets pwdLastSet to -1 if OpenIDM sets
__PASSWORD_EXPIRED__ to FALSE.

Note

You must update your provisioner configuration to be able to use these new operational attributes. You can use
this sample provisioner configuration as a guide.

11.5.1.2.1. Managing Active Directory Users With the LDAP Connector

If you create or update users in Active Directory, and those user entries include passwords, you must
use the LDAP connector over SSL. You cannot create or update an Active Directory user password in
clear text. To use the connector over SSL, set "ssl" : true in the provisioner configuration and set the
path to your truststore in your project's conf/system.properties file. For example, add the following line
to that file:
Set the truststore
javax.net.ssl.trustStore=/path/to/openidm/security/truststore

The following command adds an Active Directory user. The output shows the operational attributes
described in the previous section:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "dn": "CN=Brian Smith,CN=Users,DC=example,DC=com",
 "cn": "Brian Smith",
 "sAMAccountName": "bsmith",
 "userPrincipalName": "bsmith@example.com",
 "userAccountControl": "512",
 "givenName": "Brian",
 "mail": "bsmith@example.com",
 "__PASSWORD__": "Passw0rd"
 }' \
 https://localhost:8443/openidm/system/ad/account?_action=create
{
 "_id": "<GUID=cb2f8cbc032f474c94c896e69db2feb3>",
 "mobile": null,
 "postalCode": null,
 "st": null,
 "employeeType": null,
 "objectGUID": "<GUID=cb2f8cbc032f474c94c896e69db2feb3>",
 "cn": "Brian Smith",

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 209

 "department": null,
 "l": null,
 "description": null,
 "info": null,
 "manager": null,
 "sAMAccountName": "bsmith",
 "sn": null,
 "whenChanged": "20151217131254.0Z",
 "userPrincipalName": "bsmith@example.com",
 "userAccountControl": "512",
 "__ENABLE__": true,
 "displayName": null,
 "givenName": "Brian",
 "middleName": null,
 "facsimileTelephoneNumber": null,
 "lastLogon": "0",
 "countryCode": "0",
 "employeeID": null,
 "co": null,
 "physicalDeliveryOfficeName": null,
 "pwdLastSet": "2015-12-17T13:12:54Z",
 "streetAddress": null,
 "homePhone": null,
 "__PASSWORD_NOTREQD__": false,
 "telephoneNumber": null,
 "dn": "CN=Brian Smith,CN=Users,DC=example,DC=com",
 "title": null,
 "mail": "bsmith@example.com",
 "postOfficeBox": null,
 "__SMARTCARD_REQUIRED__": false,
 "uSNChanged": "86144",
 "__PASSWORD_EXPIRED__": false,
 "initials": null,
 "__LOCK_OUT__": false,
 "company": null,
 "employeeNumber": null,
 "accountExpires": "0",
 "c": null,
 "whenCreated": "20151217131254.0Z",
 "uSNCreated": "86142",
 "division": null,
 "groups": [],
 "__DONT_EXPIRE_PASSWORD__": false,
 "otherHomePhone": []
}

Note that the command sets the userAccountControl to 512, which is an enabled account. The value of the
userAccountControl determines the account policy. The following list describes the common values for
the userAccountControl.

512

Enabled account.

514

Disabled account.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 210

544

Enabled account, password not required.

546

Disabled account, password not required.

66048

Enabled account, password does not expire.

66050

Disabled account, password does not expire.

66080

Enabled account, password does not expire and is not required.

66082

Disabled account, password does not expire and is not required.

262656

Enabled account, smartcard required.

262658

Disabled account, smartcard required.

262688

Enabled account, smartcard required, password not required.

262690

Disabled account, smartcard required, password not required.

328192

Enabled account, smartcard required, password does not expire.

328192

Enabled account, smartcard required, password does not expire.

328194

Disabled account, smartcard required, password does not expire.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 211

328224

Enabled account, smartcard required, password does not expire and is not required.

328226

Disabled account, smartcard required, password does not expire and is not required.

11.5.1.2.2. Managing Active Directory Groups With the LDAP Connector

The following command creates a basic Active Directory group with the LDAP connector:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "dn": "CN=Employees,DC=example,DC=com"
 }' \
 https://localhost:8443/openidm/system/ad/group?_action=create
{
 "_id": "<GUID=240da4e959d81547ad8629f5b2b5114d>"
}

The LDAP connector exposes two special attributes to handle Active Directory group scope and type:
GROUP_SCOPE and GROUP_TYPE.

The GROUP_SCOPE attribute is defined in the provisioner configuration as follows:
...
 "__GROUP_SCOPE__" : {
 "type" : "string",
 "nativeName" : "__GROUP_SCOPE__",
 "nativeType" : "string"
 },

The value of the GROUP_SCOPE attribute can be global, domain, or universal. If no group scope is set when
the group is created, the scope is global by default. For more information about the different group
scopes, see the corresponding Microsoft documentation.

The GROUP_TYPE attribute is defined in the provisioner configuration as follows:
...
"__GROUP_TYPE__" : {
 "type" : "string",
 "nativeName" : "__GROUP_TYPE__",
 "nativeType" : "string"
 },

The value of the GROUP_TYPE attribute can be security or distribution. If no group type is set when the
group is created, the type is security by default. For more information about the different group types,
see the corresponding Microsoft documentation.

https://technet.microsoft.com/en-us/library/cc755692(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc781446(v=ws.10).aspx

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 212

The following example creates a new distribution group, with universal scope:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "dn": "CN=NewGroup,DC=example,DC=com",
 "__GROUP_SCOPE__": "universal",
 "__GROUP_TYPE__": "distribution"
 }' \
 https://localhost:8443/openidm/system/ad/group?_action=create
{
 "_id": "<GUID=f189df8a276f91478ad5055b1580cbcb>"
}

11.5.1.2.3. Handling Active Directory Dates

Most dates in Active Directory are represented as the number of 100-nanosecond intervals since
January 1, 1601 (UTC). For example:

pwdLastSet: 130698687542272930

OpenIDM generally represents dates as an ISO 8601-compliant string with yyyy-MM-dd'T'HH:mm:ssZ
format. For example:

2015-03-02T20:17:48Z

The generic LDAP connector therefore converts any dates from Active Directory to ISO 8601 format,
for fields such as pwdLastSet, accountExpires, lockoutTime, and lastLogon.

11.5.2. Active Directory Connector

Unlike most other connectors, the Active Directory connector is written not in Java, but in C# for
the .Net platform. OpenICF should connect to Active Directory over ADSI, the native connection
protocol for Active Directory. The connector therefore requires a connector server that has access to
the ADSI .dll files.

In general, the generic LDAP connector is preferable to the Active Directory connector for the
following reasons:

• There is no requirement for a .NET connector server, so the deployment is simpler, and less
intrusive

• Better performance is observed with the LDAP connector

• The LDAP connector is easier to configure

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 213

If your Active Directory environment is simple, deals with regular attributes, you should use the
LDAP connector or the scripted PowerShell connector. Unfortunately, in complex Active Directory
environments, there are some limitations when you use the LDAP connector, which might make it
unsuitable for your deployments.

Before you configure the Active Directory Connector, make sure that the .NET Connector Server
is installed, configured and started, and that OpenIDM has been configured to use the Connector
Server. For more information, see "Installing and Configuring a .NET Connector Server".

Setting Up the Active Directory Connector

1. Download the Active Directory Connector from ForgeRock's download page.

2. Extract the contents of the AD Connector zip file into the directory in which you installed the
Connector Server (by default c:\Program Files (x86)\Identity Connectors\Connector Server>).

Note that the files, specifically the connector itself (ActiveDirectory.Connector.dll) must be directly
under the path\to\Identity Connectors\Connector Server directory, and not in a subdirectory.

Note

If the account that is used to install the Active Directory connector is different from the account under
which the Connector Server runs, you must give the Connector Server runtime account the rights to access
the Active Directory connector log files.

3. A sample Active Directory Connector configuration file is provided in openidm/samples/provisioners/
provisioner.openicf-ad.json. On the OpenIDM host, copy the sample Active Directory connector
configuration file to your project's conf/ directory:
$ cd /path/to/openidm
$ cp samples/provisioners/provisioner.openicf-ad.json project-dir/conf/

4. Edit the Active Directory connector configuration to match your Active Directory deployment.

Specifically, check and edit the configurationProperties that define the connection details to the
Active Directory server.

Also, check that the bundleVersion of the connector matches the version of the
ActiveDirectory.Connector.dll in the Connector Server directory. The bundle version can be a range
that includes the version of the connector bundle. To check the .dll version:

• Right click on the ActiveDirectory.Connector.dll file and select Properties.

• Select the Details tab and note the Product Version.

https://forgerock.org/downloads/

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 214

The following configuration extract shows sample values for the connectorRef and
configurationProperties:

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 215

...
"connectorRef" :
 {
 "connectorHostRef" : "dotnet",
 "connectorName" : "Org.IdentityConnectors.ActiveDirectory.ActiveDirectoryConnector",
 "bundleName" : "ActiveDirectory.Connector",
 "bundleVersion" : "[1.4.0.0,2.0.0.0)"
 }, ...
"configurationProperties" :
 {
 "DirectoryAdminName" : "EXAMPLE\\Administrator",
 "DirectoryAdminPassword" : "Passw0rd",
 "ObjectClass" : "User",
 "Container" : "dc=example,dc=com",
 "CreateHomeDirectory" : true,
 "LDAPHostName" : "192.0.2.0",
 "SearchChildDomains" : false,
 "DomainName" : "example",
 "SyncGlobalCatalogServer" : null,
 "SyncDomainController" : null,
 "SearchContext" : ""
 },

The main configurable properties are as follows:

connectorHostRef

Must point to an existing connector info provider configuration in project-dir/conf/
provisioner.openicf.connectorinfoprovider.json. The connectorHostRef property is required because
the Active Directory connector must be installed on a .NET connector server, which is always
remote, relative to OpenIDM.

DirectoryAdminName and DirectoryAdminPassword

Specify the credentials of an administrator account in Active Directory, that the connector
will use to bind to the server.

The DirectoryAdminName can be specified as a bind DN, or in the format DomainName\
\samaccountname.

SearchChildDomains

Specifies if a Global Catalog (GC) should be used. This parameter is used in search and query
operations. A Global Catalog is a read-only, partial copy of the entire forest, and is never used
for create, update or delete operations.

Boolean, false by default.

LDAPHostName

Specifies a particular Domain Controller (DC) or Global Catalog (GC), using its hostname.
This parameter is used for query, create, update, and delete operations.

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 216

If SearchChildDomains is set to true, this specific GC will be used for search and query
operations. If the LDAPHostName is null (as it is by default), the connector will allow the ADSI
libraries to pick up a valid DC or GC each time it needs to perform a query, create, update, or
delete operation.

SyncGlobalCatalogServer

Specifies a Global Catalog server name for sync operations. This property is used in
combination with the SearchChildDomains property.

If a value for SyncGlobalCatalogServer is set (that is, the value is not null) and SearchChildDomains
is set to true, this GC server is used for sync operations. If no value for SyncGlobalCatalogServer
is set and SearchChildDomains is set to true, the connector allows the ADSI libraries to pick up a
valid GC.

SyncDomainController

Specifies a particular DC server for sync operations. If no DC is specified, the connector picks
up the first available DC and retains this DC in future sync operations.

The updated configuration is applied immediately.

5. Check that the connector has been configured correctly by running the following command in the
OSGi console:
scr list

This command returns all of the installed modules. The OpenICF provisioner module should be
active, as follows:
[32] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider

The number of the module may differ. Make a note of the module number, as it is referenced in
the commands that follow.

6. Review the contents of the connector by running the following command in the OSGi console
(substituting the module number returned in the previous step):
scr info 32
ID: 32
Name: org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
Bundle: org.forgerock.openidm.provisioner-openicf (82)
State: active
Default State: enabled
Activation: immediate
Configuration Policy: optional
Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: -
Services: org.forgerock.openidm.provisioner.openicf.ConnectorInfoProvider
 org.forgerock.openidm.metadata.MetaDataProvider
 org.forgerock.openidm.provisioner.ConnectorConfigurationHelper

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 217

Service Type: service
Reference: osgiConnectorEventPublisher
 Satisfied: satisfied
...
component.name = org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
 felix.fileinstall.filename = file:/openidm/conf/provisioner.openicf.connectorinfoprovider.json
 jsonconfig = {
 "connectorsLocation" : "connectors",
 "remoteConnectorServers" : [
 {
 "name" : "dotnet",
 "host" : "192.0.2.0",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : {
 "$crypto" : {
 "value" : {
 "iv" : "3XpjsLV1YNP034Rt/6BZgg==",
 "data" : "8JXxpoRJjYGFkRVHvTwGTA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
 }
 }
]
}
...

7. The connector is now configured. To verify the configuration, perform a RESTful GET request on
the remote system URL, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/system/ActiveDirectory/account?_queryId=query-all-ids"

This request should return the user accounts in the Active Directory server.

8. (Optional) To configure reconciliation or LiveSync between OpenIDM and Active Directory,
create a synchronization configuration file (sync.json) in your project's conf/ directory.

The synchronization configuration file defines the attribute mappings and policies that are used
during reconciliation.

The following is a simple example of a sync.json file for Active Directory:

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 218

{
 "mappings" : [
 {
 "name" : "systemADAccounts_managedUser",
 "source" : "system/ActiveDirectory/account",
 "target" : "managed/user",
 "properties" : [
 { "source" : "cn", "target" : "displayName" },
 { "source" : "description", "target" : "description" },
 { "source" : "givenName", "target" : "givenName" },
 { "source" : "mail", "target" : "email" },
 { "source" : "sn", "target" : "familyName" },
 { "source" : "sAMAccountName", "target" : "userName" }
],
 "policies" : [
 { "situation" : "CONFIRMED", "action" : "UPDATE" },
 { "situation" : "FOUND", "action" : "UPDATE" },
 { "situation" : "ABSENT", "action" : "CREATE" },
 { "situation" : "AMBIGUOUS", "action" : "EXCEPTION" },
 { "situation" : "MISSING", "action" : "UNLINK" },
 { "situation" : "SOURCE_MISSING", "action" : "DELETE" },
 { "situation" : "UNQUALIFIED", "action" : "DELETE" },
 { "situation" : "UNASSIGNED", "action" : "DELETE" }
]
 }
]
}

9. To test the synchronization, run a reconciliation operation as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemADAccounts_managedUser"

If reconciliation is successful, the command returns a reconciliation run ID, similar to the
following:
{"_id":"0629d920-e29f-4650-889f-4423632481ad","state":"ACTIVE"}

10. Query the internal repository, using either a curl command, or the OpenIDM Admin UI, to make
sure that the users in your Active Directory server were provisioned into the repository.

11.5.2.1. Using PowerShell Scripts With the Active Directory Connector

The Active Directory connector supports PowerShell scripting. The following example shows a simple
PowerShell script that is referenced in the connector configuration and can be called over the REST
interface.

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 219

Note

External script execution is disabled on system endpoints by default. For testing purposes, you can enable
script execution over REST, on system endpoints by adding the script action to the system object, in the
access.js file. For example:

$ more /path/to/openidm/script/access.js
...
{
 "pattern" : "system/ActiveDirectory",
 "roles" : "openidm-admin",
 "methods" : "action",
 "actions" : "script"
},

Be aware that scripts passed to clients imply a security risk in production environments. If you need to expose a
script for direct external invocation, it might be better to write a custom authorization function to constrain the
script ID that is permitted. Alternatively, do not expose the script action for external invocation, and instead,
expose a custom endpoint that can make only the desired script calls. For more information about using custom
endpoints, see "Adding Custom Endpoints".

The following PowerShell script creates a new MS SQL user with a username that is specified when
the script is called. The script sets the user's password to Passw0rd and, optionally, gives the user a
role. Save this script as project-dir/script/createUser.ps1:
if ($loginName -ne $NULL) {
 [System.Reflection.Assembly]::LoadWithPartialName('Microsoft.SqlServer.SMO') | Out-Null
 $sqlSrv = New-Object ('Microsoft.SqlServer.Management.Smo.Server') ('WIN-C2MSQ8G1TCA')

 $login = New-Object -TypeName ('Microsoft.SqlServer.Management.Smo.Login') ($sqlSrv, $loginName)
 $login.LoginType = 'SqlLogin'
 $login.PasswordExpirationEnabled = $false
 $login.Create('Passw0rd')
 # The next two lines are optional, and to give the new login a server role, optional
 $login.AddToRole('sysadmin')
 $login.Alter()
 } else {
 $Error_Message = [string]"Required variables 'loginName' is missing!"
 Write-Error $Error_Message
 throw $Error_Message
 }

Now edit the Active Directory connector configuration to reference the script. Add the following
section to the connector configuration file (project-dir/conf/provisioner.openicf-ad.json):

Connecting to External Resources
CSV File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 220

 "systemActions" : [
 {
 "scriptId" : "ConnectorScriptName",
 "actions" : [
 {
 "systemType" : ".*ActiveDirectoryConnector",
 "actionType" : "Shell",
 "actionSource" : "@echo off \r\n echo %loginName%\r\n"
 },
 {
 "systemType" : ".*ActiveDirectoryConnector",
 "actionType" : "PowerShell",
 "actionFile" : "script/createUser.ps1"
 }
]
 }
]

To call the PowerShell script over the REST interface, use the following request, specifying the
userName as input:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ActiveDirectory/?
_action=script&scriptId=ConnectorScriptName&scriptExecuteMode=resource&loginName=myUser"

11.5.3. CSV File Connector

The CSV file connector is useful when importing users, either for initial provisioning or for ongoing
updates. When used continuously in production, a CSV file serves as a change log, often containing
only user records that have changed.

A sample CSV file connector configuration is provided in openidm/samples/provisioners/
provisioner.openicf-csv.json.

The following example shows an excerpt of the provisioner configuration. The connectorHostRef
property is optional and must be provided only if the connector runs remotely.
{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
 "bundleVersion": "1.5.0.0"
 }
}

The following excerpt shows the required configuration properties:

Connecting to External Resources
CSV File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 221

"configurationProperties" : {
 "csvFile" : "&{launcher.project.location}/data/hr.csv",
 "headerName" : "username",
 "headerUid" : "uid"
},

csvFile

The path to the CSV file that is the data source for this connector.

headerName

The CSV header that maps to the username for each row.

Default: username

headerUid

The CSV header that maps to the uid for each row.

Default: uid

The CSV file connector also supports following optional configuration properties:

encoding

Default: utf-8

headerPassword

The CSV header that maps to the password for each row. Use this property when password-based
authentication is required.

fieldDelimiter

The character in the CSV file that is used to separate field values.

Default: ,

quoteCharacter

The character in the CSV file that is used to encapsulate strings.

Default: "

newlineString

The character string in the CSV file that is used to terminate each line.

Default: \n

Connecting to External Resources
Scripted SQL Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 222

syncFileRetentionCount

The number of historical copies of the CSV file to retain when performing synchronization
operations.

Default: 3

11.5.4. Scripted SQL Connector

The Scripted SQL Connector uses customizable Groovy scripts to interact with the database. This
connector is not bundled with OpenIDM 4 but can be downloaded from the OpenICF Connectors
page.

The Scripted SQL connector uses one script for each of the following actions on the external
database:

• Create

• Delete

• Search

• Sync

• Test

• Update

Example Groovy scripts are provided in the openidm/samples/sample3/tools/ directory.

The scripted SQL connector runs with autocommit mode enabled by default. As soon as a statement
is executed that modifies a table, the update is stored on disk and the change cannot be rolled back.
This setting applies to all database actions (search, create, delete, test, synch, and update). You can
disable autocommit in the connector configuration file (conf/provisioner.openicf-scriptedsql.json) by
adding the autocommit property and setting it to false, for example:
"configurationProperties" : {
 "host" : "localhost",
 "port" : "3306",
 ...
 "database" : "HRDB",
 "autoCommit" : false,
 "reloadScriptOnExecution" : true,
 "createScriptFileName" : "&{launcher.project.location}/tools/CreateScript.groovy",
 ...

If you require a traditional transaction with a manual commit for a specific script, you can disable
autocommit mode in the script or scripts for each action that requires a manual commit. For more
information on disabling autocommit, see the corresponding MySQL documentation.

http://openicf.forgerock.org/connectors/index.html
http://dev.mysql.com/doc/refman/5.6/en/commit.html

Connecting to External Resources
Database Table Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 223

11.5.5. Database Table Connector
The Database Table connector enables provisioning to a single table in a JDBC database. A sample
connector configuration for the Database Table connector is provided in samples/provisioners/
provisioner.openicf-contractordb.json. The corresponding data definition language file is provided in
samples/provisioners/provisioner.openicf-contractordb.sql.

The following excerpt shows the settings for the connector configuration properties in the sample
Database Table connector:
"configurationProperties" :
 {
 "quoting" : "",
 "host" : "localhost",
 "port" : "3306",
 "user" : "root",
 "password" : "",
 "database" : "contractordb",
 "table" : "people",
 "keyColumn" : "UNIQUE_ID",
 "passwordColumn" : "",
 "jdbcDriver" : "com.mysql.jdbc.Driver",
 "jdbcUrlTemplate" : "jdbc:mysql://%h:%p/%d",
 "enableEmptyString" : false,
 "rethrowAllSQLExceptions" : true,
 "nativeTimestamps" : true,
 "allNative" : false,
 "validConnectionQuery" : null,
 "changeLogColumn" : "CHANGE_TIMESTEMP",
 "datasource" : "",
 "jndiProperties" : null
 },

The mandatory configurable properties are as follows:

database

The JDBC database that contains the table to which you are provisioning.

table

The name of the table in the JDBC database that contains the user accounts.

keyColumn

The column value that is used as the unique identifier for rows in the table.

For a description of all configurable properties for this connector, see the OpenICF Connector
Configuration Reference.

11.5.6. Groovy Connector Toolkit
OpenICF provides a generic Groovy Connector Toolkit that enables you to run a Groovy script for any
OpenICF operation, such as search, update, create, and others, on any external resource.

http://openicf.forgerock.org/doc/bootstrap/config-reference/#db-table-connector-ref
http://openicf.forgerock.org/doc/bootstrap/config-reference/#db-table-connector-ref

Connecting to External Resources
PowerShell Connector Toolkit

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 224

The Groovy Connector Toolkit is not a complete connector in the traditional sense. Rather, it is a
framework within which you must write your own Groovy scripts to address the requirements of
your implementation. Specific scripts are provided within these samples, which demonstrate how the
Groovy Connector Toolkit can be used. These scripts cannot be used as is in your deployment, but are
a good starting point on which to base your customization.

The Groovy Connector Toolkit is bundled with OpenIDM 4, in the JAR openidm/connectors/groovy-
connector-1.4.2.0.jar.

Sample implementations are provided in "Samples That Use the Groovy Connector Toolkit to Create
Scripted Connectors" in the Samples Guide.

11.5.7. PowerShell Connector Toolkit

The PowerShell Connector Toolkit is not a complete connector in the traditional sense. Rather, it is
a framework within which you must write your own PowerShell scripts to address the requirements
of your Microsoft Windows ecosystem. You can use the PowerShell Connector Toolkit to create
connectors that can provision any Microsoft system, including, but not limited to, Active Directory,
MS SQL, MS Exchange, Sharepoint, Azure, and Office365. Essentially, any task that can be
performed with PowerShell can be executed through connectors based on this toolkit.

Connectors created with the PowerShell Connector Toolkit run on the .NET platform and require
the installation of a .NET connector server on the Windows system. To install the .NET connector,
follow the instructions in "Installing and Configuring a .NET Connector Server". These connectors
also require PowerShell V2.

The PowerShell Connector Toolkit is not bundled with OpenIDM, but is available, with a subscription,
from ForgeRock Backstage. To install the connector, download the archive (mspowershell-
connector-1.4.2.0.zip) and extract the MsPowerShell.Connector.dll to the same directory where the
Connector Server (ConnectorServerService.exe) is located.

OpenIDM includes Active Directory sample scripts for the Powershell connector that will enable
you to get started with this toolkit. For more information, see "Samples That Use the PowerShell
Connector Toolkit to Create Scripted Connectors" in the Samples Guide.

11.5.8. Salesforce Connector

The Enterprise build of OpenIDM includes a Salesforce connector, along with a sample connector
configuration. The Salesforce connector enables provisioning, reconciliation, and synchronization
between Salesforce and the OpenIDM repository.

To use this connector, you need a Salesforce account, and a Connected App that has OAuth enabled,
which will allow you to retrieve the required consumer key and consumer secret.

For additional instructions, and a sample Salesforce configuration, see "Salesforce Sample -
Salesforce With the Salesforce Connector" in the Samples Guide.

https://backstage.forgerock.com/
https://forgerock.org/downloads/

Connecting to External Resources
Google Apps Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 225

11.5.9. Google Apps Connector

The Enterprise build of OpenIDM includes a Google Apps connector, along with a sample connector
configuration. The Google Apps Connector enables you to interact with Google's web applications.

To use this connector, you need a Google Apps account.

If you have OpenIDM Enterprise, you can view a sample Google Apps connector configuration file in
samples/provisioners/provisioner.openicf-google.json

The following is an excerpt of the provisioner configuration file. This example shows an excerpt of the
provisioner configuration. The default location of the connector .jar is openidm/connectors. Therefore
the value of the connectorHostRef property must be "#LOCAL":
{
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.forgerock.openicf.connectors.googleapps.GoogleAppsConnector",
 "bundleName": "org.forgerock.openicf.connectors.googleapps-connector",
 "bundleVersion": "[1.4.0.0,2.0.0.0)"
},

The following excerpt shows the required configuration properties:
"configurationProperties": {
 "domain": "",
 "clientId": "",
 "clientSecret": null,
 "refreshToken": null
},

These configuration properties are fairly straightforward:

domain

Set to the domain name for OAuth 2-based authorization.

clientId

A client identifier, as issued by the OAuth 2 authorization server. For more information, see the
following section of RFC 6749: Client Identifier.

clientSecret

Sometimes also known as the client password. OAuth 2 authorization servers can support the
use of clientId and clientSecret credentials, as noted in the following section of RFC 6749: Client
Password.

refreshToken

A client can use an OAuth 2 refresh token to continue accessing resources. For more information,
see the following section of RFC 6749: Refresh Tokens.

https://forgerock.org/downloads/
http://tools.ietf.org/html/rfc6749#section-2.2
http://tools.ietf.org/html/rfc6749#section-2.3.1
http://tools.ietf.org/html/rfc6749#section-2.3.1
http://tools.ietf.org/html/rfc6749#section-10.4

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 226

For a sample Google Apps configuration that includes OAuth 2-based entries for
configurationProperties, see "Google Sample - Connecting to Google With the Google Apps Connector"
in the Samples Guide.

11.5.10. XML File Connector

OpenIDM includes a simple XML file connector. This connector is really useful only in a
demonstration context and should not be used in the general provisioning of XML data stores. It is
used in this document to demonstrate provisioning to a remote data store. In real deployments, if you
need to connect to a custom XML data file, you should create your own scripted connector by using
the Groovy connector toolkit.

A sample XML connector configuration is provided in path/to/openidm/samples/provisioners/
provisioner.openicf-xml.json. The following excerpt of the provisioner configuration shows the main
configurable properties:
{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion": "1.1.0.2",
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
 }
}

The connectorHostRef is optional if the connector server is local.

The configuration properties for the XML file connector set the relative path to the file containing the
identity data, and also the paths to the required XML schemas:
{
 "configurationProperties": {
 "xsdIcfFilePath" : "&{launcher.project.location}/data/resource-schema-1.xsd",
 "xsdFilePath" : "&{launcher.project.location}/data/resource-schema-extension.xsd",
 "xmlFilePath" : "&{launcher.project.location}/data/xmlConnectorData.xml"
 }
}

&{launcher.project.location} refers to the project directory of your OpenIDM instance, for example,
path/to/openidm/samples/sample1. Note that relative paths such as these work only if your connector
server runs locally. For remote connector servers, you must specify the absolute path to the schema
and data files.

xsdIcfFilePath

References the XSD file defining schema common to all XML file resources. Do not change the
schema defined in this file.

xsdFilePath

References custom schema defining attributes specific to your project.

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 227

xmlFilePath

References the XML file that contains account entries.

Using the XML Connector to Reconcile Users in a Remote XML Data Store

This example demonstrates reconciliation of users stored in an XML file on a remote machine. The
remote Java Connector Server enables OpenIDM to synchronize the internal OpenIDM repository
with the remote XML repository.

The example assumes that a remote Java Connector Server is installed on a host named remote-
host. For instructions on setting up the remote Java Connector Server, see "Installing a Remote Java
Connector Server for Unix/Linux" or "Installing a Remote Java Connector Server for Windows".

Configuring the Remote Connector Server for the XML Connector Example

This example uses the XML data that is provided in the basic XML reconciliation sample (Sample
1). The XML connector runs as a remote connector, that is, on the remote host on which the Java
Connector Server is installed. Before you start, copy the data and the XML connector over to the
remote machine.

1. Shut down the remote connector server, if it is running. In the connector server terminal window,
type q:
q
INFO: Stopped listener bound to [0.0.0.0:8759]
Dec 08, 2015 10:43:26 PM INFO o.f.o.f.server.ConnectorServer: Server is
 shutting down org.forgerock.openicf.framework.server.ConnectorServer@75a07f17

2. Copy the XML data from Sample 1 to an accessible location on the machine that hosts the remote
Java Connector Server. For example:
$ cd path/to/openidm
$ scp -r samples/sample1/data testuser@remote-host:/home/testuser/xml-sample
testuser@remote-host's password:
resource-schema-1.xsd 100% 4083 4.0KB/s 00:00
resource-schema-extension.xsd 100% 1351 1.3KB/s 00:00
xmlConnectorData.xml 100% 1648 1.6KB/s 00:00

3. Copy the XML connector .jar from the OpenIDM installation to the openicf/bundles directory on the
remote host:
$ cd path/to/openidm
$ scp connectors/xml-connector-1.1.0.2.jar testuser@remote-host:/path/to/openicf/bundles
testuser@remote-host's password:
xml-connector-1.1.0.2.jar 100% 4379KB 4.3MB/s 00:00

4. Restart the remote connector server so that it picks up the new connector:

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 228

$ cd /path/to/openicf
$ bin/ConnectorServer.sh /run
...
 Dec 08, 2015 10:46:03 PM INFO o.i.f.i.a.l.LocalConnectorInfoManagerImpl:
 Add ConnectorInfo ConnectorKey(bundleName=org.forgerock.openicf.connectors.xml-connector
 bundleVersion=1.1.0.2 connectorName=org.forgerock.openicf.connectors.xml.XMLConnector)
 to Local Connector Info Manager from file:/home/testuser/openicf/bundles/xml-connector-1.1.0.2.jar

The connector server logs are noisy by default. You should, however, notice the addition of the
XML connector.

Configuring OpenIDM for the XML Connector Example

This example uses the configuration of Sample 1, which is effectively your OpenIDM project location.
Any configuration changes that you make must therefore be made in the conf directory of Sample 1:

1. Copy the remote connector configuration file (provisioner.openicf.connectorinfoprovider.json) from
the provisioner samples directory to the configuration directory of your OpenIDM project:
$ cd path/to/openidm/samples/
$ cp provisioners/provisioner.openicf.connectorinfoprovider.json sample1/conf

2. Edit the remote connector configuration file (provisioner.openicf.connectorinfoprovider.json) to
match your network setup.

The following example indicates that the remote Java connector server is running on the host
remote-host, listening on the default port, and configured with a secret key of Passw0rd:
{
 "remoteConnectorServers" : [
 {
 "name" : "xml",
 "host" : "remote-host",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "protocol" : "websocket",
 "key" : "Passw0rd"
 }
]
}

3. Edit the XML connector configuration file (provisioner.openicf-xml.json) in the sample1/conf
directory as follows:

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 229

{
 "name" : "xmlfile",
 "connectorRef" : {
 "connectorHostRef" : "xml",
 "bundleName" : "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion" : "1.1.0.2",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector"
 },
 "configurationProperties" : {
 "xsdIcfFilePath" : "/home/testuser/xml-sample/data/resource-schema-1.xsd",
 "xsdFilePath" : "/home/testuser/xml-sample/data/resource-schema-extension.xsd",
 "xmlFilePath" : "/home/testuser/xml-sample/data/xmlConnectorData.xml"
 },
}

4. • The connectorHostRef property indicates which remote connector server to use, and refers to the
name property defined in the provisioner.openicf.connectorinfoprovider.json file.

• The bundleVersion : 1.1.0.2 must be exactly the same as the version of the XML connector that
you are using. If you specify a range here, the XML connector version must be included in this
range.

• The configurationProperties must specify the absolute path to the data files that you copied to the
server on which the Java Connector Server is running.

5. Start OpenIDM with the configuration for Sample 1:
$./startup.sh -p samples/sample1/

6. Use the AdminUI to verify that OpenIDM can reach the remote connector server and that the
XML connector is active:

Log in to the Admin UI (https://localhost:8443/openidm/admin) and select Configure > Connectors.

The XML connector should be available, and active.

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 230

Click on the XML connector to view its configuration.

7. To test that the connector has been configured correctly, run a reconciliation operation as
follows:

1. Select Configure > Mappings and click the systemXmlfileAccounts_managedUser mapping.

2. Click Reconcile Now.

If the reconciliation is successful, the two users from the XML file should have been added to the
managed user repository.

To check this, select Manage > User.

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 231

11.6. Creating Default Connector Configurations
You have three ways to create provisioner files:

• Start with the sample provisioner files in the /path/to/openidm/samples/provisioners directory. For
more information, see "Connectors Supported With OpenIDM 4".

• Set up connectors with the help of the Admin UI. To start this process, navigate to https://
localhost:8443/admin and log in to OpenIDM. Continue with "Adding New Connectors from the Admin
UI".

• Use the service that OpenIDM exposes through the REST interface to create basic connector
configuration files, or use the cli.sh or cli.bat scripts to generate a basic connector configuration.
To see how this works continue with "Adding New Connectors from the Command Line".

11.6.1. Adding New Connectors from the Admin UI

You can include several different connectors in an OpenIDM configuration. In the Admin UI, select
Configure > Connector. Try some of the different connector types in the screen that appears. Observe
as the Admin UI changes the configuration options to match the requirements of the connector type.

The list of connectors shown in the Admin UI does not include all supported connectors. For
information and examples of how each supported connector is configured, see "Connectors Supported
With OpenIDM 4".

When you have filled in all required text boxes, the Admin UI allows you to validate the connector
configuration.

Connecting to External Resources
Adding New Connectors from the Command Line

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 232

If you want to configure a different connector through the Admin UI, you could copy the provisioner
file from the /path/to/openidm/samples/provisioners directory. However, additional configuration may be
required, as described in "Connectors Supported With OpenIDM 4".

Alternatively, some connectors are included with the configuration of a specific sample. For example,
if you want to build a ScriptedSQL connector, read "Sample 3 - Using the Custom Scripted Connector
Bundler to Build a ScriptedSQL Connector" in the Samples Guide.

11.6.2. Adding New Connectors from the Command Line

This section describes how to create connector configurations over the REST interface. For
instructions on how to create connector configurations from the command line, see "Using the
configureconnector Subcommand".

You create a new connector configuration file in three stages:

1. List the available connectors.

2. Generate the core configuration.

3. Connect to the target system and generate the final configuration.

List the available connectors by using the following command:
$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request POST \
"https://localhost:8443/openidm/system?_action=availableConnectors"

Available connectors are installed in openidm/connectors. OpenIDM 4 bundles the following connectors:

• CSV File Connector

• Database Table Connector

• Scripted Groovy Connector Toolkit, which includes the following sample implementations:

• Scripted SQL Connector

• Scripted CREST Connector

• Scripted REST Connector

• LDAP Connector

Connecting to External Resources
Adding New Connectors from the Command Line

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 233

• XML Connector

• GoogleApps Connector (OpenIDM Enterprise only)

• Salesforce Connector (OpenIDM Enterprise only)

The preceding command therefore returns the following output:
{
 "connectorRef": [
 {
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector",
 "displayName": "XML Connector",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.1.0.2"
 },
 {
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "displayName": "LDAP Connector",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.4.1.0"
 },
 {
 "connectorName": "org.forgerock.openicf.connectors.scriptedsql.ScriptedSQLConnector",
 "displayName": "Scripted SQL Connector",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.4.2.0"
 },
 {
 "connectorName": "org.forgerock.openicf.connectors.scriptedrest.ScriptedRESTConnector",
 "displayName": "Scripted REST Connector",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.4.2.0"
 },
 {
 "connectorName": "org.forgerock.openicf.connectors.scriptedcrest.ScriptedCRESTConnector",
 "displayName": "Scripted CREST Connector",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.4.2.0"
 },
 {
 "connectorName": "org.forgerock.openicf.connectors.groovy.ScriptedPoolableConnector",
 "displayName": "Scripted Poolable Groovy Connector",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.4.2.0"
 },
 {
 "connectorName": "org.forgerock.openicf.connectors.groovy.ScriptedConnector",
 "displayName": "Scripted Groovy Connector",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.4.2.0"
 },

Connecting to External Resources
Adding New Connectors from the Command Line

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 234

 {
 "connectorName": "org.identityconnectors.databasetable.DatabaseTableConnector",
 "displayName": "Database Table Connector",
 "bundleName": "org.forgerock.openicf.connectors.databasetable-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.1.0.1"
 },
 {
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "displayName": "CSV File Connector",
 "bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
 "systemType": "provisioner.openicf",
 "bundleVersion": "1.5.0.0"
 }
]
}

To generate the core configuration, choose one of the available connectors by copying one of the
JSON objects from the generated list into the body of the REST command, as shown in the following
command for the XML connector:
$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--header "Content-Type: application/json"
 \
--request POST
 \
--data '{"connectorRef":
 {"connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector",
 "displayName": "XML Connector",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion": "1.1.0.2"}
 }' \
 "https://localhost:8443/openidm/system?_action=createCoreConfig"

This command returns a core connector configuration, similar to the following:
{
 "poolConfigOption": {
 "minIdle": 1,
 "minEvictableIdleTimeMillis": 120000,
 "maxWait": 150000,
 "maxIdle": 10,
 "maxObjects": 10
 },
 "resultsHandlerConfig": {
 "enableAttributesToGetSearchResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableNormalizingResultsHandler": true
 },
 "operationTimeout": {
 "SCHEMA": -1,
 "SYNC": -1,

Connecting to External Resources
Adding New Connectors from the Command Line

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 235

 "VALIDATE": -1,
 "SEARCH": -1,
 "AUTHENTICATE": -1,
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1
 },
 "configurationProperties": {
 "xsdIcfFilePath": null,
 "xsdFilePath": null,
 "createFileIfNotExists": false,
 "xmlFilePath": null
 },
 "connectorRef": {
 "bundleVersion": "1.1.0.2",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "displayName": "XML Connector",
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
 }
}

The configuration that is returned is not yet functional. Notice that it does not contain the required
system-specific configurationProperties, such as the host name and port, or the xmlFilePath for the XML
file-based connector. In addition, the configuration does not include the complete list of objectTypes
and operationOptions.

To generate the final configuration, add values for the configurationProperties to the core
configuration, and use the updated configuration as the body for the next command:
$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--header "Content-Type: application/json"
 \
--request POST
 \
--data '{
 "configurationProperties":
 {
 "xsdIcfFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "samples/sample1/data/xmlConnectorData.xml",
 "createFileIfNotExists": false
 },
 "operationTimeout": {
 "SCHEMA": -1,
 "SYNC": -1,
 "VALIDATE": -1,
 "SEARCH": -1,

Connecting to External Resources
Adding New Connectors from the Command Line

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 236

 "AUTHENTICATE": -1,
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1
 },
 "resultsHandlerConfig": {
 "enableAttributesToGetSearchResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableNormalizingResultsHandler": true
 },
 "poolConfigOption": {
 "minIdle": 1,
 "minEvictableIdleTimeMillis": 120000,
 "maxWait": 150000,
 "maxIdle": 10,
 "maxObjects": 10
 },
 "connectorRef": {
 "bundleVersion": "1.1.0.2",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "displayName": "XML Connector",
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
 }
 }' \
"https://localhost:8443/openidm/system?_action=createFullConfig"

Note

Notice the single quotes around the argument to the --data option in the preceding command. For most UNIX
shells, single quotes around a string prevent the shell from executing the command when encountering a new
line in the content. You can therefore pass the --data '...' option on a single line, or including line feeds.

OpenIDM attempts to read the schema, if available, from the external resource in order to generate
output. OpenIDM then iterates through schema objects and attributes, creating JSON representations
for objectTypes and operationOptions for supported objects and operations.

The output includes the basic --data input, along with operationOptions and objectTypes.

Because OpenIDM produces a full property set for all attributes and all object types in the schema
from the external resource, the resulting configuration can be large. For an LDAP server, OpenIDM
can generate a configuration containing several tens of thousands of lines, for example. You might
therefore want to reduce the schema to a minimum on the external resource before you run the
createFullConfig command.

When you have the complete connector configuration, save that configuration in a file named
provisioner.openicf-name.json (where name corresponds to the name of the connector) and place it in
the conf directory of your project. For more information, see "Configuring Connectors".

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 237

11.7. Checking the Status of External Systems Over REST
After a connection has been configured, external systems are accessible over the REST interface at
the URL https://localhost:8443/openidm/system/connector-name. Aside from accessing the data objects
within the external systems, you can test the availability of the systems themselves.

To list the external systems that are connected to an OpenIDM instance, use the test action on the
URL https://localhost:8443/openidm/system/. The following example shows the connector configuration
for an external LDAP system:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=test"
[
 {
 "ok": true,
 "displayName": "LDAP Connector",
 "connectorRef": {
 "bundleVersion": "[1.4.0.0,2.0.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
 },
 "objectTypes": [
 "__ALL__",
 "group",
 "account"
],
 "config": "config/provisioner.openicf/ldap",
 "enabled": true,
 "name": "ldap"
 }
]

The status of the system is provided by the ok parameter. If the connection is available, the value of
this parameter is true.

To obtain the status for a single system, include the name of the connector in the URL, for example:

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 238

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap?_action=test"
{
 "ok": true,
 "displayName": "LDAP Connector",
 "connectorRef": {
 "bundleVersion": "[1.4.0.0,2.0.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
 },
 "objectTypes": [
 "__ALL__",
 "group",
 "account"
],
 "config": "config/provisioner.openicf/ldap",
 "enabled": true,
 "name": "ldap"
}

If there is a problem with the connection, the ok parameter returns false, with an indication of the
error. In the following example, the LDAP server named ldap, running on localhost:1389, is down:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap?_action=test"
{
 "ok": false,
 "error": "localhost:1389",
 "displayName": "LDAP Connector",
 "connectorRef": {
 "bundleVersion": "[1.4.0.0,2.0.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
 },
 "objectTypes": [
 "__ALL__",
 "group",
 "account"
],
 "config": "config/provisioner.openicf/ldap",
 "enabled": true,
 "name": "ldap"
}

To test the validity of a connector configuration, use the testConfig action and include the
configuration in the command. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 239

 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --data '{
 "name" : "xmlfile",
 "connectorRef" : {
 "bundleName" : "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion" : "1.1.0.2",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector"
 },
 "producerBufferSize" : 100,
 "connectorPoolingSupported" : true,
 "poolConfigOption" : {
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
 },
 "operationTimeout" : {
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
 },
 "configurationProperties" : {
 "xsdIcfFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "samples/sample1/data/xmlConnectorData.xml"
 },
 "syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
 },
 "objectTypes" : {
 "account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {
 "description" : {
 "type" : "string",
 "nativeName" : "__DESCRIPTION__",
 "nativeType" : "string"
 },
 "firstname" : {
 "type" : "string",
 "nativeName" : "firstname",
 "nativeType" : "string"
 },
 "email" : {

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 240

 "type" : "string",
 "nativeName" : "email",
 "nativeType" : "string"
 },
 "_id" : {
 "type" : "string",
 "nativeName" : "__UID__"
 },
 "password" : {
 "type" : "string",
 "nativeName" : "password",
 "nativeType" : "string"
 },
 "name" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "__NAME__",
 "nativeType" : "string"
 },
 "lastname" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "lastname",
 "nativeType" : "string"
 },
 "mobileTelephoneNumber" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "mobileTelephoneNumber",
 "nativeType" : "string"
 },
 "securityQuestion" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "securityQuestion",
 "nativeType" : "string"
 },
 "securityAnswer" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "securityAnswer",
 "nativeType" : "string"
 },
 "roles" : {
 "type" : "string",
 "required" : false,
 "nativeName" : "roles",
 "nativeType" : "string"
 }
 }
 }
 },
 "operationOptions" : { }
}' \
 --request POST \
 "https://localhost:8443/openidm/system?_action=testConfig"

If the configuration is valid, the command returns "ok": true, for example:

Connecting to External Resources
Adding Attributes to Connector Configurations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 241

{
 "ok": true,
 "name": "xmlfile"
}

If the configuration is not valid, the command returns an error, indicating the problem with the
configuration. For example, the following result is returned when the LDAP connector configuration
is missing a required property (in this case, the baseContexts to synchronize):
{
 "error": "org.identityconnectors.framework.common.exceptions.ConfigurationException:
 The list of base contexts cannot be empty",
 "name": "OpenDJ",
 "ok": false
}

The testConfig action requires a running OpenIDM instance, as it uses the REST API, but does not
require an active connector instance for the connector whose configuration you want to test.

11.8. Adding Attributes to Connector Configurations
You can add the attributes of your choice to a connector configuration file. Specifically, if you want to
set up "Extending the Property Type Configuration" to one of the objectTypes such as account, use the
format shown under "Specifying the Supported Object Types".

You can configure connectors to enable provisioning of arbitrary property level extensions (such
as image files) to system resources. For example, if you want to set up image files such as account
avatars, open the appropriate provisioner file. Look for an account section similar to:
"account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {...

Under properties, add one of the following code blocks. The first block works for a single photo
encoded as a base64 string. The second block would address multiple photos encoded in the same
way:
"attributeByteArray" : {
 "type" : "string",
 "nativeName" : "attributeByteArray",
 "nativeType" : "JAVA_TYPE_BYTE_ARRAY"
},

Connecting to External Resources
Adding Attributes to Connector Configurations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 242

"attributeByteArrayMultivalue": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "JAVA_TYPE_BYTE_ARRAY"
 },
 "nativeName": "attributeByteArrayMultivalue"
},

Synchronizing Data Between Resources
Types of Synchronization

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 243

Chapter 12

Synchronizing Data Between Resources

One of the core services of OpenIDM is synchronizing identity data between different resources.
In this chapter, you will learn about the different types of synchronization, and how to configure
OpenIDM's flexible synchronization mechanism.

12.1. Types of Synchronization
Synchronization happens either when OpenIDM receives a change directly, or when OpenIDM
discovers a change on an external resource. An external resource can be any system that holds
identity data, such as Active Directory, OpenDJ, a CSV file, a JDBC database, and others. OpenIDM
connects to external resources by using OpenICF connectors. For more information, see "Connecting
to External Resources".

For direct changes to managed objects, OpenIDM immediately synchronizes those changes to all
mappings configured to use those objects as their source. A direct change can originate not only as
a write request through the REST interface, but also as an update resulting from reconciliation with
another resource.

• OpenIDM discovers and synchronizes changes from external resources by using reconciliation and
liveSync.

• OpenIDM synchronizes changes made to its internal repository with external resources by using
implicit synchronization.

Reconciliation

In identity management, reconciliation is the bidirectional synchronization of objects between
different data stores. Traditionally, reconciliation applies mainly to user objects, but OpenIDM
can reconcile any objects, such as groups, roles, and devices.

In any reconciliation operation, there is a source system (the system that contains the changes)
and a target system (the system to which the changes will be propagated). The source and target
system are defined in a mapping. OpenIDM can be either the source or the target in a mapping.
You can configure multiple mappings for one OpenIDM instance, depending on the external
resources to which OpenIDM connects.

To perform reconciliation, OpenIDM analyzes both the source system and the target system, to
discover the differences that it must reconcile. Reconciliation can therefore be a heavyweight

Synchronizing Data Between Resources
Defining Your Data Mapping Model

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 244

process. When working with large data sets, finding all changes can be more work than
processing the changes.

Reconciliation is, however, thorough. It recognizes system error conditions and catches changes
that might be missed by liveSync. Reconciliation therefore serves as the basis for compliance and
reporting functionality.

LiveSync

LiveSync captures the changes that occur on a remote system, then pushes those changes to
OpenIDM. OpenIDM uses the defined mappings to replay the changes where they are required;
either in the OpenIDM repository, or on another remote system, or both. Unlike reconciliation,
liveSync uses a polling system, and is intended to react quickly to changes as they happen.

To perform this polling, liveSync relies on a change detection mechanism on the external
resource to determine which objects have changed. The change detection mechanism is specific
to the external resource, and can be a time stamp, a sequence number, a change vector, or any
other method of recording changes that have occurred on the system. For example, OpenDJ
implements a change log that provides OpenIDM with a list of objects that have changed since
the last request. Active Directory implements a change sequence number, and certain databases
might have a lastChange attribute.

Implicit synchronization

Implicit synchronization automatically pushes changes that are made in the OpenIDM internal
repository to external systems.

Note that implicit synchronization only pushes changes out to the external data sources. To
synchronize a complete data set, you must start with a reconciliation operation.

OpenIDM uses mappings, configured in your project's conf/sync.json file, to determine which data to
synchronize, and how that data must be synchronized. You can schedule reconciliation operations,
and the frequency with which OpenIDM polls for liveSync changes, as described in "Scheduling Tasks
and Events".

OpenIDM logs reconciliation and synchronization operations in the audit logs by default. For
information about querying the reconciliation and synchronization logs, see "Querying Audit Logs
Over REST".

12.2. Defining Your Data Mapping Model
In general, identity management software implements one of the following data models:

• A meta-directory data model, where all data are mirrored in a central repository.

The meta-directory model offers fast access at the risk of getting outdated data.

Synchronizing Data Between Resources
Configuring Synchronization Between Two Resources

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 245

• A virtual data model, where only a minimum set of attributes are stored centrally, and most are
loaded on demand from the external resources in which they are stored.

The virtual model guarantees fresh data, but pays for that guarantee in terms of performance.

OpenIDM leaves the data model choice up to you. You determine the right trade offs for a particular
deployment. OpenIDM does not hard code any particular schema or set of attributes stored in the
repository. Instead, you define how external system objects map onto managed objects, and OpenIDM
dynamically updates the repository to store the managed object attributes that you configure.

You can, for example, choose to follow the data model defined in the Simple Cloud Identity
Management (SCIM) specification. The following object represents a SCIM user:

{
 "userName": "james1",
 "familyName": "Berg",
 "givenName": "James",
 "email": [
 "james1@example.com"
],
 "description": "Created by OpenIDM REST.",
 "password": "asdfkj23",
 "displayName": "James Berg",
 "phoneNumber": "12345",
 "employeeNumber": "12345",
 "userType": "Contractor",
 "title": "Vice President",
 "active": true
}

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in your JavaScript.

12.3. Configuring Synchronization Between Two Resources
This section describes the high-level steps required to set up synchronization between two resources.
A basic synchronization configuration involves the following steps:

1. Set up the connector configuration.

Connector configurations are defined in conf/provisioner-*.json files. One provisioner file must be
defined for each external resource to which you are connecting.

2. Configure a synchronization mapping.

Mappings are defined in the conf/sync.json file. There is only one sync.json file per OpenIDM
instance, but multiple mappings can be defined in that file.

http://www.simplecloud.info/specs/draft-scim-core-schema-00.html

Synchronizing Data Between Resources
Setting Up the Connector Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 246

3. Configure any scripts that are required to check source and target objects, and to manipulate
attributes.

4. In addition to these configuration elements, OpenIDM stores a links table in its repository. The
links table maintains a record of relationships established between source and target objects.

12.3.1. Setting Up the Connector Configuration

Connector configuration files map external resource objects to OpenIDM objects, and are described
in detail in "Connecting to External Resources". Connector configuration files are stored in the conf/
directory of your project, and are named provisioner.resource-name.json, where resource-name reflects
the connector technology and the external resource, for example, openicf-xml.

You can create and modify connector configurations through the Admin UI or directly in the
configuration files, as described in the following sections.

12.3.1.1. Setting up and Modifying Connector Configurations in the Admin UI

The easiest way to set up and modify connector configurations is to use the Admin UI.

To add or modify a connector configuration in the Admin UI:

1. Log in to the UI (https://localhost:8443/admin) as an administrative user. The default administrative
username and password is openidm-admin and openidm-admin.

2. Select Configure > Connectors.

3. Click on the connector that you want to modify (if there is an existing connector configuration) or
click New Connector to set up a new connector configuration.

12.3.1.2. Editing Connector Configuration Files

A number of sample provisioner files are provided in path/to/openidm/samples/provisioners. To modify
connector configuration files directly, edit one of the sample provisioner files that corresponds to the
resource to which you are connecting.

The following excerpt of an example LDAP connector configuration shows the name for the connector
and two attributes of an account object type. In the attribute mapping definitions, the attribute name
is mapped from the nativeName (the attribute name used on the external resource) to the attribute
name that is used in OpenIDM. The sn attribute in LDAP is mapped to lastName in OpenIDM. The
homePhone attribute is defined as an array, because it can have multiple values:

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 247

{
 "name": "MyLDAP",
 "objectTypes": {
 "account": {
 "lastName": {
 "type": "string",
 "required": true,
 "nativeName": "sn",
 "nativeType": "string"
 },
 "homePhone": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "homePhone",
 "nativeType": "string"
 }
 }
 }
}

For OpenIDM to access external resource objects and attributes, the object and its attributes
must match the connector configuration. Note that the connector file only maps external resource
objects to OpenIDM objects. To construct attributes and to manipulate their values, you use the
synchronization mappings file, described in the following section.

12.3.2. Configuring the Synchronization Mapping

A synchronization mapping specifies a relationship between properties in two data stores. A typical
mapping, between an external LDAP directory and an internal Managed User data store, is:
"source": "lastName",
"target": "sn"

In this case, the lastName source attribute is mapped to the sn (surname) attribute on the target.

The synchronization mappings file (conf/sync.json) represents the core configuration for OpenIDM
synchronization.

The sync.json file defines attribute mappings from a source to a target. A data store can be either a
source, or a target, or both. To configure bidirectional synchronization, you must define a separate
mapping for each data flow. To synchronize records from an LDAP server to the repository and also
from the repository to the LDAP server, you would define two separate mappings.

You can also identify and add mappings in the Admin UI. To do so, navigate to https://localhost:8443/
admin, and click Configure > Mappings.

You can update a mapping while the server is running. Make sure, however, that you do not update a
mapping if a reconciliation is in progress for that mapping.

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 248

The easiest way to set up synchronization mappings is by using the Admin UI. The Admin UI serves
as a front end to OpenIDM configuration files, so, the changes you make to mappings in the Admin UI
are written to your project's conf/sync.json file.

12.3.2.1. Specifying Resource Mappings in sync.json

Objects in external resources are specified in a mapping as system/name/object-type, where name is the
name used in the connector configuration file, and object-type is the object defined in the connector
configuration file list of object types. Objects in OpenIDM's internal repository are specified in the
mapping as managed/object-type, where object-type is defined in the managed objects configuration file
(conf/managed.json).

External resources, and OpenIDM managed objects, can be the source or the target in a mapping.
The mapping name, by convention, is set to a string of the form source_target, as shown in the
following example:
{
 "mappings": [
 {
 "name": "systemLdapAccounts_managedUser",
 "source": "system/ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "lastName",
 "target": "sn"
 },
 {
 "source": "telephoneNumber",
 "target": "telephoneNumber"
 },
 {
 "target": "phoneExtension",
 "default": "0047"
 },
 {
 "source": "email",
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
 },
 {
 "source": "",
 "target": "displayName",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
 },
 {
 "source" : "uid",
 "target" : "userName",

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 249

 "condition" : "/linkQualifier eq \"user\""
 }
 },
]
 }
]
}

In this example, the source is the external resource (ldap), and the target is OpenIDM's repository,
specifically the managed user objects. The properties defined in the mapping reflect attribute names
that are defined in the OpenIDM configuration. The source attribute uid is defined in the ldap
connector configuration file, rather than on the external resource itself.

To synchronize objects from the repository to the ldap resource, define a mapping with source
managed/user and target system/ldap/account. In this case, the name for the mapping would be
managedUser_systemLdapAccounts.

12.3.2.2. Creating Attributes in a Mapping

You can create attributes on the target resource as part of the mapping. In the preceding example, a
phoneExtension attribute with a default value of 0047 is created on the target.

Use the default property to specify a value to assign to the target property. When OpenIDM
determines the value of the target property, any associated conditions are evaluated first, followed
by the transform script, if present. The default value is applied (for update and create actions) if the
source property and the transform script yield a null value. The default value overrides the target value,
if one exists.

To set up attributes with default values in the Admin UI:

1. Select Configure > Mappings, and click on the Mapping you want to edit.

2. Click on the Target Property that you want to create (phoneExtension in the previous example),
select the Default Values tab, and enter a default value for that property mapping.

12.3.2.3. Transforming Attributes in a Mapping

Use a mapping configuration to define attribute transformations that occur during synchronization.
In the following excerpt of the sample mapping, the value of the displayName attribute (on the target) is
set using a combination of the lastName and firstName attribute values from the source:
{
 "source": "",
 "target": "displayName",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
},

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 250

For transformations, the source property is optional. However, a source object is only available when
you specify the source property. Therefore, in order to use source.lastName and source.firstName to
calculate the displayName, the example specifies "source" : "".

If you do not specify a source attribute, the entire object is regarded as the source, and you must
include the attribute name in the transformation script. For example, to transform the source
username to lower case, your script would be source.mail.toLowerCase();. If you do specify a source
attribute, just that attribute is regarded as the source. In this case, the transformation script would
be source.toLowerCase();.

To set up a transformation script in the Admin UI, select Configure > Mappings, and select the
Mapping. Select the line with the target attribute whose value you want to set. On the Transformation
Script tab, select Javascript for the transformation type, and enter the transformation as an Inline
 Script.

12.3.2.4. Adding Link Qualifiers to a Mapping
When multiple target objects map to a single source object, identify the type of relationship, or link,
with a link qualifier. For example, one managed user, scarter, has two distinct accounts in an LDAP
directory: a regular user account (scarter) and a test account (scarter-test). You would use a link
qualifier to link both of these LDAP accounts to the single managed user object, scarter.

A link qualifier can be static or scripted (dynamic). Link qualifiers can be used in the evaluation of
different parts of the mapping, including:

• A transformation script for one or more properties.

• The condition logic for one or more properties.

• A correlation query between source and target.

• A situational analysis.

• Policies that are executed.

The sum total of these configurations are used to define how records associated with one link
qualifier differ from another.

Note

Use dynamic link qualifiers where possible. When OpenIDM uses a static list of link qualifiers, it has to search
through each item in the list before synchronizing each entry, which can affect reconciliation performance.

Each link qualifier within a specific mapping must be unique. If no link qualifier is specified (when
only one possible correlating target object exists), OpenIDM uses a default link qualifier with the
value "default".

To set up link qualifier conditions in the Admin UI select Configure > Mappings. Select a mapping,
and click Properties > Link Qualifiers.

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 251

12.3.2.5. Using Conditions in a Mapping

By default, OpenIDM synchronizes all attributes in a mapping. To facilitate more complex
relationships between source and target objects, define specific conditions under which OpenIDM
maps certain attributes. OpenIDM supports two types of mapping conditions:

• Scriptable conditions, in which an attribute is mapped only if the defined script evaluates to true

• Link qualifier conditions, used to distinguish the properties that are to be set only for the identified
link qualifier. For more information, see "Adding Link Qualifiers to a Mapping".

To set up mapping conditions in the Admin UI, select Configure > Mappings. Click the mapping for
which you want to configure conditions. On the Properties tab, click on the attribute that you want to
map, then select the Conditional Updates tab.

Configure the filtered condition on the Condition Filter tab, or a scriptable condition on the Script tab.

12.3.2.5.1. Using Scriptable Conditions

Scriptable conditions create mapping logic, based on the result of the condition script. If the script
does not return true, OpenIDM does not manipulate the target attribute during a synchronization
operation.

In the following excerpt, the value of the target mail attribute is set to the value of the source email
attribute only if the source attribute is not empty:
{
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "source": "email",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
...

Only the source object is in the condition script's scope, so the object.email in this example refers to
the email property of the source object.

Note

Add comments to your mapping file to indicate how the attributes are mapped. This example includes a comment
property but you can use any property whose name is meaningful to you, as long as that property name is not
used elsewhere in the server. OpenIDM simply ignores unknown property names in JSON configuration files.

12.3.2.5.2. Using Link Qualifier Conditions

In addition to these scriptable conditions, you can define specific circumstances in which objects
should be linked by declaring a link qualifier based on individual attributes.

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 252

In the following excerpt, two link qualifiers (user and test) are declared for the managed user to LDAP
mapping. This example assumes two accounts in the LDAP directory, a real user account and a second
test account. Both LDAP accounts should be mapped to the same managed object:
{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : ["user", "test"],
...

If you have alternative sets of link qualifiers for different source records, you could set up a
linkQualifiers.js script. That script should return an array of strings. If you need a link qualifiers
script, the noted sync.json excerpt might look like the following:
{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : {
 "type" : "text/javascript",
 "file" : "script/linkQualifiers.js"
 }
...

The linkQualifiers script can use the following variables:

mapping

The name of the current mapping, as defined in sync.json.

object

The value of the source object. If the source object does not exist, the value is null. For more
information, see "Conditions related to the Object Variable".

oldValue

The former value of the source object, if any. If the source object is new, oldValue will be null.
When there are deleted objects, oldValue will be populated only if the source is managed.

returnAll

A boolean option. If set to true, the script must return all known link qualifiers.

A linkQualifiers.js script

Link qualifier conditions can be used to specify when a target attribute should be set. The following
example sets a default value for the description attribute on a target object, only if the link qualifier to
that target object is test:

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 253

{
 "target" : "description",
 "default": "This is a test account",
 "condition" : "/linkQualifier" eq \"test\""
 }

Use link qualifiers in conjunction with a transformation script to determine how to set or change a
target attribute value. The following excerpt defines a transformation script that generates the value
of the dn attribute on the target objects.

If the link qualifier is user, the value of the target dn is set to "uid=userName,ou=People,dc=example
,dc=com". Otherwise, we assume that the link qualifier is test, and the value of the target dn is set to
"uid=userName-test,ou=People,dc=example,dc=com".

{
 "source": "",
 "target": "dn",
 "transform": {
 "type": "text/javascript",
 "source": "if (linkQualifier === 'user') { 'uid=' + source.userName +
 ',ou=People,dc=example,dc=com'; }
 else { 'uid=' + source.userName + '-test,ou=People,dc=example,dc=com'; }"
 }

A link qualifier can also be used in a correlation query or a correlation script, to determine existing
target objects to associate with the source object. For more information about using link qualifiers in
correlation queries or scripts, see "Correlating Multiple Target Objects".

12.3.2.5.3. Conditions related to the Object Variable

• Assume that the value of the object variable provided in the linkQualifiers script is null during a
sync or a liveSync delete event.

If your source system is an OpenIDM managed object, you can still get all of the details about the
deleted object through its oldValue.

If your source system is external, you will not have access to the oldValue. In that case, you can
mimic the behavior of the returnAll variable, and return all known link qualifiers.

• You can create a linkQualifiers script to first check for the value of returnAll.

If the value is true, make sure that the script does not attempt to use the object variable, as it will
be null.

12.3.2.6. Filtering Synchronized Objects
By default, OpenIDM synchronizes all objects that match those defined in the connector configuration
for the resource. Many connectors allow you to limit the scope of objects that the connector accesses.
For example, the LDAP connector allows you to specify base DNs and LDAP filters so that you do
not need to access every entry in the directory. You can also filter the source or target objects that

Synchronizing Data Between Resources
Configuring the Synchronization Mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 254

are included in a synchronization operation. To apply these filters, use the validSource, validTarget, or
sourceCondition properties in your mapping:

validSource

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates that the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid:
{
 "validSource": {
 "type": "text/javascript",
 "source": "source.ldapPassword != null"
 }
}

validTarget

A script used during reconciliation's second phase that determines if a target object is valid to
be mapped. The script yields a boolean value: true indicates that the target object is valid; false
indicates that the target object should not be included in reconciliation. In the root scope, the
source object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping:
{
 "validTarget": {
 "type": "text/javascript",
 "source": "target.employeeType == 'internal'"
 }
}

sourceCondition

The sourceCondition element defines an additional filter that must be met for a source object's
inclusion in a mapping.

This condition works like a validSource script. Its value can be either a queryFilter string, or a
script configuration. sourceCondition is used principally to specify that a mapping applies only to a
particular role or entitlement.

The following sourceCondition restricts synchronization to those user objects whose account status
is active:
{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "sourceCondition": "/source/accountStatus eq \"active\"",
 ...
 }
]
}

Synchronizing Data Between Resources
Constructing and Manipulating Attributes With Scripts

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 255

During synchronization, your scripts and filters have access to a source object and a target object.
Examples already shown in this section use source.attributeName to retrieve attributes from the source
objects. Your scripts can also write to target attributes using target.attributeName syntax:
{
 "onUpdate": {
 "type": "text/javascript",
 "source": "if (source.email != null) {target.mail = source.email;}"
 }
}

In addition, the sourceCondition filter has the linkQualifier variable in its scope.

For more information about scripting, see "Scripting Reference".

12.3.2.7. Preventing Accidental Deletion of a Target System

If a source resource is empty, the default behavior is to exit without failure and to log a warning
similar to the following:
2015-06-05 10:41:18:918 WARN Cannot reconcile from an empty data
 source, unless allowEmptySourceSet is true.

The reconciliation summary is also logged in the reconciliation audit log.

This behavior prevents reconciliation operations from accidentally deleting everything in a target
resource. In the event that a source system is unavailable but erroneously reports its status as up, the
absence of source objects should not result in objects being removed on the target resource.

When you do want reconciliations of an empty source resource to proceed, override the default
behavior by setting the "allowEmptySourceSet" property to true in the mapping. For example:
{
 "mappings" : [
 {
 "name" : "systemXmlfileAccounts_managedUser",
 "source" : "system/xmlfile/account",
 "allowEmptySourceSet" : true,
 ...

When an empty source is reconciled, the target is wiped out.

12.3.3. Constructing and Manipulating Attributes With Scripts

OpenIDM provides a number of script hooks to construct and manipulate attributes. These scripts
can be triggered during various stages of the synchronization process, and are defined as part of the
mapping, in the sync.json file.

