
PingAuthorize

PingAuthorize | Contents | ii

Contents

PingAuthorize...7

Release Notes.. 7
PingAuthorize 9.1.0.5 (May 2024).. 7
PingAuthorize 9.1.0.4 (November 2023)...8
PingAuthorize 9.1.0.3 (August 2023).. 8
PingAuthorize 9.1.0.2 (March 2023)... 8
PingAuthorize 9.1.0.1 (December 2022)...8
PingAuthorize 9.1 (June 2022)... 8
PingAuthorize 9.0.0.6 (August 2023).. 11
PingAuthorize 9.0.0.5 (April 2023).. 11
PingAuthorize 9.0.0.4 (January 2023)...11
PingAuthorize 9.0.0.2 (July 2022)...11
PingAuthorize 9.0.0.1 (February 2022)... 11
PingAuthorize 9.0 (December 2021)...11
Previous Releases...16

Introduction to PingAuthorize..16

Getting started with PingAuthorize (tutorials)..17
Using the tutorials... 17

Setting up your environment.. 18
Starting PingAuthorize.. 18
Verifying proper startup.. 19
Accessing the GUIs..19
Stopping PingAuthorize.. 20
About the tutorial configuration.. 20

Tutorial 1: Importing default policies... 21
Introduction to the Trust Framework and default policies.. 24

Tutorial 2: Configuring fine-grained access control for an API... 26
Configuring a reverse proxy for the Meme Game API...28
Testing the reverse proxy...29
For further consideration: The PingAuthorize API security gateway, part 1...........................30
Adding a policy for the Create Game endpoint..31
For further consideration: The PingAuthorize API security gateway, part 2...........................32
Testing the policy from the Policy Editor... 34
Testing the policy by making an HTTP request...37
For further consideration: Decision Visualiser..38
Modifying the rule for the Create Game endpoint..39
For further consideration: Resolvers and value processors...43
Conclusion.. 43

Tutorial 3: Configuring attribute-based access control for API resources...44
Configuring the API security gateway.. 44
Creating a policy based on user credentials..47
Creating a policy based on the API response... 52
Conclusion.. 58

Copyright ©2024

PingAuthorize | Contents | iii

Tutorial (optional): Creating SCIM policies... 59
Tutorial: Creating the policy tree.. 60
Tutorial: Creating SCIM access token policies.. 62
Tutorial: Creating a policy for role-based access control... 74
Example files.. 77
Conclusion.. 77

Installing PingAuthorize..77
Docker deployment..83

Deployment requirements when using Docker...83
Deploying PingAuthorize Server and Policy Editor using Docker.. 84

Manual installation...88
Before you install manually.. 88
Installing the server and the Policy Editor manually.. 95

Signing on to the PingAuthorize Policy Editor.. 108
Changing the PingAuthorize Policy Editor authentication mode.. 108
Configuring an OIDC provider for single sign-on requests from PingAuthorize....................110

Upgrading PingAuthorize..126
Upgrade considerations...127

Upgrade considerations introduced in PingAuthorize 8.x...128
Docker upgrades... 131

Upgrading PingAuthorize Server using Docker..131
Upgrading the PingAuthorize Policy Editor using Docker.. 132

Manual upgrades...133
Upgrading PingAuthorize Server manually...133
Reverting an update... 134
Upgrading the PingAuthorize Policy Editor manually...134

Policy-related upgrades...136
Backing up policies...136
Upgrading the Trust Framework and policies.. 136
Upgrading a PostgreSQL policy database... 137

Uninstalling PingAuthorize...138

PingAuthorize Integrations...139
Kong API gateway integration...139

Preparing PingAuthorize for Kong Gateway integration...141
Setting up Kong Gateway.. 143
Troubleshooting the Kong Gateway integration... 148

MuleSoft API gateway integration...151
Deploying the custom MuleSoft policy for PingAuthorize...152
Applying the custom MuleSoft policy for PingAuthorize...153

PingAuthorize Server Administration Guide...158
Running PingAuthorize..159

Starting PingAuthorize Server.. 159
Running PingAuthorize Server as a foreground process... 159
Starting PingAuthorize Server at boot time (Unix/Linux)..159
Starting PingAuthorize Server at boot time (Windows)..160
Starting PingAuthorize Policy Editor...162

Copyright ©2024

PingAuthorize | Contents | iv

Stopping PingAuthorize Server.. 165
Stopping PingAuthorize Policy Editor...166
Restarting PingAuthorize Server.. 166

About the API security gateway..166
API gateway request and response flow..166
Gateway configuration basics...167
API security gateway authentication.. 168
API security gateway policy requests...169
API security gateway HTTP 1.1 support..175
Gateway error templates.. 176

About the Sideband API..178
API gateway integration..179
Sideband API configuration basics...180
Authenticating to the Sideband API... 181
Authenticating API server requests.. 183
Sideband API policy requests.. 183
Request context configuration.. 189
Sideband access token validation..190
Sideband error templates... 191

About the SCIM service.. 192
SCIM API request and response flow..192
SCIM configuration basics..193
SCIM endpoints.. 196
SCIM authentication... 197
SCIM policy requests..197
Lookthrough limit for SCIM searches...207
Disabling the SCIM REST API...207

About the SCIM user store... 208
Defining the LDAP user store.. 210
Location management for load balancing.. 213
Automatic backend LDAP server discovery... 213
LDAP health checks... 218
Connecting non-LDAP data stores...221

About the Authorization Policy Decision APIs.. 222
JSON PDP API request and response flow...222
Authenticating to the JSON PDP API.. 227
XACML-JSON PDP API request and response flow... 228

Policy Editor configuration...238
Specifying custom configuration with an options file..238
Manage policy database credentials.. 250
Configuring SpEL Java classes for value processing.. 255
Setting the request list length for Decision Visualizer..256
HTTP caching... 257

Policy administration..258
About the Trust Framework..258
Create policies in a development environment.. 260
Using the Deployment Manager...267
Use policies in a production environment.. 273
Policy database backups..277
Restoring a policy database from a backup...278
Policy application management with signed deployment packages.....................................280
Environment-specific Trust Framework attributes.. 283
User profile availability in policies.. 288

Access token validators...290
Access token validator types..292
Token resource lookup methods..299

Copyright ©2024

PingAuthorize | Contents | v

Server configuration.. 300
Administration accounts..300
About the dsconfig tool...301
PingAuthorize administrative console...302
About the configuration audit log... 302
About the config-diff tool.. 302
Certificates.. 303
Configure the Policy Decision Service... 354
User store configuration... 354
Configure access token validation..355
Configure PingOne to use SSO for the administrative console... 355
Configure traffic through a load balancer...357
PingAuthorize Server configuration with dsconfig.. 358

Deployment automation and server profiles... 361
Variable substitution using manage-profile...362
Layout of a server profile... 363
About the manage-profile tool.. 365
Common manage-profile workflows... 366

Server status... 370
Server availability.. 371

User Store Availability gauge... 371
Endpoint Average Response Time (Milliseconds) gauge...372
HTTP Processing (Percent) gauge.. 373
Policy Decision Service Availability gauge...374
Auto-healing for unavailable servers.. 375

Available gauges... 375
Common server alarms...379
Managing monitoring... 381

Profiling server performance using the Stats Logger...381
Logging HTTP performance statistics using the Periodic Stats Logger............................... 383
StatsD monitoring endpoint.. 383
Sending metrics to Splunk... 384

Managing HTTP correlation IDs..385
About HTTP correlation IDs... 385
Enabling or disabling correlation ID support.. 386
Configuring the correlation ID response header.. 386
How the server manages correlation IDs...386

Command-line tools...388
Saving command options in a file..393
Sample dsconfig batch files... 395
Running task-based tools... 395

Diagnostic and decision data.. 397
Exporting policy data.. 397
Enable detailed logging.. 397
About the Decision Response View...399
Visualizing a policy decision response...400
Capture debugging data with the collect-support-data tool..402

About the layout of the PingAuthorize Server folders...402
About the layout of the PingAuthorize Policy Editor folders... 403

PingAuthorize Policy Administration Guide... 404
Getting started... 404
Version control (Branch Manager).. 405

Creating a new top-level branch.. 405
Creating a subbranch from a commit...406

Copyright ©2024

PingAuthorize | Contents | vi

Importing a branch... 406
Deleting a branch... 407
Merging branches... 407
Reverting branch changes..408
Committing changes... 408
Generating snapshots...409
Partial snapshot export and merging... 409
Creating a deployment package...410
Deleting a deployment package...411

Trust Framework... 411
Domains (Authorization Policy Decision APIs only)... 411
Services.. 411
Attributes... 417
Actions.. 426
Identity classifications and IdP support..426
Named conditions... 427
Value processing.. 427
Chained value processors.. 431
Trust Framework testing...431
Viewing Trust Framework entity dependencies..432

Policy management... 433
Policy sets, policies, and rules...434
Policies and policy sets.. 434
Policy testing...444

Repeating policies and attributes..446
Policy solutions..448

Use case: Using consent to determine access to a resource..448
Use case: Using consent to change a response... 463
Use case: Using a SCIM resource type or a policy request action to control behavior........ 471
Restricting the modification of attributes.. 487

Test Suite.. 489
Advice types.. 492

Add Filter.. 492
Combine SCIM Search Authorizations...492
Denied Reason... 493
Exclude Attributes...493
Filter Response...494
Include Attributes.. 495
Modify Attributes... 496
Modify Headers...496
Modify Query.. 497
Modify SCIM Patch...497
Regex Replace Attributes...499

REST API documentation... 500

Copyright ©2024

PingAuthorize | PingAuthorize | 7

PingAuthorize

PingAuthorize software provides fine-grained, attribute-based access control and dynamic authorization
management, enabling you to protect resources and filter data for databases, applications, and APIs.

 Release Notes

▪ Current

 Get Started with PingAuthorize

▪ Introduction to PingAuthorize on page
16

▪ Installing PingAuthorize on page 77

▪ Uninstalling PingAuthorize on page 138
▪ PingAuthorize Tutorials

 Use PingAuthorize

▪ Use cases
▪ Server admin guide
▪ Policy admin guide

▪ Policy development and promotion
▪ API gateway integrations

 Troubleshoot PingAuthorize

▪ Enable detailed logging on page 397
▪ Capture debugging data
▪ Monitor server availability

▪ Troubleshoot TLS-related issues
▪ Configure LDAP health checks
▪ Visualize a policy decision response

 Learn More

▪ API reference guide
▪ PingAuthorize Server Docker image
▪ PingAuthorize Policy Editor Docker image
▪ PingAuthorize Community

▪ Ping Identity Support Portal
▪ PingAuthorize customer training (existing

customers only)
▪ Partner Portal (partners)

Release Notes

New features and improvements in PingAuthorize. Updated May 31, 2024.

PingAuthorize 9.1.0.5 (May 2024)
Fixed SCIM case-sensitivity error PAZ-8473 Fixed
We fixed an issue where requests to create SCIM entries were not always observing the case-
exact=false property, leading to incorrect case-sensitivity errors. Now, requests featuring this property
will not be case-sensitive.
Fixed a NullPointerException caused by an unconfigured alert handler DS-47455 Fixed

Copyright ©2024

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/
https://hub.docker.com/r/pingidentity/pingauthorize
https://hub.docker.com/r/pingidentity/pingauthorizepap
https://support.pingidentity.com/s/topic/0TO1W000000dcxNWAQ/pingauthorize
https://support.pingidentity.com/s/
https://education.pingidentity.com/learn/course/1143/introduction-to-pingauthorize-90?generated_by=13429&hash=d85bf6092a769d1b6671371d7fc89fa5b55dfd3b
https://education.pingidentity.com/learn/course/1143/introduction-to-pingauthorize-90?generated_by=13429&hash=d85bf6092a769d1b6671371d7fc89fa5b55dfd3b
https://www.pingidentity.com/en/account/sign-on.html?retURL=/bin/pic/sso/community?retURL=/PartnerPortal/s/

PingAuthorize | Release Notes | 8

We fixed an issue where a NullPointerException was thrown when an alert or alarm was raised, and
one or more of the alert handlers were not configured. This most commonly happened when the server
was being stopped.

Now, instead of throwing a NullPointerException, the server logs this message: Alert
notification '<notification>' will not be processed by alert handler '<alert
handler>' since that alert handler does not have configuration.

PingAuthorize 9.1.0.4 (November 2023)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1.0.3 (August 2023)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1.0.2 (March 2023)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1.0.1 (December 2022)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1 (June 2022)
Updated commons-codec to address a security issue DS-45898 Security
Updated the commons-codec library to version 1.13 to address a security issue.
Updated Jackson Databind to address a security vulnerability DS-45806 Security
Updated Jackson Databind to 2.13.3 to address the CVE-2020-36518 security vulnerability.
Updated Google Guava to address a security vulnerability DS-45903 Security
Updated the Google Guava dependency in common libraries to address the CVE-2020-8908 security
vulnerability.
Added conditional effects for policy rules New
Rules now include conditional effects, allowing policy builders to write one rule with two possible effects.
The effect produced depends on whether the effect condition evaluates to true or false.

Copyright ©2024

https://nvd.nist.gov/vuln/detail/CVE-2020-36518
https://nvd.nist.gov/vuln/detail/cve-2020-8908

PingAuthorize | Release Notes | 9

 Note:

Previous rule conditions are now set as targeting conditions in the Applies To section.

Added the ability to configure attribute logging for the Policy Decision Service New
Added the option to configure logging for Trust Framework attributes. The Policy Decision Service logs
the designated attributes when they are evaluated as part of a request. This option is only available in
embedded mode.
Added the ability to sanitize error logging to protect sensitive data New
Added the ability to sanitize error log messages as they are generated. This can help prevent sensitive
information from being leaked through log messages, although the resulting log messages can potentially
be less useful for troubleshooting purposes. See Log Sanitization for more information.
Updated the administrative console browser support Info
The administrative console now supports Microsoft Edge. Administrative console support for Microsoft
Internet Explorer 11 has been deprecated.
Deprecated Apache Camel for PIP connections Info
Using Apache Camel to connect policy information points (PIPs) to PingAuthorize has been deprecated,
and the feature will be removed in a future release of the product. We recommend using HTTP services
instead, where applicable.
Made it easier to present a custom SSL certificate to the Policy Editor Improved
We added a new environment variable named KEYSTORE_PIN_FILE to the Policy Editor setup and
start-server tools. This variable takes precedence over PING_KEYSTORE_PASSWORD when validating
and presenting the server certificate.
Improved UI performance in the Policy Editor Improved
The Policy Editor now supports API HTTP caching, which is enabled by default to improve UI performance.
Disable this feature and restore the legacy behavior by providing the --disableApiHttpCache option
to the setup tool. Alternatively, set the environment variable PING_ENABLE_API_HTTP_CACHE to false
when running start-server to disable it for a particular server runtime instance.
Added a command-line configuration tool for PingAuthorize Docker containers Improved
Added a docker-pre-start-config command-line tool for PingAuthorize Docker containers. Use the
tool before the server is started to make configuration changes to the server that depend on the running
container's environment.
Added and updated PingAuthorize Server profile command-line tools Improved

Added a --skipValidation argument for the manage-profile replace-profile command. This
argument allows skipping the final server validation step when running on an offline server.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=pd-latest&context=pd_ds_log_sanitization

PingAuthorize | Release Notes | 10

Added an --excludeSetupArguments argument for the manage-profile generate-
profile command. This argument allows generating a server profile that does not include a setup-
arguments.txt file.

Updated the setup and replace-profile subcommands to fail when a server profile includes an
encryption-settings-db file in the profile's server-root/pre-setup/ directory.

Enhanced advice logging Improved
During advice processing, the File Based Error Log Publisher publishes additional helpful messages to the
configured output file.
Removed the OIDC offline_access scope requirement for the Policy Editor PAZ-3061 Fixed
The Policy Editor no longer requires the offline_access scope when configured in OpenID Connect
mode using the Authorization Code with PKCE grant type.
Fixed the Policy Editor issue rejecting bearer tokens with array-type aud claims PAZ-1088 Fixed
Fixed an issue that prevented the Policy Editor REST APIs from accepting a bearer token when the aud
claim was an array of strings.
Enabled the Policy Editor to decode JWTs with underscores PAZ-4325 Fixed
The Policy Editor is now able to decode JWTs that contain underscore characters.
Enhanced HTTP performance PAZ-3238, PAZ-2291 Fixed
This release includes general HTTP performance improvements and bug fixes.
Fixed alert consistency for cleared alarms DS-45578 Fixed
Fixed issues where gauges could raise an alarm and create an alert, but not create an alert when that
same alarm was later cleared, making it unclear when the reported condition had abated.
Updated the API gateway behavior for handling trailing zeros PAZ-2705 Fixed
When operating as an API gateway, PingAuthorize will no longer remove trailing zeros from numbers in
non-SCIM response bodies and advice payloads.
Fixed the Policy Editor UI tab switching error PAZ-2110 Fixed
Fixed an issue where the Policy Editor threw an error when rapidly switching between Trust Framework
tabs under slow network conditions.
Fixed the Policy Editor error that occurs when updating entities concurrently PAZ-3667 Fixed

Fixed an issue where concurrent updates to the same entities in the Policy Editor could sometimes
produce an error.

Fixed an issue resolving JSONPath expressions that contain the keys() function PAZ-4501 Fixed
Fixed an issue where calling keys() in a JSONPath expression did not return the object’s keys.
Fixed the PIN retrieval issues with third-party passphrase providers DS-45336 Fixed
Fixed issues that prevented obtaining key and trust store PINs with the Amazon Secrets Manager,
CyberArk Conjur, and HashiCorp Vault passphrase providers.
Fixed erroneous certificate expiration warnings DS-41468 Fixed
Fixed an issue that prevented the server from refreshing the monitor data used to detect and warn about
an upcoming certificate expiration. This could cause the server to continue to warn about an expiring
certificate even after that certificate had been replaced.
Fixed the PingAuthorize name and version in collect-support-data DS-45280 Fixed
The collect-support-data (CSD) tool now correctly displays the name and version of PingAuthorize.
Updated the incorrect version information for collect-support-data DS-44481 Fixed
The status tool now shows the current collect-support-data version.
Updated to LDAP SDK version 6.0.5 DS-45746 Fixed
Updated to LDAP SDK for Java version 6.0.5 for bug fixes and new functionality.
Recovering from a failed setup on Windows DS-45941 Issue
The setup command might fail on Windows operating systems due to the presence of Bouncy Castle JAR
files that begin with bc in the lib directory. The JAR files are mentioned in an error message similar to the
following:

An unexpected error occurred while attempting to copy the non-FIPS Bouncy
 Castle jar file into the server's classpath:
FileSystemException:
lib\bcprov-jdk15to18-1.71.jar:

Copyright ©2024

PingAuthorize | Release Notes | 11

The process cannot access the file because it is being used by another
 process.

A temporary workaround is to delete the JAR files that begin with bc from the lib directory before
attempting to run setup again.

PingAuthorize 9.0.0.6 (August 2023)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.0.0.5 (April 2023)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.0.0.4 (January 2023)
Fixed erroneous certificate expiration warnings DS-41468 Fixed
Fixed an issue that prevented the server from refreshing the monitor data used to detect and warn about
an upcoming certificate expiration. This could cause the server to continue to warn about an expiring
certificate even after that certificate had been replaced.

PingAuthorize 9.0.0.2 (July 2022)
Updated to LDAP SDK version 6.0.5 DS-45746 Fixed
Updated to LDAP SDK for Java version 6.0.5 for bug fixes and new functionality.
Fixed an incorrect SCIM POST error response DS-45647 Fixed
Fixed an issue where SCIM POST requests that violated a unique attribute constraint received an internal
error instead of the expected SCIM error response.
Fixed an incorrect SCIM POST error code DS-45863 Fixed
Fixed an issue where SCIM POST requests that violated a unique attribute constraint received an error
response with status 400 Bad Request instead of 409 Conflict.
Fixed the PingAuthorize name and version in collect-support-data DS-45280 Fixed
The collect-support-data (CSD) tool now correctly displays the name and version of PingAuthorize.

PingAuthorize 9.0.0.1 (February 2022)
Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.0 (December 2021)
Added support for policy deployment from Microsoft Azure blob storage New
The PingAuthorize Server can now consume deployment packages published to Microsoft Azure blob
storage. This enables policy writers to deploy new policies to a central Azure deployment package store
read by the PingAuthorize Server running in embedded mode. For more information, see Adding an Azure

Copyright ©2024

PingAuthorize | Release Notes | 12

deployment package store on page 271, Configuring the Policy Editor to publish policies to a deployment
package store on page 248, and Using the Deployment Manager on page 267.
Enabled configuration of the SpEL allow list in PDP mode New
Now you can configure the SpEL allow list when the Policy Decision Service is running in embedded policy
decision point (PDP) mode. An out-of-the-box PingAuthorize installation adds the following classes to
the default allow list: String, Date, Random, UUID, Integer, Long, Double, Byte, Math, Boolean,
LocalDate, DayOfWeek, Instant, ChronoUnit, and SimpleDateFormat. When configuring a policy
deployment package containing SpEL expressions that reference additional Java classes, administrators
must use dsconfig or the administrative console to add spel-allowlisted-class attributes to the Policy
Decision Service. The class must also be available on the server classpath at server start. For non-
standard Java classes, place the .jar file in the server lib folder.
Expanded Policy Editor database support to include PostgreSQL New
The PingAuthorize Policy Editor can now persist its policies, Trust Framework, and versioning data in a
PostgreSQL policy database instead of the default H2 file-based database. To initialize the database,
use the instructions at https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql. To
configure the Policy Editor for PostgreSQL, use the following setup options:

▪ --dbConnectionString

▪ The JDBC connection string (for example, "jdbc:postgresql://localhost:5432/
policy_db")

▪ --dbAppUsername

▪ The PostgreSQL user
▪ --dbAppPassword

▪ The user's password

Added support for the MuleSoft API Gateway in a sideband architecture New
Now you can deploy PingAuthorize in a sideband configuration with the MuleSoft API Gateway. With a
sideband deployment, your organization can quickly set up an environment for fine-grained, dynamic
authorization that integrates with existing identity management infrastructure and requires minimal changes
to your network configuration. For more information about our custom MuleSoft policy, see MuleSoft API
gateway integration on page 151.
OpenID Connect (OIDC) Authorization Code with Proof Key for Code Exchange (PKCE) New
Policy Editor setup in OpenID Connect (OIDC) authentication mode now uses the Authorization Code
with Proof Key for Code Exchange (PKCE) grant type by default, instead of the implicit grant type.
For information about configuring the Policy Editor in OIDC authentication mode, see Installing the
PingAuthorize Policy Editor noninteractively on page 102.
Upgrading from early access to general availability Info
If you are upgrading from PingAuthorize 9.0.0.0 Early Access to 9.0.0.0 General Availability, you
must upgrade both the PingAuthorize Server and the Policy Editor before you use the Policy Decision
Service in external mode. Upgrading only one component results in this error: Please upgrade to
PingAuthorize Policy Editor version '9.0.0.0'.
Server profiles replace peer setup Info
Peer server setup and clustered configuration have been removed from setup. To manage server
configuration, use server profiles instead of peer setup. Server profiles support deployment best practices
such as automation and Infrastructure-as-Code (IaC). For more information about server profiles, see
Deployment automation and server profiles on page 361.
Upgrading from earlier versions of PingAuthorize Info

For more considerations, see Upgrade considerations on page 127.

Added support for password storage schemes Improved
Added support for password storage schemes that allow users to authenticate with passwords stored in
the Amazon AWS Secrets Manager service, the Microsoft Azure Key Vault service, a CyberArk Conjur
instance, or a HashiCorp Vault instance.
Added redaction capability for dsconfig Improved

Copyright ©2024

https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql

PingAuthorize | Release Notes | 13

Added a global configuration property that can be used to indicate that the values of sensitive configuration
properties should be redacted when constructing the dsconfig representation for a configuration change,
given that these values might be included in the server's configuration audit log or administrative alerts
whenever a configuration change is applied. By default, the values of configuration properties that are
defined as sensitive get obscured rather than redacted, which allows the change to be replayed without
revealing the actual value of the property. However, it is now possible to redact such values rather than
obscuring them, which provides stronger protection against exposing those values but might interfere with
the ability to replay the configuration audit log if it contains changes involving sensitive properties.
Mirrored configuration change logging Improved
Updated the server to record the original requester's DN and IP address in access log and configuration
audit log messages for mirrored configuration changes.
Added support for obtaining secrets from CyberArk Conjur Improved
The Conjur cipher stream provider can use a retrieved secret to generate the encryption key used to
protect the contents of the encryption settings database. The Conjur passphrase provider can be used in
other cases where the server might need a clear-text secret, including PINs for accessing certificate key
stores or credentials for authenticating to external services. The server can authenticate to Conjur with a
username and password or an API key.
Added support for obtaining secrets from Azure Key Vault Improved
The Azure Key Vault cipher stream provider can use a retrieved secret to generate the encryption key
used to protect the contents of the encryption settings database. The Azure Key Vault passphrase provider
can be used in other cases where the server might need a clear-text secret, including PINs for accessing
certificate key stores or credentials for authenticating to external services.
Added a PKCS #11 cipher stream provider Improved
Added a PKCS #11 cipher stream provider that can require access to a certificate in a PKCS #11 token
to unlock the server's encryption settings database. Only certificates with RSA key pairs can be used
because JVMs do not currently provide adequate key wrapping support for elliptic curve key pairs.
Runtime server problem-status handling Improved
When the Policy Decision Service is unable to handle requests due to misconfiguration or problems with
the runtime environment, the PingAuthorize Server status is now DEGRADED instead of UNAVAILABLE.
Orchestration systems like Kubernetes now remove such servers from pools instead of restarting them,
allowing server administrators to investigate and correct the issue.
Added administrative console PIN support Improved
The administrative console can now be configured to supply PINs to its trust stores through the oidc-
trust-store-pin-passphrase-provider and trust-store-pin-passphrase-provider
settings. This means trust store types that require passphrases (for example, PKCS12 or BCFKS) are now
properly supported.
Administrative console file retrieval with SSO Improved
The administrative console can now retrieve files created from collect-support-data or server-
profile tasks when using single sign-on (SSO) to authenticate with the managed server.
Added file servlet support for OIDC and OAuth 2.0 Improved
Updated the file servlet to add support for token-based authentication using an OAuth 2.0 access token or
an OpenID Connect ID token. The servlet previously only supported basic authentication.
manage-profile generate-profile argument validation Improved
Improved includePath argument validation performed by the manage-profile generate-profile
tool. The tool will only use relative paths that exist below the server root, and it previously silently ignored
absolute paths or relative paths that referenced files outside of the server root. It will now exit with an error
if the includePath argument is used to provide an absolute path or a path outside the server root. It will
accept—but warn about—paths that reference files that do not exist.
Expanded ldap-diff capabilities Improved
Made several improvements to the ldap-diff tool:

▪ Added the ability to perform a byte-for-byte comparison of attribute values rather than using schema-
based logical equivalence.

▪ Added the ability to use a properties file to obtain default values for command-line arguments.
▪ Improved the ability to use different TLS-related settings for the source and target servers.
▪ Improved support for SASL authentication.

Copyright ©2024

PingAuthorize | Release Notes | 14

Added TLS protocol configuration to the crypto manager Improved
Updated the crypto manager configuration to add properties for controlling the set of TLS protocols and
cipher suites that will be used for outbound connections, as well as properties for controlling whether to
enable TLS cipher suites that rely on the SHA-1 digest algorithm or the RSA key exchange algorithm.
Added JDK support Improved
Added support for the use of JDKs obtained through Eclipse Foundation and BellSoft.
Added certificate management support Improved
Added support for new extended operations that can be used to help manage the server's listener and
inter-server certificates. Updated the replace-certificate tool to add support for replacing and
purging certificates in a remote instance, and to allow skipping validation for the new certificate chain.
Secret key loss when removing a server from the topology DS-44591 Fixed

Fixed an issue introduced in version 7.0.0.0 where secret keys under cn=Topology,cn=config could
be lost when removing a server from the topology. When a server is removed via the dsreplication
disable or remove-defunct-server tools, its secret keys will now be distributed among the remaining
members of the topology. The keys from the rest of the topology will also be copied to the server being
removed.

The cipher secret keys in the topology that are affected by this change are used by reversible password
storage schemes (except for AES256, which uses the encryption settings database). If you are using a
reversible password storage scheme other than AES256, prior to this fix, you could lose access to keys
that had been used for reversible password encryption when removing servers from the topology.

 Note:

Since this change only applies to the most recent version of remove-defunct-server and
dsreplication disable, if you are removing a server from a multi-version topology, you should run
that tool from the most recent version. In the past, dsreplication disable and remove-defunct-
server could only be run from an older version. Now, when removing a server from the topology, they
should be run from the most recent version in the topology. If you run the tool from an older server, it
will not include this fix, and you might lose access to secret keys from servers that are removed from the
topology.

Shutting down PingAuthorize Server with an invalid package store DS-44770 Fixed
An invalid deployment package store no longer prevents the PingAuthorize Server from shutting down.
remove-defunct-server attribute removal DS-44793 Fixed
Fixed an issue in which remove-defunct-server would remove attributes from config.ldif if they
were identical apart from case.
Policy Editor batch scripts refer to non-existent Java files DS-45105 Fixed
The PingAuthorize Policy Editor start-server.bat and stop-server.bat scripts no longer output
messages referring to non-existent java.properties or dsjavaproperties files.
JVM segmentation faults during start-server DS-45124 Fixed
Removed -XX:RefDiscoveryPolicy=1 from the default start-server Java arguments. In rare
cases, this argument was related to segmentation faults in the Java virtual machine, especially when used
with the G1 garbage collector.
Configuration keys and values in the Policy Editor Test Suite PAZ-1481 Fixed
The Policy Editor now uses policy configuration keys and values correctly in Test Suite tests. For details
about configuring policy configuration keys, see Environment-specific Trust Framework attributes on page
283.
OIDC authentication to the Policy Editor for PingOne users with TLS 1.3 might limit functionality PAZ-5312 Issue
When PingOne users authenticate with OIDC to the Policy Editor, environments using OpenJDK versions
older than 11.0.3 might run into an intermittent TLS 1.3 issue preventing them from loading test scenarios.
The issue appears in the logs as com.symphonicsoft.authentication.OidcAuthenticator:
Could not retrieve jwks information from '<ping-one-url>/as/jwks' and includes the
following message: javax.net.ssl.SSLException: No PSK available. Unable to resume.
This is an OpenJDK bug that has been fixed in version 11.0.3. To circumvent this issue, you can upgrade
to OpenJDK 11.0.3 or newer. Disabling TLS 1.3 also prevents this issue.

Copyright ©2024

https://bugs.openjdk.org/browse/JDK-8213202

PingAuthorize | Release Notes | 15

Deployment package store detection DS-44549 Issue
If the configured deployment package store is not available when the PingAuthorize Server starts, it will
not be able to detect when the store becomes available again. To ensure that the PingAuthorize Server
begins using the deployment package store when the store is available again, you must restart the server
or change the Policy Decision Service configuration.
Can't use an existing persistent database with Docker volumes DS-44206 Issue
The pingdatagovernancepap and pingauthorizepap Docker images now run as unprivileged (non-
root) users by default. If you have existing pingdatagovernancepap policy databases, configure the
containers to run as root. For more information, see Deploying PingAuthorize Policy Editor using Docker
on page 86.
Can't persist the database in /opt/db with Docker volumes DS-44206 Issue
To persist a policy database in a Docker volume, create a new Docker volume with a mount target of /
opt/out instead of /opt/db. For more information, see Deploying PingAuthorize Policy Editor using
Docker on page 86.
Reconfiguring the Policy Editor in a Docker volume DS-44207 Issue
When you use the Policy Editor in a Docker volume, changing the configuration using an options.yml
file also requires that you create an empty file such as /opt/out/instance/delete-after-setup
before you restart pingauthorizepap. Consider this example:

1. You start the container with a command like the following:

$ docker run --network=<network_name> --name pap -p 8443:1443 \
 --env-file ~/.pingidentity/config \
 --volume /home/developer/pap/server-profile:/opt/in/ \
 --env PING_OPTIONS_FILE=custom-options.yml \
 --volume /home/developer/pap/Symphonic.mv.db:/opt/out/Symphonic.mv.db \
 --env PING_H2_FILE=/opt/out/Symphonic \
 pingidentity/pingauthorizepap:<TAG>

 Note:

This example command bind mounts a customized options.yml file named custom-options.yml
to the server root using the server profile capability. The host system server-profile folder must
contain instance/custom-options.yml for this example to work correctly. The Docker image
<TAG> is only a placeholder. See https://devops.pingidentity.com/reference/config/.

2. You decide to change the configuration, so you edit the custom-options.yml file.
3. You create the empty file with a command like this:

docker exec -it pap /bin/sh -c "touch /opt/out/instance/delete-after-
setup"

4. With that file in place, you can now restart the Policy Editor with the following commands:

$ docker stop pap
$ docker start --attach pap

Upgrading multi-server topologies from earlier versions DS-44165 Issue
Upgrading multi-server topologies that contain PingDataGovernance 6.x or 7.x to PingAuthorize is not
supported.
Using the Periodic Stats Logger DS-43622 Issue
Published throughput and latency stats for SCIM, sideband, and gateway requests for the Periodic Stats
Logger are not recorded until the requests are made and the logger is reset.
Policy Editor snapshot import error DS-41741 Issue
The Policy Editor produces an error when a user attempts to import an exported snapshot that contains
references to named value processors.
Using the administrative console with Tomcat 9.0.31 DS-41836 Issue

Copyright ©2024

https://devops.pingidentity.com/reference/config/

PingAuthorize | Introduction to PingAuthorize | 16

Several known issues can occur when you use the administrative console with Tomcat 9.0.31. You can
resolve these issues by upgrading to Tomcat 9.0.33 or later.
Harmless failure message when stopping the PingAuthorize service DS-42365 Issue
If you use the create-systemd-script tool to create a forking systemd service, the service is stopped
by the systemctl stop ping-authorize.service command. At that time, you can see the status
using the systemctl status ping-authorize.service command. That status might contain an
indication of failure: Active: failed (Result: exit-code). This error has to do with the way the
service exits. It is harmless.

Previous Releases
For information about enhancements and issues resolved in previous major and minor releases of
PingAuthorize, follow these links to their release notes:

▪ PingAuthorize 8.3 (June 2021)

Introduction to PingAuthorize

PingAuthorize is a solution for fine-grained, attribute-based access control and dynamic authorization
management.

Digital transactions worldwide are increasing at exponential rates. At the heart of every transaction are
questions of authorization:

▪ Can a given user perform this action or access this resource?
▪ How much data can a given partner access?

With more sophisticated use cases and more regulations for sensitive data, the rules that guide these
questions of authorization get more complex. For example, a user can only transfer funds if their account
is in good standing and they've agreed to the terms of service, or a partner can only access user data for
those users who have given explicit consent.

Using traditional, static authorization solutions, like role-based access control (RBAC), to address
complex authorization requirements lacks the full transaction context available only with dynamic,
runtime authorization. PingAuthorize dynamic authorization can evaluate any identity attribute, consent,
entitlement, resource, or context to make attribute-based access control (ABAC) decisions in real time.
PingAuthorize gives you centralized control over your digital transactions and application access to data.

The following components provide the main capabilities for PingAuthorize.

PingAuthorize Policy Editor

Policy Administration and Delegation

PingAuthorize Policy Editor enables nontechnical stakeholders to collaborate with IT and application
developers to build and test authorization policies with a drag-and-drop UI. The editor supports
fine-grained permissions and workflows to enable the right operational processes and delegated
administration scenarios.

Attribute Resolution and Orchestration

Authorization policies depend on any combination of attribute expressions that are evaluated at
runtime by PingAuthorize Server. These attribute values might be present in the transaction itself,
like an identifier of the authenticated user.

PingAuthorize Policy Editor enables additional attribute values to be determined at runtime by
configuring attribute sources and attribute processing without writing any code.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=paz-83&Page=relnotes

PingAuthorize | Getting started with PingAuthorize (tutorials) | 17

PingAuthorize Server

PingAuthorize Server includes the runtime policy decision service and multiple integration capabilities:

Authorization Policy Decision APIs

Applications or services obtain policy decisions at runtime using a policy decision point (PDP) API.
Applications then enforce the decision in their own application or service code. This integration
configuration is the most flexible, supporting any application or service use case.

API Security Gateway and Sideband API

For fine-grained access control and data protection within application, platform, or microservice
APIs, customers can integrate the API Security Gateway or Sideband API into their API architecture.

In this configuration, PingAuthorize Server inspects API requests and responses, and then enforces
policy by blocking, filtering, obfuscating, or otherwise modifying request and response data and
attributes. This approach requires little or no code changes by the API developer.

SCIM Service

For fine-grained data access control and protection for structured data stores like LDAP and
RDBMS, customers can deploy the SCIM Service in front of their data stores.

In this configuration, PingAuthorize Server provides SCIM-based APIs through which clients create,
read, update, and delete (CRUD) data. The SCIM Service enforces policy by blocking, filtering,
obfuscating, or otherwise modifying data and attributes.

 Important:

The available enforcement features described above vary depending on your subscription. For more
information, check your PingAuthorize license key or contact your Ping Identity account representative.

Get started

To quickly see PingAuthorize in action, see Getting started with PingAuthorize (tutorials) on page 17.

Getting started with PingAuthorize (tutorials)

This section provides tutorials for installing and configuring PingAuthorize Server with different fine-grained
access control policies.

As you complete this section, you will quickly get up and running with PingAuthorize Server and its Policy
Editor. You will also learn how to implement data access policies for REST APIs and System for Cross-
domain Identity Management (SCIM).

Using the tutorials
Use the tutorials to familiarize yourself with the capabilities of PingAuthorize dynamic authorization
management by walking through the provided configuration exercises.

Before you begin

To complete these tutorials, you must:

▪ Complete the instructions at https://devops.pingidentity.com/get-started/introduction/.
▪ Have access to Git.

Copyright ©2024

https://devops.pingidentity.com/get-started/introduction/

PingAuthorize | Getting started with PingAuthorize (tutorials) | 18

▪ Increase your Docker memory limit to at least 4GB.

To change this setting, go to Docker Dashboard # Settings # Resources # Advanced.

The tutorials provide sample requests that use curl. However, you can use any program that can send
HTTP requests, such as wget or Postman.

Setting up your environment

About this task

To help you get started quickly with PingAuthorize, we provide Docker containers that have everything you
need. Deploy these containers using Docker commands and then start using PingAuthorize.

Steps

1. Clone the GitHub repository that contains the supporting source files.

Replace the variable <X.X> with the first two digits of the PingAuthorize release you want to clone.

git clone --branch <X.X> https://github.com/pingidentity/pingauthorize-
tutorials && cd pingauthorize-tutorials

This command places the files in the pingauthorize-tutorials directory and changes to that
directory. The directory contains a docker-compose.yml file that defines the containers used in the
tutorial.

You shouldn't need to modify this file or understand its contents to follow the tutorial steps. However,
you might need to change some configuration values that the Docker Compose environment uses.
The env-template.txt file contains various configuration values, including the default port
definitions used by the Docker Compose containers.

2. Copy the template to a new .env file at the root of the cloned repository and edit its contents using
any text editor.

cp env-template.txt .env
vi .env

You might not need to modify any values if all the default ports are available.

 Note:

You must still have a .env file in place for the environment to start.

Starting PingAuthorize

About this task

To start the Docker Compose environment:

Steps

1. Go to the pingauthorize-tutorials directory you cloned in Setting up your environment on page
18.

2. Run the following command.

docker-compose up --detach

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 19

Verifying proper startup

About this task

The command shows the status of the containers started by the docker-compose command. Each of the
four containers should initially have a status of starting. All four containers should reach an equilibrium
state of healthy.

Steps

▪ To verify that both PingAuthorize Server and Policy Editor started properly and are running, run the
following command.

docker container ls --format '{{ .Names }}: {{ .Status }}'

 Note:

It could take up to 15 minutes for all four containers to reach this equilibrium state.

▪ If you have any issues, check the log files using the docker-compose logs command.

Accessing the GUIs

About this task

PingAuthorize has two GUIs:

▪ Administrative console
▪ Policy Editor

 Tip:

If you have problems connecting because of self-signed certificates, try a different browser.

Steps

▪ Access either the administrative console or the Policy Editor.
Choose from:

▪ To make configuration changes to PingAuthorize Server, access the administrative console.

Description Details

URL https://localhost:5443/console/login

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 20

Description Details

Details to enter at sign-on ▪ Server: pingauthorize:1636
▪ Username: administrator
▪ Password: 2FederateM0re

 Note:

If submitting the form results in a Server unavailable error,
wait longer for the containers to reach an equilibrium healthy
state, as described in Verifying proper startup on page 19.

▪ To make and test policy changes, access the Policy Editor.

This GUI calculates decision responses when you configure PingAuthorize to use the GUI as an
external policy decision point.

Description Details

URL https://localhost:8443

Details to enter at sign-on ▪ User ID: admin
▪ Password: password123

Stopping PingAuthorize

About this task

If you have completed the tutorials and no longer need the containers, run the following commands to stop
and remove the containers.

 Warning:

To simplify the prerequisites for using Docker with this tutorial, all of the changes you make are lost when
you destroy your Docker Compose environment. For customer installations, persistent volumes are used to
maintain data across container deployments.

Steps

1. Go to the pingauthorize-tutorials directory you cloned in Setting up your environment on page
18.

2. Run the following command.

docker-compose down

About the tutorial configuration

The provided Docker containers are pre-configured so that you can develop policies immediately.

The following Docker containers are provided through the Docker Compose environment.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 21

Container Description

pingauthorize PingAuthorize Server

The server enforces the policies you define.

pingauthorizepap PingAuthorize Policy Editor

Use this GUI to define the policies that determine access
control and data protection.

pingdirectory PingDirectory

A directory of user information.

 Note:

PingAuthorize doesn't require PingDirectory.

However, some of the tutorials do use PingDirectory as an
attribute provider. You can reference the attributes in your
policies.

pingdataconsole administrative console

Use this GUI to configure PingAuthorize.

Tutorial 1: Importing default policies
This tutorial describes how to use the PingAuthorize Policy Editor to import default attribute-based access
control policies. It also introduces the Trust Framework and describes the default policies.

About this task

Before you can begin writing policies, you must import the default policies from a snapshot file. This file
contains a minimal set of policies and the default Trust Framework. The Trust Framework defines the
foundational elements that you use to build policies, such as API services, HTTP methods, and HTTP
requests.

The default policies and Trust Framework are stored in a snapshot file named
defaultPolicies.SNAPSHOT, which is bundled with both PingAuthorize Server and the Policy Editor.
You must base all policies that you create for use with PingAuthorize on the policies and Trust Framework
entities defined in this file.

To use the default policies that are distributed with PingAuthorize Server:

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 22

Steps

1. Copy defaultPolicies.SNAPSHOT from the PingAuthorize Policy Editor container to the current
directory on your computer using the following command.

 Note:

Be sure to include the trailing . character.

docker cp pingauthorizepap:/opt/out/instance/resource/policies/
defaultPolicies.SNAPSHOT .

2. Sign on to the Policy Editor using the URL and credentials from Accessing the GUIs on page 19.

3. In the Import a Branch from a Snapshot section, click Snapshot and select the file that you just
copied to your computer.

4. In the Name field, enter PingAuthorize Tutorials.

5. Click Import.

Result: The Policy Editor displays the Version Control page. From this page, you can manage policy
changes similar to how you would in a software source control system.

6. To select the policy branch that you just created, click PingAuthorize Tutorials.

Result: A Commits table opens. This table provides a log of all changes made to a policy branch.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 23

7. Click the expand arrow at the left of the top line for Uncommitted Changes.

Result: This opens a list of all changes to the policy branch that are yet to be committed. In this case,
the list includes all of the contents of the snapshot that you just imported.

8. Click Commit New Changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 24

9. In the Commit Message field, enter Initial commit. Click Commit.

 Tip:

As you work with your own policies, you can use the Policy Editor's version control feature to manage
your changes. As you develop policies, a good practice is to set a checkpoint every time you achieve a
satisfactory working state by committing your changes.

Introduction to the Trust Framework and default policies
You can now use the Policy Editor with PingAuthorize Server. First though, explore the interface, paying
particular attention to the Trust Framework and Policies sections in the left pane.

Trust Framework

In the Trust Framework section, shown below, you define the foundational elements that you use to build
policies and make access control decisions.

The Trust Framework provides several types of entities. The following table describes the ones you will use
most.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 25

Entity Description

Services Services perform two functions. Most often, they represent a specific API
service or API resource type to be protected by your policies. They can
also define [[policy information points]] , external data sources (such
as APIs or LDAP directory servers) that PingAuthorize can use to make
policy decisions.

Attributes Attributes on page 417 provide the context that informs fine-grained
policy decisions. Attributes often correspond to elements of an HTTP
request, such as an access token subject. However, you can obtain their
values from a variety of sources.

Actions Actions label the type of a request and generally correspond to HTTP
methods (GET, POST, and so on) or CRUD actions (create, delete, and
so on).

Look at the Trust Framework's default attributes and consider how you could use them in your own
policies. Some important Trust Framework attributes include those in the following table.

Attribute Description

HttpRequest.AccessToken This is the introspected or deserialized access token
from the HTTP request.

HttpRequest.RequestBody This is the HTTP request body, typically present for
POST, PUT, and PATCH operations.

HttpRequest.ResponseBody This is the upstream API server's HTTP response
body.

SCIM.resource For SCIM operations, this is the SCIM resource being
retrieved or modified.

TokenOwner For requests authorized using an access token, this is
the user who granted the access token.

Policies

In the Policies section, shown below, you define your organization's access control policies.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 26

You define your policies as a hierarchical tree of policies. This tree consists of two types of items.

Policy Set

A container for one or more policies.

Policy

A policy, which defines a set of rules that yield a policy decision when evaluated.

When the policy engine receives a policy request from PingAuthorize Server in response to an API call, it
starts at the Global Decision Point and walks down the policy tree, first checking if each policy set or policy
is applicable to the current policy request, and then evaluating the rules defined by each policy. Each rule
returns a policy decision, typically PERMIT or DENY. Likewise, each policy might return a different policy
decision. The policy engine evaluates an overall decision using [[combining algorithms]] .

The default policy tree contains the following policy sets and policies:

Global Decision Point

This is the root of the policy tree. Place all other policy sets or policies under this point. This node's
combining algorithm is set to A single deny will override any permit. This algorithm requires no
denies and at least one policy to permit the API call.

Token Validation

For most cases, this is the only default policy. It checks for a valid access token. In combination with
the Global Decision Point combining algorithm, this is rather permissive. Any API caller can succeed
with a valid access token.

PDP API Endpoint Policies

The PingAuthorize Server XACML-JSON PDP API uses these policies. They are not discussed
further in this tutorial.

You will use the following items in the UI in a tutorial.

Library

The default policy library contains example advice and rules.

Decision Visualiser

You will use this tool to examine policy decisions in detail.