The scripts can be triggered when a managed or system object is created (onCreate), updated
(onUpdate), or deleted (onDelete). Scripts can also be triggered when a link is created (onLink) or
removed (onUnlink).

Synchronizing Data Between Resources
Advanced Use of Scripts in Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 256

In the default synchronization mapping, changes are always written to target objects, not to source
objects. However, you can explicitly include a call to an action that should be taken on the source
object within the script.

Note

The onUpdate script is always called for an UPDATE situation, even if the synchronization process determines
that there is no difference between the source and target objects, and that the target object will not be
updated.

If, subsequent to the onUpdate script running, the synchronization process determines that the target value to
set is the same as its existing value, the change is prevented from synchronizing to the target.

The following sample extract of a sync.json file derives a DN for an LDAP entry when the entry is
created in the internal repository:
{
 "onCreate": {
 "type": "text/javascript",
 "source":
 "target.dn = 'uid=' + source.uid + ',ou=people,dc=example,dc=com'"
 }
}

12.3.4. Advanced Use of Scripts in Mappings
"Constructing and Manipulating Attributes With Scripts" shows how to manipulate attributes with
scripts when objects are created and updated. You might want to trigger scripts in response to
other synchronization actions. For example, you might not want OpenIDM to delete a managed user
directly when an external account record is deleted, but instead unlink the objects and deactivate the
user in another resource. (Alternatively, you might delete the object in OpenIDM but nevertheless
execute a script.) The following example shows a more advanced mapping configuration that exposes
the script hooks available during synchronization.
 1 {
 2 "mappings": [
 3 {
 4 "name": "systemLdapAccount_managedUser",
 5 "source": "system/ldap/account",
 6 "target": "managed/user",
 7 "validSource": {
 8 "type": "text/javascript",
 9 "file": "script/isValid.js"
 10 },
 11 "correlationQuery" : {
 12 "type" : "text/javascript",
 13 "source" : "var map = {'_queryFilter': 'uid eq \"' +
 14 source.userName + '\"'}; map;"
 15 },
 16 "properties": [
 17 {
 18 "source": "uid",
 19 "transform": {
 20 "type": "text/javascript",

Synchronizing Data Between Resources
Advanced Use of Scripts in Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 257

 21 "source": "source.toLowerCase()"
 22 },
 23 "target": "userName"
 24 },
 25 {
 26 "source": "",
 27 "transform": {
 28 "type": "text/javascript",
 29 "source": "if (source.myGivenName)
 30 {source.myGivenName;} else {source.givenName;}"
 31 },
 32 "target": "givenName"
 33 },
 34 {
 35 "source": "",
 36 "transform": {
 37 "type": "text/javascript",
 38 "source": "if (source.mySn)
 39 {source.mySn;} else {source.sn;}"
 40 },
 41 "target": "familyName"
 42 },
 43 {
 44 "source": "cn",
 45 "target": "fullname"
 46 },
 47 {
 48 "comment": "Multi-valued in LDAP, single-valued in AD.
 49 Retrieve first non-empty value.",
 50 "source": "title",
 51 "transform": {
 52 "type": "text/javascript",
 53 "file": "script/getFirstNonEmpty.js"
 54 },
 55 "target": "title"
 56 },
 57 {
 58 "condition": {
 59 "type": "text/javascript",
 60 "source": "var clearObj = openidm.decrypt(object);
 61 ((clearObj.password != null) &&
 62 (clearObj.ldapPassword != clearObj.password))"
 63 },
 64 "transform": {
 65 "type": "text/javascript",
 66 "source": "source.password"
 67 },
 68 "target": "__PASSWORD__"
 69 }
 70],
 71 "onCreate": {
 72 "type": "text/javascript",
 73 "source": "target.ldapPassword = null;
 74 target.adPassword = null;
 75 target.password = null;
 76 target.ldapStatus = 'New Account'"
 77 },
 78 "onUpdate": {
 79 "type": "text/javascript",

Synchronizing Data Between Resources
Advanced Use of Scripts in Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 258

 80 "source": "target.ldapStatus = 'OLD'"
 81 },
 82 "onUnlink": {
 83 "type": "text/javascript",
 84 "file": "script/triggerAdDisable.js"
 85 },
 86 "policies": [
 87 {
 88 "situation": "CONFIRMED",
 89 "action": "UPDATE"
 90 },
 91 {
 92 "situation": "FOUND",
 93 "action": "UPDATE"
 94 },
 95 {
 96 "situation": "ABSENT",
 97 "action": "CREATE"
 98 },
 99 {
100 "situation": "AMBIGUOUS",
101 "action": "EXCEPTION"
102 },
103 {
104 "situation": "MISSING",
105 "action": "EXCEPTION"
106 },
107 {
108 "situation": "UNQUALIFIED",
109 "action": "UNLINK"
110 },
111 {
112 "situation": "UNASSIGNED",
113 "action": "EXCEPTION"
114 }
115]
116 }
117]
118 }

The following list shows the properties that you can use as hooks in mapping configurations to call
scripts:

Triggered by Situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object Filter

vaildSource, validTarget

Correlating Objects

correlationQuery

Synchronizing Data Between Resources
Reusing Links Between Mappings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 259

Triggered on Reconciliation

result

Scripts Inside Properties

condition, transform

Your scripts can get data from any connected system at any time by using the openidm.read(id)
function, where id is the identifier of the object to read.

The following example reads a managed user object from the repository:
repoUser = openidm.read("managed/user/ddoe");

The following example reads an account from an external LDAP resource:
externalAccount = openidm.read("system/ldap/account/uid=ddoe,ou=People,dc=example,dc=com");

Note that the query targets a DN rather than a UID as it did in the previous example. The attribute
that is used for the _id is defined in the connector configuration file and, in this example, is set to
"uidAttribute" : "dn". Although it is possible to use a DN (or any unique attribute) for the _id, as a best
practice, you should use an attribute that is both unique and immutable.

12.3.5. Reusing Links Between Mappings

When two mappings synchronize the same objects bidirectionally, use the links property in one
mapping to have OpenIDM use the same internally managed link for both mappings. If you do not
specify a links property, OpenIDM maintains a separate link for each mapping.

The following excerpt shows two mappings, one from MyLDAP accounts to managed users, and
another from managed users to MyLDAP accounts. In the second mapping, the link property tells
OpenIDM to reuse the links created in the first mapping, rather than create new links:
{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 },
 {
 "name": "managedUser_systemMyLDAPAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "links": "systemMyLDAPAccounts_managedUser"
 }
]
}

Synchronizing Data Between Resources
Managing Reconciliation Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 260

12.4. Managing Reconciliation Over REST
Reconciliation is the bidirectional synchronization of objects between two data stores. You can
trigger, cancel, and monitor reconciliation operations over REST, using the REST endpoint https://
localhost:8443/openidm/recon.

12.4.1. Triggering a Reconciliation Run

The following example triggers a reconciliation operation based on the systemLdapAccounts_managedUser
mapping. The mapping is defined in the file conf/sync.json:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemLdapAccounts_managedUser"

By default, a reconciliation run ID is returned immediately when the reconciliation operation is
initiated. Clients can make subsequent calls to the reconciliation service, using this reconciliation run
ID to query its state and to call operations on it.

The reconciliation run initiated previously would return something similar to the following:
{"_id":"9f4260b6-553d-492d-aaa5-ae3c63bd90f0-14","state":"ACTIVE"}

To complete the reconciliation operation before the reconciliation run ID is returned, set the
waitForCompletion property to true when the reconciliation is initiated:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"

12.4.2. Obtaining the Details of a Reconciliation Run

Display the details of a specific reconciliation run over REST by including the reconciliation run ID
in the URL. The following call shows the details of the reconciliation run initiated in the previous
section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e"
{

Synchronizing Data Between Resources
Canceling a Reconciliation Run

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 261

 "ended": "2014-03-06T07:00:32.094Z",
 "_id": "7a07c100-4f11-4d7e-bf8e-fa4594f99d58",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "links": {
 "created": 0,
 "existing": {
 "total": "1",
 "processed": 1
 }
 },
 "target": {
 "created": 0,
 "existing": {
 "total": "3",
 "processed": 3
 }
 },
 "source": {
 "existing": {
 "total": "1",
 "processed": 1
 }
 }
 },
 "situationSummary": {
 "UNASSIGNED": 2,
 "TARGET_IGNORED": 0,
 "SOURCE_IGNORED": 0,
 "MISSING": 0,
 "FOUND": 0,
 "AMBIGUOUS": 0,
 "UNQUALIFIED": 0,
 "CONFIRMED": 1,
 "SOURCE_MISSING": 0,
 "ABSENT": 0
 },
 "started": "2014-03-06T07:00:31.907Z"
}

12.4.3. Canceling a Reconciliation Run

Cancel a reconciliation run by sending a REST call with the cancel action, specifying the reconciliation
run ID. The following call cancels the reconciliation run initiated in the previous section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e?_action=cancel"

The output for a reconciliation cancellation request is similar to the following:

Synchronizing Data Between Resources
Listing Reconciliation Runs

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 262

{
 "status":"SUCCESS",
 "action":"cancel",
 "_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"
}

If the reconciliation run is waiting for completion before its ID is returned, obtain the reconciliation
run ID from the list of active reconciliations, as described in the following section.

12.4.4. Listing Reconciliation Runs

Display a list of reconciliation processes that have completed, and those that are in progress, by
running a RESTful GET on "https://localhost:8443/openidm/recon". The following example displays all
reconciliation runs:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/recon"

The output is similar to the following, with one item for each reconciliation run:
{
 "reconciliations": [
 {
 "ended": "2014-03-06T06:14:11.845Z",
 "_id": "4286510e-986a-4521-bfa4-8cd1e039a7f5",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "links": {
 "created": 1,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "target": {
 "created": 1,
 "existing": {
 "total": "2",
 "processed": 2
 }
 },
 "source": {
 "existing": {
 "total": "1",
 "processed": 1
 }
 }
 },

Synchronizing Data Between Resources
Listing Reconciliation Runs

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 263

 "situationSummary": {
 "UNASSIGNED": 2,
 "TARGET_IGNORED": 0,
 "SOURCE_IGNORED": 0,
 "MISSING": 0,
 "FOUND": 0,
 "AMBIGUOUS": 0,
 "UNQUALIFIED": 0,
 "CONFIRMED": 0,
 "SOURCE_MISSING": 0,
 "ABSENT": 1
 },
 "started": "2014-03-06T06:14:04.722Z"
 },
]
}

Each reconciliation run has the following properties:

_id

The ID of the reconciliation run.

mapping

The name of the mapping, defined in the conf/sync.json file.

state

The high level state of the reconciliation run. Values can be as follows:

• ACTIVE

The reconciliation run is in progress.

• CANCELED

The reconciliation run was successfully canceled.

• FAILED

The reconciliation run was terminated because of failure.

• SUCCESS

The reconciliation run completed successfully.

stage

The current stage of the reconciliation run's progress. Values can be as follows:

• ACTIVE_INITIALIZED

Synchronizing Data Between Resources
Listing Reconciliation Runs

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 264

The initial stage, when a reconciliation run is first created.

• ACTIVE_QUERY_ENTRIES

Querying the source, target and possibly link sets to reconcile.

• ACTIVE_RECONCILING_SOURCE

Reconciling the set of IDs retrieved from the mapping source.

• ACTIVE_RECONCILING_TARGET

Reconciling any remaining entries from the set of IDs retrieved from the mapping target, that
were not matched or processed during the source phase.

• ACTIVE_LINK_CLEANUP

Checking whether any links are now unused and should be cleaned up.

• ACTIVE_PROCESSING_RESULTS

Post-processing of reconciliation results.

• ACTIVE_CANCELING

Attempting to abort a reconciliation run in progress.

• COMPLETED_SUCCESS

Successfully completed processing the reconciliation run.

• COMPLETED_CANCELED

Completed processing because the reconciliation run was aborted.

• COMPLETED_FAILED

Completed processing because of a failure.

stageDescription

A description of the stages described previously.

progress

The progress object has the following structure (annotated here with comments):

Synchronizing Data Between Resources
Triggering LiveSync Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 265

"progress":{
 "source":{ // Progress on set of existing entries in the mapping source
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in source set, if known, "?" otherwise
 }
 },
 "target":{ // Progress on set of existing entries in the mapping target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in target set, if known, "?" otherwise
 },
 "created":0 // New entries that were created
 },
 "links":{ // Progress on set of existing links between source and target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of existing links, if known, "?" otherwise
 },
 "created":0 // Denotes new links that were created
 }
},

12.4.5. Triggering LiveSync Over REST

Because you can trigger liveSync operations over REST (or by using the resource API) you can use
an external scheduler to trigger liveSync operations, rather than using the OpenIDM scheduling
mechanism.

There are two ways to trigger liveSync over REST:

• Use the _action=liveSync parameter directly on the resource. This is the recommended method. The
following example calls liveSync on the user accounts in an external LDAP system:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=liveSync"

• Target the system endpoint and supply a source parameter to identify the object that should be
synchronized. This method matches the scheduler configuration and can therefore be used to test
schedules before they are implemented.

The following example calls the same liveSync operation as the previous example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=liveSync&source=system/ldap/account"

Synchronizing Data Between Resources
Restricting Reconciliation By Using Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 266

A successful liveSync operation returns the following response:
{
 "_rev": "4",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 1
 }
}

Do not run two identical liveSync operations simultaneously. Rather ensure that the first operation
has completed before a second similar operation is launched.

To troubleshoot a liveSync operation that has not succeeded, include an optional parameter
(detailedFailure) to return additional information. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=liveSync&detailedFailure=true"

Note

The first time liveSync is called, it does not have a synchronization token in the database to establish which
changes have already been processed. The default liveSync behavior is to locate the last existing entry in the
change log, and to store that entry in the database as the current starting position from which changes should
be applied. This behavior prevents liveSync from processing changes that might already have been processed
during an initial data load. Subsequent liveSync operations will pick up and process any new changes.

Typically, in setting up liveSync on a new system, you would load the data initially (by using reconciliation, for
example) and then enable liveSync, starting from that base point.

12.5. Restricting Reconciliation By Using Queries
Every reconciliation operation performs a query on the source and on the target resource, to
determine which records should be reconciled. The default source and target queries are query-all-
ids, which means that all records in both the source and the target are considered candidates for that
reconciliation operation.

You can restrict reconciliation to specific entries by defining explicit source or target queries in the
mapping configuration.

To restrict reconciliation to only those records whose employeeType on the source resource is Permanent,
you might specify a source query as follows:

Synchronizing Data Between Resources
Restricting Reconciliation By Using Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 267

"mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
...

The format of the query can be any query type that is supported by the resource, and can include
additional parameters, if applicable. OpenIDM 4 supports the following query types.

For queries on managed objects:

• _queryId for arbitrary predefined, parameterized queries

• _queryFilter for arbitrary filters, in common filter notation

• _queryExpression for client-supplied queries, in native query format

For queries on system objects:

• _queryId=query-all-ids (the only supported predefined query)

• _queryFilter for arbitrary filters, in common filter notation

The source and target queries send the query to the resource that is defined for that source or target,
by default. You can override the resource the query is to sent by specifying a resourceName in the
query. For example, to query a specific endpoint instead of the source resource, you might modify the
preceding source query as follows:
"mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "resourceName" : "endpoint/scriptedQuery"
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
...

To override a source or target query that is defined in the mapping, you can specify the query when
you call the reconciliation operation. If you wanted to reconcile all employee entries, and not just the
permanent employees, you would run the reconciliation operation as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"sourceQuery": {"_queryId" : "query-all-ids"}}' \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=managedUser_systemLdapAccounts"

Synchronizing Data Between Resources
Improving Reconciliation Performance

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 268

By default, a reconciliation operation runs both the source and target phase. To avoid queries on
the target resource, set runTargetPhase to false in the mapping configuration (conf/sync.json file). To
prevent the target resource from being queried during the reconciliation operation configured in the
previous example, amend the mapping configuration as follows:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
 "runTargetPhase" : false,
 ...

You can also restrict reconciliation by using queries through the Admin UI. Select Configure >
Mappings, select a Mapping > Association > Reconciliation Query Filters. You can then specify
desired source and target queries.

12.5.1. Improving Reconciliation Performance

Reconciliation is designed to be highly performant out of the box. You can, however, improve
performance further, depending on your OpenIDM deployment. This section describes two ways of
boosting the reconciliation performance.

12.5.1.1. Improving Reconciliation Query Performance

Reconciliation operations are processed in two phases; a source phase and a target phase. In most
reconciliation configurations, source and target queries make a read call to every record on the
source and target systems to determine candidates for reconciliation. On slow source or target
systems, these frequent calls can incur a substantial performance cost.

To improve query performance in these situations, you can preload the entire result set into memory
on the source or target system, or on both systems. Subsequent read queries on known IDs are made
against the data in memory, rather than the data on the remote system. For this optimization to
be effective, the entire result set must fit into the available memory on the system for which it is
enabled.

The optimization works by defining a sourceQuery or targetQuery in the synchronization mapping that
returns not just the ID, but the complete object.

The following example query loads the full result set into memory during the source phase of the
reconciliation. The example uses a common filter expression, called with the _queryFilter keyword.
The query returns the complete object for all entries that include a uid (uid sw ""):

Synchronizing Data Between Resources
Improving Reconciliation Performance

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 269

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "uid sw \"\""
 },
 ...

OpenIDM tries to detect what data has been returned. The autodetection mechanism assumes that a
result set that includes three or more fields per object (apart from the _id and rev fields) contains the
complete object.

You can explicitly state whether a query is configured to return complete objects by setting the value
of sourceQueryFullEntry or targetQueryFullEntry in the mapping. The setting of these properties overrides
the autodetection mechanism.

Setting these properties to false indicates that the returned object is not the complete object. This
might be required if a query returns more than three fields of an object, but not the complete object.
Without this setting, the autodetect logic would assume that the complete object was being returned.
OpenIDM uses only the IDs from this query result. If the complete object is required, the object is
queried on demand.

Setting these properties to true indicates that the complete object is returned. This setting is typically
required only for very small objects, for which the number of returned fields does not reach the
threshold required for the auto-detection mechanism to assume that it is a full object. In this case, the
query result includes all the details required to pre-load the full object.

The following excerpt indicates that the full objects are returned and that OpenIDM should not
autodetect the result set:
"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQueryFullEntry" : true,
 "sourceQuery" : {
 "_queryFilter" : "uid sw \"\""
 },
 ...

12.5.1.2. Improving Role-Based Provisioning Performance With an onRecon Script

OpenIDM provides an onRecon script that runs once, at the beginning of each reconciliation. This script
can perform any setup or initialization operations that are appropriate for the reconciliation run.

In addition, OpenIDM provides a reconContext that is added to a request's context chain when
reconciliation runs. The reconContext can store pre-loaded data that can be used by other OpenIDM
components (such as the managed object service) to increase performance.

Synchronizing Data Between Resources
Configuring Reconciliation Paging

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 270

The default onRecon script (openidm/bin/default/script/roles/onRecon.groovy) loads the reconContext with
all the roles and assignments that are required for the current mapping. The effectiveAssignments
script checks the reconContext first. If a reconContext is present, the script uses that reconContext to
populate the array of effectiveAssignments. This prevents a read operation to managed/role or managed/
assignment every time reconciliation runs, and greatly improves the overall performance for role-based
provisioning.

You can customize the onRecon, effectiveRoles, and effectiveAssignments scripts to provide additional
business logic during reconciliation. If you customize these scripts, copy the default scripts from
openidm/bin/defaults/scripts into your project's script directory, and make the changes there.

12.5.2. Configuring Reconciliation Paging

"Improving Reconciliation Query Performance" describes how to improve reconciliation performance
by loading all entries into memory to avoid making individual requests to the external system for
every ID. However, this optimization depends on the entire result set fitting into the available
memory on the system for which it is enabled. For particularly large data sets (for example, data sets
of hundreds of millions of users), having the entire data set in memory might not be feasible.

To alleviate this constraint, OpenIDM supports reconciliation paging, which breaks down extremely
large data sets into chunks. It also lets you specify the number of entries that should be reconciled in
each chunk or page.

Reconciliation paging is disabled by default, and can be enabled per mapping (in the sync.json
file). To configure reconciliation paging, set the reconSourceQueryPaging property to true and set the
reconSourceQueryPageSize in the synchronization mapping, for example:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "reconSourceQueryPaging" : true,
 "reconSourceQueryPageSize" : 100,
 ...
 }

The value of reconSourceQueryPageSize must be a positive integer, and specifies the number of entries
that will be processed in each page. If reconciliation paging is enabled but no page size is set, a
default page size of 1000 is used.

12.6. Restricting Reconciliation to a Specific ID
You can specify an ID to restrict reconciliation to a specific record in much the same way as you
restrict reconciliation by using queries.

Synchronizing Data Between Resources
Configuring the LiveSync Retry Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 271

To restrict reconciliation to a specific ID, use the reconById action, instead of the recon action when you
call the reconciliation operation. Specify the ID with the ids parameter. Reconciling more than one ID
with the reconById action is not currently supported.

The following example is based on the data from Sample 2b, which maps an LDAP server
with the OpenIDM repository. The example reconciles only the user bjensen, using the
managedUser_systemLdapAccounts mapping to update the user account in LDAP with the data from the
OpenIDM repository. The _id for bjensen in this example is b3c2f414-e7b3-46aa-8ce6-f4ab1e89288c. The
example assumes that implicit synchronization has been disabled and that a reconciliation operation
is required to copy changes made in the repository to the LDAP system:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon?
_action=reconById&mapping=managedUser_systemLdapAccounts&ids=b3c2f414-e7b3-46aa-8ce6-f4ab1e89288c"

Reconciliation by ID takes the default reconciliation options that are specified in the mapping so
the source and target queries, and source and target phases described in the previous section apply
equally to reconciliation by ID.

12.7. Configuring the LiveSync Retry Policy
You can specify the results when a liveSync operation reports a failure. Configure the liveSync
retry policy to specify the number of times a failed modification should be reattempted and what
should happen if the modification is unsuccessful after the specified number of attempts. If no retry
policy is configured, OpenIDM reattempts the change an infinite number of times until the change is
successful. This behavior can increase data consistency in the case of transient failures (for example,
when the connection to the database is temporarily lost). However, in situations where the cause
of the failure is permanent (for example, if the change does not meet certain policy requirements)
the change will never succeed, regardless of the number of attempts. In this case, the infinite retry
behavior can effectively block subsequent liveSync operations from starting.

Generally, a scheduled reconciliation operation will eventually force consistency. However, to
prevent repeated retries that block liveSync, restrict the number of times OpenIDM reattempts
the same modification. You can then specify what OpenIDM does with failed liveSync changes. The
failed modification can be stored in a dead letter queue, discarded, or reapplied. Alternatively, an
administrator can be notified of the failure by email or by some other means. This behavior can
be scripted. The default configuration in the samples provided with OpenIDM is to retry a failed
modification five times, and then to log and ignore the failure.

The liveSync retry policy is configured in the connector configuration file (provisioner.openicf-*.json).
The sample connector configuration files have a retry policy defined as follows:

Synchronizing Data Between Resources
Configuring the LiveSync Retry Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 272

"syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
},

The maxRetries field specifies the number of attempts that OpenIDM should make to process the failed
modification. The value of this property must be a positive integer, or -1. A value of zero indicates
that failed modifications should not be reattempted. In this case, the post-retry action is executed
immediately when a liveSync operation fails. A value of -1 (or omitting the maxRetries property, or the
entire syncFailureHandler from the configuration) indicates that failed modifications should be retried
an infinite number of times. In this case, no post retry action is executed.

The default retry policy relies on the scheduler, or whatever invokes liveSync. Therefore, if retries
are enabled and a liveSync modification fails, OpenIDM will retry the modification the next time that
liveSync is invoked.

The postRetryAction field indicates what OpenIDM should do if the maximum number of retries has
been reached (or if maxRetries has been set to zero). The post-retry action can be one of the following:

• logged-ignore indicates that OpenIDM should ignore the failed modification, and log its occurrence.

• dead-letter-queue indicates that OpenIDM should save the details of the failed modification in a table
in the repository (accessible over REST at repo/synchronisation/deadLetterQueue/provisioner-name).

• script specifies a custom script that should be executed when the maximum number of retries
has been reached. For information about using custom scripts in the configuration, see "Scripting
Reference".

In addition to the regular objects described in "Scripting Reference", the following objects are
available in the script scope:

syncFailure

Provides details about the failed record. The structure of the syncFailure object is as follows:
"syncFailure" :
 {
 "token" : the ID of the token,
 "systemIdentifier" : a string identifier that matches the "name" property in
 provisioner.openicf.json,
 "objectType" : the object type being synced, one of the keys in the
 "objectTypes" property in provisioner.openicf.json,
 "uid" : the UID of the object (for example uid=joe,ou=People,dc=example,dc=com),
 "failedRecord", the record that failed to synchronize
 },

To access these fields, include syncFailure.fieldname in your script.

failureCause

Provides the exception that caused the original liveSync failure.

Synchronizing Data Between Resources
Configuring the LiveSync Retry Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 273

failureHandlers

OpenIDM currently provides two synchronization failure handlers out of the box:

• loggedIgnore indicates that the failure should be logged, after which no further action should
be taken.

• deadLetterQueue indicates that the failed record should be written to a specific table in the
repository, where further action can be taken.

To invoke one of the internal failure handlers from your script, use a call similar to the
following (shown here for JavaScript):
failureHandlers.deadLetterQueue.invoke(syncFailure, failureCause);

Two sample scripts are provided in path/to/openidm/samples/syncfailure/script, one that logs failures,
and one that sends them to the dead letter queue in the repository.

The following sample provisioner configuration file extract shows a liveSync retry policy that specifies
a maximum of four retries before the failed modification is sent to the dead letter queue:
...
"connectorName" : "org.identityconnectors.ldap.LdapConnector"
 },

 "syncFailureHandler" : {
 "maxRetries" : 4,
 "postRetryAction" : dead-letter-queue
 },
 "poolConfigOption" : {
...

In the case of a failed modification, a message similar to the following is output to the log file:
INFO: sync retries = 1/4, retrying

OpenIDM reattempts the modification the specified number of times. If the modification is still
unsuccessful, a message similar to the following is logged:
INFO: sync retries = 4/4, retries exhausted
Jul 19, 2013 11:59:30 AM
 org.forgerock.openidm.provisioner.openicf.syncfailure.DeadLetterQueueHandler invoke
INFO: uid=jdoe,ou=people,dc=example,dc=com saved to dead letter queue

The log message indicates the entry for which the modification failed (uid=jdoe, in this example).

You can view the failed modification in the dead letter queue, over the REST interface, as follows:

Synchronizing Data Between Resources
Disabling Automatic Synchronization Operations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 274

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/synchronisation/deadLetterQueue/ldap?_queryId=query-all-ids"
{
 "query-time-ms": 2,
 "result":
 [
 {
 "_id": "4",
 "_rev": "0"
 }
],
 "conversion-time-ms": 0
}

To view the details of a specific failed modification, include its ID in the URL:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/synchronisation/deadLetterQueue/ldap/4"
{
 "objectType": "account",
 "systemIdentifier": "ldap",
 "failureCause": "org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ConflictException:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.script.ScriptException:
 ReferenceError: \"bad\" is not defined.
 (PropertyMapping/mappings/0/properties/3/condition#1)",
 "token": 4,
 "failedRecord": "complete record, in xml format"
 "uid": "uid=jdoe,ou=people,dc=example,dc=com",
 "_rev": "0",
 "_id": "4"
}

12.8. Disabling Automatic Synchronization Operations
By default, all mappings are automatically synchronized. A change to a managed object is
automatically synchronized to all resources for which the managed object is configured as a source.
Similarly, if liveSync is enabled for a system, changes to an object on that system are automatically
propagated to the managed object repository.

To prevent automatic synchronization for a specific mapping, set the enableSync property of that
mapping to false. In the following example, implicit synchronization is disabled. This means that
changes to objects in the internal repository are not automatically propagated to the LDAP directory.
To propagate changes to the LDAP directory, reconciliation must be launched manually:

Synchronizing Data Between Resources
Configuring Synchronization Failure Compensation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 275

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableSync" : false,

}

If enableSync is set to false for a system to managed user mapping (for example
"systemLdapAccounts_managedUser"), liveSync is disabled for that mapping.

12.9. Configuring Synchronization Failure Compensation
When implicit synchronization is used to push a large number of changes from the managed object
repository to several external repositories, the process can take some time. Problems such as lost
connections might happen, resulting in the changes being only partially synchronized.

For example, if a Human Resources manager adds a group of new employees in one database, a
partial synchronization might mean that some of those employees do not have access to their email or
other systems.

You can configure implicit synchronization to revert a reconciliation operation if it is not completely
successful. This is known as failure compensation. An example of such a configuration is shown in
"Sample 5b - Failure Compensation With Multiple Resources" in the Samples Guide. That sample
demonstrates how OpenIDM compensates when synchronization to an external resource fails.

Failure compensation works by using the optional onSync hook, which can be specified in the conf/
managed.json file. The onSync hook can be used to provide failure compensation as follows:
...
"onDelete" : {
 "type" : "text/javascript",
 "file" : "ui/onDelete-user-cleanup.js"
 },
"onSync" : {
 "type" : "text/javascript",
 "file" : "compensate.js"
 },
"properties" : [
 ...

The onSync hook references a script (compensate.js), that is located in the /path/to/openidm/bin/defaults/
script directory.

When a managed object is changed, an implicit synchronization operation attempts to synchronize
the change (and any other pending changes) with any external data store(s) for which a mapping
is configured. Note that implicit synchronization is enabled by default. To disable implicit
synchronization, see "Disabling Automatic Synchronization Operations".

Synchronizing Data Between Resources
Synchronization Situations and Actions

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 276

The implicit synchronization process proceeds with each mapping, in the order in which the
mappings are specified in sync.json.

The compensate.js script is designed to avoid partial synchronization. If synchronization is successful
for all configured mappings, OpenIDM exits from the script.

If an implicit synchronization operation fails for a particular resource, the onSync hook invokes the
compensate.js script. This script attempts to revert the original change by performing another update
to the managed object. This change, in turn, triggers another implicit synchronization operation to all
external resources for which mappings are configured.

If the synchronization operation fails again, the compensate.js script is triggered a second time.
This time, however, the script recognizes that the change was originally called as a result of a
compensation and aborts. OpenIDM logs warning messages related to the sync action (notifyCreate,
 notifyUpdate, notifyDelete), along with the error that caused the sync failure.

If failure compensation is not configured, any issues with connections to an external resource can
result in out of sync data stores, as discussed in the earlier Human Resources example.

With the compensate.js script, any such errors will result in each data store using the information it
had before implicit synchronization started. OpenIDM stores that information, temporarily, in the
oldObject variable.

In the previous Human Resources example, managers should see that new employees are not shown
in their database. Then, the OpenIDM administrators can check log files for errors, address them, and
restart implicit synchronization with a new REST call.

12.10. Synchronization Situations and Actions
During synchronization, OpenIDM categorizes objects according to their situation. Situations are
characterized according to the following criteria:

• Does the object exist on a source or target system?

• Has OpenIDM registered a link between the source object and the target object?

• Is the object considered valid, as assessed by the validSource and validTarget scripts?

OpenIDM then takes a specific action, depending on the situation.

You can define actions for particular situations in the policies section of a synchronization mapping,
as shown in the following excerpt from the sync.json file of Sample 2b:
{
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {

Synchronizing Data Between Resources
Synchronization Situations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 277

 "situation": "FOUND",
 "action": "LINK"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "SOURCE_MISSING",
 "action": "DELETE"
 {
 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
}

If you do not define a policy for a particular situation, OpenIDM takes the default action for the
situation. The default actions for each situation are listed in "Synchronization Situations".

The following sections describe the possible situations and their default corresponding actions. You
can also view these situations and actions in the Admin UI by selecting Configure > Mappings. Click
on a Mapping, then update the Policies on the Behaviors tab.

12.10.1. Synchronization Situations

OpenIDM performs reconciliation in two phases:

1. Source reconciliation, where OpenIDM accounts for source objects and associated links based on
the configured mapping.

2. Target reconciliation, where OpenIDM iterates over the target objects that were not processed in
the first phase.

During source reconciliation, OpenIDM builds three lists, assigning values to the objects to reconcile:

1. All valid objects from the source.

OpenIDM assigns valid source objects qualifies=1. Invalid objects, including those that were
not found in the source system and those that were filtered out by the script specified in the
validSource property, are assigned qualifies=0.

Synchronizing Data Between Resources
Synchronization Situations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 278

2. All records from the appropriate links table.

Objects that have a corresponding link in the links table of the repository are assigned link=1.
Objects that do not have a corresponding link are assigned link=0.

3. All valid objects on the target system.

Objects that are found in the target system are assigned target=1. Objects that are not found in the
target system are assigned target=0.

Based on the values assigned to objects during source reconciliation, OpenIDM assigns situations,
listed here with default and appropriate alternative actions:

Situations detected during reconciliation and change events:

CONFIRMED (qualifies=1, link=1, target=1)

The source object qualifies for a target object, and is linked to an existing target object.

Default action: UPDATE the target object.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

FOUND (qualifies=1, link=0, target=1)

The source object qualifies for a target object and is not linked to an existing target object.
There is a single target object that correlates with this source object, according to the logic in
the correlation.

Default action: UPDATE the target object.

Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

FOUND_ALREADY_LINKED (qualifies=1, link=1, target=1)

The source object qualifies for a target object and is not linked to an existing target object.
There is a single target object that correlates with this source object, according to the logic in
the correlation, but that target object is already linked to a different source object.

Default action: throw an EXCEPTION.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

ABSENT (qualifies=1, link=0, target=0)

The source object qualifies for a target object, is not linked to an existing target object, and
no correlated target object is found.

Default action: CREATE a target object.

Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

Synchronizing Data Between Resources
Synchronization Situations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 279

UNQUALIFIED (qualifies=0, link=0 or 1, target=1 or >1)

The source object is unqualified (by the "validSource" script). One or more target objects are
found through the correlation logic.

Default action: DELETE the target object or objects.

Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

Situations detected during reconciliation and source object changes:

AMBIGUOUS (qualifies=1, link=0, target>1)

The source object qualifies for a target object, is not linked to an existing target object, but
there is more than one correlated target object (that is, more than one possible match on the
target system).

Default action: throw an EXCEPTION.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

MISSING (qualifies=1, link=1, target=0)

The source object qualifies for a target object, and is linked to a target object, but the target
object is missing.

Default action: throw an EXCEPTION.

Other valid actions: CREATE, UNLINK, IGNORE, REPORT, NOREPORT, ASYNC

Note

When a target object is deleted, the link from the target to the corresponding source object is not
deleted automatically. This lets OpenIDM detect and report items that might have been removed
without permission or might need review. If you need to remove the corresponding link when a target
object is deleted, define a back-mapping so that OpenIDM can identify the deleted object as a source
object, and remove the link.

SOURCE_IGNORED (qualifies=0, link=0, target=0)

The source object is unqualified (by the validSource script), no link is found, and no correlated
target exists.

Default action: IGNORE the source object.

Other valid actions: EXCEPTION, REPORT, NOREPORT, ASYNC

Situations detected only during source object changes:

TARGET_IGNORED (qualifies=0, link=0 or 1, target=1)

The source object is unqualified (by the validSource script). One or more target objects are
found through the correlation logic.

Synchronizing Data Between Resources
Synchronization Situations

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 280

This situation differs from the UNQUALIFIED situation, based on the status of the link and the
target. If there is a link, the target is not valid. If there is no link and exactly one target, that
target is not valid.

Default action: IGNORE the target object until the next full reconciliation operation.

Other valid actions: DELETE, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC

LINK_ONLY (qualifies=n/a, link=1, target=0)

The source may or may not be qualified. A link is found, but no target object is found.

Default action: throw an EXCEPTION.

Other valid actions: UNLINK, IGNORE, REPORT, NOREPORT, ASYNC

ALL_GONE (qualifies=n/a, link=0, cannot-correlate)

The source object has been removed. No link is found. Correlation is not possible, for one of
the following reasons:

• No previous source value can be found.

• There is no correlation logic used.

• A previous value was found, and correlation logic exists, but no corresponding target was
found.

Default action: IGNORE the source object.

Other valid actions: EXCEPTION, REPORT, NOREPORT, ASYNC

During target reconciliation, OpenIDM assigns the following values as it iterates through the target
objects that were not accounted for during the source reconciliation:

1. Valid objects from the target.

OpenIDM assigns valid target objects qualifies=1. Invalid objects, including those that are filtered
out by the script specified in the validTarget property, are assigned qualifies=0.

2. All records from the appropriate links table.

Objects that have a corresponding link in the links table of the repository are assigned link=1.
Objects that do not have a corresponding link are assigned link=0.

3. All valid objects on the source system.

Objects that are found in the source system are assigned source=1. Objects that are not found in
the source system are assigned source=0.

Based on the values that are assigned to objects during the target reconciliation phase, OpenIDM
assigns situations, listed here with their default actions:

Synchronizing Data Between Resources
Source Reconciliation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 281

Situations detected only during reconciliation:

TARGET_IGNORED (qualifies=0)

During target reconciliation, the target becomes unqualified by the validTarget script.

Default action: IGNORE the target object.

Other valid actions: DELETE, UNLINK, REPORT, NOREPORT, ASYNC

UNASSIGNED (qualifies=1, link=0)

A valid target object exists but does not have a link.

Default action: throw an EXCEPTION.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

CONFIRMED (qualifies=1, link=1, source=1)

The target object qualifies, and a link to a source object exists.

Default action: UPDATE the target object.

Other valid actions: IGNORE, REPORT, NOREPORT

Situations detected during reconciliation and change events:

UNQUALIFIED (qualifies=0, link=1, source=1, but source does not qualify)

The target object is unqualified (by the validTarget script). There is a link to an existing source
object, which is also unqualified.

Default action: DELETE the target object.

Other valid actions: UNLINK, EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

SOURCE_MISSING (qualifies=1, link=1, source=0)

The target object qualifies and a link is found, but the source object is missing.

Default action: throw an EXCEPTION.

Other valid actions: DELETE, UNLINK, IGNORE, REPORT, NOREPORT, ASYNC

The following sections walk you through how OpenIDM assigns situations during source and target
reconciliation.

12.10.2. Source Reconciliation
OpenIDM starts reconciliation and liveSync by reading a list of objects from the resource. For
reconciliation, the list includes all objects that are available through the connector. For liveSync,
the list contains only changed objects. OpenIDM can filter objects from the list by using the script
specified in the validSource property, or the query specified in the sourceCondition property.

Synchronizing Data Between Resources
Target Reconciliation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 282

OpenIDM then iterates the list, checking each entry against the validSource and sourceCondition filters,
and classifying objects according to their situations as described in "Synchronization Situations".
OpenIDM uses the list of links for the current mapping to classify objects. Finally, OpenIDM executes
the action that is configured for each situation.

The following table shows how OpenIDM assigns the appropriate situation during source
reconciliation, depending on whether a valid source exists (Source Qualifies), whether a link exists in
the repository (Link Exists), and the number of target objects found, based either on links or on the
results of the correlation.

Resolving Source Reconciliation Situations

Source Qualifies? Link Exists? Target Objects Founda

Yes No Yes No 0 1 > 1
Situation

 X X X SOURCE_MISSING
 X X X UNQUALIFIED
 X X X UNQUALIFIED
 X X X TARGET_IGNORED
 X X X UNQUALIFIED
X X X ABSENT
X X X FOUND
X Xb X FOUND_ALREADY_LINKED
X X X AMBIGUOUS
X X X MISSING
X X X CONFIRMED

aIf no link exists for the source object, then OpenIDM executes correlation logic. If no previous object is available, OpenIDM
cannot correlate.
bA link exists from the target object but it is not for this specific source object.

12.10.3. Target Reconciliation
During source reconciliation, OpenIDM cannot detect situations where no source object exists, such
as the UNASSIGNED situation. When no source object exists, OpenIDM detects the situation during the
second reconciliation phase, target reconciliation. During target reconciliation, OpenIDM iterates
all target objects that do not have a representation on the source, checking each object against the
validTarget filter, determining the appropriate situation and executing the action configured for the
situation.

The following table shows how OpenIDM assigns the appropriate situation during target
reconciliation, depending on whether a valid target exists (Target Qualifies), whether a link with an
appropriate type exists in the repository (Link Exists), whether a source object exists (Source Exists),
and whether the source object qualifies (Source Qualifies). Not all situations assigned during source
reconciliation are assigned during target reconciliation.

Synchronizing Data Between Resources
Situations Specific to Implicit Synchronization and LiveSync

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 283

Resolving Target Reconciliation Situations

Target
Qualifies?

Link Exists? Source Exists? Source
Qualifies?

Yes No Yes No Yes No Yes No

Situation

 X TARGET_IGNORED
X X X UNASSIGNED
X X X X CONFIRMED
X X X X UNQUALIFIED
X X X SOURCE_MISSING

12.10.4. Situations Specific to Implicit Synchronization and LiveSync

Certain situations occur only during implicit synchronization (when OpenIDM pushes changes made
in the repository out to external systems) and liveSync (when OpenIDM polls external system change
logs for changes and updates the repository).

The following table shows the situations that pertain only to implicit sync and liveSync, when records
are deleted from the source or target resource.

Resolving Implicit Sync and LiveSync Delete Situations

Source Qualifies? Link Exists? Target Objects Found a

Yes No Yes No 0 1 > 1
Situation

N/A N/A X X LINK_ONLY
N/A N/A X X ALL_GONE
X X X AMBIGUOUS
 X X X UNQUALIFIED

a If no link exists for the source object, OpenIDM executes any included correlation logic. If a link exists, correlation does not
apply.

12.10.5. Synchronization Actions

When a situation has been assigned to an object, OpenIDM takes the actions configured in the
mapping. If no action is configured, OpenIDM takes the default action for the situation. OpenIDM
supports the following actions:

CREATE

Create and link a target object.

Synchronizing Data Between Resources
Launching a Script As an Action

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 284

UPDATE

Link and update a target object.

DELETE

Delete and unlink the target object.

LINK

Link the correlated target object.

UNLINK

Unlink the linked target object.

EXCEPTION

Flag the link situation as an exception.

Do not use this action for liveSync mappings.

IGNORE

Do not change the link or target object state.

REPORT

Do not perform any action but report what would happen if the default action were performed.

NOREPORT

Do not perform any action or generate any report.

ASYNC

An asynchronous process has been started so do not perform any action or generate any report.

12.10.6. Launching a Script As an Action

In addition to the static synchronization actions described in the previous section, you can provide a
script that is run in specific synchronization situations. The script can be either JavaScript or Groovy,
and can be provided inline (with the "source" property), or referenced from a file, (with the "file"
property).

The following excerpt of a sample sync.json file specifies that an inline script should be invoked
when a synchronization operation assesses an entry as ABSENT in the target system. The script checks

Synchronizing Data Between Resources
Launching a Workflow As an Action

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 285

whether the employeeType property of the corresponding source entry is contractor. If so, the entry is
ignored. Otherwise, the entry is created on the target system:
{
 "situation" : "ABSENT",
 "action" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (source.employeeType === "contractor") {action='IGNORE'}
 else {action='CREATE'};action;"
 },
}

The variables available to a script that is called as an action are source, target, linkQualifier, and recon
(where recon.actionParam contains information about the current reconciliation operation). For more
information about the variables available to scripts, see "Variables Available to Scripts".

The result obtained from evaluating this script must be a string whose value is one of the
synchronization actions listed in "Synchronization Actions". This resulting action will be shown in the
reconciliation log.

To launch a script as a synchronization action in the Admin UI:

1. Select Configure > Mappings.

2. Select the mapping that you want to change.

3. On the Behaviors tab, click the pencil icon next to the situation whose action you want to change.

4. On the Perform this Action tab, click Script, then enter the script that corresponds to the action.

12.10.7. Launching a Workflow As an Action

OpenIDM provides a default script (triggerWorkflowFromSync.js) that launches a predefined workflow
when a synchronization operation assesses a particular situation. The mechanism for triggering this
script is the same as for any other script. The script is provided in the openidm/bin/defaults/script/
workflow directory. If you customize the script, copy it to the script directory of your project to ensure
that your customizations are preserved during an upgrade.

The parameters for the workflow are passed as properties of the action parameter.

The following extract of a sample sync.json file specifies that, when a synchronization operation
assesses an entry as ABSENT, the workflow named managedUserApproval is invoked:
{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

Synchronizing Data Between Resources
Using Link Qualifiers in Policies

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 286

To launch a workflow as a synchronization action in the Admin UI:

1. Select Configure > Mappings.

2. Select the mapping that you want to change.

3. On the Behaviors tab, click the pencil icon next to the situation whose action you want to change.

4. On the Perform this Action tab, click Workflow, then enter the details of the workflow you want to
launch.

12.10.8. Using Link Qualifiers in Policies

If you have configured managed objects such as users with more than one account, you can set
different policies, per link qualifier, in the sync.json file.

The process is similar to what is described in "Adding Link Qualifiers to a Mapping".

You can choose from the list of linkQualifiers defined near the start of the sync.json file. The following
excerpt shows two linkQualifiers: user and test:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "linkQualifiers" : [
 "user",
 "test"
],
 "properties" : [
 ...

You can see different ABSENT actions for each link qualifier in the policies section of that file:

 "policies" : [
 {
 "situation" : "CONFIRMED",
 "action" : "IGNORE"
 },
 {
 "situation" : "FOUND",
 "action" : "IGNORE
 }
 {
 "condition" : "/linkQualifier eq \"user\""
 }
 "situation" : "ABSENT",
 "action" : "IGNORE",
 "postAction" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Ignored user: \');"

Synchronizing Data Between Resources
Asynchronous Reconciliation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 287

 }
 },
 {
 "condition : {
 "filter" : "/linkQualifier eq \"test\""
 }
 "situation" : "ABSENT",
 "action" : "CREATE",
 "postAction" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Created user: ');"
 }
 },
 ...

12.11. Asynchronous Reconciliation
Reconciliation can work in tandem with workflows to provide additional business logic to the
reconciliation process. You can define scripts to determine the action that should be taken for
a particular reconciliation situation. A reconciliation process can launch a workflow after it has
assessed a situation, and then perform the reconciliation or some other action.

For example, you might want a reconciliation process to assess new user accounts that need to
be created on a target resource. However, new user account creation might require some kind of
approval from a manager before the accounts are actually created. The initial reconciliation process
can assess the accounts that need to be created, launch a workflow to request management approval
for those accounts, and then relaunch the reconciliation process to create the accounts, after the
management approval has been received.

In this scenario, the defined script returns IGNORE for new accounts and the reconciliation engine does
not continue processing the given object. The script then initiates an asynchronous process which
calls back and completes the reconciliation process at a later stage.

A sample configuration for this scenario is available in openidm/samples/sample9, and described in
"Workflow Sample - Demonstrating Asynchronous Reconciling Using a Workflow" in the Samples
Guide.

Configuring asynchronous reconciliation using a workflow involves the following steps:

1. Create the workflow definition file (.xml or .bar file) and place it in the openidm/workflow directory.
For more information about creating workflows, see "Integrating Business Processes and
Workflows".

2. Modify the conf/sync.json file for the situation or situations that should call the workflow.
Reference the workflow name in the configuration for that situation.

For example, the following sync.json extract calls the managedUserApproval workflow if the situation is
assessed as ABSENT:

Synchronizing Data Between Resources
Asynchronous Reconciliation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 288

{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
},

3. In the sample configuration, the workflow calls a second, explicit reconciliation process as a final
step. This reconciliation process is called on the sync context path, with the performAction action
(openidm.action('sync', 'performAction', params)).

You can also use this kind of explicit reconciliation to perform a specific action on a source or target
record, regardless of the assessed situation.

You can call such an operation over the REST interface, specifying the source, and/or target IDs,
the mapping, and the action to be taken. The action can be any one of the supported reconciliation
actions: CREATE, UPDATE, DELETE, LINK, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC, IGNORE.

The following sample command calls the DELETE action on user bjensen, whose _id in the LDAP
directory is uid=bjensen,ou=People,dc=example,dc=com. The user is deleted in the target resource, in this
case, the OpenIDM repository.

Note that the _id must be URL-encoded in the REST call:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/sync?_action=performAction&sourceId=uid%3Dbjensen%2Cou%3DPeople%2Cdc
%3Dexample%2Cdc%3Dcom&mapping=
 systemLdapAccounts_ManagedUser&action=DELETE"
{}

The following example creates a link between a managed object and its corresponding system object.
Such a call is useful in the context of manual data association, when correlation logic has linked an
incorrect object, or when OpenIDM has been unable to determine the correct target object.

In this example, there are two separate target accounts (scarter.user and scarter.admin) that should
be mapped to the managed object. This call creates a link to the user account and specifies a link
qualifier that indicates the type of link that will be created:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/sync?_action=performAction&action=LINK
 &sourceId=4b39f74d-92c1-4346-9322-d86cb2d828a8&targetId=scarter.user
 &mapping=managedUser_systemXmlfileAccounts&linkQualifier=user"
{}

Synchronizing Data Between Resources
Configuring Case Sensitivity For Data Stores

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 289

For more information about mapping to multiple accounts, see "Correlating Multiple Target Objects".

12.12. Configuring Case Sensitivity For Data Stores
By default, OpenIDM is case-sensitive, which means that case is taken into account when comparing
IDs during reconciliation. For data stores that are case-insensitive, such as OpenDJ, IDs and links
that are created by reconciliation may be stored with a different case to how they are stored in the
OpenIDM repository. This can cause problems during a reconciliation operation, as the links for these
IDs might not match.

For such data stores, you can configure OpenIDM to ignore case during reconciliation operations.
With case-sensitivity turned off in OpenIDM, comparisons are done without regard to case.

To specify case-insensitive data stores, set the sourceIdsCaseSensitive or targetIdsCaseSensitive property
to false in the mapping for those links. For example, if the LDAP data store is case-insensitive, set the
mapping from the LDAP store to the managed user repository as follows:
"mappings" : [
{
"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"sourceIdsCaseSensitive" : false,
"target" : "managed/user",
"properties" : [
...

If a mapping inherits links by using the links property, you do not need to set case-sensitivity,
because the mapping uses the setting of the referred links.

Be aware that, even if you configure OpenIDM to be case-insensitive when comparing links, the
OpenICF provisioner is not necessarily case-insensitive when it requests data. For example, if a user
entry is stored with the ID testuser and you make a request for https://localhost:8443/openidm/managed/
TESTuser, most provisioners will filter out the match because of the difference in case, and will indicate
that the record is not found. To prevent the provisioner from performing this secondary filtering, set
the enableFilteredResultsHandler property to false in the provisioner configuration. For example:
"resultsHandlerConfig" :
{
 "enableFilteredResultsHandler":false,
},

Synchronizing Data Between Resources
Optimizing Reconciliation Performance

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 290

Caution

Do not disable the filtered results handler for the CSV file connector. The CSV file connector does not perform
filtering so if you disable the filtered results handler for this connector, the full CSV file will be returned for
every request.

12.13. Optimizing Reconciliation Performance
By default, reconciliation is configured to function optimally, with regard to performance. Some
of these optimizations might, however, be unsuitable for your environment. The following sections
describe the default optimizations and how they can be configured.

12.13.1. Correlating Empty Target Sets
To optimize performance, reconciliation does not correlate source objects to target objects if the set
of target objects is empty when the correlation is started. This considerably speeds up the process
the first time reconciliation is run. You can change this behavior for a specific mapping by adding the
correlateEmptyTargetSet property to the mapping definition and setting it to true. For example:
{
 "mappings": [
 {
 "name" : "systemMyLDAPAccounts_managedUser",
 "source" : "system/MyLDAP/account",
 "target" : "managed/user",
 "correlateEmptyTargetSet" : true
 },
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

12.13.2. Prefetching Links
All links are queried at the start of reconciliation and the results of that query are used. You can
disable the link prefetching so that the reconciliation process looks up each link in the database
as it processes each source or target object. You can disable the prefetching of links by adding the
prefetchLinks property to the mapping, and setting it to false, for example:
{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 "prefetchLinks" : false
 }
]
}

Synchronizing Data Between Resources
Parallel Reconciliation Threads

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 291

Be aware that this setting will have a performance impact on the reconciliation process.

12.13.3. Parallel Reconciliation Threads
By default, reconciliation is multithreaded; numerous threads are dedicated to the same
reconciliation run. Multithreading generally improves reconciliation performance. The default
number of threads for a single reconciliation run is 10 (plus the main reconciliation thread). Under
normal circumstances, you should not need to change this number; however the default might not be
appropriate in the following situations:

• The hardware has many cores and supports more concurrent threads. As a rule of thumb for
performance tuning, start with setting the thread number to two times the number of cores.

• The source or target is an external system with high latency or slow response times. Threads may
then spend considerable time waiting for a response from the external system. Increasing the
available threads enables the system to prepare or continue with additional objects.

To change the number of threads, set the taskThreads property in the conf/sync.json file, for example:
 "mappings" : [
 {
 "name" : "systemXmlfileAccounts_managedUser",
 "source" : "system/xmlfile/account",
 "target" : "managed/user",
 "taskThreads" : 20
 ...
 }
]
}

A zero value runs reconciliation as a serialized process, on the main reconciliation thread.

12.14. Correlating Existing Target Objects
When OpenIDM creates an object through synchronization, it creates a link between the source
and target objects. OpenIDM then uses the link to determine the object's synchronization situation
during later synchronization operations. For a list of synchronization situations, see "Synchronization
Situations".

Initial, full synchronization operations can involve correlating many objects on both source and target
systems. You can use correlation to return matching record IDs with either a correlation query or a
correlation script.

With a correlation query, you can set up a query definition (_queryId, _queryFilter,
_queryExpression), possibly with the help of a linkQualifier. OpenIDM executes that query to search
through a target repository for record IDs.

With a correlation script, you return a list of target record IDs. This script makes use of the source
object, and possibly the value of a linkQualifier to find those matching record IDs. There is no

Synchronizing Data Between Resources
Configuring Correlation Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 292

restriction imposed on the method for finding these ID values. Be aware, such scripts may be
relatively complex.

To configure correlation queries and correlation scripts from the Admin UI, select Configure
> Mappings, and select the mapping that you want to change. On the Association tab, expand
Association Rules, then select Correlation Queries or Correlation Script from the list.

See the following sections for guidance on writing a correlation query and a correlation script, in the
UI and in the sync.json configuration file.

12.14.1. Configuring Correlation Queries

OpenIDM processes a correlation query by constructing a query map. The content of the query is
generated dynamically, using values from the source object. For each source object, a new query
is sent to the target system, using (possibly transformed) values from the source object for its
execution.

Correlation queries are defined as part of the mapping objects that are configured in the conf/
sync.json file. They are run against target resources, either managed or system objects, depending on
the mapping. Correlation queries on system objects access the connector, which executes the query
on the external resource.

The preferred syntax for a correlation query is a filtered query, using the _queryFilter keyword.
Filtered queries should work in the same way on any backend, whereas other query types are
generally specific to the targeted backend. Predefined queries (using _queryId) and native queries
(using _queryExpression) can also be used for correlation queries. Note, however, that system objects
do not support predefined queries, other than query-all-ids, which serves no purpose in a correlation
query.

To configure a correlation query, define a script whose source returns a query that uses the
_queryFilter, _queryId, or _queryExpression keyword. For example:

• For a _queryId, the value is the named query. Named parameters in the query map are expected by
that query.
{'_queryId' : 'for-userName', 'uid' : source.name}

• For a _queryFilter, the value is the abstract filter string:
{ "_queryFilter" : "uid eq \"" + source.userName + "\"" }

• For a _queryExpression, the value is the system-specific query expression, such as raw SQL.

{'_queryExpression': 'select * from managed_user where givenName = \"' + source.firstname + '\"' }

A sample correlation query definition inside a mapping object follows:

Synchronizing Data Between Resources
Configuring Correlation Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 293

{
 "mappings" : [
 {
 "name" : "managedUser_systemHrdb",
 "source" : "managed/user",
 "target" : "system/scriptedsql/account",
 "links" : "systemHrdb_managedUser",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var qry = {'_queryFilter': 'uid eq \"' + source.userName + '\"'}; qry"
 },

12.14.1.1. Using Filtered Queries to Correlate Objects

For filtered queries, the script that is defined or referenced in the correlationQuery property must
return an object with the following elements:

• The element that is being compared on the target object, for example, uid.

The element on the target object is not necessarily a single attribute. Your query filter can be
simple or complex; valid query filters range from a single operator to an entire boolean expression
tree.

If the target object is a system object, this attribute must be referred to by its OpenIDM name
rather than its OpenICF nativeName. For example, given the following provisioner configuration
excerpt, the name to use in the correlation query would be uid and not __NAME__:
"uid" : {
 "type" : "string",
 "nativeName" : "__NAME__",
 "required" : true,
 "nativeType" : "string"
}
...

• The value to search for in the query.

This value is generally based on one or more values from the source object. However, it does not
have to match the value of a single source object property. You can define how your script uses the
values from the source object to find a matching record in the target system.

You might use a transformation of a source object property, such as toUpperCase(). You can
concatenate that output with other strings or properties. You can also use this value to call an
external REST endpoint, and redirect the response to the final "value" portion of the query.

The following query finds objects on the target whose uid is the same as the userName of a source
object:
"correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var qry = {'_queryFilter': 'uid eq \"' + source.userName + '\"'}; qry"
},

Synchronizing Data Between Resources
Configuring Correlation Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 294

The query filter can be simple or complex; valid query filters range from a single operator to an entire
boolean expression tree.

The query can return zero or more objects. The situation that OpenIDM assigns to the source
object depends on the number of target objects that are returned. For more information, see
"Synchronization Situations".

12.14.1.2. Using Predefined Queries to Correlate Objects

If you configure correlation queries with predefined queries, they must be defined in the database
table configuration file for the repository, either conf/repo.jdbc.json or conf/repo.orientdb.json. In
addition, these predefined queries must also be referenced in the mapping file: conf/sync.json.

The following example shows a query defined in the OrientDB repository configuration (conf/
repo.orientdb.json) that can be used as the basis for a correlation query:
"for-userName" : "SELECT * FROM ${unquoted:_resource} WHERE userName = ${uid}
 SKIP ${unquoted:_pagedResultsOffset} LIMIT ${unquoted:_pageSize}"

By default, a ${value} token replacement is assumed to be a quoted string. If the value is not a quoted
string, use the unquoted: prefix, as shown above.

You would call this query in the mapping (sync.json) file as follows:
{
 "correlationQuery": {
 "type": "text/javascript",
 "source":
 "var qry = {'_queryId' : 'for-userName', 'uid' : source.name}; qry;"
 }
 }

In this correlation query, the _queryId property value (for-userName) matches the name of the query
specified in openidm/conf/repo.orientdb.json. The source.name value replaces ${uid} in the query.
OpenIDM replaces ${unquoted:_resource} in the query with the name of the table that holds managed
objects.

12.14.1.3. Using the Expression Builder to Create Correlation Queries

OpenIDM 4 provides a declarative correlation option, the expression builder, that makes it easier to
configure correlation queries.

The easiest way to use the expression builder to create a correlation query is through the Admin UI:

1. Select Configure > Mappings and select the mapping for which you want to configure a
correlation query.

2. On the Association tab, expand the Association Rules item and select Correlation Queries from the
list.

Synchronizing Data Between Resources
Configuring Correlation Queries

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 295

3. Click Add Correlation query.

4. In the Correlation Query window, select a link qualifier. (For more information, see "Using Link
Qualifier Conditions").

5. Now create your query expression.

The following image shows how you can use the expression builder to build a correlation query for
a mapping from system/ldap/accounts to managed/user objects. The query essentially states, in order
for a match to exist between the source (LDAP) object and the target (managed) object, both the
givenName and telephoneNumber of those objects must match.

6. Click Submit to exit the Correlation Query pop-up window.

Synchronizing Data Between Resources
Correlating Multiple Target Objects

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 296

When you have created all the correlation queries that you need, click Save.

The correlation query created in the previous steps displays as follows in the mapping configuration
(sync.json):
"correlationQuery" : {
 "linkQualifier" : "user",
 "expressionTree" : {
 "all" : [
 "givenName",
 "telephoneNumber"
]
 },
 "mapping" : "systemLdapAccounts_managedUser",
 "type" : "text/javascript",
 "file" : "ui/correlateTreeToQueryFilter.js"
},

You can find the logic in the expression builder in the following script: openidm/bin/defaults/script/ui/
correlateTreeToQueryFilter.js. This script converts the expression into the required query filter.

12.14.2. Correlating Multiple Target Objects
To correlate a single source entry with multiple target entries, you indicate how the source entry
should be linked to the target entries, by providing correlation logic appropriate for each link
qualifier, typically in the sync.json file in your project-dir/conf directory.

When complete, you will have created a separate correlation query for each mapping from a single
source object to a potential target object. You can differentiate these correlation queries, by link, with
a link qualifier.

When correlating multiple target objects, you'll likely see the following code snippet in your sync.json
file. you'll have two or more roles listed in the linkQualifiers for your mapping:
{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "linkQualifiers" : [
 "role1",
 "role2"
],
...

These mappings work for users who belong to one or both roles. For example, an insurance agent
may also be a customer of the same insurance company. The discussion that follows is generic; for a
specific use case, see "The Multi-Account Linking Sample" in the Samples Guide.

You can then set up correlation queries for each linkQualifier role, as follows. In this case, the
linkQualifier uses the expressionTree to set the conditions for a match between the source and target
objects. In this case, the condition is a match on the dn, or distinguished name.

Synchronizing Data Between Resources
Correlation Scripts

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 297

"correlationQuery" : [
 {
 "linkQualifier" : "role1",
 "expressionTree" : {
 "all" : [
 "dn"
]
 },
 "mapping" : "managedUser_systemLdapAccounts",
 "type" : "text/javascript",
 "file" : "ui/correlateTreeToQueryFilter.js"
 },
 {
 "linkQualifier" : "role2",
 "expressionTree" : {
 "all" : [
 "dn"
]
 },
 "mapping" : "managedUser_systemLdapAccounts",
 "type" : "text/javascript",
 "file" : "ui/correlateTreeToQueryFilter.js"
 }
],

You can also build correlation queries through the Admin UI. For more information, see "Using the
Expression Builder to Create Correlation Queries".

You will need a validSource script based on two requirements:

• Determine whether a user has one or more roles.

• Ensure that OpenIDM examines the source only for the specified role

"validSource" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "var res = false;\nvar i=0;\n\nwhile
 (!res && i < source.effectiveRoles.length) {\n
 var roleId = source.effectiveRoles[i];\n
 if (roleId != null && roleId.indexOf(\"/\") != -1) {\n
 var roleInfo = openidm.read(roleId);\n
 res = (((roleInfo.properties.name === 'RoleName1')\n
 &&(linkQualifier ==='role1'))\n
 || ((roleInfo.properties.name === 'RoleName2')\n
 &&(linkQualifier ==='role2')));\n
 }\n
 i++;\n}\n\nres"
 }

12.14.3. Correlation Scripts

An alternative to correlation queries is a correlation script. You can configure a correlation script as
part of a mapping in the sync.json file.

Synchronizing Data Between Resources
Scheduling Synchronization

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 298

In the following example excerpt, the correlateScript.js script is used to return IDs from the target
repository:
{
 "mappings" : [
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user"
 "target" : "system/ldap/account",
 "correlationScript" : {
 "type" : "text/javascript",
 "file" : "script/correlateScript.js"
 },
 ...

To configure a correlation script in the Admin UI, follow these steps:

1. Select Configure > Mappings and select the mapping for which you want to configure the
correlation script.

2. On the Association tab, expand the Association Rules item and select Correlation Script from the
list.

3. Select a script type (either JavaScript or Groovy) and either enter the script source in the Inline
Script box, or specify the path to a file that contains the script.

To create a correlation script, use the details from the source object to find the matching record
in the target system. If you are using link qualifiers to match a single source record to multiple
target records, you must also use the value of the linkQualifier variable within your correlation
script to find the target ID that applies for that qualifier.

4. Click Save to save the script as part of the mapping.

12.15. Scheduling Synchronization

Synchronizing Data Between Resources
Configuring Scheduled Synchronization

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 299

You can schedule synchronization operations, such as liveSync and reconciliation, using cron-like
syntax.

This section describes scheduling specifically for reconciliation and liveSync. You can use OpenIDM's
scheduler service to schedule any other event by supplying a link to a script file, in which that event
is defined. For information about scheduling other events, see "Scheduling Tasks and Events".

12.15.1. Configuring Scheduled Synchronization

Each scheduled reconciliation and liveSync task requires a schedule configuration file in your
project's conf directory. By convention, schedule configuration files are named schedule-schedule-
name.json, where schedule-name is a logical name for the scheduled synchronization operation, such
as reconcile_systemXmlAccounts_managedUser.

Schedule configuration files have the following format:
{
 "enabled" : true,
 "persisted" : false,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

These properties are specific to the scheduler service, and are explained in "Scheduling Tasks and
Events".

To schedule a reconciliation or liveSync task, set the invokeService property to either "sync" (for
reconciliation) or "provisioner" for liveSync.

The value of the invokeContext property depends on the type of scheduled event. For reconciliation, the
properties are set as follows:
{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

The mapping is either referenced by its name in the conf/sync.json file, or defined inline by using the
mapping property, as shown in the example in "Specifying the Mapping as Part of the Schedule".

For liveSync, the properties are set as follows:

Synchronizing Data Between Resources
Specifying the Mapping as Part of the Schedule

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 300

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

The source property follows OpenIDM's convention for a pointer to an external resource object and
takes the form system/resource-name/object-type.

12.15.2. Specifying the Mapping as Part of the Schedule

Mappings for synchronization operations are usually stored in your project's sync.json file. You can,
however, provide the mapping for scheduled synchronization operation by including it as part of the
invokeContext of the schedule configuration, as shown in the following example:
{
 "enabled": true,
 "type": "cron",
 "schedule": "0 08 16 * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": {
 "name": "CSV_XML",
 "source": "system/Ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "firstname",
 "target": "firstname"
 },
 ...
],
 "policies": [...]
 }
 }
}

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 301

Chapter 13

Scheduling Tasks and Events

The OpenIDM scheduler enables you to schedule reconciliation and synchronization tasks, trigger
scripts, collect and run reports, trigger workflows, and perform custom logging.

OpenIDM supports cron-like syntax to schedule events and tasks, based on expressions supported by
the Quartz Scheduler (bundled with OpenIDM).

If you use configuration files to schedule tasks and events, you must place the schedule files in
the openidm/conf directory. By convention, OpenIDM uses file names of the form schedule-schedule-
name.json, where schedule-name is a logical name for the scheduled operation, for example, schedule-
reconcile_systemXmlAccounts_managedUser.json. There are several example schedule configuration files in
the openidm/samples/schedules directory.

You can configure OpenIDM to pick up changes to scheduled tasks and events dynamically, during
initialization and also at runtime. For more information, see "Changing the Default Configuration".

In addition to the fine-grained scheduling facility, you can perform a scheduled batch scan for a
specified date in OpenIDM data, and then automatically run a task when this date is reached. For
more information, see "Scanning Data to Trigger Tasks".

13.1. Scheduler Configuration
Schedules are configured through JSON objects. The schedule configuration involves three files:

• The boot.properties file, where you can enable persistent schedules.

• The scheduler.json file, that configures the overall scheduler service.

• One schedule-schedule-name.json file for each configured schedule.

In the boot properties configuration file (project-dir/conf/boot/boot.properties), the instance type is
standalone and persistent schedules are enabled by default:
valid instance types for node include standalone, clustered-first, and clustered-additional
openidm.instance.type=standalone

enables the execution of persistent schedulers
openidm.scheduler.execute.persistent.schedules=true

The scheduler service configuration file (project-dir/conf/scheduler.json) governs the configuration for
a specific scheduler instance, and has the following format:

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 302

{
 "threadPool" : {
 "threadCount" : "10"
 },
 "scheduler" : {
 "executePersistentSchedules" : "&{openidm.scheduler.execute.persistent.schedules}"
 }
}

The properties in the scheduler.json file relate to the configuration of the Quartz Scheduler:

• threadCount specifies the maximum number of threads that are available for running scheduled tasks
concurrently.

• executePersistentSchedules allows you to disable persistent schedules for a specific node. If this
parameter is set to false, the Scheduler Service will support the management of persistent
schedules (CRUD operations) but it will not run any persistent schedules. The value of this property
can be a string or boolean and is true by default.

Note that changing the value of the openidm.scheduler.execute.persistent.schedules property in the
boot.properties file changes the scheduler that manages scheduled tasks on that node. Because
the persistent and in-memory schedulers are managed separately, a situation can arise where two
separate schedules have the same schedule name.

• advancedProperties (optional) enables you to configure additional properties for the Quartz Scheduler.

Note

In clustered environments, the scheduler service obtains an instanceID, and checkin and timeout settings from
the cluster management service (defined in the project-dir/conf/cluster.json file).

For details of all the configurable properties for the Quartz Scheduler, see the Quartz Scheduler
Configuration Reference.

Each schedule configuration file (project-dir/conf/schedule-schedule-name.json) has the following format:
{
 "enabled" : true,
 "persisted" : false,
 "concurrentExecution" : false,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info",
 "invokeLogLevel" : "(optional) level"
}

The schedule configuration properties are defined as follows:

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 303

enabled

Set to true to enable the schedule. When this property is false, OpenIDM considers the schedule
configuration dormant, and does not allow it to be triggered or launched.

If you want to retain a schedule configuration, but do not want it used, set enabled to false for task
and event schedulers, instead of changing the configuration or cron expressions.

persisted (optional)

Specifies whether the schedule state should be persisted or stored in RAM. Boolean (true or
false), false by default.

In a clustered environment, this property must be set to true to have the schedule fire only once
across the cluster. For more information, see "Configuring Persistent Schedules".

concurrentExecution

Specifies whether multiple instances of the same schedule can run concurrently. Boolean (true
or false), false by default. Multiple instances of the same schedule cannot run concurrently
by default. This setting prevents a new scheduled task from being launched before the same
previously launched task has completed. For example, under normal circumstances you would
want a LiveSync operation to complete before the same operation was launched again. To
enable multiple schedules to run concurrently, set this parameter to true. The behavior of missed
scheduled tasks is governed by the misfirePolicy.

type

Currently OpenIDM supports only cron.

startTime (optional)

Used to start the schedule at some time in the future. If this parameter is omitted, empty, or set
to a time in the past, the task or event is scheduled to start immediately.

Use ISO 8601 format to specify times and dates (YYYY-MM-DD Thh:mm :ss).

endTime (optional)

Used to plan the end of scheduling.

schedule

Takes cron expression syntax. For more information, see the CronTrigger Tutorial and Lesson 6:
CronTrigger.

misfirePolicy

For persistent schedules, this optional parameter specifies the behavior if the scheduled task is
missed, for some reason. Possible values are as follows:

• fireAndProceed. The first run of a missed schedule is immediately launched when the server is
back online. Subsequent runs are discarded. After this, the normal schedule is resumed.

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger.html
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-06.html
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/tutorial-lesson-06.html

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 304

• doNothing. All missed schedules are discarded and the normal schedule is resumed when the
server is back online.

timeZone (optional)

If not set, OpenIDM uses the system time zone.

invokeService

Defines the type of scheduled event or action. The value of this parameter can be one of the
following:

• sync for reconciliation

• provisioner for LiveSync

• script to call some other scheduled operation defined in a script

invokeContext

Specifies contextual information, depending on the type of scheduled event (the value of the
invokeService parameter).

The following example invokes reconciliation:
{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

For a scheduled reconciliation task, you can define the mapping in one of two ways:

• Reference a mapping by its name in sync.json, as shown in the previous example. The mapping
must exist in your project's conf/sync.json file.

• Add the mapping definition inline by using the mapping property, as shown in "Specifying the
Mapping as Part of the Schedule".

The following example invokes a LiveSync operation:
{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

For scheduled LiveSync tasks, the source property follows OpenIDM's convention for a pointer to
an external resource object and takes the form system/resource-name/object-type.

The following example invokes a script, which prints the string Hello World to the OpenIDM log (/
openidm/logs/openidm0.log.X).

Scheduling Tasks and Events
Configuring Persistent Schedules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 305

{
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "source": "console.log('Hello World');"
 }
 }
}

Note that these are sample configurations only. Your own schedule configuration will differ
according to your specific requirements.

invokeLogLevel (optional)

Specifies the level at which the invocation will be logged. Particularly for schedules that run very
frequently, such as LiveSync, the scheduled task can generate significant output to the log file,
and you should adjust the log level accordingly. The default schedule log level is info. The value
can be set to any one of the SLF4J log levels:

• trace

• debug

• info

• warn

• error

• fatal

13.2. Configuring Persistent Schedules
By default, scheduling information, such as schedule state and details of the schedule run, is
stored in RAM. This means that such information is lost when OpenIDM is rebooted. The schedule
configuration itself (defined in your project's conf/schedule-schedule-name.json file) is not lost when
OpenIDM is shut down, and normal scheduling continues when the server is restarted. However,
there are no details of missed schedule runs that should have occurred during the period the server
was unavailable.

You can configure schedules to be persistent, which means that the scheduling information is stored
in the internal repository rather than in RAM. With persistent schedules, scheduling information
is retained when OpenIDM is shut down. Any previously scheduled jobs can be rescheduled
automatically when OpenIDM is restarted.

Persistent schedules also enable you to manage scheduling across a cluster (multiple OpenIDM
instances). When scheduling is persistent, a particular schedule will be launched only once across
the cluster, rather than once on every OpenIDM instance. For example, if your deployment includes
a cluster of OpenIDM nodes for high availability, you can use persistent scheduling to start a

http://www.slf4j.org/apidocs/org/apache/commons/logging/Log.html

Scheduling Tasks and Events
Schedule Examples

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 306

reconciliation operation on only one node in the cluster, instead of starting several competing
reconciliation operations on each node.

To configure persistent schedules, set persisted to true in the schedule configuration file
(schedule-schedule-name.json).

If OpenIDM is down when a scheduled task was set to occur, one or more runs of that schedule might
be missed. To specify what action should be taken if schedules are missed, set the misfirePolicy in the
schedule configuration file. The misfirePolicy determines what OpenIDM should do if scheduled tasks
are missed. Possible values are as follows:

• fireAndProceed. The first run of a missed schedule is immediately implemented when the server is
back online. Subsequent runs are discarded. After this, the normal schedule is resumed.

• doNothing. All missed schedules are discarded and the normal schedule is resumed when the server
is back online.

13.3. Schedule Examples
The following example shows a schedule for reconciliation that is not enabled. When the schedule is
enabled ("enabled" : true,), reconciliation runs every 30 minutes, starting on the hour:
{
 "enabled": false,
 "persisted": false,
 "type": "cron",
 "schedule": "0 0/30 * * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 }
}

The following example shows a schedule for LiveSync enabled to run every 15 seconds, starting at
the beginning of the minute. The schedule is persisted, that is, stored in the internal repository rather
than in memory. If one or more LiveSync runs are missed, as a result of OpenIDM being unavailable,
the first run of the LiveSync operation is implemented when the server is back online. Subsequent
runs are discarded. After this, the normal schedule is resumed:
{
 "enabled": true,
 "persisted": true,
 "misfirePolicy" : "fireAndProceed",
 "type": "cron",
 "schedule": "0/15 * * * * ?",
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

Scheduling Tasks and Events
Managing Schedules Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 307

13.4. Managing Schedules Over REST
OpenIDM exposes the scheduler service under the /openidm/scheduler context path. The following
examples show how schedules can be created, read, updated, and deleted, over REST, by using
the scheduler service. The examples also show how to pause and resume scheduled tasks, when
an OpenIDM instance is placed in maintenance mode. For information about placing OpenIDM in
maintenance mode, see "Placing an OpenIDM Instance in Maintenance Mode" in the Installation
Guide.

Note

When you configure schedules in this way, changes made to the schedules are not pushed back into the
configuration service. Managing schedules by using the /openidm/scheduler context path essentially bypasses
the configuration service and sends the request directly to the scheduler.

If you need to perform an operation on a schedule that was created by using the configuration service (by
placing a schedule file in the conf/ directory), you must direct your request to the /openidm/config endpoint,
and not to the /openidm/scheduler endpoint.

13.4.1. Creating a Schedule

You can create a schedule with a PUT request, which allows you to specify the ID of the schedule, or
with a POST request, in which case the server assigns an ID automatically.

The following example uses a PUT request to create a schedule that fires a script (script/testlog.js)
every second. The schedule configuration is as described in "Scheduler Configuration":
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "enabled":true,
 "type":"cron",
 "schedule":"0/1 * * * * ?",
 "persisted":true,
 "misfirePolicy":"fireAndProceed",
 "invokeService":"script",
 "invokeContext": {
 "script": {
 "type":"text/javascript",
 "file":"script/testlog.js"
 }
 }
 }' \
 "https://localhost:8443/openidm/scheduler/testlog-schedule"
{
 "type": "cron",
 "invokeService": "script",
 "persisted": true,

Scheduling Tasks and Events
Creating a Schedule

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 308

 "_id": "testlog-schedule",
 "schedule": "0/1 * * * * ?",
 "misfirePolicy": "fireAndProceed",
 "enabled": true,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 }
}

The following example uses a POST request to create an identical schedule to the one created in the
previous example, but with a server-assigned ID:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "enabled":true,
 "type":"cron",
 "schedule":"0/1 * * * * ?",
 "persisted":true,
 "misfirePolicy":"fireAndProceed",
 "invokeService":"script",
 "invokeContext": {
 "script": {
 "type":"text/javascript",
 "file":"script/testlog.js"
 }
 }
 }' \
 "https://localhost:8443/openidm/scheduler?_action=create"
{
 "type": "cron",
 "invokeService": "script",
 "persisted": true,
 "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a",
 "schedule": "0/1 * * * * ?",
 "misfirePolicy": "fireAndProceed",
 "enabled": true,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 }
}

The output includes the _id of the schedule, in this case "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a".

Scheduling Tasks and Events
Obtaining the Details of a Schedule

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 309

13.4.2. Obtaining the Details of a Schedule

The following example displays the details of the schedule created in the previous section. Specify the
schedule ID in the URL:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4b1ad57a"
{
 "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a",
 "schedule": "0/1 * * * * ?",
 "misfirePolicy": "fireAndProceed",
 "startTime": null,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 },
 "enabled": true,
 "concurrentExecution": false,
 "persisted": true,
 "timeZone": null,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "endTime": null,
 "invokeLogLevel": "info"
}

13.4.3. Updating a Schedule

To update a schedule definition, use a PUT request and update all properties of the object. Note that
PATCH requests are currently supported only for managed and system objects.

The following example disables the schedule created in the previous section:

Scheduling Tasks and Events
Listing Configured Schedules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 310

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "enabled":false,
 "type":"cron",
 "schedule":"0/1 * * * * ?",
 "persisted":true,
 "misfirePolicy":"fireAndProceed",
 "invokeService":"script",
 "invokeContext": {
 "script": {
 "type":"text/javascript",
 "file":"script/testlog.js"
 }
 }
 }' \
 "https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4b1ad57a"
 null

13.4.4. Listing Configured Schedules

To display a list of all configured schedules, query the openidm/scheduler context path as shown in the
following example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/scheduler?_queryId=query-all-ids"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "resultCount": 2,
 "result": [
 {
 "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a"
 },
 {
 "_id": "recon"
 }
]
}

13.4.5. Deleting a Schedule

To deleted a configured schedule, call a DELETE request on the schedule ID. For example:

Scheduling Tasks and Events
Obtaining a List of Running Scheduled Tasks

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 311

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4b1ad57a"
null

13.4.6. Obtaining a List of Running Scheduled Tasks
The following command returns a list of tasks that are currently executing. This list enables you
to decide whether to wait for specific tasks to complete before you place an OpenIDM instance in
maintenance mode.

Note that this list is accurate only at the moment the request was issued. The list can change at any
time after the response is received.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/scheduler?_action=listCurrentlyExecutingJobs"
[
 {
 "concurrentExecution": false,
 "enabled": true,
 "endTime": null,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 },
 "invokeLogLevel": "info",
 "invokeService": "org.forgerock.openidm.script",
 "misfirePolicy": "doNothing",
 "persisted": false,
 "schedule": "0/10 * * * * ?",
 "startTime": null,
 "timeZone": null,
 "type": "cron"
 }
]

13.4.7. Pausing Scheduled Tasks
In preparation for placing an OpenIDM instance into maintenance mode, you can temporarily
suspend all scheduled tasks. This action does not cancel or interrupt tasks that are already in
progress - it simply prevents any scheduled tasks from being invoked during the suspension period.

The following command suspends all scheduled tasks and returns true if the tasks could be suspended
successfully.

Scheduling Tasks and Events
Resuming All Running Scheduled Tasks

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 312

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/scheduler?_action=pauseJobs"
{
 "success": true
}

13.4.8. Resuming All Running Scheduled Tasks
When an update has been completed, and your instance is no longer in maintenance mode, you can
resume scheduled tasks to start them up again. Any tasks that were missed during the downtime will
follow their configured misfire policy to determine whether they should be reinvoked.

The following command resumes all scheduled tasks and returns true if the tasks could be resumed
successfully.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/scheduler?_action=resumeJobs"
{
 "success": true
}

13.5. Scanning Data to Trigger Tasks
In addition to the fine-grained scheduling facility described previously, OpenIDM provides a task
scanning mechanism. The task scanner enables you to perform a batch scan on a specified property
in OpenIDM, at a scheduled interval, and then to launch a task when the value of that property
matches a specified value.

When the task scanner identifies a condition that should trigger the task, it can invoke a script
created specifically to handle the task.

For example, the task scanner can scan all managed/user objects for a "sunset date" and can invoke a
script that launches a "sunset task" on the user object when this date is reached.

13.5.1. Configuring the Task Scanner
The task scanner is essentially a scheduled task that queries a set of managed users. The task
scanner is configured in the same way as a regular scheduled task in a schedule configuration file
named (schedule-task-name.json), with the invokeService parameter set to taskscanner. The invokeContext
parameter defines the details of the scan, and the task that should be launched when the specified
condition is triggered.

Scheduling Tasks and Events
Configuring the Task Scanner

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 313

The following example defines a scheduled scanning task that triggers a sunset script. The schedule
configuration file is provided in openidm/samples/taskscanner/conf/schedule-taskscan_sunset.json. To use
this sample file, copy it to the openidm/conf directory.
{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0 * * * ?",
 "concurrentExecution" : false,
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "maxRecords" : 2000,
 "numberOfThreads" : 5,
 "scan" : {
 "_queryId" : "scan-tasks",
 "object" : "managed/user",
 "property" : "sunset/date",
 "condition" : {
 "before" : "${Time.now}"
 },
 "taskState" : {
 "started" : "sunset/task-started",
 "completed" : "sunset/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/sunset.js"
 }
 }
 }
}

The schedule configuration calls a script (script/sunset.js). To test the sample, copy this script
file from openidm/samples/taskscanner/script/sunset.js to the openidm/script directory. The remaining
properties in the schedule configuration are as follows:

The invokeContext parameter takes the following properties:

waitForCompletion (optional)

This property specifies whether the task should be performed synchronously. Tasks are
performed asynchronously by default (with waitForCompletion set to false). A task ID (such as
{"_id":"354ec41f-c781-4b61-85ac-93c28c180e46"}) is returned immediately. If this property is set to
true, tasks are performed synchronously and the ID is not returned until all tasks have completed.

maxRecords (optional)

The maximum number of records that can be processed. This property is not set by default so the
number of records is unlimited. If a maximum number of records is specified, that number will be
spread evenly over the number of threads.

Scheduling Tasks and Events
Configuring the Task Scanner

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 314

numberOfThreads (optional)

By default, the task scanner runs in a multi-threaded manner, that is, numerous threads are
dedicated to the same scanning task run. Multi-threading generally improves the performance of
the task scanner. The default number of threads for a single scanning task is ten. To change this
default, set the numberOfThreads property.

scan

Defines the details of the scan. The following properties are defined:

_queryId

Specifies the predefined query that is performed to identify the entries for which this task
should be run.

The query that is referenced here must be defined in the database table configuration file
(conf/repo.orientdb.json or conf/repo.jdbc.json). A sample query for a scanned task (scan-tasks) is
defined in the JDBC repository configuration file as follows:
"scan-tasks" : "SELECT fullobject FROM ${_dbSchema}.${_mainTable}
 obj INNER JOIN ${_dbSchema}.${_propTable}
 prop ON obj.id = prop.${_mainTable}_id
 LEFT OUTER JOIN ${_dbSchema}.${_propTable}
 complete ON obj.id = complete.${_mainTable}_id
 AND complete.propkey=${taskState.completed}
 INNER JOIN ${_dbSchema}.objecttypes objtype
 ON objtype.id = obj.objecttypes_id
 WHERE (prop.propkey=${property} AND prop.propvalue < ${condition.before}
 AND objtype.objecttype = ${_resource})
 AND (complete.propvalue is NULL)",

Note that this query identifies records for which the value of the specified property is smaller
than the condition. The sample query supports only time-based conditions, with the time
specified in ISO 8601 format (Zulu time). You can write any query to target the records that
you require.

object

Defines the managed object type against which the query should be performed, as defined in
the managed.json file.

property

Defines the property of the managed object, against which the query is performed. In the
previous example, the "property" : "sunset/date" indicates a JSON pointer that maps to the
object attribute, and can be understood as sunset: {"date" : "date"}.

If you are using a JDBC repository, with a generic mapping, you must explicitly set this
property as searchable so that it can be queried by the task scanner. For more information,
see "Using Generic Mappings".

Scheduling Tasks and Events
Configuring the Task Scanner

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 315

condition (optional)

Indicates the conditions that must be matched for the defined property.

In the previous example, the scanner scans for users whose sunset/date is prior to the current
timestamp (at the time the script is run).

You can use these fields to define any condition. For example, if you wanted to limit the
scanned objects to a specified location, say, London, you could formulate a query to compare
against object locations and then set the condition to be:
"condition" : {
 "location" : "London"
},

For time-based conditions, the condition property supports macro syntax, based on the Time
.now object (which fetches the current time). You can specify any date/time in relation to the
current time, using the + or - operator, and a duration modifier. For example: ${Time.now + 1d}
would return all user objects whose sunset/date is the following day (current time plus one
day). You must include space characters around the operator (+ or -). The duration modifier
supports the following unit specifiers:

s - second
m - minute
h - hour
d - day
M - month
y - year

taskState

Indicates the names of the fields in which the start message and the completed message are
stored. These fields are used to track the status of the task.

started specifies the field that stores the timestamp for when the task begins.
completed specifies the field that stores the timestamp for when the task completes its
operation. The completed field is present as soon as the task has started, but its value is null
until the task has completed.

recovery (optional)

Specifies a configurable timeout, after which the task scanner process ends. For clustered
OpenIDM instances, there might be more than one task scanner running at a time. A task
cannot be launched by two task scanners at the same time. When one task scanner "claims"
a task, it indicates that the task has been started. That task is then unavailable to be claimed
by another task scanner and remains unavailable until the end of the task is indicated. In
the event that the first task scanner does not complete the task by the specified timeout, for
whatever reason, a second task scanner can pick up the task.

Scheduling Tasks and Events
Managing Scanning Tasks Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 316

task

Provides details of the task that is performed. Usually, the task is invoked by a script, whose
details are defined in the script property:

• type ‒ the type of script, either JavaScript or Groovy.

• file ‒ the path to the script file. The script file takes at least two objects (in addition to the
default objects that are provided to all OpenIDM scripts):

• input ‒ the individual object that is retrieved from the query (in the example, this is the
individual user object).

• objectID ‒ a string that contains the full identifier of the object. The objectID is useful for
performing updates with the script as it allows you to target the object directly. For example:
openidm.update(objectID, input['_rev'], input);.

A sample script file is provided in openidm/samples/taskscanner/script/sunset.js. To use this sample
file, copy it to your project's script/ directory. The sample script marks all user objects that
match the specified conditions as inactive. You can use this sample script to trigger a specific
workflow, or any other task associated with the sunset process.

For more information about using scripts in OpenIDM, see "Scripting Reference".

13.5.2. Managing Scanning Tasks Over REST

You can trigger, cancel, and monitor scanning tasks over the REST interface, using the REST
endpoint https://localhost:8443/openidm/taskscanner.

13.5.2.1. Triggering a Scanning Task

The following REST command runs a task named "taskscan_sunset". The task itself is defined in a file
named conf/schedule-taskscan_sunset.json:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/taskscanner?_action=execute&name=schedule/taskscan_sunset"

By default, a scanning task ID is returned immediately when the task is initiated. Clients can
make subsequent calls to the task scanner service, using this task ID to query its state and to call
operations on it.

For example, the scanning task initiated previously would return something similar to the following,
as soon as it was initiated:
{"_id":"edfaf59c-aad1-442a-adf6-3620b24f8385"}

Scheduling Tasks and Events
Managing Scanning Tasks Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 317

To have the scanning task complete before the ID is returned, set the waitForCompletion property to
true in the task definition file (schedule-taskscan_sunset.json). You can also set the property directly over
the REST interface when the task is initiated. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/taskscanner?_action=execute&name=schedule/
taskscan_sunset&waitForCompletion=true"

13.5.2.2. Canceling a Scanning Task

You can cancel a scanning task by sending a REST call with the cancel action, specifying the task ID.
For example, the following call cancels the scanning task initiated in the previous section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/taskscanner/edfaf59c-aad1-442a-adf6-3620b24f8385?_action=cancel"
{
 "_id":"edfaf59c-aad1-442a-adf6-3620b24f8385",
 "action":"cancel",
 "status":"SUCCESS"
}

13.5.2.3. Listing Scanning Tasks

You can display a list of scanning tasks that have completed, and those that are in progress, by
running a RESTful GET on the openidm/taskscanner" context. The following example displays all
scanning tasks:

Scheduling Tasks and Events
Managing Scanning Tasks Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 318

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/taskscanner"
{
 "tasks": [
 {
 "ended": 1352455546182
 "started": 1352455546149,
 "progress": {
 "failures": 0
 "successes": 2400,
 "total": 2400,
 "processed": 2400,
 "state": "COMPLETED",
 },
 "_id": "edfaf59c-aad1-442a-adf6-3620b24f8385",
 }
]
}

Each scanning task has the following properties:

ended

The time at which the scanning task ended.

started

The time at which the scanning task started.

progress

The progress of the scanning task, summarised in the following fields:

failures - the number of records not able to be processed
successes - the number of records processed successfully
total - the total number of records
processed - the number of processed records
state - the overall state of the task, INITIALIZED, ACTIVE, COMPLETED, CANCELLED, or ERROR

_id

The ID of the scanning task.

The number of processed tasks whose details are retained is governed by the openidm.taskscanner
.maxcompletedruns property in the conf/system.properties file. By default, the last one hundred completed
tasks are retained.

Managing Passwords
Enforcing Password Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 319

Chapter 14

Managing Passwords

OpenIDM provides password management features that help you enforce password policies, limit the
number of passwords users must remember, and let users reset and change their passwords.

14.1. Enforcing Password Policy
A password policy is a set of rules defining what sequence of characters constitutes an acceptable
password. Acceptable passwords generally are too complex for users or automated programs to
generate or guess.

Password policies set requirements for password length, character sets that passwords must contain,
dictionary words and other values that passwords must not contain. Password policies also require
that users not reuse old passwords, and that users change their passwords on a regular basis.

OpenIDM enforces password policy rules as part of the general policy service. For more information
about the policy service, see "Using Policies to Validate Data". The default password policy applies
the following rules to passwords as they are created and updated:

• A password property is required for any user object.

• The value of a password cannot be empty.

• The password must include at least one capital letter.

• The password must include at least one number.

• The minimum length of a password is 8 characters.

• The password cannot contain the user name, given name, or family name.

You can remove these validation requirements, or include additional requirements, by configuring
the policy for passwords. For more information, see "Configuring the Default Policy for Managed
Objects".

The password validation mechanism can apply in many situations.

Password change and password reset

Password change involves changing a user or account password in accordance with password
policy. Password reset involves setting a new user or account password on behalf of a user.

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 320

By default, OpenIDM controls password values as they are provisioned.

To change the default administrative user password, openidm-admin, see "Replace Default Security
Settings".

Password recovery

Password recovery involves recovering a password or setting a new password when the password
has been forgotten.

OpenIDM provides a self-service end user interface for password changes, password recovery,
and password reset. For more information, see "Configuring User Self-Service".

Password comparisons with dictionary words

You can add dictionary lookups to prevent use of password values that match dictionary words.

Password history

You can add checks to prevent reuse of previous password values. For more information, see
"Creating a Password History Policy".

Password expiration

You can configure OpenIDM to call a workflow that ensures users are able to change expiring or
to reset expired passwords.

14.1.1. Creating a Password History Policy
To create a password history policy, you need to include customized scripts as described in "Storing
Multiple Passwords For Managed Users" in the Samples Guide. Copy these scripts to yourproject-
dir/script directory.

You also need to modify the following configuration files:

• Modify the sync.json file to include connections to the custom onCreate-onUpdate-sync.js script:
"onCreate" : {
 "type" : "text/javascript",
 "file" : "script/onCreate-onUpdate-sync.js"
},
"onUpdate" : {
 "type" : "text/javascript",
 "file" : "script/onCreate-onUpdate-sync.js"
}

If you have existing onCreate and onUpdate code blocks, you may need to consolidate options either in
the applicable script file, or in a source entry.

• Modify the router.json file to include code blocks for the managed/user object and associated
policy. These policies apply to the arbitrary ldapPassword parameter which you will also add to the
managed.json file:

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 321

{
 "pattern" : "managed/user.*",
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "script/set-additional-passwords.js",
 "additionalPasswordFields" : [
 "ldapPassword"
]
 },
 "methods" : [
 "create",
 "update"
]
},
{
 "pattern" : "policy/managed/user.*",
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "script/set-additional-passwords.js",
 "additionalPasswordFields" : [
 "ldapPassword"
]
 },
 "methods" : [
 "action"
]
}

• In the policy.json file, include the pwpolicy.js file from your project's script/ subdirectory, as
additionalFiles:
"type" : "text/javascript",
"file" : "policy.js",
"additionalFiles": ["script/pwpolicy.js"]

• Now make the following changes to your project's managed.json file.

• Find the "name" : "user", object code block, normally near the start of the file. Include the
following code blocks for the onValidate, onCreate, and onUpdate scripts. The value for the
storedFields and historyFields should match the additionalPasswordFields that you included in the
router.json file.

You may vary the value of historySize, depending on the number of recent passwords you want
to record in the history for each user. A historySize of 2 means that users who change their
passwords can't use their previous two passwords.

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 322

"name" : "user",
"onValidate" : {
 "type" : "groovy",
 "file" : "script/storeFields.groovy",
 "storedFields" : [
 "ldapPassword"
]
},
"onCreate" : {
 "type" : "text/javascript",
 "file" : "script/onCreate-user-custom.js",
 "historyFields" : [
 "ldapPassword"
],
 "historySize" : 2
},
"onUpdate" : {
 "type" : "text/javascript",
 "file" : "script/onUpdate-user-custom.js",
 "historyFields" : [
 "ldapPassword"
],
 "historySize" : 2
}

• In same file under properties, add the following code block for ldapPassword
"ldapPassword" : {
 "title" : "Password",
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "minLength" : 8,
 "userEditable" : true,
 "secureHash" : {
 "algorithm" : "SHA-256"
 },
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 2
 }
 },
 {
 "policyId" : "at-least-X-numbers",
 "params" : {
 "numNums" : 1
 }
 },
 {
 "policyId" : "cannot-contain-others",
 "params" : {
 "disallowedFields" : [
 "userName",
 "givenName",
 "sn"
]

Managing Passwords
Storing Separate Passwords Per Linked Resource

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 323

 }
 },
 {
 "policyId" : "re-auth-required",
 "params" : {
 "exceptRoles" : [
 "system",
 "openidm-admin",
 "openidm-reg",
 "openidm-cert"
]
 }
 },
 {
 "policyId" : "is-new",
 "params" : {
 "historyLength" : 2
 }
 }
]
}

• Add the following fieldHistory code block, which maps field names to a list of historical values for
the field.
"fieldHistory" : {
 "title" : "Field History",
 "type" : "object",
 "viewable" : false,
 "searchable" : false,
 "minLength" : 8,
 "userEditable" : true,
 "scope" : "private"
},

After your next reconciliation, the password policies that you just set up in OpenIDM should apply.

14.2. Storing Separate Passwords Per Linked Resource
OpenIDM supports storing multiple passwords in a managed user entry, to enable synchronization of
different passwords on different external resources.

To store multiple passwords, you must extend the managed user schema to include additional
properties for each target resource. You can set separate policies on each of these new properties, to
ensure that the stored passwords adhere to the password policies of the specific external resources.

The following addition to a sample managed.json configuration shows an ldapPassword property that has
been added to managed user objects. This property will be mapped to the password property on an
LDAP system:
"ldapPassword" : {
 "title" : "Password",
 "type" : "string",

Managing Passwords
Storing Separate Passwords Per Linked Resource

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 324

 "viewable" : false,
 "searchable" : false,
 "minLength" : 8,
 "userEditable" : true,
 "scope" : "private",
 "secureHash" : {
 "algorithm" : "SHA-256"
 },
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 2
 }
 },
 {
 "policyId" : "at-least-X-numbers",
 "params" : {
 "numNums" : 1
 }
 },
 {
 "policyId" : "cannot-contain-others",
 "params" : {
 "disallowedFields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 },
 {
 "policyId" : "re-auth-required",
 "params" : {
 "exceptRoles" : [
 "system",
 "openidm-admin",
 "openidm-reg",
 "openidm-cert"
]
 }
 },
 {
 "policyId" : "is-new",
 "params" : {
 "historyLength" : 2
 }
 }
]
},

This property definition shows that the ldapPassword will be hashed, with an SHA-256 algorithm, and
sets the policy that will be applied to values of this property.

To use this custom managed object property and its policies to update passwords on an external
resource, you must make the corresponding configuration and script changes in your deployment.
For a detailed sample that implements multiple passwords, see "Storing Multiple Passwords For

Managing Passwords
Generating Random Passwords

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 325

Managed Users" in the Samples Guide. That sample can also help you set up password history
policies.

14.3. Generating Random Passwords
There are many situations when you might want to generate a random password for one or more user
objects.

OpenIDM provides a way to customize your user creation logic to include a randomly generated
password that complies with the default password policy. This functionality is included in the default
crypto script, bin/defaults/script/crypto.js, but is not invoked by default. For an example of how this
functionality might be used, see the openidm/bin/defaults/script/ui/onCreate-user-set-default-fields.js
script. The following section of that file (commented out by default) means that users created by
using the Admin UI, or directly over the REST interface, will have a randomly generated, password
added to their entry:
if (!object.password) {

 // generate random password that aligns with policy requirements
 object.password = require("crypto").generateRandomString([
 { "rule": "UPPERCASE", "minimum": 1 },
 { "rule": "LOWERCASE", "minimum": 1 },
 { "rule": "INTEGERS", "minimum": 1 },
 { "rule": "SPECIAL", "minimum": 1 }
], 16);

}

Comment out this section to invoke the random password generation when users are created. Note
that changes made to scripts take effect after the time set in the recompile.minimumInterval, described in
"Setting the Script Configuration".

The generated password can be encrypted, or hashed, in accordance with the managed user schema,
defined in conf/managed.json. For more information, see "Encoding Attribute Values".

You can use this random string generation in a number of situations. Any script handler that is
implemented in JavaScript can call the generateRandomString function.

14.4. Synchronizing Passwords Between OpenIDM and an
LDAP Server
Password synchronization ensures uniform password changes across the resources that store the
password. After password synchronization, a user can authenticate with the same password on each
resource. No centralized directory or authentication server is required for performing authentication.
Password synchronization reduces the number of passwords users need to remember, so they can use
fewer, stronger passwords.

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 326

OpenIDM can propagate passwords to the resources that store a user's password. In addition,
OpenIDM provides two plugins to intercept and synchronize passwords that are changed natively in
OpenDJ and Active Directory.

When you use the password synchronization plugins, set up password policy enforcement on OpenDJ
or Active Directory rather than on OpenIDM. Alternatively, ensure that all password policies that are
enforced are identical to prevent password updates on one resource from being rejected by OpenIDM
or by another resource.

The password synchronization plugins intercept password changes on the resource before the
passwords are stored in encrypted form. The plugins then send intercepted password values to
OpenIDM over an encrypted channel.

If the OpenIDM instance is unavailable when a password is changed in either OpenDJ or Active
Directory, the respective password plugin intercepts the change, encrypts the password, and stores
the encrypted password in a JSON file. The plugin then checks whether the OpenIDM instance is
available, at a predefined interval. When OpenIDM becomes available, the plugin performs a PATCH
on the managed user record, to replace the password with the encrypted password stored in the
JSON file.

To be able to synchronize passwords, both password synchronization plugins require that the
corresponding managed user object exist in the OpenIDM repository.

The following sections describe how to use the password synchronization plugin for OpenDJ, and the
corresponding plugin for Active Directory.

14.4.1. Synchronizing Passwords With OpenDJ
Password synchronization with OpenDJ requires communication over the secure LDAP protocol
(LDAPS). If you have not set up OpenDJ for LDAPS, do this before you start, as described in the
OpenDJ Administration Guide.

OpenIDM must be installed, and running before you continue with the procedures in this section.

14.4.1.1. Establishing Secure Communication Between OpenIDM and OpenDJ
There are two possible modes of communication between OpenIDM and the OpenDJ password
synchronization plugin:

• SSL Authentication. In this case, you must import the OpenIDM certificate into OpenDJ's truststore
(either the self-signed certificate that is generated the first time OpenIDM is started, or a CA-
signed certificate).

For more information, see "To Import OpenIDM's Certificate into the OpenDJ Truststore".

• Mutual SSL Authentication. In this case, you must import the OpenIDM certificate into OpenDJ's
truststore, as described in "To Import OpenIDM's Certificate into the OpenDJ Truststore", and
import the OpenDJ certificate into OpenIDM's truststore, as described in "To Import OpenDJ's

https://backstage.forgerock.com/#!/docs/opendj/current/admin-guide/chap-connection-handlers#configure-ssl

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 327

Certificate into the OpenIDM Truststore". You must also add the OpenDJ certificate DN as a value
of the allowedAuthenticationIdPatterns property in your project's conf/authentication.json file. Mutual
SSL authentication is the default configuration of the password synchronization plugin, and the one
described in this procedure.

To Import OpenIDM's Certificate into the OpenDJ Truststore

You must export the certificate from OpenIDM's keystore into OpenDJ's truststore so that the OpenDJ
agent can make SSL requests to the OpenIDM endpoints.

OpenIDM generates a self-signed certificate the first time it starts up. This procedure uses the
self-signed certificate to get the password synchronization plugin up and running. In a production
environment, you should use a certificate that has been signed by a Certificate Authority.

1. Export OpenIDM's generated self-signed certificate to a file, as follows:
$ cd /path/to/openidm/security
$ keytool \
 -export \
 -alias openidm-localhost \
 -file openidm-localhost.crt \
 -keystore keystore.jceks \
 -storetype jceks
Enter keystore password: changeit
Certificate stored in file <openidm-localhost.crt>

The default OpenIDM keystore password is changeit.

2. Import the self-signed certificate into OpenDJ's truststore:
$ cd /path/to/opendj/config
$ keytool \
 -importcert \
 -alias openidm-localhost \
 -keystore truststore \
 -storepass `cat keystore.pin` \
 -file /path/to/openidm/security/openidm-localhost.crt
Owner: CN=localhost, O=OpenIDM Self-Signed Certificate, OU=None, L=None, ST=None, C=None
Issuer: CN=localhost, O=OpenIDM Self-Signed Certificate, OU=None, L=None, ST=None, C=None
Serial number: 15413e24ed3
Valid from: Tue Mar 15 10:27:59 SAST 2016 until: Tue Apr 14 10:27:59 SAST 2026
Certificate fingerprints:
 MD5: 78:81:DE:C0:5D:86:3E:DE:E0:67:C2:2E:9D:48:A0:0E
 SHA1: 29:14:FE:30:E7:D8:13:0F:A5:DD:DD:38:B5:D0:98:BA:E8:5B:96:59
 SHA256: F8:F2:F6:56:EF:DC:93:C0:98:36:95:...7D:F4:0D:F8:DC:22:7F:D1:CF:F5:FA:75:62:7A:69
 Signature algorithm name: SHA512withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

To Import OpenDJ's Certificate into the OpenIDM Truststore

For mutual authentication, you must import OpenDJ's certificate into the OpenIDM truststore.

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 328

OpenDJ generates a self-signed certificate when you set up communication over LDAPS. This
procedure uses the self-signed certificate to get the password synchronization plugin up and running.
In a production environment, you should use a certificate that has been signed by a Certificate
Authority.

1. Export OpenDJ's generated self-signed certificate to a file, as follows:
$ cd /path/to/opendj/config
$ keytool \
 -export \
 -alias server-cert \
 -file server-cert.crt \
 -keystore keystore \
 -storepass `cat keystore.pin`
Certificate stored in file <server-cert.crt>

2. Import the OpenDJ self-signed certificate into OpenIDM's truststore:
$ cd /path/to/openidm/security
$ keytool \
 -importcert \
 -alias server-cert \
 -keystore truststore \
 -storepass changeit \
 -file /path/to/opendj/config/server-cert.crt
Owner: CN=localhost, O=OpenDJ RSA Self-Signed Certificate
Issuer: CN=localhost, O=OpenDJ RSA Self-Signed Certificate
Serial number: 41cefe38
Valid from: Thu Apr 14 10:17:39 SAST 2016 until: Wed Apr 09 10:17:39 SAST 2036
Certificate fingerprints:
 MD5: 0D:BC:44:B3:C4:98:90:45:97:4A:8D:92:84:2B:FC:60
 SHA1: 35:10:B8:34:DE:38:59:AA:D6:DD:B3:44:C2:14:90:BA:BE:5C:E9:8C
 SHA256: 43:66:F7:81:3C:0D:30:26:E2:E2:09:...9F:5E:27:DC:F8:2D:42:79:DC:80:69:73:44:12:87
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

3. Add the certificate DN as a value of the allowedAuthenticationIdPatterns property for the CLIENT_CERT
authentication module, in your project's conf/authentication.json file.

For example, if you are using the OpenDJ self-signed certificate, add the DN "CN=localhost,
 O=OpenDJ RSA Self-Signed Certificate, OU=None, L=None, ST=None, C=None", as shown in the following
excerpt:

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 329

$ more /path/to/openidm/project-dir/conf/authentication.json
...
{
 "name" : "CLIENT_CERT",
 "properties" : {
 "queryOnResource" : "security/truststore",
 "defaultUserRoles" : [
 "openidm-cert"
],
 "allowedAuthenticationIdPatterns" : [
 "CN=localhost, O=OpenDJ RSA Self-Signed Certificate, OU=None, L=None, ST=None, C=None"
]
 },
 "enabled" : true
}
 ...

14.4.1.2. Installing the OpenDJ Password Synchronization Plugin

The following steps install the password synchronization plugin on an OpenDJ directory server that is
running on the same host as OpenIDM (localhost). If you are running OpenDJ on a different host, use
the fully qualified domain name instead of localhost.

1. Download the OpenDJ password synchronization plugin (OpenIDM Agents - OpenDJ 1.1.1) from
the ForgeRock BackStage site.

2. Extract the contents of the opendj-accountchange-handler-1.1.1.zip file to the directory where
OpenDJ is installed:
$ unzip ~/Downloads/opendj-accountchange-handler-1.1.1.zip -d /path/to/opendj/
Archive: opendj-accountchange-handler-1.1.1.zip
 creating: opendj/
 ...

3. Restart OpenDJ to load the additional schema from the password synchronization plugin:
$ cd /path/to/opendj/bin
$./stop-ds --restart
Stopping Server..
.
...
[14/Apr/2016:13:19:11 +0200] category=EXTENSIONS severity=NOTICE
 msgID=org.opends.messages.extension.571 msg=Loaded extension from file
 '/path/to/opendj/lib/extensions/openidm-account-change-handler.jar' (build 1.1.1, revision
 1)
...
[14/Apr/2016:13:19:43 +0200] category=CORE severity=NOTICE msgID=org.opends.messages.core
.139
... The Directory Server has started successfully

4. Configure the password synchronization plugin, if required.

https://backstage.forgerock.com/

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 330

The plugin configuration is specified in the openidm-pwsync-plugin-config.ldif file, which should have
been extracted to path/to/opendj/config when you extracted the plugin. Use a text editor to update
the configuration.
$ cd /path/to/opendj/config
$ more openidm-pwsync-plugin-config.ldif
dn: cn=OpenIDM Notification Handler,cn=Account Status Notification Handlers,cn=config
objectClass: top
objectClass: ds-cfg-account-status-notification-handler
objectClass: ds-cfg-openidm-account-status-notification-handler
cn: OpenIDM Notification Handler
...

You can configure the following elements of the plugin:

ds-cfg-enabled

Specifies whether the plugin is enabled.

Default value: true

ds-cfg-attribute

The attribute in OpenIDM that stores user passwords. This property is used to construct the
patch request on the OpenIDM managed user object.

Default value: password

ds-task-id

The query-id for the patch-by-query request. This query must be defined in the repository
configuration.

Default value: for-userName

ds-cfg-attribute-type

Specifies zero or more attribute types that the plug-in will send along with the password
change. If no attribute types are specified, only the DN and the new password will be
synchronized to OpenIDM.

Default values: entryUUID and uid

ds-cfg-log-file

The log file location where the changed passwords are written when the plug-in cannot
contact OpenIDM. The default location is the logs directory of the server instance, in the file
named pwsync. Passwords in this file will be encrypted.

Default value: logs/pwsync

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 331

Note that this setting has no effect if ds-cfg-update-interval is set to 0 seconds.

ds-cfg-update-interval

The interval, in seconds, at which password changes are propagated to OpenIDM. If this
value is 0, updates are made synchronously in the foreground, and no encrypted passwords
are stored in the ds-cfg-log-file.

Default value: 0 seconds

ds-cfg-referrals-url

The endpoint at which the plugin should find OpenIDM managed user accounts.

Default value: https://localhost:8444/openidm/managed/user

ds-cfg-ssl-cert-nickname

The alias of the client certificate in the OpenDJ keystore. If LDAPS is configured during the
GUI setup of OpenDJ, the default client key alias is server-cert.

Default value: server-cert

ds-cfg-realm

The alias of the private key that should be used by OpenIDM to decrypt the session key.

Default value: openidm-localhost

ds-certificate-subject-dn

The certificate subject DN of the OpenIDM private key. The default configuration assumes
that you are using the self-signed certificate that is generated when OpenIDM first starts.

Default value: CN=localhost, O=OpenIDM Self-Signed Certificate, OU=None, L=None, ST=None, C=None

ds-cfg-key-manager-provider

The OpenDJ key manager provider. The key manager provider specified here must be
enabled.

Default value: cn=JKS,cn=Key Manager Providers,cn=config

ds-cfg-trust-manager-provider

The OpenDJ trust manager provider. The trust manager provider specified here must be
enabled.

Default value: cn=JKS,cn=Trust Manager Providers,cn=config

Managing Passwords
Synchronizing Passwords With OpenDJ

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 332

ds-openidm-httpuser

An OpenIDM administrative username that the plugin will use to make REST calls to
OpenIDM.

Default value: openidm-admin

ds-openidm-httppasswd

The password of the OpenIDM administrative user specified by the previous property.

Default value: openidm-admin

5. When you have updated the plugin configuration to fit your deployment, add the configuration to
OpenDJ's configuration:
$ cd /path/to/opendj/bin
$./ldapmodify \
 --port 1389 \
 --hostname `hostname` \
 --bindDN "cn=Directory Manager" \
 --bindPassword "password" \
 --defaultAdd \
 --filename ../config/openidm-pwsync-plugin-config.ldif

Processing ADD request for cn=OpenIDM Notification Handler,cn=Account Status
 Notification Handlers,cn=config
ADD operation successful for DN cn=OpenIDM Notification Handler,cn=Account Status
 Notification Handlers,cn=config

6. Restart OpenDJ for the new configuration to take effect:
$./stop-ds --restart
Stopping Server..
.
...
[14/Apr/2016:13:25:50 +0200] category=EXTENSIONS severity=NOTICE
 msgID=org.opends.messages.extension.571 msg=Loaded extension from file
 '/path/to/opendj/lib/extensions/openidm-account-change-handler.jar' (build 1.1.1, revision
 1)
...
[14/Apr/2016:13:26:27 +0200] category=CORE severity=NOTICE msgID=org.opends.messages.core.139
 msg=The Directory Server has sent an alert notification generated by
 class org.opends.server.core.DirectoryServer (alert type org.opends.server.DirectoryServerStarted,
 alert ID org.opends.messages.core-135): The Directory Server has started successfully

7. Adjust your OpenDJ password policy configuration to use the password synchronization plugin.

The following command adjusts the default password policy:

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 333

$ cd /path/to/opendj/bin
$./dsconfig \
 set-password-policy-prop \
 --port 4444 \
 --hostname `hostname` \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --policy-name "Default Password Policy" \
 --set account-status-notification-handler:"OpenIDM Notification Handler" \
 --trustStorePath ../config/admin-truststore \
 --no-prompt
Apr 14, 2016 1:28:32 PM org.forgerock.i18n.slf4j.LocalizedLogger info
INFO: Loaded extension from file
 '/path/to/opendj/lib/extensions/openidm-account-change-handler.jar' (build 1.1.1, revision 1)

Password synchronization should now be configured and working. To test that the setup has been
successful, change a user password in OpenDJ. That password should be synchronized to the
corresponding OpenIDM managed user account, and you should be able to query the user's own
entry in OpenIDM using the new password.

14.4.2. Synchronizing Passwords With Active Directory

Use the Active Directory password synchronization plugin to synchronize passwords between
OpenIDM and Active Directory (on systems running at least Microsoft Windows Server 2003).

Install the plugin on Active Directory domain controllers (DCs) to intercept password changes, and
send the password values to OpenIDM over an encrypted channel. You must have Administrator
privileges to install the plugin. In a clustered Active Directory environment, you must install the
plugin on all DCs.

14.4.2.1. Configuring OpenIDM for Password Synchronization With Active Directory

To support password synchronization with Active Directory, you must make the following
configuration changes to your managed user schema (in your project's conf/managed.json file):

• Add a new property, named userPassword to the user object schema. This new property corresponds
with the userPassword attribute in an Active Directory user entry.

The following excerpt shows the required addition to the managed.json file:
{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 "password" : {
 ...
 "encryption" : {

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 334

 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 },
 "userPassword" : {
 "description" : "",
 "title" : "",
 "viewable" : true,
 "searchable" : false,
 "userEditable" : false,
 "policies" : [],
 "returnByDefault" : false,
 "minLength" : "",
 "pattern" : "",
 "type" : "string",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 },
 ...
 },
 "order" : [
 "_id",
 "userName",
 "password",
 ...
 "userPassword"
]
 }
 },
 ...
]
}

• Add an onUpdate script to the managed user object that checks whether the values of the two
password properties (password and userPassword) match, and sets them to the same value if they do
not.

The excerpt shows the required addition to the managed.json file:
{
 "objects" : [
 {
 "name" : "user",
 ...
 "onUpdate" : {
 "type" : "text/javascript",
 "source" : "if (newObject.userPassword !== oldObject.userPassword)
 { newObject.password = newObject.userPassword; }"
 },
 ...
]
}

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 335

14.4.2.2. Installing the Active Directory Password Synchronization Plugin
The following steps install the password synchronization on an Active directory server:

1. Download the Active Directory password synchronization plugin from the ForgeRock BackStage
site.

2. • Double-click the setup file to launch the installation wizard.

• Alternatively, from a command line, start the installation wizard with the idm-setup.exe
command. If you want to save the settings in a configuration file, you can use the /saveinf
switch as follows.
C:\Path\To > idm-setup.exe /saveinf=C:\temp\adsync.inf

• If you have a configuration file with installation parameters, you can install the password
plugin in silent mode as follows:
C:\Path\To > idm-setup.exe /verysilent /loadinf=C:\temp\adsync.inf

3. Provide the following information during the installation. You must accept the license agreement
shown to proceed with the installation.

OpenIDM Connection information

• OpenIDM URL. Enter the URL where OpenIDM is deployed, including the query that
targets each user account. For example:
https://localhost:8444/openidm/managed/user?_action=patch&_queryId=for-userName&uid=
${samaccountname}

This query requires a mapping from sAMAccountname to userName in your project's mapping file
(conf/sync.json). For example:
{
 "mappings" : [
 {
 "name" : "systemAdAccounts_managedUser",
 "source" : "system/ad/account",
 "target" : "managed/user",
 "properties" : [
 ...
 {
 "source" : "sAMAccountName",
 "target" : "userName"
 },
 ...
 }
]
}

The password synchronization plugin assumes that the Active Directory user attribute is
sAMAccountName. The default attribute will work in most deployments. If you cannot use the
sAMAccountName attribute to identify the Active Directory user, set the following registry keys

https://backstage.forgerock.com/#!/downloads/OpenIDM/Password%20Sync%20Plugins/1.1.0/Active%20Directory%20Password%20Sync%20Plugin#list

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 336

on your Active Directory server, specifying an alternative attribute. These examples use the
employeeId attribute instead of sAMAccountName :

• userAttribute = employeeId

• userSearchFilter = (&(objectClass=user)(employeeId=%s))

• idmURL = https://localhost:8444/openidm/managed/user?_action=patch&_queryId=for-userName&uid=
${employeeId}

For information about creating registry keys, see Configure a Registry Item in the Windows
documentation.

• OpenIDM User Password attribute. The password attribute for the managed/user object, such
as password.

If the password attribute does not exist in the managed/user object on OpenIDM, the password
sync service will return an error when it attempts to replay a password update that has
been made in Active Directory. If your managed user objects do not include passwords,
you can add an onCreate script to the Active Directory > Managed Users mapping that sets
an empty password when managed user accounts are created. The following excerpt of a
sync.json file shows such a script in the mapping:
"mappings" : [
 {
 "name" : "systemAdAccounts_managedUser",
 "source" : "system/ad/account",
 "target" : "managed/user",
 "properties" : [
 {
 "source" : "sAMAccountName",
 "target" : "userName"
 }
],
 "onCreate" : {
 "type" : "text/javascript",
 "source" : "target.password=''"
 },
...

The onCreate script creates an empty password in the managed/user object, so that the
password attribute exists and can be patched.

OpenIDM Authentication Parameters

Provide the following information:

• User name. Enter name of an administrative user that can authenticate to OpenIDM, for
example, openidm-admin.

• Password. Enter the password of the user that authenticates to OpenIDM, for example,
openidm-admin.

https://technet.microsoft.com/en-us/library/cc753092.aspx

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 337

• Select authentication type. Select the type of authentication that Active Directory will use
to authenticate to OpenIDM.

For plain HTTP authentication, select OpenIDM Header. For SSL mutual authentication, select
Certificate.

Certificate authentication settings

If you selected Certificate as the authentication type on the previous screen, specify the
details of the certificate that will be used for authentication.

• Select Certificate file. Browse to select the certificate file that Active Directory will use
to authenticate to OpenIDM. The certificate file must be configured with an appropriate
encoding, cryptographic hash function, and digital signature. The plugin can read a public
or a private key from a PKCS12 archive file.

For production purposes, you should use a certificate that has been issued by a Certificate
Authority. For testing purposes, you can generate a self-signed certificate. Whichever
certificate you use, you must import that certificate into OpenIDM's trust store.

To generate a self-signed certificate for Active Directory, follow these steps:

1. On the Active Directory host, generate a private key, which will be used to generate a
self-signed certificate with the alias ad-pwd-plugin-localhost:
> keytool.exe ^
 -genkey ^
 -alias ad-pwd-plugin-localhost ^
 -keyalg rsa ^
 -dname "CN=localhost, O=AD-pwd-plugin Self-Signed Certificate" ^
 -keystore keystore.jceks ^
 -storetype JCEKS
Enter keystore password: changeit
Re-enter new password: changeit
Enter key password for <ad-pwd-plugin-localhost>
 <RETURN if same as keystore password>

2. Now use the private key, stored in the keystore.jceks file, to generate the self-signed
certificate:
> keytool.exe ^
 -selfcert ^
 -alias ad-pwd-plugin-localhost ^
 -validity 365 ^
 -keystore keystore.jceks ^
 -storetype JCEKS ^
 -storepass changeit

3. Export the certificate. In this case, the keytool command exports the certificate in a
PKCS12 archive file format, used to store a private key with a certificate:

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 338

> keytool.exe ^
 -importkeystore ^
 -srckeystore keystore.jceks ^
 -srcstoretype jceks ^
 -srcstorepass changeit ^
 -srckeypass changeit ^
 -srcalias ad-pwd-plugin-localhost ^
 -destkeystore ad-pwd-plugin-localhost.p12 ^
 -deststoretype PKCS12 ^
 -deststorepass changeit ^
 -destkeypass changeit ^
 -destalias ad-pwd-plugin-localhost ^
 -noprompt

4. The PKCS12 archive file is named ad-pwd-plugin-localhost.p12. Import the contents of the
keystore contained in this file to the system that hosts OpenIDM. To do so, import the
PKCS12 file into the OpenIDM keystore file, named truststore, in the /path/to/openidm/
security directory.

On the machine that is running OpenIDM, enter the following command:
$ keytool \
 -importkeystore \
 -srckeystore /path/to/ad-pwd-plugin-localhost.p12
 -srcstoretype PKCS12
 -destkeystore truststore
 -deststoretype JKS

• Password to open the archive file with the private key and certificate. Specify the keystore
password (changeit, in the previous example).

Password Encryption settings

Provide the details of the certificate that will be used to encrypt password values.

• Archive file with certificate. Browse to select the archive file that will be used for password
encryption. That file is normally set up in PKCS12 format.

For evaluation purposes, you can use a self-signed certificate, as described earlier. For
production purposes, you should use a certificate that has been issued by a Certificate
Authority.

Whichever certificate you use, the certificate must be imported into OpenIDM's keystore, so
that OpenIDM can locate the key with which to decrypt the data. To import the certificate
into OpenIDM's keystore, keystore.jceks, run the following command on the OpenIDM host
(UNIX):
$ keytool \
 -importkeystore \
 -srckeystore /path/to/ad-pwd-plugin-localhost.p12 \
 -srcstoretype PKCS12 \
 -destkeystore /path/to/openidm/security/keystore.jceks \
 -deststoretype jceks

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 339

• Private key alias. Specify the alias for the certificate, such as ad-pwd-plugin-localhost.

• Password to open certificate file. Specify the password to access the PFX keystore file, such
as changeit, from the previous example.

• Select encryption standard. Specify the encryption standard that will be used when
encrypting the password value (AES-128, AES-192, or AES-256).

Data storage

Provide the details for the storage of encrypted passwords in the event that OpenIDM is not
available when a password modification is made.

• Select a secure directory in which the JSON files that contain encrypted passwords are
queued. The server should prevent access to this folder, except access by the Password Sync
 service. The path name cannot include spaces.

• Directory poll interval (seconds). Enter the number of seconds between calls to check
whether OpenIDM is available, for example, 60, to poll OpenIDM every minute.

Log storage

Provide the details of the messages that should be logged by the plugin.

• Select the location to which messages should be logged. The path name cannot include
spaces.

• Select logging level. Select the severity of messages that should be logged, either error,
info, warning, fatal, or debug.

Select Destination Location

Setup installs the plugin in the location you select, by default C:\Program Files\OpenIDM Password
 Sync.

4. After running the installation wizard, restart the computer.

5. If you need to change any settings after installation, access the settings using the Registry Editor
under HKEY_LOCAL_MACHINE > SOFTWARE > ForgeRock > OpenIDM > PasswordSync.

If you have configured SSL access, make sure authType is set to idm.

6. If you selected to authenticate over plain HTTP in the previous step, your setup is now complete.

If you selected to authenticate with mutual authentication, complete this step.

• The Password Sync Service uses Windows certificate stores to verify OpenIDM's identity. The
certificate that OpenIDM uses must therefore be added to the list of trusted certificates on
the Windows machine.

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 340

For production purposes, you should use a certificate that has been issued by a certificate
authority. For test purposes, you can use the self-signed certificate that is generated by
OpenIDM on first startup.

To add the OpenIDM certificate to the list of trusted certificates, use the Microsoft
Management Console.

1. Select Start and type mmc in the Search field.

2. In the Console window, select File > Add/Remove Snap-in.

3. From the left hand column, select Certificates and click Add.

4. Select My user account, and click Finish.

5. Repeat the previous two steps for Service account and Computer account.

For Service account, select Local computer, then select OpenIDM Password Sync Service.

For Computer account, select Local computer.

6. Click Finish when you have added the three certificate snap-ins.

7. Still in the Microsoft Management Console, expand Certificates - Current User > Personal
and select Certificates.

8. Select Action > All Tasks > Import to open the Certificate Import Wizard.

9. Browse for the OpenIDM certificate (openidm-localhost.crt by default, if you use OpenIDM's
self-signed certificate).

Managing Passwords
Synchronizing Passwords With Active Directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 341

10. Enter the Password for the certificate (changeit by default, if you use OpenIDM's self-
signed certificate).

11. Accept the default for the Certificate Store.

12. Click Finish to complete the import.

13. Repeat the previous six steps to import the certificate for:

Certificates - Current User > Trusted Root Certification Authorities
Certificates - Service > OpenIDM Password Sync\Personal
Certificates - Service > OpenIDM Password Sync\Trusted Root Certification Authorities
Certificates > Local Computer > Personal
Certificates > Local Computer > Trusted Root Certification Authorities

Managing Authentication, Authorization and Role-Based Access Control
OpenIDM Authentication

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 342

Chapter 15

Managing Authentication, Authorization and
Role-Based Access Control

OpenIDM provides a flexible authentication and authorization mechanism, based on REST interface
URLs and on managed roles. This chapter describes how to configure the supported authentication
modules, and how roles are used to support authentication, authorization, and access control.

15.1. OpenIDM Authentication
OpenIDM does not allow access to the REST interface without authentication. User self-registration
requires anonymous access. For this purpose, OpenIDM includes an anonymous user, with the password
anonymous. For more information, see "Internal Users".

OpenIDM supports an enhanced authentication mechanism over the REST interface, that is
compatible with the AJAX framework. Although OpenIDM understands the authorization header
of the HTTP basic authorization contract, it deliberately does not utilize the full contract. In other
words, it does not cause the browser built in mechanism to prompt for username and password.
However, OpenIDM does understand utilities such as curl that can send the username and password
in the Authorization header.

In general, the HTTP basic authentication mechanism does not work well with client side web
applications, and applications that need to render their own login screens. Because the browser
stores and sends the username and password with each request, HTTP basic authentication has
significant security vulnerabilities. OpenIDM therefore supports sending the username and password
via the authorization header, and returns a token for subsequent access.

This document uses the OpenIDM authentication headers in all REST examples, for example:
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 ...

For more information about the OpenIDM authentication mechanism, see "Use Message Level
Security".

15.1.1. Authenticating OpenIDM Users

Managing Authentication, Authorization and Role-Based Access Control
Authenticating OpenIDM Users

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 343

OpenIDM stores two types of users in its repository - internal users and managed users. The way in
which both of these user types are authenticated is defined in your project's conf/authentication.json
file.

15.1.1.1. Internal Users

OpenIDM creates two internal users by default: anonymous and openidm-admin. These internal user
accounts are separated from other user accounts to protect them from any reconciliation or
synchronization processes.

OpenIDM stores internal users and their role membership in a table in the repository. The two default
internal users have the following functions:

anonymous

This user enables anonymous access to OpenIDM, for users who do not have their own accounts.
The anonymous user has limited rights within OpenIDM. By default, the anonymous user has
the openidm-reg role, and can be used to allow self-registration. For more information about self-
registration, see "The End User and Commons User Self-Service".

openidm-admin

This user serves as the top-level administrator. After installation, the openidm-admin user has full
access, and provides a fallback mechanism in the event that other users are locked out of their
accounts. Do not use openidm-admin for regular tasks. Under normal circumstances, the openidm
-admin account does not represent a regular user, so audit log records for this account do not
represent the actions of any real person.

The default password for the openidm-admin user (also openidm-admin) is not encrypted, and is not
secure. In production environments, you must change this password to a more secure one,
as described in the following section. The new password will be encoded using a salted hash
algorithm, when it is changed.

15.1.1.1.1. Managing Internal Users Over REST

Like any other user in the repository, you can manage internal users over the REST interface.

To list the internal users over REST, query the repo endpoint as follows:

Managing Authentication, Authorization and Role-Based Access Control
Authenticating OpenIDM Users

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 344

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/internal/user?_queryId=query-all-ids"
 {
 "result": [
 {
 "_id": "openidm-admin",
 "_rev": "1"
 },
 {
 "_id": "anonymous",
 "_rev": "1"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To query the details of an internal user, include the user's ID in the request, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/internal/user/openidm-admin"
 {
 "_id": "openidm-admin",
 "_rev": "1",
 "roles": [
 {
 "_ref": "repo/internal/role/openidm-admin"
 },
 {
 "_ref": "repo/internal/role/openidm-authorized"
 }
],
 "userName": "openidm-admin",
 "password": "openidm-admin"
}

To change the password of the default administrative user, send a PUT request to the user object.
The following example changes the password of the openidm-admin user to Passw0rd:

Managing Authentication, Authorization and Role-Based Access Control
Authenticating OpenIDM Users

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 345

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request PUT \
 --data '{
 "_id": "openidm-admin",
 "roles": [
 {
 "_ref": "repo/internal/role/openidm-admin"
 },
 {
 "_ref": "repo/internal/role/openidm-authorized"
 }
],
 "userName": "openidm-admin",
 "password": "Passw0rd"
 }' \
 "https://localhost:8443/openidm/repo/internal/user/openidm-admin"

15.1.1.2. Managed Users

External users that are managed by OpenIDM are known as managed users.

The table in which managed users are stored depends on the type of repository. For JDBC
repositories, OpenIDM stores managed users in the managed objects table, named managedobjects, and
indexes those objects in a table named managedobjectproperties.

For an OrientDB repository, managed objects are stored in the table managed_user.

OpenIDM provides RESTful access to managed users, at the context path /openidm/managed/user. For
more information, see "Managing Users Over REST".

15.1.1.3. Authenticating Internal and Managed Users

By default, the attribute names that are used to authenticate managed and internal users are
username and password, respectively. However, you can explicitly define the properties that constitute
usernames, passwords or roles with the propertyMapping object in the conf/authentication.json file. The
following excerpt of the authentication.json file shows the default property mapping object:
...
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "roles"
 },
 ...

If you change the attribute names that are used for authentication, you must adjust the following
authentication queries (defined in the repository configuration file, openidm/conf/repo.repo-type.json).

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication and Session Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 346

Two queries are defined by default.

credential-internaluser-query

This query uses the username attribute for login, for internal users. For example, the following
credential-internaluser-query is defined in the default repository configuration file for a MySQL
repository.
"credential-internaluser-query" : "SELECT objectid, pwd, roles FROM
 ${_dbSchema}.${_table} WHERE objectid = ${username}",

credential-query

This query uses the username attribute for login, for managed users. For example, the following
credential-query is defined in the default repository configuration file for a MySQL repository.
"credential-query" : "SELECT * FROM ${_dbSchema}.${_table} WHERE
 objectid = ${username} and accountStatus = 'active'",

The query that is used for a particular resource is specified by the queryId property in the
authentication.json file. The following sample excerpt of that file shows that the credential-query is used
when validating managed user credentials.
{
 "queryId" : "credential-query",
 "queryOnResource" : "managed/user",
...
}

15.1.2. Supported Authentication and Session Modules

The authentication configuration is defined in conf/authentication.json. This file configures the
methods by which a user request is authenticated. It includes both session and authentication module
configuration.

You may review and configure supported modules in the Admin UI. To do so, log into https://
localhost:8443/admin, and select Configure > System Preferences > Authentication.

15.1.2.1. Supported Session Module

At this time, OpenIDM includes one supported session module. The JSON Web Token session module
configuration specifies keystore information, and details about the session lifespan. The default
JWT_SESSION configuration is as follows:

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication and Session Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 347

 "name" : "JWT_SESSION",
 "properties" : {
 "keyAlias" : "openidm-localhost",
 "privateKeyPassword" : "&{openidm.keystore.password}",
 "keystoreType" : "&{openidm.keystore.type}",
 "keystoreFile" : "&{openidm.keystore.location}",
 "keystorePassword" : "&{openidm.keystore.password}",
 "maxTokenLifeMinutes" : "120",
 "tokenIdleTimeMinutes" : "30",
 "sessionOnly" : true
 }

For more information about the JWT_SESSION module, see the following Javadoc page: Class
JwtSessionModule.

15.1.2.2. Supported Authentication Modules

OpenIDM evaluates modules in the order shown in the authentication.json file for your project. When
OpenIDM finds a module to authenticate a user, it does not evaluate subsequent modules.

You can also configure the order of authentication modules in the Admin UI. After logging in, click
Configure > System Preferences > Authentication. The following figure illustrates how you might
include the IWA module in the Admin UI.