Tutorial 2: Configuring fine-grained access control for an API
This tutorial shows you how to set up PingAuthorize for attribute-based access control of a JSON REST
API.

API access control is often categorized in terms of [[granularity]] .

Access control granularity
type

Description

Coarse-grained Typically describes scenarios in which users or clients are entitled to all
or none of particular applications or APIs.

Medium-grained Typically applies to URL-based scenarios in which users or clients are
entitled to some pages or resources within applications or APIs.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 27

Access control granularity
type

Description

Fine-grained When applied to the actions a user or client can take on an application
page or an API resource, typically implies that [[action-specific
conditions]] dictate whether the user or client is entitled to take the
action. For example, a request to transfer bank funds might be denied
if the amount exceeds the average of recent transfers by 20% or more.

Scenario

For this tutorial, you are the producer of an online game in which players compete with friends to create the
funniest meme. When starting a new game, the first player optionally invites other players by their email
addresses. To prevent email spam, you must create a policy that blocks a user from starting a new game
with other players if the user's email address comes from a generic mail domain.

Game activities are represented using an example Meme Game API.

 Note:

The Meme Game API is publicly available and does not need to be installed for the PingAuthorize tutorials.

Tasks

This tutorial teaches you how to configure two fine-grained API access control rules by walking you through
the following tasks.

1. Configure a reverse proxy for the Meme Game API.
2. Test the reverse proxy.
3. Add a policy for the Meme Game API's Create Game endpoint.
4. Test the policy from the Policy Editor.
5. Test the reverse proxy by making an HTTP request.
6. Modify the rule for the Meme Game API's Create Game endpoint.

The following sections provide the details for completing these tasks.

Copyright ©2024

https://github.com/babbtx/meme-game

PingAuthorize | Getting started with PingAuthorize (tutorials) | 28

Configuring a reverse proxy for the Meme Game API
Configure a reverse proxy by configuring an API External Server and a Gateway API Endpoint. The API
reverse proxy acts as an intermediary between your HTTP client and the HTTP API, providing fine-grained
access control for the API.

Steps

1. Configure an API External Server for the Meme Game API. An API External Server controls how
PingAuthorize Server handles connections to an HTTPS API server, including configuration related to
TLS. In this case, we simply need to provide a base URL.

a. Sign on to the administrative console using the URL and credentials from Accessing the GUIs on
page 19.

b. Click External Servers.
c. Click New External Server and choose API External Server.
d. For Name, specify Meme Game API.
e. For Base URL, specify https://meme-game.com.

The following image shows this configuration.

f. Click Save.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 29

2. Configure a Gateway API Endpoint. A Gateway API Endpoint controls how PingAuthorize Server
proxies incoming HTTP client requests to an upstream API server.

a. In the administrative console, click Configuration and then Gateway API Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify Meme Game - Games.
d. For Inbound Base Path, specify /meme-game/api/v1/games.

The inbound base path defines the base request path for requests to be received by
PingAuthorize Server.

e. For Outbound Base Path, specify /api/v1/games.

The outbound base path defines the base request path for requests that PingAuthorize Server
forwards to an API server.

f. For API Server, specify Meme Game API. This is the API External Server you defined previously.

g. Save your changes.

Testing the reverse proxy
PingAuthorize Server is now configured to accept HTTP requests beginning with the path /meme-games/
api/v1/games and forward them to the Meme Game API. Before proceeding, we will confirm that this
configuration is working by making a request to the Meme Game API through the PingAuthorize Server.

About this task

These tutorials use curl to make HTTP requests.

The Meme Game API provides an API to create a new game, which looks like this:

POST /api/v1/games
{
 "data": {
 "type": "game",

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 30

 "attributes": {
 "invitees": ["friend@example.com"]
 }
 }
}

We configured a Gateway API Endpoint to forward any requests to /meme-game/api/v1/games to the
Meme Game API endpoint.

Steps

▪ Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/v1/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@example.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": [
 "user.99@example.com"
]
 }
 }
}'

This example uses [[Bearer token authorization]] with a [[mock access token]] . For an explanation
of this authorization, see For further consideration: The PingAuthorize API security gateway, part 1 on
page 30.

Result:

If the PingAuthorize Server is configured correctly, then the response status should be 201 Created
with a response body like the following.

{
 "data": {
 "id": "130",
 "type": "games"
 },
 "meta": {}
}

For further consideration: The PingAuthorize API security gateway, part 1
Additional concepts to consider include request routing and Bearer token authorization.

Request routing

You configure request routing by defining a Gateway API Endpoint in the PingAuthorize Server
configuration. Each Gateway API Endpoint determines which incoming HTTP requests are proxied
to an API server and how PingAuthorize Server translates the HTTP request into a policy decision
request.

Bearer token authorization

The testing in Testing the reverse proxy on page 29 uses this authorization. The token itself is a
[[mock access token]] , which is a special kind of Bearer token that a PingAuthorize Server in test
environments can accept. A mock Bearer token is formatted as a single line of JSON, with the same
fields used in standard JWT access tokens, plus a boolean "active" field, which indicates whether
the token should be considered valid. When you use mock access tokens, you do not need to obtain
an access token from an actual OAuth 2 auth server, which saves you time during testing.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 31

Adding a policy for the Create Game endpoint
Now that we have confirmed that PingAuthorize Server is correctly configured to act as a reverse proxy to
the Meme Game API, we can define a policy to try out its access control capabilities. This policy will accept
or deny a request to create a game based on the identity making the request.

About this task

First, we define a [[service]] in the Trust Framework. Services have various uses, but at their most basic
level, you use them to define a specific API that can be governed by your policies. By defining different
services in your Trust Framework, you can target each policy specifically to their applicable APIs.

Then, we define a policy. This policy will reject any requests to start a new meme game if the user's
identifier ends with @example.com. We will identify users using the subject of the request's access token.

Steps

1. Define the service.

a. Sign on to the Policy Editor using the URL and credentials from Accessing the GUIs on page
19.

b. Go to Trust Framework and click Services.
c. From the + menu, select Add new Service.
d. For the name, replace Untitled with Meme Game - Games.

The service name must match the endpoint name. To understand why, see For further
consideration: The PingAuthorize API security gateway, part 2 on page 32.

e. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of Parent field.

f. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 32

2. Define the policy.

a. In the Policy Editor, go to Policies in the left pane and then click Policies along the top.
b. Select Global Decision Point.
c. From the + menu, select Add Policy.
d. For the name, replace Untitled with Users starting a new game.
e. Click + next to Applies to.
f. In the upper-right corner of the left pane, click Components. This reveals a tree of items to target

the policy and restrict the types of requests to which the policy applies.
g. From the Actions list, drag inbound-POST to the Add definitions and targets, or drag from

Components box.
h. From the Services list, drag Meme Games - Games to the Add definitions and targets, or drag

from Components box.

Using these components restricts the policy to incoming POST requests and the Meme Games -
Games service.

i. Set the Combining Algorithm to Unless one decision is deny, the decision will be permit.
j. Click + Add Rule. This reveals an interface to define a condition. Define the rule as follows.

1. For the name, replace Untitled with Deny if token subject ends with
@example.com.

2. For Effect, select Deny.
3. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.subject.
c. In the second field, select Ends With.
d. In the third field, type @example.com.

The following screen shows the rule.

k. Click Save changes.

For more information about API security gateway processing, see For further consideration: The
PingAuthorize API security gateway, part 2 on page 32.

For further consideration: The PingAuthorize API security gateway, part 2
Additional concepts to consider include the phases of API security gateway processing and the need for
the service name to match the Gateway API Endpoint name.

API security gateway processing occurs in two phases

The inbound phase

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 33

When the API security gateway receives an HTTP request, it generates a policy request with an
action label including the phase and the HTTP method, such as inbound-POST or inbound-GET.
Based on the result returned by the policy engine, the request might be rejected immediately or it
might be forwarded to the API server, potentially with modifications.

The following diagram illustrates the inbound request processing.

4. Forwarded HTTP request

API

API Security Gateway Policy Engine

3. Policy decision

2. Policy request

1. Client HTTP request

HTTP client

Inbound request processing

The outbound phase

When the API server returns an HTTP response to the API security gateway, another policy request
is generated, again with an action label including the phase and HTTP method, such as outbound-
POST or outbound-GET. Based on the result returned by the policy engine, the response might be
modified, and then it is forwarded back to the HTTP client.

The following diagram illustrates the outbound request processing.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 34

API

API Security Gateway Policy Engine

3. Policy decision

2. Policy request

HTTP client

4. Final HTTP response

1. API server HTTP response

Outbound request processing

Service name must match Gateway API Endpoint name

In Adding a policy for the Create Game endpoint on page 31, we named the service to match the name
of the Gateway API Endpoint in the PingAuthorize configuration. This is important. When PingAuthorize
receives an HTTP request, it generates a [[policy request]] that represents the HTTP request and sends it
to its policy engine for processing. The policy request will include a service field, and its name will be the
name of the Gateway API Endpoint that handled the HTTP request.

Testing the policy from the Policy Editor
We can now test the policy and make sure that it works as we intend. First, we test the policy directly from
the Policy Editor's test interface.

Steps

1. In the Policy Editor, click the Test tab at the top of the main pane to display the test interface.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 35

2. Fill out the Request section. The test uses this information to simulate the policy request that
PingAuthorize Server makes when it receives an HTTP request.

Description Details

Service Meme Games - Games

Action inbound-POST

Attributes HttpRequest.AccessToken

{ "active": true, "sub":
"user.99@example.com" }

The following image shows the test.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 36

3. Click Execute.

Result:

The policy test result displays. If the policy worked as expected, the leftmost result is red, indicating a
DENY result.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 37

4. (Optional.) Experiment with testing.

Click the Testing Scenario tab and try different inputs to see how they policy result changes. For
example, change the HttpRequest.AccessToken attribute value to { "active": true, "sub":
"user.99@my-company.com" }. The policy result is now PERMIT, as shown in the following image.

Testing the policy by making an HTTP request
Having tested the policy from the Policy Editor to prove the policy works as intended, we can confirm
that policy enforcement from end-to-end by sending an HTTP request through the PingAuthorize Server
reverse proxy.

Steps

1. Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/v1/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@example.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": [
 "user.99@example.com"
]
 }
 }

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 38

}'

Result:

You should receive an error response with a response status of 403 Forbidden.

The request has an access token value of { "active": true, "sub":
"user.99@example.com" }. The sub field of the access token corresponds to the
HttpRequest.AccessToken.subject Trust Framework attribute that your policy uses to make its
decision.

2. As an experiment, edit the access token value in curl to change the sub value to an email address
for a different domain. What should happen with this new request?

Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/v1/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@my-company.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": [
 "user.99@example.com"
]
 }
 }
}'

Result:

The HTTP response status should now be 201 Created.

To better understand how policy decisions work, see For further consideration: Decision Visualiser on
page 38.

For further consideration: Decision Visualiser
Returning to the Policy Editor, we can view a log of how the policy engine handled the HTTP request.

Steps

1. In the Policy Editor, go to Policies and click Decision Visualiser.

2. Click the Recent Decisions tab. The two most recent items listed correspond to your last HTTP
request and response. The first item should correspond to the HTTP response, while the second item
should correspond to the HTTP request.

3. Click the second decision. Its visualization appears.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 39

4. Click the Request tab. This displays a JSON representation of the policy request that PingAuthorize
generated to represent your HTTP request.

Here is a request example.

5. Click the Response tab. This displays a JSON representation of the policy response that the policy
engine returned after evaluating your policy.

Here is a response example.

Both the policy request and the policy response might be hard to understand at the moment, but as
you become familiar with PingAuthorize and its policy engine, you will find that the Decision Visualiser
is indispensable for troubleshooting and understanding your policies.

Modifying the rule for the Create Game endpoint
Now that we have defined a policy that permits or denies the ability to create a game based on the email
address of the person creating the game, we will modify the rule so that any user can create a game, but
only those with real email addresses can create games with invitees. This section demonstrates how a
policy can take an action based on data in the request body.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 40

About this task

To review, the Meme Game API offers a game creation endpoint that looks like this:

POST /api/v1/games
{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": ["friend@example.com"]
 }
 }
}

The requester specifies one or more invitees using the data.attributes.invitees field. We will
update our policy with a second rule that disallows a new game if anybody else is invited to it.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 41

Steps

1. Define a Trust Framework attribute to represent the data.attributes.invitees field.

a. In the Policy Editor, go to Trust Framework and click Attributes.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with Meme Game invitees.
d. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of Parent field.
e. Click the + next to Resolvers and click + Add Resolver.
f. Set Resolver type to Attribute.
g. Select the attribute HttpRequest.RequestBody.
h. Click the + next to Value Processors and click + Add Processor.
i. Set Processor to JSON Path.
j. Set the value to $.data.attributes.invitees.

k. Set Value type to Collection.
l. For Value Settings, select Default value and specify square brackets ([]) to indicate an empty

collection.
m. Set Type to Collection.
n. Click Save changes.

The following image shows the new attribute.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 42

This Trust Framework attribute introduces resolvers and value processors, which are two
important components. To better understand these components, see For further consideration:
Resolvers and value processors on page 43.

2. Modify a rule to use the Meme Game invitees attribute we just created.

a. In the Policy Editor, go to Policies.
b. Select the Users starting a new game policy.
c. Rename the Deny if token subject ends with @example.com rule to Deny if token

subject ends with @example.com AND request contains invitees.
d. Expand the rule by clicking its + icon.
e. For Effect, select Deny.
f. Specify a second comparison.

1. Click + Comparison.
2. From the Select an Attribute list, select Meme Game invitees.
3. In the second field, select Does Not Equal.
4. In the third field, type [].

g. Click Save changes.

The following image shows the rule.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 43

3. Test the policy.

As before, you can test your policy from the Policy Editor using its test interface, and you can test the
policy by sending an HTTP request. Try testing using the following combinations of inputs:

▪ An access token with the subject user.0@example.com and with invitees.

This should be denied.
▪ An access token with the subject user.0@my-company.com and with invitees.

This should be permitted.
▪ An access token with the subject user.0@example.com and no invitee list.

This should be permitted.
▪ An access token with the subject user.0@my-company.com and no invitee list.

This should be permitted.

For further consideration: Resolvers and value processors
Resolvers and value processors are key components in defining policies.

Modifying the rule for the Create Game endpoint on page 39 introduces their use. Here is more about
how you use them in your policies.

▪ Resolvers

A resolver defines the source of an attribute's value. In this case, the source is the
HttpRequest.RequestBody policy request attribute, which is set automatically by PingAuthorize
Server. Many other types of sources are available; for example, a resolver might define an attribute
value using a constant, or a resolver might call out to an external API to obtain the attribute value.

▪ Value Processors

Value processors extract and transform values from the source value provided by the resolver. In this
case, a value processor uses a JSON Path expression to extract the value of a specific field from the
HTTP request body provided by the resolver.

Conclusion
In this tutorial about fine-grained access control, you added anti-spam protections to the Meme Game
API by blocking requests using certain email addresses. In doing so, you learned how to configure
PingAuthorize Server to act as a reverse proxy to a JSON API. You then learned how to use the
PingAuthorize Policy Editor to create a fine-grained access control policy with rules that take effect based
on the access token and body of an HTTP request. You also learned how to test policies and inspect policy
requests using the Policy Editor.

You also learned:

▪ Gateway API Endpoint names in the PingAuthorize Server configuration must match Trust Framework
Service names in the Policy Editor.

▪ Policies can pinpoint different API services and HTTP verbs.
▪ Policies can PERMIT or DENY transactions based on any combination of attributes.
▪ Mock access tokens make testing very easy.
▪ Trust Framework attributes obtain their values using resolvers and transform their values using

processors.
▪ PingAuthorize Server supplies Attributes for HTTP metadata, request data, and OAuth 2 access token

attributes.
▪ You can test policies directly from the Policy Editor.
▪ The Policy Editor's Decision Visualiser gives you a detailed view of recent policy decisions.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 44

Tutorial 3: Configuring attribute-based access control for API resources
This tutorial describes how to build and test fine-grained access control (FGAC) policies that restrict access
to a resource based on attributes of both the resource and the caller.

Scenario

In some data use cases, it is necessary to know both the resource being requested and the requesting
user. For example, a counselor can only view the records of students in their department. In the scenario of
the meme game, users are allowed to invite their friends or family to like or critique their memes. Because
some memes are inappropriate for younger audiences, the city of Youngstown, Ohio passes an ordinance
that does not allow you to serve its citizens memes rated for ages 13 and older. You must create a policy
to enforce this by checking the city of the user's profile and the age rating of the shared meme.

 Note:

Obviously, not all Youngstown residents are young. In a more realistic scenario, we might compare the age
of the requesting user to the age rating of the meme. However, computing the user's age from their date of
birth adds unnecessary complexity.

Tasks

This tutorial teaches you how to configure attribute-based API access control rules by walking you through
the following tasks.

1. Configure a proxy for the Meme Game API.
2. Create a policy blocking all users from viewing shared memes.
3. Add policy condition logic to allow users not from Youngstown to view shared memes.
4. Add policy condition logic to allow users from Youngstown to view shared memes rated under 13.
5. Add advice to set the API error response when policy blocks access.

The following sections provide the details for completing these tasks.

Configuring the API security gateway
This tutorial describes how to use the API security gateway to allow requests to a parameterized endpoint.

You will configure https://localhost:7443/meme-game/api/v1/users/{user}/answers to
proxy to https://meme-game.com/api/v1/users/{user}/answers, where user can be any
username.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 45

Creating the gateway API endpoint
Configure a reverse proxy by configuring an API External Server and a Gateway API Endpoint.

Steps

1. (Optional.) Configure an API External Server for the Meme Game API. An API External Server controls
how PingAuthorize Server handles connections to an HTTPS API server, including configuration
related to TLS. In this case, we simply need to provide a base URL.

 Note:
This step is optional because if you completed Tutorial 2: Configuring fine-grained access control for
an API on page 26, then you already set up this API External Server.

a. Sign on to the administrative console using the URL and credentials from Accessing the GUIs on
page 19.

b. Click External Servers.
c. Click New External Server and choose API External Server.
d. For Name, specify Meme Game API.
e. For Base URL, specify https://meme-game.com.

The following image shows this configuration.

f. Click Save.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 46

2. Configure a Gateway API Endpoint. A Gateway API Endpoint controls how PingAuthorize Server
proxies incoming HTTP client requests to an upstream API server.

a. In the administrative console, click Configuration and then Gateway API Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify Meme Game - Shared Answers.
d. For Inbound Base Path, specify /meme-game/api/v1/users/{user}/answers.

The inbound base path defines the base request path for requests to be received by
PingAuthorize Server.

By surrounding a value in curly braces, you can add a parameter to a gateway API endpoint's
inbound-base-path, and use it to fill in a parameter of the same name in the outbound path, as
well as to inform other elements of the policy request, such as the service.

e. For Outbound Base Path, specify /api/v1/users/{user}/answers.

The outbound base path defines the base request path for requests that PingAuthorize Server
forwards to an API server.

f. For API Server, specify Meme Game API. This is the API External Server you defined in another
tutorial, in Configuring a reverse proxy for the Meme Game API on page 28.

Your screen should look like the following one.

g. Save your changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 47

Testing the gateway
You can test the newly created Gateway API Endpoint with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Result: You should get a 200 OK response with a JSON response body that contains a series of
answers in an array titled data.

Creating a policy based on user credentials
This tutorial describes how to create a policy that acts on information about the user.

Creating a service for the Shared Answers endpoint
Create a service in the Trust Framework to ensure that our policy only affects requests to our new
endpoint.

About this task

This task passes the name of the Gateway API Endpoint configured in PingAuthorize Server as the service
to the PingAuthorize policy decision point (PDP).

Steps

1. From the PingAuthorize Policy Editor, go to Trust Framework and click Services.

2. From the + menu, select Add new service.

3. For the name, replace Untitled with Meme Game - Shared Answers.

4. Verify that in the Parent field, no parent is selected.

To remove a parent, click the delete icon to the right of the Parent field.

Your service should look like the example in the following image:

5. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 48

Creating a policy for the Shared Answers endpoint
Create a policy to prevent users from accessing the Shared Answers endpoint.

Steps

1. In the PingAuthorize Policy Editor, go to the Policies tab.

2. Select Global Decision Point.

3. From the + menu, select Add Policy.

4. For the name, replace Untitled with Users viewing shared memes.

5. Click + next to Applies to.

6. In the upper-right corner of the left pane, click Components.

7. From the Actions list, drag outbound-GET to the Add definitions and targets, or drag from
Components box.

8. From the Services list, drag Meme Game - Shared Answers to the Add definitions and targets, or
drag from Components box.

9. For the combining algorithm, select Unless one decision is permit, the decision will be deny.

10. Click Save changes.

Your policy should look like the one shown below.

Testing the policy
You can test the new policy with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 49

 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Result: You should get a 403 Forbidden response with the following body.

{
 "errorMessage": "Access Denied",
 "status": 403
}

Creating an attribute from user data
Create an attribute to represent the city the user lives in.

Steps

1. In the PingAuthorize Policy Editor, go to Trust Framework and click Attributes.

2. From the + menu, select Add new Attribute.

3. For the name, replace Untitled with city.

4. For Parent, select TokenOwner.

5. Click the + next to Resolvers and click + Add Resolver.

6. For Resolver type, select Attribute and specify a value of TokenOwner.

7. Click the + next to Value Processors and click + Add Processor.

8. For Processor, select JSON Path and specify a value of $.l[0]. (The LDAP attribute l is short for
locality.)

9. For the processor's Value type, select String.

10. For Value Settings, set the Type to String.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 50

11. Click Save changes.

Result: You have an attribute for the user's city, as shown in the following image.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 51

Adding logic to allow non-Youngstown users
Add a rule to the Users viewing shared memes API policy to allow users who are not from Youngstown
to view answers.

Steps

1. From the PingAuthorize Policy Editor, go to the Policies tab.

2. Select Users viewing shared memes.

3. Click + Add Rule.

4. For the name, replace Untitled with Allow people outside of Youngstown.

5. For Effect, select Permit.

6. To specify a Condition, perform the following steps:

a. Click + Comparison.
b. From the Select an Attribute list, select TokenOwner.city.
c. In the second field, select Does Not Equal.
d. In the third field, type Youngstown.

7. Click Save changes.

Result: You have a rule that allows users from outside Youngstown.

Testing that the policy blocks Youngstown users
You can test the new rule with cURL or Postman.

Steps

1. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Result: A 200 OK response with the following body.

{
 "data": {
 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/2fm6x.jpg",
 "captions": [

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 52

 "Still waiting for the bus to Jennie’s"
],
 "rating": null,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

2. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result: The user is from Youngstown, so the result is a 403 Forbidden response with the following
body.

{
 "errorMessage": "Access Denied",
 "status": 403
}

Creating a policy based on the API response
This tutorial describes how to create a policy that acts on information about the response received from the
API server.

Creating an attribute from response data
Create an attribute to represent the age rating of the meme being requested.

Steps

1. From the PingAuthorize Policy Editor, go to Trust Framework and click Attributes.

2. From the + menu, select Add new Attribute.

3. For the name, replace Untitled with Meme game answer rating.

4. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of the Parent field.

5. Click the + next to Resolvers and click + Add Resolver.

6. For Resolver type, select Attribute and specify a value of HttpRequest.ResponseBody.

7. Click the + next to Value Processors and click + Add Processor.

8. For Processor, select JSON Path and specify a value of $.data.attributes.rating.

9. For the processor's Value type, select Number.

10. For Value Settings, set the Type to Number.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 53

11. Click Save changes.

Result: You have a new attribute for the answer's age rating.

Adding logic to allow family-friendly memes
Add a rule to the Users viewing shared memes API policy to allow users to view answers that are rated
for ages under 13.

Steps

1. From the PingAuthorize Policy Editor, go to the Policies tab.

2. Select Users viewing shared memes.

3. Click + Add Rule.

4. For the name, replace Untitled with Anyone can view family-friendly answers.

5. For Effect, select Permit.

6. Specify a Condition.

a. Click + Comparison.
b. From the Select an Attribute list, select Meme game answer rating.
c. In the second field, select Less Than.
d. In the third field, type 13.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 54

7. Click Save changes.

Result: You have a rule to allow family-friendly memes that looks like the following image.

Testing that the policy blocks Youngstown users from viewing age 13+ memes
You can test the newly created rule with cURL or Postman.

Steps

1. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/2 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/2 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Result:

When requesting answer 2 as user.0, expect a 200 OK response with the following body.

{
 "data": {
 "id": "2",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/23ls.jpg",
 "captions": [
 "There was a spider",
 "it's gone now"
],
 "rating": 13,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

2. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/2 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/2 \

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 55

 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result:

When requesting answer 2, which is rated age 13, as user.660, who is from Youngstown, OH,
expect a 403 Forbidden response with the following body.

{
 "errorMessage": "Access Denied",
 "status": 403
}

3. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Result:

When requesting answer 1 as user.0, expect a 200 OK response with the following body.

{
 "data": {
 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/2fm6x.jpg",
 "captions": [
 "Still waiting for the bus to Jennie’s"
],
 "rating": null,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

4. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result:

When requesting answer 1, which is unrated, as user.660, who is from Youngstown, OH, expect
a 403 Forbidden response with the following body. Be aware that this is not the correct behavior;
however, to resolve it, we would need to change our attribute definitions.

{
 "errorMessage": "Access Denied",
 "status": 403
}

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 56

Allowing unrated memes
Answer 1 is not being served to user.660, even though it has not been rated as 13+. In this scenario,
an unrated answer should be considered friendly to all users. Consider why an unrated meme is being
blocked for this user. To resolve this, you can add a default value to the age rating.

Steps

1. In the PingAuthorize Policy Editor, go to Trust Framework and click Attributes.

2. Select Meme game answer rating.

3. For Value Settings, check the Default Value box, and specify a value of 0.

4. Click Save changes.

Result:

Your attribute for answer age ratings has a default value of 0, as shown below.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 57

Testing the default value
You can test that the policy now works correctly with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result: You should get a 200 OK response with the following body.

{
 "data": {
 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/2fm6x.jpg",
 "captions": [
 "Still waiting for the bus to Jennie’s"
],
 "rating": null,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

Creating an advice to provide a more useful error message
Add a command, known as an advice, that instructs PingAuthorize to set the HTTP response code and
provide a more useful error message when rejecting the outbound response.

About this task

Because this problem is due to an attribute of a user (namely their location), use a 4xx response code to
indicate a user issue. The 451 response code has been suggested for use in cases where content cannot
be displayed for legal reasons.

Steps

1. From the PingAuthorize Policy Editor, go to the Policies tab.

2. Select Users viewing shared memes.

3. Click + Advice and Obligations.

4. Click + Add Advice and select Denied Reason.

5. For the name, replace Untitled with Send "not permitted" error.

6. From the Applies to drop-down list, select Deny.

7. For a Payload value, enter {"status": 451, "message": "Restricted", "detail": "Not
permitted per regulation"}.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 58

8. Click Save changes.

Result: You have a new advice, which looks something like the following image.

Testing the advice
You can test that the advice works correctly with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/2 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/2 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result:

Expect a 451 Unavailable For Legal Reasons response with the following body.

{
 "errorMessage": "Restricted: Not permitted per regulation",
 "status": 451
}

Conclusion
In this tutorial, you allowed users to access the meme game's shared answers functionality through
PingAuthorize. Following a request from government authorities, you blocked users from the town of
Youngstown, Ohio from viewing memes intended for audiences aged 13 or older. In doing so, you learned
about the PingAuthorize ability to control access to resources based on attributes of both the requesting
user and the resource being requested. You also learned how to use advice to modify response bodies.

You also learned:

▪ Policies can apply to outbound upstream server API responses before they are sent to the API client.
▪ HttpRequest.ResponseBody is the upstream server API response body before it is sent to the

client.
▪ Attributes that cannot be resolved because of any reason, including processing errors, might impact

policy outcomes.
▪ PingAuthorize supplies the user profile of the access token subject as the Trust Framework attribute
TokenOwner.

▪ You must populate the child attributes of the TokenOwner that you want to use in a policy.
▪ Many attributes in LDAP are multivalued.
▪ Advice is used to modify the API response in some way.
▪ In this case, denied-reason was used to set the HTTP status code and message body.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 59

Tutorial (optional): Creating SCIM policies
This tutorial demonstrates how to develop fine-grained access control (FGAC) policies for the System for
Cross-domain Identity Management (SCIM) REST API built into PingAuthorize Server.

In the previous section, you used PingAuthorize Server to filter data that an external REST API returned.

While PingAuthorize Server's API security gateway protects existing REST APIs, PingAuthorize Server's
built-in SCIM service provides a REST API for accessing and protecting identity data that might be
contained in datastores like LDAP and relational databases.

PingAuthorize Server uses SCIM in the following ways:

▪ Internally, user identities are represented as SCIM identities by way of one or more SCIM resource
types and schemas. This approach includes access token subjects, which are always mapped to a
SCIM identity.

▪ A SCIM REST API service provides access to user identities through HTTP.

You will now design a set of policies to control access to the SCIM REST API by using OAuth 2 access
token rules.

Before proceeding, make a test request to generate a SCIM REST API response using only the default
policies. As in the previous section, send a mock access token in the request.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub": "user.1", "scope": "nonexistent.scope",
 "client_id": "nonexistent.client"}'

Although the precise attribute values might vary, the response returns the SCIM resource that corresponds
to user.1.

{"mail":["user.1@example.com"],"initials":["RJV"],"homePhone":["+1 091 438
 1890"],
"pager":["+1 472 824 8704"],"givenName":
["Romina"],"employeeNumber":"1","telephoneNumber":["+1 319 624 9982"],
"mobile":["+1 650 622 7719"],"sn":["Valerio"],"cn":["Romina Valerio"],
"description":["This is the description for Romina Valerio."],"street":
["84095 Maple Street"],
"st":["NE"],"postalAddress":["Romina Valerio$84095 Maple Street$Alexandria,
 NE 39160"],
"uid":["user.1"],"l":["Alexandria"],"postalCode":
["39160"],"entryUUID":"355a133d-58ea-3827-8e8d-b39cf74ddb3e",
"objectClass":["top","person","organizationalPerson","inetOrgPerson"],
"entryDN":"uid=user.1,ou=people,o=yeah",
"meta":{"resourceType":"Users",
"location":"https://localhost:7443/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},
"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"]}

This response is a success response, although it is preferred that it not be one, because it shows that any
active access token referencing a valid user can be used to access any data.

Scenario

In this tutorial, you limit the requester's access to profile data, returning only specific attributes of the profile
that granted the access token. This is achieved using the OIDC-like scopes email and profile.

Also, you create a scope scimAdmin that has full access to SCIM-based User resources.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 60

Tasks

This tutorial walks you through these tasks.

1. Create a basic policy structure for scope-based access to SCIM resources.
2. Create a policy for the email scope that only allows access to the subject's mail attributes.
3. Create a policy for the profile scope that only allows access to a few other profile attributes.
4. Create a policy for the scimAdmin scope that allows access to all attributes.

The following sections provide the details for completing these tasks.

Tutorial: Creating the policy tree
This tutorial describes how to create a tree structure and ensure that your policies apply only to System for
Cross-domain Identity Management (SCIM) requests.

About this task

The default policies include the policy named Token Validation. In the PingAuthorize Policy Editor, you
can find this policy under Global Decision Point. This policy denies any request using an access token
if the token's active flag is set to false. This policy is augmented with a set of scope-based access
control policies.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 61

Steps

1. To create the tree structure, perform the following steps:

a. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs
on page 19.

b. Click Policies.
c. Highlight Global Decision Point.
d. From the + menu, select Add Policy Set.
e. For the name, replace Untitled with SCIM Policy Set.
f. In the Policies section, set the Combining algorithm to A single deny will override any permit

decisions.

A combining algorithm determines the manner in which the policy set resolves potentially
contending decisions from child policies.

g. Click + Applies to.
h. Click Components.
i. From the Services list, drag SCIM2 to the Add definitions and targets, or drag from

Components box.

This step ensures that policies in the SCIM policy set apply only to SCIM requests.
j. Click Save changes.

Result:

You should have a screen like the following.

2. To add a branch under the SCIM policy set to hold SCIM-specific access token policies, go from
Components to Policies and perform the following steps:

a. Highlight SCIM Policy Set.
b. From the + menu, select Add Policy Set.
c. For the name, replace Untitled with Token Policies.
d. In the Policies section, set the Combining algorithm to A single deny will override any permit

decisions.
e. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 62

3. To add another branch that holds a policy specific to access token scopes, perform the following
steps:

a. Highlight Token Policies.
b. From the + menu, select Add Policy Set.
c. For the name, replace Untitled with Scope Policies.
d. In the Policies section, set the Combining algorithm to Unless one decision is permit, the

decision will be deny.
e. Click Save changes.

Result:

After creating the new branches, they should look like the following.

Tutorial: Creating SCIM access token policies
This tutorial describes how to define access token policies after you define a structure.

In this section, you will define three policies that use a requester's access token to limit its access to data.

Creating a policy for permitted access token scopes
The first policy defines the access token scopes that PingAuthorize Server accepts for System for Cross-
domain Identity Management (SCIM) requests.

About this task

The following table defines these scopes.

Scope Allowed actions Applies to

scimAdmin search, retrieve, create/modify,
delete

Any data

email retrieve Requester's email attributes

profile retrieve Requester's profile attributes

To create the policy and add rules to define the scopes, perform the following steps:

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, and Token Policies.

4. Highlight Scope Policies.

5. Next to Advice and Obligations, click +.

6. Click Components.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 63

7. From the Advice list, drag Insufficient Scope to the area immediately following Advice and
Obligations. A box appears for you to drop the item into.

8. Click Save changes.

9. Click Policies to the left of Components.

10. Highlight Scope Policies.

11. From the + menu, select Add Policy.

12. For the name, replace Untitled with Permitted Scopes.

13. Change the combining algorithm to A single deny will override any permit decisions.

14. Click Save changes.

Testing the policy with cURL
Test the newly created policy with cURL.

About this task

If you attempt the same HTTP request that you issued previously, it is now denied.

Steps

▪ Run the HTTP request to perform the test.

Example:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403",
"scimType":"insufficient_scope","detail":"Requested operation not allowed
 by the granted OAuth scopes."}

Defining the email scope
Define a permitted access token scope to retrieve email attributes.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, Token Policies, and Scope Policies.

4. Highlight Permitted Scopes.

a. Click Components.

5. From the Rules list, drag Permitted SCIM scope for user to the Rules section.

6. To the right of the copied rule, click the hamburger menu.

7. Click Replace with clone.

8. Change the name to Scope: email.

9. To expand the rule, click +.

10. Change the description to Rule that permits a SCIM user to access its own mail
attribute if the access token contains the email scope.

11. In the HttpRequest.AccessToken.scope row of the Condition section, type email in the
CHANGEME field.

12. Within the rule, click Show "Applies to".

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 64

13. From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

 Note:

This task uses different actions from the previous gateway example.

14. Within the rule, click Show Advice and Obligations.

15. Click + next to Advice and Obligations.

16. From the Advice section, drag Include email attributes to the Advice and Obligations section.

 Note:

This predefined advice includes a payload. If the condition for this rule is satisfied, the response
includes the mail attribute.

17. Click Save changes.

Result

After completing the configuration, you will have a new email scope, which should look like the following.

Testing the email scope with cURL
You can test a newly created email scope with cURL.

About this task

If you make the same request as earlier, a 403 is returned because the provided scope is not allowed.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub": "user.1", "scope": "nonexistent.scope",
 "client_id": "nonexistent.client"}'

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 65

Steps

▪ Adjust the request to use the email scope.

Example:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Result: The request succeeds, and only the mail attribute is returned.

Defining the profile scope
Define a permitted access token scope to retrieve profile attributes.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, Token Policies, and Scope Policies.

4. Highlight Permitted Scopes.

5. Click Components.

6. From the Rules list, drag Permitted SCIM scope for user to the Rules section.

7. To the right of the copied rule, click the hamburger menu.

8. Click Replace with clone.

9. Change the name to Scope: profile.

10. To expand the rule, click +.

11. Change the description to Rule that permits a SCIM user to access a subset of its
own profile attributes if the access token contains the profile scope.

12. In the HttpRequest.AccessToken.scope row of the Condition section, type profile in the
CHANGEME field.

13. Within the rule, click Show "Applies to".

14. From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

15. Within the rule, click Show Advice and Obligations.

16. Next to Advice and Obligations, click +.

17. From the Advice section, drag Include profile attributes to the Advice and Obligations section.

 Note:

This predefined advice includes a payload. If the condition for this rule is satisfied, the response
includes the uid, sn, givenName, and description attributes.

18. Click Save changes.

Result

After completing the configuration, you will have a new profile scope, which should look like the following.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 66

Testing the profile scope with cURL
Test your new profile scope with cURL.

Steps

▪ Make the same request as earlier, but change the email scope that the access token uses to
profile.

Example:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "profile", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"givenName":["Romina"],"description":["This is the description
 for Romina Valerio."],"sn":["Valerio"]}

Result: The attributes defined by the new rule's advice are returned.
▪ Because an access token might contain multiple scopes, confirm that an access token with the email

and profile scopes returns the union of the attributes that both scopes grant.

Result:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope": "email
 profile", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"mail":["user.1@example.com"],"givenName":

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 67

["Romina"],"description":["This is the description for Romina
 Valerio."],"sn":["Valerio"]}

Defining the scimAdmin scope
For the scimAdmin scope, you will define different behaviors that depend on the action of the request.

As a result, the scope definition will be split into multiple rules.

Adding the scimAdmin retrieve rule
Add the scimAdmin retrieve rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (retrieve).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, select HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10. From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

11. Within the rule, click Show Advice and Obligations.

12. Click + next to Advice and Obligations.

13. From the Advice section, drag Include all attributes to the Advice and Obligations section.

14. Click Save changes.

Result
After completing the configuration, you will have a new scope for the scimAdmin retrieve rule, that should
look like the following.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 68

Adding the scimAdmin create/modify rule
Add the scimAdmin create/modify rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (create/modify).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, select HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10. From the Actions section, drag create to the Add definitions and targets, or drag from
Components box.

11. From the Actions sections, drag modify to the Add definitions and targets, or drag from
Components box.

12. Click Save changes.

Adding the scimAdmin search rule
Add the scimAdmin search rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 69

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (search).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, select HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10. From the Actions section, drag search to the Add definitions and targets, or drag from
Components box.

11. Click Save changes.

Adding the scimAdmin delete rule
Add the scimAdmin delete rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (delete).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, type HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10. From the Actions section, drag delete to the Add definitions and targets, or drag from
Components box.

11. Click Save changes.

Creating a policy for permitted OAuth2 clients
This tutorial describes how to configure a policy to allow specific OAuth2 clients for a REST service. A
REST service typically allows only requests from an allow list of OAuth2 clients.

About this task

In the PingAuthorize Policy Editor, define a policy in which each rule specifies an allowed client.

Steps

1. Go to Policies # Policies.

2. Expand Global Decision Point and SCIM Policy Set.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 70

3. Highlight Token Policies and click + and then Add Policy.

4. For the name, replace Untitled with Permitted Clients.

5. From the Combining Algorithm list, select Unless one decision is permit, the decision will be
deny.

6. Click + Add Rule.

7. For the name, replace Untitled with Client: client1.

8. From the Effect list, select Permit.

9. In the Condition section:

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.client_id.
c. From the middle, comparison-type list, select Equals.
d. In the final field, enter client1.

10. Click + Add Rule.

11. For the name, replace Untitled with Client: client2.

12. From the Effect list, select Permit.

13. In the Condition section:

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.client_id.
c. From the middle, comparison-type list, select Equals.
d. In the final field, enter client2.

14. Expand + Advice and Obligations.

 Note:

Do not click Show Advice and Obligations within the client1 or client2 rules.

15. Click Components.

16. From Advice, drag Unauthorized Client to the Advice and Obligations box.

17. Click Save changes.

Result
The completed configuration should resemble the following image.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 71

Testing the client policy with cURL
To confirm that you successfully completed the tasks from the previous section, test the client policy with
cURL.

About this task

After completing the tasks in the previous sections, test the responses you receive for access tokens for
any client other than client1 or client2.

Steps

▪ To test that an access token for any client other than client1 or client2 is rejected, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'

Result: Successful completion of the tasks in the previous sections will result in the following response.

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"401","scimType":"The
 client is not authorized to request this
 resource.","detail":"unauthorized_client"}

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 72

▪ To test that an access token for client1 is accepted, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'

Result: Successful completion of the tasks in the previous sections will result in the following response.

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Creating a policy for permitted audiences
This tutorial describes how to create a policy for a REST service to control access based on an acceptable
audience value.

About this task

An authorization server like PingFederate might set an audience field on the access tokens that it issues,
naming one or more services that are allowed to accept the access token. A REST service can use the
audience field to ensure that it does not accept access tokens that are intended for use with a different
service.

As with the Permitted Clients policy, each rule in the Permitted Audiences policy defines an acceptable
audience value.

Steps

1. Go to Policies # Policies.

2. Expand Global Decision Point and SCIM Policy Set.

3. Highlight Token Policies and click + and then Add Policy.

4. For the name, replace Untitled with Permitted Audiences.

5. From the Combining Algorithm list, select Unless one decision is permit, the decision will be
deny.

6. Click + Add Rule.

7. For the name, replace Untitled with Audience: https://example.com.

8. From the Effect list, select Permit.

9. In the Condition section:

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.audience.
c. From the middle, comparison-type list, select Equals.
d. In the final field, enter https://example.com.

10. Expand + Advice and Obligations.

11. Click the Components tab, expand Advice, and drag Unauthorized Audience to the Advice and
Obligations box.

 Note:

Do not click Show Advice and Obligations within the "Audience: https://example.com" rule.

12. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 73

Result
The final configuration should resemble the following image.

Testing the audience policy with cURL
Test the audience policy with cURL.

Steps

1. To test that an access token without a specific audience value is rejected, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'

Result: Successful creation of the audience policy will result in the following.

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403","scimType":
"invalid_token","detail":"The access token was issued for a different
 audience."}

2. To test that an access token with an audience value of https://example.com is accepted, run the
following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1", "aud": "https://example.com"}'

Result: Successful creation of the audience policy will result in the following.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 74

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users",
"location":"https://localhost:7443/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},
"schemas":["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Tutorial: Creating a policy for role-based access control
This tutorial describes how to create the final policy, which is an access-control rule that can base its
authorization decision on an attribute of the requesting identity, rather than on an access token claim.

About this task

When PingAuthorize Server authorizes a request, an access token validator resolves the subject of the
access token to a System for Cross-domain Identity Management (SCIM) user and populates a policy
request attribute called TokenOwner with the SCIM user's attributes. In this scenario, build a policy around
the employeeType attribute, which must be defined in the Trust Framework.

Steps

1. Go to Trust Framework and click the Attributes tab. Click TokenOwner.

2. Click + and then Add new Attribute.

3. For the name, replace Untitled with employeeType.

4. From the Parent list, select TokenOwner.

5. In the Resolvers section:

a. Click + Add Resolver.
b. From the Resolver type list, select Attribute and in the Select an Attribute list, specify a

value of TokenOwner.

6. Click + next to Value Processors and then + Add Processor.

7. From the Processor list, select JSON Path and enter the value employeeType.

8. Set the Value type to Collection.

9. In the Value Settings section:

a. Select the Default Value check box and in the Enter a default value field, enter the value [].

 Note:

An empty array is specified as the default value because not all users have an employeeType
attribute. A default value of [] ensures that policies can safely use this attribute to define
conditions.

b. From the Type list, select Collection.

10. Click Save changes.

Result
The final attribute configuration should resemble the following image.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 75

Next steps

Add a policy that uses the employeeType attribute.

1. Go to Policies # Policies.
2. Highlight SCIM Policy Set and click + and then Add Policy.
3. For the name, replace Untitled with Restrict Intern Access.
4. From the Combining Algorithm list, select Unless one decision is deny, the decision will be

permit.
5. Click + Add Rule.
6. For the name, replace Untitled with Restrict access for interns.
7. From the Effect list, select Permit.
8. In the Condition section:

a. Click + Comparison.
b. In the Select an Attribute list, select TokenOwner.employeeType.
c. From the middle, comparison-type list, select Contains.
d. In the Type in constant value field, enter intern.

9. Within the rule, click Show Advice and Obligations and then click the + next to Advice and
Obligations.

10. Click + Add Advice # Custom Advice.
11. For the name, replace Untitled with Restrict attributes visible to interns.
12. Select the Obligatory check box.
13. In the Code field, enter exclude-attributes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 76

14. From the Applies To list, select Permit.
15. In the Payload field, enter ["description"].
16. Click Save changes.

Testing the policy with cURL
Test the policy for role-based access control using cURL.

About this task

The PingAuthorize sample user data allows an employeeType attribute but does not populate it with
values for any users.

Confirm that user.2 cannot read the description attribute, even though the profile scope allows it
by running the following command.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub": "user.2", "scope": "profile", "client_id":
 "client1", "aud": "https://example.com"}'

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 77

The response should be similar to the following response.

{"id":"c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.2"],"givenName":["Billy"],"sn":["Zaleski"]}

Example files

The compressed PingAuthorize Server file at PingAuthorize/resource/policies includes a policy
snapshot and deployment package that contains an example Trust Framework as well as example policies.

Conclusion
In this tutorial, you set scope-based access to SCIM resources.

You also learned:

▪ Like exclude-attributes used in this tutorial, include-attributes filters which attributes
can be returned to the caller. include-attributes works more like opt-in, while exclude-
attributes works more like opt-out.

▪ Multiple attributes can apply from multiple rules or even policies. They are combined by PingAuthorize
to include before exclude.

Installing PingAuthorize

As you plan your PingAuthorize dynamic authorization software deployment, review the components to
install as well as the potential deployment methods, architectures, and environments.

Seeing PingAuthorize in action

To quickly see PingAuthorize in action, see Getting started with PingAuthorize (tutorials) on page 17.

Components

Policy Editor

The PingAuthorize Policy Editor gives policy administrators the ability to develop and test data-
access policies.

PingAuthorize Server

Enforces policies to control fine-grained access to data.

REST APIs access data through PingAuthorize Server, which applies the data-access policies to
allow, block, filter, or modify data resources and data attributes.

Deployment methods

You can deploy PingAuthorize in either of the following ways.

Deployment method Recommended for

Docker Server administrators familiar with Docker who want to use orchestration
to manage their environments.

For more information, see Docker deployment on page 83.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 78

Deployment method Recommended for

Manual Server administrators familiar with their operating systems who want to
tweak and maintain their environments themselves.

For more information, see Manual installation on page 88.

Implementation architectures

PingAuthorize Server supports the following implementation and data flow architectures for enforcing fine-
grained access to data:

▪ System for Cross-domain Identity Management (SCIM) API to datastores
▪ API security gateway as reverse proxy on page 79
▪ API security gateway in sideband configuration on page 80
▪ Policy Decision Point (PDP) APIs, for non-API use cases

The following sections describe these architectures in more detail.

SCIM API to datastores

The PingAuthorize Server SCIM service provides a REST API for data that is stored in one or more
external datastores, based on the SCIM 2.0 standard. The policy is enforced by the SCIM service. See
SCIM API request and response flow on page 192 for more information.

Copyright ©2024

https://tools.ietf.org/html/rfc7644

PingAuthorize | Installing PingAuthorize | 79

API security gateway as reverse proxy

You can configure PingAuthorize Server's API security gateway as a reverse proxy to an existing JSON-
based REST API. In this architecture, PingAuthorize Server acts as an intermediary between clients and
existing API services. The policy is enforced by the API security gateway. See API gateway request and
response flow on page 166 for more information.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 80

API security gateway in sideband configuration

You can configure PingAuthorize Server's API security gateway as an extension to an existing API lifecycle
management gateway, which is commonly known as a sideband configuration. In this architecture, the API
lifecycle management gateway functions as the intermediary between clients and existing API services.
However, API request and response data still flows through PingAuthorize Server to enforce policy. See
API gateway integration on page 179 for more information.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 81

PDP APIs for non-API use cases

You can implement either of the PingAuthorize Server's PDP APIs to support policy decisions in cases
where you don't need to protect an API resource. See About the Authorization Policy Decision APIs on
page 222 for more information.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 82

Policy decision environments

You can configure PingAuthorize Server for either of the following policy decision environments:

Development environment (external)

PingAuthorize Server and the Policy Editor are used together during the development of policies,
with the PingAuthorize Server enforcing policy decisions, and the Policy Editor serving as the
external PDP.

Other pre-production and production environments (embedded)

Policies are developed and deployed to the PingAuthorize Server, which both enforces policy
decisions and serves as the PDP. This configuration supports policy testing in pre-production
environments and live policy decisions in production.

The following sections describe these policy decision environments in more detail.

Development environment

To allow teams to test data-access policies during their development, PingAuthorize Server is configured to
obtain policy decisions from the Policy Editor. To enable this configuration, set the Policy Decision Service
PDP Mode to external.

 Note:

The following image shows PingAuthorize Server configured in the Reverse Proxy architecture. The
development environment supports all PingAuthorize implementation and data flow architectures.

As test API requests are proxied through PingAuthorize Server's API security gateway, policy decisions are
obtained from the Policy Editor and are enforced by the API security gateway.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 83

Other pre-production and production environments

The Policy Editor is not a part of so-called "higher" environments. Rather, for these environments, the
policy administrator bundles policies into a deployment package and then directly integrates them with the
PDP. Embedding the policies in the PDP helps to reduce latency in the decision request-response flow. To
enable this configuration, set the Policy Decision Service PDP Mode to embedded.

The Policy Editor can deploy policy deployment packages for integration with the PingAuthorize Server
using one of the following methods:

▪ Exporting the deployment package as a static file
▪ Publishing via the Deployment Manager to a cloud package store (AWS S3, Azure)
▪ Publishing via the Deployment Manager to a file system package store

 Note:

The following image shows PingAuthorize Server configured in the Reverse Proxy architecture. Pre-
production and production environments support all PingAuthorize implementation and data flow
architectures.

Docker deployment
Running PingAuthorize Docker containers standardizes your deployments and helps support devops
principles.

For information about deployment methods and architectures, see Installing PingAuthorize on page 77.

Deployment requirements when using Docker
For a PingAuthorize software deployment using Docker devops, you need a supported version of Docker,
the Docker images, and a compatible browser.

Docker

This following version of Docker is supported:

▪ Docker 20.10.9

 Important:

Increase your Docker memory limit to at least 4 GB. To change this setting, go to Docker Dashboard #
Settings # Resources # Advanced.

Containers

Docker images for Ping Identity's on-premise server products are available on Ping Identity Docker
Hub. For information about Docker deployments, visit the Ping Identity DevOps documentation. To start
deploying images, see Get Started.

The following Docker containers are available.

Copyright ©2024

https://hub.docker.com/u/pingidentity/
https://hub.docker.com/u/pingidentity/
https://devops.pingidentity.com/
https://devops.pingidentity.com/get-started/introduction/

PingAuthorize | Installing PingAuthorize | 84

Container Description Image

pingdataconsole administrative console

Use the administrative console to configure
PingAuthorize.

DockerHub:
PingDataConsole

pingauthorize PingAuthorize Server

The server enforces the policies you define.

DockerHub: PingAuthorize

pingauthorizepap PingAuthorize Policy Editor

Use the Policy Editor to define the policies
that determine access control and data
protection.

DockerHub:
PingAuthorizePAP

pingdirectory PingDirectory

A directory of user information.

 Note:

PingAuthorize does not require PingDirectory.

DockerHub: PingDirectory

 Note:

Only the PingDataConsole, PingAuthorize, PingAuthorize PAP, and PingDirectory software is licensed
under Ping Identity’s end user license agreement. Any other software components contained in the image
are licensed solely under the terms of the applicable open source/third party license.

Ping Identity accepts no responsibility for the performance of any specific virtualization software and in no
way guarantees the performance or interoperability of any virtualization software with its products.

Browsers

The PingAuthorize administrative console is compatible with several different web browsers, including:

▪ Google Chrome
▪ Mozilla Firefox
▪ Microsoft Edge

Deploying PingAuthorize Server and Policy Editor using Docker
Instead of manual software installation, you can run Docker images of the PingAuthorize Server and Policy
Editor.

About this task

To start the setup process after you obtain the Docker images:

Steps

1. Run the PingAuthorize Server container, pingauthorize.

2. Run the PingAuthorize Policy Editor container, pingauthorizepap.

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingdataconsole
https://hub.docker.com/r/pingidentity/pingdataconsole
https://hub.docker.com/r/pingidentity/pingauthorize
https://hub.docker.com/r/pingidentity/pingauthorizepap
https://hub.docker.com/r/pingidentity/pingauthorizepap
https://hub.docker.com/r/pingidentity/pingdirectory

PingAuthorize | Installing PingAuthorize | 85

3. Optional: To configure PingAuthorize with a GUI, run the PingAuthorize administrative console
container, pingdataconsole.

4. Optional: If you need user-level control of the data, set up a user store.

If you use PingDirectory, run the pingdirectory container.

Next steps

Perform additional configuration steps.

Deploying PingAuthorize Server using Docker
Perform a PingAuthorize Server deployment by running a Docker image.

About this task
The following command uses the ~/.pingidentity/config environment file to configure common
environment variables. See https://devops.pingidentity.com/get-started/introduction.

Steps

▪ Run the following command.

docker run --network=<network_name> \
 --env-file ~/.pingidentity/config \
 --name pingauthorize \
 --publish 1389:1389 \
 --publish 8443:1443 \
 --detach \
 --env SERVER_PROFILE_URL=https://github.com/pingidentity/pingidentity-server-profiles.git \
 --env SERVER_PROFILE_PATH=getting-started/pingauthorize \
 --tmpfs /run/secrets \
 pingidentity/pingauthorize:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub.

 Note:

▪ For proper communication between containers, create a Docker network using a command, such
as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

▪ You can use server profiles to automate deployment of PingAuthorize Server. For more
information, see Deployment automation and server profiles on page 361.

Signing on to the administrative console (Docker deployment)
After you deploy the server by running the Docker image, access the administrative console to verify the
server configuration and manage the server settings.

About this task

When using Docker containers, the containers must be on the same Docker network to communicate
properly.

Steps

1. Start the PingDataConsole.

The following command uses the ~/.pingidentity/config environment file to configure common
environment variables. See https://devops.pingidentity.com/get-started/introduction.

docker run \
 --env-file ~/.pingidentity/config \

Copyright ©2024

https://devops.pingidentity.com/get-started/introduction
https://hub.docker.com/r/pingidentity/pingauthorize
https://devops.pingidentity.com/get-started/introduction

PingAuthorize | Installing PingAuthorize | 86

 --name pingdataconsole \
 --detach \
 --publish 5443:8443 \
 --tmpfs /run/secrets \
 pingidentity/pingdataconsole:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub (https://hub.docker.com/r/pingidentity/pingdataconsole).

2. Sign on using the information in the following table.

Description Details

URL https://localhost:${HTTPS_PORT}/console/login

Details to enter at login Server: pingauthorize:1636

Username: administrator

Password: 2FederateM0re

 Note:

If submitting the form results in a "Server unavailable" error,
wait longer for the containers to reach an equilibrium "healthy"
state, as described in Verifying proper startup on page 19.

Deploying PingAuthorize Policy Editor using Docker
Deploy PingAuthorize Policy Editor by running its Docker image. Using Docker devops enables the
automated policy database update feature with mounted volumes.

About this task

When running the Ping Identity DevOps pingauthorizepap Docker container, you can use the following
commands to ensure that the policy database is on the mounted volume in preparation for future versions
of the image. The commands:

▪ Run a pingauthorizepap Docker container named pap on host port 8443.
▪ Use the ~/.pingidentity/config environment file to configure common environment variables.

See https://devops.pingidentity.com/get-started/introduction.
▪ Bind mount a customized options.yml file named custom-options.yml to the server root using

the server profile capability. The host system server-profile folder must contain instance/
custom-options.yml for this example to work correctly. See https://devops.pingidentity.com/
reference/config/.

▪ Set the Ping_Options_File environment variable to tell setup to use custom-options.yml.

For an H2 database, the command:

▪ Bind-mounts a volume that maps a policy database to /opt/out/Symphonic.mv.db.
▪ Sets the PING_H2_FILE environment variable to tell setup to use /opt/out/Symphonic.mv.db

for the policy database. The environment variable must exclude the .mv.db extension.

For a PostgreSQL database, the command sets environment variables to provide setup with username,
password, host, and port database credentials.

 Note:

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingdataconsole
https://devops.pingidentity.com/get-started/introduction
https://devops.pingidentity.com/reference/config/
https://devops.pingidentity.com/reference/config/

PingAuthorize | Installing PingAuthorize | 87

The Ping Identity DevOps Docker image documentation is frequently updated as new features
are released. For the most recent instructions about running the Docker images, see https://
devops.pingidentity.com/.

Steps

▪ Run the pingauthorizepap Docker container.
Choose from:

▪ If you are using an H2 database, run the following command.

$ docker run --network=<network_name> --name pap -p 8443:1443 \
 --env-file ~/.pingidentity/config \
 --volume /home/developer/pap/server-profile:/opt/in/ \
 --env PING_OPTIONS_FILE=custom-options.yml \
 --volume /home/developer/pap/Symphonic.mv.db:/opt/out/
Symphonic.mv.db \
 --env PING_H2_FILE=/opt/out/Symphonic \
 pingidentity/pingauthorizepap:<TAG>

 Note:

For proper communication between containers, create a Docker network using a command such
as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

▪ If you are using a PostgreSQL database, run the following command.

$ docker run --network=<network_name> --name pap -p 8443:1443 \
 --env-file ~/.pingidentity/config \
 --volume /home/developer/pap/server-profile:/opt/in/ \
 --env PING_OPTIONS_FILE=custom-options.yml \
 --env PING_DB_APP_USERNAME="<username>" \
 --env PING_DB_APP_PASSWORD="<password>" \
 --env
 PING_DB_CONNECTION_STRING="jdbc:postgresql://<host>:<port>/<database>"
 \
 pingidentity/pingauthorizepap:<TAG>

 Note:

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub.

Post-setup steps (Docker deployment)
After you successfully set up the PingAuthorize Policy Editor, you must start the server and then configure
PingAuthorize Server to use the Policy Editor as its policy decision point (PDP).

 Note:

The containers must be on the same Docker network to communicate properly.

Sign on to the Policy Editor. For more information, see Signing on to the PingAuthorize Policy Editor
on page 108 and import a policy snapshot. You can find a set of default policies in the resource/
policies/defaultPolicies.SNAPSHOT file.

Copyright ©2024

https://devops.pingidentity.com/
https://devops.pingidentity.com/
https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Installing PingAuthorize | 88

To configure PingAuthorize Server to use the Policy Editor, use dsconfig or the administrative console to
create a Policy External Server to represent the Policy Editor, then assign the Policy External Server to the
Policy Decision Service and configure it to use external PDP mode. Also, set the Trust Framework Version
to the current version, v2.

Consider the following example. Assume a container named pingauthorize and that no files are needed
from the file system. The following commands run dsconfig from within the container.

docker exec pingauthorize /opt/out/instance/bin/dsconfig create-external-server \
 --server-name "Policy Editor" \
 --type policy \
 --set "base-url:https://<pap-hostname>:<pap-port>" \
 --set "shared-secret:2FederateM0re" \
 --set "branch:Default Policies"

docker exec pingauthorize /opt/out/instance/bin/dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:Policy Editor" \
 --set trust-framework-version:v2

In the example, the base URL consists of the host name and port chosen for the Policy Editor during setup.
The shared secret value is 2FederateM0re by default. The branch name corresponds to the branch
name that you chose when importing your policy snapshot.

Next steps
After installed, complete some configuration steps and then start developing policies to enforce fine-
grained access to data.

Consider performing the following next steps.

▪ Configure access token validation.

For more information, see Configure access token validation on page 355.
▪ Configure a user store.

For more information, see User store configuration on page 354
▪ Sign on to the administrative console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 166.
▪ Sign on to the administrative console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 192.
▪ Sign on to the PingAuthorize Policy Editor to create policies.

For more information, see the PingAuthorize Policy Administration Guide.

Manual installation
Instead of running Docker images, you can deploy the PingAuthorize software in a manual install mode
using .zip files.

For information about deployment methods and architectures, see Installing PingAuthorize on page 77.

Before you install manually
You must prepare your computing environment by installing certain system requirements before a manual
PingAuthorize software installation.

The following components are required to install PingAuthorize:

▪ Supported Linux or Windows platform
▪ Valid license key
▪ Java

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 89

The following sections describe these prerequisites in more detail.

System requirements
Ensure that your computing environment meets the system requirements for the PingAuthorize dynamic
authorization management software.

Ping Identity has qualified the configurations in this section and has certified that they are compatible with
the product. PingAuthorize supports differences in operating system versions, service packs, and other
platform variations until the platform or other required software is suspected of causing issues.

Platforms

You can run PingAuthorize on a variety of different platforms and operating systems, including:

▪ Amazon Linux 2
▪ Canonical Ubuntu 18.04 LTS and 20.04 LTS
▪ CentOS Linux 7.7 and 8.1
▪ Microsoft Windows Server 2016 and 2019 (Policy Editor not supported)
▪ Oracle Linux 7.9, 8.2, and 8.4
▪ Red Hat Enterprise Linux ES 7.9, 8.1, 8.2, and 8.4
▪ SUSE Linux Enterprise 12 SP5 and 15 SP1

 Note:

This product was tested with the default configurations of all operating system components. Customized
implementations or third-party plugins could affect the deployment of this product.

Java Runtime Environment

Make sure your Java Runtime Environment (JRE) meets the system requirements for PingAuthorize:

▪ Amazon Corretto 8
▪ OpenJDK 8 and 11, obtained from AdoptOpenJDK
▪ Oracle Java SE Development Kit 8 and 11 LTS

 Note:

The Ping Identity Java Support Policy applies to your JRE.

Browsers

The PingAuthorize administrative console is compatible with several different web browsers, including:

▪ Google Chrome
▪ Mozilla Firefox
▪ Microsoft Edge

Databases

The Policy Editor persists its policies, trust framework, and versioning data in a policy database. By default,
this is an embedded H2 file-based database. Optionally, you can configure the Policy Editor to use a
PostgreSQL database.

For more information, see Setting up a PostgreSQL database on page 99.

Supported databases:

Copyright ©2024

https://adoptopenjdk.net/
https://support.pingidentity.com/s/article/PingIdentity-Java-Support-Policy

PingAuthorize | Installing PingAuthorize | 90

▪ H2
▪ PostgreSQL 11.2 and 12.1

About license keys
License keys are required to install, update, and renew all Ping products.

How to obtain a license

To obtain a license key, contact your account representative or use the Ping Identity licensing portal.

When do you need a license

A license is required for setting up a new single server instance and can be used site-wide for all servers
in an environment. Additionally, you must obtain a new license when updating a server to a new major
version, such as when upgrading from 7.3 to 8.0. When cloning a server instance with a valid license, you
do not need a new license.

 Note:

The update process displays a prompt for a new license.

How to specify a license

▪ Specify a license at setup

You have these options:

▪ Use the --licenseKeyFile <path-to-license> option with setup.
▪ Copy the license file to the PingAuthorize Server root directory and then run the setup tool. The

tool discovers the license file.
▪ Specify a license after setup

Use the administrative console or dsconfig (in the Topology section, select License).

 Note:
Placing the new license file in the PingAuthorize Server root directory does not work in this case.

For information about how to specify the license with the Policy Editor, see Installing the PingAuthorize
Policy Editor noninteractively on page 102.

How to view the license status

To view the details of a license, including its expiration, you have these options:

▪ The server's status tool
▪ The administrative console's Status page (On the Monitors tab, search for License.)

License expiration

The server provides a notification as the expiration date approaches.

Before a license expires, obtain a new one and install it by using dsconfig or the administrative console.

 Note:

An expiring license causes alerts and alarms but does not affect the functionality of PingAuthorize Server.

Copyright ©2024

https://www.pingidentity.com/en/account/request-license-key.html

PingAuthorize | Installing PingAuthorize | 91

However, PingAuthorize Policy Editor fails to start if the license has expired.

Creating a Java installation dedicated to PingAuthorize
Create a Java installation for PingAuthorize Server using the Java Development Kit (JDK).

About this task

PingAuthorize Server requires Java for 64-bit architectures. Even if Java is already installed on your
system, you should create a separate Java installation for PingAuthorize Server. This setup ensures that
updates to the system-wide Java installation do not inadvertently impact PingAuthorize Server.

 Note:

This setup requires that you install the JDK, rather than the Java Runtime Environment (JRE).

Steps

1. Download and install a JDK.

2. Set the JAVA_HOME environment variable to the Java installation directory path.

3. Add the bin directory to the PATH environment variable.

Preparing a Linux environment
For Linux computing environments, complete the required tasks described in this section before initiating a
PingAuthorize Server installation.

About this task

Complete the following tasks before you install PingAuthorize Server in a Linux environment:

Steps

1. Set the file descriptor limit

2. Set the maximum user processes

3. Disable file system swapping

4. Manage system entropy

5. Enable the server to listen on privileged ports

Setting the file descriptor limit
PingAuthorize Server allows for an unlimited number of connections. The following steps describe how to
manually increase the file descriptor limit on the operating system.

About this task

 Note:

If the operating system relies on systemd, see the Linux operating system documentation for instructions
on setting the file descriptor limit.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 92

Steps

1. Display the current fs.file-max limit of the system.

sysctl fs.file-max

The fs.file-max limit is the maximum server-wide file limit you can set without tuning the kernel
parameters in the proc file system.

2. Edit the /etc/sysctl.conf file.

If there is a line that sets the value of the fs.file-max property, make sure that its value is set to
at least 1.5 times the per-process limit. If there is no line that sets a value for this property, add the
following to the end of the file (100000 is just an example here; specify a value of at least 1.5 times the
per-process limit).

fs.file-max = 100000

3. Display the current hard limit of the system.

ulimit -aH

The open files (-n) value is the maximum number of open files per process limit.

Verify that its value is set to at least 65535.

4. Edit the /etc/security/limits.conf file.

If the file contains lines that set the soft and hard limits for the number of file descriptors, verify that
the values are set to 65535. If the properties are absent, add the following lines to the end of the file,
before #End of file, inserting a tab between the columns.

* soft nofile 65535
* hard nofile 65535

 Note:

The number of open file descriptors is limited by the physical memory available to the host. You can
determine this limit with the following command.

cat /proc/sys/fs/file-max

If the file-max value is significantly higher than the 65535 limit, consider increasing the file
descriptor limit to between 10% and 15% of the system-wide file descriptor limit. For example, if the
file-max value is 810752, you could set the file descriptor limit to 100000. If the file-max value is
lower than 65535, the host is likely not sized appropriately.

5. Reboot the server.

6. Verify that the file descriptor limit is set to 65535.

ulimit -n

7. For RedHat 7 or later, modify the /etc/security/limits.d/20-nproc.conf file to set limits for
the open files and max user processes.

Add or edit the following lines if they do not already exist.

* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 93

root soft nproc unlimited

Next steps

After the operating system limit is set, use one of the following methods to configure the number of file
descriptors that the server uses:

▪ Use a NUM_FILE_DESCRIPTORS environment variable.
▪ Create a config/num-file-descriptors file with a single line, such as
NUM_FILE_DESCRIPTORS=12345.

If these values are not set, the default value of 65535 is used.

 Note:

This optional step ensures that the server shuts down safely before it reaches the file descriptor limit.

Setting the maximum user processes
Set the maximum user processes higher than the default to improve memory when running multiple
servers on a machine.

About this task

On some Linux distributions, such as RedHat Enterprise Linux (RHEL) Server/CentOS 6.0 or later, the
default maximum number of user processes is set to 1024, which is considerably lower than the same
parameter on earlier distributions, such as RHEL/CentOS 5.x. The default value of 1024 leads to some
Java virtual machine (JVM) memory errors when running multiple servers on a machine, due to each Linux
thread being counted as a user process.

At startup, PingAuthorize Server attempts to raise this limit to 16383 if the value reported by ulimit is
less than that number. If the value cannot be set, an error message is displayed. In such a scenario, you
must explicitly set the limit in /etc/security/limit.conf, as the following example shows.

* soft nproc 100000
* hard nproc 100000

Steps

▪ Set the 1683 value in the NUM_USER_PROCESSES environment variable.
▪ Set the 1683 value in config/num-user-processes.

Disabling file system swapping
To disable the file system swapping in PingAuthorize, use vm.swappiness.

About this task

Disable all performance-tuning services, like tuned. If performance tuning is required, perform the
following steps to set vm.swappiness.

Steps

1. Clone the existing performance profile.

2. Add vm.swappiness = 0 to the new profile's tuned.conf file in /usr/lib/tuned/
profilename/tuned.conf.

3. Select the updated profile by running tuned-adm profile customized_profile.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 94

Managing system entropy
Entropy is used to calculate random data that the system uses in cryptographic operations.

About this task
Some environments with low entropy might experience intermittent performance issues with SSL-based
communication, such as certificate generation. This scenario is more typical on virtual machines but can
also occur in physical instances. For best results, monitor the value of kernel.random.entropy_avail
in the configuration file /etc/sysctl.conf.

 Note:

To increase system entropy on a Windows system, move the mouse pointer in circles or type characters
randomly into an empty text document.

Steps

▪ On a UNIX or Linux system, ensure that rng-tools is installed and run the following command.

sudo rngd -r /dev/urandom -o /dev/random

▪ To check the level of a system entropy on a UNIX or Linux system, run the following command.

cat /proc/sys/kernel/random/entropy_avail

 Note:

Values smaller than 3200 are considered too low to generate a certificate and might cause the system
to hang indefinitely.

Enabling the server to listen on privileged ports
To enable PingAuthorize Server to listen on privileged ports as a non-root user, grant capabilities to
specific commands.

About this task

Linux systems provide capabilities that grant specific commands the ability to complete tasks that are
normally permitted only by a root account. Instead of granting an ability to a specific user, capabilities are
granted to a specific command. For convenience, you might enable the server to listen on privileged ports
while running as a non-root user.

Steps

▪ To assign capabilities to an application, run the setcap command.

For example, the cap_net_bind_service capability enables a service to bind a socket to privileged
ports, which are defined as ports with numbers less than 1024. If Java is installed in /ds/java, and if

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 95

the Java command to run the server is /ds/java/bin/java, then you can grant the Java binary the
cap_net_bind_service capability by running the following command.

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The Java binary requires an additional shared library, libjli.so, as part of the Java installation.

Because additional limitations are imposed on where the operating system looks for shared libraries
to load for commands with assigned capabilities, you must create the file /etc/ld.so.conf.d/
libjli.conf with the path to the directory that contains the libjli.so file.

Example: For example, if the Java installation is located in /ds/java, the contents must be as shown
in this example.

/ds/java/lib/amd64/jli

Run the following command for the change to take effect.

$ sudo ldconfig -v

Obtaining the installation packages
To begin the software installation process for PingAuthorize, obtain the server component's .zip installation
packages.

About this task

The PingAuthorize distribution consists of two compressed files, one for each of the following server
components:

▪ PingAuthorize Server
▪ PingAuthorize Policy Editor

To start the installation process, complete the following steps.

Steps

1. Obtain the latest compressed release bundles from Ping Identity.

2. Expand the release bundles into the folders of your choice.

Installing the server and the Policy Editor manually
Use manual install mode for the PingAuthorize Policy Editor and PingAuthorize Server installations.

About this task

After you obtain the installation files, start the setup process.

Steps

1. Install PingAuthorize Server.

2. Install PingAuthorize Policy Editor.

3. Perform additional configuration steps.

The following sections describe these installation and configuration steps.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 96

Installing the server manually
Choose your manual install mode for PingAuthorize Server and then perform the server installation.

Steps

1. Read about the server installation modes and decide which mode you want to use.

2. Complete the steps for your chosen mode, interactive or noninteractive.

About the server installation modes
There are several different installation modes for PingAuthorize Server.

PingAuthorize Server provides the following tools to help install and configure the system:

▪ The setup tool performs the initial tasks needed to start PingAuthorize Server, including configuring
Java virtual machine (JVM) runtime settings and assigning listener ports for the PingAuthorize Server's
HTTP services.

▪ The create-initial-config tool configures connectivity between a System for Cross-domain
Identity Management (SCIM) 2 user store and PingAuthorize Server. During the process, the
prepare-external-store tool prepares each PingDirectory Server to serve as a user store by
PingAuthorize Server. Configuration can be written to a file to use for additional installations.

 Note:

Using create-initial-config is optional. However, if you do not use it, you do not get the user's
profile (the requester's attributes). For more information, see User profile availability in policies on
page 288.

▪ After the initial setup is finished, you can use the dsconfig tool and the administrative console to
perform additional configuration.

 Tip:
You can use server profiles to automate deployment of PingAuthorize Server. For more information, see
Deployment automation and server profiles on page 361.

To install a server instance, run the setup tool in one of the following modes:

Interactive command-line mode

Prompts for information during the installation process. To run the installation in this mode, use the
setup --cli command.

Noninteractive command-line mode

Designed for setup scripts to automate installations or for command-line usage. To run the
installation in this mode, setup must be run with the --no-prompt option as well as the other
arguments required to define the appropriate initial configuration

You can perform all installation and configuration steps while signed on to the system as the user or the
role under which PingAuthorize Server will run.

Installing the server interactively
Run the setup tool, which prompts you interactively for the information that it needs to install
PingAuthorize Server.

Before you begin

Be prepared to provide the following information:

▪ The location of a valid license file

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 97

▪ The name and password for an administrative account, which is also called the root user distinguished
name (DN)

▪ An available port for PingAuthorize Server to accept HTTPS requests
▪ An available LDAPS port for PingAuthorize Server to accept administrative requests
▪ Information related to the server's connection security, including the location of a keystore that

contains the server certificate, the nickname of that server certificate, and the location of a truststore
▪ The amount of memory to reserve for usage by the Java virtual machine (JVM)
▪ A unique instance name for the server

Steps

1. Run the setup command.

Example:

$./setup

2. To start and stop PingAuthorize Server, use the start-server and stop-server commands,
respectively.

For additional options, see Starting PingAuthorize Server on page 159.

Installing the server noninteractively
For an automated installation, run the setup tool in noninteractive, command-line mode.

Before you begin
Be prepared to provide the following settings using command-line arguments:

▪ The location of a valid license file
▪ The name and password for an administrative account, which is also called the root user distinguished

name (DN).
▪ An available port for PingAuthorize Server to accept HTTPS requests
▪ An available LDAPS port for PingAuthorize Server to accept administrative requests
▪ Information related to the server's connection security, including the location of a keystore that

contains the server certificate, the nickname of that server certificate, and the location of a truststore
▪ The amount of memory to reserve for usage by the Java virtual machine (JVM)
▪ A unique instance name for the server

Steps

▪ Run the setup tool to install the server noninteractively.
▪ For more information about the available setup options, run setup with the --help argument, which

displays a complete list of setup options, along with examples.

$./setup --help

Example
The following example sets up PingAuthorize with these settings:

▪ LDAP port 8389
▪ LDAPS port 8636
▪ HTTPS port 8443
▪ An automatically generated self-signed server certificate
▪ 1 GB of memory reserved for the server’s JVM
▪ A unique server instance name of pingauthorize1

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 98

▪ A server location of Austin

$./setup \
 --cli --no-prompt --acceptLicense \
 --licenseKeyFile <path-to-license> \
 --rootUserDN "cn=directory manager" \
 --rootUserPassword <your-password> \
 --ldapPort 8389 --ldapsPort 8636 \
 --httpsPort 8443 \
 --generateSelfSignedCertificate \
 --maxHeapSize 1g \
 --instanceName pingauthorize1 \
 --location Austin

Signing on to the administrative console (manual installation)
After a manual software installation, access the administrative console to verify the server configuration
and manage the server settings.

Steps

1. To access the administrative console, go to https://<host>:<port>/console/login.

The default port is 8443.

2. To sign on to the administrative console, use the initial root user distinguished name (DN) and root
user password specified during setup.

The default DN is cn=Directory Manager.

Installing the PingAuthorize Policy Editor manually
Choose the database for your fine-grained access control use case, resources, and computing
environment and install the PingAuthorize Policy Editor.

About this task

You can install the PingAuthorize Policy Editor in one of two ways: interactively or noninteractively.

Steps

1. Choose the database to use:
Choose from:

▪ H2: The default embedded database.
▪ PostgreSQL: This is optional and requires additional configuration.

2. Optional: If you are using a PostgreSQL database, set up the database.

For more information, see Setting up a PostgreSQL database on page 99.

3. Install the PingAuthorize Policy Editor:
Choose from:

▪ Interactive: The setup tool prompts you for information during the installation process.

For more information, see Installing the PingAuthorize Policy Editor interactively on page 99.
▪ Noninteractive: Automated installation allows more control over configuration. If you are using a

PostgreSQL database, you must use this mode.

For more information, see Installing the PingAuthorize Policy Editor noninteractively on page
102.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 99

Setting up a PostgreSQL database
To set up a PostgreSQL database for your attribute-based access control policies, create the database and
a user role and add tables and privileges.

About this task

If you're using a PostgreSQL database instead of the default H2 database, you must set up the new
database before you install the Policy Editor. If you're using the default H2 database, you don't need to
complete this setup.

Steps

1. Create the database.

Example:

In this example, the command creates a database named pap using the postgres super user.

[postgres] createdb pap

2. Create a user role for the application to use.

Example:

In this example, the command creates a user named pap_user.

[postgres] createuser --pwprompt pap_user

3. Add tables and grant privileges to the application user.

PingAuthorize provides DDL scripts to create the necessary schema. For the scripts and more details,
go to https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql.

Next steps

Configure the Policy Editor to use the PostgreSQL database:

▪ To configure a Docker container, see Installing PingAuthorize Policy Editor using Docker.
▪ To configure a manual installation, see Installing the PingAuthorize Policy Editor noninteractively.

Installing the PingAuthorize Policy Editor interactively
You can run the PingAuthorize Policy Editor setup command interactively in CLI install mode.

Before you begin

You must have the following information:

▪ The location of a valid license file
▪ An available port for the PingAuthorize Policy Editor to accept HTTPS requests

About this task

The setup tool prompts you interactively for the information that it needs.

 Note:

You cannot configure some setup options when installing the PingAuthorize Policy Editor interactively,
such as PostgreSQL database configuration. For more information, see Installing the PingAuthorize Policy
Editor noninteractively on page 102.

Copyright ©2024

https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql

PingAuthorize | Installing PingAuthorize | 100

Steps

1. Choose the authentication mode for the PingAuthorize Policy Editor:
Choose from:

▪ Demo mode: Configures the PingAuthorize Policy Editor to use form-based authentication with
a fixed set of credentials. Unlike OpenID Connect (OIDC) mode, this mode doesn't require an
external authentication server. However, it is inherently insecure and should only be used for
demonstration purposes.

▪ OIDC mode: Configures the PingAuthorize Policy Editor to delegate authentication and sign-on
services to a PingFederate OIDC provider.

In OIDC mode, you must provide the following additional information:

▪ The host name and port of an OIDC provider
▪ Information related to the server's connection security, including the location of a keystore that

contains the server certificate, the nickname of that server certificate, and the location of a
trust store

 Note:

To use PingAuthorize Policy Editor with other OIDC providers, such as PingOne, see Installing the
PingAuthorize Policy Editor noninteractively on page 102.

2. Run the setup command.

 Note:

If you don't want to use the default database credentials, see Setting database credentials at initial
setup on page 251.

3. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingAuthorize, under External Servers # Policy External Server #
Shared Secret.

4. To start the Policy Editor, or policy administration point (PAP), run bin/start-server.

The Policy Editor runs in the background, so you can close the terminal window in which it was started
without interrupting it.

Next steps

1. Complete the steps in Post-setup steps (manual installation) on page 107.
2. Consider additional configuration options in Specifying custom configuration with an options file on

page 238.

Example: Installing and configuring the PingAuthorize Policy Editor
This tutorial describes how to install an instance of the PingAuthorize Policy Editor.

About this task

 Note:

These installation instructions are for tutorial purposes. They will only provide a limited install.

Steps

1. Extract the contents of the compressed PingAuthorize-PAP distribution file.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 101

2. Change the directory to PingAuthorize-PAP.

3. To configure the application, run the ./bin/setup script.

4. Answer the on-screen questions.

For the following questions, use the recommended answers provided.

Question Answer

How would you like to configure the Policy
Editor?

Use Quickstart to set up a demo server with
credentials admin/password123 and to use a
self-signed certificate for SSL

On which port should the Policy Editor listen
for HTTPS communications?

You can use any unused port here, but most of
the examples in this guide assume that port 9443
is used for the PingAuthorize Policy Editor.

Enter the fully qualified host name or IP
address that users’ browsers will use to
connect to this GUI?

Unless you are testing on localhost, ensure
that the provided API URL uses the public DNS
name of the PingAuthorize Policy Editor server as
shown in the following example.

pap.example.com

5. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingAuthorize, under External Servers # Policy External Server #
Shared Secret.

6. To start the Policy Editor, or policy administration point (PAP), run bin/start-server.

The Policy Editor runs in the background, so you can close the terminal window in which it was started
without interrupting it.

Result
Your demo configuration should resemble the following example.

[/opt/PingAuthorize-PAP]$ bin/setup

Please enter the location of a valid PingAuthorize with Symphonic license file
[/opt/PingAuthorize-PAP/PingAuthorize.lic]: /opt/PingAuthorize/PingAuthorize.lic

PingAuthorize Policy Editor
==

How would you like to configure the Policy Editor?

 1) Quickstart (DEMO PURPOSES ONLY): This option configures the server with a form
 based authentication and generates a self-signed server certificate
 2) OpenID Connect: This option configures the server to use an OpenID Connect
 provider such as PingFederate
 3) Cancel the setup

Enter option [1]: 1

On which port should the Policy Editor listen for application HTTPS communications? [9443]: 9443

Enter the fully qualified host name or IP address that users' browsers will use to
connect to this GUI [centos.localdomain]: pap.examplecom

On which port should the Policy Editor listen for administrative HTTPS communications? [9444]:
 9444

Would you like to enable periodic policy database backups? (yes / no) [yes]: yes

Enter the backup schedule as a cron expression (defaults to daily at midnight): [0 0 0 * * ?]: 0
 0 0 * * ?

Setup Summary

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 102

==
Host Name: pap.example.com
Server Port: 9443
Secure Access: Self-signed certificate
Admin Port: 9444
Periodic Backups: Enabled
Backup Schedule: 0 0 0 * * ?

Command-line arguments that would set up this server non-interactively:
 setup demo --hostname pap.example.com --adminPort 9444 --port 9443 --certNickname server-
cert \
 --licenseKeyFile /opt/PingAuthorize/PingAuthorize.lic \
 --backupSchedule '0 0 0 * * ?' --pkcs12KeyStorePath config/keystore.p12 \
 --generateSelfSignedCertificate

What would you like to do?

 1) Set up the server with the parameters above
 2) Provide the setup parameters again
 3) Cancel the setup

Enter option [1]:

Setup completed successfully

Please configure the following values
==
PingAuthorize Server - Policy External Server
 Base URL: https://pap.example.com:9443
 Shared Secret: 7ed6f52d6e71411ca9e58f9567c7de2e
 Trust Manager Provider: Blind Trust

Please start the server by running bin/start-server

In this example, the PingAuthorize Policy Editor is now running and listening on port 9443.

Next steps
To sign on to the interface, go to https://<host>:9443. The default credentials are admin and
password123.

 Note:

Use the default user name and password sign on credentials for demo and testing purposes only, such as
this initial walk-through. To configure the PingAuthorize Policy Editor for PingFederate OpenID Connect
(OIDC) single sign-on (SSO), see Installing the PingAuthorize Policy Editor noninteractively on page 102.

Installing the PingAuthorize Policy Editor noninteractively
For an automated software installation, run PingAuthorize Policy Editor setup in the noninteractive CLI
install mode.

About this task

 Note:

You must run setup in noninteractive command-line mode instead of interactive mode if you need to do any
of the following:

▪ Configure the Policy Editor with a policy configuration key.
▪ Configure a key store for a policy information provider.
▪ Configure a trust store for a policy information provider.
▪ Customize the Policy Editor’s logging behavior.
▪ Configure the Policy Editor for a PostgreSQL database.
▪ Configure the Policy Editor to present an existing SSL certificate instead of generating a self-signed

certificate.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 103

For more information, see Specifying custom configuration with an options file on page 238.

Steps

1. Optional: If you choose to use a PostgreSQL policy database, you must set up the database before
you install the Policy Editor.

After you set up your PostgreSQL policy database, be prepared to provide the following information
when installing the Policy Editor:

▪ PostgreSQL Java Database Connectivity (JDBC) connection string, with the host, port, and
database name

▪ The PostgreSQL user and password for the application to use when accessing the database

2. Choose the authentication mode for the PingAuthorize Policy Editor:
Choose from:

▪ Demo mode: Configures the PingAuthorize Policy Editor to use form-based authentication with
a fixed set of credentials. Unlike OpenID Connect (OIDC) mode, this mode doesn't require an
external authentication server. However, it's inherently insecure and should only be used for
demonstration purposes.

▪ OIDC mode: Configures the PingAuthorize Policy Editor to delegate authentication and sign-on
services to an OIDC provider, such as PingFederate.

If you choose OIDC mode, you must provide the host name and port of an OIDC provider or its
base URL.

 Note:

If you don't use the setup tool to generate a self-signed certificate, you must also provide
information related to the PingAuthorize Policy Editor’s connection security, including the location
of a keystore that contains the server certificate and the nickname of that server certificate.

If the OIDC provider presents a certificate that is not trusted by the Policy Editor's JRE, do one of
the following:

▪ Add the certificate to the JRE trust store. For details, see Configuring PingFederate as an
OIDC provider for PingAuthorize on page 114.

▪ Disable certificate validation by starting the Policy Editor with the
PING_OIDC_TLS_VALIDATION=NONE environment variable. See the tabs below for
examples.

 Tip:

The setup tool’s --help option displays the options available for a noninteractive installation.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 104

3. Run the correct command based on your needs (see the tabs below for examples of the setup
command in different authentication modes):

 Note:

If you don't want to use the default database credentials for your H2 policy database, see Setting
database credentials at initial setup on page 251.

Choose from:

▪ To see the general options for running setup:

$ bin/setup --help

▪ To see the options for running setup in demo mode:

$ bin/setup demo --help

▪ To see the options for running setup in OIDC mode:

$ bin/setup oidc --help

4. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingAuthorize, under External Servers # Policy External Server #
Shared Secret.

5. To start the Policy Editor, or policy administration point (PAP), run bin/start-server.

The Policy Editor runs in the background, so you can close the terminal window in which it was started
without interrupting it.

Next steps

Click the following tabs for examples of the setup command in different authentication modes.

1. After you complete setup, see Post-setup steps (manual installation) on page 107.
2. Consider additional configuration options in Specifying custom configuration with an options file on

page 238.

Example: Set up the PingAuthorize Policy Editor in OIDC mode (PingFederate)
Use this example as a reference to set up the PingAuthorize Policy Editor for sign-ons using a
PingFederate OpenID Connect (OIDC) provider.

$ bin/setup oidc \
 --oidcHostname <ping-federate-hostname> \
 --oidcPort <ping-federate-port> \
 --clientId pingauthorizepolicyeditor \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

The Policy Editor uses the provided OIDC host name and OIDC to query the PingFederate server’s
autodiscovery endpoint for the information it needs to make OIDC requests. The provided client ID
represents the Policy Editor and must be configured in PingFederate.

The Policy Editor can skip hostname verification and accept self-signed SSL certificates from the OIDC
provider.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 105

This example uses the PING_OIDC_TLS_VALIDATION environment variable to set up the Policy Editor to
handle sign-ons for a provider using a self-signed certificate.

$ env PING_OIDC_TLS_VALIDATION=NONE bin/setup oidc \
 --oidcHostname <ping-federate-hostname> \
 --oidcPort <ping-federate-port> \
 --clientId pingauthorizepolicyeditor \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

For more information about configuring PingFederate, see Configuring an OIDC provider for single sign-on
requests from PingAuthorize on page 110.

Example: Set up the PingAuthorize Policy Editor in OIDC mode (generic OIDC provider)
This example sets up the PingAuthorize Policy Editor for sign-ons using an arbitrary OpenID Connect
(OIDC) provider.

This example departs from the PingFederate example by specifying the OIDC provider’s base URL, rather
than a host name and port. This can be useful if the OIDC provider’s autodiscovery and authorization
endpoints include an arbitrary prefix, such as a customer-specific environment identifier.

$ bin/setup oidc \
 --oidcBaseUrl https://auth.example.com/9595f417-a117-3f24-a255-5736ab01f543/auth/ \
 --clientId 7cb9f2c9-c366-57e0-9560-db2132b2d813 \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

The Policy Editor uses the provided OIDC base URL to query the OIDC provider’s autodiscovery endpoint
for the information it needs to make OIDC requests. The provided client ID represents the Policy Editor and
must be configured in the OIDC provider as well.

The Policy Editor can skip hostname verification and accept self-signed SSL certificates from the OIDC
provider.

This example uses the PING_OIDC_TLS_VALIDATION environment variable to set up the Policy Editor to
handle sign-ons for a provider using a self-signed certificate.

$ env PING_OIDC_TLS_VALIDATION=NONE bin/setup oidc \
 --oidcBaseUrl https://auth.example.com/9595f417-a117-3f24-a255-5736ab01f543/auth/ \
 --clientId 7cb9f2c9-c366-57e0-9560-db2132b2d813 \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

For more information about configuring an OIDC provider, see Configuring an OIDC provider for single
sign-on requests from PingAuthorize on page 110.

Example: Set up the PingAuthorize Policy Editor in demo mode
This example sets up the PingAuthorize Policy Editor in demo mode with an automatically generated self-
signed server certificate.

After completing setup, the Policy Editor will accept sign-ons using the username admin and the password
password123.

$ bin/setup demo \

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 106

 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

The decision point shared secret is a credential that the PingAuthorize Server uses to authenticate to the
Policy Editor when it uses the Policy Editor as an external policy decision point (PDP).

For information about how to configure PingAuthorize Server to use the decision point shared secret, see
Post-setup steps (manual installation) on page 107.

Example: Set up the PingAuthorize Policy Editor with a PostgreSQL policy database
This example sets up the PingAuthorize Policy Editor in demo mode with an automatically generated self-
signed server certificate and a PostgreSQL policy database.

$ bin/setup demo \
 --adminUsername admin \
 --dbConnectionString "jdbc:postgresql://<host>:<port>/<database>" \
 --dbAppUsername "<postgresql-user>" \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

 Note:

Using the --dbAppPassword option to provide the PostgreSQL database password to the setup tool
persists the password to a configuration file.

Instead, run the following command to populate the PING_DB_APP_PASSWORD environment variable at
server start.

$ env PING_DB_APP_PASSWORD=<password> bin/start-server

Example: Set up the PingAuthorize Policy Editor to use a custom SSL certificate
This example sets up the PingAuthorize Policy Editor in demo mode with a provided SSL server certificate
in PKCS12 format.

$ env KEYSTORE_PIN_FILE=<path-to-keystore.pin> bin/setup demo
 --adminUsername admin \
 --pkcs12KeyStorePath <path-to-keystore.p12> \
 --certNickname <certificate-nickname> \
 --decisionPointSharedSecret <shared-secret> \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

 Note:

If you don't use the KEYSTORE_PIN_FILE during setup, you can supply the --keystorePassword
argument.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 107

The following information describes the previous example code block:

▪ The KEYSTORE_PIN_FILE environment variable, along with the --pkcs12KeyStorePath and --
certNickname command-line options, affect the server's SSL certificate configuration.

▪ KEYSTORE_PIN_FILE contains the path to a file containing a valid key store PIN value.
▪ The --pkcs12KeyStorePath value is a path to a valid PKCS12 key store file.
▪ The --certNickname value is the certificate nickname or alias.

 Warning:

▪ The PingAuthorize Policy Editor only supports lowercase certificate nicknames.
▪ Because the KEYSTORE_PIN_FILE is not persisted, it must also be available in the environment of
start-server.

Post-setup steps (manual installation)
After you set up the PingAuthorize Policy Editor, you must start the server from the CLI and then change
the PingAuthorize Server configuration to use the Policy Editor as its policy decision point (PDP).

To start the Policy Editor, run the following command.

$ bin/start-server

Then, sign on to the Policy Editor. For more information, see Signing on to the PingAuthorize Policy Editor
on page 108 and import a policy snapshot. You can find a set of default policies in the resource/
policies/defaultPolicies.SNAPSHOT file.

To configure PingAuthorize Server to use the Policy Editor, use dsconfig or the administrative console to
create a Policy External Server to represent the Policy Editor, then assign the Policy External Server to the
Policy Decision Service and configure it to use external PDP mode. Also, set the Trust Framework Version
to the current version, v2. Consider the following example.

dsconfig create-external-server \
 --server-name "Policy Editor" \
 --type policy \
 --set "base-url:https://<pap-hostname>:<pap-port>" \
 --set "shared-secret:pingauthorize" \
 --set "branch:Default Policies" \

dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:Policy Editor"
 --set trust-framework-version:v2

In the example, the base URL consists of the host name and port chosen for the Policy Editor during setup.
Similarly, the shared secret value was chosen during setup. The branch name corresponds to the branch
name that you chose when importing your policy snapshot. The decision node is the ID of the root node in
your policy tree. If you are using the default policies, then use the ID shown in the example.

Clustering and scaling
PingAuthorize Servers are stateless. They do not require intra-cluster communication to scale. Instead,
similarly configured independent server instances can be added behind the same network load balancer to
achieve higher throughput while maintaining low latency.