Do prioritize authentication modules that query OpenIDM resources. If you prioritize modules that
query external resources, that could lead to problems for internal users such as openidm-admin.

STATIC_USER

STATIC_USER authentication provides an anonymous authentication mechanism that bypasses any
database lookups if the headers in a request indicate that the user is anonymous. The following
sample REST call uses STATIC_USER authentication in the self-registration process:

http://commons.forgerock.org/forgerock-auth-filters/forgerock-authn-filter/forgerock-jaspi-modules/forgerock-jaspi-jwt-session-module/apidocs/org/forgerock/jaspi/modules/session/jwt/JwtSessionModule.html
http://commons.forgerock.org/forgerock-auth-filters/forgerock-authn-filter/forgerock-jaspi-modules/forgerock-jaspi-jwt-session-module/apidocs/org/forgerock/jaspi/modules/session/jwt/JwtSessionModule.html

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication and Session Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 348

$ curl \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-Username: anonymous" \
 --header "Content-Type: application/json" \
 --data '{
 "userName":"steve",
 "givenName":"Steve",
 "sn":"Carter",
 "telephoneNumber":"0828290289",
 "mail":"scarter@example.com",
 "password":"Passw0rd"
 }' \
 --request POST \
 "https://localhost:8443/openidm/managed/user/?_action=create"

Note that this is not the same as an anonymous request that is issued without headers.

Authenticating with the STATIC_USER module avoids the performance cost of reading the database
for self-registration, certain UI requests, and other actions that can be performed anonymously.
Authenticating the anonymous user with the STATIC_USER module is identical to authenticating
the anonymous user with the INTERNAL_USER module, except that the database is not accessed. So,
STATIC_USER authentication provides an authentication mechanism for the anonymous user that
avoids the database lookups incurred when using INTERNAL_USER.

A sample STATIC_USER authentication configuration follows:
{
 "name" : "STATIC_USER",
 "enabled" : true,
 "properties" : {
 "propertyMapping" : "{}",
 "queryOnResource" : "repo/internal/user",
 "username" : "anonymous",
 "password" : "anonymous",
 "defaultUserRoles" : [
 "openidm-reg"
],
 "augmentSecurityContext" : null
 }
}

TRUSTED_ATTRIBUTE

The TRUSTED_ATTRIBUTE authentication module allows you to configure OpenIDM to trust the
HttpServletRequest attribute of your choice. You can configure it by adding the TRUSTED_ATTRIBUTE
module to your authentication.json file, as shown in the following code block:

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication and Session Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 349

...
{
 "name" : "TRUSTED_ATTRIBUTE",
 "properties" : {
 "queryOnResource" : "managed/user",
 "propertyMapping" : {
 "authenticationId" : "username",
 "userRoles" : "authzRoles"
 },
 "defaultUserRoles" : [],
 "authenticationIdAttribute" : "X-ForgeRock-AuthenticationId",
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "file" : "auth/populateRolesFromRelationship.js"
 }
 },
 "enabled" : true
}
...

TRUSTED_ATTRIBUTE authentication queries the managed/user repository, and allows authentication
when credentials match, based on the username and authzRoles assigned to that user, specifically
the X-ForgeRock-AuthenticationId attribute.

To see how you can configure this with OpenIDM, see "The Trusted Servlet Filter Sample" in the
Samples Guide.

MANAGED_USER

MANAGED_USER authentication queries the repository, specifically the managed/user objects, and allows
authentication if the credentials match. The default configuration uses the username and password of
the managed user to authenticate, as shown in the following sample configuration.
{
 "name" : "MANAGED_USER",
 "enabled" : true,
 "properties" : {
 "queryId" : "credential-query",
 "queryOnResource" : "managed/user",
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "roles"
 },
 "defaultUserRoles" : []
 }
},

INTERNAL_USER

INTERNAL_USER authentication queries the repository, specifically the repo/internal/user objects, and
allows authentication if the credentials match. The default configuration uses the username and
password of the internal user to authenticate, as shown in the following sample configuration.

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication and Session Modules

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 350

{
 "name" : "INTERNAL_USER",
 "enabled" : true,
 "properties" : {
 "queryId" : "credential-internaluser-query",
 "queryOnResource" : "repo/internal/user",
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "roles"
 },
 "defaultUserRoles" : []
 }
},

CLIENT_CERT

The client certificate module, CLIENT_CERT, provides authentication by validating a client certificate,
transmitted via an HTTP request. The criteria compares the subject DN of the request certificate
with the subject DN of the truststore.

A sample CLIENT_CERT authentication configuration follows:
{
 "name" : "CLIENT_CERT",
 "enabled" : true,
 "properties" : {
 "queryOnResource" : "security/truststore",
 "defaultUserRoles" : ["openidm-cert"],
 "allowedAuthenticationIdPatterns" : []
 }
},

The "allowedAuthenticationIdPatterns" filter enables you to specify an array of usernames or
username patterns that will be accepted for authentication. If this property is empty, any
username can authenticate.

For detailed options, see "Configuring the CLIENT_CERT Authentication Module".

The modules which follow point to external systems. In the authentication.json file, you should
generally include these modules after any modules that that query internal OpenIDM resources.

PASSTHROUGH

PASSTHROUGH authentication queries an external system, such as an LDAP server, and allows
authentication if the provided credentials match those in the external system. The following
sample configuration shows pass-through authentication using the user objects in the system
endpoint system/ldap/account. For more information on pass-through authentication, see
"Configuring Pass-Through Authentication".

OPENAM_SESSION

The OPENAM_SESSION module enables you to protect an OpenIDM deployment with ForgeRock's
OpenAM Access Management product. For an example of how you might use the OPENAM_SESSION

http://docs.forgerock.org/en/index.html?product=openam
http://docs.forgerock.org/en/index.html?product=openam

Managing Authentication, Authorization and Role-Based Access Control
Configuring Pass-Through Authentication

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 351

module, see "Full Stack Sample - Using OpenIDM in the ForgeRock Identity Platform" in the
Samples Guide.

For detailed options, see "OPENAM_SESSION Module Configuration Options".

IWA

The IWA module supports Integrated Windows Authentication. In other words, the IWA module
supports the use of an LDAP connector for an Active Directory server. For an example of how you
can set that up with a Kerberos server, see "Kerberos Configuration Example".

15.1.3. Configuring Pass-Through Authentication

OpenIDM 4 supports a pass-through authentication mechanism. With pass-through authentication,
the credentials included with the REST request are validated against those stored in a remote system,
such as an LDAP server.

The following excerpt of an authentication.json shows a pass-through authentication configuration for
an LDAP system.
"authModules" : [
 {
 "name" : "PASSTHROUGH",
 "enabled" : true,
 "properties" : {
 "augmentSecurityContext": {
 "type" : "text/javascript",
 "file" : "auth/populateAsManagedUser.js"
 },
 "queryOnResource" : "system/ldap/account",
 "propertyMapping" : {
 "authenticationId" : "uid",
 "groupMembership" : "memberOf"
 },
 "groupRoleMapping" : {
 "openidm-admin" : ["cn=admins"]
 },
 "managedUserLink" : "systemLdapAccounts_managedUser",
 "defaultUserRoles" : [
 "openidm-authorized"
]
 },
 },
 ...
]

For more information on authentication module properties, see the following: "Authentication and
Session Module Configuration Details".

The OpenIDM samples, described in "Overview of the OpenIDM Samples" in the Samples Guide,
include several examples of pass-through authentication configuration. Samples 2, 2b, 2c, and 2d use
an external LDAP system for authentication. Sample 3 authenticates against a SQL database. Sample

Managing Authentication, Authorization and Role-Based Access Control
Kerberos Configuration Example

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 352

6 authenticates against an Active Directory server. The scriptedrest2dj sample uses a scripted REST
connector to authenticate against an OpenDJ server.

15.1.4. Kerberos Configuration Example
This section assumes that you have an active Kerberos server acting as a Key Distribution Center
(KDC). If you're running Active Directory in your deployment, that service includes a Kerberos KDC
by default.

To take advantage of a Kerberos KDC, you need to do two things: first include at least the IWA and
possibly the PASSTHROUGH modules in the authentication.json file. Second, modify the system.properties file
to take advantage of the noted modules.

For IWA, based on Integrated Windows Authentication, this section assumes you have configured an
LDAP connector for an Active Directory server. To confirm, identify the following mapping source in
the sync.json configuration file:
system/ad/account

You could then include the following code block towards the end of the authentication.json file. Include
appropriate values for the kerberosRealm and kerberosServerName. For a list of definitions, see "Kerberos
Definitions".
"authModules" : [
 ...
 {
 "name" : "IWA",
 "properties": {
 "servicePrincipal" : "",
 "keytabFileName" : "security/name.HTTP.keytab",
 "kerberosRealm" : "",
 "kerberosServerName" : "",
 "queryOnResource" : "system/ad/account",
 "propertyMapping" : {
 "authenticationId" : "sAMAccountName",
 "groupMembership" : "memberOf"
 },
 "groupRoleMapping" : {
 "openidm-admin": []
 },
 "groupComparisonMethod": "ldap",
 "defaultUserRoles" : [
 "openidm-authorized"
],
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "file" : "auth/populateAsManagedUser.js"
 }
 },
 "enabled" : true
 }

To grant different roles to users who are authenticated through the IWA module, list them with their
groupRoleMapping.

Managing Authentication, Authorization and Role-Based Access Control
Kerberos Configuration Example

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 353

You could pair the IWA module with the PASSTHROUGH module. When paired, a failure in the IWA module
allows users to revert to forms-based authentication.

You could add the PASSTHROUGH module, based on the model shown in "Configuring Pass-Through
Authentication".

Once you have included at least the IWA module, edit the system.properties file. Include the following
entry to point to a JAAS configuration file. Substitute if desired for gssapi_jaas.conf
java.security.auth.login.config=/path/to/openidm/conf/gssapi_jaas.conf

In the gssapi_jaas.conf file, include the following information related to the LDAP connector:
org.identityconnectors.ldap.LdapConnector {
 com.sun.security.auth.module.Krb5LoginModule required client=TRUE
 principal="bjensen@EXAMPLE.COM" useKeyTab=true keyTab="/path/to/bjensen.keytab";
};

15.1.4.1. Kerberos Definitions

The Windows Desktop authentication module uses Kerberos. The user presents a Kerberos token
to the ForgeRock product, through the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) protocol. The Windows Desktop authentication module enables desktop single sign
on such that a user who has already authenticated with a Kerberos Key Distribution Center can
authenticate without having to provide the login information again. Users might need to set up
Integrated Windows Authentication in Internet Explorer to benefit from single sign on when logged
on to a Windows desktop.

The Kerberos attributes shown may correspond to a ssoadm attribute for OpenAM or a JSON
attribute for OpenIDM.

Service Principal

Specify the Kerberos principal for authentication in the following format.
HTTP/host.domain@dc-domain-name

Here, host and domain correspond to the host and domain names of the installed ForgeRock
product, and dc-domain-name is the domain name of the Windows Kerberos domain controller
server. The dc-domain-name can differ from the domain name for the installed ForgeRock
product.

You set up the account on the Windows domain controller, creating a computer account for the
installed ForgeRock product and associating the new account with a service provider name.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-principal-name

JSON attribute: servicePrincipal

Managing Authentication, Authorization and Role-Based Access Control
Kerberos Configuration Example

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 354

Keytab File Name

Specify the full path of the keytab file for the Service Principal. You generate the keytab file using
the Windows ktpass utility.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-keytab-file

JSON attribute: keytabFileName

Kerberos Realm

Specify the Kerberos Key Distribution Center realm. For the Windows Kerberos service this is the
domain controller server domain name.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-kerberos-realm

JSON attribute: kerberosRealm

Kerberos Server Name

Specify the fully qualified domain name of the Kerberos Key Distribution Center server, such as
that of the domain controller server.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-kdc

JSON attribute: kerberosServerName

Return Principal with Domain Name

When enabled, OpenAM automatically returns the Kerberos principal with the domain controller's
domain name during authentication.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-returnRealm

JSON attribute: returnRealm

Authentication Level

Sets the authentication level used to indicate the level of security associated with the module. The
value can range from 0 to any positive integer.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-auth-level

JSON attribute: authLevel

Search for the user in the realm

Validates the user against the configured data stores. If the user from the Kerberos token is
not found, authentication will fail. If an authentication chain is set, the user will be able to
authenticate through another module.

Managing Authentication, Authorization and Role-Based Access Control
Configuring the CLIENT_CERT Authentication Module

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 355

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-lookupUserInRealm

JSON attribute: lookupUserInRealm

Note

Note: For Windows 7 and later, you will need to disable the "Enable Integrated Windows Authentication"
option in Internet Explorer. In addition, you will need to add and activate the DisableNTMLPreAuth key to the
Windows Registry. For detailed instructions, see the Microsoft KB article on when You cannot post data to a
non-NTLM-authenticated Web site

15.1.5. Configuring the CLIENT_CERT Authentication Module

The CLIENT_CERT authentication module compares the subject DN of the client certificate with the
subject DN of the OpenIDM truststore.

The following procedure allows you to review the process with a generated self-signed certificate for
the CLIENT_CERT module. If you have a *.pem file signed by a certificate authority, substitute accordingly.

In this procedure, you will verify the certificate over port 8444 as defined in your project's conf/boot/
boot.properties file:
openidm.auth.clientauthonlyports=8443,8444

Demonstrating the CLIENT_CERT Module

1. Generate the self-signed certificate with the following command:
$ openssl \
 req \
 -x509 \
 -newkey rsa:1024 \
 -keyout key.pem \
 -out cert.pem \
 -days 3650 \
 -nodes

2. Respond to the questions when prompted.
Country Name (2 letter code) [XX]:
State or Province Name (full name) []:
Locality Name (eg, city) [Default City]:
Name (eg, company) [Default Company Ltd]:ForgeRock
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:localhost
Email Address []:

In this case, the Name corresponds to the O (for organization) of ForgeRock, and the Common Name
corresponds to the cn of localhost. You'll use this information in a couple of steps.

3. Import the certificate cert.pem file into the OpenIDM truststore:

http://support.microsoft.com/kb/251404
http://support.microsoft.com/kb/251404

Managing Authentication, Authorization and Role-Based Access Control
Configuring the CLIENT_CERT Authentication Module

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 356

$ keytool \
 -importcert \
 -keystore \
 /path/to/openidm/security/truststore \
 -storetype JKS \
 -storepass changeit \
 -file cert.pem \
 -trustcacerts \
 -noprompt \
 -alias \
 client-cert-example
 Certificate was added to keystore

4. Open the authentication.json file in the project-dir/conf directory. Scroll to the code block with
CLIENT_CERT and include the information from when you generated the self-signed certificate:
...
{
 "name" : "CLIENT_CERT",
 "properties" : {
 "queryOnResource" : "security/truststore",
 "defaultUserRoles" : [
 "openidm-cert"
],
 "allowedAuthenticationIdPatterns" : [
 "cn=localhost, O=ForgeRock"
]
 },
 "enabled" : true
}
...

5. Start OpenIDM:
$ cd /path/to/openidm
$./startup.sh -p project-dir

6. Send an HTTP request with your certificate file cert.pem:
$ curl \
 --cacert self-signed.crt \
 --cert-type PEM \
 --key key.pem \
 --key-type PEM \
 --tlsv1 \
 --cert /path/to/./cert.pem \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request GET \
 "https://localhost:8444/openidm/info/ping"
 {
 "_id":"",
 "state":"ACTIVE_READY",
 "shortDesc":"OpenIDM ready"
}

Managing Authentication, Authorization and Role-Based Access Control
Roles and Authentication

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 357

15.2. Roles and Authentication
OpenIDM includes a number of default roles, and supports the configuration of managed roles,
enabling you to customize the roles mechanism as needed.

The following roles are configured by default:

openidm-reg

Role assigned to users who access OpenIDM with the default anonymous account.

The openidm-reg role is excluded from the reauthorization required policy definition by default.

openidm-admin

OpenIDM administrator role, excluded from the reauthorization required policy definition by
default.

openidm-authorized

Default role for any user who has authenticated with a user name and password.

openidm-cert

Default role for any user authenticated with mutual SSL authentication.

This role applies only for mutual authentication. Furthermore, the shared secret (certificate)
must be adequately protected. The openidm-cert role is excluded from the reauthorization required
policy definition by default.

openidm-tasks-manager

Role for users who can be assigned to workflow tasks.

OpenIDM begins the process of assigning the roles of a user with the roles property. OpenIDM then
proceeds in the following sequence to define user roles:

• If the defaultRoles property is set, OpenIDM assigns those roles to the given user. The defaultRoles
property must be configured in an array.

• The userRoles property is a string that defines the attribute. The value of the attribute may be
either a comma-delimited string or a list of strings. You can identify the list with a REST call to a
queryOnResource endpoint such as system/ldap/account

• If the groupRoleMapping and groupMembership properties are defined, OpenIDM assigns additional roles
to users depending on any existing group membership.

The roles calculated in sequence are cumulative. In other words, if all of the above properties
are defined, OpenIDM would assign roles from defaultRoles and userRoles. It would also use a
MappingRoleCalculator to define roles from the groupRoleMapping and groupMembership properties.

For users who have authenticated with mutual SSL authentication, the module is CLIENT_CERT and the
default role for such users is openidm-cert.

Managing Authentication, Authorization and Role-Based Access Control
Authorization

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 358

{ "name" : "CLIENT_CERT",
 "properties" : {
 "queryOnResource": "security/truststore",
 "defaultUserRoles": ["openidm-cert"],
 "allowedAuthenticationPatterns" : []
 },
 "enabled" : "true"
}

Access control for such users is configured in the access.js file. For more information, see
"Authorization".

15.3. Authorization
OpenIDM provides role-based authorization that restricts direct HTTP access to REST interface
URLs. The default authorization configuration grants different access rights to users that are
assigned one or more of the following roles:

"openidm-reg"
"openidm-authorized"
"openidm-admin"
"openidm-cert"
"openidm-tasks-manager"

Note that this access control applies to direct HTTP calls only. Access for internal calls (for example,
calls from scripts) is not affected by this mechanism.

Authorization roles are referenced in a user's "authzRoles" property, and are implemented using the
relationships mechanism, described in "Managing Relationships Between Objects".

The following example request shows that user psmith has the "openidm-authorized" authorization role.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/psmith?_fields=authzRoles"
{
 "_id": "psmith",
 "_rev": "1",
 "authzRoles": [
 {
 "_ref": "repo/internal/role/openidm-authorized",
 "_refProperties": {
 "_id": "8e7b2c97-dfa8-4eec-a95b-b40b710d443d",
 "_rev": "1"
 }
 }
]
}

Managing Authentication, Authorization and Role-Based Access Control
router-authz.js

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 359

The authorization implementation is configured in two script files:

• openidm/bin/defaults/script/router-authz.js

• project-dir/script/access.js

OpenIDM calls the router-authz.js script for each request, through an onRequest hook that is defined
in the router.json file. router-authz.js calls your project's access configuration script (access.js) to
determine the allowed HTTP requests. If access is denied, according to the configuration defined in
access.js, the router-authz.js script throws an exception, and OpenIDM denies the request.

15.3.1. router-authz.js
This file provides the functions that enforce access rules. For example, the following function controls
whether users with a certain role can start a specified process.
...
function isAllowedToStartProcess() {
var processDefinitionId = request.content._processDefinitionId;
return isProcessOnUsersList(processDefinitionId);
}
...

There are certain authorization-related functions in router-authz.js that should not be altered, as
indicated in the comments in the file.

15.3.2. access.js
This file defines the access configuration for HTTP requests and references the methods defined in
router-authz.js. Each entry in the configuration contains a pattern to match against the incoming
request ID, and the associated roles, methods, and actions that are allowed for requests on that
pattern.

The options shown in the default version of the file do not include all of the actions available at each
endpoint.

The following sample configuration entry indicates the configurable parameters and their purpose.
{
 "pattern" : "*",
 "roles" : "openidm-admin",
 "methods" : "*", // default to all methods allowed
 "actions" : "*", // default to all actions allowed
 "customAuthz" : "disallowQueryExpression()",
 "excludePatterns": "system/*"
},

As shown, this entry affects users with the openidm-admin role. Such users have HTTP access to all but
system endpoints. The parameters are as follows:

• "pattern" - the REST endpoint to which access is being controlled. "*" indicates access to all
endpoints. "managed/user/*" would indicate access to all managed user objects.

Managing Authentication, Authorization and Role-Based Access Control
access.js

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 360

• "roles" - a list of the roles to which this access configuration applies.

The "roles" referenced here align with the details that are read from an object's security context
(security.authorization.roles). Managed users use their "authzRoles" relationship property to produce
this security context value during authentication.

• "methods" - a comma separated list of the methods to which access is being granted. The method can
be one or more of create, read, update, delete, patch, action, query. A value of "*" indicates that all
methods are allowed. A value of "" indicates that no methods are allowed.

• "actions" - a comma separated list of the allowed actions. The possible values depend on the service
(URL) that is being exposed. The following list indicates the possible actions for each service.

openidm/info/* - (no action parameter applies)
openidm/authentication - reauthenticate
openidm/config/ui/* - (no action parameter applies)
openidm/endpoint/securityQA - securityQuestionForUserName, checkSecurityAnswerForUserName,
 setNewPasswordForUserName
openidm/endpoint/getprocessforuser - create, complete
openidm/endpoint/gettasksview - create, complete
openidm/external/email - send
openidm/external/rest - (no action parameter applies)
openidm/managed - patch, triggerSyncCheck
openidm/managed/user - validateObject, validateProperty
openidm/policy - validateObject, validateProperty
openidm/recon - recon, reconByQuery, reconById, cancel
openidm/repo - updateDbCredentials
openidm/script/* - eval
openidm/security/keystore - generateCert, generateCSR
openidm/security/truststore - generateCert, generateCSR
openidm/sync - notifyCreate, notifyUpdate, notifyDelete, recon, performAction
openidm/system - test, testConfig, availableConnectors, createCoreConfig, createFullConfig, liveSync,
 authenticate
openidm/system/<name> - script, test, liveSync
openidm/system/<name>/{id} - authenticate, liveSync
openidm/taskscanner - execute, cancel
openidm/workflow/processdefinition - create, complete
openidm/workflow/processinstance - create, complete
openidm/workflow/taskinstance - claim, create, complete

A value of "*" indicates that all actions exposed for that service are allowed. A value of "" indicates
that no actions are allowed.

• "customAuthz" - an optional parameter that enables you to specify a custom function for additional
authorization checks. These functions are defined in router-authz.js.

• "excludePatterns" - an optional parameter that enables you to specify particular endpoints to which
access should not be given.

Managing Authentication, Authorization and Role-Based Access Control
Extending the Authorization Mechanism

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 361

15.3.3. Extending the Authorization Mechanism

You can extend the default authorization mechanism by defining additional functions in router-
authz.js and by creating new access control configuration definitions in access.js.

15.4. Building Role-Based Access Control (RBAC)
In OpenIDM, role assignments can be configured with different authentication options. Roles can be
assigned in a number of ways. The roles assigned to specific users are cumulative.

The roles for each user are calculated based on the process depicted here:

Managing Authentication, Authorization and Role-Based Access Control
Roles, Authentication, and the Security Context

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 362

In OpenIDM, RBAC incorporates authentication and authorization options from roles configured for
clients, for managed / internal users, as well as for group memberships.

The properties listed in this section are described in "Configuring Pass-Through Authentication".

Roles and authentication options can be configured for users in three stages:

Client Controlled

The defaultUserRoles may be added to authentication modules configured in the applicable
authentication.json file. Default roles are listed in "Roles and Authentication".

If you see the following entry in authentication.json, the cited authentication property applies to all
authenticated users:
"defaultUserRoles" : []

Managed / Internal

Accumulated roles for users are collected in the userRoles property.

For a definition of managed and internal users, see "Authenticating OpenIDM Users".

Group roles

OpenIDM also uses group roles as input. Options include groupMembership, groupRoleMapping, and
groupComparison

context.security

Once OpenIDM assigns roles and authentication modules to a user, OpenIDM then evaluates
the result based on the context.security map, based on the scripts in the policy.js file. For more
information, see "Roles, Authentication, and the Security Context".

15.4.1. Roles, Authentication, and the Security Context

The Security Context (context.security), consists of a principal (defined by the authenticationId
property) and an access control element (defined by the authorization property).

If authentication is successful, the authentication framework sets the principal. OpenIDM stores that
principal as the authenticationId. For more information, see the authentication components defined in
"Supported Authentication Modules".

The authorization property includes an id, an array of roles (see "Roles and Authentication"), and a
component, that specifies the resource against which authorization is validated. For more information,
see "Configuring Pass-Through Authentication". :

Securing & Hardening OpenIDM
Accessing the Security Management Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 363

Chapter 16

Securing & Hardening OpenIDM

OpenIDM provides a security management service, that manages keystore and truststore files.
The security service is accessible over the REST interface, enabling you to read and import SSL
certificates, and to generate certificate signing requests.

This chapter describes the security management service and its REST interface.

In addition, the chapter outlines the specific security procedures that you should follow before
deploying OpenIDM in a production environment.

Note

In a production environment, avoid the use of communication over insecure HTTP, self-signed certificates, and
certificates associated with insecure ciphers.

16.1. Accessing the Security Management Service
OpenIDM stores keystore and truststore files in a folder named /path/to/openidm/security. These files
can be managed by using the keytool command, or over the REST interface, at the URL https:/
/localhost:8443/openidm/security. For information about using the keytool command, see http://
docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

The following sections describe how to manage certificates and keys over REST.

16.1.1. Displaying the Contents of the Keystore

OpenIDM generates a symmetric key and a private key the first time the server is started. After
startup, display the contents of the keystore over REST, as follows:

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Securing & Hardening OpenIDM
Importing a Signed Certificate into the Keystore

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 364

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/security/keystore"
 {
 "type" : "JCEKS",
 "provider" : {
 "Cipher.Blowfish SupportedKeyFormats" : "RAW",
 "AlgorithmParameters.DESede" : "com.sun.crypto.provider.DESedeParameters",
 "AlgorithmParameters.DES" : "com.sun.crypto.provider.DESParameters",
 ...
 },
 "aliases" : ["openidm-sym-default", "openidm-localhost"]
}

By default, OpenIDM includes the following aliases:

• openidm-sym-default - the default symmetric key that is used, for example, to encrypt the
configuration.

• openidm-localhost - the default alias that is used by the Jetty web server to service SSL requests. This
alias references a private key and a self-signed certificate. You can use the self-signed certificate
for testing purposes. When you deploy OpenIDM in a production environment, you should replace
the self-signed certificate with a certificate that has been signed by a certificate authority.

16.1.2. Importing a Signed Certificate into the Keystore
If you have an existing CA-signed certificate, you can import it into OpenIDM's keystore by running
a RESTful PUT command on the keystore alias. Include the signed certificate, private key, CA root
certificate, and any intermediate certificates in the JSON payload.

The following command imports a CA-signed certificate, with the alias example-com into the keystore.
Replace that alias with the alias of your certificate.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "alias": "example-com",
 "cert": [
 "-----BEGIN CERTIFICATE-----\n
MIIGcDCCBVigAwIBAgIDC23tMA0GCSqGSIb3DQEBBQUAMIGMMQswCQYDVQQGEwJJ\n
TDEWMBQGA1UEChMNU3RhcnRDb20gTHRkLjErMCkGA1UECxMiU2VjdXJlIERpZ2l0\n
YWwgQ2VydGlmaWNhdGUgU2lnbmluZzE4MDYGA1UEAxMvU3RhcnRDb20gQ2xhc3Mg\n
MSBQcmltYXJ5IEludGVybWVkaWF0ZSBTZXJ2ZXIgQ0EwHhcNMTMwODA3MTMyODAz\n
WhcNMTQwODA4MDY0NTM5WjB2MRkwFwYDVQQNExBwZ3BDaGU4cEJPZnptVE9KMQsw\n
CQYDVQQGEwJHQjEjMCEGA1UEAxMadGVzdC1jb25uZWN0LmZvcmdlcm9jay5jb20x\n
JzAlBgkqhkiG9w0BCQEWGHBvc3RtYXN0ZXJAZm9yZ2Vyb2NrLmNvbTCCASIwDQYJ\n
KoZIhvcNAQEBBQADggEPADCCAQoCggEBAJRWGbnMGs+uGKU6ZrlTaaFdPczLqZnv\n

Securing & Hardening OpenIDM
Importing a Signed Certificate into the Keystore

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 365

D37T0FOc/X3XXHxSVH94FDk7N4ansP2o6BsDWttIkM2AXkX3efMRaNpgxg7l4+DL\n
opV6H1RkrRba2Lom6Hp2pgkqvOBfd1ZMOmLbjUHt0jhypnIzu7TVwtTH7Ywsrx9F\n
uR9d4veYdW70IeQ64EhUG3RJBGG++AYJZCOjgEfbCwAYe/NoX/YVu+aMreHMR/+0\n
CV0YXKvHZgytcwZIc5WkQYaSWQA9lDWZzt5XjCErCATfiGEQ0k02QgpEfNTXxwQs\n
kfxh//O/qbfOWmloGwVU/2NY+5z3ZW8/eCksmiL1gGAYQAd+9+WI7BsCAwEAAaOC\n
Au4wggLqMAkGA1UdEwQCMAAwCwYDVR0PBAQDAgOoMBMGA1UdJQQMMAoGCCsGAQUF\n
BwMBMB0GA1UdDgQWBBR2zHzb71ZOHSwDZk28L9It3PvOtzAfBgNVHSMEGDAWgBTr\n
QjTQmLCrn/Qbawj3zGQu7w4sRTA0BgNVHREELTArghp0ZXN0LWNvbm5lY3QuZm9y\n
Z2Vyb2NrLmNvbYINZm9yZ2Vyb2NrLmNvbTCCAVYGA1UdIASCAU0wggFJMAgGBmeB\n
DAECATCCATsGCysGAQQBgbU3AQIDMIIBKjAuBggrBgEFBQcCARYiaHR0cDovL3d3\n
dy5zdGFydHNzbC5jb20vcG9saWN5LnBkZjCB9wYIKwYBBQUHAgIwgeowJxYgU3Rh\n
cnRDb20gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwAwIBARqBvlRoaXMgY2VydGlm\n
aWNhdGUgd2FzIGlzc3VlZCBhY2NvcmRpbmcgdG8gdGhlIENsYXNzIDEgVmFsaWRh\n
dGlvbiByZXF1aXJlbWVudHMgb2YgdGhlIFN0YXJ0Q29tIENBIHBvbGljeSwgcmVs\n
aWFuY2Ugb25seSBmb3IgdGhlIGludGVuZGVkIHB1cnBvc2UgaW4gY29tcGxpYW5j\n
ZSBvZiB0aGUgcmVseWluZyBwYXJ0eSBvYmxpZ2F0aW9ucy4wNQYDVR0fBC4wLDAq\n
oCigJoYkaHR0cDovL2NybC5zdGFydHNzbC5jb20vY3J0MS1jcmwuY3JsMIGOBggr\n
BgEFBQcBAQSBgTB/MDkGCCsGAQUFBzABhi1odHRwOi8vb2NzcC5zdGFydHNzbC5j\n
b20vc3ViL2NsYXNzMS9zZXJ2ZXIvY2EwQgYIKwYBBQUHMAKGNmh0dHA6Ly9haWEu\n
c3RhcnRzc2wuY29tL2NlcnRzL3N1Yi5jbGFzczEuc2VydmVyLmNhLmNydDAjBgNV\n
HRIEHDAahhhodHRwOi8vd3d3LnN0YXJ0c3NsLmNvbS8wDQYJKoZIhvcNAQEFBQAD\n
ggEBAKVOAHtXTrgISj7XvE4/lLxAfIP56nlhpoLu8CqVlLK6eK4zCQRyTiFYx3xq\n
VQMSNVgQIdimjEsMz8o5/fDrCrozsT6sqxIPFsdgdskPyz9YyC9Y/AVBuECxabQr\n
B//0STicfdPg8PuDYtI64/INA47d/gtb57RaTFYxKs6bU8vtObinDJCwT33x4tvt\n
ob18DwB3/PeTbWyVUIxB0nvfm89dys0SF2alaA/bLuy0B7rdlppd4dOMpmiD0tnI\n
DORtr5HOD1xGiixZWzA1V2pTmF/hJZbhmEgBUSIyPK5Z9pZPephMf+/KrovbQqKr\n
6SEjgs7dGwpo6fA2mfCH5cCrid0=\n
-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----\n
MIIDdTCCAl2gAwIBAgILBAAAAAABFUtaw5QwDQYJKoZIhvcNAQEFBQAwVzELMAkG\n
A1UEBhMCQkUxGTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBAsTB1Jv\n
b3QgQ0ExGzAZBgNVBAMTEkdsb2JhbFNpZ24gUm9vdCBDQTAeFw05ODA5MDExMjAw\n
MDBaFw0yODAxMjgxMjAwMDBaMFcxCzAJBgNVBAYTAkJFMRkwFwYDVQQKExBHbG9i\n
YWxTaWduIG52LXNhMRAwDgYDVQQLEwdSb290IENBMRswGQYDVQQDExJHbG9iYWxT\n
aWduIFJvb3QgQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDaDuaZ\n
jc6j40+Kfvvxi4Mla+pIH/EqsLmVEQS98GPR4mdmzxzdzxtIK+6NiY6arymAZavp\n
xy0Sy6scTHAHoT0KMM0VjU/43dSMUBUc71DuxC73/OlS8pF94G3VNTCOXkNz8kHp\n
1Wrjsok6Vjk4bwY8iGlbKk3Fp1S4bInMm/k8yuX9ifUSPJJ4ltbcdG6TRGHRjcdG\n
snUOhugZitVtbNV4FpWi6cgKOOvyJBNPc1STE4U6G7weNLWLBYy5d4ux2x8gkasJ\n
U26Qzns3dLlwR5EiUWMWea6xrkEmCMgZK9FGqkjWZCrXgzT/LCrBbBlDSgeF59N8\n
9iFo7+ryUp9/k5DPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNVHRMBAf8E\n
BTADAQH/MB0GA1UdDgQWBBRge2YaRQ2XyolQL30EzTSo//z9SzANBgkqhkiG9w0B\n
AQUFAAOCAQEA1nPnfE920I2/7LqivjTFKDK1fPxsnCwrvQmeU79rXqoRSLblCKOz\n
yj1hTdNGCbM+w6DjY1Ub8rrvrTnhQ7k4o+YviiY776BQVvnGCv04zcQLcFGUl5gE\n
38NflNUVyRRBnMRddWQVDf9VMOyGj/8N7yy5Y0b2qvzfvGn9LhJIZJrglfCm7ymP\n
AbEVtQwdpf5pLGkkeB6zpxxxYu7KyJesF12KwvhHhm4qxFYxldBniYUr+WymXUad\n
DKqC5JlR3XC321Y9YeRq4VzW9v493kHMB65jUr9TU/Qr6cf9tveCX4XSQRjbgbME\n
HMUfpIBvFSDJ3gyICh3WZlXi/EjJKSZp4A==
\n
-----END CERTIFICATE-----"
],
 "privateKey": "-----BEGIN RSA PRIVATE KEY-----\n
zDot5q3vP9YjCihMZMkSa0zT2Zt+8S+mC0EVuYuTVhVpqrVNtkP1mlt+CYqmDffY\n
sGuD6SMrT6+SeAzX2uYFgY4+s8yaRWBcr0C5Z7yihilM6BK+IJ4is9kaW5VFr1Ph\n
wRKvSeFHBGh2wLNpjVSNPzLMDZBtkVi9Ny/xD5C3M1Gah0PGmnrPGCP8tr1Lshv4\n
PxYJwzHzouTdQDkLYlCjMN++NmIYfx7zrbEYV4VzXMxgNq7d3+d5dlVfE8xpAjSR\n
Lqlamib+doe1oWOQ2WiS6baBAH+Gw5rgqfwhJbCY/UlbCpuJ6kl7TLvTrFp8YpvB\n
Iv1GD0yuwSued3a+AxMFuIzTBYd2rC6rHq+eF4eHd/Q/Sbm9+9VuW/h8dW3LGvbE\n
5SUUhNw6uSkOZmZ0z/+FLbwoLPCASukY9biSd+12KJf4N42WZxID+9mJTp1j/Bv7\n

Securing & Hardening OpenIDM
Generating a Certificate Signing Request Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 366

n29oGfZ3vav8PqG+F987hSyWEIdGTMfIxwaUrdYe1fmbUCxv0suMcYTRbAs9g3cm\n
eCNxbZBYC/fL+Nlj5NjZ+gxA/tEXV7wWynPZW3mZny6fQpDTDMslqsoFZR+rAUzH\n
ViePuLbCdxIC5heUyqvDBbeOzgQWOu6SZjX+mAQpo0DPKt1KDP4DKv9EW92sIwW3\n
AnFg98sje0DZ+zfsnevGioQMJrG0JSnqTYADxHaauu7NWndkfMZisfNIKA0u+ajU\n
AbP8xFXIP5JU8O4tWmlbxAbMOYfrZHabFNZx4DH1OVOJqdJIVx0KER0GSZd50D6W\n
QBzCfEbwMlJ17OB0AgWzNrbaak3MCmW1mh7OecjQwge1ajy7ho+JtQ==\n
-----END RSA PRIVATE KEY-----"
 }' \
 "https://localhost:8443/openidm/security/keystore/cert/example-com"

 {
 "_id": "example-com",
 "alias": "example-com",
 "cert": "-----BEGIN CERTIFICATE-----...-----END CERTIFICATE-----",
 "privateKey": "-----BEGIN RSA PRIVATE KEY-----...-----END RSA PRIVATE KEY-----"
}

If the import is successful, the command returns the certificate alias that has been added to the
keystore, along with the certificates and keys.

Important

By default, OpenIDM uses the certificate with the alias openidm-localhost to service SSL requests. If you use
a different certificate alias, you must change the value of the openidm.https.keystore.cert.alias property in
your project's conf/boot/boot.properties file to match the new alias, so that OpenIDM can use the new signed
certificate. This change requires a server restart.

16.1.3. Generating a Certificate Signing Request Over REST
If you do not have an existing signed certificate, you can generate a certificate signing request (CSR)
over REST, as described in this section. The details of the CSR are specified in JSON format, for
example:
{
 "CN" : "www.example.com",
 "OU" : "HR",
 "L" : "Cupertino",
 "C" : "US"
}

For information about the complete contents of a CSR, see http://www.sslshopper.com/what-is-a-csr-
certificate-signing-request.html.

To generate a CSR over the REST interface, include the private key alias in the URL. The following
example uses the alias example-com). Set "returnPrivateKey" : true to return the private key along with
the request.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"CN" : "www.example.com",

http://www.sslshopper.com/what-is-a-csr-certificate-signing-request.html
http://www.sslshopper.com/what-is-a-csr-certificate-signing-request.html

Securing & Hardening OpenIDM
Generating a Certificate Signing Request Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 367

 "OU" : "HR",
 "L" : "Cupertino",
 "C" : "US",
 "returnPrivateKey" : true,
 "alias" : "example-com"}' \
 "https://localhost:8443/openidm/security/keystore?_action=generateCSR"
{
 "_id": "example-com",
 "csr": "-----BEGIN CERTIFICATE REQUEST-----\n
MIICmzCCAYMCAQAwWDEZMBcGA1UEAwwQd3d3MS5
leGFtcGxlLmNvbTELMAkGA1UE\nCwwCSFIxDTALBgNVBAoMBE5vbmUxEjAQBgNVBAcMCUN1cGVyd
GlubzELMAkGA1UE\nBhMCVVMwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDAjCjTt1b
o0WKH\nP/4PR/Td3A1ElTo4/J/7o7eWflOqs8vW5d76SMcJFKOQ6FhoOcOHRNewch+a0DBK\njKF
aRCE1c0PuXiIlrO7wsF4dFTtTZKAhrpFdM+0hU4LeyCDxQQ5UDga3rmyVIvC8\nL1PvW+sZEcZ9r
T67XOV03cwUpjvG4W58FCUKd6UAI0szfIrFdvJp4q4LkkBNkk9J\nUf+MXsSVuHzZrqvqhX900Is
a19mXD6/P9Cql8KmwEzzbglGFf6uYAK33F71Kx409\nTeS85sjmBbyJwUVwhgQ0R35H3HC6jex4P
jx1rSfPmsi61JBx9kyGu6rnSv5FOQGy\nBQpgQFnJAgMBAAEwDQYJKoZIhvcNAQENBQADggEBAKc
yInfo2d7/12jUrOjL4Bqt\nStuQS/HkO2KAsc/zUnlpJyd3RPI7Gs1C6FxIRVCzi4Via5QzE06n2
F8HHkinqc6m\nBWhIcf5Omk6fSqG0aw7fqn20XWDkRm+I4vtm8P8CuWftUj5qv5kmyUtrcQ3+YPD
O\nL+cK4cfuCkjLQ3h4GIgBJP+gfWX8fTmCHyaHEFjLTMj1hZYEx+3f8awOVFoNmr3/\nB8LIJNH
UiFHO6EED7LDOwa/z32mTRET0nK5DVO60H80JSWxzdWYZQV/IzHzm8ST4\n6j6vuheBZiG5gZR2V
F0x5XoudQrSg7lpVslXBHNeiM85+H08RMQh8Am2bp+Xstw=\n",
 -----END CERTIFICATE REQUEST-----\n",
 "publicKey": {
 "format": "X.509",
 "encoded": "-----BEGIN PUBLIC KEY-----\n
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr
ALtYU662bNbQZG7JZ3M\noOUmVP9cPP3+DhQ5H0V0qB+9YjE4XUtuwUGqaUmuT+mrXHwGpLAqvUm
NsVyXJj9s\nJhX6PCyXzO3RdKBVC8pphMfKXodjBC57ef0OkWjO5ZRAqCRwS3BXkoCfu6/ZXRpk\
ncc/A1RmLZdPmcuKmN5vQl4E3Z6F4YyG7M0g7TE54dhqPvGNS9cO4r0Vom9373MDh\n+8QSfmLCC
94Ro+VUAF9Q6nk2j0PgTi+QZ0i93jbKAWWX57w6S5i7CpEptKyeP9iG\ncFnJddSICPHkbQJ73gu
lyZYkbcBblNUxIhODZV5bJ0oxn9qgYvzlxJupldYsYkBo\ncwIDAQAB\n
 -----END PUBLIC KEY-----\n",
 "algorithm": "RSA"
 },
 "privateKey": {
 "format": "PKCS#8",
 "encoded": "-----BEGIN RSA PRIVATE KEY-----\n
MIIEpAIBAAKCAQEArALtYU662bNbQZG7JZ3MoOU
VP9cPP3+DhQ5H0V0qB+9YjE4\nXUtuwUGqaUmuT+mrXHwGpLAqvUmNsVyXJj9sJhX6PCyXzO3RdK
BVC8pphMfKXodj\nBC57ef0OkWjO5ZRAqCRwS3BXkoCfu6/ZXRpkcc/A1RmLZdPmcuKmN5vQl4E3
Z0i93jbKAWWX57w6S5i7CpEptKyeP9iGcFnJddSICPHkbQJ73gulyZYkbcBb\nlNUxIhODZV5bJ0
Z6F4\nYyG7M0g7TE54dhqPvGNS9cO4r0Vom9373MDh+8QSfmLCC94Ro+VUAF9Q6nk2j0Pg\nTi+Q
oxn9qgYvzlxJupldYsYkBocwIDAQABAoIBAGmfpopRIPWbaBb8\nWNIBcuz9qSsaX1ZolP+qNWVZ
bgfq7Y0FMlo/frQXEYBzqSETGJHC6wVn0+bF6scV\nVw86dLtyVWVr8I77HdoitfZ2hZLuZ/rh4d
BohpPi63YoyJs7DPTy4y2/v1aLuwoy\nMiQ0l6c3bm6sr+eIVgMH4A9Xk5/jzAHVTCBrvfTYZnh6
qD4Qmiuj8pQn79HQV8NK\nLt/5kmV1+uGj78jg7NR06NjNsa4L3mNZSiqsn2haPXZAnBjKfWApxe
GugURgNBCO\ncmYqCDZLvpMy4S/qoRBu+6qdYGprb+tHshBYNywuDkrgszhwgr5yRm8VQ60T9tM/
\nceKM+TECgYEA2Az2DkpC9TjJHPJG7x4boRRVqV5YRgPf5MrU+7PxDMb+EauXXUXg\nsch9Eeon
30yINqSv6FwATLVlkzQpZLkkJ6GJqAxUmPjRslAuosiSJqKaWamDUDbz\nSu/7iANJWvRGayqZsa
GQqFwM0Xpfp/EiBGe757k0D02u8sAv94A75bsCgYEAy9FQ\nMwDU3CaDzgv0qgR1ojXkSW0dCbv0
QPEkKZ2Ik7JbXzwVGzfdv2VUVrzRKBGReYzn\nGg/s4HbZkYy4O+SJo44n/5iO2pgKG5MEDFHSpw
X54Rm+qabT2fQ2lFJ/myWKsPgJ\n4gZ9bUvcemCcLLzsiAphueulQp49eOLnkzPlQKkCgYEAy7A0
jrZuuDjoStUUET5G\neC/urvZWrPPcMx0TfZZhTVWSlWA8HWDS/WnymGA1ZS4HQdU0TxHl6mwerp
C/8ckn\nEAIZAQlW/L2hHcbAoRIN0ET+1kedmJOl/mGQt+O5Vfn1JfYM3s5ezouyPhBsfK43\nDw
Ypvsb6EO+BYDXXQzVvwx8CgYB9o67LcfTFLNzNFCOi9pLJBm2OMbvXt0wPCFch\nbCG34hdfMntU
RvDjvgPqYASSrZm+kvQW5cBAciMWDOe4y91ovAW+En3lFBoO+2Zg\nbcPr/8wUTblxfQxU660Fa4
GL0u2Wv5/f+94vlLb5nTpIfcFU7wllAXTjBwaf0Uet\nPy1P2QKBgQDPoyJqPi2TdN7ZQYcoXAM4
Gl5Yv9oO16RC917XH6SLvj0ePmdLgBXo\nrR6aAmOjLzFp9jiytWZqVR9DbAWd2YNpvQav4Gude3

Securing & Hardening OpenIDM
Generating a Self-Signed Certificate Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 368

lteew02UT+GNv/gC71bXCw\ncFTxnmKjP8YYIBBqZXzuk9wEaHN7OdGybUW0dsBCGxTXwDKe8XiA
6w==\n-----END RSA PRIVATE KEY-----\n",
 "algorithm": "RSA"
}

This sample request returns the CSR, the private key associated with the request, and the public key.
The security management service stores the private key in the repository.

When the signed certificate is returned by the certificate authority and you import the certificate into
the keystore, you do not need to supply the private key. The security management service locates the
private key in the repository, adds the certificate chain, and loads it into the keystore.

If you will be importing the signed certificate into the keystore of an OpenIDM instance that is not
connected to the repository in which this private key was stored, you must include the private key
when you import the signed certificate. Setting "returnPrivateKey" : true in the CSR enables you to
maintain a copy of the private key for this purpose.

Send the output from
"csr": "-----BEGIN CERTIFICATE REQUEST-----
 ...
 -----END CERTIFICATE REQUEST-----

to your certificate authority for signature.

When the signed certificate is returned, import it into the keystore, as described in "Importing a
Signed Certificate into the Keystore".

16.1.4. Generating a Self-Signed Certificate Over REST

To generate a self-signed X.509 certificate, use the generateCert action on the keystore endpoint. This
action must be performed as an authenticated administrative user. The generated certificate is
returned in the response to the request, and stored in the OpenIDM keystore.

Specify the details of the certificate in the JSON payload. For example:

Securing & Hardening OpenIDM
Generating a Self-Signed Certificate Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 369

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "algorithm" : "RSA",
 "signatureAlgorithm" : "SHA512WithRSAEncryption",
 "keySize" : 2048,
 "domainName" : "www.example.com",
 "validFrom" : "2015-08-13T07:59:44.497+02:00",
 "validTo" : "2016-08-13T07:59:44.497+02:00",
 "returnPrivateKey" : true,
 "alias" : "new-alias"
 }' \
 "https://localhost:8443/openidm/security/keystore?_action=generateCert"
{
 "publicKey": {
 "algorithm": "RSA",
 "encoded": "-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIB
 ...
 \n-----END PUBLIC KEY-----\n",
 "format": "X.509"
 },
 "cert": "-----BEGIN CERTIFICATE-----\nMIIDSDCCAjCgAwIBAgIGAUfOo3GvMA0GCSqGSIb3
 ...
 \n-----END CERTIFICATE-----\n",
 "type": "X.509",
 "_id": "new-alias"
}

The following certificate details can be specified:

• "algorithm" (optional) - the public key algorithm, for example, RSA. If no algorithm is specified, a
default of RSA is used.

• "signatureAlgorithm" (optional) - the signature type, for example, SHA512WithRSAEncryption. If no
algorithm is specified, a default of SHA512WithRSAEncryption is used.

• "keySize" (optional) - the size of the key (in bits) used in the cryptographic algorithm, for example
2048. If no key size is specified, a default of 2048 is used.

• "domainName" - the fully qualified domain name (FQDN) of your server, for example www.example.com.

• "validFrom" and "validTo" (optional) - the validity period of the certificate, in UTC time format, for
example 2014-08-13T07:59:44.497+02:00. If no values are specified, the certificate is valid for one year,
from the current date.

• "returnPrivateKey" (optional) - set this to true to return the private key along with the request.

• "alias" - the keystore alias or string that identifies the certificate, for example openidm-localhost.

Securing & Hardening OpenIDM
Security Precautions for a Production Environment

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 370

16.2. Security Precautions for a Production Environment
Out of the box, OpenIDM is set up for ease of development and deployment. When you deploy
OpenIDM in production, there are specific precautions you should take to minimize security
breaches. After following the guidance in this section, make sure that you test your installation to
verify that it behaves as expected before putting it into production.

16.2.1. Use SSL and HTTPS

Disable plain HTTP access, as described in "Secure Jetty".

Use TLS/SSL to access OpenIDM, ideally with mutual authentication so that only trusted systems
can invoke each other. TLS/SSL protects data on the network. Mutual authentication with strong
certificates, imported into the trust and keystores of each application, provides a level of confidence
for trusting application access.

Augment this protection with message level security where appropriate.

16.2.2. Restrict REST Access to the HTTPS Port

When possible, use a certificate to secure REST access, over HTTPS. For production, that certificate
should be signed by a certificate authority.

OpenIDM generates a self-signed certificate when it first starts up. You can use this certificate to test
secure REST access.

While not recommended for production, you can test secure REST access using the default self-
signed certificate. To do so, you can create a self-signed certificate file, self-signed.crt, using the
following procedure:

1. Extract the certificate that is generated when OpenIDM starts up.
$ openssl s_client -showcerts -connect localhost:8443 </dev/null

This command outputs the entire certificate to the terminal.

2. Using any text editor, create a file named self-signed.crt. Copy the portion of the certificate from
-----BEGIN CERTIFICATE----- to ----END CERTIFICATE----- and paste it into the self-signed.crt file, which
should appear similar to the following:

Securing & Hardening OpenIDM
Restrict the HTTP Payload Size

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 371

$ more self-signed.crt
-----BEGIN CERTIFICATE-----
MIIB8zCCAVygAwIBAgIETkvDjjANBgkqhkiG9w0BAQUFADA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwHhcNMTEwODE3MTMzNTEwWhcNMjEwODE3MTMzNTEwWjA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKwMkyvHS5yHAnI7+tXUIbfI
nQfhcTChpWNPTHc/cli/+Ta1InTpN8vRScPoBG0BjCaIKnVVl2zZ5ya74UKgwAVe
oJQ0xDZvIyeC9PlvGoqsdtH/Ihi+T+zzZ14oVxn74qWoxZcvkG6rWEOd42QzpVhg
wMBzX98slxkOZhG9IdRxAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEASo4qMI0axEKZ
m0jU4yJejLBHydWoZVZ8fKcHVlD/rTirtVgWsVgvdr3yUr0Idk1rH1nEF47Tzn+V
UCq7qJZ75HnIIeVrZqmfTx8169paAKAaNF/KRhTE6ZII8+awst02L86shSSWqWz3
s5xPB2YTaZHWWdzrPVv90gL8JL/N7/
Q=
-----END CERTIFICATE-----

3. Test REST access on the HTTPS port, referencing the self-signed certificate in the command. For
example:
$ curl \
 --header "X-OpenIDM-Username:openidm-admin" \
 --header "X-OpenIDM-Password:openidm-admin" \
 --cacert self-signed.crt \
 --request GET \
 "https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"
 {
 "result": [],
 "resultCount": 0,
 "pagedResultsCooke": null,
 "remainingPagedResuts": -1
}

16.2.3. Restrict the HTTP Payload Size
Restricting the size of HTTP payloads can protect the server against large payload HTTP DDoS
attacks. OpenIDM includes a servlet filter that limits the size of an incoming HTTP request payload,
and returns a 413 Request Entity Too Large response when the maximum payload size is exceeded.

By default, the maximum payload size is 5MB. You can configure the maximum size in your project's
conf/servletfilter-payload.json file. That file has the following structure by default:
{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { },
 "initParams" : {
 "maxRequestSizeInMegabytes" : "5"
 },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.forgerock.openidm.jetty.LargePayloadServletFilter"
 }

Securing & Hardening OpenIDM
Encrypt Data Internally and Externally

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 372

Change the value of the maxRequestSizeInMegabytes property to set a different maximum HTTP payload
size. The remaining properties in this file are described in "Registering Additional Servlet Filters".

16.2.4. Encrypt Data Internally and Externally

Beyond relying on end-to-end availability of TLS/SSL to protect data, OpenIDM also supports explicit
encryption of data that goes on the network. This can be important if the TLS/SSL termination
happens prior to the final endpoint.

OpenIDM also supports encryption of data stored in the repository, using a symmetric key. This
protects against some attacks on the data store. Explicit table mapping is supported for encrypted
string values.

OpenIDM automatically encrypts sensitive data in configuration files, such as passwords. OpenIDM
replaces clear text values when the system first reads the configuration file. Take care with
configuration files having clear text values that OpenIDM has not yet read and updated.

16.2.5. Use Message Level Security

OpenIDM supports message level security, forcing authentication before granting access.
Authentication works by means of a filter-based mechanism that lets you use either an HTTP Basic
like mechanism or OpenIDM-specific headers, setting a cookie in the response that you can use for
subsequent authentication. If you attempt to access OpenIDM URLs without the appropriate headers
or session cookie, OpenIDM returns HTTP 401 Unauthorized, or HTTP 403 Forbidden, depending on
the situation. If you use a session cookie, you must include an additional header that indicates the
origin of the request.

16.2.5.1. Message Level Security with Logins

The following examples show successful authentications.
$ curl \
 --cacert self-signed.crt \
 --dump-header /dev/stdout \
 --user openidm-admin:openidm-admin \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ...;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0","pagedResultsCookie":null,"remainingPagedResults":-1}

Securing & Hardening OpenIDM
Use Message Level Security

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 373

$ curl \
 --cacert self-signed.crt \
 --dump-header /dev/stdout \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ...;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0","pagedResultsCookie":null,"remainingPagedResults":-1}

$ curl \
 --dump-header /dev/stdout \
 --cacert self-signed.crt \
 --header "Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ..." \
 --header "X-Requested-With: OpenIDM Plugin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

Notice that the last example uses the cookie OpenIDM set in the response to the previous request,
and includes the X-Requested-With header to indicate the origin of the request. The value of the header
can be any string, but should be informative for logging purposes. If you do not include the X-Requested
-With header, OpenIDM returns HTTP 403 Forbidden.

Note

The careful readers among you may notice that the expiration date of the JWT cookie, January 1, 1970,
corresponds to the start of UNIX time. Since that time is in the past, browsers will not store that cookie after
the browser is closed.

You can also request one-time authentication without a session.

Securing & Hardening OpenIDM
Replace Default Security Settings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 374

$ curl \
 --dump-header /dev/stdout \
 --cacert self-signed.crt \
 --header "X-OpenIDM-NoSession: true" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0","pagedResultsCookie":null,"remainingPagedResults":-1}

16.2.5.2. Sessions and the JWT Cookie

OpenIDM maintains sessions with a JWT session cookie, stored in a client browser. By default, it
deletes the cookie when you log out. Alternatively, if you delete the cookie, that ends your session.

You can modify what happens to the session after a browser restart. Open the authentication.json file,
and change the value of the sessionOnly property. For more information on sessionOnly, see "Session
Module".

The JWT session cookie is based on the JWT_SESSION module, described in "Supported Authentication
and Session Modules".

16.2.6. Replace Default Security Settings

The default security settings are adequate for evaluation purposes. In production environments,
change at least the following settings:

• The password of the default administrative user (openidm-admin)

• The default keystore password

Change the Default Administrator Password

1. To change the password of the default administrative user, first retrieve the complete user object
to make sure you have the currently assigned roles:

Securing & Hardening OpenIDM
Replace Default Security Settings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 375

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/internal/user/openidm-admin"
{
 "_id": "openidm-admin",
 "_rev": "1",
 "password": "openidm-admin",
 "roles": [
 {
 "_ref": "repo/internal/role/openidm-admin"
 },
 {
 "_ref": "repo/internal/role/openidm-authorized"
 }
],
 "userName": "openidm-admin"
}

2. Update the password with a PUT request, including the roles property that you retrieved in the
previous step:

The following example changes the password of the openidm-admin user to Passw0rd:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request PUT \
 --data '{
 "password": "Passw0rd",
 "userName": "openidm-admin",
 "roles": [
 {
 "_ref": "repo/internal/role/openidm-admin"
 },
 {
 "_ref": "repo/internal/role/openidm-authorized"
 }
],
 "_id": "openidm-admin"
 }' \
 "https://localhost:8443/openidm/repo/internal/user/openidm-admin"
{
 "_id": "openidm-admin",
 "_rev": "2",
 "password": {
 "$crypto": {
 "value": {
 "algorithm": "SHA-256",
 "data": "gjTSqGjVyfTLiWRlEemKKArELUipXyaW416y14U9KbWOkvT6ReGu7PffiExIb26K"
 },
 "type": "salted-hash"
 }

Securing & Hardening OpenIDM
Replace Default Security Settings

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 376

 },
 "userName": "openidm-admin",
 "roles": [
 {
 "_ref": "repo/internal/role/openidm-admin"
 },
 {
 "_ref": "repo/internal/role/openidm-authorized"
 }
]
}

3. Test that the update has been successful by querying OpenIDM with the new credentials:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: Passw0rd" \
 --request GET \
 "https://localhost:8443/openidm/repo/internal/user/openidm-admin"
{
 "_id": "openidm-admin",
 "_rev": "2",
 ...
}

Tip

The administrative user can also reset their own password in the Self-Service UI as follows:

1. Log into the Self-Service UI (https://localhost:8443/) with the default username and password (openidm-
admin and openidm-admin).

2. In the top right corner, select View Profile.

3. On the Password tab, enter and confirm the new password, then click Update.

Change the Default Keystore Password

OpenIDM uses the information in conf/boot/boot.properties, including the keystore password, to start
up. The keystore password is changeit by default, and is stored in clear text in the boot.properties file.

You must set a strong keystore password in any production deployment, but especially in cluster
deployments. In a cluster deployment, the keystore is distributed through the repository. The
strength of the keystore password is therefore the only thing that protects your deployment against
exposure of the keystore and of any values encrypted by that keystore (such as user passwords).

To set an obfuscated version of the keystore password in the boot.properties file, follow these steps.

1. Generate an obfuscated version of the password, by using the crypto bundle provided with
OpenIDM:

Securing & Hardening OpenIDM
Secure Jetty

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 377

$ $ java -jar /path/to/openidm/bundle/openidm-crypto-4.0.0.jar
This utility helps obfuscate passwords to prevent casual observation.
It is not securely encrypted and needs further measures to prevent disclosure.
Please enter the password:
OBF:1vn21ugu1saj1v9i1v941sar1ugw1vo0
CRYPT:a8b5a01ba48a306f300b62a1541734c7

2. Paste either the obfuscated password (OBF:xxxxxxx) or the encrypted password (CRYPT:xxxxxxx) into
the conf/boot/boot.properties file.

Comment out the regular keystore password and remove the comment tag, either from the line
that contains the obfuscated password or from the line that contains the encrypted password:
$ more conf/boot/boot.properties
...
Keystore password, adjust to match your keystore and protect this file
openidm.keystore.password=changeit
openidm.truststore.password=changeit

Optionally use the crypto bundle to obfuscate the password and set one of these:
openidm.keystore.password=OBF:1vn21ugu1saj1v9i1v941sar1ugw1vo0
openidm.keystore
.password=CRYPT:a8b5a01ba48a306f300b62a1541734c7
...

3. Restart OpenIDM.
$./startup.sh

Important

The keystore password and the password of the keys themselves must be the same. If the password of your
existing certificate is not the same as the keystore password, change the certificate password to match that of
the keystore, as follows:
$ $ keytool \
 -keypasswd \
 -alias openidm-localhost \
 -keystore keystore.jceks \
 -storetype JCEKS
Enter keystore password: keystore-pwd
Enter key password for <openidm-localhost>old-password
New key password for <openidm-localhost>: keystore-pwd
Re-enter new key password for <openidm-localhost>: keystore-pwd

16.2.7. Secure Jetty

If you do not want to use regular HTTP on a production OpenIDM system, you need to make two
changes.

First, edit the openidm/conf/jetty.xml configuration file. Comment out or delete the <Call
 name="addConnector"> code block that includes the openidm.port.http property. Keep the <Call

Securing & Hardening OpenIDM
Protect Sensitive REST Interface URLs

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 378

 name="addConnector"> code blocks that contain the openidm.port.https and openidm.port.mutualauth
properties. You can set the value for these properties in the conf/boot/boot.properties file.

Second, edit the openidm/conf/config.properties configuration file. Set the org.osgi.service.http.enabled
property to false, as shown in the following excerpt:
Enable pax web http/https services to enable jetty
org.osgi.service.http.enabled=false
org.osgi.service.http.secure.enabled=true

16.2.8. Protect Sensitive REST Interface URLs

Anything attached to the router is accessible with the default policy, including the repository. If you
do not need such access, deny it in the authorization policy to reduce the attack surface.

In addition, you can deny direct HTTP access to system objects in production, particularly access to
action. As a rule of thumb, do not expose anything that is not used in production.

For an example that shows how to protect sensitive URLs, see "access.js".

OpenIDM supports native query expressions on the repository, and you can enable these over HTTP.
For example, the following query returns all managed users in an OrientDB repository:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryExpression=select+*+from+managed_user"

By default, direct HTTP access to native queries is disallowed, and should remain so in production
systems.

For testing or development purposes, it can be helpful to enable native queries on the repository over
HTTP. To do so, edit the access control configuration file (access.js). In that file, remove any instances
of "disallowQueryExpression()" such as the following:
// openidm-admin can request nearly anything (except query expressions on repo endpoints)
{
 "pattern" : "*",
 "roles" : "openidm-admin",
 "methods" : "*", // default to all methods allowed
 "actions" : "*", // default to all actions allowed
 // "customAuthz" : "disallowQueryExpression()",
 "excludePatterns": "repo,repo/*"
},
// additional rules for openidm-admin that selectively enable certain parts of system/
{
 "pattern" : "system/*",
 "roles" : "openidm-admin",
 "methods" : "create,read,update,delete,patch,query", // restrictions on 'action'
 "actions" : ""
 // "customAuthz" : "disallowQueryExpression()"
},

Securing & Hardening OpenIDM
Protect Sensitive Files & Directories

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 379

16.2.9. Protect Sensitive Files & Directories

Protect OpenIDM files from access by unauthorized users.

In particular, prevent other users from reading files in at least the openidm/conf/boot/ and openidm/
security/ directories.

The objective is to limit access to the user that is running the service. Depending on the operating
system and configuration, that user might be root, Administrator, openidm, or something similar.

Protecting key files in Unix

1. For the target directory, and the files therein, make sure user and group ownership is limited to
the user that is running the OpenIDM service.

2. Disable access of any sort for other users. One simple command for that purpose, from the /path/
to/openidm directory, is:
chmod -R o-rwx .

Protecting key files in Windows

1. The OpenIDM process in Windows is normally run by the Administrator user.

2. If you are concerned about the security of the administrative account, you can Deny permissions
on the noted directories to existing users, or alternatively the Users group.

16.2.10. Remove or Protect Development & Debug Tools

Before you deploy OpenIDM in production, remove or protect development and debug tools,
including the OSGi console that is exposed under /system/console. Authentication for this console is not
integrated with authentication for OpenIDM.

To remove the OSGi console, remove the web console bundle, and all of the plugin bundles related to
the web console, as follows:
$ cd /path/to/openidm/bundle
$ rm org.apache.felix.webconsole*.jar

If you cannot remove the OSGi console, protect the console by overriding the default admin:admin
credentials. Create a file named openidm/conf/org.apache.felix.webconsole.internal.servlet.OsgiManager.cfg
that contains the user name and password to access the console in Java properties file format, for
example:

username=user-name
password=password

Securing & Hardening OpenIDM
Protect the OpenIDM Repository

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 380

16.2.11. Protect the OpenIDM Repository

OpenIDM 4 only supports the use of a JDBC repository in production.

Use a strong password for the JDBC connection and change at least the password of the database
user (openidm by default). When you change the database username and/or password, you must update
the database connection configuration file (datasource.jdbc-default.json) for your repository type.

For example, the following excerpt of a MySQL connection configuration file indicates the required
change when the database user password has been changed to myPassw0rd.
{
 "driverClass" : "com.mysql.jdbc.Driver",
 "jdbcUrl" : "jdbc:mysql://localhost:3306/openidm?allowMultiQueries=true&characterEncoding=utf8",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "myPassw0rd",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "bonecp"
 }
}

Use a case sensitive database, particularly if you work with systems with different identifiers that
match except for case. Otherwise correlation queries or correlation scripts can pick up identifiers
that should not be considered the same.

16.2.12. Remove OrientDB Studio

OpenIDM ships with the OrientDB Studio web application. ForgeRock strongly recommends that
you remove the web application before deploying in a production environment. To remove OrientDB
studio, delete the following directory:
/path/to/openidm/db/util/orientdb

Verify that the application has been removed by trying to access http://localhost:2480/.

Note that an error will be logged on startup when you have removed OrientDB Studio. You can safely
ignore this error.

16.2.13. Adjust Log Levels

Leave log levels at INFO in production to ensure that you capture enough information to help diagnose
issues. For more information, see "Configuring Server Logs".

At start up and shut down, INFO can produce many messages. Yet, during stable operation, INFO
generally results in log messages only when coarse-grain operations such as scheduled reconciliation
start or stop.