Automated environments

To maintain identically configured PingAuthorize Server instances behind your load balancer, use DevOps
principles of Infrastructure-as-Code (IaC) and Automation. For more information about using server

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 108

profiles to scale upward by installing a new, identically configured instance of PingAuthorize Server, see
Deployment automation and server profiles on page 361.

Next steps
After installed, complete some configuration steps and then start developing policies to enforce fine-
grained access to data.

Consider performing the following next steps.

▪ Configure access token validation.

For more information, see Configure access token validation on page 355.
▪ Configure a user store.

For more information, see User store configuration on page 354
▪ Sign on to the administrative console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 166.
▪ Sign on to the administrative console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 192.
▪ Sign on to the PingAuthorize Policy Editor to create policies.

For more information, see the PingAuthorize Policy Administration Guide.

Signing on to the PingAuthorize Policy Editor
You can sign on to the PingAuthorize Policy Editor by entering your username and password credentials in
the appropriate web browser URL.

Steps

1. After completing setup for demo mode, sign on to the PingAuthorize Policy Editor by going to the
following URL in a web browser: https://<host>:<port>

Substitute the host name and port that you specified during setup.

2. Use the following demo credentials to sign on to the PingAuthorize Policy Editor:

▪ User name: admin
▪ Password: password123

3. Optional: If you set up the PingAuthorize Policy Editor to use OpenID Connect (OIDC) mode, you must
also configure an OIDC provider. For more information, see Configuring an OIDC provider for single
sign-on requests from PingAuthorize on page 110.

Then, when you sign on using the URL mentioned previously, the GUI prompts you to proceed to the
OIDC provider to sign on. After OIDC authentication is complete, the GUI redirects you back to the
PingAuthorize Policy Editor.

Changing the PingAuthorize Policy Editor authentication mode
You can change the authentication mode after the initial setup.

Steps

▪ For a manually installed Policy Editor, see Changing the Policy Editor authentication mode for manual
installs on page 109.

▪ For a Policy Editor Docker deployment, see Changing the Policy Editor authentication mode for
Docker deployments on page 109.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 109

Changing the Policy Editor authentication mode for manual installs

About this task

To change the authentication mode that a manually installed PingAuthorize Policy Editor uses, re-run the
setup tool and choose a different authentication mode. This action overwrites the PingAuthorize Policy
Editor's existing configuration.

Steps

1. Stop the Policy Editor.

Example:

$ bin/stop-server

2. Run the setup command and select a different authentication mode.

The modes are:

▪ Demo mode

Configures the PingAuthorize Policy Editor to use form-based authentication with a fixed set of
credentials. Unlike OIDC mode, this mode does not require an external authentication server.
However, it is inherently insecure and is recommended only for demonstration purposes.

▪ OpenID Connect (OIDC) mode

Configures the PingAuthorize Policy Editor to delegate authentication and sign-on services to an
OpenID Connect provider, such as PingFederate.

Example:

$ bin/setup

3. Start the Policy Editor.

Example:

$ bin/start-server

Changing the Policy Editor authentication mode for Docker deployments

About this task

To switch to OIDC authentication for a Docker deployment of the PingAuthorize Policy Editor, re-run the
docker run command using the OIDC environment variables.

Steps

1. Stop the Policy Editor Docker container.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 110

2. Run the Policy Editor Docker container in OIDC mode by using the
PING_OIDC_CONFIGURATION_ENDPOINT and PING_CLIENT_ID environment variables in your
docker run command, as shown in the following example.

Example:

 Note:

For proper communication between containers, create a Docker network using a command like
docker network create --driver <network_type> <network_name>, and then connect to
that network with the --network=<network_name> option.

docker run --network=<network_name> -p 8443:1443 -d \
--env-file ~/.pingidentity/config \
--env PING_EXTERNAL_BASE_URL=localhost:8443 \
--env PING_CLIENT_ID=c2f081c0-6a2e-4249-b07d-d60234bb5b21 \
--env PING_OIDC_CONFIGURATION_ENDPOINT=https://auth.pingone.com/3e665735-23da-40a9-
a2bb-7ccddc171aaa/as/.well-known/openid-configuration \
pingidentity/pingauthorizepap:<TAG>

 Note:

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see the
PingAuthorize PAP Docker Image on Docker Hub.

Configuring an OIDC provider for single sign-on requests from PingAuthorize
When you install the PingAuthorize software with OpenID Connect (OIDC) authentication, configure an
OIDC provider to accept SSO requests from PingAuthorize.

About this task

If you chose OIDC mode when you set up the PingAuthorize Policy Editor, you must configure an OIDC
provider, such as PingFederate or PingOne, to accept sign-on requests from the PingAuthorize Policy
Editor.

If you're using another OIDC provider, see the provider's documentation for specific client configuration
steps. The following steps show the general procedure:

Steps

1. Use the following configuration values to create an OAuth 2 client that represents the PingAuthorize
Policy Editor.

OAuth 2 client configuration Configuration value

Client ID pingauthorizepolicyeditor

Redirect URI https://<host>:<port>/idp-callback

Grant type Authorization Code with PKCE

Response type code

Scopes ▪ openid
▪ email
▪ profile

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Installing PingAuthorize | 111

OAuth 2 client configuration Configuration value

Refresh tokens Enable

Client authentication on the
token endpoint

Disable

The Policy Editor doesn't have access to the client secret and
doesn't send credentials to the token endpoint.

Return ID token on refresh
grant

true

Always re-roll refresh tokens true

 Important:

When an authentication token expires, the Policy Editor performs a silent renewal, triggering a
background process to retrieve a new token from the OIDC provider. For this process to work, you
must configure your OIDC provider to issue refresh tokens in the following manner:

▪ Issue an id_token as part of the refresh grant.
▪ Re-roll the refresh token after each use. The Policy Editor will not use refresh tokens more than

once.

Because these constraints apply to silent renewal, a misconfiguration of the previous items will still
allow you to sign on. After your token expires, though, the application will eject you from your session
and redirect you to the sign-on screen. This could cause you to lose unsaved changes in the Policy
Editor.

2. Configure the access tokens and ID tokens issued for the OAuth 2 client with the following claims:

▪ sub
▪ name
▪ email

3. Configure the OIDC provider to accept a cross-origin resource sharing (CORS) origin that matches the
PingAuthorize Policy Editor's scheme, public host, and port, such as https://<host>:<port>.

4. Configure the OIDC provider to issue tokens to the PingAuthorize Policy Editor only when the
authenticated user is authorized to administer policies according to your organization's access rules.

 Note:

Sign the tokens with a signing algorithm of RSA using SHA-256.

For PingFederate, this level of authorization is controlled with issuance criteria. For more information,
see the PingFederate documentation.

Configuring PingOne as an OIDC provider for PingAuthorize
To improve security and ensure a consistent authentication experience across all enterprise applications,
enable single sign-on (SSO) for the PingAuthorize Policy Editor using PingOne as an OIDC provider.

Components

▪ PingOne
▪ PingAuthorize 9.0 or later

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 112

Instructions and screenshots might differ slightly from other product versions. For the latest documentation,
see PingOne documentation.

Before you begin

▪ Confirm that PingOne is accessible from the subnet on which the Policy Editor is running.
▪ Extract the Policy Editor distribution to your specified install location, with appropriate permissions set

for write access, for example /opt/PingAuthorize-PAP.

Configuring PingOne for PingAuthorize policy administration
Configure PingOne to authorize external access to the PingAuthorize Policy Editor.

About this task
The following configuration allows any authenticated user to access the Policy Editor.

Steps

1. Sign on to PingOne and click your environment.
Choose from:

▪ If you have an account, go to the URL for your environment. Each environment has a unique URL
for signing in. It follows the format https://console.pingone.com/?env=<environmentID>.

▪ If you do not already have an account, create one at Try Ping.

2. To create an application in PingOne to represent the PingAuthorize Policy Editor, go to Connections
Applications and click + Add Application.

3. Go to Connections # Applications and click + Add Application.

4. Click Single Page App and then click Configure.

5. Enter a name for the application, such as PingAuthorize Policy Editor.

6. Optional: Enter a description and add an icon.

7. Click Next.

8. Add a redirect URL that follows the format https://pap.hostname:port/idp-callback.

9. Click Save and Continue.

10. On the Grant Access to Your Application window, add scopes for email and profile.

11. Click Save and Continue.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingone

PingAuthorize | Installing PingAuthorize | 113

12. On the Attribute Mapping window:

a. Accept UserID = sub.
b. Click + Add Attribute # PingOne Attribute to add Email Address = email.
c. Click + Add Attribute # PingOne Attribute to add Formatted = name or Username = name.

13. Click Save and Close.

14. To enable the application, click the Enable toggle.

15. Copy the following IDs:

Client ID

To find the Client ID, go to the application's Profile tab.

Environment ID

To find the Environment ID, click Environment in the left navigation pane.

 Note:

You'll need them when you configure the Policy Editor to use PingOne.

Configuring PingAuthorize policy administration to use PingOne
Configure the PingAuthorize Policy Editor to use PingOne for authentication.

About this task
The following instructions apply to a manually installed PingAuthorize Policy Editor.

Steps

1. Run the PingAuthorize-PAP/bin/stop-server command to stop the Policy Editor.

2. Using the client ID and environment ID from Configuring PingOne for PingAuthorize policy
administration on page 112, run the following command to configure the GUI.

bin/setup oidc \
--licenseKeyFile </path/to/PingAuthorize.lic> \
--generateSelfSignedCertificate \
--hostname <pap-hostname> --port <pap-port> \

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 114

--adminPort <admin-port> \
--oidcBaseUrl https://auth.pingone.com/<environment-id>/as \
--clientId <client-id>

3. Run the bin/start-server command to start the PingAuthorize Policy Editor.

4. Verify that you can sign on to the Policy Editor using the application you created in PingOne.

a. Go to the Policy Editor.
b. Click Click to Sign in.

Result: Your browser will redirect to the URL you set in Configuring PingOne for PingAuthorize
policy administration on page 112.

Configuring PingFederate as an OIDC provider for PingAuthorize
To improve security and ensure a consistent authentication experience across all enterprise applications,
enable single sign-on (SSO) for the PingAuthorize Policy Editor using PingFederate as an OIDC provider.

This document describes one way to configure PingFederate as an OpenID Connect provider for the
PingAuthorize Policy Editor. In this example, PingFederate also acts as the identity provider and uses a
PingDirectory LDAP server with sample data as the backing store.

Components

▪ PingFederate 10.3 or later
▪ PingDirectory 9.0 or later
▪ PingAuthorize 9.0 or later

Instructions and screenshots might differ slightly from other product versions. For the latest documentation,
see the PingFederate documentation and PingDirectory documentation.

Before you begin

Make sure of the following:

▪ PingFederate is running and accessible from the subnet on which the Policy Editor is running.
▪ PingDirectory is running and accessible from the subnet on which PingFederate is running.
▪ PingDirectory is loaded with the identities to be used. This document uses the sample data provided

when running the PingDirectory setup command line tool with option --sampleData 1000.
▪ You have extracted the Policy Editor distribution to your specified install location, with

appropriate permissions set for write access. This document uses an installation directory of /
opt/PingAuthorize-PAP.

▪ If using SSL, the certificate chain is available as a PKCS12 keystore to upload as the server certificate
chain for PingFederate.

▪ The signing certificate for JWT tokens is available for upload to PingFederate.

 Note:

If the PingFederate certificate chain contains certificates that are not trusted by the default Java
truststore on the system that the Policy Editor is running on, you will need to add them. An example of
how to do this is provided in the “Add Certificate to Java Trust Store” subsection below.

Configuring PingFederate for PingAuthorize
Configure PingFederate to authorize external access through tokens to the PingAuthorize Policy Editor.

About this task

You can also use PingAccess to authorize external access through rules. See Rule Creation in PingAccess
for information.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=pf-latest&Page=home
https://docs.pingidentity.com/csh?Product=pd-latest&Page=home
https://docs.pingidentity.com/csh?Product=pa-latest&context=pa_access_control_rules

PingAuthorize | Installing PingAuthorize | 115

The following example configuration assumes that any authenticated user can access the PingAuthorize
Policy Editor. To limit access to members of a specific group, see Configuring PingFederate group access
for PingAuthorize on page 124.

Steps

1. In the PingFederate administration console, go to System # Data & Credential Stores # Data Stores.

2. Click Add New Data Store.

3. On the Data Store Type tab, in the Name field, enter a name for the data store.

4. From the Type list, select Directory (LDAP), and then click Next.

5. On the LDAP Configuration tab, enter the address and authentication information for PingFederate to
use when accessing PingDirectory, and then click Next.

6. On the Summary tab, review your configuration and click Save.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 116

7. Go to Authentication # Policies # Sessions and enable authentication sessions. The following
example enables authentication sessions for all sources. Make the appropriate change for your
environment, and then click Save.

8. Go to Security # Certificate & Key Management # SSL Client Keys & Certificates and import your
JWT signing certificate. Click Save.

 Note:

PingFederate expects the certificate chain and keys to be encoded in PKCS12 format.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 117

9. Configure your OAuth server using the OpenID Connect protocol.

a. Go to System # OAuth Settings # Scope Management and create scopes.
b. In the Scope Value field, enter the email, openid, and profile scopes, clicking Add after

each entry. Click Save.

c. Go to Applications # OAuth # Access Token Management and click Create New Instance.
d. On the Type tab, from the Type list, select JSON Web Tokens. From the Parent Instance list,

select None. Click Next.
e. On the Instance Configuration tab, click Add a new row to 'Certificates' and add the previously

imported signing certificate. Select the desired signing algorithm and token timeout, and then click
Next.

f. On the Session Validation tab, enable the session validation options.

g. On the Access Token Attribute Contract tab, add the attributes to be included in the OAuth
access token. This example extends the contract with cn, email, scope, sub, and uid
attributes.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 118

h. Click Next until you reach the Summary tab, and then click Save. Accept the default values for
the Resources URIs and Access Control settings.

i. Go to Applications # OAuth # Access Token Mappings to create an Access Token Mapping
in the Default context for the Access Token Manager you just created. Click Add Mapping, and
then click Add Attribute Source.

j. From the Active Data Store list, select the PingDirectory data store that you created in step 2.
Click Next.

k. On the LDAP Directory Search tab, in the Base DN field, enter the base DN for the PingDirectory
data that provides your identities.

l. In the Attributes to return from search section, click Add Attribute and enter the attributes to
be retrieved.

The sample data uses ou=People,dc=example,dc=com and the configuration shown in the
following image retrieves the cn, mail, and uid attributes.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 119

m. On the LDAP Filter tab, in the Filter field, enter uid=${USER_KEY} to match the PingDirectory
sample data with the authenticating user information.

n. Click Next and Save on the Summary tab.
o. On the Contract Fulfillment tab, fulfill the contract with the LDAP attributes from the

PingDirectory data store. Leave the remaining settings as their defaults and click Save.

The scope attribute is fulfilled from the OAuth context.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 120

p. Go to Applications # OAuth # OpenID Connect Policy Management and click Add Policy.
q. In the Manage Policy tab, from the Access Token Manager list, select the access token

manager you previously created.
r. Ensure that the Include User Info in ID Token check box is selected. Click Next.
s. On the Attribute Contract tab, extend the policy contract with the email and name attributes.

Click Next.
t. On the Attribute Scopes tab, map the previously defined email and profile scopes to the

email and name ID token attributes. Click Next.

u. On the Contract Fulfillment tab, fulfill the contract with the values in the access token. Click Next
until you reach the Summary tab, and then click Save.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 121

v. Click Set as Default to set the newly created policy as the default policy.
w. Go to Applications # OAuth # Clients and click Add Client.

To provide the Policy Editor with appropriate defaults, configure PingFederate with a Client ID of
pingauthorize-pap and select the Implicit check box in the Allowed Grant Types section.
From the Default Access Token Manager list, select the JWT Manager created earlier, and in
the Redirection URIs field, add the correct callback URL for the Policy Editor, such as https://
pap.example.com:9443/idp-callback.

Click Save.
x. Go to Authentication # OAuth # IdP Adapter Grant Mapping and create a new Form Adapter

Mapping, fulfilling the contracts for USER_NAME and USER_KEY with the username form field.
Click Next and Save on the Summary tab.

y. Because this PingFederate instance uses a different domain from the Policy Editor, you must
modify the PingFederate CORS settings. Go to System # OAuth Settings # Authorization
Server Settings. In the Cross-Origin Resource Sharing Settings section, enter the domain for
the Policy Editor in the Allowed Origin field. Click Add and then Save.

Result: PingFederate is configured to handle OpenID Connect requests.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 122

Next steps
Configuring PingAuthorize Policy Editor to use PingFederate on page 122
Configuring PingAuthorize Policy Editor to use PingFederate
Configure the PingAuthorize Policy Editor to use PingFederate for authorization.

Before you begin
Configure PingFederate to handle OpenID Connect requests as described in Configuring PingFederate for
PingAuthorize on page 114.

About this task

Reconfigure a manually installed PingAuthorize Policy Editor to use PingFederate for authorization.

Steps

1. Add the certificate to the Java Trust Store.

If the certificate chain added to PingFederate uses an intermediate certificate authority that is not
trusted by the default Java trust store, you must add the certificate. Use the following command (root
permissions are usually required). $JAVA_HOME must be defined as the installation location of the
JVM on which the Policy Editor will run.

keytool -import \
-file /path/to/IntermediateCA.cer \
-keystore $JAVA_HOME/jre/lib/security/cacerts \
-storepass changeit

2. Reconfigure PingAuthorize to point unauthenticated users to PingFederate.

a. Stop the application.

$ bin/stop-server
The server was successfully stopped.

b. Re-run bin/setup to reconfigure the application.
c. Select OpenID Connect to configure the Policy Editor.

[/opt/PingAuthorize-PAP]$ bin/setup

There is an existing configuration file at /config/configuration.yml.
 Overwrite? (yes /
no) [no]: yes
Detected valid license file in server root PingAuthorize.lic

PingAuthorize Policy Editor
==

How would you like to configure the Policy Editor?

 1) Quickstart (DEMO PURPOSES ONLY): This option configures the
 server with a form based authentication and
 generates a self-signed server certificate
 2) OpenID Connect: This option configures the server to use an
 OpenID Connect provider such as PingFederate
 3) Cancel the setup

Enter option [1]: 2

On which port should the Policy Editor listen for HTTPS
 communications? [9443]:

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 123

Enter the fully qualified host name or IP address that users' browsers
 will use to connect to this GUI [pap.example.com]: pap.example.com

d. Ensure that the PingFederate discovery endpoint uses the public DNS name of the PingFederate
server. In this example, the Policy Editor uses a self-signed SSL certificate.

Enter the port of the OpenID Connect provider [9031]:

Enter the fully qualified host name or IP address of the OpenID
 Connect provider [pap.example.com]: pf.example.com

Certificate server options:

 1) Generate self-signed certificate (recommended for testing
 purposes only)
 2) Use an existing certificate located on a Java Keystore (JKS)
 3) Use an existing certificate located on a PKCS12 keystore

Enter option [1]:

There already exists a keystore at /config/keystore.p12. Do you want
 to delete it? (yes / no) [no]: yes

e. Follow the remaining prompts.

 Setup Summary
=======================================
Host Name: pap.example.com
Server Port: 9443
Secure Access: Self-signed certificate
Admin Port: 9444
Periodic Backups: Enabled
Backup Schedule: 0 0 0 * * ?

Command-line arguments that would set up this server non-
interactively:
 setup oidc --pkcs12KeyStorePath config/keystore.p12 --
licenseKeyFile PingAuthorize.lic \
 --oidcHostname pf.example.com --oidcPort 9031 --certNickname
 server-cert --backupSchedule '0 0 0 * * ?' \
 --hostname pap.example.com --port 9443 --
generateSelfSignedCertificate --adminPort 9444

What would you like to do?

 1) Set up the server with the parameters above
 2) Provide the setup parameters again
 3) Cancel the setup

Enter option [1]:

Setup completed successfully

Please configure the following values
===
PingAuthorize Server - Policy External Server
 Base URL: https://
pap.example.com:9443
 Shared Secret:
 2222142a754f4838ad1e3dccb6e93940
 Trust Manager Provider: Blind Trust

PingFederate - OAuth Client Config

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 124

 Client ID:
 pingauthorizepolicyeditor
 CORS Allowed Origin: https://
pap.example.com:9443
 Redirect URL: https://
pap.example.com:9443/idp-callback

Please start the server by running bin/start-server

f. Restart the application by running bin/start-server.

3. Verify that you can log into the Policy Editor using OpenID Connect provided by PingFederate.

a. Go to the Policy Editor, for example, https://pap.example.com:9443. Your browser should be
redirected into the OAuth flow.

b. Click Click to Sign In.
c. Sign on with your user name and password.

The sample configuration in this document creates an identity with the user name user.20 and
password password.

d. Once authenticated, PingFederate will prompt the user with the scopes associated with the OAuth
client. Check all of them to continue.

Result: You are now authenticated and authorized to view the Policy Editor.

Configuring PingFederate group access for PingAuthorize
Configure PingFederate so that only members of a specific LDAP group are authorized to access the
application.

About this task

Configuring PingFederate for PingAuthorize on page 114 and Configuring PingAuthorize Policy
Editor to use PingFederate on page 122 explain how to configure the PingAuthorize Policy Editor
and PingFederate so that any authenticated user can access the PingAuthorize Policy Editor. This task
describes how to configure PingFederate to limit access to a specific LDAP group.

Steps

1. Create an LDAP group in PingDirectory and add the desired user (user.20) to the group.

a. Create a file named create-policy-writer-group.ldif and add the following.

dn: ou=groups,dc=example,dc=com
objectclass: top

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 125

objectclass: organizationalunit
ou: groups

dn: cn=PolicyWriter,ou=groups,dc=example,dc=com
objectclass: top
objectclass: groupOfUniqueNames
cn: PolicyWriter
ou: groups
uniquemember: uid=user.20,ou=People,dc=example,dc=com

b. Use the PingDirectory ldapmodify tool to load the newly created ldif file.

/opt/PingDirectory/bin/ldapmodify -a -f create-policy-writer-
group.ldif

2. Add the group membership claim requirement in PingFederate.

a. In the PingFederate console, go to Applications # OAuth # Access Token Mappings.
b. Select the PingDirectory mapping from the list, and then on the Attribute Sources & User

Lookup tab, select the PingDirectory source.
c. Click the LDAP Directory Search tab, and in the Root Object Class list, select Show All

Attributes.
d. Add the isMemberOf attribute, and then click Done to return to Access Token Attribute

Mapping.

e. Go to the Issuance Criteria tab and add a new row with the following values:

Column Value

Source LDAP (pingdir)

Attribute Name isMemberOf

Condition multi-value contains (case sensitive)

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 126

Column Value

Value cn=PolicyWriter,ou=groups,dc=example,dc=com

f. Click Save.

Result: Only user.20 can access the PingAuthorize Policy Editor.

3. Verify that only specified users can access the PingAuthorize Policy Editor.

 Note:

Clear any active SSO sessions before you sign on as each user.

a. Sign on as user.0.

Result: Access is denied.
b. Sign on as user.20.

Result: Access is granted.

Upgrading PingAuthorize

PingAuthorize includes two server applications you must upgrade in tandem—the main PingAuthorize
Server and the Policy Editor.

Ping Identity issues software release builds periodically with new features, enhancements, and fixes for
improved server performance.

 Note:

PingAuthorize Server used in external PDP mode requires a Policy Editor with the same version. When
upgrading PingAuthorize Server, you must also upgrade the Policy Editor.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 127

Upgrade considerations
When upgrading, you must consider factors such as the scope of the update, the PingAuthorize or
PingDataGovernance version from which you are upgrading, and if you are not using Docker, your installed
version of Java.

 Note:

The 8.3.0.0 release is the first release of PingAuthorize. Previously, the product was known as
PingDataGovernance.

General considerations

For Docker deployments, the upgrade process involves downloading and deploying the latest containers.

For manual installations, the upgrade process involves downloading and extracting a new version of the
PingAuthorize Server .zip file on the server and running the update utility with the --serverRoot or -R
option value from the new root server pointing to the installation.

Consider the following when upgrading:

▪ If you are upgrading from a PingAuthorize Early Access release to a PingAuthorize General Availability
release, you must upgrade both the PingAuthorize Server and the Policy Editor before you use the
Policy Decision Service in external mode. Upgrading only one component results in this error: Please
upgrade to PingAuthorize Policy Editor version <X.X.X.X>.

▪ The update affects only the server being upgraded. The process does not alter the configuration of
other servers, so you must update those servers separately.

▪ The update tool verifies that the installed version of Java meets the new server requirements. To
simplify the process, install the version of Java that is supported by the new server before running the
tool.

▪ Upgrades for PingDataGovernance Server are only supported from versions 7.0.0.0 or later. If
upgrading from a version of PingDataGovernance prior to 7.3.0.0, configuration loss will occur. The
update tool has a warning message about this.

 Tip:

For additional considerations, see Planning your upgrade.

 Note:

For information about important fixes made over several releases, see Critical Fixes.

Considerations introduced in PingAuthorize 9.0.0.0

Keep in mind the following important upgrade considerations introduced in this version of PingAuthorize
Server.

General

Peer server setup has been removed. To manage server configuration, use server profiles
instead of peer setup. Server profiles support deployment best practices such as automation
and Infrastructure-as-Code (IaC). For more information about server profiles, see Deployment
automation and server profiles on page 361.

Copyright ©2024

https://docs.pingidentity.com/bundle/solution-guides/page/piw1575669702172.html
https://docs.pingidentity.com/access/sources/dita/topic?category=pdg-82&dita:id=odo1597677014942

PingAuthorize | Upgrading PingAuthorize | 128

Spring compatibility

Spring configuration properties in PingAuthorize administrative console configuration files prior
to version 9.0.0.0 are not compatible with the administrative console bundled with PingAuthorize
9.0.0.0 and later. This incompatibility is caused by major updates to Spring dependencies.
Attempting to use these older configuration files will result in the administrative console failing to
start.

If you are using older PingAuthorize administrative console configuration files, these should be
updated. Replace the following excerpt in the old application.yml file:

spring:
 profiles.active: default
 main.show-banner: false
 thymeleaf.cache: true
 thymeleaf.prefix: classpath:/public/app/

with the following:

spring:
 profiles.active: default
 web.resources:
 # 1 year. Update the corresponding value in MvcConfig if this
 changes.
 cache.period: 31536000
 add-mappings: false # use our custom mappings instead of the
 defaults
 main:
 banner-mode: "OFF"
 thymeleaf:
 prefix: classpath:/public/app/

Upgrade considerations introduced in PingAuthorize 8.x

Considerations introduced in PingAuthorize 8.3.0.0

Keep in mind the following important considerations introduced in this version of PingAuthorize Server.

General

▪ If you are upgrading to PingAuthorize 8.3.0.0, you must also upgrade to PingAuthorize Policy
Editor 8.3.0.0.

▪ The policy decision service configuration has changed. When using embedded pdp mode,
you must specify a deployment-package-source-type for the policy decision service
in your configuration. You might need to update the dsconfig files in your server profile
when upgrading to version 8.3 to set a deployment-package-source-type. If you want
to maintain the existing behavior from previous releases, use "static-file" as your
deployment-package-source-type.

Deployments with multi-server topologies

▪ Upgrading from PingDataGovernance 6.x or 7.x

Upgrading multi-server topologies that contain PingDataGovernance 6.x or 7.x is not supported.
▪ Upgrading from PingDataGovernance 8.0.0.0 or later

You can upgrade multi-server topology deployments that contain PingDataGovernance 8.0.0.0
or later to PingAuthorize. When updating a PingDataGovernance multi-server topology to

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 129

PingAuthorize, you must remove all servers from the topology, update each server individually,
then add all the servers back to the topology, as explained below.

 Note:

The known issues and workarounds in this section apply only to deployments with multi-server
PingDataGovernance topologies. Deployments with single-server topologies can upgrade
without these issues.

For each server to be upgraded:

1. Remove the server from the topology by running a command like this one.

manage-topology remove-server <connection args>

2. Update the server.

After you have successfully upgraded every server, you can then join each server to the
topology by running a command like this one.

manage-topology add-server <connection args> <remote server
 connection args>

If you do not follow these steps, adding a PingAuthorize server to a PingDataGovernance
topology could result in the following error message:

Entry cn=License,cn=Topology,cn=config cannot be modified because
 one of the
configuration change listeners registered for that entry rejected
 the change: The provided
license key was generated for PingAuthorize but this is
 PingDataGovernance with Symphonic

Another consequence of not following these steps is that restarting any server in the topology
that is not updated fails. To use the server again, you must remove the server from the topology
and reset its license to a PingDataGovernance license.

Upgrading from a version earlier than 7.3.0.0

If you are upgrading from a PingDataGovernance version earlier than 7.3.0.0, PingAuthorize
creates the deleted-oauth2-scopes.txt file to capture data that can simplify the upgrade. For
information about what to do with this file, contact your Ping Identity account representative.

Considerations introduced in PingDataGovernance 8.2.0.0

Keep in mind the following important considerations introduced in this version of PingDataGovernance
Server.

General

▪ If you are upgrading to PingDataGovernance 8.2.0.0, you must also upgrade to Policy
Administration GUI 8.2.0.0.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 130

▪ Changes to SpEL expressions using collection projection might cause policy errors with the
following form.

EL1004E: Method call: Method <Symphonic Value method>() cannot be
 found on type <native Java type>

If your policies rely on SpEL collection projection and methods like intValue(), stringValue(),
jsonRepresentation(), or pojoRepresentation(), you must update these expressions. It is
recommended that you update the policies to use collection transforms instead of SpEL
collection projection. For information about collection transforms, see the PingDataGovernance
Policy Administration Guide.

▪ This upgrade moves to Jetty 9.4. As a result, the HTTPS connection handler will no longer
support TLS_RSA ciphers by default. If you use any legacy HTTPS clients that still require
TLS_RSA ciphers, modify the ssl-cipher-suite property of the HTTPS Connection Handler
to include them.

Gateway API Endpoint and Sideband API Endpoint configurations

▪ PingDataGovernance now strictly validates path parameters used in Gateway API Endpoint
and Sideband API Endpoint configurations. The inbound-base-path value (for Gateway API
Endpoints) and the base-path value (for Sideband API Endpoints) no longer allow duplicate
path parameters. For example, "/Users/{userId}/Manager/{userId}" defines the "userId" path
parameter twice and is invalid. In addition, other configuration properties cannot refer to a path
parameter that is not defined by inbound-base-path or base-path.

Previously, the server would allow such invalid configuration changes to be saved, but now the
server rejects them. Upgrades or server profile deployments including invalid configuration of
this kind will now fail. If this happens, correct the invalid configuration values.

Considerations introduced in PingDataGovernance 8.1.0.0

General

▪ PingDataGovernance 8.1.0.0 uses a new policy request format that requires changes to the
Trust Framework.

If you are using policies intended for a previous release, you can continue to use your existing
policies by setting the trust-framework-version property of the Policy Decision Service to
v1. If you upgrade your server using the update tool, this property is set for you automatically.

The v1 format is deprecated, however, and you are strongly encouraged to update your
Trust Framework as soon as possible. To do this, load your existing policies in the Policy
Administration GUI and apply the Trust Framework changes by going to Branch Manager #
Merge Snapshot and selecting the resource/policies/upgrade-snapshots/8.0.0.0-
to-8.1.0.0.SNAPSHOT file included with the server. Then, configure PingDataGovernance
Server to issue policy requests using the new Trust Framework by setting the trust-
framework-version property of the Policy Decision Service to v2.

▪ If you are upgrading to PingDataGovernance 8.1.0.0, an updated version of the Policy
Administration GUI is required.

▪ The PingDataGovernance Policy Administration GUI no longer uses the UNIX
environment variable PING_HOSTNAME. Instead, server administrators should use
PING_EXTERNAL_BASE_URL to specify both the domain and the port. For more information,
see the PingDataGovernance Server Administration Guide.

Policy processing and advice

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 131

▪ The Allow Attributes advice and the Prohibit Attributes advice have been removed and can no
longer be used. Requests involving policies that refer to these advice types will fail.

▪ The HttpRequest.Headers policy request attribute is not available starting with Trust
Framework version v2. It has been replaced by the HttpRequest.RequestHeaders
and HttpRequest.ResponseHeaders policy request attributes. Update existing
policies or Trust Framework entities that refer to HttpRequest.Headers to refer to
HttpRequest.RequestHeaders.

▪ SCIM 2 requests now include the resource type in the service value during policy processing.
For example, for a SCIM 2 request that affects the "Users" resource type, the service value
will now be "SCIM2.Users" instead of "SCIM2". Existing policy rules or targets that rely on an
exact equality match for "SCIM2" must be updated. For example, a condition of "Service Equals
SCIM2" would need to be updated to "Service Matches SCIM2".

▪ For security, by default, the policy engine's SpEL processor now invokes Java classes only in
the allow-list presented in the PingDataGovernance Server Administration Guide. To use
other classes, add a key to the core section of the Policy Administration GUI's configuration
called AttributeProcessing.SpEL.AllowedClasses with a list of the classes to include.
If you are using embedded PDP mode, add a policy configuration key of the same name to the
PingDataGovernance Server configuration.

PDP API

▪ The XACML-JSON PDP API now requires a different request format. With this new format, you
can make multiple decisions using a single HTTP request. In addition, the response format
is now compliant with the XACML-JSON specification. The 8.0 PDP API request format is no
longer supported. For more information, see the PingDataGovernance Server Administration
Guide.

Peer setup and clustered configuration

▪ Peer setup and clustered configuration are deprecated and will be removed in PingAuthorize
9.0. We encourage deployers to manage server configuration using server profiles, which
support deployment best practices such as automation and Infrastructure-as-Code (IaC). For
more information about server profiles, see the PingAuthorize Server Administration Guide.

▪ If you have upgraded a server that is in a cluster (that is, has a cluster name set in the Server
Instance configuration object) to version 8.1, you will not be able to make cluster configuration
changes until all servers with the same cluster name have been upgraded to version 8.1.
If needed, you could create temporary clusters based on server versions and modify each
server's cluster name appropriately to minimize the impact while you are upgrading.

Docker upgrades

Upgrading PingAuthorize Server using Docker
When using Docker, instead of upgrading PingAuthorize Server, you deploy a container with the new
PingAuthorize version and use the same server profile.

About this task
If you deployed a container using a server profile, when you want to deploy a newer PingAuthorize Server
version, you deploy a container with that version using the same server profile.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 132

Steps

▪ For more information, see https://devops.pingidentity.com/reference/config/.

(The server profiles for Docker deployments differ from those discussed in Deployment automation
and server profiles on page 361.)

Upgrading the PingAuthorize Policy Editor using Docker
If you originally installed the Policy Editor with Docker per Deploying PingAuthorize Policy Editor using
Docker on page 86, use this procedure to upgrade the PingAuthorize Policy Editor when a new version
is released.

Steps

1. In your current Policy Editor, complete the steps in Backing up policies on page 136.

2. Stop the old Docker container and start the new one.

When a new Docker image for the PingAuthorize Policy Editor is available, you stop the existing
Docker container and start the new container from the new image while mounting the same volumes.

 Warning:

If you use a shared volume, you should always stop the Docker container running the older version of
the Policy Editor before you start the new container.

The following commands stop the running container and run a new image named <pap_new>. This
image uses the volumes from <pap_old> to house the policy database. Also, the command uses the
same PING_H2_FILE location from Example: Override the configured policy database location on
page 165.

 Note:

▪ The Ping Identity DevOps Docker images use the PingAuthorize setup tool to update the H2
policy database on the mounted volume. If you store your policies in a PostgreSQL database,
follow the instructions and use the scripts provided in this GitHub repository to update your policy
database.

▪ For proper communication between containers, create a Docker network using a command such
as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

$ docker container stop <pap_old>
$ docker run --network=<network_name> --name <pap_new> \
 -p 443:1443 -d --env-file ~/.pingidentity/config \
 --volumes-from <pap_old> \
 --env PING_H2_FILE=/opt/out/Symphonic \
 pingidentity/pingauthorizepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub (https://hub.docker.com/r/pingidentity/pingauthorizepap).

 Warning:

The setup tool uses the default credentials to upgrade the policy database. If the credentials
no longer match the default values, the server administrator should pass the correct credentials

Copyright ©2024

https://devops.pingidentity.com/reference/config/
https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql
https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Upgrading PingAuthorize | 133

to the setup tool using the PING_DB_ADMIN_USERNAME, PING_DB_ADMIN_PASSWORD,
PING_DB_APP_USERNAME, and PING_DB_APP_PASSWORD UNIX environment variables.

For example, if the old policy database admin credentials have been previously set to admin/
Passw0rd, and the application credentials have been set to app/S3cret, the docker run command
should include those environment variables as shown in this example.

 $ docker container stop <pap_old>
 $ docker run --network=<network_name> --name <pap_new> \
 -p 443:1443 -d --env-file ~/.pingidentity/config \
 --env PING_H2_FILE=/opt/out/Symphonic \
 --env PING_DB_ADMIN_USERNAME=admin \
 --env PING_DB_ADMIN_PASSWORD=Passw0rd \
 --env PING_DB_APP_USERNAME=app \
 --env PING_DB_APP_PASSWORD=S3cret \
 pingidentity/pingauthorizepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub (https://hub.docker.com/r/pingidentity/pingauthorizepap).

This command ensures that the setup tool has the correct credentials to access the policy database,
and that it does not reset credentials to their defaults.

3. In the new Policy Editor, complete the steps in Upgrading the Trust Framework and policies on page
136.

Manual upgrades

Upgrading PingAuthorize Server manually
Perform the following steps to upgrade a PingAuthorize server.

Steps

1. Download and unzip the new version of PingAuthorize Server in a location outside the existing server's
installation.

For these steps, assume the existing server installation is in /opt/
pingauthorize/PingAuthorize and the new server version is extracted into /home/
stage/PingAuthorize.

2. Provide a copy of the PingAuthorize license file for the version to which you are upgrading in the /
home/stage/PingAuthorize directory, or give the location of the license file to the tool using the
--licenseKeyFile option.

3. Run the update tool provided with the new server package to update the existing PingAuthorize
Server.

The update tool might prompt for confirmation on server configuration changes if it detects
customization.

Example:

/home/stage/PingAuthorize/update --serverRoot /opt/
pingauthorize/PingAuthorize

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Upgrading PingAuthorize | 134

Reverting an update
After you've updated PingAuthorize Server, you can revert to the previous version (one level back) using
the revert-update tool.

About this task

The revert-update tool accesses a log of file actions taken by the updater to put the file system back to
its previous state. If you have run multiple updates, you can run the revert-update tool multiple times
to sequentially revert to each prior update. You can only revert back one level at a time with the revert-
update tool. For example, if you had to run the update twice since first installing PingAuthorize Server,
you can run the revert-update tool to revert to its previous state, then run the revert-update tool
again to return to its original state.

When starting the server for the first time after running a revert, the server displays warnings about "offline
configuration changes," but these are not critical and will not appear during subsequent start-ups.

Steps

▪ Run revert-update in the server root directory to revert back to the most recent previous version of
the server, as shown in the following example.

/opt/pingauthorize/PingAuthorize/revert-update

Upgrading the PingAuthorize Policy Editor manually
If you originally installed the PingAuthorize Policy Editor using .zip files, use this procedure to upgrade the
Policy Editor when a new version is released.

Steps

1. In your current Policy Editor, complete the steps in Backing up policies on page 136.

2. Stop the Policy Editor.

$ bin/stop-server

3. Obtain and unzip the new version of the PingAuthorize Policy Editor in a location outside the existing
Policy Editor's installation.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 135

4. Prepare the existing policy database.

 Note:

The new server installation might require changes to the policy database structure.

Choose from:

▪ If you store your policies in the H2 policy database, copy the existing database. The server setup
tool performs these upgrades and generates a new configuration.xml file.

This example assumes the old installation is in /opt/pingauthorize/PingAuthorize-PAP-
previous, and the new installation is in /opt/pingauthorize/PingAuthorize-PAP.

To upgrade a
database from

Run this command

8.1 and later versions
$ cp /opt/pingauthorize/PingAuthorize-PAP-previous/
Symphonic.mv.db opt/pingauthorize/PingAuthorize-PAP

8.0 and earlier
versions $ cp /opt/pingauthorize/PingAuthorize-PAP-previous/

admin-point-application/db/Symphonic.mv.db opt/
pingauthorize/PingAuthorize-PAP

▪ If you store your policies in a PostgreSQL database, follow the steps for Upgrading a PostgreSQL
policy database on page 137.

5. Run setup.

 Note:

Updating PingAuthorize Server uses an update tool. PingAuthorize Policy Editor does not have this
tool though. Instead of updating the Policy Editor in-place, you install the new Policy Editor.

 Warning:

The setup tool uses the default credentials to upgrade the H2 policy database. If the credentials no
longer match the default values, the server administrator should pass the correct credentials to the
setup tool using the --dbAdminUsername, --dbAdminPassword, --dbAppUsername, and --
dbAppPassword command-line options. Otherwise, setup fails when it cannot access the H2 policy
database, or it might reset credentials to their default values. For more information, see Manage policy
database credentials on page 250.

Follow the instructions in one of the following topics:

▪ Installing the PingAuthorize Policy Editor interactively on page 99
▪ Installing the PingAuthorize Policy Editor noninteractively on page 102

6. Start the new Policy Editor.

Follow the instructions in Post-setup steps (manual installation) on page 107.

7. In the new Policy Editor, complete the steps in Upgrading the Trust Framework and policies on page
136.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 136

Policy-related upgrades
As part of the PingAuthorize upgrade process, you must upgrade specific Policy Editor components and
dependencies, including policies, policy databases, and the Trust Framework.

See the following topics for instructions on upgrading Policy Editor components and dependencies:

▪ Backing up policies on page 136
▪ Upgrading the Trust Framework and policies on page 136
▪ Upgrading a PostgreSQL policy database on page 137

Backing up policies
Back up existing policies before upgrading the Policy Editor. Do this by exporting policy snapshots.

About this task
Back up policies manually as described below or rely on the automatic backups covered in Policy database
backups on page 277.

Steps

1. Sign on to the Policy Editor and choose any existing branch to go to the main landing page.

2. To display your current branches, select Branch Manager # Version Control.

3. From the Branches list, click a branch that you want to export.

Result: You should see a list of the commits for that branch, and the most recent version of the branch
is named Uncommitted Changes.

4. Identify the commit that represents the snapshot that you want to export and click the three-line icon in
the Options column.

5. Choose Export Snapshot.

Result: Your browser downloads the file.

6. Repeat for any additional branches that you want to back up.

Upgrading the Trust Framework and policies
PingAuthorize ships with a default Trust Framework and policy snapshot that policy writers should use
as a starting point when developing their policies. Occasionally, a server upgrade results in changes
to the default Trust Framework and policies, and policy writers must upgrade any policies based on
defaultPolicies.SNAPSHOT.

Steps

1. Sign on to the Policy Editor and choose any branch to go to the main landing page.

2. Select Branch Manager from the navigation bar on the left, and open the Merge Snapshot tab.

3. Click the file selection option, and go to the resource/policies/upgrade-snapshots folder of
the new Policy Editor deployment.

4. Select the correct SNAPSHOT file based on the version you are upgrading from and the version to
which you are upgrading.

 Important:
If you are upgrading from 7.3.0.x, use the 7.3.0.x-to-8.0.0.0-SNAPSHOT and merge that (per
the next step) before you select and merge 8.0.0.0-to-8.1.0.0.SNAPSHOT.

Example: When upgrading from version 8.0.0.0 to version 8.1.0.0, use resource/policies/
upgrade-snapshots/8.0.0.0-to-8.1.0.0.SNAPSHOT.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 137

5. Merge the partial snapshot.

 Note:

Merge conflicts might occur where objects have been updated. If you have not modified the objects in
conflict, you can safely select Keep Snapshots.

6. Return to your PingAuthorize Server installation.

7. Run the following dsconfig command to configure PingAuthorize Server to use the latest Trust
Framework version.

dsconfig set-policy-decision-service-prop \
 --set trust-framework-version:v2

Upgrading a PostgreSQL policy database
To upgrade an existing PostgreSQL policy database from version 9.0.X.X to version 9.1.X.X, use the
provided upgrade SQL scripts as directed.

About this task

These instructions apply only to non-Docker deployments of PingAuthorize versions 9.0.X.X (EA and GA)
and 9.1.X.X (EA and GA). Earlier versions don't support PostgreSQL, and later versions require the db-
cli tool to upgrade PostgreSQL databases.

Steps

1. Prepare the Policy Editor by selecting one of the following options:
Choose from:

▪ If you haven't upgraded the Policy Editor, follow the steps for Installing the PingAuthorize Policy
Editor noninteractively on page 102 to create and start up a new instance of the server at the
target version.

▪ If you have already upgraded the Policy Editor to the target version, run the start-server
command, as follows:

$ bin/start-server

Result:

After you execute the start-server command, the application checks the PostgreSQL database
schema version against the version of the Policy Editor and provides the locations of any necessary
upgrade scripts, as illustrated in the following example:

The policy database at
 'jdbc:postgresql://<postgresql_host>:<postgresql_port>/<postgresql_db_name>'
 is older than this version of PingAuthorize (9.1.0.0). Please use the
 following scripts to upgrade the policy database before running start-
server again:
A) https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/
postgresql/9.1-EA.sql
B) https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/
postgresql/9.1-GA.sql

Copyright ©2024

https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/postgresql/README.md
https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/postgresql/README.md

PingAuthorize | Uninstalling PingAuthorize | 138

2. Download and apply the upgrade scripts for the policy database schema versions between your
current version and the target version, as indicated in the previous step.

 Important:

You must apply the scripts incrementally, not concurrently, and in sequence from oldest to newest.

Example:

For example, to upgrade from 9.0.X.X-GA to 9.1.X.X-GA, you must apply both the 9.1-EA and 9.1-GA
upgrade scripts:

$ wget https://raw.githubusercontent.com/pingidentity/pingauthorize-
contrib/main/sql/postgresql/9.1-EA.sql
$ psql --dbname=<postgresql_db_name> --file=9.1-EA.sql >/dev/null
$ wget https://raw.githubusercontent.com/pingidentity/pingauthorize-
contrib/main/sql/postgresql/9.1-GA.sql
$ psql --dbname=<postgresql_db_name> --file=9.1-GA.sql >/dev/null

Result

After you apply the specified SQL scripts, the PostgreSQL database upgrade is complete. The Policy
Editor should now start successfully using the target version of the PostgreSQL database. You can verify
this by running the start-server command.

Uninstalling PingAuthorize

For manual installations, PingAuthorize Server provides an uninstall tool to remove its components
from the system.

Steps

1. Go to the PingAuthorize Server root directory.

2. Run the uninstall command.

$./uninstall

3. Select the option to remove all components or select the components you want to remove.

Example:

To remove selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes
Remove Log Files? (yes / no) [yes]: no
Remove Configuration and Schema Files? (yes / no) [yes]: yes
Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no
Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]:
 no
The files will be permanently deleted, are you sure you want to continue?
 (yes / no) [yes]:

4. Manually delete any remaining files or directories.

Next steps
To remove PingAuthorize Policy Editor, run stop-server and remove its installation directory.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 139

PingAuthorize Integrations

Ping Identity provides the following API gateway integrations to enable you to use PingAuthorize for
attribute-based access control and policy decisions with your API gateway:

▪ Kong API gateway integration on page 139
▪ MuleSoft API gateway integration on page 151

Kong API gateway integration
Ping Identity provides the ping-auth Kong Gateway integration plugin, which enables PingAuthorize to
be used for attribute-based access control and policy decisions.

Integration with Kong Gateway allows PingAuthorize to handle the complexities of attribute-based access
control and dynamic authorization, making it easier for you to control access to your API resources. Instead
of configuring policies multiple times, deploy the Kong Gateway integration once and manage your policy
rules in PingAuthorize.

The following diagram explains how traffic flows through Kong Gateway and PingAuthorize.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 140

1. The HTTP client sends an inbound request to Kong Gateway.
2. Kong Gateway sends a sideband request to PingAuthorize.
3. PingAuthorize Server evaluates the request against policies defined in the PingAuthorize Policy Editor

and sends a permit or deny response to Kong Gateway.
4. Kong Gateway analyzes the response from PingAuthorize to determine whether the request should

be allowed to the resource server—and if so, whether there should be any modification to the request.
Should the request be denied, then PingAuthorize includes directives to influence how Kong Gateway
responds to the HTTP client.

5. If the request is permitted, the resource server sends an outbound response to Kong Gateway.
6. Kong Gateway passes the response to PingAuthorize for processing.
7. PingAuthorize sends a response to Kong Gateway.
8. Kong Gateway processes the response from PingAuthorize. This includes directives for how to modify

the response to the HTTP client, if any modifications should be made.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 141

 Note:

The following notes are important to consider when using the ping-auth Kong Gateway integration
plugin for PingAuthorize:

Mutual TLS (mTLS)

This plugin supports client certificate authentication using mTLS; however this feature requires using
the mtls-auth plugin (only available in the enterprise edition of Kong) in conjunction with ping-
auth. For more information, see the Kong mTLS documentation. When configured, mtls-auth
uses the mTLS process to retrieve the client certificate, which allows ping-auth to provide the
certificate in the client_certificate field of the sideband requests.

Transfer-Encoding

Because of an outstanding defect in Kong, ping-auth is unable to support the Transfer-Encoding
header, regardless of the value.

Logging limit

Because of OpenResty's log level limit, log messages are limited to 2048 bytes by default, which
is less than the size of many requests and responses. For more information, see the OpenResty
reference documentation.

Preparing PingAuthorize for Kong Gateway integration
For Kong Gateway to use PingAuthorize as an external authorization policy runtime service, you must
prepare PingAuthorize to receive authorization requests from Kong Gateway.

Before you begin

▪ Install and start Kong Gateway. For more information, see the Kong Gateway documentation.
▪ Install and start PingAuthorize. For more information, see Installing PingAuthorize on page 77.

Steps

1. In the PingAuthorize admin console, go to Configuration # HTTP Servlet Extensions # Sideband
API.

2. In the Request Context Method list, select State.

3. In the Shared Secret Header Name field, modify the value to CLIENT-TOKEN.

4. Next to the Selected table for Shared Secrets, click the + icon to create a new shared secret.

5. In the modal dialog, create a suitably long shared secret value and click Save To PingAuthorize
Server Cluster.

Copyright ©2024

https://docs.konghq.com/hub/kong-inc/mtls-auth/
https://openresty-reference.readthedocs.io/en/latest/Lua_Nginx_API/#ngxlog
https://openresty-reference.readthedocs.io/en/latest/Lua_Nginx_API/#ngxlog
https://docs.konghq.com/gateway/

PingAuthorize | PingAuthorize Integrations | 142

6. At the top of the Edit Sideband API HTTP Servlet Extension page, click Save.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 143

Setting up Kong Gateway
Download, install, and configure the ping-auth plugin to set up Kong Gateway with PingAuthorize.

About this task

To configure the ping-auth plugin in Kong to set up a connection between PingAuthorize and Kong
Gateway:

Steps

1. Install the plugin by running the luarocks install kong-plugin-ping-auth command.

See the Kong Gateway plugin installation guide for more information.

2. After installation, load the plugin into Kong by editing the plugins = bundled,ping-auth property
in the kong.conf file.

3. Restart Kong Gateway.

4. To confirm loading, look for the debug-level message Loading plugin: ping-auth in Kong’s
error.log.

Next steps

▪ To complete Kong Gateway setup using Kong Manager, proceed to Using the GUI.
▪ To complete Kong Gateway setup using API requests, proceed to Using the API.

Copyright ©2024

https://docs.konghq.com/gateway-oss/2.5.x/plugin-development/distribution/#installing-the-plugin

PingAuthorize | PingAuthorize Integrations | 144

Setting up Kong Gateway using the GUI

Steps

1. In Kong Manager, select the default workspace and then click Plugins.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 145

2. For the ping-auth plugin, click Edit, and then click the toggle to enable the plugin.

3. Optional: If you want to enable the plugin for specific consumers, services, or routes, click Scoped,
and then enter Service, Route, and Consumer information as needed.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 146

4. Connect Kong Gateway to PingAuthorize:

a. Copy the PingAuthorize sideband client’s shared secret.
b. Enter the hostname of your PingAuthorize server and the port of the HTTPS Connection Handler

into the Config.Service URL field.

You can find this port number in the PingAuthorize Admin Console by going to Configuration #
System # Connection Handlers.

Example:

For example, this field's value could be https://pingauthorize:8443.

c. Paste the shared secret into the Config.Shared Secret field in Kong Manager.
d. Ensure the Config.Secret Header Name value in Kong Manager matches the secret header

name configured for the Sideband API Servlet Extension in PingAuthorize.

5. Optional: Configure the rest of the optional fields in Kong Manager or the API.

Option API Field Name Description

Config.Connection KeepAlive
Ms

connection_keepAlive_ms The duration to keep the
connection alive for reuse. The
default is 60000.

Config.Connection Timeout
Ms

connection_timeout_ms The duration to wait before
the connection times out. The
default is 10000.

Config.Enable Debug Logging enable_debug_logging Controls if requests and
responses are logged at the
debug level. The default is
false. For log messages to
show in error.log, you must
set log_level = debug in
kong.conf.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 147

Option API Field Name Description

Config.Verify Service
Certificate

verify_service_certificateControls whether the service
certificate is verified. This is
intended for testing purposes
and the default is true.

6. Click Update, and then click Update Plugin.

Result

Kong Gateway is now configured to work with PingAuthorize.

Setting up Kong Gateway using the API

Steps

1. Send the following in a POST request to https://<KONG_URL>/plugins:

{
 "name": "ping-auth",
 "enabled": true,
 "config": {
 "service_url": "https://<PingAuthorize Server hostname>:<HTTPS
 Connection Handler port>/",
 "shared_secret": "<shared secret>",
 "secret_header_name": "<shared secret header name>"
 }
}

 Note:

See the following list for more information about the required fields for the previous API request:

service_url

The full URL of the Ping policy provider. This should not contain /sideband in the path.

shared_secret

The shared secret value to authenticate this plugin to the policy provider.

secret_header_name

The header name in which the shared secret is provided.

You can provide additional configuration in accordance with the Kong API specification. For
more information, see the Kong documentation.

2. Optional: Configure the rest of the optional fields through the API.

Option API Field Name Description

Config.Connection KeepAlive
Ms

connection_keepAlive_ms The duration to keep the
connection alive for reuse. The
default is 60000.

Config.Connection Timeout
Ms

connection_timeout_ms The duration to wait before
the connection times out. The
default is 10000.

Copyright ©2024

https://docs.konghq.com/gateway/2.8.x/admin-api/#add-plugin

PingAuthorize | PingAuthorize Integrations | 148

Option API Field Name Description

Config.Enable Debug Logging enable_debug_logging Controls if requests and
responses are logged at the
debug level. The default is
false. For log messages to
show in error.log, you must
set log_level = debug in
kong.conf.

Config.Verify Service
Certificate

verify_service_certificateControls whether the service
certificate is verified. This is
intended for testing purposes
and the default is true.

Result

Kong Gateway is now configured to work with PingAuthorize.

Troubleshooting the Kong Gateway integration
Consult the following sections to troubleshoot issues with the Kong Gateway integration with
PingAuthorize:

▪ Troubleshooting API client HTTP 5xx errors on page 148
▪ API client HTTP 4xx errors on page 149
▪ Enabling error logging in Kong Gateway on page 150
▪ Enabling debug logging for the Kong Gateway plugin on page 150

Troubleshooting API client HTTP 5xx errors

About this task

Kong Gateway might return HTTP 502 when there is misconfiguration or miscommunication between the
Ping Identity plugin for Kong Gateway and PingAuthorize Server.

 Trouble:

The plugin for Kong Gateway logs warning messages to the Kong Gateway error log when it encounters
problems communicating with PingAuthorize.

For more information, see Enabling error logging in Kong Gateway on page 150.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 149

Steps

1. Check the ping-auth shared secret value in Kong Gateway to confirm it matches your PingAuthorize
environment.

Example:

If the ping-auth Config.Shared Secret value doesn’t match the PingAuthorize sideband client's
shared secret value, the Kong error log message might indicate that the plugin received an HTTP 401
error from PingAuthorize, which gets translated to a 5xx error sent to the API client. For example:

2022/03/28 16:19:49 [warn] 78#0: *85187 [lua] network_handler.lua:145:
 is_failed_request(): [ping-auth] Sideband request denied with status
 code 401: The Gateway Token is invalid

a. If there is a shared secret mismatch, go to Configuration # Web Services and Applications #
Sideband API Shared Secrets in the PingAuthorize Admin Console.

b. Update the shared secret value for PingAuthorize.
c. Copy the value to the Config.Shared Secret field in the Kong Gateway ping-auth plugin

configuration.

2. Check the ping-auth Config.Service URL value in Kong Gateway to confirm that it matches your
PingAuthorize environment.

Example:

If the Config.Service URL value doesn’t contain the hostname and HTTPS Connection Handler port
configured for your PingAuthorize server, the Kong error log message might indicate that the plugin
received an invalid response from the server. For example:

2022/03/28 16:19:49 [error] 78#0: *90929 [lua] access.lua:114:
 handle_response(): [ping-auth] Unable to parse JSON body returned from
 policy provider. Error: Expected value but found T_END at character 1

a. If necessary, confirm that the values entered in the Config.Service Url field of the ping-auth
plugin in Kong Gateway correspond to the hostname and HTTPS Connection Handler port of your
PingAuthorize server.

You can find this port number in the PingAuthorize Admin Console by going to Configuration #
System # Connection Handlers.

b. Update any mismatched values in Config.Service Url.

API client HTTP 4xx errors

The API gateway could return 4xx errors to API clients in these situations:

▪ PingAuthorize cannot match an API client’s request to any of the base paths configured for a sideband
API endpoint.

▪ The API client’s request cannot be authenticated for a sideband API endpoint.

 Tip:

For more information, see Diagnostic and decision data on page 397.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 150

Enabling error logging in Kong Gateway

Steps

1. To view error log messages, configure Kong Gateway error logging.

For more information on log levels, see the Kong Gateway Logging Reference documentation.

Example:

For example, in a Docker environment, you can set the environment variable
KONG_PROXY_ERROR_LOG to /dev/stderr to send the error log to the container console.

2. View the Kong Gateway error log.

Example:

For example, in a Docker deployment, you can use the docker-compose logs kong --follow
command.

Enabling debug logging for the Kong Gateway plugin

About this task

Ping Identity Support might ask you to enable debug logging for the Kong Gateway integration kit.
Changing these settings logs the full authorization request and response between the ping-auth plugin
in Kong Gateway and PingAuthorize.

 CAUTION:

This could log sensitive and personally identifiable information (PII). Enable debug logging only when
troubleshooting and disable it afterward.

Steps

1. Enable error logging in Kong Gateway.

2. To view debug messages, configure Kong error log verbosity.

For more information, see the Kong Gateway Logging Reference documentation.

Example:

For example, in a Docker environment, you can set the environment variable KONG_LOG_LEVEL to
debug to set the verbosity.

3. To enable debug logging, edit settings for the ping-auth plugin and select the Config.Enable
Debug Logging check box.

4. View the Kong Gateway error log.

Example:

For example, when depoloying Docker, you can use the docker-compose logs kong --follow
command.

5. Look for messages containing ping-auth.

Example:

A typical log message looks like: [ping-auth] Sending sideband request to policy
provider.

Copyright ©2024

https://docs.konghq.com/gateway/2.8.x/configure/logging/
https://docs.konghq.com/gateway/2.8.x/configure/logging/

PingAuthorize | PingAuthorize Integrations | 151

MuleSoft API gateway integration
Learn how to enable fine-grained access control through the MuleSoft API Gateway by deploying the
PingAuthorize API integration kit and connecting to the Sideband API.

Ping Identity provides a custom MuleSoft policy to enable this configuration.

The custom MuleSoft policy acts as the sideband adapter, allowing MuleSoft to be used as the API
gateway as follows:

1. The client sends an incoming request to MuleSoft.
2. The custom MuleSoft policy passes the incoming request to PingAuthorize Server.
3. PingAuthorize Server determines whether to permit or deny the request based on policies defined in

the PingAuthorize Policy Editor (not to be confused with MuleSoft policies). The server also performs
any desired request modifications.

4. If the request is permitted, MuleSoft makes the request to the backend resource.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 152

5. MuleSoft receives a response from the backend resource.
6. The custom MuleSoft policy makes a second API call to pass response information to PingAuthorize

Server.
7. PingAuthorize Server determines whether to permit or deny based on the backend response. Before

the server returns the request to MuleSoft, it also modifies the request based on policies defined in
PingAuthorize.

8. MuleSoft sends the response to the client.

Deploying the custom MuleSoft policy for PingAuthorize

Before you begin

You must:

▪ Have the correct MuleSoft version.

The custom policy supports MuleSoft 4.3.0. If you are using any other version, contact Ping Identity
support.

▪ Install and configure PingAuthorize software.

See the PingAuthorize installation information for your environment.
▪ Download the MuleSoft Integration Kit for PingAuthorize, which contains the custom MuleSoft policy.
▪ Create a sideband adapter shared secret.

Sideband adapters like the custom MuleSoft policy use a shared secret header to authorize against
PingAuthorize. For information, see Creating a shared secret on page 181.

 Note:

Make sure you record the shared secret value. You need it to configure the MuleSoft policy.

▪ Configure the sideband adapter request context.

For more information, see Request context configuration on page 189. Complete the section titled
Request context using the state field.

▪ Install Apache Maven.

About this task

To begin integrating PingAuthorize with MuleSoft 4.3.0, deploy the custom MuleSoft policy. The MuleSoft
policy package has a .zip archive that contains the policy files.

Steps

1. Extract the policy files to create a project folder.

2. Edit the pom.xml file to enter your organization's groupID.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee</groupId>

 <artifactId>PingAuthorize</artifactId>
 <version>0.4.0</version>

Copyright ©2024

https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000XjgRQAS/mulesoft-integration-kit-for-pingauthorize

PingAuthorize | PingAuthorize Integrations | 153

 <name>PingAuthorize</name>
 <description>PingAuthorize sideband policy for Mule 4.X APIs deployed
 on Mule Cloudhub from Ping Identity</description>

3. From the command line in your project folder, run the following command to package the
PingAuthorize policy and create a deployable .jar file.

> mvn clean install

 Note:

You must have a MuleSoft Enterprise Repository license to compile the policy. For more information,
see Configure Maven to Access MuleSoft Enterprise Repository in Maven Reference.

4. Upload the PingAuthorize policy to Exchange.

For more information, see the instructions in Deploying a Policy Created Using the Maven Archetype.

Result
The custom MuleSoft policy is now available to your APIs. For more information, see Applying the custom
MuleSoft policy for PingAuthorize on page 153.

Applying the custom MuleSoft policy for PingAuthorize

About this task

The PingAuthorize policy supports HTTP APIs configured with the Endpoint with proxy or Basic
Endpoint options.

Steps

1. Sign on to your MuleSoft Anypoint account.

2. Go to the API manager, expand the API to which you want to attach the PingAuthorize policy, and click
Version.

Copyright ©2024

https://docs.mulesoft.com/mule-runtime/4.3/maven-reference#configure-maven-to-access-mulesoft-enterprise-repository
https://docs.mulesoft.com/api-manager/2.x/custom-policy-uploading-to-exchange

PingAuthorize | PingAuthorize Integrations | 154

3. In the left navigation pane, click Policies.

The Policies page supports applying the PingAuthorize policy to the API.

4. Click Apply New Policy.

Result: The Select Policy window opens.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 155

5. In the Select Policy window, select the PingAuthorize policy and current version. Click Configure
Policy.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 156

6. On the Apply Policy page, enter the following values:

a. In the PAZ Token field, enter the sideband adapter shared secret generated as part of the
prerequisites in Deploying the custom MuleSoft policy for PingAuthorize on page 152

b. In the PAZ Host field, enter the PingAuthorize host and port.

 Note:

Do not include the connection scheme (http:// or https://).

c. Select the Enable SSL check box for a secure HTTPS connection between MuleSoft and
PingAuthorize.

d. Select the Allow self-signed certificate check box to enable MuleSoft to accept a self-signed
certificate from PingAuthorize.

For information about configuring PingAuthorize to use trusted certificates, see Importing signed
and trusted certificates on page 337.

e. Select an access token type:

Choose from:

▪ Use Authorization Header.

Indicates that the authorization header of an incoming request should be passed to
PingAuthorize and used to authorize the client.

▪ Use hard-coded parsed access token.

Allows configuration of an access token that will be used for every request. Use this only for
testing purposes.

▪ Use parsed access token.

Allows configuration of a DataWeave expression for retrieving a parsed access
token from the Mule message. When you use MuleSoft's OAuth 2.0 Token
Enforcement policies to obtain a parsed access token, use the expression
#[authentication.properties.userProperties]. For more information, see
DataWeave Language.

f. Optional: Configure the Connection Timeout and Read Timeout.

Timeouts govern the behavior of the API gateway when it cannot connect to PingAuthorize or the
response from PingAuthorize is delayed.

Timeout parameter Description

Connection Timeout Governs the time the API gateway waits
to establish a connection with PingAuthorize,
following which it sends the client request to the
backend server.

Copyright ©2024

https://docs.mulesoft.com/mule-runtime/4.3/dataweave

PingAuthorize | PingAuthorize Integrations | 157

Timeout parameter Description

Read Timeout Governs the time the API Gateway waits for
PingAuthorize's response before sending the
request to the backend server.

 Note:

The default value is 5000 milliseconds (5 seconds). It's good practice to configure a small value to
limit the delay in case PingAuthorize isn't reachable or is unresponsive.

g. Optional: Select the Enable debug logging check box to see requests sent to PingAuthorize
Server along with responses.

h. Optional: Configure Methods & Resource Conditions.

See Resource-Level Policies for more information.

Copyright ©2024

https://docs.mulesoft.com/api-manager/2.x/policies-policy-level

PingAuthorize | PingAuthorize Server Administration Guide | 158

Next steps

If there are any changes to PingAuthorize endpoints, repeat the process explained in step 6 and re-deploy
the configuration.

PingAuthorize Server Administration Guide

PingAuthorize Server includes the runtime policy decision service and multiple integration capabilities:

▪ Authorization policy decision APIs
▪ API security gateway and sideband API
▪ SCIM service

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 159

Running PingAuthorize
For manual software installations of PingAuthorize Server and the PingAuthorize Policy Editor, you can
launch the applications from the CLI.

Starting PingAuthorize Server
To start PingAuthorize Server in a Unix/Linux computing environment, use the bin/start-server CLI
command. On Windows, use the bat/start-server.bat command.

Steps

1. In a terminal window, enter go to the directory where you have installed PingAuthorize Server.

2. Run the command for your operating system.

Operating System Command

Unix/Linux bin/start-server

Windows bat/start-server.bat

Running PingAuthorize Server as a foreground process
Run or stop PingAuthorize Server as a foreground process in Unix/Linux computing environments through
the CLI.

Steps

▪ To launch PingAuthorize Server as a foreground process, run $ bin/start-server --nodetach.
▪ To stop a running PingAuthorize Server, do one of the following:

Choose from:

▪ In the terminal window running the server, press and hold CTRL+C.
▪ In a new terminal window, run bin/stop-server.

Starting PingAuthorize Server at boot time (Unix/Linux)
Create a script to run PingAuthorize Server when the system boots.

About this task

PingAuthorize Server does not start automatically when the system is booted. By default, you must use the
bin/start-server command to start it manually.

Steps

▪ To configure PingAuthorize Server to start automatically when the system boots, complete one of the
following tasks:
Choose from:

▪ Use the create-systemd-script utility to create a script.

1. Create the service unit configuration file in a temporary location, as in the following example.

 $ bin/create-systemd-script \
 --outputFile /tmp/ping-authorize.service \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 160

 --userName pingauthorize

In this example, pingauthorize represents the username assigned to PingAuthorize
Server.

2. Switch to root user. The command for doing this will vary depending on your distribution.
3. As a root user, copy the ping-authorize.service configuration file to the /etc/

systemd/ system directory as shown.

cp ping-authorize.service /etc/systemd/

4. Reload systemd to read the new configuration file as shown.

$ systemctl daemon-reload

5. To start PingAuthorize Server, use the start command.

$ systemctl start ping-authorize.service

6. To configure PingAuthorize Server to start automatically when the system boots, use the
enable command, as in the following example.

$ systemctl enable ping-authorize.service

7. Sign off from the system as the root user.
▪ Create a Run Control (RC) script manually.

1. Run bin/create-rc-script to create the startup script.
2. Move the script to the /etc/init.d directory.
3. Create symlinks to the script from the /etc/rc3.d directory.

To ensure that the server is started, begin the symlinks with an S.
4. Create symlinks to the script from the /etc/rc0.d directory.

To ensure that the server is stopped, begin the symlinks with a K.

Starting PingAuthorize Server at boot time (Windows)
On Windows Server systems you can register PingAuthorize Server as a service to start it up when
booting.

About this task

PingAuthorize Server can run as a service on Windows Server operating systems. This approach allows
the server to start at boot time, and allows the administrator to log off from the system without stopping the
server.

Registering PingAuthorize Server as a Windows service
Registering PingAuthorize Server as a service allows you to automate startup when booting.

About this task

 Note:

The following options are not supported when PingAuthorize Server is registered to run as a Windows
service:

▪ Command-line arguments for the start-server.bat and stop-server.bat scripts
▪ Using a task to stop the server

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 161

Steps

1. Run bin/stop-server to stop PingAuthorize Server.

 Note:
You cannot register a server while it is running.

2. From a Windows command prompt, run bat/register-windows-service.bat to register the
server as a service.

3. Use one of the following methods to start PingAuthorize Server:
Choose from:

▪ The Windows Services Control Panel
▪ The bat/ start-server.bat command

Running multiple service instances
You can run multiple instances of PingAuthorize Server as Windows services by altering the wrapper-
product.conf file.

About this task

Only one instance of a particular service can run at a time. Services are distinguished by the
wrapper.name property in the <server-root>/config/wrapper-product.conf file.

To run additional service instances, change the wrapper.name property on each additional instance. You
can also add or change service descriptions in the wrapper-product.conf file.

Steps

1. Open the <server-root>/config/wrapper-product.conf file.

2. Change the wrapper.name property to a unique string, such as pingauthorize1.

3. Save the wrapper-product.conf file.

4. Register PingAuthorize Server as a service. For more information, see Registering PingAuthorize
Server as a Windows service on page 160.

5. Repeat these steps for each service instance you want to create.

Deregistering and uninstalling services
When a server is registered as a service, it cannot run as a non-service process or be uninstalled.

About this task

Steps

1. To remove the service from the Windows registry, run the bat/deregister-windows-
service.bat script.

2. To uninstall PingAuthorize Server, run the PingAuthorize/uninstall.bat script. For more
information, see Uninstalling PingAuthorize on page 138.

Log files for Windows services
You can configure the log files generated by PingAuthorize Server running as a Windows service.

Log files are stored in <server-root>/logs, and file names begin with windows-service-wrapper.

You can edit the log file configurations in the <server-root>/config/wrapper.conf file.

Log files are configured to rotate each time the wrapper starts due to file size. You can edit the allowed file
size using the wrapper.logfile.maxsize parameter. The default size is 50 Mb.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 162

By default, only the two most recent log files are retained. You can change how many log files to retain by
editing the wrapper.logfile.maxfiles parameter.

Starting PingAuthorize Policy Editor
For a manual software installation, use the start-server CLI command to start the Policy Editor. Also,
you can use environment variables to override configuration variables at startup.

To start PingAuthorize Policy Editor, use the bin/start-server command.

$ bin/start-server

 Note:

You can run bin/start-server manually from the command line or within a script.

Overriding the configuration at startup

You can override a number of Policy Editor settings by defining specific environment variables before
starting the server. By overriding some of the configuration, you can redefine certain aspects of the
configuration without re-running the setup tool.

To override the configuration, stop the Policy Editor, define one or more of the environment variables, and
restart the Policy Editor.

Environment variables you can use to override configuration variables

The following table lists the environment variables that you can define, sorted based on expected
frequency of use with related variables grouped together.

Environment variable Example value Description

PING_EXTERNAL_BASE_URLpap.example.com:9443 The Policy Editor hostname and port.

PingAuthorize uses this value to construct AJAX
requests.

The port value must match the value of PING_PORT
for web browsers to pass CORS checks.

PING_PORT 443 The Policy Editor HTTPS port.

The server binds to this listen port.

PING_KEYSTORE_TYPE JKS The Policy Editor’s key store type. Valid values
include JKS and PKCS12.

PING_KEYSTORE_PATH /path/to/keystore.jks The path to the Policy Editor’s key store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 163

Environment variable Example value Description

KEYSTORE_PIN_FILE /path/to/keystore.pin The path to the Policy Editor's key store PIN file.
When present, this environment variable takes
precedence over PING_KEYSTORE_PASSWORD
when validating and presenting the server
certificate. The key store PIN value itself does
not persist to the configuration.yml file and
is not visible on the command-line. For a more
complete example, see the Demo mode (custom
SSL certificate) tab of Installing the PingAuthorize
Policy Editor noninteractively on page 102.

PING_KEYSTORE_PASSWORDpassword1234 The Policy Editor’s key store password.

PING_CERT_ALIAS server-cert The alias for the Policy Editor’s server certificate.

PING_SHARED_SECRET pingauthorize The Policy Editor’s shared secret, which
PingAuthorize Server needs to make policy
requests to the Policy Editor.

PING_OIDC_
CONFIGURATION_ENDPOINT

https://
oidc.example.com:9031/.well-
known/openid-
configuration

The OpenID Connect (OIDC) provider’s discovery
URL. Used when the Policy Editor is set up in OIDC
mode.

PING_OIDC_TLS_VALIDATIONNONE The OpenID Connect (OIDC) Transport Layer
Security (TLS) validation setting. Set to NONE to
configure the Policy Editor to accept self-signed
SSL certificates from the OpenID Connect provider
and skip hostname verification.

Used when the Policy Editor is set up in OIDC
mode. For non-production use only.

PING_CLIENT_ID 8cb9f2c9-
c366-47e0-9560-
db2132b2d813

The Policy Editor’s client ID with the OpenID
Connect provider. Used when the Policy Editor is
set up in OIDC mode.

PING_USERNAMES admin, user1, user2 Used in demo mode. A comma-separated list of
usernames accepted by the Policy Editor for sign
on.

PING_H2_FILE ./Symphonic The path to the policy database H2 file.

Leave off the .mv.db extension.

PING_DB_APP_USERNAMEdb_user The username the application uses to access the
server database.

PING_DB_APP_PASSWORDPa$$w0rd!23 The password the application uses to access the
server database.

PING_DB_ADMIN_USERNAMEdb_admin The username the setup tool uses when
upgrading the policy database.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 164

Environment variable Example value Description

PING_DB_ADMIN_PASSWORD$3cr3T The password the setup tool uses when upgrading
the policy database.

PING_OPTIONS_FILE /path/to/options.yml The path to an options.yml file to use with the
Policy Editor's setup tool.

PING_ADMIN_PORT 9444 The admin port where the H2 database backup
endpoint is available.

The policy administration point, or PAP, uses this
endpoint to back up the H2 database, which stores
your Trust Framework, policies, commit history, and
other data.

Related environment variables:
PING_BACKUP_SCHEDULE,
PING_H2_BACKUP_DIR

PING_BACKUP_SCHEDULE0 0 0 * * ? The periodic database backup schedule for the
Policy Editor (also known as the PAP) in the form of
a cron expression.

 Note:

The PAP evaluates the expression against the
system timezone. For the PingAuthorize Docker
images, the default timezone is UTC.

The default is 0 0 0 * * ?, which is midnight
every day.

For more information, see Quartz 2.3.0 cron format.

Related environment variables:
PING_ADMIN_PORT, PING_H2_BACKUP_DIR

PING_H2_BACKUP_DIR /opt/out/backup The directory in which to place the H2 database
backup files.

The default is SERVER_ROOT/policy-backup.

Related environment variables:
PING_ADMIN_PORT, PING_BACKUP_SCHEDULE

PING_ENABLE_API_HTTP_CACHEfalse Controls the API HTTP caching on page 257
feature for the run-time instance of the server. APIs
are cached by default.

Provide this environment variable at run time and
set it to false to disable API HTTP caching for that
server instance.

Copyright ©2024

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format

PingAuthorize | PingAuthorize Server Administration Guide | 165

Example: Use an existing SSL certificate for HTTPS connections

This example shows how to provide the environment variables necessary for the Policy Editor to present a
different SSL certificate than the one configured during setup:

env PING_CERT_ALIAS=<certificate-nickname> \
PING_KEYSTORE_PATH=<path-to-keystore-file> \
PING_KEYSTORE_TYPE=<PKCS12-or-JKS> \
KEYSTORE_PIN_FILE=<path-to-keystore-pin-file> \
bin/start-server

Example: Override the configured HTTPS port

In this example, the Policy Editor is started using an HTTPS port that differs from the value
configured during installation. The override requires two environment variables: PING_PORT and
PING_EXTERNAL_BASE_URL.

$ bin/stop-server
$ export PING_PORT=9443 PING_EXTERNAL_BASE_URL=pap.example.com:9443; bin/
start-server

Example: Override the configured policy database location

This example changes the policy database location. The new value must be a policy server Java Database
Connectivity (JDBC) connection string for an H2 embedded database. To use a file located at /opt/
shared/Symphonic.mv.db, use the following commands.

$ bin/stop-server
$ export PING_H2_FILE=/opt/shared/Symphonic
$ bin/setup demo {ADDITIONAL_ARGUMENTS} && bin/start-server

 Note:

Even though the actual filename of the policy database includes the extension .mv.db, the JDBC
connection string excludes the extension.

If /opt/shared/Symphonic.mv.db does not exist, setup creates a new one. If the file does exist and
is from an older PingAuthorize server, setup updates the file to the latest version.

Troubleshooting startup errors

The bin/start-server command prints an error message if it detects that an error has occurred during
startup. For more information about the error, see the logs/authorize-pe.log and logs/start-
server.log files.

Stopping PingAuthorize Server
PingAuthorize Server provides a simple shutdown script to stop the server.

Steps

▪ To stop the PingAuthorize Server, run the $ bin/stop-server command.

 Note:

You can run bin/stop-server manually from the command line or within a script.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 166

Stopping PingAuthorize Policy Editor
PingAuthorize Policy Editor provides a simple shutdown script to stop the system.

Steps

▪ To stop the PingAuthorize Policy Editor, run the bin/stop-server command.

 Note:

You can run bin/stop-server manually from the command line or within a script.

Restarting PingAuthorize Server
You can stop and restart PingAuthorize Server with a single command.

About this task

Running this command is equivalent to shutting down PingAuthorize Server, exiting the Java virtual
machine (JVM) session, and starting the server again.

Steps

1. Go to the PingAuthorize Server root directory.

2. Run bin/stop-server with the --restart or -R option.

Example:

$ bin/stop-server --restart

About the API security gateway
When you configure PingAuthorize Server for the API gateway pattern, the server and gateway provide
dynamic authorization management between a client and a REST API.

See the following topics for specific details about the functionality of the API security gateway.

▪ API gateway request and response flow on page 166
▪ Gateway configuration basics on page 167
▪ API security gateway authentication on page 168
▪ API security gateway policy requests on page 169
▪ API security gateway HTTP 1.1 support on page 175
▪ Gateway error templates on page 176

API gateway request and response flow
Using the API gateway pattern, PingAuthorize processes JSON requests and responses in two distinct
phases according to a defined sequence.

The gateway handles proxied requests in the following phases:

▪ Inbound phase – When a client submits an API request to PingAuthorize Server, the gateway forms
a policy request based on the API request and submits it to the policy decision point (PDP) for
evaluation. If the policy result allows it, PingAuthorize Server forwards the request to the API server.

▪ Outbound phase – After PingAuthorize Server receives the upstream API server's response, the
gateway again forms a policy request, this time based on the API server response, and submits it to
the PDP. If the policy result is positive, PingAuthorize Server forwards the response to the client.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 167

REST API

REST API

PDP

PDP

PingAuthorize

PingAuthorize

Client

Client

Client receives
filtered REST API
response

REST API handles request

PingAuthorize
forwards API request
to REST API

Inbound phase:
PingAuthorize filters
API request

PingAuthorize
validates access token

Client makes
REST API
request

Outbound phase:
PingAuthorize filters
API response

request

API request and response

response

token validation

submit API request
for policy processing

apply policy result
to API request

submit API response
for policy processing

apply policy result
to API response

The API gateway supports only JSON requests and responses.

Gateway configuration basics
You can configure the API gateway architecture by creating and modifying its components.

The API security gateway consists of the following components:

▪ One or more gateway HTTP servlet extensions
▪ One or more Gateway API Endpoints
▪ One or more API external servers

An API external server represents the upstream API server and contains the configuration for the server's
protocol scheme, host name, port, and connection security. You can create the server in the PingAuthorize
administrative console, or with the following example command.

PingAuthorize/bin/dsconfig create-external-server \
 --server-name "API Server" \
 --type api \
 --set base-url:https://api-service.example.com:1443

A Gateway API Endpoint represents a public path prefix that PingAuthorize Server accepts for handling
proxied requests. A Gateway API Endpoint configuration defines the base path for receiving requests
(inbound-base-path) as well as the base path for forwarding the request to the API server (outbound-
base-path). It also defines the associated API external server and other properties that relate to policy
processing, such as service, which targets the policy requests generated for the Gateway API Endpoint to
specific policies.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 168

The following example commands use the API external server from the previous example to create a pair
of Gateway API Endpoints.

PingAuthorize/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set inbound-base-path:/c/definitions \
 --set outbound-base-path:/consent/v1/definitions \
 --set "api-server:API Server" \
 --set service:Consent

PingAuthorize/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Records" \
 --set inbound-base-path:/c/consents \
 --set outbound-base-path:/consent/v1/consents \
 --set "api-server:API Server" \
 --set service:Consent

The gateway HTTP servlet extension is the server component that represents the API security gateway
itself. In most cases, you do not need to configure this component.

Changes to these components do not typically require a server restart to take effect. For more information
about configuration options, see the Configuration Reference, located in the server's docs/config-
guide directory.

API security gateway authentication
The API security gateway authenticates requests through bearer tokens by default, and you can configure
it to handle authentication according to your preferences.

Although the gateway does not strictly require the authentication of requests, the default policy set requires
bearer token authentication.

To support this approach, the gateway uses the configured access token validators to evaluate bearer
tokens that are included in incoming requests. The result of that validation is supplied to the policy request
in the HttpRequest.AccessToken attribute, and the user identity associated with the token is provided
in the TokenOwner attribute.

Policies use this authentication information to affect the processing of requests and responses. For
example, a policy in the default policy set requires that all requests are made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny
 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

Gateway API Endpoints include the following configuration properties to specify the manner in which they
handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Gateway API Endpoint
evaluates bearer tokens, and if so, whether the
bearer token is forwarded to the API server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 169

Property Description

access-token-validator Sets the access token validators that the Gateway
API Endpoint uses. By default, this property has
no value, and the Gateway API Endpoint can
evaluate every bearer token by using each access
token validator that is configured on the server. To
constrain the set of access token validators that a
Gateway API Endpoint uses, set this property to
use one or more specific values.

If http-auth-evaluation-behavior is set to
do-not-evaluate, this setting is ignored.

API security gateway policy requests
The API security gateway creates policy requests for incoming requests and API responses, and you can
observe how it creates them.

Before accepting an incoming request and forwarding it to the API server, the gateway creates a policy
request based on the incoming request and sends it to the policy decision point (PDP) for authorization.
Before accepting an API server response and forwarding it back to the client, the gateway creates a
policy request based on the incoming request and response and sends it to the PDP for authorization. An
understanding of the manner in which the gateway formulates policy requests can help you create and
troubleshoot policies more effectively.

You can selectively disable response policy processing on a per-API-Endpoint basis. This ability is useful
if the Gateway authorizes requests but does not filter responses. Disabling this processing can improve
performance for frequent requests or requests that return very large responses. To disable processing, set
the Gateway API Endpoint's disable-response-processing property to true.

To better understand how the gateway formulates policy requests, enable detailed decision logging and
viewing all policy request attributes in action, particularly when first developing API security gateway
policies. For more information, see Policy Decision logger on page 397.

API gateway policy request attributes
There are many policy request attributes generated by the security gateway, including attributes nested
within the attributes, HttpRequest.AccessToken, HttpRequest.ClientCertificate, and
Gateway fields.

The following table identifies the attributes of a policy request that the gateway generates.

Policy request attributes Description Type

action Identifies the gateway request
processing phase and the HTTP
method, such as GET or POST.

The value is formatted as
<phase>-<method>.

Example values include
inbound-GET, inbound-
POST, outbound-GET, and
outbound-POST.

String

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 170

Policy request attributes Description Type

attributes Identifies additional attributes
that do not correspond to
a specific entity type in the
PingAuthorize Trust Framework.
For more information about these
attributes, see the following table.

Object

domain Unused. String

identityProvider Identifies the access token
validator that evaluates the
bearer token used in an incoming
request.

String

service Identifies the API service. By
default, this attribute is set
to the name of the Gateway
API Endpoint, which can be
overridden by setting the
Gateway API Endpoint's service
property. Multiple Gateway API
Endpoints can use the same
service value.

String

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

Gateway Provides additional gateway-specific
information about the request not provided
by the following attributes.

Object

HttpRequest.AccessToken Parsed access token. For more information,
see the following table.

Object

HttpRequest.ClientCertificate Properties of the client certificate, if one was
used.

Object

HttpRequest.CorrelationId A unique value that identifies the request
and response, if available.

String

HttpRequest.IPAddress The client IP address. String

HttpRequest.QueryParameters Request URI query parameters. Object

HttpRequest.RequestBody The request body, if available. Object

HttpRequest.RequestHeaders The HTTP request headers. Object

HttpRequest.RequestURI The request URI. String

HttpRequest.ResourcePath Portion of the request URI path following
the inbound base path that the Gateway
API Endpoint defines.

String

HttpRequest.ResponseBody The response body, if available. This
attribute is provided only for outbound policy
requests.

Object

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 171

Attribute Description Type

HttpRequest.ResponseStatus The HTTP response status code, if
available.

Number

TokenOwner The access token subject as a SCIM
resource, as obtained by the access token
validator.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

access_token The actual access token from the
client request.

String

active Indicates whether this access
token is currently active, as
determined by the access token
validator.

Boolean

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization server
sets this field to indicate the
resource servers that might
accept the token.

Array

client_id The client ID of the application
that was granted the access
token.

String

expiration Date and time at which the
access token expires.

DateTime

issued_at Date and time at which the
access token was issued.

DateTime

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

scope Identifies the list of scopes
granted to this token.

Collection

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

Copyright ©2024

https://tools.ietf.org/html/rfc7662

PingAuthorize | PingAuthorize Server Administration Guide | 172

Attribute Description Type

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a
client.

Boolean

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

subject DN of the certificate subject. String

subjectRegex Regular expression that must
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the Gateway attribute contains.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Gateway API
Endpoint's inbound-base-
path value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 173

Attribute Description Type

base path parameters Parameters used in a Gateway
API Endpoint's inbound-base-
path configuration property are
included as fields of the Gateway
attribute.

String

custom attribute The Gateway attribute might
contain multiple arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Gateway API Endpoint
configuration.

String

Gateway API Endpoint configuration properties that affect policy requests
The following table identifies Gateway API Endpoint properties that might force the inclusion of additional
attributes in a policy request.

Gateway API Endpoint property Description

inbound-base-path Defines the URI path prefix that the gateway uses
to determine whether the Gateway API Endpoint
handles a request.

The inbound-base-path property value can
include parameters. If parameters are found and
matched, they are included as attributes to policy
requests.

The following configuration properties reference
parameters that the inbound-base-path
introduces:

▪ outbound-base-path
▪ service
▪ resource-path
▪ policy-request-attribute

service Identifies the API service to the PDP.

The service value appears in the policy request as
the service attribute.

If undefined, the service value defaults to the name
of the Gateway API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute.

If undefined, the resource path value defaults to
the portion of the request that follows the base path
defined by inbound-base-path.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 174

Gateway API Endpoint property Description

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, key-value pairs are always added
as attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute
Gateway.foo is added to the policy request with a
value of bar.

API gateway path parameters
The inbound-base-path property value can include parameters. If parameters are found and matched,
they are included in policy requests as fields of the Gateway policy request attribute.

Gateway API Endpoint configuration properties that affect policy requests on page 173 identifies
additional configuration properties that can use these parameters.

You must introduce parameters by the inbound-base-path property. Other configuration properties
cannot introduce new parameters.

Basic example
The following example configuration demonstrates how request URIs are mapped to the outbound path to
alter policy requests.

Gateway API Endpoint property Example value

inbound-base-path /accounts/{accountId}/transactions

outbound-base-path /api/v1/accounts/{accountId}/
transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/accounts/XYZ/transactions/1234.

The following properties are added to the policy request:

▪ HttpRequest.ResourcePath : 1234
▪ Gateway.accountId : XYZ
▪ Gateway.foo : bar

Advanced example
Request URIs are mapped to the outbound path to alter policy requests.

Consider the following example configuration.

Gateway API Endpoint property Example value

inbound-base-path /health/{tenant}/{resourceType}

outbound-base-path /api/v1/health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/health/OmniCorp/patients/1234.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 175

The following properties are added to the policy request:

▪ service : HealthAPI.patients
▪ HttpRequest.ResourcePath : patients/1234
▪ Gateway.tenant : OmniCorp
▪ Gateway.resourceType : patients

API security gateway HTTP 1.1 support
In its capacity as a reverse proxy, the API security gateway must modify HTTP requests and responses in
addition to the changes required by policy processing.

Forwarded HTTP request headers

HTTP requests often pass through a chain of intermediaries before reaching a destination server. The
HTTP 1.1 specifications define two categories of headers that are pertinent to this context.

End-to-end headers

Headers requiring transmission to all recipients on the chain, such as Content-Type.

Hop-by-hop headers

Headers that are only relevant to the next recipient on the chain, such as Connection and Keep-
Alive.

The API security gateway never forwards hop-by-hop headers. It generally forwards all end-to-end
headers, with the following exceptions:

▪ Headers related to HTTP resource versioning and conditional requests, such as If-None-Match and
If-Modified-Since, are never forwarded.

▪ Headers related to CORS, such as Origin or Access-Control-Request-Method, are never
forwarded.

▪ Headers that you exclude by using the allowed-headers configuration property of an API External
Server to define an allow list of forwarded headers.

▪ Headers that you remove by using a custom advice extension.

The API security gateway always adds the Host, Accept-Encoding, Via, X-Forwarded-For, X-
Forwarded-Host, X-Forwarded-Port, and X-Forwarded-Proto headers to forwarded requests.
If the HTTP Connection Handler is configured to use or generate correlation IDs, then a correlation ID
header is also added to the forwarded request.

You can use the http-auth-evaluation-behavior property of a Gateway API Endpoint to alter the
Authorization header of a forwarded request.

Forwarded HTTP response headers

The API security gateway forwards most HTTP response headers, with the following exceptions:

▪ The Date header is replaced with a value generated by the API security gateway.
▪ The Content-Length header is replaced with a value generated by the API security gateway.
▪ The Location header is replaced with a value generated by the API security gateway.
▪ If the HTTP Connection Handler is configured to use or generate correlation IDs, then a correlation ID

header is added to the response.
▪ Headers related to HTTP resource versioning and conditional requests, such as ETag and Last-
Modified, are never forwarded.

▪ Headers related to CORS, such as Access-Control-Allow-Origin or Access-Control-
Allow-Headers, are never forwarded.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 176

Unsupported HTTP request header

The API security gateway does not support the Upgrade header.

Unsupported advice changes

The API security gateway does not support using advice to add, modify, or delete the following headers:

▪ Hop-by-hop headers that the gateway always removes, such as Connection and Keep-Alive
▪ Conditional request headers that the gateway always removes, such as If-None-Match and ETag
▪ Proxy-specific headers that the gateway always adds, such as Via and X-Forwarded-For

The gateway overrides any changes to these headers.

Gateway error templates
REST API clients are often written with the expectation that the API produces a custom error format. Some
clients might fail unexpectedly if they encounter an error response that uses an unexpected format.

When a REST API is proxied by PingAuthorize Server, errors that the REST API returns are forwarded
to the client as is, unless a policy dictates a modification of the response. In the following scenarios,
PingAuthorize Server returns a gateway-generated error:

▪ When the policy evaluation results in a deny response. This scenario typically results in a 403 error.
▪ When an internal error occurs in the gateway, or when the gateway cannot contact the REST API

service. This scenario typically results in a 500, 502, or 504 error.

By default, these responses use a simple error format, as in the following example.

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes this default error format.

Field Type Description

errorMessage String Error message

status Number HTTP status code

Because some REST API clients expect a specific error response format, PingAuthorize Server provides
a facility for responding with custom errors, called error templates. An error template is written in Velocity
Template Language and defines the manner in which a Gateway API Endpoint produces error responses.

Error templates feature the following context parameters.

Parameter Type Description

status Integer HTTP status

message String Exception message

requestURI String Original Request URI

requestQueryParams Object Query parameters as JSON
object

headers Object Request headers as JSON object

correlationID String Request correlation ID

For more information, see Sideband error templates on page 191.

Copyright ©2024

http://velocity.apache.org/engine/1.7/user-guide.html
http://velocity.apache.org/engine/1.7/user-guide.html

PingAuthorize | PingAuthorize Server Administration Guide | 177

Configuring error templates example
The example in this section demonstrates the configuration of a custom error template for a Gateway API
Endpoint named Test API.

About this task

Error responses that use this error template feature the following fields:

▪ code
▪ message

Steps

1. Create a file named error-template.vtl with the following contents.

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration, as follows.

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Gateway API Endpoint, as follows.

dsconfig set-gateway-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

 Note:

The error template is used whenever the gateway generates an error in response to a request.