Securing & Hardening OpenIDM
Set Up Restart At System Boot

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 381

16.2.14. Set Up Restart At System Boot

You can run OpenIDM in the background as a service (daemon), and add startup and shutdown
scripts to manage the service at system boot and shutdown. For more information, see "Starting and
Stopping OpenIDM".

See your operating system documentation for details on adding a service such as OpenIDM to be
started at boot and shut down at system shutdown.

Integrating Business Processes and Workflows
BPMN 2.0 and the Activiti Tools

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 382

Chapter 17

Integrating Business Processes and Workflows

Key to any identity management solution is the ability to provide workflow-driven provisioning
activities, whether for self-service actions such as requests for entitlements, roles or resources,
running sunrise or sunset processes, handling approvals with escalations, or performing
maintenance.

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

More information about Activiti and the Activiti project can be found at http://www.activiti.org.

This chapter describes how to configure the Activiti engine, and how to manage workflow tasks and
processes over the REST interface. You can also manage workflows in the Admin UI by selecting
Manage > Workflow and then selecting Tasks or Processes.

For a number of samples that demonstrate workflow-driven provisioning, see "Workflow Samples" in
the Samples Guide.

17.1. BPMN 2.0 and the Activiti Tools
Business Process Model and Notation 2.0 is the result of consensus among Business Process
Management (BPM) system vendors. The Object Management Group (OMG) has developed and
maintained the BPMN standard since 2004.

The first version of the BPMN specification focused only on graphical notation, and quickly became
popular with the business analyst audience. BPMN 1.x defines how constructs such as human tasks,
executable scripts, and automated decisions are visualized in a vendor-neutral, standard way. The
second version of BPMN extends that focus to include execution semantics, and a common exchange
format. Thus, BPMN 2.0 process definition models can be exchanged not only between different
graphical editors, but can also be executed as is on any BPMN 2.0-compliant engine, such as the
engine embedded in OpenIDM.

Using BPMN 2.0, you can add artifacts describing workflow and business process behavior to
OpenIDM for provisioning and other purposes. For example, you can craft the actual artifacts
defining business processes and workflow in a text editor, or using a special Eclipse plugin. The
Eclipse plugin provides visual design capabilities, simplifying packaging and deployment of the
artifact to OpenIDM. For instructions on installing Activiti Eclipse BPMN 2.0 Designer, see the
corresponding Alfresco documentation.

http://www.activiti.org
http://omg.org/
http://www.omg.org/spec/BPMN/
http://docs.alfresco.com/4.1/tasks/wf-install-activiti-designer.html

Integrating Business Processes and Workflows
Setting Up Activiti Integration With OpenIDM

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 383

Also, read the Activiti User Guide section covering BPMN 2.0 Constructs, which describes in detail
the graphical notations and XML representations for events, flows, gateways, tasks, and process
constructs.

With the latest version of Activiti, JavaScript tasks can be added to workflow definitions. However,
OpenIDM functions cannot be called from a JavaScript task in a workflow. Therefore, you can use
JavaScript for non-OpenIDM workflow tasks, but you must use the activiti:expression construct to call
OpenIDM functions.

17.2. Setting Up Activiti Integration With OpenIDM
OpenIDM embeds an Activiti Process Engine that is started in the OpenIDM OSGi container.

After OpenIDM has been installed (as described in "Installing OpenIDM Services" in the Installation
Guide), start OpenIDM, and run the scr list command in the OSGi console to check that the workflow
bundle is active.
-> OpenIDM ready
scr list
 Id State Name
...
[39] [active] org.forgerock.openidm.workflow
...

OpenIDM reads workflow definitions from the /path/to/openidm/workflow directory. To test workflow
integration, at least one workflow definition must exist in this directory.

A sample workflow (example.bpmn20.xml) is provided in the /path/to/openidm/samples/misc directory. Copy
this workflow to the /path/to/openidm/workflow directory to test the workflow integration.
$ cd /path/to/openidm
$ cp samples/misc/example.bpmn20.xml workflow/

Verify the workflow integration by using the REST API. The following REST call lists the defined
workflows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

The sample workflow definition that you copied in the previous step is named osgiProcess. The result
of the preceding REST call therefore includes output similar to the following:

http://www.activiti.org/userguide/#bpmnConstructs

Integrating Business Processes and Workflows
Setting Up Activiti Integration With OpenIDM

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 384

{
...
 "result":[
 {
 ...
 "key": "osgiProcess",
 ...
 "name":"Osgi process",
 ...
 "_id":"osgiProcess:1:3",
 ...
 }
]
}

The osgiProcess workflow calls OpenIDM, queries the available workflow definitions from Activiti, then
prints the list of workflow definitions to the OpenIDM logs. Invoke the osgiProcess workflow with the
following REST call:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"_key":"osgiProcess"}' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

The workflow prints the list of workflow definitions to the OSGi console. With the default sample, you
should see something like this:
script task using resolver: [
 pagedResultsCookie:null,
 remainingPagedResults:-1,
 result:[
 [
 tenantId:,
 candidateStarterGroupIdExpressions:[],
 candidateStarterUserIdExpressions:[],
 participantProcess:null,
 processDiagramResourceName:null,
 historyLevel:null,
 hasStartFormKey:false,
 laneSets:[],
 version:1, _id:osgiProcess:1:3,
 description:null,
 name:Osgi process,
 executionListeners:[:],
 key:osgiProcess,
 resourceName:OSGI-INF/activiti/example.bpmn20.xml,
 ioSpecification:null,
 taskDefinitions:null,
 suspensionState:1,
 deploymentId:1,
 properties:[:],
 startFormHandler:null,
 suspended:false,

Integrating Business Processes and Workflows
Configuring the Activiti Engine

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 385

 variables:null,
 _rev:1,
 revisionNext:2,
 category:Examples,
 eventSupport:[:],
 graphicalNotationDefined:false
]
]
]
script task using expression resolver: [
 pagedResultsCookie:null,
 remainingPagedResults:-1,
 result:[
 [
 tenantId:,
 candidateStarterGroupIdExpressions:[],
 ...
]

17.2.1. Configuring the Activiti Engine

The OpenIDM Activiti module is configured in a file named conf/workflow.json. If this file is absent from
the configuration, the workflow module is unavailable for use. In the default OpenIDM installation,
the workflow.json file has the following basic configuration:
{
 "enabled" : true,
 "workflowDirectory" : "&{launcher.project.location}/workflow"
}

enabled

The workflow module is enabled by default. You can disable the workflow module by setting the
"enabled" property to false.

workflowDirectory

This directory specifies the location in which OpenIDM expects to find workflow processes. By
default, OpenIDM looks for workflow process in the workflow folder of the current project.

There are several additional configuration properties for the Activiti module. A sample workflow.json
file that includes all configurable properties, is provided in samples/misc. To configure an Activiti
engine beyond the default configuration, edit this sample file and copy it to the /path/to/openidm/conf
directory.

The sample workflow.json file contains the following configuration:

Integrating Business Processes and Workflows
Configuring the Activiti Engine

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 386

{
 "enabled" : true,
 "location" : "remote",
 "engine" : {
 "url" : "http://localhost:9090/openidm-workflow-remote-4.0.0",
 "username" : "youractivitiuser",
 "password" : "youractivitipassword"
 },
 "mail" : {
 "host" : "yourserver.smtp.com",
 "port" : 587,
 "username" : "yourusername",
 "password" : "yourpassword",
 "starttls" : true
 },
 "history" : "audit"
}

These fields have the following meaning:

• enabled. Indicates whether the Activiti module is enabled for use. Possible values are true or false.
The default value is true.

• mail. Specifies the details of the mail server that Activiti will use to send email notifications. By
default, Activiti uses the mail server localhost:25. To specify a different mail server, enter the details
of the mail server here.

• host. The host of the mail server.

• port. The port number of the mail server.

• username. The user name of the account that connects to the mail server.

• password. The password for the user specified above.

• startTLS. Whether startTLS should be used to secure the connection.

• history. Determines the history level that should be used for the Activiti engine. For more
information, see Configuring the Activiti History Level.

17.2.1.1. Configuring the Activiti History Level

The Activiti history level determines how much historical information is retained when workflows are
executed. You can configure the history level by setting the history property in the workflow.json file,
for example:
"history" : "audit"

The following history levels can be configured:

• none. No history archiving is done. This level results in the best performance for workflow execution,
but no historical information is available.

Integrating Business Processes and Workflows
Defining Activiti Workflows

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 387

• activity. Archives all process instances and activity instances. No details are archived.

• audit. This is the default level. All process instances, activity instances and submitted form
properties are archived so that all user interaction through forms is traceable and can be audited.

• full. This is the highest level of history archiving and has the greatest performance impact. This
history level stores all the information that is stored for the audit level, as well as any process
variable updates.

17.2.2. Defining Activiti Workflows
The following section outlines the process to follow when you create an Activiti workflow for
OpenIDM. Before you start creating workflows, you must configure the Activiti engine, as described
in Configuring the Activiti Engine.

1. Define your workflow in a text file, either using an editor, such as Activiti Eclipse BPMN 2.0
Designer, or a simple text editor.

2. Package the workflow definition file as a .bar file (Business Archive File). If you are using Eclipse
to define the workflow, a .bar file is created when you select "Create deployment artifacts". A .bar
file is essentially the same as a .zip file, but with the .bar extension.

3. Copy the .bar file to the openidm/workflow directory.

4. Invoke the workflow using a script (in openidm/script/) or directly using the REST interface. For
more information, see "Invoking Activiti Workflows".

You can also schedule the workflow to be invoked repeatedly, or at a future time. For more
information, see "Scheduling Tasks and Events".

17.2.3. Invoking Activiti Workflows
You can invoke workflows and business processes from any trigger point within OpenIDM, including
reacting to situations discovered during reconciliation. Workflows can be invoked from script files,
using the openidm.create() function, or directly from the REST interface.

The following sample script extract shows how to invoke a workflow from a script file:
/*
 * Calling 'myWorkflow' workflow
 */

var params = {
 "_key": "myWorkflow"
};

openidm.create('workflow/processinstance', null, params);

The null in this example indicates that you do not want to specify an ID as part of the create call. For
more information, see "openidm.create(resourceName, newResourceId, content, params, fields)".

Integrating Business Processes and Workflows
Invoking Activiti Workflows

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 388

You can invoke the same workflow from the REST interface by sending the following REST call to
OpenIDM:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"_key":"myWorkflow"}' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

There are two ways in which you can specify the workflow definition that is used when a new
workflow instance is started.

• _key specifies the id attribute of the workflow process definition, for example:
<process id="sendNotificationProcess" name="Send Notification Process">

If there is more than one workflow definition with the same _key parameter, the latest deployed
version of the workflow definition is invoked.

• _processDefinitionId specifies the ID that is generated by the Activiti Process Engine when a
workflow definition is deployed, for example:
"sendNotificationProcess:1:104";

To obtain the processDefinitionId, query the available workflows, for example:
{
 "result": [
 {
 "name": "Process Start Auto Generated Task Auto Generated",
 "_id": "ProcessSAGTAG:1:728"
 },
 {
 "name": "Process Start Auto Generated Task Empty",
 "_id": "ProcessSAGTE:1:725"
 },
 ...

If you specify a _key and a _processDefinitionId, the _processDefinitionId is used because it is more
precise.

Use the optional _businessKey parameter to add specific business logic information to the workflow
when it is invoked. For example, the following workflow invocation assigns the workflow a business
key of "newOrder". This business key can later be used to query "newOrder" processes.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"_key":"myWorkflow", "_businessKey":"newOrder"}' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

Integrating Business Processes and Workflows
Querying Activiti Workflows

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 389

Access to workflows is based on OpenIDM roles, and is configured in your project's conf/process-
access.json file. For more information, see "Managing Workflows From the Self-Service UI".

17.2.4. Querying Activiti Workflows

The Activiti implementation supports filtered queries that enable you to query the running process
instances and tasks, based on specific query parameters. To perform a filtered query send a GET
request to the workflow/processinstance context path, including the query in the URL.

For example, the following query returns all process instances with the business key "newOrder", as
invoked in the previous example.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-
query&processInstanceBusinessKey=newOrder"

Any Activiti properties can be queried using the same notation, for example,
processDefinitionId=managedUserApproval:1:6405. The query syntax applies to all queries with
_queryId=filtered-query. The following query returns all process instances that were started by the user
openidm-admin:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-query&startUserId=openidm-
admin"

You can also query process instances based on the value of any process instance variable, by
prefixing the variable name with var-. For example:
var-processvariablename=processvariablevalue

17.3. Using Custom Templates for Activiti Workflows
The embedded Activiti engine is integrated with the default user interface. For simple workflows,
you can use the standard Activiti form properties, and have the UI render the corresponding generic
forms automatically. If you require a more complex form template, (including input validation, rich
input field types, complex CSS, and so forth) you must define a custom form template.

There are two ways in which you can define custom form templates for your workflows:

• Create an HTML template, and refer to that template in the workflow definition.

Integrating Business Processes and Workflows
Managing Workflows Over the REST Interface

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 390

This is the recommended method of creating custom form templates. To refer to the
HTML template in the workflow definition, use the activiti:formKey attribute, for example
activiti:formKey="nUCStartForm.xhtml".

The HTML file must be deployed as part of the workflow definition. Create a .zip file that contains
the HTML template and the workflow definition file. Rename the .zip file with a .bar extension.

For a sample workflow that uses external, referenced form templates, see samples/usecase/workflow/
newUserCreate.bpmn20.xml. The HTML templates, and the corresponding .bar file are included in that
directory.

• Use an embedded template within the workflow definition.

This method is not ideal, because the HTML code must be escaped, and is difficult to read, edit,
or maintain, as a result. Also, sections of HTML code will most likely need to be duplicated if your
workflow includes multiple task stages. However, you might want to use this method if your form is
small, not too complex and you do not want to bother with creating a separate HTML file and .bar
deployment.

17.4. Managing Workflows Over the REST Interface
In addition to the queries described previously, the following examples show the context paths that
are exposed for managing workflows over the REST interface. The example output is based on the
sample workflow that is provided in openidm/samples/sample9.

openidm/workflow/processdefinition
• List the available workflow definitions:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"
{
 "result" : [{
 "tenantId" : "",
 "candidateStarterGroupIdExpressions" : [],
 "candidateStarterUserIdExpressions" : [],
 "participantProcess" : null,
 "processDiagramResourceName" : null,
 "historyLevel" : null,
 "hasStartFormKey" : false,
 "laneSets" : [],
 "version" : 1,
 "_id" : "managedUserApproval:1:3",
 "description" : null,
 "name" : "Managed User Approval Workflow",
 "executionListeners" : { },

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 391

 "key" : "managedUserApproval",
 "resourceName" : "OSGI-INF/activiti/managedUserApproval.bpmn20.xml",
 "ioSpecification" : null,
 "taskDefinitions" : null,
 "suspensionState" : 1,
 "deploymentId" : "1",
 "properties" : { },
 "startFormHandler" : null,
 "suspended" : false,
 "variables" : null,
 "_rev" : 1,
 "revisionNext" : 2,
 "category" : "Examples",
 "eventSupport" : { },
 "graphicalNotationDefined" : false
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• List the workflow definitions, based on certain filter criteria:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=filtered-query&category=Examples"
{
 "result": [
 {
 ...
 "name": "Managed User Approval Workflow",
 "_id": "managedUserApproval:1:3",
 ...
 "category" : "Examples",
 ...
 }
]
}

openidm/workflow/processdefinition/{id}
• Obtain detailed information for a process definition, based on the ID. You can determine the ID by

querying all the available process definitions, as described in the first example in this section.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3"
{
 "tenantId" : "",
 "candidateStarterGroupIdExpressions" : [],
 "candidateStarterUserIdExpressions" : [],

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 392

 "participantProcess" : null,
 "processDiagramResourceName" : null,
 "historyLevel" : null,
 "hasStartFormKey" : false,
 "laneSets" : [],
 "version" : 1,
 "formProperties" : [],
 "_id" : "managedUserApproval:1:3",
 "description" : null,
 "name" : "Managed User Approval Workflow",
 "executionListeners" : {
 "end" : [{ }]
 },
 "key" : "managedUserApproval",
 "resourceName" : "OSGI-INF/activiti/managedUserApproval.bpmn20.xml",
 "ioSpecification" : null,
 "taskDefinitions" : {
 "evaluateRequest" : {
 "assigneeExpression" : {
 "expressionText" : "openidm-admin"
 },
 "candidateGroupIdExpressions" : [],
 "candidateUserIdExpressions" : [],
 "categoryExpression" : null,
 "descriptionExpression" : null,
 "dueDateExpression" : null,
 "key" : "evaluateRequest",
 "nameExpression" : {
 "expressionText" : "Evaluate request"
 },
 "ownerExpression" : null,
 "priorityExpression" : null,
 "taskFormHandler" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : [{
 "defaultExpression" : null,
 "id" : "requesterName",
 "name" : "Requester's name",
 "readable" : true,
 "required" : false,
 "type" : null,
 "variableExpression" : {
 "expressionText" : "${sourceId}"
 },
 "variableName" : null,
 "writable" : false
 }, {
 "defaultExpression" : null,
 "id" : "requestApproved",
 "name" : "Do you approve the request?",
 "readable" : true,
 "required" : true,
 "type" : {
 "name" : "enum",
 "values" : {
 "true" : "Yes",
 "false" : "No"
 }

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 393

 },
 "variableExpression" : null,
 "variableName" : null,
 "writable" : true
 }]
 },
 "taskListeners" : {
 "assignment" : [{ }],
 "create" : [{ }]
 }
 }
 },
 "suspensionState" : 1,
 "deploymentId" : "1",
 "properties" : {
 "documentation" : null
 },
 "startFormHandler" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : []
 },
 "suspended" : false,
 "variables" : { },
 "_rev" : 2,
 "revisionNext" : 3,
 "category" : "Examples",
 "eventSupport" : { },
 "graphicalNotationDefined" : false
}

• Delete a workflow process definition, based on its ID. Note that you cannot delete a process
definition if there are currently running instances of that process definition.

OpenIDM picks up workflow definitions from the files located in the /path/to/openidm/workflow
directory. If you delete the workflow definition (.xml file) from this directory, the OSGI bundle
is deleted. However, deleting this file does not remove the workflow definition from the Activiti
engine. You must therefore delete the definition over REST, as shown in the following example.

Note that, although there is only one representation of a workflow definition in the file system,
there might be several versions of the same definition in Activiti. If you want to delete redundant
process definitions, delete the definition over REST, making sure that you do not delete the latest
version.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "If-Match: *" \
 --request DELETE \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3"

The delete request returns the contents of the deleted workflow definition.

Integrating Business Processes and Workflows
openidm/workflow/processinstance

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 394

openidm/workflow/processinstance

• Start a workflow process instance. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --data '{"_key":"managedUserApproval"}' \
 --request POST \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"
{
 "_id" : "4",
 "processInstanceId" : "4",
 "status" : "suspended",
 "businessKey" : null,
 "processDefinitionId" : "managedUserApproval:1:3"
}

• Obtain the list of running workflows (process instances). The query returns a list of IDs. For
example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=query-all-ids"

{
 "result" : [{
 "tenantId" : "",
 "businessKey" : null,
 "queryVariables" : null,
 "durationInMillis" : null,
 "processVariables" : { },
 "endTime" : null,
 "superProcessInstanceId" : null,
 "startActivityId" : "start",
 "startTime" : "2014-04-25T09:54:30.035+02:00",
 "startUserId" : "openidm-admin",
 "_id" : "4",
 "endActivityId" : null,
 "processInstanceId" : "4",
 "processDefinitionId" : "managedUserApproval:1:3",
 "deleteReason" : null
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• Obtain the list of running workflows based on specific filter criteria.

Integrating Business Processes and Workflows
openidm/workflow/processinstance/{id}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 395

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-
query&businessKey=myBusinessKey"

openidm/workflow/processinstance/{id}

• Obtain the details of the specified process instance. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance/4"
{
 "tenantId" : "",
 "businessKey" : null,
 "queryVariables" : null,
 "durationInMillis" : null,
 "processVariables" : { },
 "endTime" : null,
 "superProcessInstanceId" : null,
 "startActivityId" : "start",
 "startTime" : "2014-05-12T20:56:25.415+02:00",
 "startUserId" : "openidm-admin",
 "_id" : "4",
 "endActivityId" : null,
 "processInstanceId" : "4",
 "processDefinitionId" : "managedUserApproval:1:3",
 "deleteReason" : null
}

• Stop the specified process instance. For example:

Integrating Business Processes and Workflows
openidm/workflow/processinstance/history

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 396

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/workflow/processinstance/4"
{
 "deleteReason": null,
 "processDefinitionId": "managedUserApproval:1:3",
 "processInstanceId": "4",
 "endActivityId": null,
 "_id": "4",
 "startUserId": "openidm-admin",
 "startTime": "2014-06-18T10:33:40.955+02:00",
 "tenantId": "",
 "businessKey": null,
 "queryVariables": null,
 "durationInMillis": null,
 "processVariables": {},
 "endTime": null,
 "superProcessInstanceId": null,
 "startActivityId": "start"
}

The delete request returns the contents of the deleted process instance.

openidm/workflow/processinstance/history
• List the running and completed workflows (process instances).

The following query returns two process instances - one that has completed ("endActivityId": "end")
and one that is still running ("endActivityId": null):
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance/history?_queryId=query-all-ids"
{
 "result": [
 {
 "_id": "12",
 "businessKey": null,
 "deleteReason": null,
 "durationInMillis": 465287,
 "endActivityId": "end",
 "endTime": "2015-07-28T14:43:53.374+02:00",
 "processDefinitionId": "newUserCreate:1:11",
 "processInstanceId": "12",
 "processVariables": {},
 "queryVariables": null,
 "startActivityId": "start",
 "startTime": "2015-07-28T14:36:08.087+02:00",
 "startUserId": "user.1",
 "superProcessInstanceId": null,

Integrating Business Processes and Workflows
openidm/workflow/processinstance/history

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 397

 "tenantId": "",
 "processDefinitionResourceName": "User onboarding process"
 },
 {
 "_id": "65",
 "businessKey": null,
 "deleteReason": null,
 "durationInMillis": null,
 "endActivityId": null,
 "endTime": null,
 "processDefinitionId": "newUserCreate:1:11",
 "processInstanceId": "65",
 "processVariables": {},
 "queryVariables": null,
 "startActivityId": "start",
 "startTime": "2015-07-28T15:36:20.187+02:00",
 "startUserId": "user.0",
 "superProcessInstanceId": null,
 "tenantId": "",
 "processDefinitionResourceName": "User onboarding process"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

• Obtain the list of running and completed workflows, based on specific filter criteria.

The following command returns the running and completed workflows that were launched by user
.0.

Integrating Business Processes and Workflows
openidm/workflow/processinstance/history

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 398

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance/history?_queryId=filtered-
query&startUserId=user.0"
{
 "result": [
 {
 "_id": "65",
 "businessKey": null,
 "deleteReason": null,
 "durationInMillis": null,
 "endActivityId": null,
 "endTime": null,
 "processDefinitionId": "newUserCreate:1:11",
 "processInstanceId": "65",
 "processVariables": {},
 "queryVariables": null,
 "startActivityId": "start",
 "startTime": "2015-07-28T15:36:20.187+02:00",
 "startUserId": "user.0",
 "superProcessInstanceId": null,
 "tenantId": "",
 "processDefinitionResourceName": "User onboarding process"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

For large result sets, you can use the _sortKeys parameter with a filtered-query to order search
results by one or more fields. You can prefix a - character to the field name to specify that results
should be returned in descending order, rather than ascending order.

The following query orders results according to their startTime. The - character in this case
indicates that results should be sorted in reverse order, that is, with the most recent results
returned first.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance/history?_queryId=filtered-query&_sortKeys=-
startTime"
{
 "result": [
 {
 "_id": "104",
 "businessKey": null,
 "deleteReason": null,
 "durationInMillis": null,
 "endActivityId": null,
 "endTime": null,

Integrating Business Processes and Workflows
openidm/workflow/processinstance/history

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 399

 "processDefinitionId": "newUserCreate:1:11",
 "processInstanceId": "104",
 "processVariables": {},
 "queryVariables": null,
 "startActivityId": "start",
 "startTime": "2015-07-28T16:33:37.834+02:00",
 "startUserId": "user.0",
 "superProcessInstanceId": null,
 "tenantId": "",
 "processDefinitionResourceName": "User onboarding process"
 },
 {
 "_id": "65",
 "businessKey": null,
 "deleteReason": null,
 "durationInMillis": 3738013,
 "endActivityId": "end",
 "endTime": "2015-07-28T16:38:38.200+02:00",
 "processDefinitionId": "newUserCreate:1:11",
 "processInstanceId": "65",
 "processVariables": {},
 "queryVariables": null,
 "startActivityId": "start",
 "startTime": "2015-07-28T15:36:20.187+02:00",
 "startUserId": "user.0",
 "superProcessInstanceId": null,
 "tenantId": "",
 "processDefinitionResourceName": "User onboarding process"
 },
 {
 "_id": "12",
 "businessKey": null,
 "deleteReason": null,
 "durationInMillis": 465287,
 "endActivityId": "end",
 "endTime": "2015-07-28T14:43:53.374+02:00",
 "processDefinitionId": "newUserCreate:1:11",
 "processInstanceId": "12",
 "processVariables": {},
 "queryVariables": null,
 "startActivityId": "start",
 "startTime": "2015-07-28T14:36:08.087+02:00",
 "startUserId": "user.1",
 "superProcessInstanceId": null,
 "tenantId": "",
 "processDefinitionResourceName": "User onboarding process"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Caution

The Activiti engine treats certain property values as strings, regardless of their actual data type. This might
result in results being returned in an order that is different to what you might expect. For example, if you

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}/taskdefinition

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 400

wanted to sort the following results by their _id field, "88", "45", "101", you would expect them to be
returned in the order "45", "88", "101". Because Activiti treats IDs as strings, rather than numbers, they
would be returned in the order "101", "45", "88".

openidm/workflow/processdefinition/{id}/taskdefinition

• Query the list of tasks defined for a specific process definition. For example:
$ curl \
 --cacert self-signed.crt \
 --header X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3/taskdefinition?
_queryId=query-all-ids"
{
 "result" : [{
 "taskCandidateGroup" : [],
 "ownerExpression" : null,
 "assignee" : {
 "expressionText" : "openidm-admin"
 },
 "categoryExpression" : null,
 "taskListeners" : {
 "assignment" : [{ }],
 "create" : [{ }]
 },
 "formProperties" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : [{
 "_id" : "requesterName",
 "defaultExpression" : null,
 "name" : "Requester's name",
 "readable" : true,
 "required" : false,
 "type" : null,
 "variableExpression" : {
 "expressionText" : "${sourceId}"
 },
 "variableName" : null,
 "writable" : false
 }, {
 "_id" : "requestApproved",
 "defaultExpression" : null,
 "name" : "Do you approve the request?",
 "readable" : true,
 "required" : true,
 "type" : {
 "name" : "enum",
 "values" : {
 "true" : "Yes",
 "false" : "No"
 }
 },

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}/taskdefinition

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 401

 "variableExpression" : null,
 "variableName" : null,
 "writable" : true
 }]
 },
 "taskCandidateUser" : [],
 "formResourceKey" : null,
 "_id" : "evaluateRequest",
 "priority" : null,
 "descriptionExpression" : null,
 "name" : {
 "expressionText" : "Evaluate request"
 },
 "dueDate" : null
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• Query a task definition based on the process definition ID and the task name (taskDefinitionKey). For
example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3/taskdefinition/evaluateRequest"
{
 "taskCandidateGroup" : [],
 "ownerExpression" : null,
 "formProperties" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : [{
 "_id" : "requesterName",
 "defaultExpression" : null,
 "name" : "Requester's name",
 "readable" : true,
 "required" : false,
 "type" : null,
 "variableExpression" : {
 "expressionText" : "${sourceId}"
 },
 "variableName" : null,
 "writable" : false
 }, {
 "_id" : "requestApproved",
 "defaultExpression" : null,
 "name" : "Do you approve the request?",
 "readable" : true,
 "required" : true,
 "type" : {
 "name" : "enum",
 "values" : {
 "true" : "Yes",
 "false" : "No"

Integrating Business Processes and Workflows
openidm/workflow/taskinstance

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 402

 }
 },
 "variableExpression" : null,
 "variableName" : null,
 "writable" : true
 }]
 },
 "taskCandidateUser" : [],
 "_id" : "evaluateRequest",
 "priority" : null,
 "name" : {
 "expressionText" : "Evaluate request"
 },
 "descriptionExpression" : null,
 "categoryExpression" : null,
 "assignee" : {
 "expressionText" : "openidm-admin"
 },
 "taskListeners" : {
 "assignment" : [{ }],
 "create" : [{ }]
 },
 "dueDate" : null
}

openidm/workflow/taskinstance

• Query all running task instances. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance?_queryId=query-all-ids"
{
 "result" : [{
 "tenantId" : "",
 "createTime" : "2014-05-12T21:17:10.054+02:00",
 "executionId" : "10",
 "delegationStateString" : null,
 "processVariables" : { },
 "_id" : "15",
 "processInstanceId" : "10",
 "description" : null,
 "priority" : 50,
 "name" : "Evaluate request",
 "dueDate" : null,
 "parentTaskId" : null,
 "processDefinitionId" : "managedUserApproval:1:3",
 "taskLocalVariables" : { },
 "suspensionState" : 1,
 "assignee" : "openidm-admin",
 "cachedElContext" : null,
 "queryVariables" : null,
 "activityInstanceVariables" : { },
 "deleted" : false,

Integrating Business Processes and Workflows
openidm/workflow/taskinstance/{id}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 403

 "suspended" : false,
 "_rev" : 1,
 "revisionNext" : 2,
 "category" : null,
 "taskDefinitionKey" : "evaluateRequest",
 "owner" : null,
 "eventName" : null,
 "delegationState" : null
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• Query task instances based on candidate users or candidate groups. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance?_queryId=filtered-
query&taskCandidateUser=manager1"

or
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance?_queryId=filtered-
query&taskCandidateGroup=management"

Note that you can include both users and groups in the same query.

openidm/workflow/taskinstance/{id}
• Obtain detailed information for a running task, based on the task ID. For example:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance/15"
{
 "dueDate": null,
 "processDefinitionId": "managedUserApproval:1:3",
 "owner": null,
 "taskDefinitionKey": "evaluateRequest",
 "name": "Evaluate request"
,
...

• Update task-related data stored in the Activiti workflow engine. For example:

Integrating Business Processes and Workflows
openidm/workflow/taskinstance/{id}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 404

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "If-Match : *" \
 --request PUT \
 --data '{"description":"Evaluate the new managed user request"}' \
 "https://localhost:8443/openidm/workflow/taskinstance/15"

• Complete the specified task. The variables required by the task are provided in the request body.
For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"requestApproved":"true"}' \
 "https://localhost:8443/openidm/workflow/taskinstance/15?_action=complete"

• Claim the specified task. A user who claims a task has that task inserted into his list of pending
tasks. The ID of the user who claims the task is provided in the request body. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"userId":"manager1"}' \
 "https://localhost:8443/openidm/workflow/taskinstance/15?_action=claim"

Using Audit Logs
Configuring the Audit Service

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 405

Chapter 18

Using Audit Logs

The OpenIDM auditing service can publish and log all relevant system activity to one or more
specified targets, including local data files, the OpenIDM repository, and remote systems.

OpenIDM audit logs can help you record activity by account. With audit data, you can monitor logins,
identify problems such as unresponsive devices, and collect information to comply with regulatory
requirements.

OpenIDM logs data from six audit events: access details, system activity, authentication operations,
configuration changes, reconciliations, and synchronizations. Auditing provides the data for all
relevant reports, including those related to orphan accounts.

OpenIDM 4 supports customization of data from all six audit events.

Regardless of where audit information is logged, you may query audit logs over the REST interface.
For more information, see "Querying Audit Logs Over REST".

18.1. Configuring the Audit Service
OpenIDM exposes the audit logging configuration under https://localhost:8443/openidm/config/audit for
the REST API, and in the file project-dir/conf/audit.json.

You can also configure the audit service in the Admin UI. Select Configure > System Preferences and
click on the Audit tab. The fields on that form correspond to the configuration parameters described
in this section.

You can also configure the audit service by editing corresponding parameters in the audit.json file.

The following list includes major options that you can configure for the audit service.

• OpenIDM includes three configurable default audit event handlers, as described in "Configuring
Audit Event Handlers".

• You can allow a common transactionId for audit data from all ForgeRock products. To do so, edit the
system.properties file in your project-dir/conf directory and set:
org.forgerock.http.TrustTransactionHeader=true

To configure the audit service to log an event, you should include it in the list of events for the Audit
Event Handler used for queries (see "Configuring Audit Event Handlers").

Using Audit Logs
Configuring Audit Event Handlers

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 406

You can select one audit event handler to manage queries on the audit logs. The audit query handler
can be any one of the event handlers described in the previous section. The default audit query
handler is the OpenIDM repository.

To specify which audit event handler should be used for queries, set the handlerForQueries property in
the audit.json file, as follows:
{
 "auditServiceConfig" : {
 "handlerForQueries" : "repo",
 "availableAuditEventHandlers" : [
 "org.forgerock.audit.events.handlers.csv.CSVAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "org.forgerock.openidm.audit.impl.RouterAuditEventHandler"

In this case, the handlerForQueries is set to repo, which is the name of the RepositoryAuditEventHandler,
which is also shown later in the file.

The availableAuditEventHandlers property provides the array of audit event handlers available to
OpenIDM. For more information, see "Configuring Audit Event Handlers".

18.2. Configuring Audit Event Handlers
An audit event handler manages audit events, sends audit output to a defined location, and controls
their format. OpenIDM supports three default audit event handlers.

Each audit event handler may include several properties:

• class: The class name in the Java file(s) used to build the handler.

• config: The JSON object used to configure the handler. This is different from the config event topic.

• name: The name of your choice.

• logDirectory: The directory with log files.

• topics: Audit events configured with this handler. While config specifies the event handler
configuration, the same term is also used as an audit event topic.

The following sections illustrate how you can configure these properties for different audit event
handlers.

18.2.1. CSV Audit Event Handler

The CSV audit event handler logs events to a comma-separated value (CSV) file. The following code is
an excerpt of the audit.json file, which depicts a sample CSV audit event handler configuration:

Using Audit Logs
CSV Audit Event Handler

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 407

"eventHandlers" : [
{
 "class" : "org.forgerock.audit.events.handlers.csv.CSVAuditEventHandler",
 "config" : {
 "name" : "csv",
 "logDirectory" : "&{launcher.working.location}/audit",
 "topics" : ["access", "activity", "recon", "sync", "authentication", "config"]
 }
}

The "logDirectory" property indicates the name of the directory in which log files should be written,
relative to the working location. For more information on the working location, see "Specifying the
OpenIDM Startup Configuration".

You can use property value substitution to direct logs to another location on the file system. The
example provided in "Custom Audit Log Location" shows how to direct audit logs to a user home
directory.

If you set up a custom CSV Audit Event Handler, you may configure over 20 different properties, as
described in "Event Handler Property Configuration".

Audit file names are fixed and correspond to the event being audited:

access.csv
activity.csv
authentication.csv
config.csv
recon.csv
sync.csv

18.2.1.1. Minimum Admin UI CSV Audit Handler Configuration Requirements

If you configure the CSV Audit Event Handler in the Admin UI, you should at minimum, configure the
following:

• The logDirectory, the full path to the directory with audit logs, such as /path/to/openidm/audit. You can
substitute &{launcher.install.location} for /path/to/openidm.

• Entries in the Security section. You should include an entry in the following text box:
signatureInterval. You can set an entry for keystoreHandlerName, or substitute filename and password.

• Differing entries for the quote character, quoteChar and delimiter character, delimiterChar.

If you enter an ASCII endOfLineSymbols of \n, review the associated entry in your project's audit.json file.

Note

The signatureInterval property supports time settings in a human-readable format. Examples of allowable
signatureInterval settings are:

Using Audit Logs
CSV Audit Event Handler

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 408

• 3 days, 4 m

• 1 hour, 3 sec

Allowable time units include:

• days, day, d

• hours, hour, h

• minutes, minute, min, m

• seconds, second, sec, s

18.2.1.2. Configuring Tamper Protection for CSV Audit Logs

Tamper protection for OpenIDM audit files can ensure the integrity of OpenIDM audit logs written
to CSV files. You can activate them in the audit.json file directly, or by editing the CSV Audit Event
Handler through the Admin UI.

Once configured, the relevant code snippet in your project-dir/conf/audit.conf file should appear as
follows:
{
 "class" : "org.forgerock.audit.handlers.csv.CsvAuditEventHandler",
 "config" : {
 ...
 "security" : {
 "enabled" : true,
 "filename" : "",
 "password" : "",
 "keyStoreHandlerName" : "openidm",
 "signatureInterval" : "10 minutes"
 },
 ...

This particular code snippet reflects a tamper-evident configuration where a signature is written to
a new line in each CSV file, every 10 minutes. That signature uses the default OpenIDM keystore,
configured in the project-dir//conf/boot/boot.properties file. The properties are described in "Event
Handler Property Configuration".

If you do not include a keyStoreHandlerName, you should include a filename and password to otherwise
connect to the keystore, such as /path/to/openidm/security/keystore.jceks. If all three parameters are
defined, the audit service ignores the filename and password.

If you need to import a certificate into the OpenIDM keystore, or create your own self-signed
certificate, read "How CSV Files Become Tamper-Evident".

To make these same changes in the Admin UI, log into https://localhost:8443/admin, and click
Configure > System Preferences > Audit. You can either edit an existing CSV audit event handler, or
create one of your own, with the options just described.

Using Audit Logs
CSV Audit Event Handler

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 409

Before saving these changes to your CSV tamper-evident configuration, move or delete any current
audit CSV files with commands such as:
$ cd /path/to/openidm
$ mv audit/*.csv /tmp

18.2.1.3. How CSV Files Become Tamper-Evident

The integrity of audit files may be important to some deployers. The CSVAuditEventHandler supports both
plain and tamper-evident CSV files.

OpenIDM already has a Java Cryptography Extension Keystore (JCEKS), keystore.jceks, in the /path/to/
openidm/security directory.

You'll need to initialize a key pair using the RSA encryption algorithm, using the SHA256 hashing
mechanism.
$ cd /path/to/openidm
$ keytool \
 -genkeypair \
 -alias "Signature" \
 -dname CN=openidm \
 -keystore security/keystore.jceks \
 -storepass changeit \
 -storetype JCEKS \
 -keypass changeit \
 -keyalg RSA \
 -sigalg SHA256withRSA

Using Audit Logs
Router Audit Event Handler

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 410

You can now set up a secret key, in Hash-based message authentication code, using the SHA256 hash
function (HmacSHA256)
$ keytool \
 -genseckey \
 -alias "Password" \
 -keystore security/keystore.jceks \
 -storepass changeit \
 -storetype JCEKS \
 -keypass changeit \
 -keyalg HmacSHA256 \
 -keysize 256

To verify your new entries, run the following command:
$ keytool \
 -list \
 -keystore security/keystore.jceks \
 -storepass changeit \
 -storetype JCEKS
 Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 2 entries

signature, Dec 15, 2015, PrivateKeyEntry,
Certificate fingerprint (SHA1): E2:99:87:49:34:D7:A9:BA:D3:71:66:D0:F7:84:23:7A:E6:DD:E1:E1
password, Dec 15, 2015, SecretKeyEntry,

18.2.2. Router Audit Event Handler

The router audit event handler logs events to any external or custom endpoint, such as system/
scriptedsql or custom-endpoint/myhandler.

A sample configuration for a "router" event handler is provided in the audit.json file in the openidm/
samples/audit-sample/conf directory, and described in "Audit Sample Configuration Files" in the
Samples Guide. This sample directs log output to a JDBC repository. The audit configuration file
(conf/audit.json) for the sample shows the following event handler configuration:
{
 "class": "org.forgerock.openidm.audit.impl.RouterAuditEventHandler",
 "config": {
 "name": "router",
 "topics" : ["access", "activity", "recon", "sync", "authentication", "config"],
 "resourcePath" : "system/auditdb"
 }
},

The "resourcePath" property in the configuration indicates that logs should be directed to the system
/auditdb endpoint. This endpoint, and the JDBC connection properties, are defined in the connector
configuration file (conf/provisioner.openicf-scriptedsql.json), as follows:

Using Audit Logs
Repository Audit Event Handler

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 411

{
 "name" : "auditdb",
...
 "configurationProperties" : {
 "username" : "root",
 "password" : "password",
 "driverClassName" : "com.mysql.jdbc.Driver",
 "url" : "jdbc:mysql://localhost:3306/audit",
 "autoCommit" : true,
 "reloadScriptOnExecution" : false,
 "jdbcDriver" : "com.mysql.jdbc.Driver",
 "scriptRoots" : ["&{launcher.project.location}/tools"],
 "createScriptFileName" : "CreateScript.groovy",
 "testScriptFileName" : "TestScript.groovy",
 "searchScriptFileName" : "SearchScript.groovy"
 },
...

Substitute the correct URL or IP address of your remote JDBC repository, and the corresponding
connection details.

18.2.3. Repository Audit Event Handler

The repository audit event handler sends information to the OpenIDM repository. The log entries vary
by repository:

• In the OrientDB repository, OpenIDM stores log entries in the following tables:

1. audit_access

2. audit_activity

3. audit_authentication

4. audit_config

5. audit_recon

6. audit_sync

• In a JDBC repository, OpenIDM stores log entries in the following tables:

1. auditaccess

2. auditactivity

3. auditauthentication

4. auditconfig

5. auditrecon

Using Audit Logs
Reviewing Active Audit Event Handlers

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 412

6. auditsync

You can find mappings for each of these JDBC tables in your repo.jdbc.json file. The following excerpt
illustrates the mappings for the auditauthentication table:
"audit/authentication" : {
 "table" : "auditauthentication",
 "objectToColumn" : {
 "_id" : "objectid",
 "transactionId" : "transactionid",
 "timestamp" : "activitydate",
 "userId" : "userid",
 "eventName" : "eventname",
 "result" : "result",
 "principal" : {"column" : "principals", "type" : "JSON_LIST"},
 "context" : {"column" : "context", "type" : "JSON_MAP"},
 "entries" : {"column" : "entries", "type" : "JSON_LIST"},
 "trackingIds" : {"column" : "trackingids", "type" : "JSON_LIST"},
 }
},

Now return to the audit.json file. Examine the following sample audit repository log configuration:
{
 "class": "org.forgerock.openidm.audit.impl.RepositoryAuditEventHandler",
 "config": {
 "name": "repo",
 "topics" : ["access", "activity", "recon", "sync", "authentication", "config"]
 }
},

18.2.4. Reviewing Active Audit Event Handlers

To review the audit event handlers available for your OpenIDM deployment, along with each setting
shown in the audit.json file, use the following command to POST a request for availableHandlers:
$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request POST \
"https://localhost:8443/openidm/audit?_action=availableHandlers"

The output includes a full set of options for each audit event handler, which have been translated in
the Admin UI. You can see "human-readable" details when you log into the Admin UI. Click Configure
> System Preferences > Audit, and create or customize the event handler of your choice.

Using Audit Logs
Audit Log Event Topics

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 413

18.3. Audit Log Event Topics
The OpenIDM Audit Service logs information from six audit topics: access, activity, authentication,
configuration, reconciliation, and synchronization.

When you start OpenIDM, it creates audit log files for each topic in the openidm/audit directory. If
you use the CSV audit event handler, and run a reconciliation on OpenIDM, it adds access, activity,
authentication, and reconciliation information to relevant log files.

This section describes all OpenIDM audit service topics, and shows how the OpenIDM audit
configuration support additional audit topics.

In the Admin UI, you can configure default and custom audit topics. Select Configure > System
Preferences. Click on the Audit tab, and review the section on Event Topics.

18.3.1. OpenIDM Audit Event Topics
The OpenIDM Audit Service logs the following event topics by default:

Access Event Topics

OpenIDM writes messages at system boundaries, that is REST endpoints and the invocation of
scheduled tasks in this log. In short, it includes who, what, and output for every access request.

Default file: openidm/audit/access.csv

Activity Event Topics

OpenIDM logs operations on internal (managed) and external (system) objects to this log.

Entries in the activity log contain identifiers, both for the action that triggered the activity, and
also for the original caller and the relationships between related actions, on internal and external
objects.

Default file: openidm/audit/activity.csv

Authentication Event Topics

OpenIDM logs the results of authentication operations to this log, including situations and the
actions taken on each object, including when and how a user authenticated and related events.
The activity log contains additional detail about each authentication action.

Default file: openidm/audit/authentication.csv

Configuration Event Topics

OpenIDM logs the changes in configuration options in this log. The configuration log includes the
"before" and "after" settings for each configuration item, with timestamps.

Default file: openidm/audit/config.csv

Using Audit Logs
Event Topics: Filtering

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 414

Reconciliation Event Topics

OpenIDM logs the results of a reconciliation run to this log (including situations and the resulting
actions taken). The activity log contains details about the actions, where log entries display
parent activity identifiers, recon/reconID, links, and policy events by datastore.

Default file: openidm/audit/recon.csv

Synchronization Event Topics

OpenIDM logs the results of automatic synchronization operations (LiveSync and implicit
synchronization) to this log, including situations and the actions taken on each object, by account.
The activity log contains additional detail about each action.

Default file: openidm/audit/sync.csv

For detailed information about each audit event topic, see "Audit Configuration Schema".

18.4. Event Topics: Filtering
The audit configuration, defined in the audit.json file, includes a filter parameter that enables you
to specify what should be logged, per event type. The information that is logged can be filtered in
various ways. The following sections describe the filters that can be applied to each event type.

You can edit these filtering fields in the Admin UI. Click Configure > System Preferences > Audit.
Scroll down to Event Topics, and next to the event of your choice, click the pencil icon. You can edit
the filtering fields of your choice, as shown in the following figure.

If you do not see some of the options in the Admin UI, look for a drop-down arrow on the right side
of the window. If your window looks like this figure, you will see the Password Fields tab in the drop-
down menu.

Using Audit Logs
Filter Actions: Filtering Audit Entries by Action

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 415

18.4.1. Filter Actions: Filtering Audit Entries by Action

The filter actions list enables you to specify the actions that are logged, per event type. This filter is
essentially a fields filter (as described in "Filter Fields: Filtering Audit Entries by Field") that filters
log entries by the value of their actions field.

The following configuration specifies certain action operations: (create, update, delete, patch, and
action). The Audit Service may check filter actions, scripts, and more, when included in the audit.json
file.
"eventTopics" : {
...
 "activity": {
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 "watchedFields" : [],
 "passwordFields" : [
 "password"
]
 }
}

The list of actions that can be filtered into the log depend on the event type. The following table lists
the actions that can be filtered, per event type.

Actions that can be Logged Per Event Type

Event Type Actions Description
read When an object is read by using its identifier. By default, read actions

are not logged. Add the "read" action to the list of actions to log all read
actions.

Note that due to the potential result size in the case of read operations
on system/ endpoints, only the read is logged, and not the resource detail.
If you really need to log the complete resource detail, add the following
line to your conf/boot/boot.properties file:
openidm.audit.logFullObjects=true

create When an object is created.
update When an object is updated.
delete When an object is deleted.

Activity and
Configuration

patch When an object is partially modified. (Activity only.)

Using Audit Logs
Filter Fields: Filtering Audit Entries by Field

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 416

Event Type Actions Description
query When a query is performed on an object. By default, query actions are

not logged. Add the "query" action to the list of actions to log all query
actions.

Note that, due to the potential result size in the case of query operations
on system/ endpoints, only the query is logged, and not the resource
detail. If you really need to log the complete resource detail, add the
following line to your conf/boot/boot.properties file:
openidm.audit.logFullObjects=true

action When an action is performed on an object. (Activity only.)
create When a target object is created.
delete When a target object is deleted.
update When a target object is updated.
link When a link is created between a source object and an existing target

object.
unlink When a link is removed between a source object and a target object.
exception When the synchronization situation results in an exception. For more

information, see "Synchronization Situations and Actions".

Reconciliation
and
Synchronization

ignore When the target object is ignored, that is, no action is taken.
Access - No actions can be specified for the access log.

18.4.2. Filter Fields: Filtering Audit Entries by Field

You can add a list of filter fields to the audit configuration, that enables you to filter log entries
by specific fields. For example, you might want to restrict the reconciliation or audit log so that
only summary information is logged for each reconciliation operation. The following addition to the
audit.json file specifies that entries are logged in the reconciliation log only if their entryType is start or
summary.

Using Audit Logs
Filter Script: Using a Script to Filter Audit Data

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 417

"eventTopics" : {
 ...
 "activity" : {
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action
],
 "fields" : [
 {
 "name" : "entryType",
 "values" : [
 "start",
 "summary"
]
 }
]
 }
 }
 ...
},
...

To use nested properties, specify the field name as a JSON pointer. For example, to filter entries
according to the value of the authentication.id, you would specify the field name as authentication/id.

18.4.3. Filter Script: Using a Script to Filter Audit Data

Apart from the audit filtering options described in the previous sections, you can use a JavaScript or
Groovy script to specify what is logged in your audit logs. Audit filter scripts are referenced in the
audit configuration file (conf/audit.json), and can be configured per event type. The following sample
configuration references a script named auditfilter.js, which is used to limit what is logged in the
reconciliation audit log:
{
 "eventTopics" : {
 ...
 "recon" : {
 "filter" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "auditfilter.js"
 }
 }
 },
 ...
}

OpenIDM makes the request and context objects available to the script. Before writing the audit
entry, OpenIDM can access the entry as a request.content object. For more information, see "Setting
the Script Configuration". objects available to the script. Before writing an audit entry, OpenIDM

Using Audit Logs
Filter Triggers: Filtering Audit Entries by Trigger

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 418

can access that entry as a request.content object. For more information, see "Setting the Script
Configuration"..

For example, to set up a script to log just the summary entries for mapping managed users in an
LDAP data store, you could include the following in the auditfilter.js script:
(function() {
 return request.content.entryType == 'summary' &&
 request.content.mapping == 'systemLdapAccounts_managedUser'
}());

The script must return true to include the log entry; false to exclude it.

18.4.4. Filter Triggers: Filtering Audit Entries by Trigger
You can add a filter triggers list to the audit configuration, that specifies the actions that will be
logged for a specific trigger. For example, the following addition to the audit.json file specifies that
only create and update actions are logged for in the activity log, for an activity that was triggered by a
recon.
"eventTopics" : {
 "activity" : {
 "filter" : {
 "actions" : [
 ...
],
 "triggers" : {
 "recon" : [
 "create",
 "update"
]
 }
 ...

If a trigger is provided, but no actions are specified, nothing is logged for that trigger. If a trigger is
omitted, all actions are logged for that trigger. In the current OpenIDM release, only the recon trigger
is implemented. For a list of reconciliation actions that can be logged, see "Synchronization Actions".

18.4.5. Watched Fields: Defining Fields to Monitor
For the activity log only, you can specify fields whose values are considered particularly important in
terms of logging.

The watchedFields parameter, configured in the audit.json file, is not really a filtering mechanism, but
enables you to define a list of properties that should be monitored for changes. When the value of
one of the properties in this list changes, the change is logged in the activity log, under the column
"changedFields". This parameter enables you to have quick access to important changes in the log.

Properties to monitor are listed as values of the watchedFields parameter, separated by commas, for
example:
"watchedFields" : ["email", "address"]

Using Audit Logs
Password Fields: Defining a Password Field

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 419

You can monitor changes to any field in this way.

18.4.6. Password Fields: Defining a Password Field

Also in the activity log, you can include a passwordFields parameter to specify a list of password
properties. This parameter functions much like the watchedFields parameter in that changes to
these property values are logged in the activity log, under the column "changedFields". In addition,
when a password property is changed, the boolean "passwordChanged" flag is set to true in the activity
log. Properties that should be considered as passwords are listed as values of the passwordFields
parameter, separated by commas. For example:
"passwordFields" : ["password", "userPassword"]

18.5. Filtering Audit Logs by Policy
By default, the audit.json file for OpenIDM includes the following code snippet for filterPolicies:
"filterPolicies" : {
 "value" : {
 "excludeIf" : [
 "/access/http/request/headers/Authorization",
 "/access/http/request/headers/X-OpenIDM-Password",
 "/access/http/request/cookies/session-jwt",
 "/access/http/response/headers/Authorization",
 "/access/http/response/headers/X-OpenIDM-Password"
],
 "includeIf" : []
 }
}

The excludeIf code snippet lists HTTP access log data that the audit service excludes from log files.

The includeIf directive is available for custom audit event handlers, for items that you want included
in log files.

18.6. Configuring an Audit Exception Formatter
The OpenIDM Audit service includes an exception formatter, configured in the following snippet of
the audit.json file:
"exceptionFormatter" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/audit/stacktraceFormatter.js"
},

As shown, you may find the script that defines how the exception formatter works in the
stacktraceFormatter.js file. That file handles the formatting and display of exceptions written to the
audit logger.

Using Audit Logs
Adjusting Audit Write Behavior

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 420

18.7. Adjusting Audit Write Behavior
OpenIDM supports buffering to minimize the writes on your systems. To do so, you can configure
buffering either in the project-dir/conf/audit.json file, or through the Admin UI.

You can configure audit buffering through an event handler. To access an event handler in the Admin
UI, click Configure > System Preferences and click on the Audit Tab. When you customize or create
an event handler, you can configure the following settings:

Audit Buffering Options

Property UI Text Description
enabled True or false Enables / disables buffering
autoFlush True or false; whether the Audit Service

automatically flushes events after writing
them to disk

The following sample code illustrates where you would configure these properties in the audit.json
file.
...
 "eventHandlers" : [
 {
 "config" : {
 ...
 "buffering" : {
 "autoFlush" : false,
 "enabled" : false
 }
 },
...

You can set up autoFlush when buffering is enabled. OpenIDM then writes data to audit logs
asynchronously, while autoFlush functionality ensures that the audit service writes data to logs on a
regular basis.

If audit data is important, do activate autoFlush. It minimizes the risk of data loss in case of a server
crash.

18.8. Generating Reports
When generating reports from audit logs, you can correlate information from activity and
reconciliation logs by matching the "rootActionId" on entries in both logs.

The following MySQL query shows a join of the audit activity and audit reconciliation tables using
root action ID values.

Using Audit Logs
Purging Obsolete Audit Information

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 421

mysql> select distinct auditrecon.activity,auditrecon.sourceobjectid,
 auditrecon.targetobjectid,auditactivity.activitydate,auditrecon.status
 from auditactivity inner join auditrecon
 auditactivity.rootactionid=auditrecon.rootactionid
 where auditrecon.activity is not null group by auditrecon.sourceobjectid;
+----------+--------------------------+----------------------+---------------------+---------+
| activity | sourceobjectid | targetobjectid | activitydate | status |
+----------+--------------------------+----------------------+---------------------+---------+
CREATE	system/xmlfile/account/1	managed/user/juser	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/2	managed/user/ajensen	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/3	managed/user/bjensen	2012-01-17T07:59:12	SUCCESS
+----------+--------------------------+----------------------+---------------------+---------+
3 rows in set (0.00 sec)

18.9. Purging Obsolete Audit Information
If reconciliation audit volumes grow "excessively" large, any subsequent reconciliations, as well as
queries to audit tables, can become "sluggish". In a deployment with limited resources, a lack of disk
space can affect system performance.

You might already have restricted what is logged in your audit logs by setting up filters, as described
in "Event Topics: Filtering". You can also use specific queries to purge reconciliation audit logs, or
you can purge reconciliation audit entries older than a specific date, using timestamps.

OpenIDM includes a sample purge script, autoPurgeRecon.js in the bin/defaults/script/audit directory.
This script purges reconciliation audit log entries only from the internal repository. It does not purge
data from the corresponding CSV files or external repositories.

To purge reconciliation audit logs on a regular basis, you must set up a schedule. A sample schedule
is provided in the schedule-autoPurgeAuditRecon.json file (in the openidm/samples/schedules subdirectory).
You can change that schedule as required, and copy the file to the conf/ directory of your project, in
order for it to take effect.

The sample purge schedule file is as follows:

Using Audit Logs
Purging Obsolete Audit Information

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 422

{
 "enabled" : false,
 "type" : "cron",
 "schedule" : "0 0 */12 * * ?",
 "persisted" : true,
 "misfirePolicy" : "doNothing",
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "audit/autoPurgeAuditRecon.js",
 "input" : {
 "mappings" : ["%"],
 "purgeType" : "purgeByNumOfReconsToKeep",
 "numOfRecons" : 1,
 "intervalUnit" : "minutes",
 "intervalValue" : 1
 }
 }
 }
}

For information about the schedule-related properties in this file, see "Scheduling Synchronization".

Beyond scheduling, the following parameters are of interest for purging the reconciliation audit logs:

input

Input information. The parameters below specify different kinds of input.

mappings

An array of mappings to prune. Each element in the array can be either a string or an object.

Strings must contain the mapping(s) name and can use "%" as a wild card value that will be used
in a LIKE condition.

Objects provide the ability to specify mapping(s) to include/exclude and must be of the form:
{
 "include" : "mapping1",
 "exclude" : "mapping2"
 ...
}

purgeType

The type of purge to perform. Can be set to one of the following values:

purgeByNumOfReconsToKeep

Uses the deleteFromAuditReconByNumOf function and the numOfRecons config variable.

Using Audit Logs
Audit Log Rotation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 423

purgeByExpired

Uses the deleteFromAuditReconByExpired function and the config variables intervalUnit and
intervalValue.

num-of-recons

The number of recon summary entries to keep for a given mapping, including all child entries.

intervalUnit

The type of time interval when using purgeByExpired. Acceptable values include: minutes, hours, or
days.

intervalValue

The value of the time interval when using purgeByExpired. Set to an integer value.

18.9.1. Audit Log Rotation
When you have filtered and purged unneeded log information, you can use log rotation services to
limit the size of individual log files, and archive them as needed. Some log rotation services also
support archiving to remote log servers. Details vary by the service and the operating system.

Alternatively, you can stop logging of a specific audit event topic. For example, with the following
command, you can stop processing to a CSV log file with a date and time stamp. This command also
starts logging in a new file with the same base name.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/audit/access?handler=csv&_action=rotate"

If successful, you'll see two access.csv files in the openidm/audit directory. One will have an extension
such as 12.30.15-13.12, which states that data collection in this file ended on December 30, 2015, at
1:12 pm.

You can automate log rotation for the CSV audit event handler. In the Admin UI, click Configure >
System Preferences > Audit, and edit or add a CSV audit event handler. You can then edit relevant
properties like rotationEnabled and rotationInterval. For a full list of relevant CSV audit event handler
log rotation properties, see "Event Handler Property Configuration".

18.10. Querying Audit Logs Over REST
Regardless of where audit events are stored, they are accessible over REST on the /audit endpoint.
The following sections describe how to query the reconciliation, activity and sync logs over REST.
These instructions can be applied to all the other log types.

Using Audit Logs
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 424

Note

Queries on the audit endpoint must use queryFilter syntax. Predefined queries are not supported. For more
information, see "Constructing Queries".

18.10.1. Querying the Reconciliation Audit Log
With the default audit configuration, reconciliation operations are logged in the file /path/to/openidm/
audit/recon.csv, and in the repository. You can read and query the reconciliation audit logs over the
REST interface, as outlined in the following examples.

To return all reconciliation operations logged in the audit log, query the audit/recon endpoint, as
follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/recon?_queryFilter=true"

The following code extract shows the reconciliation audit log after the first reconciliation operation in
Sample 1.
{
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-139",
 "_rev" : "1",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.432Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "exception" : null,
 "linkQualifier" : null,
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : "Reconciliation initiated by openidm-admin",
 "sourceObjectId" : null,
 "targetObjectId" : null,
 "reconciling" : null,
 "ambiguousTargetObjectIds" : null,
 "reconAction" : "recon",
 "entryType" : "start",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-147",
 "_rev" : "1",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "action" : "CREATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : null,

Using Audit Logs
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 425

 "situation" : "ABSENT",
 "sourceObjectId" : "system/xmlfile/account/bjensen",
 "status" : "SUCCESS",
 "targetObjectId" : "managed/user/bjensen",
 "reconciling" : "source",
 "ambiguousTargetObjectIds" : "",
 "entryType" : "entry",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-146",
 "_rev" : "1",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "action" : "CREATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : null,
 "situation" : "ABSENT",
 "sourceObjectId" : "system/xmlfile/account/scarter",
 "status" : "SUCCESS",
 "targetObjectId" : "managed/user/scarter",
 "reconciling" : "source",
 "ambiguousTargetObjectIds" : "",
 "entryType" : "entry",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-148",
 "_rev" : "1",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.732Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "exception" : null,
 "linkQualifier" : null,
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED: 0 CONFIRMED:
 0 SOURCE_MISSING: 0 ABSENT: 2 TARGET_IGNORED: 0 UNASSIGNED: 0 FOUND_ALREADY_LINKED: 0 ",
 "messageDetail" : {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "state" : "SUCCESS",
 "stage" : "COMPLETED_SUCCESS",
 "stageDescription" : "reconciliation completed.",
 "progress" : {
 "source" : {
 "existing" : {
 "processed" : 2,
 "total" : "2"
 }
 },
 "target" : {
 "existing" : {
 "processed" : 0,
 "total" : "0"
 },
 "created" : 2

Using Audit Logs
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 426

 },
 "links" : {
 "existing" : {
 "processed" : 0,
 "total" : "0"
 },
 "created" : 2
 }
 },
 "situationSummary" : {
 "SOURCE_IGNORED" : 0,
 "MISSING" : 0,
 "FOUND" : 0,
 "AMBIGUOUS" : 0,
 "UNQUALIFIED" : 0,
 "CONFIRMED" : 0,
 "SOURCE_MISSING" : 0,
 "ABSENT" : 2,
 "TARGET_IGNORED" : 0,
 "UNASSIGNED" : 0,
 "FOUND_ALREADY_LINKED" : 0
 },
 "statusSummary" : {
 "FAILURE" : 0,
 "SUCCESS" : 2
 },
 "parameters" : {
 "sourceQuery" : {
 "resourceName" : "system/xmlfile/account",
 "queryId" : "query-all-ids"
 },
 "targetQuery" : {
 "resourceName" : "managed/user",
 "queryId" : "query-all-ids"
 }
 },
 "started" : "2015-11-23T00:18:34.431Z",
 "ended" : "2015-11-23T00:18:34.730Z",
 "duration" : 299
 },
 "sourceObjectId" : null,
 "status" : "SUCCESS",
 "targetObjectId" : null,
 "reconciling" : null,
 "ambiguousTargetObjectIds" : null,
 "reconAction" : "recon",
 "entryType" : "summary",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135"
 }],
 "resultCount" : 4,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Most of the fields in the reconciliation audit log are self-explanatory. Each distinct reconciliation
operation is identified by its reconId. Each entry in the log is identified by a unique _id. The first log

Using Audit Logs
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 427

entry indicates the status for the complete reconciliation operation. Successive entries indicate the
status for each entry affected by the reconciliation.

To obtain information about a specific log entry, include its entry _id in the URL. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/recon/414a4921-5d9d-4398-bf86-7d5312a9f5d1-146"

The following sample output shows the results of a read operation on a specific reconciliation audit
entry. The entry shows the creation of bjensen's account in the managed user repository, as the result
of a reconciliation operation.
{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-146",
 "_rev" : "1",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "action" : "CREATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : null,
 "situation" : "ABSENT",
 "sourceObjectId" : "system/xmlfile/account/scarter",
 "status" : "SUCCESS",
 "targetObjectId" : "managed/user/scarter",
 "reconciling" : "source",
 "ambiguousTargetObjectIds" : "",
 "entryType" : "entry",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135"
}

To obtain information for a specific reconciliation operation, include the reconId in the query. You
can filter the log so that the query returns only the fields you want to see, by adding the _fields
parameter.

The following query returns the "mapping", "timestamp", and "entryType" fields for a specific
reconciliation operation.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/audit/recon?_queryFilter=/reconId+eq+"4261227f-1d44-4042-ba7e
-1dcbc6ac96b8"&_fields=mapping,timestamp,entryType'
 {
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-148",
 "_rev" : "1",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "timestamp" : "2015-11-23T00:18:34.732Z",

Using Audit Logs
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 428

 "entryType" : "summary"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-146",
 "_rev" : "1",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "entryType" : "entry"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-147",
 "_rev" : "1",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "entryType" : "entry"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-139",
 "_rev" : "1",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "timestamp" : "2015-11-23T00:18:34.432Z",
 "entryType" : "start"
 }],
 "resultCount" : 4,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

To query the reconciliation audit log for a particular reconciliation situation, include the reconId and
the situation in the query. For example, the following query returns all ABSENT entries that were
found during the specified reconciliation operation:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/audit/recon?_queryFilter=/reconId+eq+"414a4921-5d9d-4398-bf86
-7d5312a9f5d1-135"+and+situation+eq+"ABSENT"'
 {
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-146",
 "_rev" : "1",
 "situation" : "ABSENT",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "action" : "CREATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : null,
 "sourceObjectId" : "system/xmlfile/account/scarter",
 "status" : "SUCCESS",
 "targetObjectId" : "managed/user/scarter",
 "reconciling" : "source",
 "ambiguousTargetObjectIds" : "",

Using Audit Logs
Querying the Activity Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 429

 "entryType" : "entry"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-147",
 "_rev" : "1",
 "situation" : "ABSENT",
 "reconId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.711Z",
 "eventName" : "recon",
 "userId" : "openidm-admin",
 "action" : "CREATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "systemXmlfileAccounts_managedUser",
 "message" : null,
 "sourceObjectId" : "system/xmlfile/account/bjensen",
 "status" : "SUCCESS",
 "targetObjectId" : "managed/user/bjensen",
 "reconciling" : "source",
 "ambiguousTargetObjectIds" : "",
 "entryType" : "entry"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

18.10.2. Querying the Activity Audit Log

The activity logs track all operations on internal (managed) and external (system) objects. Entries in
the activity log contain identifiers for the reconciliation or synchronization action that triggered an
activity, and for the original caller and the relationships between related actions.

You can access the activity logs over REST with the following call:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/activity?_queryFilter=true"

The following extract of the activity log shows one entry that created user bjensen.