Example: A policy deny results in a response like the following example.

HTTP/1.1 403 Forbidden
Content-Length: 57
Content-Type: application/json;charset=utf-8
Correlation-Id: e7c8fb82-f43e-4678-b7ff-ae8252411513
Date: Wed, 27 Feb 2019 05:54:50 GMT
Request-Id: 56

{
 "code": "ACCESS_FAILED",
 "message": "Access Denied"
}

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 178

About the Sideband API
The Sideband API provides dynamic authorization management for requests and responses and returns
them in a potentially modified form, which the API gateway forwards to the backend REST API or the
client.

As a gateway, PingAuthorize Server functions as a reverse proxy that performs the following steps:

▪ Intercepts client traffic to a backend REST API service
▪ Authorizes the traffic to a policy decision point (PDP) that operates either within the PingAuthorize

process, called Embedded PDP mode, or outside the PingAuthorize process, called External PDP
mode

Using the Sideband API, you can configure the PingAuthorize Server instead as a plugin to an external API
gateway. In Sideband mode, an API gateway integration point intercepts client traffic to a backend REST
API service and passes intercepted traffic to the PingAuthorize Sideband API.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 179

API gateway integration
Enable attribute-based access control through your API gateway by installing the PingAuthorize API
integration plugin (where supported) and connecting to the Sideband API.

REST API

REST API

PDP

PDP

PingAuthorize

PingAuthorize

API
Gateway

API
Gateway

Client

Client

API Gateway forwards
response to client

PingAuthorize returns
Sideband API response

to API Gateway

Outbound phase:
PingAuthorize filters
REST API response

PingAuthorize
authenticates

Sideband API request

API Gateway makes
Sideband API request

including REST API
request

REST API returns response
to API Gateway

API Gateway forwards
request to REST API

PingAuthorize returns
Sideband API response

to API Gateway

Inbound phase:
PingAuthorize filters

REST API request

PingAuthorize
validates access token
from REST API request

PingAuthorize
authenticates

Sideband API request

API Gateway makes
Sideband API request

including REST API
request

API Gateway receives
REST API request from

client

REST API request

Sideband API request

Sideband API response

REST API request

REST API response

Sideband API request

REST API response

Sideband API response

token validation

submit REST API response
for policy processing

authenticate request

apply policy result to
REST API request

authenticate request

apply policy result to
REST API response

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 180

Processing steps

1. When the API gateway receives a request from an API gateway plugin, it makes a call to the Sideband
API to process the request.

2. The Sideband API returns a response that contains a modified version of the HTTP client's request.

The API gateway forwards the response to the REST API.
3. If the Sideband API returns a response that indicates the request is unauthorized or not to be

forwarded, the response includes the response to be returned to the client.

The API gateway returns the response to the client without forwarding the request to the REST API.
4. When the API gateway receives a response from the REST API, it makes a call to the Sideband API to

process the response.
5. The Sideband API returns a response that contains a modified version of the REST API's response.

The API gateway forwards the response to the client.

Sideband API configuration basics
The Sideband API provides fine-grained access control to supported third-party API gateways through an
API integration.

The Sideband API consists of the following components.

Sideband API Shared Secrets

Defines the authentication credentials that the Sideband API might require an API gateway plugin to
present. For more information, see Authenticating to the Sideband API on page 181.

Sideband API HTTP Servlet Extension

Represents the Sideband API itself. If you require shared secrets, you might need to configure this
component. For more information, see Authenticating to the Sideband API on page 181.

Sideband API Endpoints

Represents a public path prefix that the Sideband API accepts for handling proxied requests. A
Sideband API Endpoint configuration defines the following items:

▪ The base path (base-path) for requests that the Sideband API accepts
▪ Properties that relate to policy processing, such as service, which targets the policy requests

that are generated for the Sideband API Endpoint to specific policies

PingAuthorize Server's default configuration includes a Default Sideband API Endpoint that accepts all API
requests and generates policy requests for the service Default. To customize policy requests further,
an administrator can create additional Sideband API Endpoints. For more information about using the
Sideband API Endpoint configuration to customize policy requests, see Sideband API policy requests on
page 183.

 Note:

Changes to these components do not typically require a server restart to take effect. For more information,
see the Configuration Reference, located in the server's docs/config-guide directory.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 181

Example

Example

The following example commands create a pair of Sideband API Endpoints that target specific requests to
a consent service.

PingAuthorize/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set base-path:/c/definitions \
 --set service:Consent

PingAuthorize/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Records" \
 --set base-path:/c/consents \
 --set service:Consent

Authenticating to the Sideband API
The Sideband API can require an API gateway plugin to authenticate to it by using a shared secret.

To define shared secrets, use Sideband API Shared Secret configuration objects. To manage shared
secrets, use the Sideband API HTTP Servlet Extension.

Creating a shared secret
Define the authentication credentials that the Sideband API might require an API gateway plugin to
present.

Steps

1. To create a shared secret, run the following example dsconfig command, substituting values of your
choosing.

Example:

PingAuthorize/bin/dsconfig create-sideband-api-shared-secret \
 --secret-name "Shared Secret A" \
 --set "shared-secret:secret123"

 Note:

▪ The shared-secret property sets the value that the Sideband API requires the API gateway
plugin to present. After you set this value, it is no longer visible.

▪ The secret-name property is a label that allows an administrator to distinguish one Sideband
API Shared Secret from another.

2. To update the shared-secrets property, run the following example dsconfig command.

Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --add "shared-secrets:Shared Secret A"

A new Sideband API Shared Secret is not used until the shared-secrets property of the Sideband
API HTTP Servlet Extension is updated.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 182

Deleting a shared secret
You can remove a shared secret from use or delete it entirely.

Steps

▪ To remove a Sideband API Shared Secret from use, run the following example dsconfig command,
substituting values of your choosing.

Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --remove "shared-secrets:Shared Secret A"

▪ To delete a Sideband API Shared Secret, run the following example dsconfig command.

Example:

PingAuthorize/bin/dsconfig delete-sideband-api-shared-secret \
 --secret-name "Shared Secret A"

Rotating shared secrets
To avoid service interruptions, the Sideband API allows multiple, distinct shared secrets to be accepted at
the same time.

About this task

You can configure a new shared secret that the Sideband API accepts alongside an existing shared secret.
This allows time to update the API gateway plugin to use the new shared secret.

Steps

1. Create a new Sideband API Shared Secret and assign it to the Sideband API HTTP Servlet Extension.
For more information, see Creating a shared secret on page 181.

2. Update the API gateway plugin to use the new shared secret.

3. Remove the previous Sideband API Shared Secret. For more information, see Deleting a shared
secret on page 182.

Customizing the shared secret header
By default, the Sideband API accepts a shared secret from an API gateway plugin through the CLIENT-
TOKEN header.

Steps

▪ To customize a shared secret header, change the value of the Sideband API HTTP Servlet
Extension's shared-secret-header property.

Example:

The following command changes the shared secret header to x-shared-secret.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --reset shared-secret-header-name

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 183

Authenticating API server requests
As with the PingAuthorize API Security Gateway mode, API server requests that the Sideband API
authorizes do not strictly require authentication. However, the default policy set requires bearer token
authentication.

About this task

The Sideband API uses configured Access Token Validators to evaluate bearer tokens that are included in
incoming requests. The HttpRequest.AccessToken attribute supplies the validation result to the policy
request, and the TokenOwner attribute provides the user identity that is associated with the token.

Policies use this authentication information to affect the processing requests and responses. For example,
the following policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny
 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

The following table identifies the configuration properties that determine the manner in which Sideband API
Endpoints handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Sideband API Endpoint
evaluates bearer tokens, and if so, whether the
Sideband API Endpoint forwards them to the API
server by way of the API gateway.

access-token-validator Sets the Access Token Validators that the
Sideband API Endpoint uses. As this property
contains no value by default, the Sideband API
Endpoint can potentially use each Access Token
Validator that is configured on the server to
evaluate every bearer token.

To constrain the set of Access Token Validators
that a Sideband API Endpoint uses, set this
property to use one or more specific values.

This setting is ignored if http-auth-
evaluation-behavior is set to do-not-
evaluate.

Sideband API policy requests
Understanding how the Sideband API formulates policy requests can help you create and troubleshoot
policies more effectively.

To authorize an incoming request, the Sideband API performs the following steps:

▪ Creates a policy request that is based on the incoming request
▪ Sends the policy request to the Policy Decision Point (PDP) for evaluation

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 184

Sideband API policy request attributes
The following tables provide an overview of policy request attributes.

The following table identifies the attributes that are associated with a policy request that the Sideband API
generates.

Attribute Description Type

action Identifies the request-processing
phase and the HTTP method,
such as GET or POST.

The value is formatted as
<phase>-<method>. Example
values include inbound-GET,
inbound-POST, outbound-
GET, and outbound-POST.

String

attributes Additional attributes that do not
correspond to a specific entity
type in the Trust Framework.

For more information, see the
next table.

Object

domain Unused. String

identityProvider Name of the Access Token
Validator that evaluates the
bearer token in an incoming
request.

String

service Identifies the API service. By
default, this value is set to the
name of the Sideband API
Endpoint.

To override the default value,
set the Sideband API Endpoint's
service property.

Multiple Sideband API Endpoints
can use the same service value.

String

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

Gateway Additional gateway-specific information
about the request not provided by the
following attributes.

Object

HttpRequest.AccessToken Parsed access token.

For more information, see the following
table.

Object

HttpRequest.ClientCertificate Properties of the client certificate, if one was
used.

Object

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 185

Attribute Description Type

HttpRequest.CorrelationId A unique value that identifies the request
and response, if available.

String

HttpRequest.IPAddress The client IP address. String

HttpRequest.QueryParameters Request URI query parameters. Object

HttpRequest.RequestBody The request body, if available. Object

HttpRequest.RequestHeaders The HTTP request headers. Object

HttpRequest.RequestURI The request URI. String

HttpRequest.ResourcePath Portion of the request URI path that follows
the inbound base path that the Sideband
API Endpoint defines.

String

HttpRequest.ResponseBody The response body, if available. This
attribute is provided only for outbound policy
requests.

Object

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if
available.

Number

TokenOwner The access token subject as a SCIM
resource, as obtained by the access token
validator.

Object

 Note:

When handling an outbound response, HTTP request data is only available if specifically provided by the
API gateway plugin.

The following table identifies the fields that are associated with the HttpRequest.AccessToken
attribute, which is populated by the access token validator.

 Note:

These fields correspond approximately to the fields that are defined by the IETF Token Introspection
specification, RFC 7662.

Attribute Description Type

access_token The actual access token from the
client request.

String

active Indicates whether this access
token is currently active, as
determined by the access token
validator.

Boolean

Copyright ©2024

https://tools.ietf.org/html/rfc7662

PingAuthorize | PingAuthorize Server Administration Guide | 186

Attribute Description Type

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization server
sets this field to identify the
resource servers that can accept
the token.

Array

client_id Client ID of the application that
was granted the access token.

String

expiration Date and time at which the
access token expired.

DateTime

issued_at Date and time at which the
access token was issued.

DateTime

issuer Token issuer. Typically, this
value is a URI that identifies the
authorization server.

String

not_before Date and time before which a
resource server does not accept
an access token.

DateTime

scope Identifies the list of scopes
granted to this token.

Collection

subject Token subject. This value
represents a user identifier that
the authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This value is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

token_type Token type, as set by the
authorization server. Typically,
this value is bearer.

String

user_token Flag that the access token
validator sets to indicate the
token was originally issued to a
subject. If the flag is false, the
token contains no subject and
was issued directly to a client.

Boolean

username Subject's user name. This value
represents a user identifier that
the authorization server sets.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute can
contain.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 187

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

subject DN of the certificate subject. String

subjectRegex Regular expression that must
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

String

valid Indicates whether the SSL client
certificate is valid.

Boolean

The following table identifies the fields that the Gateway attribute can contain.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Sideband API
Endpoint's base-path value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters in a Sideband
API Endpoint's base-path
configuration property are
included as fields of the Gateway
attribute.

String

base path parameters The Gateway attribute can
contain multiple, arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Sideband API Endpoint
configuration.

String

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 188

Sideband API Endpoint configuration properties
The following table identifies Sideband API Endpoint properties that might force the inclusion of additional
attributes with the policy request.

Property Description

base-path Defines the URI path prefix that the Sideband
API uses to determine whether the Sideband API
Endpoint handles a request.

The base-path property value can include
parameters. If parameters are found and matched,
they are included as attributes to policy requests.

The following configuration properties can
reference parameters that base-path introduces:

▪ service
▪ resource-path
▪ policy-request-attribute

service Identifies the API service to the PDP. A policy can
use this value to target requests.

The service value appears in the policy request
as the service attribute. If undefined, the
service value defaults to the name of the
Sideband API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute. If undefined, the resource-path value
defaults to the portion of the request that follows the
base path, as defined by base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, the pairs are always added as
attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute
Gateway.foo is added to the policy request with
the value bar.

Sideband API path parameters
If parameters are found and matched for the base-path property, they are included in policy requests as
fields of the Gateway policy request attribute.

Other configuration properties can use these parameters. For more information, see Sideband API
Endpoint configuration properties on page 188.

The base-path property must introduce parameters. Other configuration properties cannot introduce new
parameters.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 189

Basic example
The following table demonstrates a basic configuration of path parameters.

API Endpoint property Example value

base-path /accounts/{accountId}/transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the example base-path
value.

The following properties are added to the policy request:

▪ HttpRequest.ResourcePath : 1234
▪ Gateway.accountId : XYZ
▪ Gateway.foo : bar

Advanced example
The following table demonstrates an advanced configuration of path parameters.

API Endpoint property Example value

base-path /health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the example base-path
value.

The following properties are added to the policy request:

▪ service : HealthAPI.patients
▪ HttpRequest.ResourcePath : patients/1234
▪ Gateway.tenant : OmniCorp
▪ Gateway.resourceType : patients

Request context configuration
The API gateway plugin provides data and metadata to the Sideband API about HTTP requests received
from a client and HTTP responses received from an API server.

When the Sideband API handles an API server's HTTP response, you can enable the API gateway plugin
to also provide data and metadata for the original HTTP request, which can be used to make policy
decisions. For example, data about access token claims and the token owner are request data, but they
might be useful when authorizing an HTTP response.

The Sideband API provides two methods to supply HTTP request data during HTTP response processing.
Select a method according to the API gateway plugin's capabilities. By default, both methods are disabled.
You can enable them by configuring the request-context-method property of the Sideband API HTTP
Servlet Extension.

Request context using the state field

When enabled, the Sideband API adds a state field to its responses for inbound HTTP requests.
This field contains an encoded form of the request data, including preprocessed authentication
data, such as access token claims and token owner attributes. The API gateway plugin is expected
to provide this state data when it next makes a request corresponding to the outbound HTTP
response. The Sideband API can then pass this data about the HTTP request in its policy request.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 190

As the state data includes preprocessed authentication information, this information can be made
available for policy processing without the overhead of re-invoking an access token validator.
However, the size of the state data is proportional to the size of the original HTTP request.

To enable this option, use the following command.

PingAuthorize/bin/dsconfig \
 set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set request-context-method:state

Request context using the request field

When enabled, an API gateway plugin making a request to handle an outbound HTTP response
provides all data about the original HTTP request in the request field. If this data includes an
Authorization header with a bearer token, the Sideband API invokes its access token validators
to produce a set of access token claims and token owner attributes, which are then made available
in the policy request.

To enable this option, use the following command.

PingAuthorize/bin/dsconfig \
 set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set request-context-method:request

Disabling request context handling

The request context feature is disabled by default. If you have enabled it, you can disable it with the
following command.

PingAuthorize/bin/dsconfig \
 set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --reset request-context-method

Sideband access token validation
HTTP requests often include an access token with an Authorization header using the bearer token
scheme, as described by RFC 6750.

By default, if a Sideband API request contains an Authorization header, the Sideband API processes
the access token as follows:

▪ An access token validator parses and validates the access token, and the Sideband API adds the
access token parsed claims to the policy request’s HttpRequest.AccessToken field.

▪ If the access token has a subject, a token resource lookup method retrieves the subject’s attributes,
and the Sideband API adds them to the policy request’s TokenOwner field.

In some cases, the parsing and validation performed by the access token validator might duplicate
processing already performed by the API gateway itself. To eliminate redundant processing, you can
configure a Sideband API endpoint to use an external API gateway access token validator, which is a
unique access token validator that performs no parsing or validation of its own. The API gateway plugin
might then pass the parsed access token claims directly to the Sideband API, which would ignore the
Authorization header and accept the parsed access token claims as-is.

Copyright ©2024

https://tools.ietf.org/html/rfc6750

PingAuthorize | PingAuthorize Server Administration Guide | 191

Example

Example configuration

The following example shows how to configure an external API gateway access token validator with a
token resource lookup method and assign it to an existing Sideband API endpoint.

dsconfig create-access-token-validator \
 --validator-name "API Gateway Access Token Validator" \
 --type external-api-gateway \
 --set enabled:true \
 --set evaluation-order-index:0
dsconfig create-token-resource-lookup-method \
 --validator-name "API Gateway Access Token Validator" \
 --method-name "Users by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:0
dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "My API" \
 --set "access-token-validator:API Gateway-Provided Access Token Validator"

Sideband error templates
REST API clients often expect a custom error format that the API produces. Some clients might fail
unexpectedly if they encounter an error response that uses an unexpected format.

When PingAuthorize Server proxies a REST API, it forwards errors that the API returns to the client as they
are, unless a policy dictates modifications to the response. In the following scenarios, PingAuthorize Server
returns an error that the Sideband API generates:

▪ The policy evaluation results in a deny response. This typically results in a 403 error.
▪ An internal error occurs in the Sideband API. This typically results in a 500 error.

By default, these responses use a simple error format, as shown in the following example.

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes the default error format.

Field Type Description

errorMessage String Error message

status Number HTTP status code

Because some REST API clients expect a specific error-response format, PingAuthorize Server provides
error templates to respond with custom errors. Error templates, which are written in Velocity Template
Language, define the manner in which a Sideband API Endpoint produces error responses.

The following table identifies the context parameters that are provided with error templates.

Parameter Type Description

status Integer HTTP status

message String Exception message

Copyright ©2024

http://velocity.apache.org/engine/1.7/user-guide.html
http://velocity.apache.org/engine/1.7/user-guide.html

PingAuthorize | PingAuthorize Server Administration Guide | 192

Example: Configure error templates
This example demonstrates the configuration of a custom error template for a Sideband API Endpoint
called Test API.

The following fields are associated with the error responses that use this error template:

▪ code
▪ message

To create the error template, perform the following steps:

1. Create a file named error-template.vtl with the following contents:

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration.

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Sideband API Endpoint.

dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

The error template is used whenever the Sideband API generates an error in response to a request.

About the SCIM service
PingAuthorize Server's built-in System for Cross-domain Identity Management (SCIM) service provides a
REST API for data that is stored in one or more external datastores, based on the SCIM 2.0 standard.

For information about the SCIM service, see the following topics:

▪ SCIM API request and response flow on page 192
▪ SCIM configuration basics on page 193
▪ SCIM endpoints on page 196
▪ SCIM authentication on page 197
▪ SCIM policy requests on page 197
▪ Lookthrough limit for SCIM searches on page 207
▪ Disabling the SCIM REST API on page 207

SCIM API request and response flow
The System for Cross-domain Identity Management (SCIM) REST API provides an HTTP API for data
contained in a user store.

Although user stores typically consist of a single datastore, such as PingDirectory Server, they can also
consist of multiple datastores.

When a SCIM request is received, it is translated into one or more requests to the user store, and the
resulting user store response is translated into a SCIM response. The SCIM response is authorized by

Copyright ©2024

https://tools.ietf.org/html/rfc7644

PingAuthorize | PingAuthorize Server Administration Guide | 193

sending a policy request to the policy decision point (PDP). Depending on the policy result, including the
advices that are returned in the result, the SCIM response might be filtered or rejected.

DIRECTORY
SERVER

DIRECTORY
SERVER

PDP

PDP

PingAuthorize

PingAuthorize

Client

Client

client receives
filtered SCIM

response

PingAuthorize filters
SCIM response

PingAuthorize
validates access token

Client makes
SCIM request

PingAuthorize makes
user store request

request

LDAP request and response

response

token validation

submit SCIM response for
policy processing

translate SCIM request
to LDAP request

translate LDAP response
to SCIM response

apply policy result
to SCIM response

SCIM configuration basics
PingAuthorize Server's System for Cross-domain Identity Management (SCIM) subsystem consists of the
following components.

SCIM resource types

SCIM resource types define a class of resources, such as users or devices. Every SCIM resource
type features at least one SCIM schema, which defines the attributes and subattributes that are
available to each resource, and at least one store adapter, which handles datastore interactions.

The following SCIM resource types differ according to the definitions of the SCIM schema:

▪ Mapping SCIM resource type – Requires an explicitly defined SCIM schema, with explicitly
defined mappings of SCIM attributes to store adapter attributes. Use a mapping SCIM resource
type to exercise detailed control over the SCIM schema, its attributes, and its mappings.

▪ Pass-through SCIM resource type – Does not use an explicitly defined SCIM schema. Instead,
an implicit schema is generated dynamically, based on the schema that is reported by the store
adapter. Use a pass-through SCIM resource type when you need to get started quickly.

SCIM schemas

SCIM schemas define a collection of SCIM attributes, grouped under an identifier called a schema
URN. Each SCIM resource type possesses a single core schema and can feature schema

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 194

extensions, which act as secondary attribute groupings that the schema URN namespaces. SCIM
schemas are defined independently of SCIM resource types, and multiple SCIM resource types can
use a single SCIM schema as a core schema or schema extension.

 Note:

A SCIM attribute defines an attribute that is available under a SCIM schema. The configuration for
a SCIM attribute defines its data type, regardless of whether it is required, single-valued, or multi-
valued. Because it consists of SCIM subattributes, a SCIM attribute can be defined as a complex
attribute.

Store adapters

Store adapters act as a bridge between PingAuthorize Server's SCIM system and an external
datastore. PingAuthorize Server provides a built-in LDAP store adapter to support LDAP datastores,
including PingDirectory Server and PingDirectoryProxy Server. The LDAP store adapter uses a
configurable load-balancing algorithm to spread the load among multiple directory servers. Use the
Server SDK to create store adapters for arbitrary datastore types.

Each SCIM resource type features a primary store adapter and can also define multiple secondary
store adapters. Secondary store adapters allow a single SCIM resource to consist of attributes
retrieved from multiple datastores.

Store adapter mappings define the manner in which a SCIM resource type maps the attributes in its
SCIM schemas to native attributes of the datastore.

About the create-initial-config tool
The create-initial-config tool helps to quickly configure PingAuthorize Server for the System for
Cross-domain Identity Management (SCIM).

Run this tool after completing setup to configure a SCIM resource type named Users, along with a related
configuration.

For an example of using create-initial-config to create a pass-through SCIM resource type, see
Configuring the PingAuthorize user store on page 359.

Example: Mapped SCIM resource type for devices
This example demonstrates the addition of a simple mapped SCIM resource type, backed by the standard
device object class of a PingDirectory Server.

To add data to PingDirectory Server, create a file named devices.ldif with the following contents.

dn: ou=Devices,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Devices

dn: cn=device.0,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device
cn: device.0
description: Description for device.0

dn: cn=device.1,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device
cn: device.1
description: Description for device.1

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 195

Use the ldapmodify tool to load the data file.

PingDirectory/bin/ldapmodify --defaultAdd --filename devices.ldif

Start configuring PingAuthorize Server by adding a store adapter.

dsconfig create-store-adapter \
 --adapter-name DeviceStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:User Store LBA" \
 --set structural-ldap-objectclass:device \
 --set include-base-dn:ou=devices,dc=example,dc=com \
 --set include-operational-attribute:createTimestamp \
 --set include-operational-attribute:modifyTimestamp \
 --set create-dn-pattern:entryUUID=server-
generated,ou=devices,dc=example,dc=com

The previous command creates a store adapter that handles LDAP entries found under the base DN
ou=devices,dc=example,dc=com with the object class device. This example uses the user store
load-balancing algorithm that is created when you use the create-initial-config tool to set up a
users SCIM resource type.

The following command creates a SCIM schema for devices with the schema URN
urn:pingidentity:schemas:Device:1.0.

dsconfig create-scim-schema \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --set display-name:Device

Under this schema, add the string attributes name and description.

dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name name \
 --set required:true
dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name description

After you create a store adapter and schema, create the SCIM resource type.

dsconfig create-scim-resource-type \
 --type-name Devices \
 --type mapping \
 --set enabled:true \
 --set endpoint:Devices \
 --set primary-store-adapter:DeviceStoreAdapter \
 --set lookthrough-limit:500 \
 --set core-schema:urn:pingidentity:schemas:Device:1.0

Map the two SCIM attributes to the corresponding LDAP attributes. The following commands map the
SCIM name attribute to the LDAP cn attribute, and map the SCIM description attribute to the LDAP
description attribute.

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name name \
 --set scim-resource-type-attribute:name \
 --set store-adapter-attribute:cn \
 --set searchable:true

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 196

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name description \
 --set scim-resource-type-attribute:description \
 --set store-adapter-attribute:description

To confirm that the new resource type has been added, send the following request to the SCIM resource
types endpoint.

curl -k https://localhost:8443/scim/v2/ResourceTypes/Devices

The response is:

{"schemas":
["urn:ietf:params:scim:schemas:core:2.0:ResourceType"],"id":"Devices","name":
"Devices","endpoint":"Devices","schema":"urn:pingidentity:schemas:Device:1.0",
"meta":{"resourceType":"ResourceType","location":"https://localhost:8443/
scim/v2/ResourceTypes/Devices"}}

For a more advanced example of a mapped SCIM resource type, see the example User schema in
PingAuthorize/resource/starter-schemas.

SCIM endpoints
The following table identifies the endpoints that the System for Cross-domain Identity Management (SCIM)
2.0 REST API provides.

Endpoint Description Supported HTTP methods

/ServiceProviderConfig Provides metadata that indicates
the PingAuthorize Server
authentication scheme, which
is always OAuth 2.0, and its
support for features that the SCIM
standard considers optional.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/Schemas Lists the SCIM schemas that
are configured for use on
PingAuthorize Server and that
define the various attributes
available to resource types.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/Schemas/<schema> Retrieves a specific SCIM
schema, as specified by its ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 197

Endpoint Description Supported HTTP methods

/ResourceTypes Lists all of the SCIM resource
types that are configured for
use on PingAuthorize Server.
Clients can use this information
to determine the endpoint, core
schema, and extension schemas
of any resource types that the
server supports.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes/
<resourceType>

Retrieves a specific SCIM
resource type, as specified by its
ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/<resourceType> Creates a new resource (POST),
or lists and filters resources
(GET).

GET, POST

/<resourceType>/.search Lists and filters resources. POST

/<resourceType>/
<resourceId>

Retrieves a single resource
(GET), modifies a single resource
(PUT, PATCH), or deletes a
single resource (DELETE).

GET, PUT, PATCH, DELETE

/Me Alias for the resource that the
subject of the access token
identifies.

Retrieves the resource (GET),
modifies the resource (PUT,
PATCH), or deletes the
(DELETE).

GET, PUT, PATCH, DELETE

SCIM authentication
You must authenticate all System for Cross-domain Identity Management (SCIM) requests using OAuth
2.0 bearer token authentication.

Bearer tokens are evaluated using access token validators. The HttpRequest.AccessToken attribute
supplies the validation result to the policy request, and the TokenOwner attribute provides the user identity
associated with the token. Policies use this authentication information to affect the processing of requests
and responses.

SCIM policy requests
For every System for Cross-domain Identity Management (SCIM) request or response, one or more policy
requests are sent to the policy decision point (PDP) for authorization.

Policies can use a policy request's action value to determine the processing phase and to act
accordingly. Understanding how the SCIM service formulates policy requests will help you to create and
troubleshoot policies more effectively.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 198

Most SCIM operations are authorized in the following phases:

1. The operation itself is authorized.
2. The outgoing response is authorized with the retrieve action.

In most cases, you can reuse policies that target the retrieve action to specify read-access control rules.
You can disable this retrieve action for a SCIM Resource Type if policies are only used for authorization
before the operation. To do so, set the SCIM Resource Type's disable-response-processing
property to true. The resource is then returned as-is after the operation completes. This property also
affects SCIM searches.

Operation Actions

POST /scim/v2/<resourceType> create, retrieve

GET /scim/v2/<resourceType>/
<resourceId>

retrieve

PUT /scim/v2/<resourceType>/
<resourceId>

PATCH /scim/v2/<resourceType>/
<resourceId>

modify, retrieve

DELETE /scim/v2/<resourceType>/
<resourceId>

delete

GET /scim/v2/<resourceType>

POST /scim/v2/<resourceType>/.search

search, retrieve

-OR-

search, search-results

For more information about authorizing searches,
see About SCIM searches on page 202.

Enable detailed decision logging and view all policy request attributes in action, particularly when learning
how to develop SCIM policies. For more information, see Policy Decision logger on page 397.

SCIM policy request attributes
The following tables describe policy request attributes and their functions.

The following table identifies the attributes associated with a policy request that the System for Cross-
domain Identity Management (SCIM) service generates.

Policy request attribute Description Type

action Identifies the SCIM request as
one of the following types:

▪ create
▪ modify
▪ retrieve
▪ delete
▪ search
▪ search-request

String

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 199

Policy request attribute Description Type

attributes Additional attributes that do
not correspond to a specific
entity type in the PingAuthorize
Trust Framework. For more
information, see the following
table.

Object

domain Unused. String

identityProvider Name of the access token
validator that evaluates the
bearer token used in an incoming
request.

String

service Identifies the SCIM service and
resource type using a value of
the form SCIM2.<resource
type>.

For example, for a request
using the "Users" resource
type, the service value would be
SCIM2.Users.

String

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

HttpRequest.AccessToken Parsed access token. For more information,
see the following table.

Object

HttpRequest.ClientCertificate Properties of the client certificate, if one is
used.

Object

HttpRequest.CorrelationId A unique value that identifies the request
and response, if available.

String

HttpRequest.IPAddress The client IP address. String

HttpRequest.QueryParameters Request URI query parameters. Object

HttpRequest.RequestBody The request body, if available. This attribute
is available for POST, PUT, and PATCH
requests.

Object

HttpRequest.RequestHeaders The HTTP request headers. Object

HttpRequest.RequestURI The request URI. String

HttpRequest.ResourcePath Uniquely identifies the SCIM resource
that is being requested, in the format
<Resource Type>/<SCIM ID>, as the
following example shows:

Users/0450b8db-
f055-35d8-8e2f-0f203a291cd1

String

HttpRequest.ResponseBody The response body, if available. This
attribute is provided only for outbound policy
requests.

Object

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 200

Attribute Description Type

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if
available.

Number

impactedAttributes Provides the set of attributes that the
request modifies.

Collection

SCIM2 Provides additional, SCIM2-specific
information about the request.

Object

TokenOwner Access token subject as a SCIM resource,
as obtained by the access token validator.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

access_token The actual access token from the
client request.

String

active Indicates whether this access
token is currently active, as
determined by the access token
validator.

Boolean

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization server
sets this field to indicate the
resource servers that might
accept the token.

Array

client_id The client ID of the application
that was granted the access
token.

String

expiration Date and time at which the
access token expires.

DateTime

issued_at Date and time at which the
access token was issued.

DateTime

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

scope Identifies the list of scopes
granted to this token.

Collection

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

Copyright ©2024

https://tools.ietf.org/html/rfc7662

PingAuthorize | PingAuthorize Server Administration Guide | 201

Attribute Description Type

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a
client.

Boolean

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

subject DN of the certificate subject. String

subjectRegex Regular expression that must
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the SCIM2 attribute contains.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 202

Attribute Description Type

modifications Contains a normalized SCIM
2 PATCH request object that
represents all of the changes to
apply. This attribute is available
for PUT and PATCH requests.

Object

resource Complete SCIM resource that the
request targets. This attribute is
available for GET, PUT, PATCH,
and DELETE requests.

The resource attribute is
also available in the policy
requests that are performed for
each matching SCIM resource
in a search result. For more
information, see About SCIM
searches on page 202.

Object

About SCIM searches
Search requests are used to return System for Cross-domain Identity Management (SCIM) resources. You
can constrain search requests using filters.

A request that potentially causes the return of multiple SCIM resources is considered a search request.
Perform such requests in one of the following manners:

▪ Make a GET request to /scim/v2/<resourceType>.
▪ Make a POST request to /scim/v2/<resourceType>/.search.

To constrain the search results, clients should supply a search filter through the filter parameter. For
example, a GET request to /scim/v2/Users?filter=st+eq+"TX" returns all SCIM resources of the
Users resource type in which the st attribute possesses a value of "TX". Additionally, the Add Filter
policy can add a filter automatically to search requests.

SCIM search policy processing
System for Cross-domain Identity Management (SCIM) policy processing involves denying or modifying a
search request and then filtering the results.

Policy processing for SCIM searches occurs in the following phases:

1. Policies deny or modify a search request. For more information, see Search request authorization on
page 202.

2. Policies filter the search result set. For more information, see Search response authorization on page
203.

Search request authorization
In the first phase, a policy request is issued for the search itself, using the search action. If the policy
result is deny, the search is not performed. Otherwise, advices in the policy result are applied to the
search filter, giving advices a chance to alter the filter.

 Note:

You can only use advice types that are written specifically for the search action. For example, you can
use the Add Filter advice type to constrain the scope of a search.

You can also use the Combine SCIM Search Authorizations advice type at this point. If you use this advice,
search results are authorized by using a special mode, described in Search response authorization on
page 203.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 203

Search response authorization
After a search is performed, the resulting search response is authorized in one of three ways: default
authorization, optimized search response authorization, and no authorization.

Default authorization

The default authorization mode simplifies policy design but can generate a large number of policy requests.
For every System for Cross-domain Identity Management (SCIM) resource that the search returns, a policy
request is issued by using the retrieve action. If the policy result is deny, the SCIM resource is removed
from the search response. Otherwise, advices in the policy result are applied to the SCIM resource, which
gives advices a chance to alter the resource. Because the retrieve action is used, policies that are
already written for single-resource GET operations are reused and applied to the search response.

Optimized search response authorization

If the search request policy result includes the Combine SCIM Search Authorizations advice type, an
optimized authorization mode is used instead. This mode reduces the number of overall policy requests but
might require a careful policy design. Instead of generating a policy request for each SCIM resource that
the search returns, a single policy request is generated for the entire result set. To distinguish the policy
requests that this authorization mode generates, the action search-results is used.

Write policies that target these policy requests to accept an object that contains a Resources array with all
matching results. Advices that the policy result returns are applied iteratively to each member of the result
set. The input object that is provided to advices also contains a Resources array, but it contains only the
single result currently under consideration.

The following JSON provides an example input object.

{
 "Resources": [{
 "name": "Henry Flowers",
 "id": "40424a7d-901e-45ef-a95a-7dd31e4474b0",
 "meta": {
 "location": "https://example.com/scim/v2/Users/40424a7d-901e-45ef-
a95a-7dd31e4474b0",
 "resourceType": "Users"
 },
 "schemas": [
 "urn:pingidentity:schemas:store:2.0:UserStoreAdapter"
]
 }
]
}

The optimized search response authorization mode checks policies efficiently and is typically faster than
the default authorization mode. However, the optimized search response authorization mode might be less
memory-efficient because the entire result set, as returned by the datastore, is loaded into memory and
processed by the policy decision point (PDP).

No authorization

If you do not need policy processing for the search results on a SCIM Resource Type, such as if policies
are only used for authorization before the search and not filtering the results, set that SCIM Resource
Type's disable-response-processing property to true. The search results will be returned as they
were received from the external server. This behavior can improve performance for requests that return
large numbers of search results. This property also affects other SCIM operations.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 204

Using paged SCIM searches
When searching large data sets, the results can be numerous and produce errors about a request
matching too many results relative to the lookthrough limit. Paged searches avoid these errors and also
reduce memory utilization.

Before you begin

The paged SCIM searches feature is not available for entry-balanced data sets.

To use paged SCIM searches, your SCIM service's backend servers must be LDAP directory servers and
you must use the LDAP store adapter.

Complete the following one-time operations. For either command, you only need to run the command one
time per backend server. If you are not sure whether you have run the command, you can run it again
safely.

▪ Set the service account’s permissions by running the prepare-external-store command on the
PingAuthorize server for each backend server.

 Note:

If you have run this command with PingDataGovernance 8.1.0.0 or earlier, run it again using the
command from a PingDataGovernance 8.2.0.0 or a PingAuthorize 8.3.0.0 or later release.

For example:

$ prepare-external-store --hostname server.example.com --port 1389 \
--bindDN "cn=Directory Manager" --bindPassword <password1> \
--governanceBindDN "cn=Authorize User,cn=Root DNs,cn=config" \
--governanceBindPassword <password2> \
--userStoreBaseDN ou=people,dc=example,dc=com

▪ If your LDAP store adapter points to a PingDirectoryProxy server, run the following command on that
server.

$ dsconfig set-request-processor-prop \
--processor-name <proxying-request-processor> \
--set supported-control-oid:2.16.840.1.113730.3.4.9 \
--set supported-control-oid:1.2.840.113556.1.4.473

where <proxying-request-processor> is the request processor handling the entries targeted by
the search.

About this task

PingAuthorize does SCIM searches using LDAP requests. After you complete the steps below,
PingAuthorize creates LDAP requests that include request controls that ask the backend servers to sort
and page the search results before returning the results. These request controls are marked noncritical,
meaning that if the backend server cannot page the results, the backend server still returns the results. In
this case, PingAuthorize handles the sorting and paging itself.

If your SCIM searches result in an error because the request matched too many results, as discussed in
Lookthrough limit for SCIM searches on page 207, you can avoid the error by using paged searches.

Complete the following steps for each search.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 205

Steps

1. Decide your SCIM search.

 Note:
To get paged results, your search must include at least one of these parameters: startIndex, count, or
sortBy.

For example, your search might look like the following search.

https://<pingauthorize-hostname>:<pingauthorize-port>/scim/v2/Users/?
filter=st eq "TX"&sortBy=sn&sortOrder=ascending

Here is the corresponding encoded version.

https://<pingauthorize-hostname>:<pingauthorize-port>/scim/v2/Users/?
filter=st%20eq%20%22TX%22&sortBy=sn&sortOrder=ascending

On your PingAuthorize Server, collect some information to use later.

a. Given a SCIM resource type that you want to search for, find the primary LDAP store adapter that
the SCIM resource type uses by looking at its primary-store-adapter property.

b. Find the corresponding adapter by running the following command.

$ dsconfig list-store-adapters

c. Find the structural-ldap-objectclass, include-base-dn, and include-filter
values for the adapter by running this command.

$ dsconfig get-store-adapter-prop --adapter-name <name-of-store-adapter> \
--property structural-ldap-objectclass \
--property include-base-dn \
--property include-filter

2. On each backend server, complete the following steps.

a. Create a Virtual List View (VLV) index for your search.

Each SCIM search that you want to produce paged results must have its own VLV index.

Create this index using dsconfig create-local-db-vlv-index with the following options.

Option Description

--index-name Names the index.

--backend-name Specifies the name of the local database backend in which to
place the index.

The default database backend for PingDirectory is userRoot.

--set base-dn Specifies the desired base dn. This value must match the
value of the include-base-dn property that you found in the
previous step.

--set scope Is always whole-subtree.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 206

Option Description

--set filter Specifies the filter.

Specify

"(objectclass=<name-of-store-adapter-
objectclass>)"

where <name-of-store-adapter-objectclass> is the
name of the objectclass used by the adapter, which you found
in the previous step.

If the primary LDAP store adapter has the include-
filter property set, also specify that property value in the
filter. For example, if the filter for the adapter objectclass
is (objectclass=inetorgperson) and the include-
filter value is (st=CA), specify the --set filter
argument as "(&(objectclass=inetorgperson)
(st=CA))".

Specify the LDAP attributes for all the components of your
SCIM search filter.

For example, if a mapping SCIM resource type maps the
LDAP attribute st to the SCIM attribute address.region
and the SCIM search filter requires that address.region
eq TX, then this filter must include (st = TX) instead of
(address.region = TX).

--set sort-order Specifies whether to sort ascending (+) or descending (-) and
the LDAP attribute to sort by.

If the SCIM search does not specify the sortBy parameter,
specify the sort order as +entryUUID.

Recall the original, decoded SCIM search, shown here.

https://<pingauthorize-hostname>:<pingauthorize-port>/scim/v2/Users/?
filter=st eq "TX"&sortBy=sn&sortOrder=ascending

For example, to create a VLV index for that search, run the following command.

$ dsconfig create-local-db-vlv-index --index-name sn \
--backend-name userRoot --set base-dn:ou=people,dc=example,dc=com \
--set scope:whole-subtree \
--set filter:"(&(objectclass=inetorgperson)(st=TX))" --set sort-order:
+sn

b. Stop the server. Rebuild the index. Start the server. Run the rebuild-index command
specifying the baseDN and the name of the index.

$ rebuild-index --baseDN <baseDN-value> --index <name-of-index>

For example, run these commands.

$ stop-server
$ rebuild-index --baseDN dc=example,dc=com --index vlv.sn
$ start-server

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 207

3. Run your SCIM search filter.

 Note:

The search can include only the filter you specified with --set filter in the earlier step without the
"(objectclass=<name-of-store-adapter-objectclass>)" portion.

In addition to the Virtual List View request control, PingAuthorize adds a Server Side request control
to the LDAP request. These request controls require certain parameters be set. To satisfy this
requirement, PingAuthorize uses the following parameters. If the client does not provide values for one
of the parameters, the search uses the corresponding default value shown in the following table.

Parameter Default

startIndex 1

count The value of the lookthrough-limit property of the SCIM resource
type being searched. That default is 500.

sortBy entryUUID

With this default, the results appear unsorted.

sortOrder ascending

Lookthrough limit for SCIM searches
Because a policy evaluates every System for Cross-domain Identity Management (SCIM) resource in a
search result, some searches might exhaust server resources. To avoid this scenario, cap the total number
of resources that a search matches.

The configuration for each SCIM resource type contains a lookthrough-limit property that defines this
limit, with a default value of 500. If a search request exceeds the lookthrough limit, the client receives a
400 response with an error message that resembles the following example.

{
 "detail": "The search request matched too many results",
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "scimType": "tooMany",
 "status": "400"
}

To avoid this error, you have these options:

▪ The client must refine its search filter to return fewer matches.
▪ Configure paged searches as explained in Using paged SCIM searches on page 204.

Disabling the SCIM REST API
Disable the System for Cross-domain Identity Management (SCIM) REST API.

About this task

If you have no need to expose data through the SCIM REST API, disable it by removing the SCIM2 HTTP
servlet extension from the HTTPS connection handler, or from any other HTTP connection handler, and
restart the handler.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 208

Steps

▪ Use the following command to remove the extension from the HTTP connection handler and restart it.

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --remove http-servlet-extension:SCIM2 \
 --set enabled:false
dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

 Note:

When the SCIM REST API is disabled, access token validators still use PingAuthorize Server's SCIM
system to look up token owners.

About the SCIM user store
This topic focuses on the relationship between the PingAuthorize Server SCIM subsystem and its backend
data stores, particularly LDAP directory servers.

For general information about SCIM configuration, see SCIM configuration basics on page 193.

The PingAuthorize Server SCIM 2.0 REST API and SCIM token resource lookup methods rely on external
data stores, collectively called a user store, to locate user records. Typically, a user store is composed
of a set of PingDirectory Servers, optionally fronted by a set of PingDirectoryProxy Servers. The SCIM
subsystem manages communication with the user store through a store adapter, which translates SCIM
requests into requests native to the data stores. The following diagram shows an example setup.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 209

PingAuthorize Server includes a store adapter type for use with LDAP data stores, the LDAP store adapter.
The LDAP store adapter manages communications to a pool of LDAP servers using a load-balancing
algorithm. PingAuthorize Server supports two types of load-balancing algorithms.

Load-balancing algorithm type Description

Failover load-balancing algorithm Attempts to always send requests to the same backend LDAP
server. If the preferred server is not available, then it fails over to
alternate servers.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 210

Load-balancing algorithm type Description

Fewest operations load-balancing
algorithm

Forwards requests to the backend LDAP server with the fewest
operations currently in progress.

You should only use this load-balancing algorithm when all backend
servers are Directory Proxy Servers.

Typically, you connect a load-balancing algorithm to its backend LDAP servers by defining LDAP external
servers in the configuration and attaching them to the load-balancing algorithm configuration. An LDAP
external server configuration manages the actual LDAP connections to a backend LDAP server, such as
PingDirectory Server.

 Note:

Alternatively, if all backend LDAP servers are PingDirectory Servers (version 8.0.0.0 and later), you
can configure a load-balancing algorithm to automatically discover the backend servers. See Automatic
backend LDAP server discovery on page 213.

LDAP external servers monitor and report the availability of backend LDAP servers using LDAP health
checks. See LDAP health checks on page 218.

Defining the LDAP user store
You can define your user store with the external data servers using create-initial-config. If you
need more flexibility though, you can define the LDAP store manually.

For information about these options, see:

▪ Defining the LDAP user store with create-initial-config on page 210
▪ Defining the LDAP user store manually on page 211

Defining the LDAP user store with create-initial-config
The create-initial-config tool provides limited support for configuring SCIM and the user store
configuration needed to connect the SCIM subsystem to a set of LDAP directory servers.

This tool creates the following configuration:

▪ An LDAP store adapter named UserStoreAdapter
▪ A load-balancing algorithm named User Store LBA
▪ One or more LDAP external servers
▪ (Optional) A SCIM resource type named Users
▪ (Optional) SCIM schema, attributes, and attribute mappings for the Users resource type

If run interactively, create-initial-config walks you through the configuration process. You should
be prepared to provide connection information for your directory servers.

You can also run create-initial-config noninteractively, which is useful when performing a scripted
deployment. For an example, see Configuring the PingAuthorize user store on page 359.

The following table describes a key subset of the tool's command-line options.

Option Description

--governanceBindDN The bind DN for a user account that PingAuthorize Server will
use to access backend LDAP servers. Create this account using
the prepare-external-store tool.

--governanceBindPassword The password for the above account.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 211

Option Description

--userStore The host, LDAP / LDAPS port, and optional location of a backend
LDAP server. You can specify this option once per each backend
server.

--userStoreBaseDN The base DN under which entries are stored.

--userObjectClass The structural LDAP object class of entries for the SCIM
subsystem to handle if --initialSchema has the none or
pass-through value.

--initialSchema The SCIM schema and resource type configuration to use.
Supports the following values:

▪ pass-through

Creates a pass-through SCIM resource type called
Users for the LDAP object class specified by the --
userObjectClass option.

▪ user

Creates a mapping SCIM resource type called Users
with an example schema. For more information about this
schema, see <server-root>/resource/starter-
schemas/README.txt.

▪ none

Does not create a SCIM resource type.

For more information about running create-initial-config, see its help by running the following
command.

create-initial-config --help

When using create-initial-config noninteractively, you should also run prepare-external-
store for each backend LDAP server. This tool creates a privileged user account on the LDAP server for
use by PingAuthorize Server and configures a set of global access control instructions (ACIs) needed by
this account.

Defining the LDAP user store manually
If you require more flexibility than create-initial-config provides, you can manually configure the
SCIM subsystem and its connectivity to the LDAP user store. However, if you have not done this before,
first use create-initial-config to generate an example configuration and then customize that
configuration.

About this task

This task shows how to define two backend LDAP servers and a failover load-balancing algorithm.
Also, it shows how to connect the load-balancing algorithm to an existing LDAP store adapter named
UserStoreAdapter.

 Note:
The example is simplified and does not discuss SSL connection management. When using SSL to
connect to an LDAP external server, you must configure PingAuthorize Server to trust the server certificate
presented by the LDAP external server using a trust manager provider.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 212

Steps

1. Run prepare-external-store for each backend LDAP server. This tool creates a service account
with the access rights needed by PingAuthorize Server.

Example: For example:

prepare-external-store \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword password \
 --governanceBindDN 'cn=Authorize User,cn=Root DNs,cn=config' \
 --governanceBindPassword password \
 --userStoreBaseDN 'ou=People,dc=example,dc=com'

2. Create an LDAP external server entry for each backend LDAP server. This configures how
PingAuthorize Server connects to each LDAP server.

Example: For example:

dsconfig create-external-server \
 --server-name DS1 \
 --type ping-identity-ds \
 --set server-host-name:ds1.example.com \
 --set server-port:636 \
 --set location:Minneapolis \
 --set 'bind-dn:cn=Authorize User, cn=Root DNs,cn=config' \
 --set password:password \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

dsconfig create-external-server \
 --server-name DS2 \
 --type ping-identity-ds \
 --set server-host-name:ds2.example.com \
 --set server-port:636 \
 --set location:Minneapolis \
 --set 'bind-dn:cn=Authorize User, cn=Root DNs,cn=config' \
 --set password:password \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

3. Create a failover load-balancing algorithm that uses the two LDAP external servers.

Example: For example:

dsconfig create-load-balancing-algorithm \
 --algorithm-name 'User Store LBA' \
 --type failover \
 --set enabled:true \
 --set backend-server:DS1 \
 --set backend-server:DS2

4. Assign the load-balancing algorithm to an LDAP store adapter. This example assumes that the store
adapter UserStoreAdapter already exists.

Example: For example:

dsconfig set-store-adapter-prop \
 --adapter-name UserStoreAdapter \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 213

 --set 'load-balancing-algorithm:User Store LBA'

Location management for load balancing
All PingDirectory and PingAuthorize servers have a location, which is a label that defines a group of
servers with similar response time characteristics. Each location consists of a name and an optional list of
preferred failover locations.

The failover and fewest operations load-balancing algorithms, discussed in About the SCIM user store on
page 208, take server location into account when routing requests. By default, they always prefer LDAP
backend servers in the same location as the PingAuthorize Server. If no servers are available in the same
location, they will fall back to any defined failover locations.

You assign a server a location using the --location option when you run setup.

You can manage configuration-level and server-level location settings after setup as explained in the
following table.

Task Corresponding command example

Define a new location.
dsconfig create-location \
 --location-name Minneapolis

Define a new location with a
failover location. The failover
location must already exist.

dsconfig create-location \
 --location-name Louisville \
 --set preferred-failover-location:Minneapolis

Add a failover location to an
existing location. The failover
location must already exist.

dsconfig set-location-prop \
 --location-name Minneapolis \
 --set preferred-failover-location:Louisville

Change PingAuthorize Server's
existing location by modifying the
global configuration.

dsconfig set-global-configuration-prop \
 --set location:Minneapolis

Change a backend LDAP server's
location by modifying its LDAP
external server entry.

dsconfig set-external-server-prop \
 --server-name DS1 \
 --set location:Minneapolis

Configure a load-balancing
algorithm to ignore backend LDAP
servers' locations when deciding
how to route requests.

dsconfig set-load-balancing-algorithm-prop \
 --algorithm-name "User Store LBA" \
 --set use-location:false

Automatic backend LDAP server discovery
Instead of explicitly specifying all backend LDAP servers in the configuration as LDAP external servers,
you can configure PingAuthorize Server to automatically discover its backend servers.

 Important:
This feature requires that all backend LDAP servers be PingDirectory Servers running version 8.0.0.0 or
later. Automatic backend discovery is not supported for PingDirectoryProxy Server or third-party LDAP
servers.

To configure automatic backend discovery, you must complete these tasks:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 214

▪ Join the PingAuthorize Server to the same topology as the PingDirectory Servers.
▪ Configure the PingAuthorize Server's load-balancing algorithm with an LDAP external server template.

This template provides the connection and health check settings that PingAuthorize Server uses for all
PingDirectory Servers.

▪ Configure the topology registry entry for each PingDirectory Server to indicate the name of the
PingAuthorize Server load-balancing algorithm.

Joining a PingAuthorize Server to an existing PingDirectory Server topology
To use automatic backend discovery, the PingAuthorize Server must be a member of the same topology of
each backend PingDirectory Server.

You can join a PingAuthorize Server to a PingDirectory Server topology at the time that you set it up or
after setup using the manage-topology command.

For information about these options, see:

▪ Joining a topology at setup on page 214
▪ Joining a topology with manage-topology on page 215

Joining a topology at setup
To join a new PingAuthorize Server to an existing PingDirectory Server topology during setup,
provide connection information for one of the PingDirectory Servers to the setup tool using its --
existingDSTopology* options. This PingDirectory Server must be running when you execute the
setup tool.

The following table lists some common setup options for joining a PingDirectory Server topology. For a
complete list of options, run setup --help.

Option Description

--existingDSTopologyHostName The address of a PingDirectory Server instance in the topology
to be joined.

--existingDSTopologyPort The LDAP / LDAPS port for communication with the
PingDirectory Server to retrieve information about the topology.

--existingDSTopologyUseSSL Indication that the communication with the PingDirectory
Server to retrieve information about the topology should be
encrypted with SSL.

--existingDSTopologyUseJavaTruststore The path to a JKS trust store that has the information needed
to trust the certificate presented by the PingDirectory Server
when using SSL or StartTLS.

--existingDSTopologyUsePkcs12Truststore The path to a PKCS #12 trust store that has the information
needed to trust the certificate presented by the PingDirectory
Server when using SSL or StartTLS.

--existingDSTopologyTrustStorePassword The password needed to access the contents of the JKS or
PKCS #12 trust store. A password is typically required when
using a PKCS #12 trust store but is optional when using a JKS
trust store.

--existingDSTopologyBindDN The DN of the account to use to authenticate to the
PingDirectory Server, such as cn=Directory Manager.
This account must have full read and write access to the
configuration and to manage the topology.

--existingDSTopologyBindPassword The password for the account to use to authenticate to the
PingDirectory Server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 215

Joining a topology with manage-topology
To join an existing PingAuthorize Server to an existing PingDirectory Server topology, you can use
the manage-topology add-server command to provide connection information for one of the
PingDirectory Servers. This PingDirectory Server must be running when you execute the setup tool.

The following table lists the options that specify connection information for a PingDirectory Server. To see
this command's complete set of options, run manage-topology add-server --help.

Option Description

--remoteServerHostname The address of a PingDirectory Server in the
topology to be joined.

--remoteServerPort The LDAP / LDAPS port for communication
with the PingDirectory Server.

--remoteServerConnectionSecurity The type of security to use when
communicating with the remote server. This
value can be:

▪ useSSL

Indicates that the communication should
be encrypted with SSL

▪ useStartTLS

Indicates that the communication should
be encrypted with the StartTLS extended
operation

▪ noSecurity

Indicates that the communication should
not be encrypted

--remoteServerBindDN The DN of the account to use to authenticate
to the PingDirectory Server, such as
cn=Directory Manager. This account
must be able to modify the configuration of the
target server.

--remoteServerBindPassword The password for the account to use to
authenticate to the PingDirectory Server.

--remoteServerBindPasswordFile The path to a file containing the password
for the account to use to authenticate to the
PingDirectory Server.

--adminUID User ID of the topology-wide administrator.
This is typically the account used to enable
replication for the PingDirectory Servers.

--adminPassword The password of the topology-wide
administrator.

Configuring a load-balancing algorithm with an LDAP external template
When using automatic backend discovery, you configure a load-balancing algorithm with a single LDAP
external template instead of one or more LDAP external servers that refer to specific backend LDAP
servers.

An LDAP external server template provides a load-balancing algorithm with many of the settings that
it should use when communicating with a backend server that has been discovered from the topology
registry. An LDAP external server template configuration object has most of the same properties as an

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 216

LDAP external server configuration object but omits those related to information that it obtains from the
topology registry. The omitted properties include:

▪ server-host-name
▪ server-port
▪ location
▪ connection-security

In addition, the health-check-state property is also not available for LDAP external server templates
because it primarily applies to individual servers rather than all of the servers associated with a load-
balancing algorithm.

Because the only LDAP servers that can be in the topology registry are PingDirectory Servers, most
of the remaining properties in LDAP external server templates have the same default values as the
corresponding properties in the Ping Identity DS External Server type. However, there are some
exceptions, including the following:

▪ The authentication-method property has a default value of inter-server in LDAP external
server templates, while it has a default value of simple in Ping Identity DS external servers. The
inter-server authentication type indicates that the PingAuthorize Server should authenticate to the
PingDirectory Server with a proprietary authentication method that uses inter-server certificates stored
in the topology registry.

▪ The key-manager-provider property has a default value of Null in LDAP external server
templates, while it has no default value in Ping Identity DS external servers. When using the inter-
server authentication type, the topology registry is used to obtain the inter-server certificates, so no
additional key manager provider is required.

▪ The trust-manager-provider property has a default value of JVM-Default in LDAP external
server templates, while it has no default value in Ping Identity DS external servers. When using the
inter-server authentication type, the topology registry is used to obtain information about the listener
certificates that the servers are expected to present.

 Note:

When using automatic backend discovery, it is not necessary to run prepare-external-store to
create a service account on each PingDirectory Server.

The following example shows how to create an LDAP external template and assign it to a new load-
balancing algorithm.

dsconfig create-ldap-external-server-template \
 --template-name 'User Store'

dsconfig create-load-balancing-algorithm \
 --algorithm-name 'User Store LBA' \
 --type failover \
 --set enabled:true \
 --set 'ldap-external-server-template:User Store'

Configuring automatic backend LDAP server discovery
The following example shows how to configure a load-balancing algorithm to automatically discover
backend LDAP servers. Also, it shows how to connect the load-balancing algorithm to an existing LDAP
store adapter called UserStoreAdapter.

About this task

This example assumes that you have already created a topology of PingDirectory Servers and that the
servers are currently available.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 217

Steps

1. Create an LDAP external server template. This template configures how PingAuthorize Server
connects to each LDAP server that it discovers. Typically, the default settings are sufficient, so this
example only specifies the template name.

Example: For example:

dsconfig create-ldap-external-server-template \
 --template-name 'User Store'

2. Create a failover load-balancing algorithm that uses the LDAP external server template.

Example: For example:

dsconfig create-load-balancing-algorithm \
 --algorithm-name 'User Store LBA' \
 --type failover \
 --set enabled:true \
 --set 'ldap-external-server-template:User Store'

3. Assign the load-balancing algorithm to an LDAP store adapter. This example command assumes that
the store adapter UserStoreAdapter already exists.

Example: For example:

dsconfig set-store-adapter-prop \
 --adapter-name UserStoreAdapter \
 --set 'load-balancing-algorithm:User Store LBA'

4. Run manage-topology add-server to connect the PingAuthorize Server to a running
PingDirectory Server.

Example: For example:

manage-topology add-server \
 --remoteServerHostname ds1.example.com \
 --remoteServerPort 636 \
 --remoteServerConnectionSecurity useSSL \
 --remoteServerBindDN "cn=Directory Manager" \
 --remoteServerBindPassword password \
 --adminUID admin \
 --adminPassword password

5. Configure each PingDirectory Server in the topology to use PingAuthorize Server's load-balancing
algorithm. You should be able to run this command from any server in the topology. The following
commands configure two PingDirectory Servers with the instance names ds1 and ds2.

Example: For example:

dsconfig set-server-instance-prop \
 --instance-name ds1 \
 --set 'load-balancing-algorithm-name:User Store LBA'

dsconfig set-server-instance-prop \
 --instance-name ds2 \
 --set 'load-balancing-algorithm-name:User Store LBA'

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 218

LDAP health checks
LDAP health checks provide information about the health and availability of the LDAP directory servers,
which has a direct effect on services, such as the PingAuthorize Server System for Cross-domain Identity
Management (SCIM) 2 service and the SCIM Token Resource Lookup method.

Overview

The LDAP health check component provides information about the availability of LDAP external servers.
The health check result includes one of the following server states:

AVAILABLE

Completely accessible for use.

DEGRADED

The server is ready for use if necessary, but it has a condition that might make it less desirable than
other servers (for example, it is slow to respond or has fallen behind in replication).

UNAVAILABLE

Completely unsuitable for use (for example, the server is offline or is missing critical data)

Health check results also include a numeric score, which has a value between 1 and 10, that can help rank
servers with the same state. For example, if two servers are available, you can configure PingAuthorize
Server to prefer the server with the higher score.

PingAuthorize Server periodically invokes health checks to monitor each LDAP external server. It might
also initiate health checks in response to failed operations. It checks the health of the LDAP external
servers at intervals configured in the LDAP server’s health-check-frequency property.

The results of health checks performed by PingAuthorize Server are made available to the load-balancing
algorithms to take into account when determining where to send requests. PingAuthorize Server attempts
to use servers with a state of AVAILABLE before trying servers with a state of DEGRADED. It never
attempts to use servers with a state of UNAVAILABLE. Some load-balancing algorithms might also take
the health check score into account, such as the health-weighted load-balancing algorithm, which prefers
servers with higher scores over those with lower scores. You must configure the algorithms that work best
for your environment.

In some cases, an LDAP health check might define different sets of criteria for promoting and demoting
the state of a server. A DEGRADED server might need to meet more stringent requirements to meet the
criteria for AVAILABLE than it originally took to meet the criteria for DEGRADED. For example, if response
time is used to determine the health of a server, then PingAuthorize Server might have a faster response
time threshold for transitioning a server from DEGRADED back to AVAILABLE than the threshold used to
consider it DEGRADED in the first place. This threshold difference can help avoid cases in which a server
repeatedly transitions between the two states because it is operating near the threshold.

For information about how to configure health checks, see Configuring a health check using dsconfig on
page 219. To associate a health check with an LDAP external server and set the health check frequency,
you must configure the health-check and health-check-frequency properties of the LDAP external
server.

 Note:

The default Consume Admin Alerts and Get Root DSE LDAP health checks apply to all LDAP external
servers, even if you did not explicitly configure and add them to an LDAP external server's health-check
property.

To disable this behavior, reset the use-for-all-servers property for each LDAP health check. For
example:

dsconfig set-ldap-health-check-prop \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 219

 --check-name 'Consume Admin Alerts' \
 --reset use-for-all-servers

Available health checks

PingAuthorize Server provides the following LDAP health checks.

Health check Description

Measure the response time for
searches and examine the entry
contents

The health check might retrieve a monitoring entry from a server
and base the health check result on whether the entry was
returned, how long it took to be returned, and whether the value
of the returned entry matches what was expected.

Monitor the replication backlog If a server falls too far behind in replication, then a PingAuthorize
Server can stop sending requests to it. A server is classified as
DEGRADED or UNAVAILABLE if the threshold is reached for
the number of missing changes, the age of the oldest missing
change, or both.

Consume PingAuthorize Server
administrative alerts

If a PingDirectory Server indicates there is a problem, it flags itself
as DEGRADED or UNAVAILABLE. When a PingAuthorize Server
detects this, it stops sending requests to the server.

You can configure a PingAuthorize Server to detect administrative
alerts as soon as they are issued by maintaining an LDAP
persistent search for changes within the cn=alerts branch of
a PingDirectory Server. When PingAuthorize Server is notified
by the PingDirectory Server of a new alert, it can immediately
retrieve the base cn=monitor entry of the PingDirectory Server.

When cn=monitor entry has
value for this attribute:

PingAuthorize Server should
consider PingDirectory
Server to be:

unavailable-alert-type UNAVAILABLE

degraded-alert-type DEGRADED

Monitor the busyness of the server If a server becomes too busy, the health check might mark it
as DEGRADED or UNAVAILABLE so that less heavily loaded
servers are preferred.

Configuring a health check using dsconfig
Create any health check according to the following instructions.

Steps

1. Use the dsconfig tool to configure the LDAP external server locations.

Example:

$ bin/dsconfig

2. Type the host name or IP address for your PingAuthorize Server, or press Enter to accept the default,
localhost.

Example:

PingAuthorize Server host name or IP address [localhost]:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 220

3. Type the number corresponding to how you want to connect to PingAuthorize, or press Enter to
accept the default, LDAP.

Example:

How do you want to connect?
 1) LDAP
 2) LDAP with SSL
 3) LDAP with StartTLS

4. Type the port number for your PingAuthorize Server, or press Enter to accept the default, 389.

Example:

PingAuthorize Server port number [389]:

5. Type the administrator's bind distinguished name (DN) or press Enter to accept the default
(cn=Directory Manager), and then type the password.

Example:

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':

6. Enter the number corresponding to LDAP health checks.

a. Enter the number to create a new LDAP health check, then press n to create a new health check
from scratch.

7. Select the type of health check you want to create.

Example:

This example demonstrates the creation of a new search LDAP health check.

>>> Select the type of LDAP Health Check that you want to create:

 1) Admin Alert LDAP Health Check
 2) Custom LDAP Health Check
 3) Groovy Scripted LDAP Health Check
 4) Replication Backlog LDAP Health Check
 5) Search LDAP Health Check
 6) Third Party LDAP Health Check
 7) Work Queue Busyness LDAP Health Check

 ?) help
 c) cancel
 q) quit

Enter choice [c]: 5

8. Specify a name for the new health check.

Example:

In this example, the health check is named Get example.com.

>>>> Enter a name for the search LDAP Health Check that you want to create:
 Get example.com

9. Enable the new health check.

Example:

>>>> Configuring the 'enabled' property

Indicates whether this LDAP health check is enabled for use in the
 server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 221

Select a value for the 'enabled' property:

 1) true
 2) false

 ?) help
 c) cancel
 q) quit

Enter choice [c]: 1

10. Configure the properties of the health check.

You might need to modify the base-dn property, as well as one or more response time thresholds for
non-local external servers, accommodating WAN latency.

Example:

The following example is a search LDAP health check for the single entry dc=example,dc=com,
which considers non-local responses of up to two seconds healthy.

>>>> Configure the properties of the Search LDAP Health Check

 Property Value(s)

 1) description -
 2) enabled true
 3) use-for-all-servers false
 4) base-dn "dc=example,dc=com"
 5) scope base-object
 6) filter (objectClass=*)
 7) maximum-local-available-response-time 1 s
 8) maximum-nonlocal-available-response-time 2 s
 9) minimum-local-degraded-response-time 500 ms
 10) minimum-nonlocal-degraded-response-time 1 s
 11) maximum-local-degraded-response-time 10 s
 12) maximum-nonlocal-degraded-response-time 10 s
 13) minimum-local-unavailable-response-time 5 s
 14) minimum-nonlocal-unavailable-response-time 5 s
 15) allow-no-entries-returned true
 16) allow-multiple-entries-returned true
 17) available-filter -
 18) degraded-filter -
 19) unavailable-filter -

 ?) help
 f) finish - create the new Search LDAP Health Check
 d) display the equivalent dsconfig arguments to create this object
 b) back
 q) quit

Connecting non-LDAP data stores
The PingAuthorize Server SCIM subsystem supports non-LDAP data stores using custom store adapter
extensions. For more information, see the Server SDK.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 222

About the Authorization Policy Decision APIs
The PingAuthorize Server provides Authorization Policy Decision APIs to support non-API use cases
needing attribute-based access control.

 Important:

The Authorization Policy Decision APIs feature requires PingAuthorize Premier. For more information,
contact your Ping Identity account representative.

The PingAuthorize Server's main functionality is to enforce fine-grained policies for data accessed through
APIs. However, organizations might need to use the core Policy Decision Service for non-API use cases.
For example, an application server might use it to request policy decisions when generating dynamic web
content. In this configuration, PingAuthorize Server becomes the PDP, and the application server becomes
the policy enforcement point (PEP).

The Authorization Policy Decision APIs consist of the following policy decision point (PDP) APIs:

▪ XACML-JSON PDP API

This API provides a standards-based interface.

Standards-based enforcement points request policy decisions based on a subset of the XACML-JSON
standard. For more information, see XACML 3.0 JSON Profile 1.1.

▪ JSON PDP API

This API provides a simpler interface.

 Note:

The Authorization Policy Decision APIs can indicate when a request or response triggers advice, but the
application server must implement the advice.

To make a PDP API available, you must:

▪ Configure the PingAuthorize Server with a feature-enabled license during setup.
▪ Configure the Policy Decision Point Service. For more information, see Use policies in a production

environment.
▪ For the XACML-JSON PDP API, configure an Access Token Validator. For more information, see

Access Token Validators.

JSON PDP API request and response flow
The JSON policy decision point (PDP) API provides an HTTP REST API for attribute-based access control
based on policies configured in the PingAuthorize Server Policy Decision Service.

The JSON PDP API is implemented with both an individual decision request endpoint and a batch request
endpoint that consuming application servers can access using POST requests to the /governance-
engine or /governance-engine/batch paths, respectively.

The HTTP requests must include the appropriate Content-Type and Accept headers, and request
bodies must be valid JSON in the expected request format.

The endpoint paths and headers are listed in the following table.

JSON PDP API
Endpoint path

Action Content-Type/Accept Request data

/governance-engine POST application/json JSON

Copyright ©2024

http://docs.oasis-open.org/xacml/xacml-json-http/v1.1/csprd01/xacml-json-http-v1.1-csprd01.html

PingAuthorize | PingAuthorize Server Administration Guide | 223

JSON PDP API
Endpoint path

Action Content-Type/Accept Request data

/governance-
engine/batch

POST application/json JSON

A successful JSON PDP API request goes through the following flow:

1. The client makes the JSON request, which is received by the JSON PDP API. The API forwards the
request to the PDP.

2. When the PDP returns a response, the API sends the response to the client.

 Note:

The Policy Enforcement Point (PEP) must apply any obligations or advice. See the JSON PDP API
Reference for more information about making API requests.

JSON PDP API request format

Individual requests

A valid JSON PDP API request is a simple JSON object that can be forwarded to the Policy Decision
Service. Policies can match a decision request by Service, Domain, Action, or other attributes.

The following table describes the values contained in a valid JSON PDP API request.

Field Type Required PingAuthorize
Trust Framework
type

Example value

domain string no Domain Sales.Asia
Pacific

action string no Action Retrieve

service string no Service Mobile.Landing
page

identityProviderstring no Identity Provider Social
Networks.
Spacebook

attributes map<string, string> yes Other Attributes {"Prospect
name": "B.
Vo"}

 Tip:

While the attributes value is required, you can leave it empty.

The following example shows the correct format of a JSON individual decision request.

{
 "domain": "Sales.Asia Pacific",
 "action": "Retrieve",

Copyright ©2024

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/#json-pdp-api-reference
https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/#json-pdp-api-reference

PingAuthorize | PingAuthorize Server Administration Guide | 224

 "service": "Mobile.Landing page",
 "identityProvider": "Social Networks.Spacebook",
 "attributes": {
 "Prospect name": "B. Vo"
 }
}

The following image shows how Prospect name is defined in the Policy Administration GUI. In this
example, the Prospect name attribute has a Request resolver and a Value Settings type of string.

 Note:

The Trust Framework attribute name must match with the key of the attributes map.

For example, if you have an attribute named "UserID", an example value for the "attributes" object
would be{"UserID":13848}.

Batch requests

Batch requests consist of an array named "requests" of JSON objects, each of which is a standard
JSON PDP API single decision request.

The following example shows the correct format of a JSON batch decision request.

{
 "requests": [
 {
 "domain": "Sales.Asia Pacific",
 "action": "Retrieve",
 "service": "Mobile.Landing page",
 "identityProvider": "Social Networks.Spacebook",

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 225

 "attributes": {
 "Prospect name": "B. Vo"
 }
 },
 {
 "domain": "Sales.EMEA",
 "action": "Search",
 "service": "Mobile.Users search",
 "identityProvider": "Social Networks.Chirper",
 "attributes": {
 "Prospect name": "A. Mann"
 }
 }
]
}

JSON PDP API response format

After the Policy Decision Service determines a decision response, it hands the response back to the JSON
PDP API to provide to the client. JSON PDP API responses include decisions, such as Permit or Deny,
and any obligations or advice that matched during policy processing.

Individual response

The following example shows the correct JSON individual response format.

{
 "id": "12345678-90ab-cdef-1234-567890abcdef",
 "deploymentPackageId": "12345678-90ab-cdef-1234-567890abcdef",
 "timestamp": "2021-06-11T03:12:19.720485Z",
 "elapsedTime": 184024,
 "decision": "PERMIT",
 "authorized": true,
 "statements": [
 {
 "id": "12345678-90ab-cdef-1234-567890abcdef",
 "name": "Advice Name",
 "code": "advice-code",
 "payload": "{\"data\": \"some data\"}",
 "obligatory": true,
 "fulfilled": false,
 "attributes": { }
 }
],
 "status": {
 "code": "OKAY",
 "messages": [],
 "errors": [],
 }
}

 Note:

The decision and authorized values identify whether the policies authorize the request, and the
"statements" array contains advice to be applied by the Policy Enforcement Point.

Batch response

Batch decision responses consist of an array, named "responses", of JSON objects, each of which is a
standard JSON PDP API single decision response. The decision responses are guaranteed to be returned

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 226

in the same order as the received responses. For example, the first response in the batch responses
corresponds to a decision on the first request in the batch requests.

The following example shows the correct JSON batch decision response format.

{
 "responses": [
 {
 "id": "12345678-90ab-cdef-1234-567890abcdef",
 "deploymentPackageId": "12345678-90ab-cdef-1234-567890abcdef",
 "timestamp": "2021-06-11T04:18:32.820482Z",
 "elapsedTime": 830492,
 "decision": "PERMIT",
 "authorized": true,
 "statements": [
 {
 "id": "12345678-90ab-cdef-1234-567890abcdef",
 "name": "Advice Name",
 "code": "advice-code",
 "payload": "{\"data\": \"some data\"}",
 "obligatory": true,
 "fulfilled": false,
 "attributes": {}
 }
],
 "status": {
 "code": "OKAY",
 "messages": [],
 "errors": [],
 }
 },
 {
 "id": "fedcba09-8765-4321-fedcba098765",
 "deploymentPackageId": "fedcba09-8765-4321-fedcba098765",
 "timestamp": "2021-06-11T04:18:33.650974Z",
 "elapsedTime": 492048,
 "decision": "PERMIT",
 "authorized": true,
 "statements": [
 {
 "id": "fedcba09-8765-4321-fedcba098765",
 "name": "Different Advice",
 "code": "advice-code",
 "payload": "{\"data\": \"other data\"}",
 "obligatory": false,
 "fulfilled": false,
 "attributes": { }
 }
],
 "status": {
 "code": "OKAY",
 "messages": [],
 "errors": [],
 }
 }
]
}

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 227

Authenticating to the JSON PDP API
The JSON PDP API can require a client to authenticate to it by using a shared secret.

To define shared secrets, use JSON PDP API Shared Secret configuration objects. To manage shared
secrets, use the JSON PDP API HTTP Servlet Extension.

Creating a shared secret
Define the authentication credentials that the JSON PDP API might require a client to present.

Steps

1. To create a shared secret, run the following example dsconfig command, substituting values of your
choosing.

Example:

PingAuthorize/bin/dsconfig create-authorization-policy-decision-shared-
secret \
 --secret-name "Shared Secret A" \
 --set "shared-secret:secret123"

 Note:

▪ The shared-secret property sets the value that the JSON PDP API requires the client to
present. After you set this value, it is no longer visible.

▪ The secret-name property is a label that allows an administrator to distinguish one JSON PDP
API Shared Secret from another.

2. To update the shared-secrets property, run the following example dsconfig command.

Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "JSON PDP API" \
 --add "shared-secrets:Shared Secret A"

A new JSON PDP API Shared Secret is not used until the shared-secrets property of the JSON
PDP API HTTP Servlet Extension is updated.

Deleting a shared secret
You can remove a shared secret from use or delete it entirely.

Steps

▪ To remove a JSON PDP API Shared Secret from use, run the following example dsconfig
command, substituting values of your choosing.

Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "JSON PDP API" \
 --remove "shared-secrets:Shared Secret A"

▪ To delete a JSON PDP API Shared Secret, run the following example dsconfig command.

Example:

PingAuthorize/bin/dsconfig delete-authorization-policy-decision-shared-
secret \
 --secret-name "Shared Secret A"

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 228

Rotating shared secrets
To avoid service interruptions, the JSON PDP API allows multiple, distinct shared secrets to be accepted
at the same time.

About this task

You can configure a new shared secret that the JSON PDP API accepts alongside an existing shared
secret. This allows time to update the client to use the new shared secret.

Steps

1. Create a new JSON PDP API Shared Secret and assign it to the JSON PDP API HTTP Servlet
Extension. For more information, see Creating a shared secret on page 227.

2. Update the client to use the new shared secret.

3. Remove the previous JSON PDP API Shared Secret. For more information, see Deleting a shared
secret on page 227.

Customizing the shared secret header
By default, the JSON PDP API accepts a shared secret from a client through the CLIENT-TOKEN header.

Steps

▪ To customize a shared secret header, change the value of the JSON PDP API HTTP Servlet
Extension's shared-secret-header property.

Example:

The following command changes the shared secret header to x-shared-secret.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "JSON PDP API" \
 --set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "JSON PDP API" \
 --reset shared-secret-header-name

XACML-JSON PDP API request and response flow
The XACML-JSON policy decision point (PDP) API provides a standards-based HTTP API for decisions
determined based on the policies configured within the PingAuthorize Server Policy Decision Service.

The XACML-JSON PDP API is implemented as a single endpoint, which consuming application servers
can access using POST requests to the /pdp path. The HTTP requests must include the appropriate
Content-Type and Accept headers, and request bodies must adhere to the XACML-JSON standard.
For more information, see Requests on page 229.

XACML-JSON PDP API
Endpoint path

Action Content-Type/Accept Request data

/pdp POST application/xacml+json XACML-JSON

The XACML-JSON PDP API supports the MultiRequests JSON object, which allows a client to make
multiple decision requests in a single HTTP request.

 Note:

Copyright ©2024

http://docs.oasis-open.org/xacml/xacml-json-http/v1.1/csprd01/xacml-json-http-v1.1-csprd01.html#_Toc525043922

PingAuthorize | PingAuthorize Server Administration Guide | 229

Because this object also supports single decision requests, it is the only supported XACML-JSON request
format. See the XACML-JSON PDP API Reference for more information about making API requests.

A successful XACML-JSON PDP API request goes through the following two-phase flow:

1. The client makes the XACML-JSON request, which is received by the XACML-JSON PDP API. The
API converts the request to a PingAuthorize Server batch decision request and attempts to authorize
the client.

2. On authorize success, the request is handed off to the Policy Decision Service to process decisions
in batch for the XACML-JSON PDP API. The API then converts the batch decision responses to a
XACML-JSON response and writes the response to the client.

The following sections describe these stages in more detail.

Requests
The XACML-JSON PDP API first converts the XACML-JSON request to a batch decision request for the
policy decision point to be consumed by the Policy Decision Service. Policies can match a decision request
by Service, Domain, Action, or other attributes.

The following example XACML-JSON request body illustrates the conversion to a batch decision request.
For an example with more than one decision request, see Example on page 233.

{
 "Request": {
 "MultiRequests": {
 "RequestReference": [{
 "ReferenceId": [
 "dom",
 "act",
 "srv",
 "idp",
 "att"
]
 }]
 },
 "AccessSubject": [{
 "Id": "dom",
 "Attribute": [{
 "AttributeId": "domain",
 "Value": "Sales.Asia Pacific"
 }]
 }],
 "Action": [{
 "Id": "act",
 "Attribute": [{
 "AttributeId": "action",
 "Value": "Retrieve"
 }]
 }],
 "Resource": [{
 "Id": "srv",
 "Attribute": [{
 "AttributeId": "service",
 "Value": "Mobile.Landing page"
 }]
 }],
 "Environment": [{
 "Id": "idp",
 "Attribute": [{
 "AttributeId": "symphonic-idp",
 "Value": "Social networks.Spacebook"
 }]

Copyright ©2024

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/#xacml-json-pdp-api-reference

PingAuthorize | PingAuthorize Server Administration Guide | 230

 }],
 "Category": [{
 "Id": "att",
 "Attribute": [{
 "AttributeId": "attribute:Prospect name",
 "Value": "B. Vo"
 }]
 }]
 }
}

The previous example shows a single decision request with the following attributes:

▪ A domain of Sales.Asia Pacific
▪ An action of Retrieve
▪ A service of Mobile.Landing page
▪ An identity provider of Social networks.Spacebook
▪ A single attribute named Prospect name, with a value of B. Vo

The following table shows how these values map from the Trust Framework entities to the XACML-JSON
request.

Parent (JSON
Path)

Field (JSON Path) PingAuthorize Trust
Framework type

Example value

$.AccessSubject[*].Attribute[?
(@.AttributeId == "domain")].Value

Domain Sales.Asia
Pacific

$.Action[*].Attribute[?(@.AttributeId ==
"action")].Value

Action Retrieve

$.Resource[*].Attribute[?(@.AttributeId ==
"service")].Value

Service Mobile.
Landing page

$.Environment[*].Attribute[?(@.AttributeId
== "symphonic-idp")].Value

Identity Provider Social
Networks.
Spacebook

$.Request

$.Category[*].Attribute[?(@.AttributeId ==
"attribute:Prospect name")].Value

Other Attribute
(Prospect name in
this case)

B. Vo

To illustrate how you can match rules against the Prospect name Trust Framework attribute, the
following image shows how Prospect name is defined in the Policy Editor. In this example, the
Prospect name attribute has a Request resolver and a Value Settings Type of String.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 231

 Note:

The Trust Framework attribute name must be a case-sensitive match with the decision request
AttributeId after the attribute: prefix is removed.

Authorization
Before calculating a decision, the XACML-JSON PDP API attempts to authorize the client making the
XACML-JSON PDP API request by invoking the Policy Decision Service.

A PDP authorization request can be targeted in policy as having service PDP with action authorize. The
default policies included with PingAuthorize Server perform this authorization by only permitting requests
with active access tokens that contain the urn:pingauthorize:pdp scope. You can see this policy in
Global Decision Point # PDP API Endpoint Policies # Token Authorization.

 Note:

The parent of the Token Authorization policy, PDP API Endpoint Policies, constrains the Token
Authorization policy to apply to the PDP service only.

For example, under the default policies, the following request would result in an authorized client when the
PDP is configured with a mock access token validator.

curl --insecure -X POST \
 -H 'Authorization: Bearer {"active":true,"scope":"urn:pingauthorize:pdp", "sub":"<valid-subject>"}' \
 -H 'Content-Type: application/xacml+json' \
 -d '{"Request":{}}' "https://<your-pingauthorize-host>:<your-pingauthorize-port>/pdp"

The default policies are intended to provide a foundation. You can modify these policies if additional
authorization logic is required.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 232

Decision processing
On successful client authorization, the XACML-JSON PDP API invokes the Policy Decision Service with
the batch decision requests converted from the XACML-JSON request.

When writing policy for the XACML-JSON PDP API endpoint, you should note the mapping between
the XACML-JSON schema and the PingAuthorize Server decision request. For more information, see
Requests on page 229. After the Policy Decision Service determines a decision response, it hands the
response back to the XACML-JSON PDP API to provide to the client.

Responses
The XACML-JSON PDP API converts batch decision responses to a XACML-JSON response.

XACML-JSON responses include decisions, such as Permit or Deny, and any obligations or advice that
matched during policy processing.

 Note:

The Policy Enforcement Point (PEP) must apply any obligations or advice.

The following table shows the mapping from a decision response to a XACML-JSON response.

Parent (JSON Path) Field (JSON Path) PingAuthorize Trust
Framework type

$.Response[*] $.Decision Decision

Advice (obligatory)

$.Id Advice code$.Response[*].
Obligations[*]

$.AttributeAssigments[?(@.AttributeId ==
"payload")].Value

Advice payload

Advice (non-obligatory)

$.Id Advice code$.Response[*].
AssociatedAdvice[*]

$.AttributeAssigments[?(@.AttributeId ==
"payload")].Value

Advice payload

The following example is an appropriate response based on the request in Requests on page 229.

{
 "Response": [{
 "Decision": "Permit",
 "Obligations": [{
 "Id": "obligation-id",
 "AttributeAssignments": [{
 "AttributeId": "payload",
 "Value": "payload-value"
 }]
 }],
 "AssociatedAdvice": [{
 "Id": "advice-id",
 "AttributeAssignments": [{
 "AttributeId": "payload",
 "Value": "payload-value"
 }]
 }]
 }]
}

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 233

In this example, it is up to the application server to handle the obligations and advice in the response.

Example
This example shows how to use the XACML-JSON PDP API in the context of a peer recognition program.

The example company, AnyCompany, has an internal peer recognition program. The peer recognition
program allows employees to recognize each other by awarding each other points. The points can be
spent in different categories. Each category requires a minimum number of points for the category to
become available. When an employee spends enough points in a category, a related product becomes
unlocked in an online catalog that the employee can purchase. AnyCompany has implemented a web
application where employees spend their points, view their available catalog, and purchase products.

In this example, the web application that implements the online catalog can make the following XACML-
JSON request when an employee spends their points. The request includes three decision requests.

{
 "Request":{
 "MultiRequests":{
 "RequestReference":[
 {
 "ReferenceId":[
 "domain-1",
 "action-1",
 "service-1",
 "idp-1",
 "attributes-1"
]
 },
 {
 "ReferenceId":[
 "domain-1",
 "action-2",
 "service-2",
 "idp-1",
 "attributes-2"
]
 },
 {
 "ReferenceId":[
 "domain-1",
 "action-1",
 "service-3",
 "idp-1",
 "attributes-1"
]
 }
]
 },
 "AccessSubject":[
 {
 "Id":"domain-1",
 "Attribute":[
 {
 "AttributeId":"domain",
 "Value":"AnyCompany.Management"
 }
]
 }
],
 "Action":[
 {
 "Id":"action-1",
 "Attribute":[

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 234

 {
 "AttributeId":"action",
 "Value":"Update"
 }
]
 },
 {
 "Id":"action-2",
 "Attribute":[
 {
 "AttributeId":"action",
 "Value":"Retrieve"
 }
]
 }
],
 "Resource":[
 {
 "Id":"service-1",
 "Attribute":[
 {
 "AttributeId":"service",
 "Value":"Peer Recognition.Point allocation"
 }
]
 },
 {
 "Id":"service-2",
 "Attribute":[
 {
 "AttributeId":"service",
 "Value":"Peer Recognition.Points unspent"
 }
]
 },
 {
 "Id":"service-3",
 "Attribute":[
 {
 "AttributeId":"service",
 "Value":"Peer Recognition.Products"
 }
]
 }
],
 "Category":[
 {
 "Id":"attributes-1",
 "Attribute":[
 {
 "AttributeId":"attribute:User input.User Id",
 "Value":"self"
 },
 {
 "AttributeId":"attribute:User input.Entertainment",
 "Value":8
 },
 {
 "AttributeId":"attribute:User input.Travel",
 "Value":5
 },
 {
 "AttributeId":"attribute:User input.Academics",
 "Value":6

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 235

 },
 {
 "AttributeId":"attribute:User input.Electronics",
 "Value":5
 },
 {
 "AttributeId":"attribute:User input.Sports",
 "Value":5
 },
 {
 "AttributeId":"attribute:User input.Food",
 "Value":7
 },
 {
 "AttributeId":"attribute:User input.Music",
 "Value":4
 }
]
 },
 {
 "Id":"attributes-2",
 "Attribute":[
 {
 "AttributeId":"attribute:User input.User Id",
 "Value":"self"
 }
]
 }
],
 "Environment":[
 {
 "Id":"idp-1",
 "Attribute":[
 {
 "AttributeId":"symphonic-idp",
 "Value":"AnyCompany SSO"
 }
]
 }
]
 }
}

The three decision requests are summarized in the RequestReference JSON array. Each JSON
object in the array contains a single field, ReferenceId. Each ReferenceId field contains an array of
Id references that represent the content of the decision request. The following tables highlight the key
components of each decision request.

 Note:

For brevity, only one Trust Framework attribute is listed in each decision request.

First decision request

Parent (JSON Path) Field (JSON Path) PingAuthorize Trust
Framework type

Example value

$.Request.
AccessSubject[*]

$.Attribute[?(@.AttributeId ==
"domain")].Value

Domain AnyCompany.
Management

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 236

Parent (JSON Path) Field (JSON Path) PingAuthorize Trust
Framework type

Example value

$.Request.
Action[*]

$.Attribute[?(@.AttributeId ==
"action")].Value

Action Update

$.Request.
Resource[*]

$.Attribute[?(@.AttributeId ==
"service")].Value

Service Peer
Recognition.Point
allocation

$.Request.
Environment[*]

$.Attribute[?(@.AttributeId ==
"symphonic-idp")].Value

Identity Provider AnyCompany SSO

$.Request.
Category[*]

$.Attribute[?(@.AttributeId
== "attribute:User
input.Entertainment")]

Attribute 8

Second decision request

Parent (JSON Path) Field (JSON Path) PingAuthorize Trust
Framework type

Example value

$.Request.
AccessSubject[*]

$.Attribute[?(@.AttributeId ==
"domain")].Value

Domain AnyCompany.
Management

$.Request.
Action[*]

$.Attribute[?(@.AttributeId ==
"action")].Value

Action Retrieve

$.Request.
Resource[*]

$.Attribute[?(@.AttributeId ==
"service")].Value

Service Peer
Recognition.Points
unspent

$.Request.
Environment[*]

$.Attribute[?(@.AttributeId ==
"symphonic-idp")].Value

Identity Provider AnyCompany SSO

$.Request.
Category[*]

$.Attribute[?(@.AttributeId
== "attribute:User input.User
Id")]

Attribute self

Third decision request

Parent (JSON Path) Field (JSON Path) PingAuthorize Trust
Framework type

Example value

$.Request.
AccessSubject[*]

$.Attribute[?(@.AttributeId ==
"domain")].Value

Domain AnyCompany.
Management

$.Request.
Action[*]

$.Attribute[?(@.AttributeId ==
"action")].Value

Action Retrieve

$.Request.
Resource[*]

$.Attribute[?(@.AttributeId ==
"service")].Value

Service Peer
Recognition.Products

$.Request.
Environment[*]

$.Attribute[?(@.AttributeId ==
"symphonic-idp")].Value

Identity Provider AnyCompany SSO

$.Request.
Category[*]

$.Attribute[?(@.AttributeId ==
"attribute:User input.Travel")]

Attribute 5

The following is an example response to the previous example request.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 237

The XACML-JSON response contains the decision responses for each of the three decision requests.
The order of the decision responses corresponds to the order of the decision requests. In the first decision
response, the system policy does not detect any problems and permits the employee to change her
point allocation. In the second decision response, the system policy allows the employee to view her own
unspent points and indicates that the value is now 0. In the third decision response, the system permits the
retrieval of the employee's own product catalog and indicates which of the products should be unlocked for
purchase.

Given the response, the web application can now render the content for the three decision requests. It
renders the 0 unspent points and all catalog products, with purchase buttons disabled where appropriate.

{
 "Response": [
 {
 "Decision": "Permit",
 "Obligations": [],
 "AssociatedAdvice": []
 }, {
 "Decision": "Permit",
 "Obligations": [],
 "AssociatedAdvice": [{
 "Id": "remaining-points",
 "AttributeAssignments": [{
 "AttributeId": "payload",
 "Value": "0"
 }]
 }]
 }, {
 "Decision": "Permit",
 "Obligations": [],
 "AssociatedAdvice": [{
 "Id": "catalog",
 "AttributeAssignments": [{
 "AttributeId": "attribute:Derived.Product availability.Trip to
 exotic country",
 "Value": "false"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Super Bowl
 tickets",
 "Value": "false"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Movie
 theater gift card",
 "Value": "true"
 }, {
 "AttributeId": "attribute:Derived.Product
 availability.Encyclopedia subscription",
 "Value": "false"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Dinner at
 5-star restaurant",
 "Value": "true"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Expensive
 laptop",
 "Value": "false"
 }, {
 "AttributeId": "payload",
 "Value": "2020-03-17T16:21:20.175132-05:00"
 }]
 }]
 }]

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 238

}

Policy Editor configuration
You can configure the PingAuthorize Policy Editor in several ways.

With an options file, for example, you can define policy configuration keys, a key store, or a trust store.

Also, you can set:

▪ Database credentials at setup or later
▪ SpEL Java classes to use for value processing
▪ The number of requests that appear in the Decision Visualizer
▪ HTTP caching status

Specifying custom configuration with an options file
You can configure the Policy Editor by editing and implementing the options file.

About this task

You must run setup in non-interactive command-line mode instead of interactive mode if you need to do
any of the following:

▪ Configure the Policy Editor with a policy configuration key. A policy configuration key is an arbitrary
key-value pair that can be referenced by name in the policy Trust Framework. This allows the policy
trust store to be defined without hard-coding environment-specific data, such as host names and
credentials in the trust store.

▪ Configure a key store for a policy information provider. This defines a client certificate that the policy
engine can use for MTLS connections to a policy information provider.

▪ Configure a trust store for a policy information provider. This defines the set of certificates or root
certificates that the policy engine uses to determine whether it trusts the server certificate presented by
a policy information provider.

▪ Customize the Policy Editor’s logging behavior.
▪ Configure private JSON Web Token (JWT) claims. This allows an organization to convey specific

claims about an identity.

 Note:

If the server detects existing configuration files when running the setup tool, the setup process terminates.
To re-configure the server, you must either:

▪ Delete the existing configuration files and run setup again.
▪ Use the --ignoreWarnings option with the setup tool to overwrite the existing
configuration.yml file, delete the administrator key store, and, if you also use the --
generateSelfSignedCertificate option, overwrite the server certificate file.

To reconfigure the server while preserving the values in configuration.yml or any certificate key
stores, back up the configuration.yml and key stores before re-running setup.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 239

Steps

1. Make a copy of the default options file provided at config/options.yml and customize the copy to
suit your needs.

The setup tool supports configuring these options through the use of a YAML options file.

 Note:

When you customize your options file, do not remove or alter the logging section. For guidance about
customizing logging behavior, contact Ping Identity Support.

2. Configure the Policy Editor with an options file:

a. Stop the Policy Editor:

$ bin/stop-server

b. Run the setup tool.
c. Provide the options file using the --optionsFile argument.