Using Audit Logs
Querying the Activity Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 430

 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-145",
 "_rev" : "1",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-135",
 "timestamp" : "2015-11-23T00:18:34.674Z",
 "eventName" : "activity",
 "userId" : "openidm-admin",
 "runAs" : "openidm-admin",
 "operation" : "CREATE",
 "before" : null,
 "after" : "{ \"mail\": \"bjensen@example.com\", \"givenName\": \"Barbara\", \"sn\": \"Jensen\",
 \"description\": \"Created By XML1\", \"_id\": \"bjensen\", \"userName\": \"bjensen@example.com\",
 \"password\": { \"$crypto\": { \"value\": { \"iv\": \"KHjYJYacmk4UrXzfoTDaSQ==\", \"data\":
 \"o0Lq5HYqgJPSrKSD4AXYsA==\", \"cipher\": \"AES/CBC/PKCS5Padding\", \"key\": \"openidm-sym-default
\" },
 \"type\": \"x-simple-encryption\" } }, \"telephoneNumber\": \"1234567\", \"accountStatus\": \"active
\",
 \"effectiveRoles\": null, \"effectiveAssignments\": [], \"_rev\": \"1\" }",
 "changedFields" : [],
 "revision" : "1",
 "message" : "create",
 "objectId" : "managed/user/bjensen",
 "passwordChanged" : true,
 "status" : "SUCCESS"
 }],
...

To return the activity information for a specific action, include the _id of the action in the URL, for
example:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/audit/activity/414a4921-5d9d-4398-bf86-7d5312a9f5d1-145'

Each action in the activity log has a transactionId that is the same as the transactionId that was
assigned to the incoming or initiating request. So, for example, if an HTTP request invokes a script
that changes a user's password, the HTTP request is assigned a transactionId. The action taken by
the script is assigned the same transactionId, which enables you to track the complete set of changes
resulting from a single action. You can query the activity log for all actions that resulted from a
specific transaction, by including the transactionId in the query.

The following command returns all actions in the activity log that happened as a result of a
reconciliation, with a specific transactionId. The results of the query are restricted to only the objectId
and the resourceOperation. You can see from the output that the reconciliation with this transactionId
resulted in two CREATEs and two UPDATEs in the managed repository.

Using Audit Logs
Querying the Synchronization Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 431

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/audit/activity?_queryFilter=/transactionId+eq+"414a4921-5d9d-4398-bf86
-7d5312a9f5d1-135"&_fields=objectId,operation'

The following sample output shows the result of a query that created users scarter and bjensen.
{
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-144",
 "_rev" : "1",
 "objectId" : "managed/user/scarter",
 "operation" : "CREATE"
 }, {
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-145",
 "_rev" : "1",
 "objectId" : "managed/user/bjensen",
 "operation" : "CREATE"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

18.10.3. Querying the Synchronization Audit Log

LiveSync and implicit sync operations are logged in the file /path/to/openidm/audit/sync.csv and in the
repository. You can read the synchronization audit logs over the REST interface, as outlined in the
following examples.

To return all operations logged in the synchronization audit log, query the audit/sync endpoint, as
follows:

Using Audit Logs
Querying the Synchronization Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 432

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/sync?_queryFilter=true"
{
 "result" : [{
 "_id" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-95",
 "_rev" : "1",
 "transactionId" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-85",
 "timestamp" : "2015-11-23T05:07:39.376Z",
 "eventName" : "sync",
 "userId" : "openidm-admin",
 "action" : "UPDATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "managedUser_systemLdapAccounts",
 "message" : null,
 "situation" : "CONFIRMED",
 "sourceObjectId" : "managed/user/128e0e85-5a07-4e72-bfc8-4d9500a027ce",
 "status" : "SUCCESS",
 "targetObjectId" : "uid=jdoe,ou=People,dc=example,dc=com"
 },
 {
...

Most of the fields in the synchronization audit log are self-explanatory. Each entry in the log
synchronization operation is identified by a unique _id. Each synchronization operation is identified
with a transactionId. The same base transactionId is assigned to the incoming or initiating request
- so if a modification to a user entry triggers an implicit synchronization operation, both the sync
operation and the original change operation have the same transactionId. You can query the sync log
for all actions that resulted from a specific transaction, by including the transactionId in the query.

To obtain information on a specific sync audit log entry, include its entry _id in the URL. For example:

Using Audit Logs
Querying the Authentication Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 433

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/sync/53709f21-5b83-4ea0-ac35-9af39c3090cf-95"
{
 "_id" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-95",
 "_rev" : "1",
 "transactionId" : "53709f21-5b83-4ea0-ac35-9af39c3090cf-85",
 "timestamp" : "2015-11-23T05:07:39.376Z",
 "eventName" : "sync",
 "userId" : "openidm-admin",
 "action" : "UPDATE",
 "exception" : null,
 "linkQualifier" : "default",
 "mapping" : "managedUser_systemLdapAccounts",
 "message" : null,
 "situation" : "CONFIRMED",
 "sourceObjectId" : "managed/user/128e0e85-5a07-4e72-bfc8-4d9500a027ce",
 "status" : "SUCCESS",
 "targetObjectId" : "uid=jdoe,ou=People,dc=example,dc=com"
}

18.10.4. Querying the Authentication Audit Log

The authentication log includes details of all successful and failed authentication attempts. The
output may be long. The output that follows is one excerpt from 114 entries. To obtain the complete
audit log over REST, use the following query:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/authentication?_queryFilter=true"
{
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-5",
 "_rev" : "1",
 "context" : {
 "id" : "anonymous",
 "component" : "repo/internal/user",
 "roles" : ["openidm-reg"],
 "ipAddress" : "127.0.0.1"
 },
 "entries" : [{
 "moduleId" : "IDMAuthModuleWrapper",
 "result" : "FAILED",
 "reason" : { },
 "info" : { }
 }, {
 "moduleId" : "IDMAuthModuleWrapper",
 "result" : "SUCCESSFUL",
 "info" : {
 "org.forgerock.authentication.principal" : "anonymous"

Using Audit Logs
Querying the Authentication Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 434

 }
 }],
 "principal" : ["anonymous"],
 "result" : "SUCCESSFUL",
 "userId" : "anonymous",
 "transactionId" : "be858917-764c-4b05-8a6b-ee91cfd8c7e7",
 "timestamp" : "2015-11-23T00:18:10.231Z",
 "eventName" : "authentication",
 "trackingIds" : ["ea9e65f1-fd28-4153-abc2-891ccbfd482e"]
}
...

You can filter the results to return only those audit entries that you are interested in. For example,
the following query returns all authentication attempts made by a specific user (user.0) but displays
only the security context and the result of the authentication attempt.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 'https://localhost:8443/openidm/audit/authentication?_queryFilter=/principal+eq+"user.0"&_fields=context
,result'
{
 "result": [
 {
 "context": {
 "id": "e98fdfbe-d436-4e09-b44e-f6727b1e293d",
 "component": "managed/user",
 "roles": [
 "openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1"
 },
 "result": "SUCCESSFUL"
 },
 {
 "context": {
 "ipAddress": "0:0:0:0:0:0:0:1"
 },
 "result": "FAILED"
 },
 {
 "context": {
 "ipAddress": "0:0:0:0:0:0:0:1"
 },
 "result": "FAILED"
 },
 {
 "context": {
 "id": "e98fdfbe-d436-4e09-b44e-f6727b1e293d",
 "component": "managed/user",
 "roles": [
 "openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1"
 },
 "result": "SUCCESSFUL"

Using Audit Logs
Querying the Configuration Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 435

 },
 {
 "context": {
 "id": "e98fdfbe-d436-4e09-b44e-f6727b1e293d",
 "component": "managed/user",
 "roles": [
 "openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1"
 },
 "result": "SUCCESSFUL"
 },
 {
 "context": {
 "id": "e98fdfbe-d436-4e09-b44e-f6727b1e293d",
 "component": "managed/user",
 "roles": [
 "openidm-authorized"
],
 "ipAddress": "0:0:0:0:0:0:0:1"
 },
 "result": "SUCCESSFUL"
 }
,
...

18.10.5. Querying the Configuration Audit Log

This audit log lists changes made to the configuration in the audited OpenIDM server. You can read
through the changes in the config.extension file in the openidm/audit directory.

You can also read the complete audit log over REST with the following query:

Using Audit Logs
Querying the Configuration Audit Log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 436

$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request GET \
"https://localhost:8443/openidm/audit/config?_queryFilter=true"
{
 "result" : [{
 "_id" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-73",
 "_rev" : "1",
 "operation" : "CREATE",
 "userId" : "openidm-admin",
 "runAs" : "openidm-admin",
 "transactionId" : "414a4921-5d9d-4398-bf86-7d5312a9f5d1-58",
 "revision" : null,
 "timestamp" : "2015-11-23T00:18:17.808Z",
 "objectId" : "ui",
 "eventName" : "CONFIG",
 "before" : "",
 "after" : "{ \"icons\":
 ...
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

The output includes a "before" and "after" entry, which represents the changes in OpenIDM
configuration files.

Configuring OpenIDM for High Availability

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 437

Chapter 19

Configuring OpenIDM for High Availability

To ensure high availability of the identity management service, you can deploy multiple OpenIDM
systems in a cluster. In a clustered environment, each OpenIDM system must point to the same
external repository. If the database is also clustered, OpenIDM points to the cluster as a single
system.

In a clustered environment, if one OpenIDM system in a cluster shuts down or fails to check in
with the cluster management service, a second OpenIDM instance will detect the failure. Once
configuration is complete, all OpenIDM instances in a cluster are equal.

For example, if an OpenIDM system named instance1 loses connectivity while executing a scheduled
task, the cluster manager notifies the scheduler service that instance1 is not available. The scheduler
service then attempts to clean up any jobs that instance1 was running at that time. The scheduler
service has the same response for any other clustered OpenIDM system that fails.

All OpenIDM systems (instances) in a cluster run simultaneously. When configured with a load
balancer, it works as an Active-Active High Availability Cluster.

This chapter describes the changes required to configure multiple instances of OpenIDM in a single
cluster. However, it does not specify how you might configure a load balancer. When configured with
the scheduler service, the different instances claim jobs in a random order. For more information, see
"Managing Scheduled Tasks Across a Cluster".

The following diagram depicts a relatively simple cluster configuration.

Configuring OpenIDM for High Availability
Configuring and Adding to a Cluster

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 438

The OpenIDM cluster service is configured in three files: cluster.json, boot/boot.properties, and
scheduler.json; you can find each of these files in the openidm/conf subdirectory. When you configure a
cluster, you may modify these files in every OpenIDM instance in your cluster.

19.1. Configuring and Adding to a Cluster
When you configure a new cluster, you'll designate one OpenIDM system as the clustered-first
system.

When you add OpenIDM instances to a cluster, you'll designate them as clustered-additional systems,
even if you have installed those systems in different geographic locations.

Configuring OpenIDM for High Availability
Configuring an OpenIDM Instance as Part of a Cluster

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 439

On the clustered-first instance, the Crypto Service activates and generates a new secret key (if
not present). The Security Manager activates and generates a new private key (if not present),
reloads the keystore within the JVM, and stores the entire keystore in the following file: security/
keystore.jceks.

Except for that generation activity, the clustered-first instance is functionally equivalent to all
clustered-additional instances.

Warning

Do not add a new clustered-first system to an existing cluster. If you do, OpenIDM assumes that you are
trying to create a new cluster with a "clean" uninitialized repository.

If the clustered-first instance of OpenIDM fails, the clustered-additional systems take over, and the
cluster continues to operate normally. You can replace that clustered-first instance with a new
clustered-additional instance. It gets a copy of the Crypto Service secret key and Security Manager
private key from other clustered-additional instances.

The following sections describe how you can configure one clustered-first instance and additional
clustered-additional instances of OpenIDM.

19.2. Configuring an OpenIDM Instance as Part of a Cluster
Each OpenIDM instance in a cluster must be configured to use the same external repository.
As OrientDB is not supported in production environments, refer to "Installing a Repository For
Production" in the Installation Guide for instructions on how to set up a supported repository.

OpenIDM supports consistency and concurrency for all instances, using multi version concurrency
control (MVCC). It ensures consistency, as each instance updates objects in the repository only the
revision that specified in the update.

To configure an individual OpenIDM instance as a part of a clustered deployment, follow these steps.

1. If OpenIDM is running, shut it down using the OSGi console.
-> shutdown

2. Configure OpenIDM for a supported repository, as described in "Installing a Repository For
Production" in the Installation Guide.

Make sure that each database connection configuration file (datasource.jdbc-default.json) points to
the appropriate port number and IP address for the database.

In that chapter, you should see a reference to a data definition language script file. You need to
import that file into just one OpenIDM instance in your cluster.

3. Follow the steps in this section: "Edit the Boot Configuration File"

4. Follow the steps in this section: "Edit the Cluster Configuration File"

Configuring OpenIDM for High Availability
Edit the Boot Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 440

5. If you have scheduled tasks, you should configure persistent schedules to start only once across
the cluster. For more information, see "Configuring Persistent Schedules".

If you want scheduled tasks and jobs to run only on one node in the cluster, you must use
persistent schedules.

6. Start each instance of OpenIDM.

The OpenIDM audit service logs configuration changes only on the modified instance of OpenIDM.
While the cluster service replicates configuration changes to other instances, those changes are not
logged. For more information on the audit service, see "Using Audit Logs".

19.2.1. Edit the Boot Configuration File

In each OpenIDM instance in your cluster, open the following file: conf/boot/boot.properties.

• Find the openidm.node.id property. Specify a unique identifier for each OpenIDM instance. For the
first instance, you might specify the following:
openidm.node.id=instance1

For the second OpenIDM instance, you might specify the following (and so on):
openidm.node.id=instance2

You can set any value for openidm.node.id, as long as the value is unique within the cluster. Then the
cluster manager can detect unavailable OpenIDM instances (by node ID).

• Find the openidm.instance.type property.

• On one OpenIDM instance, set openidm.instance.type as follows:
openidm.instance.type=clustered-first

• On all other OpenIDM instances in the cluster, set openidm.instance.type as follows:
openidm.instance.type=clustered-additional

For each OpenIDM instance set to clustered-additional, the Crypto Service activates, but does
not generate, a new secret key. The Crypto Service does not add any decryptionTransformers. The
Security Manager performs the following tasks:

• Activates and reads in the keystore from the repository

• Overwrites the local keystore

• Reloads the keystore within the JVM

• Calls the Crypto Service to update the keySelector with the new keystore. It also adds a
decryptionTransformer to allow the keys to be decrypted.

Configuring OpenIDM for High Availability
Edit the Boot Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 441

• If no instance type is specified, the default value for this property is openidm.instance
.type=standalone, which indicates that the instance will not be part of a cluster.

For a standalone instance, the Crypto Service activates and generates a new secret key (if not
present). The Security Manager generates a new private key (if not present) and reloads the
keystore within the JVM.

The value of openidm.instance.type is used during the setup process. When the primary OpenIDM
instance has been configured, additional nodes are bootstrapped with the security settings (keystore
and truststore) of the primary node. Once the process is complete, all OpenIDM instances in the
cluster are considered equal. In other words, OpenIDM clusters do not have a "master" node.

19.2.1.1. Creating a Key for Cluster Members

For security, you should set up a new secret key to add to the OpenIDM keystore in the following file:
security/keystore.jceks.

You can create the new secret key with the REST commands described in "Accessing the Security
Management Service".

Alternatively, you could set up a "self-signed" key with the following keytool command:
$ keytool \
 -genseckey \
 -alias new-sym-key \
 -keyalg AES \
 -keysize 128 \
 -keystore security/keystore.jceks \
 -storetype JCEKS

Whether you do so with a keytool command or with a REST call, you should now have an alias for
your new key. You must include the new alias new-sym-key in the conf/boot/boot.properties file:
openidm.config.crypto.alias=new-sym-key

and in the conf/managed.json file:
{
 "name" : "securityAnswer",
 "encryption" : {
 "key" : "new-sym-key"
 }
 "scope" : "private"
},
{
 "name" : "password",
 "encryption" : {
 "key" : "new-sym-key"
 }
 "scope" : "private"
},

Configuring OpenIDM for High Availability
Edit the Cluster Configuration File

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 442

19.2.2. Edit the Cluster Configuration File
The cluster configuration file is /path/to/openidm/conf/cluster.json. The default version of this file
accommodates a cluster, as shown with the value of the enabled property:
{
 "instanceId" : "&{openidm.node.id}",
 "instanceTimeout" : "30000",
 "instanceRecoveryTimeout" : "30000",
 "instanceCheckInInterval" : "5000",
 "instanceCheckInOffset" : "0",
 "enabled" : true
}

• The instanceId is set to the value of openidm.node.id, as configured in the conf/boot/boot.properties file.
So it is important to set unique values for openidm.node.id for each member of the cluster.

• The instanceTimeout specifies the length of time (in milliseconds) that a member of the cluster can be
"down" before the cluster service considers that instance to be in recovery mode.

Recovery mode suggests that the instanceTimeout of an OpenIDM instance has expired, and that
another OpenIDM instance in the cluster has detected that event.

The scheduler component of the second OpenIDM instance should now be moving any incomplete
jobs into the queue for the cluster.

• The instanceRecoveryTimeout specifies the time (in milliseconds) that an OpenIDM instance can be in
recovery mode before it is considered to be offline.

This property sets a limit; after this recovery timeout, other members of the cluster stops trying
access an unavailable OpenIDM instance.

• The instanceCheckInInterval specifies the frequency (in milliseconds) that this OpenIDM instance
checks in with the cluster manager to indicate that it is still online.

• The instanceCheckInOffset specifies an offset (in milliseconds) for the checkin timing, when multiple
OpenIDM instances in a cluster are started simultaneously.

The checkin offset prevents multiple OpenIDM instances from checking in simultaneously, which
would strain the cluster manager resource.

• The enabled property notes whether or not the clustering service is enabled when you start
OpenIDM. Note how this property is set to true by default.

If the default cluster configuration is not suitable for your deployment, edit the cluster.json file for
each instance.

19.3. Managing Scheduled Tasks Across a Cluster
In a clustered environment, the scheduler service looks for pending jobs and handles them as follows:

Configuring OpenIDM for High Availability
Variations in Scheduled Tasks

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 443

• Non-persistent (in-memory) jobs execute on each node in the cluster.

• Persistent scheduled jobs are picked up and executed by a single node in the cluster.

• Jobs that are configured as persistent but not concurrent run only on one instance in the cluster.
That job will not run again at the scheduled time, on any instance in the cluster, until the current
job is complete.

For example, a reconciliation operation that runs for longer than the time between scheduled
intervals will not trigger a duplicate job while it is still running.

OpenIDM instances in a cluster claim jobs in a random order. If one instance fails, the cluster
manager automatically reassigns unstarted jobs that were claimed by that failed instance.

For example, if OpenIDM instance A claims a job but does not start it, and then loses connectivity,
OpenIDM instance B can claim that job.

In contrast, if OpenIDM instance A claims a job, starts it, and then loses connectivity, other OpenIDM
instances in the cluster cannot claim that job. That specific job is never completed. Instead, a second
OpenIDM instance claims the next scheduled occurrence of that job.

Note

This behavior varies from OpenIDM 2.1.0, in which an unavailable OpenIDM instance would have to reconnect
to the cluster to free a job that it had already claimed.

You may override this behavior with an external load balancer.

If a LiveSync operation leads to multiple changes, a single OpenIDM instance process all changes
related to that operation.

19.3.1. Variations in Scheduled Tasks

Several elements can change the behavior of how scheduled tasks operate in a cluster. In this
section, you may edit the boot.properties, scheduler.json, and system.properties files in the conf/
subdirectory.

19.3.1.1. Modify an OpenIDM Instance in a Cluster

You can prevent a specific OpenIDM instance from claiming pending jobs, or participating
in processing clustered schedules. To do so, go to the specific OpenIDM instance, open its
boot.properties file and add the following line:
execute.clustered.schedules=false

Configuring OpenIDM for High Availability
Managing Nodes Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 444

19.3.1.2. Modify the OpenIDM Cluster Scheduler

As every OpenIDM instance in a cluster reads its configuration from a single repository, token
substitution then defines a specific scheduler configuration for each instance. It does so by setting
"executePersistentSchedules" to false in the scheduler configuration file for each instance.

The initial scheduler configuration that is loaded into the repository must point to the relevant
property in boot.properties. So, open the scheduler.json file, and set executePersistentSchedules as shown:
{
 "executePersistentSchedules" : "&{execute.clustered.schedules}",
}

If the failed instance of OpenIDM did not complete a task, the next action depends on the misfire
policy, defined in the scheduler configuration. For more information, see misfirePolicy.

19.3.1.3. Disable Automating Polling of Configuration Changes

You may not want to allow changes to a configuration file to overwrite the global configuration in
the repository. To do so, start each instance of OpenIDM and then disable automatic polling for
configuration changes. To do so, open the system.properties file and uncomment the following line:
openidm.fileinstall.enabled=false

In a cluster, you should disable this file-based view on all but one instance in that cluster, during the
setup process.

For more information, see "Disabling Automatic Configuration Updates". As noted in that section,
"Before you disable automatic polling, you must have started one OpenIDM instance at least once to
ensure that the configuration has been loaded into the repository.

19.4. Managing Nodes Over REST
You can manage clusters and individual nodes over the REST interface, at the URL https://
localhost:8443/openidm/cluster/. The following sample REST commands demonstrate the cluster
information that is available over REST.

Displaying the Nodes in the Cluster

The following REST request displays the nodes configured in the cluster, and their status.

Configuring OpenIDM for High Availability
Managing Nodes Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 445

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/cluster"

{
 "results": [
 {
 "state" : "running",
 "instanceId" : "instance2",
 "startup" : "2015-08-28T12:50:37.209-07:00",
 "shutdown" : ""
 },
 {
 "state" : "running",
 "instanceId" : "instance1",
 "startup" : "2015-08-28T11:33:12.650-07:00",
 "shutdown" : ""
 }
]
}

Checking the State of an Individual Node

To check the status of a specific node, include its node ID in the URL, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/cluster/instance1"
{
 "state" : "running",
 "instanceId" : "instance1",
 "startup" : "2015-08-28T11:33:12.650-07:00",
 "shutdown" : ""
}

Sending Email

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 446

Chapter 20

Sending Email

This chapter shows you how to configure the outbound email service, so that you can send email
through OpenIDM, either by script or through the REST API.

You can also configure the outbound email service in the Admin UI, by clicking Configure > System
Preferences > Email. The fields on that screen correspond to what is described in the following
sections.

To Set Up Outbound Email

The outbound email service relies on a configuration object to identify the email account that is used
to send messages. A sample configuration is provided in openidm/samples/misc/external.email.json. To set
up the external email service, follow these steps.

1. You do not have to shut down OpenIDM.

If you are setting up outbound email through the UI, start configuring an outbound email server
directly from the noted UI screen.

2. Copy the sample email configuration to the conf directory of your project. For example:
$ cd /path/to/openidm/
$ cp samples/misc/external.email.json conf/

3. Edit external.email.json to reflect the account that is used to send messages, for example:

Sending Email

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 447

{
 "host" : "smtp.gmail.com",
 "port" : 587,
 "debug" : false,
 "auth" : {
 "enable" : true,
 "username" : "admin",
 "password" : "Passw0rd"
 },
 "from" : "admin@example.com",
 "timeout" : 300000,
 "writetimeout" : 300000,
 "connectiontimeout" : 300000,
 "starttls" : {
 "enable" : true
 },
 "ssl" : {
 "enable" : false
 },
 "smtpProperties" : [
 "mail.smtp.ssl.protocols=TLSv1.2",
 "mail.smtps.ssl.protocols=TLSv1.2"
],
 "threadPoolSize" : 20
}

OpenIDM encrypts the password when you restart the server (or if you configure outgoing email
through the Admin UI).

You can specify the following outbound email configuration properties:

host

The host name or IP address of the SMTP server. This can be the localhost, if the mail server
is on the same system as OpenIDM.

port

SMTP server port number, such as 25, 465, or 587.

Note

Many SMTP servers require the use of a secure port such as 465 or 587. Many ISPs flag email from
port 25 as spam.

debug

When set to true, this option outputs diagnostic messages from the JavaMail library. Debug
mode can be useful if you are having difficulty configuring the external email endpoint with
your mail server.

Sending Email

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 448

auth

The authentication details for the mail account from which emails will be sent.

• enable—indicates whether you need login credentials to connect to the SMTP server.

Note

If "enable" : false, you can leave the entries for "username" and "password" empty:

"enable" : false,
"username" : "",
"password" : ""

• username—the account used to connect to the SMTP server.

• password—the password used to connect to the SMTP server.

starttls

If "enable" : true, enables the use of the STARTTLS command (if supported by the server) to
switch the connection to a TLS-protected connection before issuing any login commands. If
the server does not support STARTTLS, the connection continues without the use of TLS.

from

(Optional) Specifies a default From: address, that users see when they receive emails from
OpenIDM.

ssl

Set "enable" : true to use SSL to connect, and to use the SSL port by default.

smtpProperties

Specifies the SSL protocols that will be enabled for SSL connections. Protocols are specified
as a whitespace-separated list. The default protocol is TLSv1.2.

threadPoolSize

(Optional) Emails are sent in separate threads managed by a thread pool. This property sets
the number of concurrent emails that can be handled at a specific time. The default thread
pool size (if none is specified) is 20.

connectiontimeout (integer, optional)

The socket connection timeout, in milliseconds. The default connection timeout (if none is
specified) is 300000 milliseconds, or 5 minutes. A setting of 0 disables this timeout.

Sending Email
Sending Mail Over REST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 449

timeout (integer, optional)

The socket read timeout, in milliseconds. The default read timeout (if none is specified) is
300000 milliseconds, or 5 minutes. A setting of 0 disables this timeout.

writetimeout (integer, optional)

The socket write timeout, in milliseconds. The default write timeout (if none is specified) is
300000 milliseconds, or 5 minutes. A setting of 0 disables this timeout.

4. Start OpenIDM if it is not running.

5. Check that the email service is enabled and active:
-> scr list
...
 [130] org.forgerock.openidm.external.email enabled
 [21] [active] org.forgerock.openidm.external.email
...

20.1. Sending Mail Over REST
Although you are more likely to send mail from a script in production, you can send email using
the REST API by sending an HTTP POST to /openidm/external/email, to test that your configuration
works. You pass the message parameters as part of the POST payload, URL encoding the content as
necessary.

The following example sends a test email using the REST API.
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "from":"openidm@example.com",
 "to":"your_email@example.com",
 "subject":"Test",
 "body":"Test"}' \
 "https://localhost:8443/openidm/external/email?_action=send"
{
 "status": "OK"
}

Sending Email
Sending Mail From a Script

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 450

20.2. Sending Mail From a Script
You can send email by using the resource API functions, with the external/email context. For more
information about these functions, see "Function Reference". In the following example, params is an
object that contains the POST parameters.

var params = new Object();
params.from = "openidm@example.com";
params.to = "your_email@example.com";
params.cc = "bjensen@example.com,scarter@example.com";
params.subject = "OpenIDM recon report";
params.type = "text/html";
params.body = "<html><body><p>Recon report follows...</p></body></html>";

openidm.action("external/email", "send", params);

OpenIDM supports the following POST parameters.

from

Sender mail address

to

Comma-separated list of recipient mail addresses

cc

Optional comma-separated list of copy recipient mail addresses

bcc

Optional comma-separated list of blind copy recipient mail addresses

subject

Email subject

body

Email body text

type

Optional MIME type. One of "text/plain", "text/html", or "text/xml".

Accessing External REST Services

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 451

Chapter 21

Accessing External REST Services

You can access remote REST services by using the openidm/external/rest endpoint, or by specifying
the external/rest resource in your scripts. Note that this service is not intended as a full connector
to synchronize or reconcile identity data, but as a way to make dynamic HTTP calls as part of the
OpenIDM logic. For more declarative and encapsulated interaction with remote REST services, and
for synchronization or reconciliation operations, you should rather use the scripted REST connector.

An external REST call via a script might look something like the following:
openidm.action("external/rest", "call", params);

The "call" parameter specifies the action name to be used for this invocation, and is the standard
method signature for the openidm.action method in OpenIDM 4.

An external REST call over REST might look something like the following:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url": "http://www.december.com/html/demo/hello.html",
 "method": "GET",
 "detectResultFormat": false,
 "headers": { "custom-header": "custom-header-value" }
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "body": "<!DOCTYPE html PUBLIC \"-//IETF//DTD HTML 2.0//EN\">\r\n
 <html>\r\n
 <head>\r\n
 <title>\r\n Hello World Demonstration Document\r\n </title>\r\n
 </head>\r\n
 <body>\r\n
 <h1>\r\n Hello, World!\r\n </h1>
 ...
 </html>\r\n",
 "headers": {
 "Server": "Apache",
 "ETag": "\"299-4175ff09d1140\"",
 "Date": "Mon, 28 Jul 2014 08:21:25 GMT",
 "Content-Length": "665",
 "Last-Modified": "Thu, 29 Jun 2006 17:05:33 GMT",
 "Keep-Alive": "timeout=15, max=100",

Accessing External REST Services
Invocation Parameters

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 452

 "Content-Type": "text/html",
 "Connection": "Keep-Alive",
 "Accept-Ranges": "bytes"
 }
}

Note that attributes in the POST body do not have underscore prefixes. This is different to the
OpenIDM 2.1 implementation, in which underscores were required.

HTTP 2xx responses are represented as regular, successful responses to the invocation. All other
responses, including redirections, are returned as exceptions, with the HTTP status code in the
exception "code", and the response body in the exception "detail", within the "content" element.

21.1. Invocation Parameters
The following parameters are passed in the resource API parameters map. These parameters can
override the static configuration (if present) on a per-invocation basis.

• url. The target URL to invoke, in string format.

• method. The HTTP action to invoke, in string format.

Possible actions include "POST", "GET", "PUT", "DELETE", "HEAD" and "OPTIONS".

• authenticate. The authentication type, and the details with which to authenticate.

OpenIDM 4 supports the following authentication types:

• basic authentication, with a username and password, for example:
"authenticate" : {"type": "basic", "user" : "john", "password" : "Passw0rd"}

• bearer authentication, which takes an OAuth token, instead of a username and password, for
example:
"authenticate" : {"type": "bearer", "token" : "ya29.iQDWKpn8AHy09p....."}

If no authenticate parameter is specified, no authentication is used.

• headers. The HTTP headers to set, in a map format from string (header-name) to string (header-
value). For example, Accept-Language: en-US.

• content-type / contentType. The media type of the data that is sent, for example Content-Type:
 application/json when used in a REST command, or contentType: JSON when used in a script.

• body. The body/resource representation to send (for PUT and POST operations), in string format.

• detectResultFormat. Specifies whether JSON or non-JSON results are expected. Boolean, defaults to
true.

Accessing External REST Services
Support for Non-JSON Responses

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 453

For all responses other than 2xx, the result is returned as an exception, with the HTTP code in the
exception "code". Any details are returned in the exception "detail" under the "content" element. For
example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url":"http://december.com/non_existing_page",
 "method":"GET",
 "content-type":"application/xml"
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "detail": {
 "content": "<html><head><title>December Communications, Inc. Missing Page</title> (...) </html>
\n"
 },
 "message": "Error while processing GET request: Not Found",
 "reason": "Not Found",
 "code": 404
}

For more information about non-JSON results, see "Support for Non-JSON Responses".

21.2. Support for Non-JSON Responses
The external REST service supports any arbitrary payload (currently in stringified format). The
"detectResultFormat" parameter specifies whether the server should attempt to detect the response
format and, if the format is known, parse that format.

Currently, the only known response format is JSON. So, if the service that is requested returns results
in JSON format, and "detectResultFormat" is set to true (the default), the response from the call to
external/rest will be the identical JSON data that was returned from the remote system. This enables
JSON clients to interact with the external REST service with minimal changes to account for in the
response.

If the service returns results in JSON format and "detectResultFormat" is set to false, results are
represented as a stringified entry.

If "detectResultFormat" is set to true and the mime type is not recognized (currently any type other than
JSON) the result is the same as if "detectResultFormat" were set to false. Set "detectResultFormat" to false
if the remote system returns non-JSON data, or if you require details in addition to the literal JSON
response body (for example, if you need to access a specific response header, such as a cookie).

The representation as parsed JSON differs from the stringified format as follows:

Accessing External REST Services
Support for Non-JSON Responses

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 454

• The parsed JSON representation returns the message payload directly in the body, with no
wrapper. Currently, for parsed JSON responses, additional metadata is not returned in the body.
For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url": "http://localhost:8080/openidm/info/ping",
 "method": "GET",
 "detectResultFormat": true,
 "headers": { "X-OpenIDM-Username": "anonymous", "X-OpenIDM-Password": "anonymous" }
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "shortDesc": "OpenIDM ready",
 "state": "ACTIVE_READY"
}

• The stringified format includes a wrapper that represents other metadata, such as returned
headers. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url": "http://localhost:8080/openidm/info/ping",
 "method": "GET",
 "detectResultFormat": false,
 "headers": { "X-OpenIDM-Username": "anonymous", "X-OpenIDM-Password": "anonymous" }
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "body": "{\"state\":\"ACTIVE_READY\",\"shortDesc\":\"OpenIDM ready\"}",
 "headers": {
 "Cache-Control": "no-cache",
 "Server": "Jetty(8.y.z-SNAPSHOT)",
 "Content-Type": "application/json;charset=UTF-8",
 "Set-Cookie": "session-jwt=eyAiYWxn...-cQ.3QT4zT4ZZTj8LH8Oo_zx3w;Path=/",
 "Expires": "Thu, 01 Jan 1970 00:00:00 GMT",
 "Content-Length": "52",
 "Vary": "Accept-Encoding, User-Agent"
 }
}

A sample non-JSON response would be similar:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \

Accessing External REST Services
Support for Non-JSON Responses

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 455

 --request POST \
 --data '{
 "url":"http://december.com",
 "method":"GET",
 "content-type":"application/xml",
 "detectResultFormat":false
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "body": "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"
 \"http://www.w3.org/TR/html4/loose.dtd\"> \n
 <html><head><title>December Communications, Inc.
 december.com</title>\n
 <meta http-equiv=\"Content-Type\" content=\"text/html;
 charset=iso-8859-1\">
 ..."
 "headers": {
 "Server": "Apache",
 "ETag": "\"4c3c-4f06c64da3980\"",
 "Date": "Mon, 28 Jul 2014 19:16:33 GMT",
 "Content-Length": "19516",
 "Last-Modified": "Mon, 20 Jan 2014 20:04:06 GMT",
 "Keep-Alive": "timeout=15, max=100",
 "Content-Type": "text/html",
 "Connection": "Keep-Alive",
 "Accept-Ranges": "bytes"
 }
}

OpenIDM Project Best Practices
Implementation Phases

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 456

Chapter 22

OpenIDM Project Best Practices

This chapter lists points to check when implementing an identity management solution with
OpenIDM.

22.1. Implementation Phases
Any identity management project should follow a set of well defined phases, where each phase
defines discrete deliverables. The phases take the project from initiation to finally going live with a
tested solution.

22.1.1. Initiation
The project's initiation phase involves identifying and gathering project background, requirements,
and goals at a high level. The deliverable for this phase is a statement of work or a mission statement.

22.1.2. Definition
In the definition phase, you gather more detailed information on existing systems, determine
how to integrate, describe account schemas, procedures, and other information relevant to the
OpenIDM deployment. The deliverable for this phase is one or more documents that define detailed
requirements for the project, and that cover project definition, the business case, use cases to solve,
and functional specifications.

The definition phase should capture at least the following.

User Administration and Management

Procedures for managing users and accounts, who manages users, what processes look like for
joiners, movers and leavers, and what is required of OpenIDM to manage users

Password Management and Password Synchronization

Procedures for managing account passwords, password policies, who manages passwords, and
what is required of OpenIDM to manage passwords

Security Policy

What security policies defines for users, accounts, passwords, and access control

OpenIDM Project Best Practices
Design

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 457

Target Systems

Target systems and resources with which OpenIDM must integrate. Information such as schema,
attribute mappings and attribute transformation flow, credentials and other integration specific
information.

Entitlement Management

Procedures to manage user access to resources, individual entitlements, grouping provisioning
activities into encapsulated concepts such as roles and groups

Synchronization and Data Flow

Detailed outlines showing how identity information flows from authoritative sources to target
systems, attribute transformations required

Interfaces

How to secure the REST, user and file-based interfaces, and to secure the communication
protocols involved

Auditing and Reporting

Procedures for auditing and reporting, including who takes responsibility for auditing and
reporting, and what information is aggregated and reported. Characteristics of reporting engines
provided, or definition of the reporting engine to be integrated.

Technical Requirements

Other technical requirements for the solution such as how to maintain the solution in terms
of monitoring, patch management, availability, backup, restore and recovery process. This
includes any other components leveraged such as a ConnectorServer and plug-ins for password
synchronization on Active Directory, or OpenDJ.

22.1.3. Design
This phase focuses on solution design including on OpenIDM and other components. The deliverables
for this phase are the architecture and design documents, and also success criteria with detailed
descriptions and test cases to verify when project goals have been met.

22.1.4. Configure and Test
This phase configures and tests the solution prior to moving the solution into production.

Configure a Connector

Most deployments include a connection to one or more remote data stores. You should first define
all properties for your connector configuration as described in "Connectors Supported With
OpenIDM 4".

OpenIDM Project Best Practices
Production

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 458

If you have custom attributes, you can add them as described in: "Adding Attributes to Connector
Configurations".

Test Communication to Remote Data Stores

You can then test communication with each remote data store with appropriate REST calls, such
as those described in: "Checking the Status of External Systems Over REST". When your tests
succeed, you can have confidence in the way you configured OpenIDM to communicate with your
remote data stores.

Set Up a Mapping

You can now set up a mapping between data stores. "Synchronizing Data Between Resources"
includes an extensive discussion of how you can customize a mapping in the sync.json file.

22.1.5. Production

This phase deploys the solution into production until an application steady state is reached and
maintenance routines and procedures can be applied.

Troubleshooting
OpenIDM Stopped in Background

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 459

Chapter 23

Troubleshooting

When things are not working check this chapter for tips and answers.

23.1. OpenIDM Stopped in Background
When you start OpenIDM in the background without having disabled the text console, the job can
stop immediately after startup.
$./startup.sh &
[2] 346
$./startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties
->

[2]+ Stopped ./startup.sh

To resolve this problem, make sure you remove openidm/bundle/org.apache.felix.shell.tui-1.4.1.jar
before starting OpenIDM, and also remove Felix cache files in openidm/felix-cache/.

23.2. The scr list Command Shows Sync Service As
Unsatisfied
You might encounter this message in the logs.

WARNING: Loading configuration file /path/to/openidm/conf/sync.json failed
org.forgerock.openidm.config.InvalidException:
 Configuration for org.forgerock.openidm.sync could not be parsed and may not
 be valid JSON : Unexpected character ('}' (code 125)): expected a value
 at [Source: java.io.StringReader@3951f910; line: 24, column: 6]
 at org.forgerock.openidm.config.crypto.ConfigCrypto.parse...
 at org.forgerock.openidm.config.crypto.ConfigCrypto.encrypt...
 at org.forgerock.openidm.config.installer.JSONConfigInstaller.setConfig...

Troubleshooting
JSON Parsing Error

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 460

This indicates a syntax error in openidm/conf/sync.json. After fixing your configuration, change to the /
path/to/openidm/ directory, and use the cli.sh validate command to check that your configuration files
are valid.
$ cd /path/to/openidm ; ./cli.sh validate
Using boot properties at /path/to/openidm/conf/boot/boot.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS
[Validating] managed.json SUCCESS
[Validating] provisioner.openicf-xml.json SUCCESS
[Validating] repo.orientdb.json SUCCESS
[Validating] router.json SUCCESS
[Validating] scheduler-reconcile_systemXmlAccounts_managedUser.json SUCCESS
[Validating] sync.json SUCCESS

23.3. JSON Parsing Error
You might encounter this error message in the logs.

"Configuration for org.forgerock.openidm.provisioner.openicf could not be
 parsed and may not be valid JSON : Unexpected character ('}' (code 125)):
 was expecting double-quote to start field name"

The error message usually indicates the precise point where the JSON file has the syntax problem.
The error above was caused by an extra comma in the JSON file, {"attributeName":{},{},}. The second
comma is redundant.

The situation usually results in the service that the specific JSON file configures being left in the
unsatisfied state.

After fixing your configuration, change to the /path/to/openidm/ directory, and use the cli.sh validate
command to check that your configuration files are valid.

23.4. System Not Available
OpenIDM throws the following error as a result of a reconciliation where the source systems
configuration can not be found.

Troubleshooting
Bad Connector Host Reference in Provisioner Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 461

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 System: system/HR/account is not available."
}

This error occurs when the "name" property value in provisioner.resource.json is changed from HR to
something else.

The same error occurs when a provisioner configuration fails to load due to misconfiguration, or
when the path to the data file for a CSV or XML connector is incorrectly set.

23.5. Bad Connector Host Reference in Provisioner
Configuration
You might see the following error when a provisioner configuration loads.

Wait for meta data for config org.forgerock.openidm.provisioner.openicf-scriptedsql

In this case the configuration fails to load because information is missing. One possible cause is an
incorrect value for connectorHostRef in the provisioner configuration file.

For local Java connector servers, the following rules apply.

• If the connector .jar is installed as a bundle under openidm/bundle, then the value must be
"connectorHostRef" : "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",.

• If the connector .jar is installed as a connector under openidm/connectors, then the value must be
"connectorHostRef" : "#LOCAL",.

23.6. Missing Name Attribute
In this case, the situation in the audit recon log shows "NULL".

A missing name attribute error, followed by an IllegalArgumentException, points to misconfiguration of
the correlation rule, with the correlation query pointing to the external system. Such queries usually
reference the "name" field which, if empty, leads to the error below.

Troubleshooting
Missing Name Attribute

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 462

Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.commons.AttributeInfoHelper build
SEVERE: Failed to build name attribute out of [null]
Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.impl.OpenICFProvisionerService query
SEVERE: Operation [query, system/ad/account] failed with Exception on system
 object: java.lang.IllegalArgumentException: Attribute value must be an
 instance of String.
Jan 20, 2012 1:59:58 PM org.forgerock.openidm.router.JsonResourceRouterService
 handle
WARNING: JSON resource exception
org.forgerock.json.resource.JsonResourceException: IllegalArgumentException
 at org.forgerock.openidm.provisioner....OpenICFProvisionerService.query...
 at org.forgerock.openidm.provisioner.....OpenICFProvisionerService.handle...
 at org.forgerock.openidm.provisioner.impl.SystemObjectSetService.handle...
 at org.forgerock.json.resource.JsonResourceRouter.handle...

Check your correlationQuery. Another symptom of a broken correlation query is that the audit recon
log shows a situation of "NULL", and no onCreate, onUpdate or similar scripts are executed.

Advanced Configuration
Advanced Startup Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 463

Chapter 24

Advanced Configuration
OpenIDM is a highly customizable, extensible identity management system. For the most part, the
customization and configuration required for a "typical" deployment is described earlier in this book.
This chapter describes advanced configuration methods that would usually not be required in a
deployment, but that might assist in situations that require a high level of customization.

24.1. Advanced Startup Configuration
A customizable startup configuration file (named launcher.json) enables you to specify how the OSGi
Framework is started. You specify the startup configuration file with the -c option of the startup
command.

Unless you are working with a highly customized deployment, you should not modify the default
framework configuration.

If no configuration file is specified, the default configuration (defined in /path/to/openidm/bin/
launcher.json) is used. The following command starts OpenIDM with an alternative startup
configuration file:
$./startup.sh -c /Users/admin/openidm/bin/launcher.json

You can modify the default startup configuration file to specify a different startup configuration.

The customizable properties of the default startup configuration file are as follows:

• "location" : "bundle" - resolves to the install location. You can also load OpenIDM from a specified
zip file ("location" : "openidm.zip") or you can install a single jar file ("location" : "openidm-system-2.2
.jar").

• "includes" : "**/openidm-system-*.jar" - the specified folder is scanned for jar files relating to the
system startup. If the value of "includes" is *.jar, you must specifically exclude any jars in the
bundle that you do not want to install, by setting the "excludes" property.

• "start-level" : 1 - specifies a start level for the jar files identified previously.

• "action" : "install.start" - a period-separated list of actions to be taken on the jar files. Values can
be one or more of "install.start.update.uninstall".

• "config.properties" - takes either a path to a configuration file (relative to the project location) or a
list of configuration properties and their values. The list must be in the format "string":"string", for
example:

Advanced Configuration
Advanced Startup Configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 464

"config.properties" :
 {
 "property" : "value"
 },

• "system.properties" - takes either a path to a system.properties file (relative to the project location)
or a list of system properties and their values. The list must be in the format "string":"string", for
example:
"system.properties" :
 {
 "property" : "value"
 },

• "boot.properties" - takes either a path to a boot.properties file (relative to the project location) or a
list of boot properties and their values.The list must be in the format "string":object, for example:
"boot.properties" :
 {
 "property" : true
 },

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 465

Appendix A. File Layout

When you unpack and start OpenIDM 4, you create the following files and directories. Note that
the precise paths will depend on the install, project, and working directories that you have selected
during startup. For more information, see "Specifying the OpenIDM Startup Configuration".

openidm/audit/

OpenIDM audit log directory default location, created at run time, as configured in openidm/conf/
audit.json

openidm/audit/access.csv

Default OpenIDM access audit log

openidm/audit/activity.csv

Default OpenIDM activity audit log

openidm/audit/authentication.csv

Default OpenIDM authentication audit log

openidm/audit/config.csv

Default OpenIDM configuration audit log

openidm/audit/recon.csv

Default OpenIDM reconciliation audit log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 466

openidm/audit/sync.csv

Default OpenIDM synchronization audit log

openidm/bin/

OpenIDM core libraries and scripts

openidm/bin/create-openidm-rc.sh

Script to create an openidm resource definition file for inclusion under /etc/init.d/

openidm/bin/defaults/script

Default scripts required to run specific services. In general, you should not modify these scripts.
Instead, add customized scripts to your project's script/ directory.

openidm/bin/defaults/script/audit/*.js

Scripts related to the audit logging service, described in "Using Audit Logs".

openidm/bin/defaults/script/auth/*.js

Scripts related to the authentication mechanism, described in "OpenIDM Authentication".

openidm/bin/defaults/script/compensate.js

Script that provides the compensation functionality to assure or roll back reconciliation
operations. For more information, see "Configuring Synchronization Failure Compensation".

openidm/bin/defaults/script/info/login.js

Provides information about the current OpenIDM session.

openidm/bin/defaults/script/info/ping.js

Provides basic information about the health of an OpenIDM system.

openidm/bin/defaults/script/info/version.js

Provides information about the current OpenIDM version.

openidm/bin/defaults/script/lib/*

Internal libraries required by certain OpenIDM javascripts.

openidm/bin/defaults/script/linkedView.js

A script that returns all the records linked to a specific resource, used in reconciliation.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 467

openidm/bin/defaults/script/policy.js

Defines each policy and specifies how policy validation is performed

openidm/bin/defaults/script/policyFilter.js

Enforces policy validation

openidm/bin/defaults/script/roles/*.js

Scripts to provide the default roles functionality. For more information, see "Working With
Managed Roles".

openidm/bin/defaults/script/router-authz.js

Provides the functions that enforce access rules

openidm/bin/defaults/script/ui/*

Scripts required by the UI

openidm/bin/defaults/script/workflow/*

Default workflow scripts

openidm/bin/felix.jar
openidm/bin/openidm.jar
openidm/bin/org.apache.felix.gogo.runtime-0.10.0.jar
openidm/bin/org.apache.felix.gogo.shell-0.10.0.jar

Files relating to the Apache Felix OSGi framework

openidm/bin/launcher.bat
openidm/bin/launcher.jar
openidm/bin/launcher.json

Files relating to the startup configuration

openidm/bin/LICENSE.TXT
openidm/bin/NOTICE.TXT

Files relating to the Apache Software License

openidm/bin/install-service.bat
openidm/bin/MonitorService.bat
openidm/bin/prunmgr.exe
openidm/bin/amd64/prunsrv.exe
openidm/bin/i386/prunsrv.exe
openidm/bin/ia64/prunsrv.exe

Files required by the user interface to monitor and configure installed services

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 468

openidm/bin/startup/
openidm/bin/startup/OS X - Run OpenIDM In Background.command
openidm/bin/startup/OS X - Run OpenIDM In Terminal Window.command
openidm/bin/startup/OS X - Stop OpenIDM.command

Clickable commands for Mac OS X

openidm/bin/update

Empty directory into which update archives must be copied. For more information, see "OpenIDM
Update Process" in the Installation Guide.

openidm/bundle/

OSGi bundles and modules required by OpenIDM. Upgrade can install new and upgraded bundles
here.

openidm/cli.bat
openidm/cli.sh

Management commands for operations such as validating configuration files

openidm/conf/

OpenIDM configuration files, including .properties files and JSON files. You can also access JSON
views through the REST interface.

openidm/conf/audit.json

Audit event publisher configuration file

openidm/conf/authentication.json

Authentication configuration file for access to the REST API

openidm/conf/boot/boot.properties

OpenIDM bootstrap properties

openidm/conf/cluster.json

Configuration file to enable use of this OpenIDM instance in a cluster

openidm/conf/config.properties

Felix and OSGi bundle configuration properties

openidm/conf/endpoint-*.json

Endpoint configuration files required by the UI for the default workflows

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 469

openidm/conf/info-*.json

Configuration files for the health check service, described in "Monitoring the Basic Health of an
OpenIDM System".

openidm/conf/jetty.xml

Jetty configuration controlling access to the REST interface

openidm/conf/logging.properties

OpenIDM log configuration properties

openidm/conf/managed.json

Managed object configuration file

openidm/conf/policy.json

Default policy configuration

openidm/conf/process-access.json

Workflow access configuration

openidm/conf/repo.orientdb.json

OrientDB internal repository configuration file

openidm/conf/router.json

Router service configuration file

openidm/conf/scheduler.json

Scheduler service configuration

openidm/conf/script.json

Script configuration file with default script directories.

openidm/conf/selfservice.kba.json

Configuration file for knowledge-based access in the self-service UI. For more information, see
"Configuring Self-Service Questions".

openidm/conf/servletfilter-*.json

Sample servlet filter configuration, described in "Registering Additional Servlet Filters".

openidm/conf/system.properties

System configuration properties used when starting OpenIDM services

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 470

openidm/conf/ui-configuration.json

Main configuration file for the browser-based user interface

openidm/conf/ui-countries.json

Configurable list of countries available when registering users in the user interface

openidm/conf/ui-themeconfig.json

Customizable UI theme configuration file

openidm/conf/ui.context-*.json

Configuration files that set the context root of the Self-Service and Admin UIs.

openidm/conf/workflow.json

Configuration of the Activiti workflow engine

openidm/connectors/

OpenICF connector libraries. OSGi enabled connector libraries can also be stored in openidm/
bundle/.

openidm/db/*

Internal repository files, including OrientDB files and sample repository configurations for JDBC-
based repositories. For more information, see "Installing a Repository For Production" in the
Installation Guide.

openidm/felix-cache/

Bundle cache directory created when the Felix framework is started

openidm/getting-started.*

Startup scripts for the Getting Started sample configuration. For more information, see Getting
Started.

openidm/legal-notices

Licence files for ForgeRock and third-party components used by OpenIDM.

openidm/lib

Location in which third-party libraries (required, for example, by custom connectors) should be
placed.

openidm/logs/

OpenIDM service log directory

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 471

openidm/logs/openidm0.log.*

OpenIDM service log files as configured in openidm/conf/logging.properties

openidm/package.properties

Facilitates autodection of the ability to update OpenIDM from a given .jar or .zip file.

openidm/samples/

OpenIDM sample configurations

Most of the samples in this directory are described in Samples Guide.

For information on the custom endpoint sample (samples/customendpoint/), see "Adding Custom
Endpoints".

For information on the health check service sample (samples/infoservice/), see "Customizing
Health Check Scripts".

For information on the sync failure sample (samples/syncfailure/), see "Configuring the LiveSync
Retry Policy".

For information on the scanning task sample (samples/taskscanner/), see "Scanning Data to Trigger
Tasks".

Sample files not covered in this guide, or in Samples Guide include the following:

• samples/misc/ - sample configuration files

• samples/provisioners/ - sample connector configuration files

• samples/schedules/ - sample schedule configuration files

• samples/security/ - sample keystore, truststore, and certificates

openidm/script/

OpenIDM location for script files referenced in the configuration

openidm/script/access.js

Default authorization policy script

openidm/security/

OpenIDM security configuration, keystore, and truststore

openidm/shutdown.sh

Script to shutdown OpenIDM services based on the process identifier

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 472

openidm/startup.bat

Script to start OpenIDM services on Windows

openidm/startup.sh

Script to start OpenIDM services on UNIX

openidm/tools

Location of the custom scripted connector bundler, described in the OpenICF Developers Guide.

openidm/ui/admin/*

Configuration files for the Admin UI.

openidm/ui/selfservice/*

Configuration files for the Self-Service UI.

openidm/workflow/

OpenIDM location for BPMN 2.0 workflows and .bar files

http://openicf.forgerock.org/doc/bootstrap/dev-guide/index.html#chap-custom-bundler

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 473

Appendix B. Ports Used

By default, OpenIDM 4 listens on the following ports (specified in the file /path/to/openidm/conf/boot/
boot.properties):

8080

HTTP access to the REST API, requiring OpenIDM authentication. This port is not secure,
exposing clear text passwords and all data that is not encrypted. This port is therefore not
suitable for production use.

8443

HTTPS access to the REST API, requiring OpenIDM authentication

8444

HTTPS access to the REST API, requiring SSL mutual authentication. Clients that present
certificates found in the truststore under openidm/security/ are granted access to the system.

The Jetty configuration (in openidm/conf/jetty.xml) references the ports that are specified in the
boot.properties file.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 474

Appendix C. Data Models and Objects
Reference

OpenIDM allows you to customize a variety of objects that can be addressed via a URL or URI, and
that have a common set of functions that OpenIDM can perform on them such as CRUD, query, and
action.

Depending on how you intend to use them, different objects are appropriate.

OpenIDM Objects

Object Type Intended Use Special Functionality
Managed objects Serve as targets and sources for

synchronization, and to build virtual
identities.

Provide appropriate auditing,
script hooks, declarative
mappings and so forth
in addition to the REST
interface.

Configuration objects Ideal for look-up tables or other custom
configuration, which can be configured
externally like any other system configuration.

Adds file view, REST
interface, and so forth

Repository objects The equivalent of arbitrary database table
access. Appropriate for managing data
purely through the underlying data store or
repository API.

Persistence and API access

System objects Representation of target resource objects,
such as accounts, but also resource objects
such as groups.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 475

Object Type Intended Use Special Functionality
Audit objects Houses audit data in the OpenIDM internal

repository.

Links Defines a relation between two objects.

C.1. Managed Objects
A managed object in OpenIDM is an object which represents the identity-related data managed by
OpenIDM. Managed objects are stored by OpenIDM in its data store. All managed objects are JSON-
based data structures.

C.1.1. Managed Object Schema

Managed objects have an associated schema to enforce a specific data structure. Schema is specified
using the JSON Schema specification. This is currently an Internet-Draft, with implementations in
multiple programming languages.

C.1.1.1. Managed Object Reserved Properties

Top-level properties in a managed object that begin with an underscore (_) are reserved by
OpenIDM for internal use, and are not explicitly part of its schema. Internal properties are read-only,
and are ignored when provided by the REST API client.

The following properties exist for all managed objects in OpenIDM.

_id

string

The unique identifier for the object. This value forms a part of the managed object's URI.

_rev

string

The revision of the object. This is the same value that is exposed as the object's ETag through
the REST API. The content of this attribute is not defined. No consumer should make any
assumptions of its content beyond equivalence comparison. This attribute may be provided by the
underlying data store.

_schema_id

string

The a reference to the schema object that the managed object is associated with.

http://tools.ietf.org/html/draft-zyp-json-schema-03

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 476

_schema_rev

string

The revision of the schema that was used for validation when the object was last stored.

C.1.1.2. Managed Object Schema Validation

Schema validation is performed unequivocally whenever an object is stored, and conditionally
whenever an object is retrieved from the data store and exhibits a _schema_rev value that differs
from the _rev of the schema that the OpenIDM instance currently has for that managed object type.
Whenever schema validation is performed, the _schema_rev of the object is updated to contain the _rev
value of the current schema.

C.1.1.3. Managed Object Derived Properties

Properties can be defined to be strictly derived from other properties within the object. This allows
computed and composite values to be created in the object. Such properties are named virtual
properties. The value of a virtual property is computed only when that property is retrieved.

C.1.2. Data Consistency

Single-object operations are consistent within the scope of the operation performed, limited by the
capabilities of the underlying data store. Bulk operations have no consistency guarantees. OpenIDM
does not expose any transactional semantics in the managed object access API.

All access through the REST API uses the ETag and associated conditional headers: If-Match, If-None-
Match. In operations that modify objects, if no conditional header is provided, the default If-Match: "*"
is applied. This header indicates that the call explicitly accepts overwriting other potential changes
on the object.

C.1.3. Managed Object Triggers

Triggers are user-definable functions that validate or modify object or property state.

C.1.3.1. State Triggers

Managed objects are resource-oriented. A set of triggers is defined to intercept the supported request
methods on managed objects. Such triggers are intended to perform authorization, redact, or modify
objects before the action is performed. The object being operated on is in scope for each trigger,
meaning that the object is retrieved by the data store before the trigger is fired.

If retrieval of the object fails, the failure occurs before any trigger is called. Triggers are executed
before any optimistic concurrency mechanisms are invoked. The reason for this is to prevent a

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 477

potential attacker from getting information about an object (including its presence in the data store)
before authorization is applied.

onCreate

Called upon a request to create a new object. Throwing an exception causes the create to fail.

postCreate

Called after the creation of a new object is complete.

onRead

Called upon a request to retrieve a whole object or portion of an object. Throwing an exception
causes the object to not be included in the result. This method is also called when lists of objects
are retrieved via requests to its container object; in this case, only the requested properties are
included in the object. Allows for uniform access control for retrieval of objects, regardless of the
method in which they were requested.

onUpdate

Called upon a request to store an object. The oldObject and newObject variables are in-scope for
the trigger. The oldObject represents a complete object, as retrieved from the data store. The
trigger can elect to change newObject properties. If, as a result of the trigger, the values of the
oldObject and newObject are identical (that is, update is reverted), the update ends prematurely, but
successfully. Throwing an exception causes the update to fail.

postUpdate

Called after an update request is complete.

onDelete

Called upon a request to delete an object. Throwing an exception causes the deletion to fail.

postDelete

Called after an object is deleted.

onSync

Called when a managed object is changed, and the change triggers an implicit synchronization
operation. The implicit synchronization operation is triggered by calling the sync service, which
attempts to to go through all the configured managed-system mappings, defined in sync.json. The
sync service returns either a response or an error. For both the response and the error, script
that is referenced by the onSync hook is called.

You can use this hook to inject business logic when the sync service either fails or succeeds
to synchronize all applicable mappings. For an example of how the onSync hook is used to

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 478

revert partial successful synchronization operations, see "Configuring Synchronization Failure
Compensation".

C.1.3.2. Object Storage Triggers

An object-scoped trigger applies to an entire object. Unless otherwise specified, the object itself is in
scope for the trigger.

onValidate

Validates an object prior to its storage in the data store. If an exception is thrown, the validation
fails and the object is not stored.

onStore

Called just prior to when an object is stored in the data store. Typically used to transform an
object just prior to its storage (for example, encryption).

C.1.3.3. Property Storage Triggers

A property-scoped trigger applies to a specific property within an object. Only the property itself is
in scope for the trigger. No other properties in the object should be accessed during execution of the
trigger. Unless otherwise specified, the order of execution of property-scoped triggers is intentionally
left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its storage in the data store.
If an exception is thrown, the validation fails and the property is not stored.

onRetrieve

Called in the result of a query request. Executed only when the executeOnRetrieve condition shows
a full managed object.

onStore

Called prior to when an object is stored in the data store. Typically used to transform a given
property prior to its object's storage.

C.1.3.4. Storage Trigger Sequences

Triggers are executed in the following order:

Object Retrieval Sequence

1. Retrieve the raw object from the data store

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 479

2. The executeOnRetrieve boolean is used to see if a full managed object is returned. The sequence
continues if the boolean is set to true.

3. Call object onRetrieve trigger

4. Per-property within the object:

• Call property onRetrieve trigger

• Perform schema validation if _schema_rev does not match (see the Schema Validation section)

Object Storage Sequence

1. Per-property within the object:

• Call property onValidate trigger

• Call object onValidate trigger

2. Per-property trigger within the object:

• Call property onStore trigger

• Call object onStore trigger

• Store the object with any resulting changes to the data store

C.1.4. Managed Object Encryption

Sensitive object properties can be encrypted prior to storage, typically through the property onStore
trigger. The trigger has access to configuration data, which can include arbitrary attributes that you
define, such as a symmetric encryption key. Such attributes can be decrypted during retrieval from
the data store through the property onRetrieve trigger.

C.1.5. Managed Object Configuration

Configuration of managed objects is provided through an array of managed object configuration
objects.

{
 "objects": [managed-object-config object, ...]
}

objects

array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 480

Managed-Object-Config Object Properties

Specifies the configuration of each managed object.
{
 "name" : string,
 "schema" : {
 json-schema object,
 "properties": { property-configuration objects },
 }
 "onCreate" : script object,
 "postCreate": script object,
 "onRead" : script object,
 "onUpdate" : script object,
 "postUpdate": script object,
 "onDelete" : script object,
 "postDelete": script object,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "onSync" : script object
}

name

string, required

The name of the managed object. Used to identify the managed object in URIs and identifiers.

schema

json-schema object, optional

The schema to use to validate the structure and content of the managed object. The schema-
object format is specified by the JSON Schema specification.

properties

list of property-config objects, optional

A list of property specifications.

onCreate

script object, optional

A script object to trigger when the creation of an object is being requested. The object to be
created is provided in the root scope as an object property. The script can change the object. If an
exception is thrown, the create aborts with an exception.

postCreate

script object, optional

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 481

A script object to trigger after an object is created, but before any targets are synchronized.

onRead

script object, optional

A script object to trigger when the read of an object is being requested. The object being read is
provided in the root scope as an object property. The script can change the object. If an exception
is thrown, the read aborts with an exception.

onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The old value of the object
being updated is provided in the root scope as an oldObject property. The new value of the object
being updated is provided in the root scope as a newObject property. The script can change the
newObject. If an exception is thrown, the update aborts with an exception.

postUpdate

script object, optional

A script object to trigger after an update to an object is complete, but before any targets are
synchronized. The value of the object before the update is provided in the root scope as an
oldObject property. The value of the object after the update is provided in the root scope as a
newObject property.

onDelete

script object, optional

A script object to trigger when the deletion of an object is being requested. The object being
deleted is provided in the root scope as an object property. If an exception is thrown, the deletion
aborts with an exception.

postDelete

script object, optional

A script object to trigger after a delete of an object is complete, but before any further
synchronization. The value of the deleted object is provided in the root scope as an oldObject
property.

onValidate

script object, optional

A script object to trigger when the object requires validation. The object to be validated is
provided in the root scope as an object property. If an exception is thrown, the validation fails.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 482

onRetrieve

script object, optional

A script object to trigger when an object is retrieved from the repository. The object that was
retrieved is provided in the root scope as an object property. The script can change the object. If
an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when an object is about to be stored in the repository. The object to be
stored is provided in the root scope as an object property. The script can change the object. If an
exception is thrown, then object storage fails.

onSync

script object, optional

A script object to trigger when a change to a managed object triggers an implicit synchronization
operation. The script has access to the syncResults object, the request object, the state of the object
before the change (oldObject) and the state of the object after the change (newObject). The script
can change the object.

Script Object Properties

{
 "type" : "text/javascript",
 "source": string
}

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source, file

string, required (only one, source or file is required)

Specifies the source code of the script to be executed (if the keyword is "source"), or a pointer to
the file that contains the script (if the keyword is "file").

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 483

Property Config Properties

{
 "property-name" : string,
 "onValidate" : script object,
 "onRetrieve" : script object,
 "onStore" : script object,
 "encryption" : property-encryption object,
 "secureHash" : property-hash object,
 "scope" : string,
 "title" : string,
 "viewable" : boolean true/false,
 "type" : data type,
 "searchable" : boolean true/false,
 "userEditable" : boolean true/false,
 "minLength" : positive integer,
 "pattern" : string,
 "policies" : policy object,
 "required" : boolean true/false,
 "isVirtual" : boolean true/false,
 "returnByDefault" : boolean true/false
}

property-name

string, required

The name of the property being configured.

onValidate

script object, optional

A script object to trigger when the property requires validation. The value of the property to
be validated is provided in the root scope as the property property. If an exception is thrown,
validation fails.

onRetrieve

script object, optional

A script object to trigger once a property is retrieved from the repository. That property may be
one of two related variables: property and propertyName. The property that was retrieved is provided
in the root scope as the propertyName variable; its value is provided as the property variable. If an
exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when a property is about to be stored in the repository. That property
may be one of two related variables: property and propertyName. The property that was retrieved

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 484

is provided in the root scope as the propertyName variable; its value is provided as the property
variable. If an exception is thrown, then object storage fails.

encryption

property-encryption object, optional

Specifies the configuration for encryption of the property in the repository. If omitted or null, the
property is not encrypted.

secureHash

property-hash object, optional

Specifies the configuration for hashing of the property value in the repository. If omitted or null,
the property is not hashed.

scope

string, optional

Specifies whether the property should be filtered from HTTP/external calls. The value can be
either "public" or "private". "private" indicates that the property should be filtered, "public"
indicates no filtering. If no value is set, the property is assumed to be public and thus not filtered.

title

string, required

A human-readable string, used to display the property in the UI.

viewable

boolean, true/false

Specifies whether this property is viewable in the object's profile in the UI. True by default.

type

data type, required

The data type for the property value; can be String, Array, Boolean, Integer, Number, Object, or
Resource Collection.

searchable

boolean, true/false

Specifies whether this property can be used in a search query on the managed object. A
searchable property is visible within the Managed Object data grid in the Self-Service UI. False
by default.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 485

userEditable

boolean, true/false

Specifies whether users can edit the property value in the UI. This property applies in the context
of the self-service UI, in which users are able to edit certain properties of their own accounts.
False by default.

minLength

positive integer, optional

The minimum number of characters that the value of this property must have.

pattern

string, optional

Any specific pattern to which the value of the property must adhere. For example, a property
whose value is a date might require a specific date format. Patterns specified here must follow
regular expression syntax.

policies

policy object, optional

Any policy validation that must be applied to the property.

required

boolean, true/false

Specifies whether or the property must be supplied when an object of this type is created.

isVirtual

boolean, true/false

Specifies whether the property takes a static value, or whether its value is calculated "on the fly"
as the result of a script.

The most recently calculated value of a virtual property is persisted by default. The persistence of
virtual property values allows OpenIDM to compare the new value of the property against the last
calculated value, and therefore to detect change events during synchronization.

Virtual property values are not persisted by default if you are using an explicit mapping.

returnByDefault

boolean, true/false

For virtual properties, specifies whether the property will be returned in the results of a query on
an object of this type if it is not explicitly requested. Virtual attributes are not returned by default.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 486

Property Encryption Object

{
 "cipher": string,
 "key" : string
}

cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null, the default cipher of
"AES/CBC/PKCS5Padding" is used.

key

string, required

The alias of the key in the OpenIDM cryptography service keystore used to encrypt the property.

Property Hash Object

{
 "algorithm" : "string",
 "type" : "string"
}

algorithm

string, required

The algorithm that should be used to hash the value. The following hash algorithms are
supported: MD5, SHA-1, SHA-256, SHA-384, SHA-512.

type

string, optional

The type of hashing. Currently only salted hash is supported. If this property is omitted or null,
the default "salted-hash" is used.

C.1.6. Custom Managed Objects
Managed objects in OpenIDM are inherently fully user definable and customizable. Like all OpenIDM
objects, managed objects can maintain relationships to each other in the form of links. Managed
objects are intended for use as targets and sources for synchronization operations to represent
domain objects, and to build up virtual identities. The name comes from the intention that OpenIDM
stores and manages these objects, as opposed to system objects that are present in external systems.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 487

OpenIDM can synchronize and map directly between external systems (system objects), without
storing intermediate managed objects. Managed objects are appropriate, however, as a way to cache
the data—for example, when mapping to multiple target systems, or when decoupling the availability
of systems—to more fully report and audit on all object changes during reconciliation, and to build up
views that are different from the original source, such as transformed and combined or virtual views.
Managed objects can also be allowed to act as an authoritative source if no other appropriate source
is available.

Other object types exist for other settings that should be available to a script, such as configuration
or look-up tables that do not need audit logging.

C.1.6.1. Setting Up a Managed Object Type

To set up a managed object, you declare the object in the conf/managed.json file where OpenIDM is
installed. The following example adds a simple foobar object declaration after the user object type.
{
 "objects": [
 {
 "name": "user"
 },
 {
 "name": "foobar"
 }
]
}

C.1.6.2. Manipulating Managed Objects Declaratively

By mapping an object to another object, either an external system object or another internal managed
object, you automatically tie the object life cycle and property settings to the other object. For more
information, see "Synchronizing Data Between Resources".

C.1.6.3. Manipulating Managed Objects Programmatically

You can address managed objects as resources using URLs or URIs with the managed/ prefix. This
works whether you address the managed object internally as a script running in OpenIDM or
externally through the REST interface.

You can use all resource API functions in script objects for create, read, update, delete operations,
and also for arbitrary queries on the object set, but not currently for arbitrary actions. For more
information, see "Scripting Reference".

OpenIDM supports concurrency through a multi version concurrency control (MVCC) mechanism. In
other words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans as defined in JSON.

http://www.json.org

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 488

C.1.6.3.1. Creating Objects

The following script example creates an object type.

openidm.create("managed/foobar", "myidentifier", mymap)

C.1.6.3.2. Updating Objects

The following script example updates an object type.
var expectedRev = origMap._rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the object
concurrently, OpenIDM rejects the update, and you must either retry or inspect the concurrent
modification.

C.1.6.3.3. Patching Objects

You can partially update a managed or system object using the patch method, which changes only the
specified properties of the object.

The following script example updates an object type.

openidm.patch("managed/foobar/myidentifier", rev, value)

The patch method supports a revision of "null", which effectively disables the MVCC mechanism, that
is, changes are applied, regardless of revision. In the REST interface, this matches the If-Match: "*"
condition supported by patch.

For managed objects, the API supports patch by query, so the caller does not need to know the
identifier of the object to change.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '[{
 "operation":"replace",
 "field":"/password",
 "value":"Passw0rd"
 }]' \
 "https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=DDOE"

For the syntax on how to formulate the query _queryId=for-userName&uid=DDOE see "Querying Object
Sets".

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 489

C.1.6.3.4. Deleting Objects

The following script example deletes an object type.
var expectedRev = origMap._rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the
object concurrently, OpenIDM rejects deletion, and you must either retry or inspect the concurrent
modification.

C.1.6.3.5. Reading Objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

C.1.6.3.6. Querying Object Sets

You can query managed objects using common query filter syntax, or by configuring predefined
queries in your repository configuration. The following script example queries managed user objects
whose userName is Smith.
var qry = {
 "_queryFilter" : "/userName eq \"smith\""
};
val = openidm.query("managed/user", qry);

For more information, see "Defining and Calling Queries".

C.1.7. Accessing Managed Objects Through the REST API

OpenIDM exposes all managed object functionality through the REST API unless you configure a
policy to prevent such access. In addition to the common REST functionality of create, read, update,
delete, patch, and query, the REST API also supports patch by query. For more information, see
"REST API Reference".

OpenIDM requires authentication to access the REST API. The authentication configuration is
provided in your project's conf/authentication.json file. The default authorization filter script is openidm/
bin/defaults/script/router-authz.js. For more information, see "OpenIDM Authentication".

C.2. Configuration Objects
OpenIDM provides an extensible configuration to allow you to leverage regular configuration
mechanisms.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 490

Unlike native OpenIDM configuration, which OpenIDM interprets automatically and can start new
services, OpenIDM stores custom configuration objects and makes them available to your code
through the API.

For an introduction to the standard configuration objects, see "Configuring OpenIDM".

C.2.1. When To Use Custom Configuration Objects
Configuration objects are ideal for metadata and settings that need not be included in the data to
reconcile. In other words, use configuration objects for data that does not require audit log, and does
not serve directly as a target or source for mappings.

Although you can set and manipulate configuration objects both programmatically and manually,
configuration objects are expected to change slowly, perhaps through a mix of both manual file
updates and programmatic updates. To store temporary values that can change frequently and that
you do not expect to be updated by configuration file changes, custom repository objects might be
more appropriate.

C.2.2. Custom Configuration Object Naming Conventions
By convention custom configuration objects are added under the reserved context, config/custom.

You can choose any name under config/context. Be sure, however, to choose a value for context that
does not clash with future OpenIDM configuration names.

C.2.3. Mapping Configuration Objects To Configuration Files
If you have not disabled the file based view for configuration, you can view and edit all configuration
including custom configuration in openidm/conf/*.json files. The configuration maps to a file named
context-config-name.json, where context for custom configuration objects is custom by convention, and
config-name is the configuration object name. A configuration object named escalation thus maps to a
file named conf/custom-escalation.json.

OpenIDM detects and automatically picks up changes to the file.

OpenIDM also applies changes made through APIs to the file.

By default, OpenIDM stores configuration objects in the repository. The file view is an added
convenience aimed to help you in the development phase of your project.

C.2.4. Configuration Objects File & REST Payload Formats
By default, OpenIDM maps configuration objects to JSON representations.

OpenIDM represents objects internally in plain, native types like maps, lists, strings, numbers,
booleans, null. OpenIDM constrains the object model to simple types so that mapping objects to
external representations is trivial.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 491

The following example shows a representation of a configuration object with a look-up map.
{
 "CODE123" : "ALERT",
 "CODE889" : "IGNORE"
}

In the JSON representation, maps are represented with braces ({ }), and lists are represented with
brackets ([]). Objects can be arbitrarily complex, as in the following example.
{
 "CODE123" : {
 "email" : ["sample@sample.com", "john.doe@somedomain.com"],
 "sms" : ["555666777"]
 }
 "CODE889" : "IGNORE"
}

C.2.5. Accessing Configuration Objects Through the REST API

You can list all available configuration objects, including system and custom configurations, using an
HTTP GET on /openidm/config.

The _id property in the configuration object provides the link to the configuration details with an
HTTP GET on /openidm/config/id-value. By convention, the id-value for a custom configuration object
called escalation is custom/escalation.

OpenIDM supports REST mappings for create, read, update, query, and delete of configuration
objects. Currently OpenIDM does not support patch operations for configuration objects.

C.2.6. Accessing Configuration Objects Programmatically

You can address configuration objects as resources using the URL or URI config/ prefix both
internally and also through the REST interface. The resource API provides script object functions for
create, read, update, query, and delete operations.

OpenIDM supports concurrency through a multi version concurrency control mechanism. In other
words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans.

C.2.7. Creating Objects

The following script example creates an object type.

openidm.create("config/custom", "myconfig", mymap)

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 492

C.2.8. Updating Objects

The following script example updates a custom configuration object type.
openidm.update("config/custom/myconfig", mymap)

C.2.9. Deleting Objects

The following script example deletes a custom configuration object type.
openidm.delete("config/custom/myconfig")

C.2.10. Reading Objects

The following script example reads an object type.

val = openidm.read("config/custom/myconfig")

C.3. System Objects
System objects are pluggable representations of objects on external systems. They follow the same
RESTful resource based design principles as managed objects. There is a default implementation for
the OpenICF framework, which allows any connector object to be represented as a system object.

C.4. Audit Objects
Audit objects house audit data selected for local storage in the OpenIDM repository. For details, see
"Using Audit Logs".

C.5. Links
Link objects define relations between source objects and target objects, usually relations between
managed objects and system objects. The link relationship is established by provisioning activity that
either results in a new account on a target system, or a reconciliation or synchronization scenario
that takes a LINK action.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 493

Appendix D. Synchronization Reference

The synchronization engine is one of the core services of OpenIDM. You configure the
synchronization service through a mappings property that specifies mappings between objects that are
managed by the synchronization engine.
{
 "mappings": [object-mapping object, ...]
}

D.1. Object-Mapping Objects
An object-mapping object specifies the configuration for a mapping of source objects to target
objects.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 494

{
 "name" : string,
 "source" : string,
 "target" : string,
 "links" : string,
 "enableSync" : boolean,
 "validSource" : script object,
 "validTarget" : script object,
 "sourceCondition" : script object or queryFilter string,
 "correlationQuery" : script object,
 "correlationScript": script object,
 "linkQualifier" : script object,
 "properties" : [property object, ...],
 "policies" : [policy object, ...],
 "onCreate" : script object,
 "onUpdate" : script object,
 "onDelete" : script object,
 "onLink" : script object,
 "onUnlink" : script object,
 "result" : script object
}

Mapping Object Properties

name

string, required

Uniquely names the object mapping. Used in the link object identifier.

source

string, required

Specifies the path of the source object set. Example: "managed/user".

target

string, required

Specifies the path of the target object set. Example: "system/ldap/account".

links

string, optional

Enables reuse of the links created in another mapping. Example: "systemLdapAccounts_managedUser"
reuses the links created by a previous mapping whose name is "systemLdapAccounts_managedUser".

enableSync

boolean, true or false

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 495

Specifies whether automatic synchronization (liveSync and implicit synchronization) should be
enabled for a specific mapping. For more information, see "Disabling Automatic Synchronization
Operations".

Default : true

validSource

script object, optional

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid.

validTarget

script object, optional

A script used during the target phase of reconciliation that determines if a target object is valid
to be mapped. The script yields a boolean value: true indicates that the target object is valid;
false indicates that the target object should not be included in reconciliation. In the root scope,
the target object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

sourceCondition

script object or queryFilter string, optional

A script or query filter that determines if a source object should be included in the mapping. If
no sourceCondition element (or validSource script) is specified, all source objects are included in the
mapping.

correlationQuery

script object, optional

A script that yields a query object to query the target object set when a source object has no
linked target. The syntax for writing the query depends on the target system of the correlation.
For examples of correlation queries, see "Correlating Existing Target Objects". The source object
is provided in the "source" property in the script scope.

correlationScript

script object, optional

A script that goes beyond a correlationQuery of a target system. Used when you need another
method to determine which records in the target system relate to the given source record. The
syntax depends on the target of the correlation. For information about defining correlation
scripts, see "Correlation Scripts".

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 496

properties

array of property-mapping objects, optional

Specifies mappings between source object properties and target object properties, with optional
transformation scripts.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.

onCreate

script object, optional

A script to execute when a target object is to be created, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, the projected
target object in the "target" property, and the link situation that led to the create operation in the
"situation" property. Properties on the target object can be modified by the script. If a property
value is not set by the script, OpenIDM falls back on the default property mapping configuration.
If the script throws an exception, the target object creation is aborted.

onUpdate

script object, optional

A script to execute when a target object is to be updated, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, the projected
target object in the "target" property, and the link situation that led to the update operation in
the "situation" property. Any changes that the script makes to the target object will be persisted
when the object is finally saved to the target resource. If the script throws an exception, the
target object update is aborted.

onDelete

script object, optional

A script to execute when a target object is to be deleted, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, the target object
in the "target" property, and the link situation that led to the delete operation in the "situation"
property. If the script throws an exception, the target object deletion is aborted.

onLink

script object, optional

A script to execute when a source object is to be linked to a target object, after property
mappings have been applied. In the root scope, the source object is provided in the "source"
property, and the projected target object in the "target" property.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 497

Note that, although an onLink script has access to a copy of the target object, changes made to
that copy will not be saved to the target system automatically. If you want to persist changes
made to target objects by an onLink script, you must explicitly include a call to the action that
should be taken on the target object (for example openidm.create, openidm.update or openidm.delete)
within the script.

In the following example, when an LDAP target object is linked, the "description" attribute of that
object is updated with the value "Active Account". A call to openidm.update is made within the onLink
script, to set the value.

"onLink" : {
 "type" : "text/javascript",
 "source" : "target.description = 'Active Account';
 openidm.update('system/ldap/account/' + target._id, null, target);"
}

If the script throws an exception, target object linking is aborted.

onUnlink

script object, optional

A script to execute when a source and a target object are to be unlinked, after property mappings
have been applied. In the root scope, the source object is provided in the "source" property, and
the target object in the "target" property.

Note that, although an onUnlink script has access to a copy of the target object, changes made
to that copy will not be saved to the target system automatically. If you want to persist changes
made to target objects by an onUnlink script, you must explicitly include a call to the action that
should be taken on the target object (for example openidm.create, openidm.update or openidm.delete)
within the script.

In the following example, when an LDAP target object is unlinked, the "description" attribute of
that object is updated with the value "Inactive Account". A call to openidm.update is made within the
onUnlink script, to set the value.

"onUnlink" : {
 "type" : "text/javascript",
 "source" : "target.description = 'Inactive Account';
 openidm.update('system/ldap/account/' + target._id, null, target);"
}

If the script throws an exception, target object unlinking is aborted.

result

script object, optional

A script for each mapping event, executed only after a successful reconciliation.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 498

The variables available to a result script are as follows:

• source - provides statistics about the source phase of the reconciliation

• target - provides statistics about the target phase of the reconciliation

• global - provides statistics about the entire reconciliation operation

D.1.1. Property Objects
A property object specifies how the value of a target property is determined.
{
 "target" : string,
 "source" : string,
 "transform" : script object,
 "condition" : script object,
 "default": value
}

Property Object Properties

target

string, required

Specifies the path of the property in the target object to map to.

source

string, optional

Specifies the path of the property in the source object to map from. If not specified, then the
target property value is derived from the script or default value.

transform

script object, optional

A script to determine the target property value. The root scope contains the value of the source in
the "source" property, if specified. If the "source" property has a value of "", then the entire source
object of the mapping is contained in the root scope. The resulting value yielded by the script is
stored in the target property.

condition

script object, optional

A script to determine whether the mapping should be executed or not. The condition has an
"object" property available in root scope, which (if specified) contains the full source object. For
example "source": "(object.email != null)". The script is considered to return a boolean value.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 499

default

any value, optional

Specifies the value to assign to the target property if a non-null value is not established by
"source" or "transform". If not specified, the default value is null.

D.1.2. Policy Objects
A policy object specifies a link condition and the associated actions to take in response.
{
 "situation" : string,
 "action" : string or script object
 "postAction" : optional, script object
}

Policy Object Properties

situation

string, required

Specifies the situation for which an associated action is to be defined.

action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed and is expected to
yield a string containing the action to perform.

postAction

script object, optional

Specifies the action to perform after the previously specified action has completed.

The postAction script has the following variables available in its scope: source, target, action,
sourceAction, linkQualifier, and reconID. sourceAction is true if the action was performed during the
source reconciliation phase, and false if the action was performed during the target reconciliation
phase. For more information, see "Synchronization Situations".

Note

No postAction script is triggered if the action is either IGNORE or ASYNC.

D.1.2.1. Script Object
Script objects take the following form.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 500

{
 "type" : "text/javascript",
 "source": string
}

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source

string, required

Specifies the source code of the script to be executed.

D.2. Links
To maintain links between source and target objects in mappings, OpenIDM stores an object set in
the repository. The object set identifier follows this scheme.
links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure.
{
 "_id":string,
 "_rev":string,
 "linkType":string,
 "firstId":string
 "secondId":string,
}

_id

string

The identifier of the link object.

_rev

string, required

The value of link object's revision.

linkType

string, required

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 501

The type of the link. Usually then name of the mapping which created the link.

firstId

string, required

The identifier of the first of the two linked objects.

secondId

string

The identifier of the second of the two linked objects.

D.3. Queries
OpenIDM performs the following queries on a link object set.

1. Find link(s) for a given firstId object identifier.
SELECT * FROM links WHERE linkType
 = value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

2. Select link(s) for a given second object identifier.
SELECT * FROM links WHERE linkType
 = value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

D.4. Reconciliation
OpenIDM performs reconciliation on a per-mapping basis. The process of reconciliation for a given
mapping includes these stages.

1. Iterate through all objects for the object set specified as "source". For each source object, carry
out the following steps.

a. Look for a link to a target object in the link object set, and perform a correlation query (if
defined).

b. Determine the link condition, as well as whether a target object can be found.

c. Determine the action to perform based on the policy defined for the condition.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 502

d. Perform the action.

e. Keep track of the target objects for which a condition and action has already been determined.

f. Write the results.

2. Iterate through all object identifiers for the object set specified as "target". For each identifier,
carry out the following steps.

a. Find the target in the link object set.

Determine if the target object was handled in the first phase.

b. Determine the action to perform based on the policy defined for the condition.

c. Perform the action.

d. Write the results.

3. Iterate through all link objects, carrying out the following steps.

a. If the reconId is "my", then skip the object.

If the reconId is not recognized, then the source or the target is missing.

b. Determine the action to perform based on the policy.

c. Perform the action.

d. Store the reconId identifer in the mapping to indicate that it was processed in this run.

Note

To optimize a reconciliation operation, the reconciliation process does not attempt to correlate source objects
to target objects if the set of target objects is empty when the correlation is started. For information on
changing this default behaviour, see "Optimizing Reconciliation Performance".

D.5. REST API
External synchronized objects expose an API to request immediate synchronization. This API includes
the following requests and responses.

Request

Example:

POST /openidm/system/xml/account/jsmith?_action=liveSync HTTP/1.1

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 503

Response (success)

Example:

HTTP/1.1 204 No Content
...

Response (synchronization failure)

Example:

HTTP/1.1 409 Conflict
...
[JSON representation of error]

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 504

Appendix E. REST API Reference

Representational State Transfer (REST) is a software architecture style for exposing resources, using
the technologies and protocols of the World Wide Web. REST describes how distributed data objects,
or resources, can be defined and addressed. OpenIDM provides a RESTful API for accessing managed
objects, system objects, workflows, and some elements of the system configuration.

The ForgeRock implementation of REST, known as commons REST (CREST), defines an API intended
for common use across all ForgeRock products. CREST is a framework used to access various web
resources, and for writing to RESTful resource providers (servers).

CREST is intended to support the following types of operations, described in detail in "Supported
Operations": Create, Read, Update, Delete, Action, and Query.

Note

The examples in this chapter show REST requests to OpenIDM over the regular (http) port.

ForgeRock defines a JSON Resource core library, as a common framework to implement RESTful
APIs. That core library includes two components:

json-resource

A Maven module that provides core interfaces such as Connections, Requests, and Request Handlers.

json-resource-servlet

Provides J2EE servlet integration. Defines a common HTTP-based REST API for interacting with
JSON resources.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 505

Note

You can examine the libraries associated with ForgeRock REST at http://commons.forgerock.org/forgerock-rest.

E.1. URI Scheme
The URI scheme for accessing a managed object follows this convention, assuming the OpenIDM web
application was deployed at /openidm.
/openidm/managed/type/id

Similar schemes exist for URIs associated with all but system objects. For more information, see
"access.js".

The URI scheme for accessing a system object follows this convention:
/openidm/system/resource-name/type/id

An example of a system object in an LDAP repository might be:

/openidm/system/ldap/account/07b46858-56eb-457c-b935-cfe6ddf769c7

Note that for LDAP resources, you should not map the LDAP dn to the OpenIDM uidAttribute (_id). The
attribute that is used for the _id should be immutable. You should therefore map the LDAP entryUUID
operational attribute to the OpenIDM _id, as shown in the following excerpt of the provisioner
configuration file:
...
"uidAttribute" : "entryUUID",
...

E.2. Object Identifiers
Every managed and system object has an identifier (expressed as id in the URI scheme) that is used
to address the object through the REST API. The REST API allows for client-generated and server-
generated identifiers, through PUT and POST methods. The default server-generated identifier type
is a UUID. If you create an object by using POST, a server-assigned ID is generated in the form of a
UUID. If you create an object by using PUT, the client assigns the ID in whatever format you specify.

Most of the examples in this guide use client-assigned IDs, as it makes the examples easier to read.

For more information on whether to use PUT or POST to create managed objects, see Should You Use
PUT or POST to Create a Managed Object?.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 506

E.3. Content Negotiation
The REST API fully supports negotiation of content representation through the Accept HTTP header.
Currently, the supported content type is JSON. When you send a JSON payload, you must include the
following header:
Accept: application/json

In a REST call (using the curl command, for example), you would include the following option to
specify the noted header:
--header "Content-Type: application/json"

You can also specify the default UTF-8 character set as follows:
--header "Content-Type: application/json;charset=utf-8"

The application/json content type is not needed when the REST call does not send a JSON payload.

E.4. Supported Operations
CREST supports several types of operations for communication with web servers.

The following request parameters can be used in conjunction with the supported operations.

_fields

The _fields parameter can be used to return multiple common attributes.

For example, you can use GET to read specific attributes for a user as follows:
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET
 "http://localhost:8080/openidm/managed/user/james?_fields=userName,mail"
 {
 "mail": "james@example.com",
 "userName": "james"
 }

_prettyPrint=[true,false]

If _prettyPrint=true, the HttpServlet formats the response, in a fashion similar to the JSON parser
known as jq.

For example, adding _prettyPrint=true to the end of a query-all-ids request formats the output in
the following manner:

http://stedolan.github.io/jq/

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 507

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/managed/user?_queryId=query-all-ids&_prettyPrint=true"
{
 "result" : [{
 "_id" : "bjensen",
 "_rev" : "0"
 }, {
 "_id" : "scarter",
 "_rev" : "0"
 }, {
 "_id" : "jberg",
 "_rev" : "0"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

Note that most command-line examples in this guide do not show this parameter, although the
output in the examples is formatted for readability.

E.4.1. Creating an Object

Objects can be created with two different HTTP operations: POST and PUT.

To create an object with a server-assigned ID, use the POST operation with the create action. For
example:
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "userName":"mike",
 "sn":"Smith",
 "givenName":"Mike",
 "mail": "mike@example.com",
 "telephoneNumber": "082082082",
 "password":"Passw0rd"
 }'
 "http://localhost:8080/openidm/managed/user?_action=create"
{
 "userName": "mike",
 ...
 "_rev": "1",
 "_id": "a5bed4d7-99d4-41c4-8d64-49493b48a920",
 ...
}

To create an object with a client-assigned ID, use a PUT request, with the If-None-Match: * header.
Specify the ID as part of the URL, for example:

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 508

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --request PUT \
 --data '{
 "userName":"james",
 "sn":"Berg",
 "givenName":"James",
 "mail": "james@example.com",
 "telephoneNumber": "082082082",
 "password":"Passw0rd"
 }' \
 "http://localhost:8080/openidm/managed/user/james"
{
 "userName": "james",
 ...
 "_rev": "1",
 ...
 "_id": "james",
 ...
}

E.4.2. Reading an Object

To read the contents of an object, use the GET operation, specifying the object ID. For example:
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/system/ldap/account/fc252fd9-b982-3ed6-b42a-c76d2546312c"
{
 "givenName": "Barbara",
 "telephoneNumber": "1-360-229-7105",
 "dn": "uid=bjensen,ou=People,dc=example,dc=com",
 "description": "Created for OpenIDM",
 "mail": "bjensen@example.com",
 "ldapGroups": [
 "cn=openidm2,ou=Groups,dc=example,dc=com"
],
 "cn": "Barbara Jensen",
 "uid": "bjensen",
 "sn": "Jensen",
 "_id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"
}

E.4.3. Updating an Object

An update replaces some or all of the contents of an existing object. Any object can be updated over
REST with a PUT request. Managed objects and some system objects can also be updated with a PATCH
request.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 509

To update a managed or system object with a PUT request, specify the object ID in the URL. For
managed objects, you must include the complete object in the JSON payload. You can also include an
optional If-Match conditional header. If no conditional header is specified, a default of If-Match: "*" is
applied.

The following example updates Joe Smith's telephone number, and supplies his complete managed
user object, with the updated value, in the JSON payload:
$ curl \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "If-Match: *" \
 --request PUT \
 --data '{
 "userName":"joe",
 "givenName":"joe",
 "sn":"smith",
 "mail":"joe@example.com",
 "telephoneNumber":"555-123-457",
 "password":"Passw0rd",
 "description":"This is Joe Smith's description"
 }' \
 "http://localhost:8080/openidm/managed/user/07b46858-56eb-457c-b935-cfe6ddf769c7"

A PATCH request can add, remove, replace, or increment an attribute value. A replace operation
replaces an existing value, or adds a value if no value exists.

When you update a managed or system object with a PATCH request, you can include the optional If-
Match conditional header. If no conditional header is specified, a default of If-Match: "*" is applied.

The following example shows a patch request that updates a multi-valued attribute by adding a new
value. Note the dash - character appended to the field name, which specifies that the value provided
should be added to the existing values. If the dash character is omitted, the provided value replaces
the existing values of that field.
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --request PATCH \
 --data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": "managed/role/ldap"

 }
]' \
 "http://localhost:8080/openidm/managed/user/bjensen"

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 510

E.4.4. Deleting an Object

A delete request is similar to an update request, and can optionally include the HTTP If-Match header.
To delete an object, specify its ID in the request, for example:
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "http://localhost:8080/openidm/system/ldap/account/e81c7f15-2e6d-4c3c-8005-890101070dd9"
{
 "_id": "e81c7f15-2e6d-4c3c-8005-890101070dd9"
}

E.4.5. Querying Resources

Resources can be queried using the GET method, with one of the following query parameters:

For queries on managed objects:

• _queryId for arbitrary predefined, parameterized queries

• _queryFilter for arbitrary filters, in common filter notation

• _queryExpression for client-supplied queries, in native query format

For queries on system objects:

• _queryId=query-all-ids (the only supported predefined query)

• _queryFilter for arbitrary filters, in common filter notation

For more information on queries, see "Constructing Queries".

E.5. Conditional Operations
The REST API supports conditional operations through the use of the ETag, If-Match and If-None-
Match HTTP headers. The use of HTTP conditional operations is the basis of OpenIDM's optimistic
concurrency control system. Clients should make requests conditional in order to prevent inadvertent
modification of the wrong version of an object. If no conditional header is specified, a default of If-
Match: * is applied.

E.6. Supported Methods
The managed object API uses standard HTTP methods to access managed objects.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 511

GET

Retrieves a managed object in OpenIDM.

Example Request

GET /openidm/managed/user/bdd793f8
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Set-Cookie: session-jwt=2sadf... afd5;Path=/
Expires: Thu, 01 Jan 2015 00:00:00 GMT
Content-Length: 1230
Server: Jetty(8.y.z-SNAPSHOT)
...

[JSON representation of the managed object]

HEAD

Returns metainformation about a managed object in OpenIDM.

Example Request

HEAD /openidm/managed/user/bdd793f8
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 123
ETag: "0"

PUT

Creates or updates a managed object.

Note

If you include the If-None-Match header, its value must be *. In this case, the request creates the object if it
does not exist and fails if the object does exist. If you include the If-None-Match header with any value other
than *, the server returns an HTTP 400 Bad Request error. For example, creating an object with If-None
-Match: revision returns a bad request error. If you do not include If-None-Match: *, the request creates
the object if it does not exist, and updates the object if it does exist.

Example Request: Creating a new object

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 512

PUT /openidm/managed/user/5752c0fd9509
Content-Type: application/json
Content-Length: 123
If-None-Match: *
...

[JSON representation of the managed object to create]

Example Response: Creating a new object (success)

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Response: Creating or updating an object with the If-None-Match header set to something
other than *

HTTP/1.1 400 "Bad Request
Content-Type: application/json
Content-Length: 83
...

[JSON representation of error]

Example Request: Updating an existing object

PUT /openidm/managed/user/5752c0fd9509
Content-Type: application/json
Content-Length: 123
If-Match: "1"
...

[JSON representation of managed object to update]

Example Response: Updating an existing object (success)

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 45
ETag: "2"
...

[JSON representation of updated object]

Example Response: Updating an existing object when no version is supplied

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 513

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 89
ETag: "3"
...

[JSON representation of updated object]

Example Response: Updating an existing object when an invalid version is supplied

HTTP/1.1 412 Precondition Required
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

Example Response: Updating an existing object with If-Match: *

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 45
ETag: "0"
...
[JSON representation of updated object]

Should You Use PUT or POST to Create a Managed Object?

You can use PUT and POST to create managed objects. To create a managed object with a PUT, you would
include the _id in the request. If you create a managed object with a POST, the server assigns the _id in
the form of a UUID.

In some cases, you may want to use PUT, as POST is not idempotent. If you can specify the _id to assign to
the object, use PUT.

Alternatively, POST generates a server-assigned ID in the form of a UUID. In some cases, you may prefer to
use UUIDs in production, as a POST can generate them easily in clustered environments.

POST

The POST method enables you to perform arbitrary actions on managed objects. The _action
query parameter defines the action to be performed.

The create action is used to create a managed object. Because POST is neither safe nor
idempotent, PUT is the preferred method of creating managed objects, and should be used if
the client knows what identifier it wants to assign the object. The response contains the server-
generated _id of the newly created managed object.

The POST method create optionally accepts an _id query parameter to specify the identifier to
give the newly created object. If an _id is not provided, the server selects its own identifier.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 514

The patch action updates one or more attributes of a managed object, without replacing the entire
object.

Example Create Request

POST /openidm/managed/user?_action=create
Content-Type: application/json;charset=UTF-8
Content-Length: 123
...

[JSON representation of the managed object to create]

Example Response

HTTP/1.1 201 Created
Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache
Location: https://Some_URI
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Patch Request

POST /openidm/managed/user?_action=patch
Content-Type: application/json;charset=UTF-8
Content-Length: 123
...

[JSON representation of the managed object to create]

Example Response (success)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=yAiYWxnIjogI;Path=/
...

Example Response: Updating an existing object when an invalid version is supplied

HTTP/1.1 412 Precondition Failed
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

DELETE

Deletes a managed object.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 515

Example Request

DELETE /openidm/managed/user/c3471805b60f
If-Match: "0"
...

Example Response (success)

HTTP/1.1 200 OK
Content-Length: 405
Content-Type: application/json;charset=UTF-8
Etag: "4"
...

[JSON representation of the managed object that was deleted]

Example Response: Deleting an existing object when no version is supplied

HTTP/1.1 200 OK
Content-Length: 405
Content-Type: application/json;charset=UTF-8
Etag: "4"
...

[JSON representation of the managed object that was deleted]

Example Response: Deleting an existing object when an invalid version is supplied

HTTP/1.1 412 Precondition Failed
Content-Type: application/json;charset=UTF-8
Content-Length: 89
...

[JSON representation of error]

PATCH

Performs a partial modification of a managed or system object.

Example Request

PATCH /openidm/managed/user/5752c0fd9509
Content-Type: application/patch+json
Content-Length: 456
If-Match: "0"
...

[JSON representation of patch document to apply]

Example Response (success)

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 516

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=1kke440cyv1vivbrid6ljso7b;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
ETag: "1"
...
{"_id":"5752c0fd9509","_rev":"2"}

Updating an existing object when no version is supplied (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json;charset=UTF-8
Content-Length: 89
...

[JSON representation of error]

Example Response: Updating an existing object when an invalid version is supplied (version
conflict)

HTTP/1.1 412 Precondition Required
Content-Type: application/json;charset=UTF-8
Content-Length: 89
...

[JSON representation of error]

E.7. REST Endpoints and Sample Commands
This section describes the OpenIDM REST endpoints and provides a number of sample commands
that show the interaction with the REST interface.

E.7.1. Managing the Server Configuration Over REST

OpenIDM stores configuration objects in the repository, and exposes them under the context path /
openidm/config. Single instance configuration objects are exposed under /openidm/config/object-name.

Multiple instance configuration objects are exposed under /openidm/config/object-name/instance-name.
The following table outlines these configuration objects and how they can be accessed through the
REST interface.

URI HTTP
Operation

Description

/openidm/config GET Returns a list of configuration objects
/openidm/config/audit GET Returns the current logging configuration

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 517

URI HTTP
Operation

Description

/openidm/config/provisioner.openicf/provisioner-name GET Returns the configuration of the specified
connector

/openidm/config/router PUT Changes the router configuration.
Modifications are provided with the --data
option, in JSON format.

/openidm/config/object PATCH Changes one or more fields of the
specified configuration object.
Modifications are provided as a JSON
array of patch operations.

/openidm/config/object DELETE Deletes the specified configuration object.

OpenIDM supports REST mappings for create, read, update, query, and delete of configuration
objects.

For an example that displays the current configuration, the current logging configuration, the
configuration with an XML connector provisioner, and how the configuration can be modified over
the router, see "Configuring OpenIDM Over REST".

One entry is returned for each configuration object. To obtain additional information on the
configuration object, include its pid or _id in the URL. The following example displays configuration
information on the sync object, based on OpenIDM using Sample 1.
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/config/sync"
{
 "mappings": [{
 "target" : "managed/user",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var query = {'_queryId' : 'for-userName', 'uid' : source.name};query;"
 },
 "properties" : [{
 "target" : "_id",
 "source" : "_id"
 }, {
 "target" : "description",
 "source" : "description"
 }, {
 "target" : "givenName",
 "source" : "firstname"
 }, {
 "target" : "mail",
 "source" : "email"
 },
 {
...

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 518

E.7.2. Managing Users Over REST

User objects are stored in the repository and are exposed under the context path /managed/user. Many
examples of REST calls related to this context path exist throughout this document. The following
table lists available functionality associated with the /managed/user context path.

URI HTTP
Operation

Description

/openidm/managed/user?_queryId=query-all-ids GET List the IDs of all the managed users in the
repository

/openidm/managed/user?_queryId=query-all GET List all info for the managed users in the
repository

/openidm/managed/user?_queryFilter=filter GET Query the managed user object with the
defined filter.

/openidm/managed/user/_id GET Retrieve the JSON representation of a
specific user

/openidm/managed/user/_id PUT Create a new user
/openidm/managed/user/_id PUT Update a user entry (replaces the entire

entry)
/openidm/managed/user?_action=create POST Create a new user
/openidm/managed/user?
_action=patch&_queryId=for-userName&uid=
userName

POST Update a user (can be used to replace the
value of one or more existing attributes)

/openidm/managed/user/_id PATCH Update specified fields of a user entry
/openidm/managed/user/_id DELETE Delete a user entry

The following example retrieves the JSON representation of all users stored in the internal repository.
$ curl \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryId=query-all-ids"

The following two examples perform a query on the repository for managed users for a user named
smith.
$ curl \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request GET \
 "http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+%22smith%22"

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 519

For this second example, note the use of single quotes around the URL, to avoid conflicts with the
double quotes around the user named smith. Be aware, the _queryFilter requires double quotes (or the
URL encoded equivalent, %22,) around the search term.
$ curl \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"smith"'

The following example retrieves the JSON representation of a specified user.
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/managed/user/user_id"

To add a user without a specified ID, see "Adding Users Over REST" in the Samples Guide.

The following example adds a user with a specific user ID.
$ curl \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "If-None-Match: *" \
 --request PUT \
 --data '{
 "userName":"james",
 "sn":"Berg",
 "givenName":"James",
 "mail": "james@example.com",
 "telephoneNumber": "082082082",
 "password":"Passw0rd"
 }' \
"http://localhost:8080/openidm/managed/user/james"

The following example checks whether a user exists, then updates the user entry. The command
replaces the telephone number with the new data provided in the request body.
$ curl \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '[{
 "operation":"replace",
 "field":"/telephoneNumber",
 "value":"1234567"
 }]' \
 "http://localhost:8080/openidm/managed/user?_action=patch&_queryId=for-userName&uid=id"

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 520

E.7.3. Managing System Objects Over REST
System objects, that is, objects that are stored in remote systems, are exposed under the /openidm/
system context. OpenIDM provides access to system objects over REST, as listed in the following table.

URI HTTP
Operation

Description

/openidm/system?_action=action-name POST _action=availableConnectors returns a
list of the connectors that are available in
openidm/connectors or in openidm/bundle.

_action=createCoreConfig takes
the supplied connector reference
(connectorRef) and adds the configuration
properties required for that connector.
This generates a core connector
configuration that you can use to
create a full configuration with the
createFullConfig action.

_action=createFullConfig generates a
complete connector configuration, using
the configuration properties from the
createCoreConfig action, and retrieving
the object types and operation options
from the resource, to complete the
configuration.

_action=test returns a list of all remote
systems, with their status, and supported
object types.

_action=testConfig validates the connector
configuration provided in the POST body.

_action=liveSync triggers a liveSync
operation on the specified source object.

_action=authenticate authenticates to
the specified system with the credentials
provided.

/openidm/system/system-name?_action=action-name POST _action=test tests the status of the
specified system.

/openidm/system/system-name/system-object?
_action=action-name

POST _action=liveSync triggers a liveSync
operation on the specified system object.

_action=script runs the specified script on
the system object.

_action=authenticate authenticates to the
specified system object, with the provided
credentials.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 521

URI HTTP
Operation

Description

_action=create creates a new system
object.

/openidm/system/system-name/system-object?
_queryId=query-all-ids

GET Lists all IDs related to the specified system
object, such as users, and groups.

/openidm/system/system-name/system-object?
_queryFilter=filter

GET Lists the item(s) associated with the query
filter.

/openidm/system/system-name/system-object/id PUT Creates a system object, or updates the
system object, if it exists (replaces the
entire object).

/openidm/system/system-name/system-object/id PATCH Updates the specified fields of a system
object

/openidm/system/system-name/system-object/id DELETE Deletes a system object

Note

When you create a system object with a PUT request (that is, specifying a client-assigned ID), you should
specify the ID in the URL only and not in the JSON payload. If you specify a different ID in the URL and in the
JSON payload, the request will fail, with an error similar to the following:

{
 "code":500,
 "reason":"Internal Server Error",
 "message":"The uid attribute is not single value attribute."
}

A POST request with a patch action is not currently supported on system objects. To patch a system object, you
must send a PATCH request.

Returning a list of the available connector configurations

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system?_action=availableConnectors"

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 522

Returning a list of remote systems, and their status

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system?_action=test"
[
 {
 "ok": true,
 "displayName": "LDAP Connector",
 "connectorRef": {
 "bundleVersion": "[1.4.0.0,2.0.0.0)",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
 },
 "objectTypes": [
 "__ALL__",
 "group",
 "account"
],
 "config": "config/provisioner.openicf/ldap",
 "enabled": true,
 "name": "ldap"
 }
]

Two options for running a liveSync operation on a specified system object

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system?_action=liveSync&source=system/ldap/account"
{
 "_rev": "1",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 0
 }
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 523

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system/ldap/account?_action=liveSync"

{
 "_rev": "2",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 0
 }
}

Running a script on a system object

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system/ldap/account?_action=script&_scriptId=addUser"

Authenticating to a system object

$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system/ldap/account?
_action=authenticate&username=bjensen&password=Passw0rd"
{
 "_id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 524

Creating a new system object

$ curl \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --data '{
 "cn":"James Smith",
 "dn":"uid=jsmith,ou=people,dc=example,dc=com",
 "uid":"jsmith",
 "sn":"Smith",
 "givenName":"James",
 "mail": "jsmith@example.com",
 "description":"Created by OpenIDM REST"}' \
 --request POST \
 "http://localhost:8080/openidm/system/ldap/account?_action=create"
{
 "telephoneNumber":null,
 "description":"Created by OpenIDM REST",
 "mail":"jsmith@example.com",
 "givenName":"James",
 "cn":"James Smith",
 "dn":"uid=jsmith,ou=people,dc=example,dc=com",
 "uid":"jsmith",
 "ldapGroups":[],
 "sn":"Smith",
 "_id":"07b46858-56eb-457c-b935-cfe6ddf769c7"
}

Renaming a system object

You can rename a system object simply by supplying a new naming attribute value in a PUT request.
The PUT request replaces the entire object. The naming attribute depends on the external resource.

The following example renames an object on an LDAP server, by changing the DN of the LDAP object
(effectively performing a modDN operation on that object).

The example renames the user created in the previous example.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 525

$ curl \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "If-Match: *" \
 --data '{
 "cn":"James Smith",
 "dn":"uid=jimmysmith,ou=people,dc=example,dc=com",
 "uid":"jimmysmith",
 "sn":"Smith",
 "givenName":"James",
 "mail": "jsmith@example.com"}' \
 --request PUT \
 "http://localhost:8080/openidm/system/ldap/account/07b46858-56eb-457c-b935-cfe6ddf769c7"
{
 "mail":"jsmith@example.com",
 "cn":"James Smith",
 "sn":"Smith",
 "dn":"uid=jimmysmith,ou=people,dc=example,dc=com",
 "ldapGroups":[],
 "telephoneNumber":null,
 "description":"Created by OpenIDM REST",
 "givenName":"James",
 "uid":"jimmysmith",
 "_id":"07b46858-56eb-457c-b935-cfe6ddf769c7"
}

List the IDs associated with a specific system object

$ curl \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/system/ldap/account?_queryId=query-all-ids"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 3,
 "result": [
 {
 "dn": "uid=jdoe,ou=People,dc=example,dc=com",
 "_id": "1ff2e78f-4c4c-300c-b8f7-c2ab160061e0"
 },
 {
 "dn": "uid=bjensen,ou=People,dc=example,dc=com",
 "_id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"
 },
 {
 "dn": "uid=jimmysmith,ou=people,dc=example,dc=com",
 "_id": "07b46858-56eb-457c-b935-cfe6ddf769c7"
 }
]
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 526

E.7.4. Managing Workflows Over REST

Workflow objects are exposed under the /openidm/workflow context. OpenIDM provides access to the
workflow module over REST, as listed in the following table.

URI HTTP
Operation

Description

/openidm/workflow/processdefinition?_queryId=id GET Lists workflow definitions based on
filtering criteria

/openidm/workflow/processdefinition/id GET Returns detailed information about the
specified process definition

/openidm/workflow/processinstance?_queryId=query-
all-ids

GET Lists the available running workflows, by
their ID

/openidm/workflow/processinstance/id GET Provides detailed information of a running
process instance

/openidm/workflow/processinstance/history?
_queryId=query-all-ids

GET Lists running and completed workflows, by
their ID

/openidm/workflow/processdefinition/id/taskdefinition GET Returns detailed information about the
task definition, when you include an id or a
query for all IDs, ?_queryId=query-all-ids

/openidm/workflow/taskinstance?_queryId=query-all-
ids

GET Lists all active tasks

/openidm/workflow/taskinstance?
_queryId=filteredQuery&filter

GET Lists the tasks according to the specified
filter

/openidm/workflow/processinstance?_action=create POST Start a new workflow. Parameters are
included in the request body.

/openidm/workflow/taskinstance/id PUT Update task data
/openidm/workflow/processinstance/id DELETE Stops a process instance
/openidm/workflow/taskinstance/id?_action=claim POST Claim or complete a task. Parameters are

included in the request body. Specifically
for user tasks, a user can claim a specific
task, which will then be assigned to that
user.

The following examples list the defined workflows. For a workflow to appear in this list, the
corresponding workflow definition must be in the openidm/workflow directory.
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "http://localhost:8080/openidm/workflow/processdefinition?_queryId=query-all-ids"

Depending on the defined workflows, the output will be something like the following:

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 527

{
"result":[{
 "tenantId" : "",
 "candidateStarterGroupIdExpressions" : [],
 "candidateStarterUserIdExpressions" : [],
 "participantProcess" : null,
...
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

The following example invokes a workflow named "myWorkflow". The foo parameter is given the
value bar in the workflow invocation.
$ curl \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "_key":"contractorOnboarding",
 "foo":"bar"
 }' \
 "http://localhost:8080/openidm/workflow/processinstance?_action=create"

E.7.5. Managing Scanned Tasks Over REST

OpenIDM provides a task scanning mechanism that enables you to perform a batch scan for a
specified date in OpenIDM data, on a scheduled interval, and then to execute a task when this date is
reached. For more information about scanned tasks, see "Scanning Data to Trigger Tasks".

OpenIDM provides REST access to the task scanner, as listed in the following table.

URI HTTP
Operation

Description

/openidm/taskscanner GET Lists the all scanning tasks, past and
present.

/openidm/taskscanner/id GET Lists details of the given task.
/openidm/taskscanner?_action=execute&name=name POST Triggers the specified task scan run.
/openidm/taskscanner/id?_action=cancel POST Cancels the specified task scan run.

E.7.6. Accessing Log Entries Over REST

You can interact with the audit logs over REST, as shown in the following table. Queries on the audit
endpoint must use queryFilter syntax. Predefined queries (invoked with the _queryId parameter) are
not supported.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 528

URI HTTP
Operation

Description

/openidm/audit/recon?_queryFilter=true GET Displays the reconciliation audit log
/openidm/audit/recon/id GET Reads a specific reconciliation audit log

entry
/openidm/audit/recon/id PUT Creates a reconciliation audit log entry
/openidm/audit/recon?_queryFilter=/reconId+eq
+"reconId"

GET Queries the audit log for a particular
reconciliation operation

/openidm/audit/recon?_queryFilter=/reconId+eq
+"reconId"+and+situation+eq+"situation"

GET Queries the reconciliation audit log for a
specific reconciliation situation

/openidm/audit/sync?_queryFilter=true GET Displays the synchronization audit log
/openidm/audit/sync/id GET Reads a specific synchronization audit log

entry
/openidm/audit/sync/id PUT Creates a synchronization audit log entry
/openidm/audit/activity?_queryFilter=true GET Displays the activity log
/openidm/audit/activity/id GET Returns activity information for a specific

action
/openidm/audit/activity/id PUT Creates an activity audit log entry
/openidm/audit/activity?
_queryFilter=transactionId=id

GET Queries the activity log for all actions
resulting from a specific transaction

/openidm/audit/access?_queryFilter=true GET Displays the full list of auditable actions.
/openidm/audit/access/id GET Displays information on the specific audit

item
/openidm/audit/access/id PUT Creates an access audit log entry
/openidm/audit/authentication?_queryFilter=true GET Displays a complete list of authentication

attempts, successful and unsuccessful
/openidm/audit/authentication?_queryFilter=/
principal+eq+"principal"

GET Displays the authentication attempts by a
specified user

/openidm/audit?_action=availableHandlers POST Returns a list of audit event handlers
openidm/audit/config?_queryFilter=true GET Lists changes made to the configuration

E.7.7. Managing Reconciliation Operations Over REST
You can interact with the reconciliation engine over REST, as shown in the following table.

URI HTTP
Operation

Description

/openidm/recon GET Lists all completed reconciliation runs
/openidm/recon?_action=recon&mapping=mapping-
name

POST Launches a reconciliation run with the
specified mapping

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 529

URI HTTP
Operation

Description

/openidm/recon/id?_action=cancel POST Cancels the specified reconciliation run
/openidm/system/datastore/account?_action=liveSync POST Calls a LiveSync operation.

The following example runs a reconciliation action, with the mapping systemHrdb_managedUser, defined in
the sync.json file.
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/recon?_action=recon&mapping=systemHrdb_managedUser"

E.7.8. Managing the Security Service over REST

You can interact with the security service over REST, as shown in the following table:

URI HTTP
Operation

Description

/openidm/security/keystore GET Lists the keys and certificate in the
keystore

/openidm/security/keystore/privatekey/alias PUT Imports a signed certificate into the
keystore

/openidm/security/keystore?_action=generateCert POST Generates a self-signed certificate and
imports it into the keystore

/openidm/security/keystore?_action=generateCSR POST Generates a certificate signing request, for
submission to a certificate authority

/openidm/security/truststore GET Lists the public keys and certificate in the
truststore

For sample REST commands, see "Accessing the Security Management Service".

E.7.9. Managing the Repository over REST

You can interact with the repository engine over REST, as shown in the following table.

URI HTTP
Operation

Description

/openidm/repo/synchronisation/
deadLetterQueue/resource?_queryId=query-all-ids

GET Lists any failed synchronisation records for
that resource, that have been placed in the
dead letter queue.

/openidm/repo/link?_queryId=query-all-ids GET Lists entries in the links table
/openidm/repo/internal/user?_queryId=query-all-ids GET Lists the internal users

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 530

URI HTTP
Operation

Description

/openidm/repo/internal/user/username PUT Enables you to change the username or
password of an internal user

/openidm/repo?_action=updateDbCredentials POST Enables you to change the database
username and password, in the case of an
OrientDB repository

For examples of queries on the repo/ endpoint, see "Interacting With the Repository Over REST".

E.8. HTTP Status Codes
The OpenIDM REST API returns the standard HTTP response codes, as described in the following
table.

HTTP Status Description
200 OK The request was successfully completed. If this request created

a new resource that is addressable with a URI, and a response
body is returned containing a representation of the new resource,
a 200 status will be returned with a Location header containing
the canonical URI for the newly created resource.

201 Created A request that created a new resource was completed. A
representation of the new resource is returned. A Location
header containing the canonical URI for the newly created
resource should also be returned.

202 Accepted The request has been accepted for processing, but the processing
has not been completed. The request might or might not
eventually be acted upon. May happen with asynchronous
communication.

204 No Content The server fulfilled the request, but does not need to return a
response message body.

400 Bad Request The request could not be processed because it contains missing
or invalid information.

401 Unauthorized The authentication credentials included with this request are
missing or invalid.

403 Forbidden The server recognized your credentials, but you do not possess
authorization to perform this request.

404 Not Found The request specified a URI of a resource that does not exist.
405 Method Not Allowed The HTTP verb specified in the request (DELETE, GET, HEAD,

POST, PUT) is not supported for this request URI.
406 Not Acceptable The resource identified by this request is not capable of

generating a representation corresponding to one of the media
types in the Accept header of the request.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 531

HTTP Status Description
409 Conflict A creation or update request could not be completed, because

it would cause a conflict in the current state of the resources
supported by the server (for example, an attempt to create a
new resource with a unique identifier already assigned to some
existing resource).

412 Precondition Failed The precondition given in the request header is false.
500 Internal Server Error The server encountered an unexpected condition which

prevented it from fulfilling the request.
501 Not Implemented The server does not (currently) support the functionality required

to fulfill the request.
503 Service Unavailable The server is currently unable to handle the request due to

temporary overloading or maintenance of the server.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 532

Appendix F. Scripting Reference

Scripting enables you to customize various aspects of OpenIDM functionality, for example, by
providing custom logic between source and target mappings, defining correlation rules, filters, and
triggers, and so on.

OpenIDM 4 supports scripts written in JavaScript and Groovy. Script options, and the locations in
which OpenIDM expects to find scripts, are configured in the conf/script.json file for your project. For
more information, see "Setting the Script Configuration".

OpenIDM includes several default scripts in the following directory install-dir/bin/defaults/script/. Do
not modify or remove any of the scripts in this directory. OpenIDM needs these scripts to run specific
services. Scripts in this folder are not guaranteed to remain constant between product releases.

If you develop custom scripts, copy them to the script/ directory for your project, for example, path/to
/openidm/samples/sample2/script/.

F.1. Function Reference
Functions (access to managed objects, system objects, and configuration objects) within OpenIDM
are accessible to scripts via the openidm object, which is included in the top-level scope provided to
each script.

The following sections describe the OpenIDM functions supported by the script engine.

F.1.1. openidm.create(resourceName, newResourceId, content, params, fields)

This function creates a new resource object.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 533

Parameters

resourceName

string

The container in which the object will be created, for example, managed/user or system/ldap/account.

newResourceId

string

The identifier of the object to be created, if the client is supplying the ID. If the server should
generate the ID, pass null here.

content

JSON object

The content of the object to be created.

params

JSON object (optional)

Additional parameters that are passed to the create request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire new object is returned.

Returns

The created OpenIDM resource object.

Throws

An exception is thrown if the object could not be created.

Example

openidm.create("managed/user", bjensen, JSON object);

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 534

F.1.2. openidm.patch(resourceName, rev, value, params, fields)
This function performs a partial modification of a managed or system object. Unlike the update
function, only the modified attributes are provided, not the entire object.

Parameters

resourceName

string

The full path to the object being updated, including the ID.

rev

string

The revision of the object to be updated. Use null if the object is not subject to revision control, or
if you want to skip the revision check and update the object, regardless of the revision.

value

JSON object

The value of the modifications to be applied to the object. The patch set includes the operation
type, the field to be changed, and the new values. A PATCH request can add, remove, replace, or
increment an attribute value. A replace operation replaces an existing value, or adds a value if no
value exists.

params

JSON object (optional)

Additional parameters that are passed to the patch request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire new object is returned.

Returns

The modified OpenIDM resource object.

Throws

An exception is thrown if the object could not be updated.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 535

Examples

Patching an object to add a value to an array:

openidm.patch("managed/role/" + role._id, null,
 [{"operation":"add", "field":"/members/-", "value":[{"_ref":"managed/user/" + user._id}]}]);

Patching an object to remove an existing property:
openidm.patch("managed/user/" + user._id, null,
 [{"operation":"remove", "field":"marital_status", "value":"single"}]);

Patching an object to replace a field value:
openidm.patch("managed/user/" + user._id, null,
 [{"operation":"replace", "field":"/password", "value":"Passw0rd"}]);

Patching an object to increment an integer value:
openidm.patch("managed/user/" + user._id, null,
 [{"operation":"increment","field":"/age","value":1}]);

F.1.3. openidm.read(resourceName, params, fields)

This function reads and returns an OpenIDM resource object.

Parameters

resourceName

string

The full path to the object to be read, including the ID.

params

JSON object (optional)

The parameters that are passed to the read request. Generally, no additional parameters are
passed to a read request, but this might differ, depending on the request. If you need to specify
a list of fields as a third parameter, and you have no additional params to pass, you must pass null
here. Otherwise, you simply omit both parameters.

fields

JSON array (optional)

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 536

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

The OpenIDM resource object, or null if not found.

Example

openidm.read("managed/user/"+userId, null, ["*", "manager"])

F.1.4. openidm.update(resourceName, rev, value, params, fields)

This function updates an entire resource object.

Parameters

id

string

The complete path to the object to be updated, including its ID.

rev

string

The revision of the object to be updated. Use null if the object is not subject to revision control, or
if you want to skip the revision check and update the object, regardless of the revision.

value

object

The complete replacement object.

params

JSON object (optional)

The parameters that are passed to the update request.

fields

JSON array (optional)

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 537

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

The modified OpenIDM resource object.

Throws

An exception is thrown if the object could not be updated.

Example

In this example, the managed user entry is read (with an openidm.read, the user entry that has been
read is updated with a new description, and the entire updated object is replaced with the new
value.
var user_read = openidm.read('managed/user/' + source._id);
user_read['description'] = 'The entry has been updated';
openidm.update('managed/user/' + source._id, null, user_read);

F.1.5. openidm.delete(resourceName, rev, params, fields)

This function deletes a resource object.

Parameters

resourceName

string

The complete path to the to be deleted, including its ID.

rev

string

The revision of the object to be deleted. Use null if the object is not subject to revision control, or
if you want to skip the revision check and delete the object, regardless of the revision.

params

JSON object (optional)

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 538

The parameters that are passed to the delete request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

Returns the deleted object if successful.

Throws

An exception is thrown if the object could not be deleted.

Example

openidm.delete('managed/user/'+ user._id, user._rev)

F.1.6. openidm.query(resourceName, params, fields)

This function performs a query on the specified OpenIDM resource object. For more information, see
"Constructing Queries".

Parameters

resourceName

string

The resource object on which the query should be performed, for example, "managed/user", or
"system/ldap/account".

params

JSON object

The parameters that are passed to the query, _queryFilter, _queryId, or _queryExpression. Additional
parameters passed to the query will differ, depending on the query.

Certain common parameters can be passed to the query to restrict the query results. The
following sample query passes paging parameters and sort keys to the query.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 539

reconAudit = openidm.query("audit/recon", {
 "_queryFilter": queryFilter,
 "_pageSize": limit,
 "_pagedResultsOffset": offset,
 "_pagedResultsCookie": string,
 "_sortKeys": "-timestamp"
});

For more information about _queryFilter syntax, see "Common Filter Expressions". For more
information about paging, see "Paging and Counting Query Results".

fields

list

A list of the fields that should be returned in the result. The list of fields can include wild cards,
such as * or *_ref. The following example returns only the userName and _id fields:

openidm.query("managed/user", { "_queryFilter": "/userName sw \"user.1\""}, ["userName", "_id"])

This parameter is particularly useful in enabling you to return the response from a query without
including intermediary code to massage it into the right format.

Fields are specified as JSON pointers.

Returns

The result of the query. A query result includes the following parameters:

"query-time-ms"

The time, in milliseconds, that OpenIDM took to process the query.

"conversion-time-ms"

(For an OrientDB repository only) the time, in milliseconds, taken to convert the data to a
JSON object.

"result"

The list of entries retrieved by the query. The result includes the revision ("_rev") of the entry
and any other properties that were requested in the query.

The following example shows the result of a custom query that requests the ID, user name, and
email address of managed users in the repository. For an OrientDB repository, the query would
be something like select _openidm_id, userName, email from managed_user,.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 540

{
 "conversion-time-ms": 0,
 "result": [
 {
 "email": "bjensen@example.com",
 "userName": "bjensen",
 "_rev": "0",
 "_id": "36bbb745-517f-4695-93d0-998e1e7065cf"
 },
 {
 "email": "scarter@example.com",
 "userName": "scarter",
 "_rev": "0",
 "_id": "cc3bf6f0-949e-4699-9b8e-8c78ce04a287"
 }
],
 "query-time-ms": 1
}

Throws

An exception is thrown if the given query could not be processed.

Examples

The following sample query uses a _queryFilter to query the managed user repository.

openidm.query("managed/user",
 {'_queryFilter': userIdPropertyName + ' eq "' + security.authenticationId + '"'});

The following sample query references the for-userName query, defined in the repository
configuration, to query the managed user repository.
openidm.query("managed/user",
 {"_queryId": "for-userName", "uid": request.additionalParameters.uid });

F.1.7. openidm.action(resource, actionName, content, params, fields)

This function performs an action on the specified OpenIDM resource object. The resource and
actionName are required. All other parameters are optional.

Parameters

resource

string

The resource that the function acts upon, for example, managed/user.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 541

actionName

string

The action to execute. Actions are used to represent functionality that is not covered by the
standard methods for a resource (create, read, update, delete, patch, or query). In general,
you should not use the openidm.action function for create, read, update, patch, delete or query
operations. Instead, use the corresponding function specific to the operation (for example, openidm
.create).

Using the operation-specific functions enables you to benefit from the well-defined REST API,
which follows the same pattern as all other standard resources in the system. Using the REST API
enhances usability for your own API and enforces the established patterns described in "REST
API Reference".

OpenIDM-defined resources support a fixed set of actions. For user-defined resources (scriptable
endpoints) you can implement whatever actions you require.

The following list outlines the supported actions, for each OpenIDM-defined resource. The actions
listed here are also supported over the REST interface, and are described in detail in "REST API
Reference".

Actions supported on managed resources (managed/*)

patch, triggerSyncCheck

Actions supported on system resources (system/*)

availableConnectors, createCoreConfig, createFullConfig, test, testConfig, liveSync,
authenticate, script

For example:
openidm.action("system/ldap/account", "authenticate", {},
{"userName" : "bjensen", "password" : "Passw0rd"});

Actions supported on the repository (repo)

command, updateDbCredentials

For example:
var r, command = {
 "commandId": "purge-by-recon-number-of",
 "numberOf": numOfRecons,
 "includeMapping" : includeMapping,
 "excludeMapping" : excludeMapping
};
r = openidm.action("repo/audit/recon", "command", {}, command);

Actions supported on the synchronization resource (sync)

performAction,

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 542

For example:
openidm.action('sync', 'performAction', content, params)

Actions supported on the reconciliation resource (recon)

recon, cancel

For example:
openidm.action("recon", "cancel", content, params);

Actions supported on the script resource (script)

eval

For example:
openidm.action("script", "eval", getConfig(scriptConfig), {});

Actions supported on the policy resource (policy)

validateObject, validateProperty

For example:

openidm.action("policy/" + fullResourcePath, "validateObject", request.content, { "external" : "true" });

Actions supported on the workflow resource (workflow/*)

claim

For example:

var params = {
"userId":"manager1"
};
openidm.action('workflow/processinstance/15', {"_action" : "claim"}, params);

Actions supported on the task scanner resource (taskscanner)

execute, cancel

Actions supported on the external email resource (external/email)

sendEmail

For example:

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 543

{
 emailParams = {
 "from" : 'admin@example.com',
 "to" : user.mail,
 "subject" : 'Password expiry notification',
 "type" : 'text/plain',
 "body" : 'Your password will expire soon. Please change it!'
 }
 openidm.action("external/email", 'sendEmail', emailParams);
}

content

object (optional)

Content given to the action for processing.

params

object (optional)

Additional parameters passed to the script. The params object must be a set of simple key:value
pairs, and cannot include complex values. The parameters must map directly to URL variables,
which take the form name1=val1&name2=val2&....

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

The result of the action may be null.

Throws

If the action cannot be executed, an exception is thrown.

F.1.8. openidm.encrypt(value, cipher, alias)
This function encrypts a value.

Parameters

value

any

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 544

The value to be encrypted.

cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/padding" or just
"algorithm". Example: AES/ECB/PKCS5Padding.

alias

string

The key alias in the keystore with which to encrypt the node.

Returns

The value, encrypted with the specified cipher and key.

Throws

An exception is thrown if the object could not be encrypted for any reason.

F.1.9. openidm.decrypt(value)

This function decrypts a value.

Parameters

value

object

The value to be decrypted.

Returns

A deep copy of the value, with any encrypted value decrypted.

Throws

An exception is thrown if the object could not be decrypted for any reason. An error is thrown if
the value is passed in as a string - it must be passed in an object.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 545

F.1.10. openidm.isEncrypted(object)

This function determines if a value is encrypted.

Parameters

object to check

any

The object whose value should be checked to determine if it is encrypted.

Returns

Boolean, true if the value is encrypted, and false if it is not encrypted.

Throws

An exception is thrown if the server is unable to detect whether the value is encrypted, for any
reason.

F.1.11. openidm.hash(value, algorithm)

This function calculates a value using a salted hash algorithm.

Parameters

value

any

The value to be hashed.

algorithm

string (optional)

The algorithm with which to hash the value. Example: SHA-512. If no algorithm is provided, a null
value must be passed, and the algorithm defaults to SHA-256.

Returns

The value, calculated with the specified hash algorithm.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 546

Throws

An exception is thrown if the object could not be hashed for any reason.

F.1.12. openidm.isHashed(value)

This function detects whether a value has been calculated with a salted hash algorithm.

Parameters

value

any

The value to be reviewed.

Returns

Boolean, true if the value is hashed, and false otherwise.

Throws

An exception is thrown if the server is unable to detect whether the value is hashed, for any
reason.

F.1.13. openidm.matches(string, value)

This function detects whether a string, when hashed, matches an existing hashed value.

Parameters

string

any

A string to be hashed.

value

any

A hashed value to compare to the string.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 547

Returns

Boolean, true if the hash of the string matches the hashed value, and false otherwise.

Throws

An exception is thrown if the string could not be hashed.

F.1.14. Logging Functions

OpenIDM also provides a logger object to access the Simple Logging Facade for Java (SLF4J)
facilities. The following code shows an example of the logger object.
logger.info("Parameters passed in: {} {} {}", param1, param2, param3);

To set the log level for JavaScript scripts, add the following properties to your project's conf/
logging.properties file:

org.forgerock.openidm.script.javascript.JavaScript.level

org.forgerock.script.javascript.JavaScript.level

The level can be one of SEVERE (highest value), WARNING, INFO, CONFIG, FINE, FINER, or FINEST (lowest
value). For example:
org.forgerock.openidm.script.javascript.JavaScript.level=WARNING
org.forgerock.script.javascript.JavaScript.level=WARNING

In addition, JavaScript has a useful logging function named console.log(). This function provides
an easy way to dump data to the OpenIDM standard output (usually the same output as the OSGi
console). The function works well with the JavaScript built-in function JSON.stringify and provides
fine-grained details about any given object. For example, the following line will print a formatted
JSON structure that represents the HTTP request details to STDOUT.
console.log(JSON.stringify(context.http, null, 4));

Note

These logging functions apply only to JavaScript scripts. To use the logging functions in Groovy scripts, the
following lines must be added to the Groovy scripts:
import org.slf4j.*;
logger = LoggerFactory.getLogger('logger');

The following sections describe the logging functions available to the script engine.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 548

F.1.14.1. logger.debug(string message, object... params)
Logs a message at DEBUG level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

F.1.14.2. logger.error(string message, object... params)
Logs a message at ERROR level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 549

Throws

An exception is thrown if the message could not be logged.

F.1.14.3. logger.info(string message, object... params)
Logs a message at INFO level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

F.1.14.4. logger.trace(string message, object... params)
Logs a message at TRACE level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 550

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

F.1.14.5. logger.warn(string message, object... params)

Logs a message at WARN level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

F.2. Places to Trigger Scripts
Scripts can be triggered in different places, and by different events. The following list indicates
the configuration files in which scripts can be referenced, the events upon which the scripts can be
triggered and the actual scripts that can be triggered on each of these files.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 551

Scripts called in the mapping (conf/sync.json) file

Triggered by situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object filter

validSource, validTarget

Triggered when correlating objects

correlationQuery, correlationScript

Triggered on any reconciliation

result

Scripts inside properties

condition, transform

sync.json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

Scripts called in the managed object configuration (conf/managed.json) file

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve, onStore, onSync, postCreate,
postUpdate, and postDelete

managed.json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

Scripts called in the router configuration (conf/router.json) file

onRequest, onResponse, onFailure

router.json supports multiple scripts per hook.

F.3. Variables Available to Scripts
The standard variables, context, resourceName and request are available to all scripts. Additional
variables available to a script depend on the following items:

• The trigger that launches the script

• The configuration file in which that trigger is defined

• The object type. For a managed object (defined in managed.json), the object type is either a managed
object configuration object, or a managed object property. For a synchronization object (defined in

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 552

sync.json), the object can be an object-mapping object (see "Object-Mapping Objects"), a property
object (see "Property Objects"), or a policy object (see "Policy Objects").

The following tables list the available variables, based on each of these items.

Script Triggers Defined in managed.json

Object Type Trigger Variable
onCreate, postCreate object, newObject
onUpdate, postUpdate object, oldObject, newObject
onDelete, onRetrieve,
onRead

object

postDelete oldObject
onSync request, oldObject, newObject,

success (boolean)

action (string)

syncDetails - an array of maps, each detailing the
mappings that were attempted to be synchronized

syncResults - a map that includes all the syncDetails
in one place

managed object config
object

onStore, onValidate object, value (the content to be stored or validated for
the object)

onRetrieve, onStore object, property, propertyNameproperty object
onValidate property

Script Triggers Defined in sync.json

Object Type Trigger Variable
correlationQuery,
correlationScript

source, linkQualifier

onCreate source, target, situation, linkQualifier, context,
sourceId, targetId,

mappingConfig - a configuration object representing
the mapping being processed

onDelete, onUpdate source, target, oldTarget, situation, linkQualifier,
context, sourceId, targetId,

mappingConfig - a configuration object representing
the mapping being processed

object-mapping object

onLink, onUnlink source, target, linkQualifier, context, sourceId,
targetId,

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 553

Object Type Trigger Variable
mappingConfig - a configuration object representing
the mapping being processed

result source, target, global, with reconciliation results
validSource source, linkQualifier
validTarget target, linkQualifier
condition object, linkQualifier, target, oldTarget,

oldSource - when available, generally during an
update

property object

transform source, linkQualifier
action source, target, recon, sourceAction - a boolean that

indicates whether the action is being processed
during the source or target synchronization phase

The recon.actionParam object contains information
about the current reconciliation operation and
includes the following variables:

• reconId - the ID of the reconciliation operation

• mapping - the mapping for which the
reconciliation was performed, for example,
systemLdapAccounts_managedUser

• situation - the situation encountered, for example,
AMBIGUOUS

• action - the default action that would be used for
this situation, if not for this script. The script being
executed replaces the default action (and is used
instead of any other named action).

• sourceId - the _id value of the source record

• linkQualifier - the link qualifier used for that
mapping, (default if no other link qualifier is
specified)

• ambiguousTargetIds - an array of the target object
IDs that were found in an AMBIGUOUS situation
during correlation

• _action - the synchronization action (only
performAction is supported)

policy object

postAction source, target, action, actionParam, sourceAction,
linkQualifier, reconId, situation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 554

Script Triggers Defined in router.json

Trigger Variable
onFailure exception
onRequest request
onResponse response

Custom endpoint scripts always have access to the request and context variables.

OpenIDM includes one additional variable used in scripts:

identityServer

The identityServer variable can be used in several ways. The ScriptRegistryService described in
"Validating Scripts Over REST" binds this variable to:

• getProperty

Retrieves property information from configuration files. Creates a new identity environment
configuration.

For example, you can retrieve the value of the openidm.config.crypto.alias property from that file
with the following code: alias = identityServer.getProperty("openidm.config.crypto.alias", "true",
 true);

• getInstallLocation

Retrieves the installation path for OpenIDM, such as /path/to/openidm. May be superseded by an
absolute path.

• getProjectLocation

Retrieves the directory used when you started OpenIDM. That directory includes configuration
and script files for your project.

For more information on the project location, see "Specifying the OpenIDM Startup
Configuration".

• getWorkingLocation

Retrieves the directory associated with database cache and audit logs. You can find db/ and
audit/ subdirectories there.

For more information on the working location, see "Specifying the OpenIDM Startup
Configuration".

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 555

F.4. Validating Scripts Over REST
OpenIDM exposes a script endpoint over which scripts can be validated, by specifying the script
parameters as part of the JSON payload. This functionality enables you to test how a script will
operate in your deployment, with complete control over the inputs and outputs. Testing scripts in this
way can be useful in debugging.

In addition, the script registry service supports calls to other scripts (even scripts written in a
different language, such as from JavaScript to Groovy). For example, you might have logic written in
JavaScript, but also some code available in Groovy. Ordinarily, it would be challenging to interoperate
between these two environments, but this script service enables you to call one from the other on the
OpenIDM router.

The script endpoint supports two actions - eval and compile.

The eval action evaluates a script, by taking any actions referenced in the script, such as router calls
to affect the state of an object. For JavaScript scripts, the last statement that is executed is the value
produced by the script, and the expected result of the REST call.

The following REST call attempts to evaluate the autoPurgeAuditRecon.js script (provided in openidm/
bin/defaults/script/audit), but provides an incorrect purge type ("purgeByNumOfRecordsToKeep" instead of
"purgeByNumOfReconsToKeep"). The error is picked up in the evaluation. The example assumes that the
script exists in the directory reserved for custom scripts (openidm/script).
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "type": "text/javascript",
 "file": "script/autoPurgeAuditRecon.js",
 "globals": {
 "input": {
 "mappings": ["%"],
 "purgeType": "purgeByNumOfRecordsToKeep",
 "numOfRecons": 1
 }
 }
 }' \
 "https://localhost:8443/openidm/script?_action=eval"

"Must choose to either purge by expired or number of recons to keep"

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 556

Tip

The variables passed into this script are namespaced with the "globals" map. It is preferable to namespace
variables passed into scripts in this way, to avoid collisions with the top-level reserved words for script maps,
such as file, source, and type.

The compile action compiles a script, but does not execute it. This action is used primarily by the UI,
to validate scripts that are entered in the UI. A successful compilation returns true. An unsuccessful
compilation returns the reason for the failure.

The following REST call tests whether a transformation script will compile.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "type":"text/javascript",
 "source":"source.mail ? source.mail.toLowerCase() : null"
 }' \
 "https://localhost:8443/openidm/script?_action=compile"
True

If the script is not valid, the action returns an indication of the error, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "type":"text/javascript",
 "source":"source.mail ? source.mail.toLowerCase()"
 }' \
 "https://localhost:8443/openidm/script?_action=compile"
{
 "code": 400,
 "reason": "Bad Request",
 "message": "missing : in conditional expression
 (3864142CB836831FAB8EAB662F566139CDC22BF2#1)
 in 3864142CB836831FAB8EAB662F566139CDC22BF2
 at line number 1 at column number 39"
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 557

Appendix G. Router Service Reference

The OpenIDM router service provides the uniform interface to all objects in OpenIDM: managed
objects, system objects, configuration objects, and so on.

G.1. Configuration
The router object as shown in conf/router.json defines an array of filter objects.

{
 "filters": [filter object, ...]
}

The required filters array defines a list of filters to be processed on each router request. Filters are
processed in the order in which they are specified in this array.

G.1.1. Filter Objects

Filter objects are defined as follows.

{
 "pattern": string,
 "methods": [string, ...],
 "condition": script object,
 "onRequest": script object,
 "onResponse": script object,
 "onFailure": script object
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 558

"pattern"

string, optional

Specifies a regular expression pattern matching the JSON pointer of the object to trigger scripts.
If not specified, all identifiers (including null) match. Pattern matching is done on the resource
name, rather than on individual objects.

"methods"

array of strings, optional

One or more methods for which the script(s) should be triggered. Supported methods are:
"create", "read", "update", "delete", "patch", "query", "action". If not specified, all methods are
matched.

"condition"

script object, optional

Specifies a script that is called first to determine if the script should be triggered. If the condition
yields "true", the other script(s) are executed. If no condition is specified, the script(s) are called
unconditionally.

"onRequest"

script object, optional

Specifies a script to execute before the request is dispatched to the resource. If the script throws
an exception, the method is not performed, and a client error response is provided.

"onResponse"

script object, optional

Specifies a script to execute after the request is successfully dispatched to the resource and a
response is returned. Throwing an exception from this script does not undo the method already
performed.

"onFailure"

script object, optional

Specifies a script to execute if the request resulted in an exception being thrown. Throwing an
exception from this script does not undo the method already performed.

G.1.1.1. Pattern Matching in the router.json File
Pattern matching can minimize overhead in the router service. For example, the default router.json
file includes instances of the pattern filter object, which limits script requests to specified methods
and endpoints.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 559

Based on the following code snippet, the router service would trigger the policyFilter.js script for
CREATE and UPDATE calls to managed, system, and internal repository objects.
{
 "pattern" : "^(managed|system|repo/internal)($|(/.+))",
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "policyFilter.js"
 },
 "methods" : [
 "create",
 "update"
]
},

Without the noted pattern, OpenIDM would apply the policy filter to additional objects such as the
audit service, which may affect performance.

G.1.2. Script Execution Sequence

All "onRequest" and "onResponse" scripts are executed in sequence. First, the "onRequest" scripts
are executed from the top down, then the "onResponse" scripts are executed from the bottom up.

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

The following sample router.json file shows the order in which the scripts would be executed:

{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "script/router-authz.js"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "console.log('requestFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 560

 "source" : "console.log('responseFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "console.log('requestFilter 2');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "console.log('responseFilter 2');"
 }
 }
]
}

Will produce a log like:
requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

G.1.3. Script Scope

Scripts are provided with the following scope.
{
 "openidm": openidm-functions object,
 "request": resource-request object,
 "response": resource-response object,
 "exception": exception object
}

"openidm"

openidm-functions object (see "Function Reference").

Provides access to OpenIDM resources.

"request"

resource-request object

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 561

The resource-request context, which has one or more parent contexts. Provided in the scope of
"condition", "onRequest", "onResponse" and "onFailure" scripts.

"response"

resource-response object

The response to the resource-request. Only provided in the scope of the "onResponse" script.

"exception"

exception object

The exception value that was thrown as a result of processing the request. Only provided in the
scope of the "onFailure" script.

An exception object is defined as follows.
{
 "code": integer,
 "reason": string,
 "message": string,
 "detail": string
}

"code"

integer

The numeric HTTP code of the exception.

"reason"

string

The short reason phrase of the exception.

"message"

string

A brief message describing the exception.

"detail"

(optional), string

A detailed description of the exception, in structured JSON format, suitable for programmatic
evaluation.

G.2. Example
The following example executes a script after a managed user object is created or updated.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 562

{
 "filters": [
 {
 "pattern": "^managed/user",
 "methods": [
 "create",
 "update"
],
 "onResponse": {
 "type": "text/javascript",
 "file": "scripts/afterUpdateUser.js"
 }
 }
]
}

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 563

Appendix H. Embedded Jetty Configuration

OpenIDM 4 includes an embedded Jetty web server.

To configure the embedded Jetty server, edit openidm/conf/jetty.xml. OpenIDM delegates most of the
connector configuration to jetty.xml. OSGi and PAX web specific settings for connector configuration
therefore do not have an effect. This lets you take advantage of all Jetty capabilities, as the web
server is not configured through an abstraction that might limit some of the options.

The Jetty configuration can reference configuration properties (such as port numbers and keystore
details) from OpenIDM's boot.properties configuration file.

H.1. Using OpenIDM Configuration Properties in the Jetty
Configuration
OpenIDM exposes a Param class that you can use in jetty.xml to include OpenIDM configuration. The
Param class exposes Bean properties for common Jetty settings and generic property access for other,
arbitrary settings.

H.1.1. Accessing Explicit Bean Properties

To retrieve an explicit Bean property, use the following syntax in jetty.xml.

<Get class="org.forgerock.openidm.jetty.Param" name="<bean property name>"/>

For example, to set a Jetty property for keystore password:

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 564

<Set name="password">
 <Get class="org.forgerock.openidm.jetty.Param" name="keystorePassword"/>
</Set>

Also see the bundled jetty.xml for further examples.

The following explicit Bean properties are available.

port

Maps to openidm.port.http

port

Maps to openidm.port.https

port

Maps to openidm.port.mutualauth

keystoreType

Maps to openidm.keystore.type

keystoreProvider

Maps to openidm.keystore.provider

keystoreLocation

Maps to openidm.keystore.location

keystorePassword

Maps to openidm.keystore.password

keystoreKeyPassword

Maps to openidm.keystore.key.password, or the keystore password, if not set

truststoreLocation

Maps to openidm.truststore.location, or the keystore location, if not set

truststorePassword

Maps to openidm.truststore.password, or the keystore password, if not set

H.1.2. Accessing Generic Properties

<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>org.forgerock.openidm.some.sample.property</Arg>
</Call>

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 565

H.2. Jetty Default Settings
By default the embedded Jetty server uses the following settings.

• The HTTP, SSL, and Mutual Authentication ports defined in OpenIDM

• The same keystore and truststore settings as OpenIDM

• Trivial sample realm, openidm/security/realm.properties to add users

The default settings are intended for evaluation only. Adjust them according to your production
requirements.

H.3. Registering Additional Servlet Filters
You can register generic servlet filters in the embedded Jetty server to perform additional filtering
tasks on requests to or responses from OpenIDM. For example, you might want to use a servlet filter
to protect access to OpenIDM with an access management product. Servlet filters are configured in
files named openidm/conf/servletfilter-name.json. These servlet filter configuration files define the filter
class, required libraries, and other settings.

A sample servlet filter configuration is provided in the servletfilter-cors.json file in the /path/to/
openidm/conf directory.

The sample servlet filter configuration file is shown below:
{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { }.
 "initParams" : {
 "allowedOrigins" : "https://localhost:8443",
 "allowedMethods" : "GET,POST,PUT,DELETE,PATCH",
 "allowedHeaders" : "accept,x-openidm-password,x-openidm-nosession,
 x-openidm-username,content-type,origin,
 x-requested-with",
 "allowCredentials" : "true",
 "chainPreflight" : "false"
 },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.eclipse.jetty.servlets.CrossOriginFilter"
}

The sample configuration includes the following properties:

"classPathURLs"

The URLs to any required classes or libraries that should be added to the classpath used by the
servlet filter class

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 566

"systemProperties"

Any additional Java system properties required by the filter

"requestAttributes"

The HTTP Servlet request attributes that will be set by OpenIDM when the filter is invoked.
OpenIDM expects certain request attributes to be set by any module that protects access to it, so
this helps in setting these expected settings.

"scriptExtensions"

Optional script extensions to OpenIDM. Currently only "augmentSecurityContext" is supported.
A script that is defined in augmentSecurityContext is executed by OpenIDM after a successful
authentication request. The script helps to populate the expected security context in OpenIDM.
For example, the login module (servlet filter) might select to supply only the authenticated user
name, while the associated roles and user ID can be augmented by the script.

Supported script types include "text/javascript" and "groovy". The script can be provided inline
("source":script source) or in a file ("file":filename). The sample filter extends the filter interface
with the functionality in the script script/security/populateContext.js.

"filterClass"

The servlet filter that is being registered

The following additional properties can be configured for the filter:

"httpContextId"

The HTTP context under which the filter should be registered. The default is "openidm".

"servletNames"

A list of servlet names to which the filter should apply. The default is "OpenIDM REST".

"urlPatterns"

A list of URL patterns to which the filter applies. The default is ["/*"].

"initParams"

Filter configuration initialization parameters that are passed to the servlet filter init method. For
more information, see http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html.

H.4. Disabling and Enabling Secure Protocols
Secure communications are important. To that end, the embedded Jetty web server enables a number
of different protocols. To review the list of enabled protocols, run the following commands:

http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 567

$ cd /path/to/openidm/logs
$ grep Enabled openidm0.log.0
 openidm0.log.0:INFO: Enabled Protocols [SSLv2Hello, TLSv1, TLSv1.1, TLSv1.2] of
[SSLv2Hello, SSLv3, TLSv1, TLSv1.1, TLSv1.2]

Note the difference between enabled and available protocols. Based on this particular output, SSLv3
is missing from the list of enabled protocols. To see how this was done, open the jetty.xml file in the /
path/to/openidm/conf directory. Note the "ExcludeProtocols" code block shown here:
...
 <Set name="ExcludeProtocols">
 <Array type="java.lang.String">
 <Item>SSLv3</Item>
 </Array>
 </Set>
...

Note

As noted in the following Security Advisory, "SSL 3.0 [RFC6101] is an obsolete and insecure protocol."

To exclude another protocol from the Enabled list, just add it to the "ExcludeProtocols" XML block.
For example, if you included the following line in that XML block, your instance of Jetty would also
exclude TLSv1:
<Item>TLSv1</Item>

You can reverse the process by removing the protocol from the "ExcludeProtocols" block.

To see if certain protocols should be included in the "ExcludeProtocols" block, review the current list of
ForgeRock Security Advisories

For more information on Jetty configuration see the following document from the developers of Jetty:
The Definitive Reference

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://forgerock.org/security-advisories/
https://forgerock.org/security-advisories/
http://www.eclipse.org/jetty/documentation/current/
http://www.eclipse.org/jetty/documentation/current/

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 568

Appendix I. Authentication and Session
Module Configuration Details

This appendix includes configuration details for authentication modules described here: "Supported
Authentication and Session Modules".

Authentication modules, as configured in the authentication.json file, include a number of properties.
Except for the "OPENAM_SESSION Module Configuration Options", Those properties are listed in the
following tables:

Session Module

Authentication Property Property as Listed in the
Admin UI

Description

keyAlias (not shown) Used by the Jetty Web server to service SSL
requests.

privateKeyPassword (not shown) Defaults to openidm.keystore.password in
boot.properties.

keystoreType (not shown) Defaults to openidm.keystore.type in
boot.properties.

keystoreFile (not shown) Defaults to openidm.keystore.location in
boot.properties.

keystorePassword (not shown) Defaults to openidm.keystore.password in
boot.properties

maxTokenLifeMinutes Max Token Life (in seconds) Maximum time before a session is cancelled.
Note the different units for the property and
the UI.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 569

Authentication Property Property as Listed in the
Admin UI

Description

tokenIdleTimeMinutes Token Idle Time (in seconds) Maximum time before an idle session is
cancelled. Note the different units for the
property and the UI.

sessionOnly Session Only Whether the session continues after browser
restarts.

Static User Module

Authentication Property Property as Listed in the
Admin UI

Description

enabled Module Enabled Does OpenIDM use the module
queryOnResource Query on Resource Endpoint hard coded to user anonymous
username Static User Name Default for the static user, anonymous
password Static User Password Default for the static user, anonymous
defaultUserRoles Static User Role Normally set to openidm-reg for self-

registration

The following table applies to several authentication modules:

Managed User
Internal User
Client Cert
Passthrough
IWA

The IWA module includes several Kerberos-related properties listed at the end of the table.

Common Module Properties

Authentication Property Property as Listed in the
Admin UI

Description

enabled Module Enabled Does OpenIDM use the module
queryOnResource Query on Resource Endpoint to query
queryId Use Query ID A defined queryId searches against the

queryOnResource endpoint. An undefined
queryId against queryOnResource with
action=reauthenticate

defaultUserRoles Default User Roles Normally blank for managed users
authenticationId Authentication ID Defines how account credentials are derived

from a queryOnResource endpoint

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 570

Authentication Property Property as Listed in the
Admin UI

Description

userCredential User Credential Defines how account credentials are derived
from a queryOnResource endpoint

userRoles User Roles Defines how account roles are derived from a
queryOnResource endpoint

groupMemebership Group Membership Provides more information for calculated roles
groupRoleMapping Group Role Mapping Provides more information for calculated roles
groupComparisonMethod Group Comparison Method Provides more information for calculated roles
managedUserLink Managed User Link Applicable mapping (Passthrough module

only)
augmentSecurityContext Augment Security Context Includes a script that is executed only after a

successful authentication request.
servicePrincipal Kerberos Service Principal (IWA only) For more information, see

"Kerberos Definitions"
keytabFileName Keytab File Name (IWA only) For more information, see

"Kerberos Definitions"
kerberosRealm Kerberos Realm (IWA only) For more information, see

"Kerberos Definitions"
kerberosServerName Kerberos Server Name (IWA only) For more information, see

"Kerberos Definitions"

I.1. OPENAM_SESSION Module Configuration Options
The OPENAM_SESSION module uses OpenAM authentication to protect an OpenIDM deployment.

The options shown in the screen are subdivided into basic and advanced properties. You may need to
click Advanced Properties to review those details.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 571

The following table describes the label that you see in the Admin UI, the default value (if any), a
brief description, and the associated configuration file. If you need the property name, look at the
configuration file.

The default values shown depict what you see if you use the OPENAM_SESSION module with the Full Stack
Sample. For more information, see "Full Stack Sample - Using OpenIDM in the ForgeRock Identity
Platform" in the Samples Guide.

OPENAM_SESSION Module Basic Properties

Admin UI Label Default Description Configuration File
Module Enabled false Whether to enable the

module
authentication.json

Route to OpenAM
User Datastore

system/ldap/account External repository with
OpenAM Data Store
Information

authentication.json

OpenAM
Deployment URL

blank FQDN of the deployed
instance of OpenAM

authentication.json

Require OpenAM
Authentication

false Whether to make the
OpenIDM UI redirect

ui-configuration.json

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 572

Admin UI Label Default Description Configuration File
users to OpenAM for
authentication

OPENAM_SESSION Module Advanced Properties

Admin UI Label Default Description Configuration File
OpenAM Login
URL

http://example.com:8081/
XUI/#login/

FQDN of the login endpoint
of the deployed instance of
OpenAM

ui-configuration.json

OpenAM Login
Link Text

Login with OpenAM UI text that links to
OpenAM

ui-configuration.json

Default User
Roles

openidm-authorized OpenIDM assigns such roles
to the security context of a
user

authentication.json

OpenAM User
Attribute

uid User identifier for the
OpenAM data store

authentication.json

Authentication ID uid User identifier authentication.json
User Credential blank Credential, sometimes a

password
authentication.json

User Roles
or Group
Membership

Select an option For an explanation,
see "Common Module
Properties".

authentication.json

Group
Membership (if
selected)

ldapGroups Group Membership authentication.json

Role Name openidm-admin Default role for the user,
normally a group role
mapping

authentication.json

Group Mappings blank Mapping from a user to a
LDAP entry

authentication.json

Augment Security
Context

Javascript Supports Javascript or
Groovy

authentication.json

File Path auth/
populateAsManagedUser.js

Path to security context
script, in the /path/to/
openidm/bin/defaults/script
subdirectory

authentication.json

In general, if you add a custom property, the Admin UI writes changes to the authentication.json or ui-
configuration.json files.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 573

Appendix J. Audit Configuration Schema

The following tables depict schema for the six audit event topics used by OpenIDM. Each topic is
associated with the following files that you can find in the openidm/audit directory:

• access.csv: see "Access Event Topic Properties"

• activity.csv: see "Activity Event Topic Properties"

• authentication.csv: see "Authentication Event Topic Properties"

• config.csv: see "Configuration Event Topic Properties"

• recon.csv: see "Reconciliation Event Topic Properties"

• sync.csv: see "Synchronization Event Topic Properties"

If you open the CSV files from that directory in a spreadsheet application, those files can help you
read through the tables shown in this appendix.

J.1. OpenIDM Specific Audit Event Topics

Reconciliation Event Topic Properties

Event Property Description
_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769

-555c3ca098b0"

transactionId The UUID of the transaction; you may see the same ID in different audit
event topics.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 574

Event Property Description
timestamp The time that OpenIDM logged the message, in UTC format; for example

"2015-05-18T08:48:00.160Z"

eventName The name of the audit event: recon for this log
userId User ID
trackingIds A unique value for an object being tracked
action Reconciliation action, depicted as a CREST action. For more information,

see "Synchronization Actions"
exception The stack trace of the exception
linkQualifier The link qualifier applied to the action; For more information, see

"Adding Link Qualifiers to a Mapping"
mapping The name of the mapping used for the synchronization operation, defined

in conf/sync.json.
message Description of the synchronization action
messageDetail Details from the synchronization run, shown as CREST output
situation The synchronization situation described in "Synchronization Situations"
sourceObjectId The object ID on the source system, such as managed/user/jdoe
status Reconciliation result status, such as SUCCESS or FAILURE
targetObjectId The object ID on the target system, such as system/xmlfile/account/

bjensen

reconciling What OpenIDM is reconciling, source for the first phase, target for the
second phase.

ambiguousTargetObjectIds When the situation is AMBIGUOUS or UNQUALIFIED, and OpenIDM
cannot distinguish between more than one target object, OpenIDM logs
the object IDs, to help figure out what was ambiguous.

reconAction The reconciliation action, typically recon or null
entryType The type of reconciliation log entry, such as start, entry, or summary.
reconId UUID for the reconciliation operation

Synchronization Event Topic Properties

Event Property Description
_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769

-555c3ca098b0"

transactionId The UUID of the transaction; you may see the same ID in different audit
event topics.

timestamp The time that OpenIDM logged the message, in UTC format; for example
"2015-05-18T08:48:00.160Z"

eventName The name of the audit event: sync for this log

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 575

Event Property Description
userId User ID
trackingIds A unique value for an object being tracked
action Synchronization action, depicted as a CREST action. For more

information, see "Synchronization Actions"
exception The stack trace of the exception
linkQualifier The link qualifier applied to the action; For more information, see

"Adding Link Qualifiers to a Mapping"
mapping The name of the mapping used for the synchronization operation, defined

in conf/sync.json.
message Description of the synchronization action
messageDetail Details from the reconciliation run, shown as CREST output
situation The synchronization situation described in "Synchronization Situations"
sourceObjectId The object ID on the source system, such as managed/user/jdoe
status Reconciliation result status, such as SUCCESS or FAILURE
targetObjectId The object ID on the target system, such as uid=jdoe,ou=People

,dc=example,dc=com

J.2. Commons Audit Event Topics

Access Event Topic Properties

Event Property Description
_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769

-555c3ca098b0"

timestamp The time that OpenIDM logged the message, in UTC format; for example
"2015-05-18T08:48:00.160Z"

eventName The name of the audit event: access for this log
transactionId The UUID of the transaction; you may see the same transaction for the

same event in different audit event topics
userId User ID
trackingIds A unique value for an object being tracked
server.ip IP address of the OpenIDM server
server.port Port number used by the OpenIDM server
client.ip Client IP address
client.port Client port number
request.protocol Protocol for request, typically CREST

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 576

Event Property Description
request.operation Typically a CREST operation
request.detail Typically details for an ACTION request
http.request.secure Boolean for request security
http.request.method HTTP method requested by the client
http.request.path Path of the HTTP request
http.request.queryParameters Parameters sent in the HTTP request, such as a key/value pair
http.request.headers HTTP headers for the request (optional)
http.request.cookies HTTP cookies for the request (optional)
http.response.headers HTTP response headers (optional)
response.status Normally, SUCCESSFUL, FAILED, or null
response.statusCode SUCCESS in response.status leads to a null response.statusCode;

FAILURE leads to a 400-level error
response.detail Message associated with response.statusCode, such as Not Found or

Internal Server Error
response.elapsedTime Time to execute the access event
response.elapsedTimeUnits Units for response time
roles OpenIDM roles associated with the request

Activity Event Topic Properties

Event Property Description
_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769

-555c3ca098b0"

timestamp The time that OpenIDM logged the message, in UTC format; for example
"2015-05-18T08:48:00.160Z"

eventName The name of the audit event: activity for this log
transactionId The UUID of the transaction; you may see the same transaction for the

same event in different audit event topics.
userId User ID
trackingIds A unique value for the object being tracked
runAs User to run the activity as; may be used in delegated administration
objectId Object identifier, such as /managed/user/jdoe
operation Typically a CREST operation
before JSON representation of the object prior to the activity
after JSON representation of the object after the activity

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 577

Event Property Description
changedFields Fields that were changed, based on "Watched Fields: Defining Fields to

Monitor"
revision Object revision number
status Result, such as SUCCESS
message Human readable text about the action
passwordChanged True/False entry on changes to the password

Authentication Event Topic Properties

Event Property Description
_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769

-555c3ca098b0"

timestamp The time that OpenIDM logged the message, in UTC format; for example
"2015-05-18T08:48:00.160Z"

eventName The name of the audit event: authentication for this log
transactionId The UUID of the transaction; you may see the same transaction for the

same event in different audit event topics.
userId User ID
trackingIds A unique value for an object being tracked
result The result of the transaction, either "SUCCESSFUL", or "FAILED"
principal An array of the accounts used to authenticate, such as ["openidm-

admin"]
context The complete security context of the authentication operation, including

the authenticating ID, the targeted endpoint, the roles applied, and the IP
address from which the authentication request was made.

entries The JSON representation of the authentication session

Configuration Event Topic Properties

Event Property Description
_id UUID for the message object, such as "0419d364-1b3d-4e4f-b769

-555c3ca098b0"

timestamp The time that OpenIDM logged the message, in UTC format; for example
"2015-05-18T08:48:00.160Z"

eventName The name of the audit event: config for this log
transactionId The UUID of the transaction; you may see the same transaction for the

same event in different audit event topics.
userId User ID

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 578

Event Property Description
trackingIds A unique value for an object being tracked
runAs User to run the activity as; may be used in delegated administration
objectId Object identifier, such as ui
operation Typically a CREST operation
before JSON representation of the object prior to the activity
after JSON representation of the object after to the activity
changedFields Fields that were changed, based on "Watched Fields: Defining Fields to

Monitor"
revision Object revision number

J.3. Audit Event Handler Configuration
When you set up an audit event handler, you can configure several properties. Most of the properties
in the following table are used by the CSV audit event handler, and may be configured in the project-
dir/conf directory for your deployment.

In several cases, the following table does not include an entry for Description, as the UI Label / Text is
sufficient.

If you're reviewing this from the OpenIDM Admin UI, click Configure > System Preferences > Audit,
and click the edit icon associated with your event handler.

Event Handler Property Configuration

UI Label / Text Config File Label Description
Name topics Name of the audit event handler
Audit Events topics Audit event topics, such as audit,

access, and activity
Use for queries handlerForQueries Audit Event Handler to use for

Queries
Enabled enabled True or false
Resource Path resourcePath (applies only to router and

repository event handlers
File Rotation fileRotation File rotation options
Rotation Enabled rotationEnabled Enables and disables file rotation
Maximum File Size maxFileSize Max File Size in Bytes, prior to

rotation
File Rotation Prefix rotationFilePrefix File prefix, after rotation

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 579

UI Label / Text Config File Label Description
Rotation Times rotationTimes Time to trigger file rotation, after

midnight; may use entries such
as 5 seconds, 5 minutes, 5 hours,
disabled

File Rotation Suffix rotationFileSuffix Suffix appended to the end of audit
file names

Rotation Interval rotationInterval Time period between log rotation;
may use 5 seconds, 5 minutes, 5
hours, disabled

File Retention fileRetention Specifies how long to keep an audit
file

Maximum Number of Historical
Files

maxNumberOfHistoryFiles Maximum number of backup audit
files

Maximum Disk Space maxDiskSpaceToUse Maximum disk space for audit files
Minimum Free Space Required minFreeSpaceRequired Minimum disk space required on

system with audit files
Rotation and Retention Check
Interval

rotationRetentionCheckInterval Interval for periodically checking
file rotation and retention policies

Log Directory logDirectory (applies only to the CSV event
handler)

CSV Output Formatting formatting

Quote Character quoteChar Character used around a field
Delimiter Character delimiterChar Character between CSV fields
End of Line Symbols endOfLineSymbols

CSV Tamper Evident Configuration security

Enabled enabled True or false (for CSV Tamper
Evident Configuration)

Filename filename Path to the Java keystore file
Password password Password for the Java keystore
Keystore Handler Object keystoreHandlerName Supports tamper-evident logging
Signature Interval signatureInterval Signature generation interval; use

entries such as 1 minute, 2 hrs, 3
sec

Buffering buffering Configuration for optional event
buffering

Buffering Enabled enabled True or false
Enable auto flushing after
processing of events in buffer

autoFlush If enabled, does not flush after each
event (to improves performance)

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 580

Appendix K. Release Levels & Interface
Stability

This appendix includes ForgeRock definitions for product release levels and interface stability.

K.1. ForgeRock Product Release Levels
ForgeRock defines Major, Minor, Maintenance, and Patch product release levels. The release level
is reflected in the version number. The release level tells you what sort of compatibility changes to
expect.

Release Level Definitions

Release Label Version Numbers Characteristics
Major Version: x[.0.0]

(trailing 0s are
optional)

• Bring major new features, minor features, and bug fixes

• Can include changes even to Stable interfaces

• Can remove previously Deprecated functionality, and in rare
cases remove Evolving functionality that has not been explicitly
Deprecated

• Include changes present in previous Minor and Maintenance
releases

Minor Version: x.y[.0]
(trailing 0s are
optional)

• Bring minor features, and bug fixes

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 581

Release Label Version Numbers Characteristics
• Can include backwards-compatible changes to Stable interfaces

in the same Major release, and incompatible changes to
Evolving interfaces

• Can remove previously Deprecated functionality

• Include changes present in previous Minor and Maintenance
releases

Maintenance, Patch Version: x.y.z[.p]

The optional .p
reflects a Patch
version.

• Bring bug fixes

• Are intended to be fully compatible with previous versions from
the same Minor release

K.2. ForgeRock Product Interface Stability
ForgeRock products support many protocols, APIs, GUIs, and command-line interfaces. Some of these
interfaces are standard and very stable. Others offer new functionality that is continuing to evolve.

ForgeRock acknowledges that you invest in these interfaces, and therefore must know when and how
ForgeRock expects them to change. For that reason, ForgeRock defines interface stability labels and
uses these definitions in ForgeRock products.

Interface Stability Definitions

Stability Label Definition
Stable This documented interface is expected to undergo backwards-compatible changes

only for major releases. Changes may be announced at least one minor release
before they take effect.

Evolving This documented interface is continuing to evolve and so is expected to change,
potentially in backwards-incompatible ways even in a minor release. Changes are
documented at the time of product release.

While new protocols and APIs are still in the process of standardization, they are
Evolving. This applies for example to recent Internet-Draft implementations, and
also to newly developed functionality.

Deprecated This interface is deprecated and likely to be removed in a future release. For
previously stable interfaces, the change was likely announced in a previous
release. Deprecated interfaces will be removed from ForgeRock products.

Removed This interface was deprecated in a previous release and has now been removed
from the product.

Technology Preview Technology previews provide access to new features that are evolving new
technology that are not yet supported. Technology preview features may
be functionally incomplete and the function as implemented is subject to

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 582

Stability Label Definition
change without notice. DO NOT DEPLOY A TECHNOLOGY PREVIEW INTO A
PRODUCTION ENVIRONMENT.

Customers are encouraged to test drive the technology preview features in a non-
production environment and are welcome to make comments and suggestions
about the features in the associated forums.

ForgeRock does not guarantee that a technology preview feature will be present
in future releases, the final complete version of the feature is liable to change
between preview and the final version. Once a technology preview moves into
the completed version, said feature will become part of the ForgeRock platform.
Technology previews are provided on an “AS-IS” basis for evaluation purposes
only and ForgeRock accepts no liability or obligations for the use thereof.

Internal/Undocumented Internal and undocumented interfaces can change without notice. If you
depend on one of these interfaces, contact ForgeRock support or email
info@forgerock.com to discuss your needs.

mailto:info@forgerock.com

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 583

OpenIDM Glossary

assignment The definition of an assignment, in the context of roles, depends on
the following:

• Does the assignment imply what account a user should have?

For example, if you want to assign a user to (or remove a user from)
a role of Airplane Mechanics, the details within that role define
what OpenIDM executes on changing the account.

• What happens when a user gets (loses) an assignment?

OpenIDM may execute a custom onAssignment or an onUnassignment
script.

• What is the assignment operation?

When an administrator assigns a role to (on unassigns a role from)
a user, OpenIDM processes that change with one of the following
operations:
"assignmentOperation" : "mergeWithTarget"

"unassignmentOperation" : "removeFromTarget"

Some assignments may include an entitlement, where the associated
role includes access rights to specified resources.

correlation query A correlation query specifies an expression that matches existing
entries in a source repository to one or more entries on a target

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 584

repository. While a correlation query may be built with a script, it is
not a correlation script.

As noted in "Correlating Existing Target Objects", you can set up
a query definition, such as_queryId, _queryFilter, or_queryExpression,
possibly with the help of alinkQualifier.

correlation script A correlation script matches existing entries in a source repository,
and returns the IDs of one or more matching entries on a target
repository. While it skips the intermediate step associated with
acorrelation query, a correlation script can be relatively complex,
based on the operations of the script.

entitlement An entitlement is a collection of attributes that can be added to a user
entry via roles. As such, it is a specialized type of assignment. A user or
device with an entitlement gets access rights to specified resources.
An entitlement is a property of a managed object.

JSON JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JWT JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For OpenIDM, the JWT
is associated with the JWT_SESSION authentication module.

managed object An object that represents the identity-related data managed by
OpenIDM. Managed objects are configurable, JSON-based data
structures that OpenIDM stores in its pluggable repository. The
default configuration of a managed object is that of a user, but you
can define any kind of managed object, for example, groups or roles.

mapping A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

OSGi A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For a good introduction, see the OSGi site. While OpenIDM services
are designed to run in any OSGi container, currently only Apache
Felix is supported.

reconciliation During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

http://www.json.org
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.osgi.org//developer/benefits-of-using-osgi
http://felix.apache.org/
http://felix.apache.org/

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 585

resource An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

REST Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

role OpenIDM includes two different types of provisioning roles and
authorization roles. For more information, see "Working With
Managed Roles".

source object In the context of reconciliation, a source object is a data object on
the source system, that OpenIDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, OpenIDM then adjusts the object on the target system
(target object).

synchronization The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

system object A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory
is represented as a system object in OpenIDM for the period during
which OpenIDM requires access to that entry.System objects follow
the same RESTful resource-based design principles as managed
objects.

target object In the context of reconciliation, a target object is a data object on the
target system, that OpenIDM scans after locating its corresponding
object on the source system. Depending on the defined mapping,
OpenIDM then adjusts the target object to match the corresponding
source object.

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 586

Index

A
Architecture, 1
Audit

Event Topic
Access, 575
Activity, 576
Authentication, 577
Configuration, 577
Reconciliation, 573
Synchronization, 574

Audit logs, 405
Authentication, 342

Authentication Modules, 568, 569, 569
Internal users, 342
Managed users, 342
Roles, 357

Authorization, 342, 358

B
Best practices, 363, 456
Business processes, 382

C
cluster management, 437
Configuration

Email, 446
Files, 465
Objects, 87
REST API, 92
Updating, 32
Validating, 32

Connectors, 174
Generating configurations, 231
Object types, 183
Remote, 176

Correlation query, 291
Correlation script, 291
Custom Audit

Event Handler Property, 578

D
Data

accessing, 111

E
Encryption, 372
External REST, 451

F
failover, 437
File layout, 465

H
healthcheck, 10
high availability, 437

I
Implicit Synchronization, 244

K
Keytool, 31

L
LiveSync, 244

Scheduling, 299

M
Managed objects

Encoding, 155
Mappings, 5, 247

Hooks for scripting, 256
Scheduled reconciliation, 300

O
Objects

Audit objects, 492
Configuration objects, 87
Links, 492
Managed objects, 4, 244, 345, 475, 504

Customizing, 486
Identifiers, 505
Passwords, 319

Object types, 474
Script access, 111, 532
System objects, 4, 492

OpenICF, 174

Integrator's Guide OpenIDM 4 (2021-03-11T21:29:26.69177)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 587

P
Passwords, 319

Replacing defaults, 374
Policies, 160
Ports

8080, 473
8443, 473
8444, 473
Disabling, 377

Proxy
JVM, 91

R
Reconciliation, 5, 243

Paging, 270
Scheduling, 299

Resources, 174
REST API, 92, 504

Listing configuration objects, 92
Roles, 357
Router service, 557

S
Schedule

Examples, 306
Scheduler, 298, 301

Configuration, 301
Scheduling tasks, 301
Scripting, 532

Functions, 532
Security, 363

Authentication, 372
Encryption, 372
SSL, 370

Sending mail, 446
Server logs, 172
Starting OpenIDM, 7
Stopping OpenIDM, 7
Synchronization, 5, 243, 493

Actions, 276
Conditions, 251
Connectors, 246
Correlation query, 291
Correlation script, 291
Creating attributes, 249, 255
Direct (push), 243

Filtering, 253
Mappings, 247
Passwords, 325
Reusing links, 259
Scheduling, 299
Situations, 276
Transforming attributes, 249

T
Troubleshooting, 459

W
Workflow, 382

	Integrator's Guide
	Table of Contents
	Preface
	1. Who Should Use This Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site

	Chapter 1. Architectural Overview
	1.1. OpenIDM Modular Framework
	1.2. Infrastructure Modules
	1.3. Core Services
	1.4. Secure Commons REST Commands
	1.5. Access Layer

	Chapter 2. Starting and Stopping OpenIDM
	2.1. To Start and Stop OpenIDM
	2.2. Specifying the OpenIDM Startup Configuration
	2.3. Monitoring the Basic Health of an OpenIDM System
	2.3.1. Basic Health Checks
	2.3.2. Getting Current OpenIDM Session Information
	2.3.3. Monitoring OpenIDM Tuning and Health Parameters
	2.3.3.1. Operating System Health Check
	2.3.3.2. Memory Health Check
	2.3.3.3. JDBC Health Check
	2.3.3.4. Reconciliation Health Check

	2.3.4. Customizing Health Check Scripts
	2.3.5. Verifying the State of Health Check Service Modules

	2.4. Displaying Information About Installed Modules
	2.5. Starting OpenIDM in Debug Mode
	2.6. Running OpenIDM As a Service on Linux Systems

	Chapter 3. OpenIDM Command-Line Interface
	3.1. Using the configexport Subcommand
	3.2. Using the configimport Subcommand
	3.3. Using the configureconnector Subcommand
	3.4. Using the encrypt Subcommand
	3.5. Using the secureHash Subcommand
	3.6. Using the keytool Subcommand
	3.7. Using the validate Subcommand
	3.8. Using the update Subcommand

	Chapter 4. OpenIDM Web-Based User Interfaces
	4.1. Configuring OpenIDM from the Admin UI
	4.2. Working With the Self-Service UI
	4.3. Configuring User Self-Service
	4.3.1. Common Configuration Details
	4.3.1.1. Configuring Self-Service Email Messages
	4.3.1.2. Configuring Google reCAPTCHA
	4.3.1.3. Configuring Self-Service Questions
	4.3.1.4. Setting a Minimum Number of Self-Service Questions

	4.3.2. The End User and Commons User Self-Service

	4.4. Customizing a UI Template
	4.4.1. Customizing User Self-Service Screens
	4.4.2. Modifying Valid Query Fields

	4.5. Managing Accounts
	4.5.1. Account Configuration
	4.5.2. Procedures for Managing Accounts

	4.6. Configuring Account Relationships
	4.7. Managing Workflows From the Self-Service UI
	4.8. Customizing the UI
	4.9. Changing the UI Theme
	4.9.1. OpenIDM UI Themes and Bootstrap
	4.9.2. Changing the Default Logo
	4.9.3. Changing the Language of the UI
	4.9.4. Creating a Project-Specific UI Theme

	4.10. Using an External System for Password Reset
	4.11. Providing a Logout URL to External Applications
	4.12. Changing the UI Path
	4.13. Disabling the UI

	Chapter 5. Managing the OpenIDM Repository
	5.1. Understanding the JDBC Repository Configuration File
	5.1.1. Understanding the Connection Configuration File
	5.1.2. Understanding the Database Table Configuration

	5.2. Using Explicit or Generic Object Mapping With a JDBC Repository
	5.2.1. Using Generic Mappings
	5.2.2. Improving Search Performance for Generic Mappings
	5.2.3. Using Explicit Mappings

	5.3. Configuring SSL with a JDBC Repository
	5.4. Interacting With the Repository Over REST
	5.4.1. Changing the Repository Password
	5.4.2. Running Queries and Commands on the Repository

	Chapter 6. Configuring OpenIDM
	6.1. OpenIDM Configuration Objects
	6.1.1. Single Instance Configuration Objects
	6.1.2. Multiple Instance Configuration Objects

	6.2. Changing the Default Configuration
	6.3. Configuring an OpenIDM System for Production
	6.3.1. Configuring a Production Repository
	6.3.2. Disabling Automatic Configuration Updates
	6.3.3. Communicating Through a Proxy Server

	6.4. Configuring OpenIDM Over REST
	6.5. Using Property Value Substitution In the Configuration
	6.5.1. Using Property Value Substitution With System Properties
	6.5.2. Limitations of Property Value Substitution

	6.6. Adding Custom Endpoints
	6.6.1. The Components of a Custom Endpoint Configuration File
	6.6.2. The Components of a Custom Endpoint Script File
	6.6.2.1. More on the context in a Custom Endpoint Script
	6.6.2.2. Custom Endpoint Scripts and request Objects
	6.6.2.3. Custom Endpoint Scripts, Contexts, and Chains
	6.6.2.4. Additional Custom Endpoint Script Parameters
	6.6.2.5. Set Up Exceptions in Scripts

	6.7. Custom Endpoint Example
	6.8. Setting the Script Configuration
	6.9. Calling a Script From a Configuration File

	Chapter 7. Accessing Data Objects
	7.1. Accessing Data Objects By Using Scripts
	7.2. Accessing Data Objects By Using the REST API
	7.3. Defining and Calling Queries
	7.3.1. Common Filter Expressions
	7.3.2. Parameterized Queries
	7.3.3. Native Query Expressions
	7.3.4. Constructing Queries
	7.3.4.1. Comparison Expressions
	7.3.4.1.1. Querying Objects That Equal the Given Value
	7.3.4.1.2. Querying Objects That Contain the Given Value
	7.3.4.1.3. Querying Objects That Start With the Given Value
	7.3.4.1.4. Querying Objects That Are Less Than the Given Value
	7.3.4.1.5. Querying Objects That Are Less Than or Equal to the Given Value
	7.3.4.1.6. Querying Objects That Are Greater Than the Given Value
	7.3.4.1.7. Querying Objects That Are Greater Than or Equal to the Given Value

	7.3.4.2. Presence Expressions
	7.3.4.3. Literal Expressions
	7.3.4.4. Complex Expressions

	7.3.5. Paging and Counting Query Results
	7.3.6. Sorting Query Results

	Chapter 8. Managing Users, Groups, Roles and Relationships
	8.1. Creating and Modifying Managed Object Types
	8.2. Working with Managed Users
	8.3. Working With Managed Groups
	8.4. Working With Managed Roles
	8.4.1. Creating, Listing, Assigning, and Deleting Roles
	8.4.1.1. Creating a Managed Role
	8.4.1.2. Listing Existing Roles
	8.4.1.3. Assigning a Managed Role to a User
	8.4.1.4. Querying the Roles Assigned to a User
	8.4.1.5. Deleting a User's Managed Roles
	8.4.1.6. Deleting a Role Definition

	8.4.2. Working With Role Assignments
	8.4.2.1. Creating an Assignment Object
	8.4.2.2. Adding an Assignment to a Role
	8.4.2.3. Deleting a Managed Assignment

	8.4.3. Effective Roles and Effective Assignments
	8.4.4. Adding Support for Dynamic Assignments
	8.4.5. Managed Role Object Script Hooks

	8.5. Managing Relationships Between Objects
	8.5.1. Defining a Relationship Type
	8.5.2. Establishing a Relationship Between Two Objects
	8.5.3. Validating Relationships Between Objects
	8.5.4. Working With Bi-Directional Relationships
	8.5.5. Viewing Relationships Over REST

	8.6. Running Scripts on Managed Objects
	8.7. Encoding Attribute Values
	8.7.1. Encoding Attribute Values With Reversible Encryption
	8.7.2. Encoding Attribute Values by Using Salted Hash Algorithms

	8.8. Restricting HTTP Access to Sensitive Data

	Chapter 9. Using Policies to Validate Data
	9.1. Configuring the Default Policy for Managed Objects
	9.1.1. Understanding the Policy Script File
	9.1.1.1. Policy Configuration Objects
	9.1.1.2. Policy Implementation Functions

	9.1.2. Understanding the Policy Configuration Element
	9.1.3. Configuring Policy Validation in the UI

	9.2. Extending the Policy Service
	9.2.1. Adding Custom Scripted Policies
	9.2.2. Adding Conditional Policy Definitions

	9.3. Disabling Policy Enforcement
	9.4. Managing Policies Over REST
	9.4.1. Listing the Defined Policies
	9.4.2. Validating Objects and Properties Over REST

	Chapter 10. Configuring Server Logs
	10.1. Log Message Files
	10.2. Specifying the Logging Level
	10.3. Disabling Logs

	Chapter 11. Connecting to External Resources
	11.1. About OpenIDM and OpenICF
	11.2. Accessing Remote Connectors
	11.3. Configuring Connectors
	11.3.1. Setting the Connector Reference Properties
	11.3.2. Setting the Pool Configuration
	11.3.3. Setting the Operation Timeouts
	11.3.4. Setting the Connection Configuration
	11.3.5. Setting the Synchronization Failure Configuration
	11.3.6. Configuring How Results Are Handled
	11.3.7. Specifying the Supported Object Types
	11.3.7.1. Extending the Object Type Configuration
	11.3.7.2. Extending the Property Type Configuration
	11.3.7.3. OpenICF Special Attributes

	11.3.8. Configuring the Operation Options

	11.4. Installing and Configuring Remote Connector Servers
	11.4.1. Installing and Configuring a .NET Connector Server
	11.4.2. Installing and Configuring a Remote Java Connector Server

	11.5. Connectors Supported With OpenIDM 4
	11.5.1. Generic LDAP Connector
	11.5.1.1. Controlling What the LDAP Connector Synchronizes
	11.5.1.2. Using the Generic LDAP Connector With Active Directory
	11.5.1.2.1. Managing Active Directory Users With the LDAP Connector
	11.5.1.2.2. Managing Active Directory Groups With the LDAP Connector
	11.5.1.2.3. Handling Active Directory Dates

	11.5.2. Active Directory Connector
	11.5.2.1. Using PowerShell Scripts With the Active Directory Connector

	11.5.3. CSV File Connector
	11.5.4. Scripted SQL Connector
	11.5.5. Database Table Connector
	11.5.6. Groovy Connector Toolkit
	11.5.7. PowerShell Connector Toolkit
	11.5.8. Salesforce Connector
	11.5.9. Google Apps Connector
	11.5.10. XML File Connector

	11.6. Creating Default Connector Configurations
	11.6.1. Adding New Connectors from the Admin UI
	11.6.2. Adding New Connectors from the Command Line

	11.7. Checking the Status of External Systems Over REST
	11.8. Adding Attributes to Connector Configurations

	Chapter 12. Synchronizing Data Between Resources
	12.1. Types of Synchronization
	12.2. Defining Your Data Mapping Model
	12.3. Configuring Synchronization Between Two Resources
	12.3.1. Setting Up the Connector Configuration
	12.3.1.1. Setting up and Modifying Connector Configurations in the Admin UI
	12.3.1.2. Editing Connector Configuration Files

	12.3.2. Configuring the Synchronization Mapping
	12.3.2.1. Specifying Resource Mappings in sync.json
	12.3.2.2. Creating Attributes in a Mapping
	12.3.2.3. Transforming Attributes in a Mapping
	12.3.2.4. Adding Link Qualifiers to a Mapping
	12.3.2.5. Using Conditions in a Mapping
	12.3.2.5.1. Using Scriptable Conditions
	12.3.2.5.2. Using Link Qualifier Conditions
	12.3.2.5.3. Conditions related to the Object Variable

	12.3.2.6. Filtering Synchronized Objects
	12.3.2.7. Preventing Accidental Deletion of a Target System

	12.3.3. Constructing and Manipulating Attributes With Scripts
	12.3.4. Advanced Use of Scripts in Mappings
	12.3.5. Reusing Links Between Mappings

	12.4. Managing Reconciliation Over REST
	12.4.1. Triggering a Reconciliation Run
	12.4.2. Obtaining the Details of a Reconciliation Run
	12.4.3. Canceling a Reconciliation Run
	12.4.4. Listing Reconciliation Runs
	12.4.5. Triggering LiveSync Over REST

	12.5. Restricting Reconciliation By Using Queries
	12.5.1. Improving Reconciliation Performance
	12.5.1.1. Improving Reconciliation Query Performance
	12.5.1.2. Improving Role-Based Provisioning Performance With an onRecon Script

	12.5.2. Configuring Reconciliation Paging

	12.6. Restricting Reconciliation to a Specific ID
	12.7. Configuring the LiveSync Retry Policy
	12.8. Disabling Automatic Synchronization Operations
	12.9. Configuring Synchronization Failure Compensation
	12.10. Synchronization Situations and Actions
	12.10.1. Synchronization Situations
	12.10.2. Source Reconciliation
	12.10.3. Target Reconciliation
	12.10.4. Situations Specific to Implicit Synchronization and LiveSync
	12.10.5. Synchronization Actions
	12.10.6. Launching a Script As an Action
	12.10.7. Launching a Workflow As an Action
	12.10.8. Using Link Qualifiers in Policies

	12.11. Asynchronous Reconciliation
	12.12. Configuring Case Sensitivity For Data Stores
	12.13. Optimizing Reconciliation Performance
	12.13.1. Correlating Empty Target Sets
	12.13.2. Prefetching Links
	12.13.3. Parallel Reconciliation Threads

	12.14. Correlating Existing Target Objects
	12.14.1. Configuring Correlation Queries
	12.14.1.1. Using Filtered Queries to Correlate Objects
	12.14.1.2. Using Predefined Queries to Correlate Objects
	12.14.1.3. Using the Expression Builder to Create Correlation Queries

	12.14.2. Correlating Multiple Target Objects
	12.14.3. Correlation Scripts

	12.15. Scheduling Synchronization
	12.15.1. Configuring Scheduled Synchronization
	12.15.2. Specifying the Mapping as Part of the Schedule

	Chapter 13. Scheduling Tasks and Events
	13.1. Scheduler Configuration
	13.2. Configuring Persistent Schedules
	13.3. Schedule Examples
	13.4. Managing Schedules Over REST
	13.4.1. Creating a Schedule
	13.4.2. Obtaining the Details of a Schedule
	13.4.3. Updating a Schedule
	13.4.4. Listing Configured Schedules
	13.4.5. Deleting a Schedule
	13.4.6. Obtaining a List of Running Scheduled Tasks
	13.4.7. Pausing Scheduled Tasks
	13.4.8. Resuming All Running Scheduled Tasks

	13.5. Scanning Data to Trigger Tasks
	13.5.1. Configuring the Task Scanner
	13.5.2. Managing Scanning Tasks Over REST
	13.5.2.1. Triggering a Scanning Task
	13.5.2.2. Canceling a Scanning Task
	13.5.2.3. Listing Scanning Tasks

	Chapter 14. Managing Passwords
	14.1. Enforcing Password Policy
	14.1.1. Creating a Password History Policy

	14.2. Storing Separate Passwords Per Linked Resource
	14.3. Generating Random Passwords
	14.4. Synchronizing Passwords Between OpenIDM and an LDAP Server
	14.4.1. Synchronizing Passwords With OpenDJ
	14.4.1.1. Establishing Secure Communication Between OpenIDM and OpenDJ
	14.4.1.2. Installing the OpenDJ Password Synchronization Plugin

	14.4.2. Synchronizing Passwords With Active Directory
	14.4.2.1. Configuring OpenIDM for Password Synchronization With Active Directory
	14.4.2.2. Installing the Active Directory Password Synchronization Plugin

	Chapter 15. Managing Authentication, Authorization and Role-Based Access Control
	15.1. OpenIDM Authentication
	15.1.1. Authenticating OpenIDM Users
	15.1.1.1. Internal Users
	15.1.1.1.1. Managing Internal Users Over REST

	15.1.1.2. Managed Users
	15.1.1.3. Authenticating Internal and Managed Users

	15.1.2. Supported Authentication and Session Modules
	15.1.2.1. Supported Session Module
	15.1.2.2. Supported Authentication Modules

	15.1.3. Configuring Pass-Through Authentication
	15.1.4. Kerberos Configuration Example
	15.1.4.1. Kerberos Definitions

	15.1.5. Configuring the CLIENT_CERT Authentication Module

	15.2. Roles and Authentication
	15.3. Authorization
	15.3.1. router-authz.js
	15.3.2. access.js
	15.3.3. Extending the Authorization Mechanism

	15.4. Building Role-Based Access Control (RBAC)
	15.4.1. Roles, Authentication, and the Security Context

	Chapter 16. Securing & Hardening OpenIDM
	16.1. Accessing the Security Management Service
	16.1.1. Displaying the Contents of the Keystore
	16.1.2. Importing a Signed Certificate into the Keystore
	16.1.3. Generating a Certificate Signing Request Over REST
	16.1.4. Generating a Self-Signed Certificate Over REST

	16.2. Security Precautions for a Production Environment
	16.2.1. Use SSL and HTTPS
	16.2.2. Restrict REST Access to the HTTPS Port
	16.2.3. Restrict the HTTP Payload Size
	16.2.4. Encrypt Data Internally and Externally
	16.2.5. Use Message Level Security
	16.2.5.1. Message Level Security with Logins
	16.2.5.2. Sessions and the JWT Cookie

	16.2.6. Replace Default Security Settings
	16.2.7. Secure Jetty
	16.2.8. Protect Sensitive REST Interface URLs
	16.2.9. Protect Sensitive Files & Directories
	16.2.10. Remove or Protect Development & Debug Tools
	16.2.11. Protect the OpenIDM Repository
	16.2.12. Remove OrientDB Studio
	16.2.13. Adjust Log Levels
	16.2.14. Set Up Restart At System Boot

	Chapter 17. Integrating Business Processes and Workflows
	17.1. BPMN 2.0 and the Activiti Tools
	17.2. Setting Up Activiti Integration With OpenIDM
	17.2.1. Configuring the Activiti Engine
	17.2.1.1. Configuring the Activiti History Level

	17.2.2. Defining Activiti Workflows
	17.2.3. Invoking Activiti Workflows
	17.2.4. Querying Activiti Workflows

	17.3. Using Custom Templates for Activiti Workflows
	17.4. Managing Workflows Over the REST Interface

	Chapter 18. Using Audit Logs
	18.1. Configuring the Audit Service
	18.2. Configuring Audit Event Handlers
	18.2.1. CSV Audit Event Handler
	18.2.1.1. Minimum Admin UI CSV Audit Handler Configuration Requirements
	18.2.1.2. Configuring Tamper Protection for CSV Audit Logs
	18.2.1.3. How CSV Files Become Tamper-Evident

	18.2.2. Router Audit Event Handler
	18.2.3. Repository Audit Event Handler
	18.2.4. Reviewing Active Audit Event Handlers

	18.3. Audit Log Event Topics
	18.3.1. OpenIDM Audit Event Topics

	18.4. Event Topics: Filtering
	18.4.1. Filter Actions: Filtering Audit Entries by Action
	18.4.2. Filter Fields: Filtering Audit Entries by Field
	18.4.3. Filter Script: Using a Script to Filter Audit Data
	18.4.4. Filter Triggers: Filtering Audit Entries by Trigger
	18.4.5. Watched Fields: Defining Fields to Monitor
	18.4.6. Password Fields: Defining a Password Field

	18.5. Filtering Audit Logs by Policy
	18.6. Configuring an Audit Exception Formatter
	18.7. Adjusting Audit Write Behavior
	18.8. Generating Reports
	18.9. Purging Obsolete Audit Information
	18.9.1. Audit Log Rotation

	18.10. Querying Audit Logs Over REST
	18.10.1. Querying the Reconciliation Audit Log
	18.10.2. Querying the Activity Audit Log
	18.10.3. Querying the Synchronization Audit Log
	18.10.4. Querying the Authentication Audit Log
	18.10.5. Querying the Configuration Audit Log

	Chapter 19. Configuring OpenIDM for High Availability
	19.1. Configuring and Adding to a Cluster
	19.2. Configuring an OpenIDM Instance as Part of a Cluster
	19.2.1. Edit the Boot Configuration File
	19.2.1.1. Creating a Key for Cluster Members

	19.2.2. Edit the Cluster Configuration File

	19.3. Managing Scheduled Tasks Across a Cluster
	19.3.1. Variations in Scheduled Tasks
	19.3.1.1. Modify an OpenIDM Instance in a Cluster
	19.3.1.2. Modify the OpenIDM Cluster Scheduler
	19.3.1.3. Disable Automating Polling of Configuration Changes

	19.4. Managing Nodes Over REST

	Chapter 20. Sending Email
	20.1. Sending Mail Over REST
	20.2. Sending Mail From a Script

	Chapter 21. Accessing External REST Services
	21.1. Invocation Parameters
	21.2. Support for Non-JSON Responses

	Chapter 22. OpenIDM Project Best Practices
	22.1. Implementation Phases
	22.1.1. Initiation
	22.1.2. Definition
	22.1.3. Design
	22.1.4. Configure and Test
	22.1.5. Production

	Chapter 23. Troubleshooting
	23.1. OpenIDM Stopped in Background
	23.2. The scr list Command Shows Sync Service As Unsatisfied
	23.3. JSON Parsing Error
	23.4. System Not Available
	23.5. Bad Connector Host Reference in Provisioner Configuration
	23.6. Missing Name Attribute

	Chapter 24. Advanced Configuration
	24.1. Advanced Startup Configuration

	Appendix A. File Layout
	Appendix B. Ports Used
	Appendix C. Data Models and Objects Reference
	C.1. Managed Objects
	C.1.1. Managed Object Schema
	C.1.1.1. Managed Object Reserved Properties
	C.1.1.2. Managed Object Schema Validation
	C.1.1.3. Managed Object Derived Properties

	C.1.2. Data Consistency
	C.1.3. Managed Object Triggers
	C.1.3.1. State Triggers
	C.1.3.2. Object Storage Triggers
	C.1.3.3. Property Storage Triggers
	C.1.3.4. Storage Trigger Sequences

	C.1.4. Managed Object Encryption
	C.1.5. Managed Object Configuration
	C.1.6. Custom Managed Objects
	C.1.6.1. Setting Up a Managed Object Type
	C.1.6.2. Manipulating Managed Objects Declaratively
	C.1.6.3. Manipulating Managed Objects Programmatically
	C.1.6.3.1. Creating Objects
	C.1.6.3.2. Updating Objects
	C.1.6.3.3. Patching Objects
	C.1.6.3.4. Deleting Objects
	C.1.6.3.5. Reading Objects
	C.1.6.3.6. Querying Object Sets

	C.1.7. Accessing Managed Objects Through the REST API

	C.2. Configuration Objects
	C.2.1. When To Use Custom Configuration Objects
	C.2.2. Custom Configuration Object Naming Conventions
	C.2.3. Mapping Configuration Objects To Configuration Files
	C.2.4. Configuration Objects File & REST Payload Formats
	C.2.5. Accessing Configuration Objects Through the REST API
	C.2.6. Accessing Configuration Objects Programmatically
	C.2.7. Creating Objects
	C.2.8. Updating Objects
	C.2.9. Deleting Objects
	C.2.10. Reading Objects

	C.3. System Objects
	C.4. Audit Objects
	C.5. Links

	Appendix D. Synchronization Reference
	D.1. Object-Mapping Objects
	D.1.1. Property Objects
	D.1.2. Policy Objects
	D.1.2.1. Script Object

	D.2. Links
	D.3. Queries
	D.4. Reconciliation
	D.5. REST API

	Appendix E. REST API Reference
	E.1. URI Scheme
	E.2. Object Identifiers
	E.3. Content Negotiation
	E.4. Supported Operations
	E.4.1. Creating an Object
	E.4.2. Reading an Object
	E.4.3. Updating an Object
	E.4.4. Deleting an Object
	E.4.5. Querying Resources

	E.5. Conditional Operations
	E.6. Supported Methods
	E.7. REST Endpoints and Sample Commands
	E.7.1. Managing the Server Configuration Over REST
	E.7.2. Managing Users Over REST
	E.7.3. Managing System Objects Over REST
	E.7.4. Managing Workflows Over REST
	E.7.5. Managing Scanned Tasks Over REST
	E.7.6. Accessing Log Entries Over REST
	E.7.7. Managing Reconciliation Operations Over REST
	E.7.8. Managing the Security Service over REST
	E.7.9. Managing the Repository over REST

	E.8. HTTP Status Codes

	Appendix F. Scripting Reference
	F.1. Function Reference
	F.1.1. openidm.create(resourceName, newResourceId, content, params, fields)
	F.1.2. openidm.patch(resourceName, rev, value, params, fields)
	F.1.3. openidm.read(resourceName, params, fields)
	F.1.4. openidm.update(resourceName, rev, value, params, fields)
	F.1.5. openidm.delete(resourceName, rev, params, fields)
	F.1.6. openidm.query(resourceName, params, fields)
	F.1.7. openidm.action(resource, actionName, content, params, fields)
	F.1.8. openidm.encrypt(value, cipher, alias)
	F.1.9. openidm.decrypt(value)
	F.1.10. openidm.isEncrypted(object)
	F.1.11. openidm.hash(value, algorithm)
	F.1.12. openidm.isHashed(value)
	F.1.13. openidm.matches(string, value)
	F.1.14. Logging Functions
	F.1.14.1. logger.debug(string message, object... params)
	F.1.14.2. logger.error(string message, object... params)
	F.1.14.3. logger.info(string message, object... params)
	F.1.14.4. logger.trace(string message, object... params)
	F.1.14.5. logger.warn(string message, object... params)

	F.2. Places to Trigger Scripts
	F.3. Variables Available to Scripts
	F.4. Validating Scripts Over REST

	Appendix G. Router Service Reference
	G.1. Configuration
	G.1.1. Filter Objects
	G.1.1.1. Pattern Matching in the router.json File

	G.1.2. Script Execution Sequence
	G.1.3. Script Scope

	G.2. Example

	Appendix H. Embedded Jetty Configuration
	H.1. Using OpenIDM Configuration Properties in the Jetty Configuration
	H.1.1. Accessing Explicit Bean Properties
	H.1.2. Accessing Generic Properties

	H.2. Jetty Default Settings
	H.3. Registering Additional Servlet Filters
	H.4. Disabling and Enabling Secure Protocols

	Appendix I. Authentication and Session Module Configuration Details
	I.1. OPENAM_SESSION Module Configuration Options

	Appendix J. Audit Configuration Schema
	J.1. OpenIDM Specific Audit Event Topics
	J.2. Commons Audit Event Topics
	J.3. Audit Event Handler Configuration

	Appendix K. Release Levels & Interface Stability
	K.1. ForgeRock Product Release Levels
	K.2. ForgeRock Product Interface Stability

	OpenIDM Glossary
	Index