For example, the following setup command configures a Policy Editor in demo mode using an
options file named my-options.yml:

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

3. Start the Policy Editor:

$ bin/start-server

Example: Configure policy configuration keys
You can define one or more policy configuration keys under the options file’s core section.

These are arbitrary key/value pairs that are typically used to define environment-specific details such as
host names and credentials. After you define a policy configuration key, you can reference it by name in
the PingAuthorize Policy Editor Trust Framework. By using a reference, you do not need to hard-code the
values in the Trust Framework.

Example

Consider an organization that has two development environments, US-East and US-West. The
organization’s policies call out to a PingDirectory Consent API policy information provider (PIP), and
the Consent API’s host name differs depending on the development environment being used. If the
Consent API host name was hard-coded in the Trust Framework, then a different Trust Framework would
need to be used for each development environment. Instead, you can declare the host name as a policy
configuration key in the Policy Editor’s configuration.

To set up this policy configuration key, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

Copyright ©2024

https://support.pingidentity.com/s/

PingAuthorize | PingAuthorize Server Administration Guide | 240

2. Edit the new options file to define a policy configuration key in the core section called
ConsentHostname.

core:
 ConsentHostname: consent-us-east.example.com
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

After you define the Consent API service in the Trust Framework, you can refer to the policy configuration
key that you defined in the Policy Editor configuration. To do this, you must first create an attribute in the
Trust Framework to hold the policy configuration key value. Add an attribute with the following settings.

Property Value

Name ConsentHostname

Resolver Type Configuration Key

Resolver Value ConsentHostname

Now when you create a service in the Trust Framework, you can refer to this attribute using the
{{AttributeName}} notation. For example, where the URL https://consent-us-east.example.com/
consent/v1/consents is otherwise used, you would use the URL https://{{ConsentHostname}}/consent/v1/
consents, as shown in the following image.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 241

Key store configuration for policy information providers
The policy engine supports the use of policy information providers (PIPs) to dynamically retrieve data from
external services at runtime. You can configure a key store for a PIP in PingAuthorize.

Some policy information providers might use MTLS, in which a client presents a client certificate to
establish TLS communications with a server. In such cases, the policy engine can use a client certificate
contained in a Java KeyStore (JKS) or PKCS12 key store. The key store details are then configured in
an options file in the keystores section. A JKS key store file should use the extension .jks, while a
PKCS12 key store file should use the extension .p12.

Example

Given a JKS key store named my-client-cert-keystore.jks with the password password123 and
a client certificate with the alias my-cert, create an options file with details about the key store.

To set up this key store, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define the key store details by adding an item under the keystores
section.

keystores:
 - name: MyClientCertKeystore
 resource: /path/to/my-client-cert-keystore.jks
 password: password123
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 242

 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

After you define the policy information provider in the Trust Framework, you can refer to the key store that
you configured using the name MyClientCertKeystore.

Example: Configure a trust store for a policy information provider
The policy engine supports the use of policy information providers (PIPs) to dynamically retrieve data from
external services at runtime. You can configure a trust store for a PIP in PingAuthorize.

By default, the policy engine determines whether it should accept a PIP's server certificate using the Java
Runtime Environment's (JRE's) default trust store, which contains public root certificates for common
certificate authorities. If your PIP uses a server certificate issued by some other certificate authority,
such as a private certificate authority operated by your organization, then you can provide a custom Java
KeyStore (JKS) or PKCS12 trust store. Configure details about the trust store in an options file in the
truststores section. A JKS trust store file should use the extension .jks, while a PKCS12 trust store
file should use the extension .p12.

Example

Given a JKS trust store named my-ca-truststore.jks with the password password123 and a trusted
root certificate with the alias my-ca, create an options file with details about the trust store.

To set up this trust store, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file to define the key store details by adding an item under the truststores
section.

truststores:
 - name: MyCATruststore
 resource: /path/to/my-ca-truststore.jks
 password: password123
Other options omitted for brevity...

3. Run setup using the --optionsFile argument. Customize all other options as needed.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 243

 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

After you define the policy information provider in the Trust Framework, you can see the trust store that you
configured using the name MyCATruststore.

Policy Editor configuration with runtime environment variables
You do not have to hard-code values for policy configuration keys in an options file in the Policy Editor
configuration. You can specify values for policy configuration keys at runtime using environment variables.

To use environment variables, specify a policy configuration key value in the options file using the
${variableName} notation, and then define the environment variable before starting the Policy Editor.

Example: Set policy information provider host name using an environment variable

This example takes the scenario in Example: Configure policy configuration keys on page 239 and
modifies it to specify the Consent API host name at runtime using an environment variable.

To specify the host name using an environment variable:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define a policy configuration key in the core section called
ConsentHostname. Instead of hard-coding its value, specify a variable called CONSENT_HOSTNAME.

core:
 ConsentHostname: ${CONSENT_HOSTNAME}
Other options omitted for brevity...

3. Stop the GUI server.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 244

 --optionsFile my-options.yml

5. Set the value of the CONSENT_HOSTNAME environment variable and then start the server.

$ export CONSENT_HOSTNAME=consent-us-east.example.com; bin/start-server

After you define the Consent API service in the Trust Framework, you can refer to the policy configuration
key that you defined in the Policy Editor configuration (ConsentHostName), which will use the environment
variable that you also defined. You must first create an attribute in the Trust Framework to hold the policy
configuration key value. To do so, add an attribute with the following settings.

Property Value

Name ConsentHostname

Resolver Type Configuration Key

Resolver Value ConsentHostname

The following image shows the attribute in the Policy Editor.

When you create a service in the Trust Framework, you can refer to this attribute using the
{{AttributeName}} notation. For example, where the URL https://consent-us-east.example.com/
consent/v1/consents would otherwise be used, use the URL https://{{ConsentHostname}}/consent/v1/
consents. The following image shows service settings using the {{AttributeName}} notation.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 245

To set a different host name, redefine the CONSENT_HOSTNAME environment variable and restart the
server.

$ bin/stop-server
$ export CONSENT_HOSTNAME=consent-us-west.example.com; bin/start-server

Example: Set trust store details using an environment variable

This example takes the scenario in Example: Configure a trust store for a policy information provider on
page 242 and modifies it to specify the trust store password at runtime using an environment variable.

Given a Java KeyStore (JKS) trust store named my-ca-truststore.jks with the password
password123 and a trusted root certificate with the alias my-ca, create an options file with details about
the trust store. Instead of hard-coding the trust store password, specify it as an environment variable.

To specify the password as an environment variable:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. To edit the new options file and define the key store details, add an item in the truststores section.
Specify the password value using the ${ENVIRONMENT_VARIABLE} notation. Also, assign the
password to a policy configuration key so it can be used in the Trust Framework.

core:
 TrustStorePassword: ${TRUST_STORE_PASSWORD}
truststores:
 - name: MyCATrustStore
 resource: /path/to/my-ca-truststore.jks
 # TRUST_STORE_PASSWORD is an environment variable
 password: ${TRUST_STORE_PASSWORD}
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 246

 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Set the value of the TRUST_STORE_PASSWORD environment variable and start the server.

$ export TRUST_STORE_PASSWORD=password123; bin/start-server

The policy configuration key that you defined can be used in the Trust Framework. You must first create an
attribute to hold the policy configuration key value. Add an attribute with the following settings.

Property Value

Name TrustStorePassword

Resolver Type Configuration Key

Resolver Value TrustStorePassword

The following image shows the attribute in the Policy Editor.

After you define the policy information provider in the Trust Framework, you can refer to the trust store
password using the TrustStorePassword attribute.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 247

If you later use a trust store with a different password, you can redefine the TRUST_STORE_PASSWORD
environment variable and restart the server.

$ bin/stop-server
$ export TRUST_STORE_PASSWORD=new-password; bin/start-server

Example: Configure JWT claims
You can configure private JSON Web Token (JWT) claims for your organization under the option file's
core section.

The JWT specification defines registered claims and also allows for public and private claims to be
included in the token. The seven optional, registered claims are:

▪ iss
▪ sub
▪ aud
▪ exp
▪ nbf
▪ iat
▪ jti

 Note:

When you configure private claims for your organization, make sure you avoid name collisions because
private claim names are not registered.

Example

When a user signs on with OpenID Connect (OIDC), the Policy Editor uses the JWT sub claim in the user
profile as the default OIDC user ID. Changes committed by policy editors are recorded under this user ID.
If your organization wants to record changes under the email address instead, you can define a different
claim, such as email, for the OIDC user ID.

To define this claim:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. In the core section of the new options file, uncomment the example
Authentication.oidcUserIdField field that uses the email claim.

core:
Use a JWT claim other than "sub" for the OIDC User ID.

Authentication.oidcUserIdField: jwt_claim

Authentication.oidcUserIdField: "email"

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument and customize all other options as appropriate for
your needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 248

 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

6. To verify that your claim is used, commit a policy change in the Policy Editor at Branch Manager #
Version Control and ensure that your claim appears in the Creator column.

Configuring the Policy Editor to publish policies to a deployment package store
Use an options file to configure the Policy Editor.

About this task

To use the Deployment Manager feature, you must configure the Policy Editor to publish policies to a
deployment package store in the options file’s deploymentPackageStores section.

For more information, see Using the Deployment Manager on page 267.

Steps

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. To define a deployment package store or stores for the Policy Editor to publish policies to, edit the
deploymentPackageStores section of the new options file.

The file contains commented out examples of different deployment package store types.

a. Duplicate the desired deployment package store type, uncomment, and modify its values
according to your deployment.

 Important:

▪ The use of indentation in the options.yml file is important. When removing comment hashes,
ensure that you retain valid YAML file indentation structure.

▪ For an Azure deployment package store, record the prefix you define for the deployment package
store. You will need the prefix for PingAuthorize Server configuration.

deploymentPackageStores:
 # Define deployment package store publishing targets here.
 #
 # - name: Filesystem store
 # description: File system directory store
 # type: filesystem
 # path: /path/to/deployment-package-store/
 # - name: Signed filesystem store
 # description: Signed file system directory store
 # type: filesystem
 # path: /path/to/signed-deployment-package-store/
 # securityLevel: signed
 # keystore:
 # resource: /path/to/deployment-package-signing-keystore.jks
 # password: keystore-password
 # signingKey:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 249

 # alias: signing-cert-alias
 # password: private-key-password
 # - name: S3 bucket store
 # description: AWS S3 bucket store
 # type: s3bucket
 # securityLevel: unsigned-or-signed
 # config:
 # bucket: store-bucket-name
 # prefix: store-prefix
 # endpoint: https://s3-bucket-endpoint.aws-region.amazonaws.com
 # region: aws-s3-bucket-region
 # accessKey: aws-access-key
 # secretKey: aws-secret-key
 # Other deployment package store types omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

6. To verify that your deployment package store or stores are available in the Policy Editor, go to Branch
Manager # Deployment Manager.

Configuring Policy Editor security headers
Use an options file to configure the Policy Editor.

About this task

You can configure the Policy Editor to add certain security headers to responses for calls to the UI
resources in the options file’s securityHeaders section. Supported headers include X-Frame-Options,
Content-Security-Policy, and Access-Control-Allow-Origin. By default, X-Frame-Options will be set to deny
and the other headers will remain unset.

Steps

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 250

2. To configure Policy Editor security headers, edit the securityHeaders section of the new options
file.

The file contains commented out examples of different security headers.

a. Duplicate the desired security header, uncomment, and modify its value according to your
deployment.

 Note:

The use of indentation in the options.yml file is important. When removing comment hashes,
ensure that you retain valid YAML file indentation structure.

The following example illustrates the X-Frame-Options header duplicated and modified.

securityHeaders:
 # Configure the values that the Policy Editor will set in its
 # responses for the X-Frame-Options, Content-Security-Policy, and/or
 # Access-Control-Allow-Origin HTTP security headers here.
 #
 # X-Frame-Options: "deny"
 # Content-Security-Policy: "default-src https:"
 # Access-Control-Allow-Origin: "*"
 X-Frame-Options: "sameorigin"

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

Manage policy database credentials
By default, the PingAuthorize Policy Editor stores policies in an H2 database file on the server. You can set
the initial credentials and change them later.

 Note:

These instructions don't apply if you are using a managed RDBMS, such as PostgreSQL, instead of the
default H2 database.

This embedded H2 file, stored in the server root by default, contains two user accounts:

▪ An admin user: Setup uses the admin user to perform database upgrades.
▪ An application user: The server uses the application user to access the database at runtime.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 251

Each user has its own credentials.

 Warning:

If you change either of the default policy database credentials, you must pass the new credentials to
setup when upgrading the server. Otherwise, the setup tool either cannot upgrade the policy database
and fails (if neither default credentials work) or resets the changed credentials back to their defaults (if one
of the credential pairs works).

For more information about upgrades, see Upgrading PingAuthorize on page 126.

Setting database credentials at initial setup
The setup tool applies credentials to the policy database. Also, this tool generates the
configuration.yml file that configures the PingAuthorize Policy Editor.

About this task

Using setup or environment variables, you can set credentials for both the admin user and the application
user.

Because this setup is an initial setup, the Policy Editor is not running.

Steps

▪ Set credentials for both the admin user and the application user.
Choose from:

▪ Setting credentials with the setup tool.

Include the following options and the credential values with setup:

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

For example, the following command sets the policy database admin credentials to adminuser /
Passw0rd and the policy database application credentials to appuser / S3cret.

bin/setup --dbAdminUsername adminuser \
 --dbAdminPassword Passw0rd \
 --dbAppUsername appuser \
 --dbAppPassword S3cret \
 --interactive

▪ Setting credentials with environment variables.

Using environment variables, you can avoid credentials showing up in process lists and
command-line history.

The following example sets the policy database admin credentials to adminuser / Passw0rd and
the application user credentials to app / S3cret.

env PING_DB_ADMIN_USERNAME=adminuser \
 PING_DB_ADMIN_PASSWORD=Passw0rd \
 PING_DB_APP_USERNAME=app \
 PING_DB_APP_PASSWORD=S3cret \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 252

 bin/setup

Using environment variables at initial setup generates the configuration.yml file with the
adminuser / Passw0rd credentials and the app / S3cret credentials instead of the default
credentials.

For more information about these and other UNIX environment variables you can use to override
configuration settings, see Starting PingAuthorize Policy Editor on page 162.

Changing database credentials
To change the policy database credentials after the initial setup, run the setup tool again.

About this task

 Note:
Running the setup tool regenerates the configuration.yml file and regenerates any self-signed
certificate keystore.

Steps

1. Stop the Policy Editor.

bin/stop-server

2. Run setup with the options desired from the following set and specify the new credentials. To change
from the default credentials, run setup one time. To change from nondefault credentials, run setup
combined by double ampersands (&&) with a second setup; in the first command, specify the current
credentials for the admin user and the new credentials for the application user, and then in the second
command, specify the new credentials for the admin user and the now-current credentials for the
application user. See the examples.

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

The first example changes the credentials for the admin and application accounts from their defaults to
admin / Passw0rd and app / S3cret, respectively.

setup --dbAdminUsername admin \
 --dbAdminPassword Passw0rd \
 --dbAppUsername app \
 --dbAppPassword S3cret \
 --interactive

With the credentials no longer the defaults, to change the credentials, you need two setup
commands. The first command uses the current admin credentials (admin / Passw0rd) and sets new
application credentials (app and F0cu5). The second command then uses the newly set application
credentials (app and F0cu5) to set new admin credentials (admin and S3cure).

setup --dbAdminUsername admin \
 --dbAdminPassword Passw0rd \
 --dbAppUsername app \
 --dbAppPassword F0cu5 \
 --interactive \
 && setup --dbAdminUsername admin \
 --dbAdminPassword S3cure \
 --dbAppUsername app \
 --dbAppPassword F0cu5 \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 253

 --interactive

3. Start the Policy Editor.

bin/start-server

Specifying database credentials when you start the GUI
You can override database credentials for the admin account and application account in
the configuration.yml file when you start the GUI by using the UNIX environment
variables PING_DB_ADMIN_USER, PING_DB_ADMIN_PASSWORD, PING_DB_APP_USER, and
PING_DB_APP_PASSWORD.

About this task

For more information about these and other UNIX environment variables you can use to override
configuration settings, see Starting PingAuthorize Policy Editor on page 162.

Steps

1. Stop the Policy Editor.

bin/stop-server

2. Set the environment variables and start the Policy Editor.

Example
The following example starts the server with the overridden policy database admin credentials adminuser
/ Passw0rd and the overridden policy database application credentials app / S3cret. These environment
variables override any values in configuration.yml.

env PING_DB_ADMIN_USERNAME=adminuser \
 PING_DB_ADMIN_PASSWORD=Passw0rd \
 PING_DB_APP_USER=app \
 PING_DB_APP_PASSWORD=S3cret \
 bin/start-server

Docker: Setting the initial database credentials
When using a Docker image, set the database credentials using UNIX environment variables. Specify the
environment variables as command-line options in the docker run command.

Steps

▪ In the docker run command, specify the desired following environment variables using the --env
command-line option:

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

Example
This example initializes the policy database with the admin credentials admin / Passw0rd and the
application credentials app / S3cret. Also, it uses the Ping DevOps image.

 Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 254

Specify a separate volume to store the policy database to perform future upgrades. See Deploying
PingAuthorize Policy Editor using Docker on page 86.

 Note:
For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network_type> <network_name>, and then connect to that
network with the --network=<network_name> option.

$ docker run --network=<network_name> \
 --env PING_DB_ADMIN_USERNAME=admin \
 --env PING_DB_ADMIN_PASSWORD=Passw0rd \
 --env PING_DB_APP_USERNAME=app \
 --env PING_DB_APP_PASSWORD=S3cret \
 pingidentity/pingauthorizepap

Docker: Changing database credentials
When your Docker container uses /opt to store the policy database on a separate volume, you can
change the database credentials.

About this task
Given that you are changing the credentials, you already have a Docker container running with a mounted
volume.

Steps

1. Stop the Docker container.

2. Start the Docker container. In the docker run command, specify the desired following environment
variables using the --env command-line option:

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

Also specify -p, -d, --env-file, --volumes-from, and --env PING_H2_FILE.

Example
For example, if you have a container named pap with a mounted volume as shown in the example in
Deploying PingAuthorize Policy Editor using Docker on page 86, the following command changes the
credentials for the admin and application accounts from their default values to admin / Passw0rd and app
/ S3cret, respectively.

 Note:
For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network_type> <network_name>, and then connect to that
network with the --network=<network_name> option.

docker run --network=<network_name> -p 443:1443 -d \
 --env-file ~/.pingidentity/config \
 --volumes-from pap \
 --env PING_DB_ADMIN_USERNAME=admin \
 --env PING_DB_ADMIN_PASSWORD=Passw0rd \
 --env PING_DB_APP_USERNAME=app \
 --env PING_DB_APP_PASSWORD=S3cret \
 --env PING_H2_FILE=/opt/out/Symphonic \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 255

 pingidentity/pingauthorizepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingauthorize).

Configuring SpEL Java classes for value processing
When you develop policies, you can use value processing to manipulate data that comes from attributes
and services. One value processing option is to use the Spring Expression Language (SpEL). Because
SpEL is so powerful, you might want to configure the Java classes available through SpEL to limit what
users can do with it.

About this task

Use the optional AttributeProcessing.SpEL.AllowedClasses parameter in the core section of
the options file to limit the Java classes available through SpEL.

 Note:

These instructions are for configuring SpEL Java classes for use in the Policy Editor. When using
embedded PDP mode, you must add Java classes to the SpEL Allowed Class list to use them in
deployment packages. See Adding SpEL Java classes to the allowed list.

Steps

1. Make a copy of the default options file.

Example:

$ cp config/options.yml my-options.yml

2. Edit the new options file and define AttributeProcessing.SpEL.AllowedClasses in the core
section.

By default, the AttributeProcessing.SpEL.AllowedClasses parameter is not in the options
file.

If AttributeProcessing.SpEL.AllowedClasses is not in the options file, all classes except
those in the fixed deny-list are available. The deny-list consists of classes in these packages:

java.lang.*
org.springframework.expression.spel.*

 Note:
The java.lang.* classes in deny-list exclude those in the allow-list defined next.

If AttributeProcessing.SpEL.AllowedClasses is in the options file without a value, only
classes in the fixed allow-list are available. The allow-list consists of these classes:

java.lang.String
java.util.Date
java.util.UUID
java.lang.Integer
java.lang.Long
java.lang.Double
java.lang.Byte
java.lang.Math
java.lang.Boolean
java.time.LocalDate

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorize

PingAuthorize | PingAuthorize Server Administration Guide | 256

java.time.LocalTime
java.time.LocalDateTime
java.time.ZonedDateTime
java.time.DayOfWeek
java.time.Instant
java.time.temporal.ChronoUnit
java.text.SimpleDateFormat
java.util.Collections
com.symphonicsoft.spelfunctions.RequestUtilsKt

If AttributeProcessing.SpEL.AllowedClasses is in the options file with a value, all classes in
allow-list and in the value are available. Consider the following example.

...
core:
 AttributeProcessing.SpEL.AllowedClasses:
 "java.time.format.DateTimeFormatter,java.net.URLEncoder"
...

That setting makes the classes in allow-list available in addition to making the
DataTimeFormatter and URLEncoder classes available.

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

Example:

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret <shared-secret> \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

Example:

$ bin/start-server

Setting the request list length for Decision Visualizer
In the PingAuthorize Policy Editor, you can select Policies, Decision Visualizer, and then Recent
Decisions to view graphs of recent decisions, the times the requests were made, and the decision
outcomes. The requests do not include test requests.

About this task

The RecentRequest.buffer.size parameter in the configuration file determines the number of recent
decisions to choose from. To configure the Policy Editor to use a different value for this parameter, re-run
the setup tool using an options file to generate a new configuration, as shown in the following steps.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 257

Steps

1. Make a copy of the default options file.

Example:

$ cp config/options.yml my-options.yml

2. Edit the new options file and define RecentRequest.buffer.size in the core section.

By default, the number of recent decisions is 20.

 Warning:
Setting a buffer size greater than 20 can cause serious performance degradation.

To disable the feature, set the value to 0.

Example:

core:
 RecentRequest.buffer.size: 10
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

Example:

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret <shared-secret> \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

Example:

$ bin/start-server

HTTP caching
The Policy Editor transfers data through HTTP APIs.

To improve page loading speeds, the Policy Editor uses HTTP headers to cache the API responses for the
following URLs:

▪ /app/trust-framework/*
▪ /app/policy-manager/*
▪ /app/test-suite/*

HTTP caching is enabled by default.

 Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 258

When hosting the Policy Editor using a self-signed SSL certificate, browsers like Google Chrome and
Microsoft Edge don't include the caching HTTP headers. Customers with such deployments can use a
different browser, such as Mozilla Firefox, to observe the performance benefits.

You can disable HTTP caching persistently by providing the --disableApiHttpCache option when
running setup. Caching remains disabled for future server starts and stops. The following example
illustrates this option:

bin/setup demo \
--disableApiHttpCache \
--adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret 2FederateM0re \
--hostname example.com \
--port 9443 \
--adminPort 9444

To disable HTTP caching for a single server start, provide the PING_ENABLE_API_HTTP_CACHE=false
environment variable when running start-server, as illustrated in the following example:

env PING_ENABLE_API_HTTP_CACHE=false bin/start-server

 Note:

To temporarily re-enable HTTP caching after using the –-disableApiHttpCacheoption, provide the
PING_ENABLE_API_HTTP_CACHE=true environment variable when running start-server.

To persistently re-enable HTTP caching after using the --disableApiHttpCacheoption, delete the
setup output (the configuration.yml file and key stores generated during setup). Then, reconfigure
the server by running setup.

Policy administration
You define policies for access-control using the PingAuthorize Policy Editor.

This section covers strategies for policy development and techniques to create environment-specific Trust
Framework attributes to use in your policies.

About the Trust Framework
The Trust Framework defines all the entities that your organization can use to build policies. These entities
include, for example, the HTTP request attributes that describe API requests protected by PingAuthorize
Server and the services that identify the REST APIs themselves.

To understand how PingAuthorize Server uses the Trust Framework, you must understand how
PingAuthorize Server interacts with its policy engine, also called the policy decision point (PDP). In
general, the flow is:

1. PingAuthorize Server receives a SCIM 2.0 or API request and translates it to a policy request.
2. PingAuthorize Server submits the policy request to the PDP for evaluation.
3. The PDP applies any matching policies to the policy request and then issues a policy decision.
4. PingAuthorize Server uses the policy decision to determine how to proceed with the request,

depending on the decision result (typically PERMIT or DENY) and any advices included with the
decision.

Consider these simple examples.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 259

▪ A policy decision with a DENY result could cause PingAuthorize Server to reject a request because it
originates from an untrusted IP address.

▪ A policy decision with the Exclude Attributes advice could cause PingAuthorize Server to remove
specific attributes from an API response because the requesting user lacks a necessary entitlement.

Each policy request that PingAuthorize Server generates includes a specific set of attributes. These
attributes vary based on the service being used. For more information, see the following topics:

▪ API security gateway policy requests on page 169
▪ Sideband API policy requests on page 183
▪ SCIM policy requests on page 197

Policy request structure is tightly coupled to the Trust Framework. If the Trust Framework entity definitions
do not match the policy requests generated by PingAuthorize Server, then PingAuthorize Server
does not function as expected. For this reason, your Trust Framework should always be based on
the default policies included with the server installation package in the file resource/policies/
defaultPolicies.SNAPSHOT.

For information about working with the Trust Framework to customize your organization's policies, see
Trust Framework on page 411.

Trust Framework versions

The policy request structure used by PingAuthorize Server is versioned so that it can evolve across
releases of the server. You configure the version in the Policy Decision Service using the trust-
framework-version property. PingAuthorize Server always supports a minimum of two Trust
Framework versions, the current (and preferred) Trust Framework version and the previous Trust
Framework version.

When an instance of PingAuthorize Server is first installed, the Trust Framework version is undefined. The
server raises an alarm to indicate this condition and to provide instructions about how to set the preferred
version.

You should explicitly set the version to the preferred version. For example, the following dsconfig
command configures the Policy Decision Service to form policy requests using Trust Framework version
v2.

dsconfig set-policy-decision-service-prop \
 --set trust-framework-version:v2

 Tip:
When the Trust Framework version is set, add the configuration to the server profile that you use to deploy
new server instances.

New releases of PingAuthorize Server might introduce changes to the way that the server generates policy
requests, potentially in ways that are not backward-compatible with the Trust Framework and policies used
in a previous release. In these cases, PingAuthorize Server will prefer the new Trust Framework version
and raises an alarm with instructions to move to the new Trust Framework version. Existing policies will
continue to work with the older Trust Framework version. However, the older Trust Framework version will
be deprecated, so transitioning to the new Trust Framework version is imperative.

For more information about upgrading the Trust Framework version, see Upgrading the Trust Framework
and policies on page 136.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 260

Create policies in a development environment
During policy development, configure PingAuthorize Server in external PDP mode where PingAuthorize
Server forwards all policy requests to the Policy Editor, which acts as PingAuthorize Server’s policy
decision point (PDP).

Any policy changes made while using external PDP mode immediately take effect, allowing for rapid
development and troubleshooting.

Develop policies in the PingAuthorize Policy Editor. To get started, see Getting started with PingAuthorize
(tutorials) on page 17 or Loading a policy snapshot on page 264.

 Note:

PingAuthorize Server does not function as expected without many of the Trust Framework entities defined
by the defaultPolicies.SNAPSHOT file bundled with PingAuthorize Server. When developing new
policies, begin by importing this snapshot and using it as the basis for your own customizations.

Configuring external PDP mode
To configure PingAuthorize Server to use external PDP mode, use the administrative console or
dsconfig to create a Policy External Server to represent the Policy Editor, then assign the Policy External
Server to the Policy Decision Service and set the PDP mode.

Before you begin

You need the following values to configure PingAuthorizeServer to use external PDP mode:

▪ The shared secret, which is chosen or generated when you install the Policy Editor.
▪ The branch name, which corresponds to the policy branch you want to evaluate requests against in

the Policy Editor.
▪ The decision node, which is the ID of a node in the policy tree that will be considered first during policy

processing. To find the decision node value:

1. In the Policy Editor, go to Policies.
2. Select the node that you want to use as the root node.

This is typically the top-level node of your policy tree.
3. Click the hamburger menu and select Copy ID to clipboard.

Configuring external PDP mode using the administrative console

Steps

1. In the PingAuthorize administrative console, go to Configuration # Data Sources # External
Servers.

2. Click New External Server and select Policy External Server from the drop-down menu.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 261

3. In the New Policy External Server window, specify the following information:

▪ Name
▪ Base URL
▪ Shared Secret
▪ Decision Node
▪ Branch

4. Click Save.

5. Go to Authorization and Policies # Policy Decision Service.

6. In the PDP Mode list, select external.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 262

7. In the Policy Server list, select the name you gave to the policy external server in step 3.

8. Click Save To PingAuthorize Server Cluster.

Configuring external PDP mode using dsconfig

Steps

▪ Use the dsconfig commands in the following code block to configure external PDP mode:

dsconfig create-external-server \
 --server-name "Policy Editor" \
 --type policy \
 --set "base-url:https://<pap-hostname>:<pap-port>" \
 --set "shared-secret:pingauthorize" \
 --set "branch:Default Policies" \
 --set "decision-node:<your decision node ID value>"

dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:Policy Editor"

Changing the active policy branch
The PingAuthorize Policy Editor can manage multiple sets of Trust Framework attributes and policies by
storing data sets in different branches.

About this task

In a development environment, you might need to quickly reconfigure PingAuthorize Server between policy
branches.

Steps

1. To set up branch changes, you must first define a Policy External Server configuration for each
branch.

2. Change the Policy Decision Service’s policy-server property as needed.

Example:

Assume that you have two policy branches in the Policy Editor: Stable Policies and
Experimental Policies. Each branch is represented in the PingAuthorize Server configuration
as a Policy External Server. During testing, you can switch back and forth between branches by
updating the Policy Decision Service’s policy-server property. To change to the Experimental
Policies branch, run this command:

dsconfig set-policy-decision-service-prop \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 263

 --set "policy-server:Experimental Policies"

To change back to the Stable Policies branch, run this command:

dsconfig set-policy-decision-service-prop \
 --set "policy-server:Stable Policies"

Default and example policies
A policy snapshot is a file that contains a complete Trust Framework and policy set.

A policy snapshot is also the data import format for a PingAuthorize Policy Editor. PingAuthorize includes a
number of default and example policy snapshot files in the resource/policies directory. The following
table describes the available snapshot files.

Snapshot filename Description

defaultPolicies.SNAPSHOT The default Trust Framework for PingAuthorize Server and a
minimal set of policies.

Always use this snapshot as the starting point for policy
development.

gatewayPolicyExample.SNAPSHOT An example policy set that demonstrates how to apply policies
to an external REST API using PingAuthorize Server as an API
security gateway.

Based on Getting started with PingAuthorize (tutorials) on page
17.

scimPolicyExample.SNAPSHOT An example policy set that demonstrates how to implement
access token-based access control using the SCIM 2 REST
API.

Based on Getting started with PingAuthorize (tutorials) on page
17.

Importing and exporting policies
PingAuthorize supports two import and export file formats for Trust Framework and policy data.

About this task

The following table describes the snapshot and deployment package formats.

Format Description

Snapshot Contains all Trust Framework and policy data for a policy branch in the Policy
Editor.

A snapshot is used to load data into the Policy Editor for development when
using external PDP mode.

Deployment package An optimized data format that contains all policies under a specified root policy
node and all Trust Framework entities used by those policies.

A deployment package is used to load data into the PingAuthorize Server when
using embedded PDP mode.

The following sections describe how to import and export these files from the Policy Editor.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 264

Loading a policy snapshot
To import a policy snapshot into the Policy Editor for policy development, complete the following steps.

About this task

To create a new policy branch with the Trust Framework and policies of the provided snapshot:

Steps

1. Go to the Branch Manager section.

2. Click the Version Control tab.

3. In the + menu, select Import Snapshot.

4. Select a snapshot file and provide a name for your policy branch.

5. Optional: Click Commit New Changes to commit the initial state of the policy branch.

Exporting a policy snapshot

About this task

To import a policy snapshot into a different Policy Editor or use it as the basis to create a deployment
package to be loaded in the PingAuthorize Server:

Steps

1. Go to the Branch Manager section.

2. Select the Version Control tab.

3. Choose the commit message corresponding to the version of the branch that you want to export and
click the icon in the Options column to the left of the commit message.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 265

4. Select Export Snapshot.

5. Provide a snapshot filename and click Export.

Result

The snapshot file is downloaded to your computer.

Publishing a deployment package to a deployment package store
To use the Deployment Manager feature, create a deployment package and publish it to a deployment
package store.

Before you begin

You must configure the Policy Editor to publish policies to your deployment package store using an options
file.

For more information, see Configuring the Policy Editor to publish policies to a deployment package store
on page 248.

About this task

To publish deployment packages to a deployment package store:

Steps

1. Export a snapshot.

For more information, see Exporting a policy snapshot on page 264.

2. Go to Branch Manager # Deployment Packages.

3. Click the + icon.

4. Enter a meaningful name for your deployment package.

5. In the Branch list, select a policy branch.

6. In the Commit list, select a commit.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 266

7. In the Policy Node list, select a policy node.

Example:

8. Click Create Package.

9. Click the Deployment Manager tab.

10. In the Deployments pane, select the deployment package store you want to publish the policies to.

11. In the Available Packages list, select the deployment package you want to publish to the deployment
package store.

12. Click Deploy.

Next steps

Add the deployment package store to the PingAuthorize Server for read access. Based on your
deployment package store configuration, add one of the following:

▪ Add a filesystem deployment package store.
▪ Add an Amazon S3 deployment package store.
▪ Add an Azure deployment package store.

Exporting a deployment package
When you have completed development and testing of your policies, you can export your Trust Framework
and policies to a deployment package for use in embedded PDP mode.

Steps

1. Export a snapshot.

See Exporting a policy snapshot on page 264.

2. Go to the Branch Manager section.

3. Click the Deployment Packages tab.

4. Click the + icon.

5. Enter a meaningful name for your deployment package.

6. In the Branch list, select a policy branch.

7. In the Commit list, select a commit.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 267

8. In the Policy Node list, select a policy node.

Example:

9. Click Create Package.

10. Click Export Package.

Result

The deployment package is downloaded to your computer.

Using the Deployment Manager
The Deployment Manager simplifies policy updates by enabling policy writers to deploy new policies to a
central deployment package store to be read by the PingAuthorize server running in embedded mode.

About this task

This process is two-fold:

▪ Policy writers use the Policy Editor to publish policies in a deployment package to a deployment
package store.

▪ Updated deployment packages are picked up by the PingAuthorize Policy Decision Service from the
deployment package store.

 Note:

You configure the interval that the server checks for updates in the store during setup.

This allows a policy writer to deploy new policies without the manual process of exporting a deployment
package that is then uploaded into the server through the administrative console.

The Deployment Manager can use deployment package stores that are based on:

▪ A directory in the filesystem
▪ An Amazon Simple Storage Service (Amazon S3) bucket
▪ Azure Blob storage

Package stores hold deployment packages in a central location that the Policy Editor publishes to and the
PingAuthorize server reads from.

To use the Deployment Manager:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 268

Steps

1. Define a deployment package store.

 Note:

▪ For a filesystem store, you must have a directory on the filesystem that the Policy Editor has read-
write access to.

▪ Amazon S3 buckets must be configured with a secret key and an access key for use.
▪ For Azure storage, you must set up an Azure storage account and a container. For later use,

record the Connection string value found in your account's Access key settings.

2. Use an options file to configure the Policy Editor to publish policies to a store.

3. Create and deploy deployment packages to the deployment package store.

4. Add the deployment package store for read access to the PingAuthorize Server:

a. Add a filesystem deployment package store.
b. Add an Amazon S3 deployment package store.
c. Add an Azure deployment package store,

5. Configure the Policy Decision Service to read from your deployment package store.

Adding a filesystem deployment package store
To use the Deployment Manager, add a deployment package store for read access to the PingAuthorize
server.

About this task

Use the administrative console or dsconfig to add the deployment package store.

Adding a new filesystem deployment package store using the administrative console

Steps

1. In the administrative console, go to Configuration # Authorization and Policies # Deployment
Package Stores.

2. Click New Deployment Package Store.

3. In the New Deployment Package Store list, select Filesystem Deployment Package Store.

4. Complete the General Configuration fields:

a. In the Name field, enter a name for the deployment package store.
b. In the Poll Interval field, enter a value in seconds for how often the directory should be polled for

changes.

 Note:

A value of 0 only updates on start-up.

c. In the Poll Directory field, enter the directory where the deployment package is stored locally.

5. Optional: Complete the Policy Security fields.

 Note:

If you select signed in the Deployment Package Security Level field, you must complete the
Deployment Package Trust Store field.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 269

6. Click Save To PingAuthorize Server Cluster.

Result:

Your filesystem deployment package store is displayed on the Deployment Package Stores page.

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding a new filesystem deployment package store using dsconfig

Steps

▪ Run dsconfig with the create-deployment-package-store option:
Choose from:

▪ Create a store with an unsigned deployment package.

dsconfig create-deployment-package-store \
 --store-name "<store-name>" \
 --type filesystem \
 --set "poll-interval:<poll-interval>" \
 --set "poll-directory:<filesystem-directory>"

▪ Create a store with deployment-package-security-level set to signed.

dsconfig create-deployment-package-store \
 --store-name "<store-name>" \
 --type filesystem \
 --set "poll-interval:<poll-interval>" \
 --set deployment-package-security-level:signed \
 --set "deployment-package-trust-store:<trust-store-provider-name>" \
 --set "deployment-package-verification-key-nickname:<key-nickname>"
 \
 --set "poll-directory:<filesystem-directory>"

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Amazon S3 deployment package store
To use the Deployment Manager, add a deployment package store for read access to the PingAuthorize
server.

About this task

Use the administrative console or dsconfig to add the deployment package store.

Adding an Amazon S3 deployment package store using the administrative console

Before you begin
You must set up an access key and accompanying secret key with your Amazon S3 bucket.

For information on setting up an access key and secret key, see your Amazon Web Services (AWS)
documentation.

Steps

1. In the administrative console, go to Configuration # Authorization and Policies # Deployment
Package Stores.

2. Click New Deployment Package Store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 270

3. In the New Deployment Package Store menu, select S3 Deployment Package Store.

4. Complete the General Configuration fields:

a. In the Name field, enter a name for the deployment package store.
b. In the Poll Interval field, enter a value in seconds for how often the Amazon S3 bucket should be

polled for changes.

 Note:

A value of 0 only updates on restart.

c. In the S3 Bucket Name field, enter the name of your Amazon S3 bucket as shown on your AWS
services page.

d. In the S3 Bucket Prefix field, enter your Amazon S3 bucket prefix.
e. In the S3 Server Endpoint field, enter your Amazon S3 bucket AWS endpoint.
f. In the S3 Region Name field, enter the AWS region for your S3 bucket.
g. Next to the S3 Access Key ID field, click Set Value and enter the S3 Access Key ID for your S3

bucket.
h. Enter the S3 Access Key ID value again to confirm and click OK.

 Note:

Your access key value is not displayed after you enter it. The page still displays Set Value.

i. Next to the S3 Secret Key field, click Set Value and enter the S3 Secret Key for your S3 bucket.
j. Enter the value again to confirm and click OK.

 Note:

Your secret key value is not displayed after you enter it. The page still displays Set Value.

5. Optional: Complete the Policy Security fields.

 Note:

If you select signed in the Deployment Package Security Level field, you must complete the
Deployment Package Trust Store field.

6. Click Save To PingAuthorize Server Cluster.

Result:

Your Amazon S3 deployment package store is displayed on the Deployment Package Stores page.

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Amazon S3 deployment package store using dsconfig

Steps

▪ Run dsconfig with the create-deployment-package-store option:
Choose from:

▪ Create a store with an unsigned deployment package.

dsconfig create-deployment-package-store \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 271

 --store-name "<store-name>" \
 --type s3 \
 --set "poll-interval: <poll-interval>" \
 --set "s3-bucket-name:<bucket-name>" \
 --set "s3-bucket-prefix:<bucket-prefix>" \
 --set "s3-server-endpoint:<server-endpoint>" \
 --set "s3-region-name:<region-name>" \
 --set "s3-access-key-id:<access-key-id>" \
 --set "s3-secret-key:<secret-key>"

▪ Create a store with deployment-package-security-level set to signed.

dsconfig create-deployment-package-store \
 --store-name "<store-name>" \
 --type s3 \
 --set "poll-interval: <poll-interval>" \
 --set deployment-package-security-level:signed \
 --set "deployment-package-trust-store:<trust-store-provider-name>"
 \
 --set "deployment-package-verification-key-nickname:<key-nickname>"
 \
 --set "s3-bucket-name:<bucket-name>" \
 --set "s3-bucket-prefix:<bucket-prefix>" \
 --set "s3-server-endpoint:<server-endpoint>" \
 --set "s3-region-name:<region-name>" \
 --set "s3-access-key-id:<access-key-id>" \
 --set "s3-secret-key:<secret-key>"

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Azure deployment package store
To use the Deployment Manager, add a deployment package store for read access to the PingAuthorize
server.

About this task

Use the administrative console or dsconfig to add the deployment package store.

Adding an Azure deployment package store using the administrative console

Before you begin

Set up your Azure storage account:

▪ If you don't already have an Azure storage account, create one.
▪ Add a container to your storage account.
▪ Record the Connection string value found in your account's Access key settings.

For information on setting up an Azure storage account, see your Azure Blob Storage documentation.

Steps

1. In the administrative console, go to Configuration # Authorization and Policies # Deployment
Package Stores.

2. Click New Deployment Package Store.

3. In the New Deployment Package Store menu, select Azure Deployment Package Store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 272

4. Complete the General Configuration fields.

a. In the Name field, enter a name for the deployment package store.
b. In the Poll Interval field, enter a value in seconds for how often the Azure store should be polled

for changes.

 Note:

A value of 0 only updates on restart.

c. In the Azure Blob Connection String field, enter the connection string shown in your Azure
storage account's Access key settings.

 Note:

Your connection string value is not displayed after you enter it. The page still displays Set Value.

d. In the Azure Blob Container field, enter the name of your container.
e. In the Azure Blob Prefix field, enter the prefix you defined for the deployment package store.

5. Optional: Complete the Policy Security fields.

 Note:

If you select signed in the Deployment Package Security Level field, you must complete the
Deployment Package Trust Store field.

6. Click Save To PingAuthorize Server Cluster.

Result:

Your Azure deployment package store is displayed on the Deployment Package Stores page.

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Azure deployment package store using dsconfig

Steps

▪ Run dsconfig with the create-deployment-package-store option:
Choose from:

▪ Create a store with an unsigned deployment package.

dsconfig create-deployment-package-store \
 --store-name "<store-name>" \
 --type azure \
 --set "poll-interval:<poll-interval>" \
 --set "azure-blob-connection-string:<blob-connection-string>" \
 --set "azure-blob-container:<blob-container>" \
 --set "azure-blob-prefix:<blob-prefix>"

▪ Create a store with deployment-package-security-level set to signed.

dsconfig create-deployment-package-store \
 --store-name "<store-name>" \
 --type azure \
 --set "poll-interval:<poll-interval>" \
 --set "azure-blob-connection-string:<blob-connection-string>" \
 --set "azure-blob-container:<blob-container>" \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 273

 --set "azure-blob-prefix:<blob-prefix>"
 --set deployment-package-security-level:signed \
 --set "deployment-package-trust-store:<trust-store-provider-name>"
 \
 --set "deployment-package-verification-key-nickname:<key-nickname>"

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Use policies in a production environment
You can configure PingAuthorize Server in embedded policy decision point (PDP) mode in preproduction
and production environments.

When configured to use embedded PDP mode, a policy file called a deployment package is used in
PingAuthorize Server’s internal policy engine, which then handles all policy requests. The deployment
package can be loaded into the server in two ways:

▪ The deployment package is deployed to a deployment package store, which is read by the internal
policy engine for updates at a configurable interval.

▪ The deployment package is exported from the Policy Editor and loaded into the internal policy engine
by an administrator.

Because embedded PDP mode does not require PingAuthorize Server to call out to an external server, it is
considerably more performant than external PDP mode. To facilitate rapid policy development, you should
use the Deployment Manager functionality that uses a deployment package store instead of the exported
deployment package method.

Configure embedded PDP mode

To configure PingAuthorize Server to use embedded PDP mode, set the PDP mode and assign to the
Policy Decision Service either:

▪ A deployment package store using the Deployment Manager functionality

 Note:

For more information on the deployment package store option and the requirements for the
Deployment Manager feature, see Using the Deployment Manager on page 267.

▪ An exported deployment package

 Note:

For more information, see Exporting a deployment package on page 266.

Configuring embedded PDP mode with a deployment package store

About this task

To assign a deployment package store to the Policy Decision Service and set the policy decision point
(PDP) mode to embedded:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 274

Steps

▪ Use dsconfig or the administrative console:
Choose from:

▪ Run dsconfig with the set-policy-decision-service-prop option.

dsconfig set-policy-decision-service-prop \
--set pdp-mode:embedded \
--set deployment-package-source-type:store \
--set deployment-package-store:<name of the store>

▪ Use the administrative console.

1. In the administrative console, go to Configuration # Authorization and Policies # Policy
Decision Service .

2. On the Edit Policy Decision Service page, complete the General Configurationfields.
3. In the Deployment Package Store Configuration section, in the Deployment Package

Store field, select your deployment package store.
4. In the Policy Request Configuration section, select a Trust Framework Version.
5. Click Save To PingAuthorize Server Cluster.

Configuring embedded PDP mode with an exported deployment package

About this task

To assign an exported deployment package to the Policy Decision Service and set the PDP mode:

Steps

▪ Run dsconfig with the set-policy-decision-service-prop option.

Example:

In this example, the deployment-package value is the full path to a deployment package file. To
create a deployment package for export, see Exporting a deployment package on page 266.

dsconfig set-policy-decision-service-prop \
 --set pdp-mode:embedded \
 --set "deployment-package</path/to/my-deployment-
package.deploymentpackage"

Example: Define policy configuration keys
A policy configuration key is an arbitrary key/value pair that you can reference by name in the policy Trust
Framework.

When using embedded PDP mode, policy configuration keys are stored in the PingAuthorize Server
configuration, and the server provides the policy configuration key values to the policy engine at runtime.
This allows the Trust Framework to refer to data such as hostnames and credentials without needing those
values to be hard-coded in the Trust Framework.

 Note:

Policy configuration key values are stored in encrypted form in the PingAuthorize Server configuration, so
they are suitable for storing sensitive values such as server credentials.

Use dsconfig or the administrative console to define policy configuration keys. If using the administrative
console, you can find policy configuration keys in the Policy Decision Service configuration.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 275

The following example shows how to create a policy configuration key named ConsentServiceBaseUri
with the value https://example.com/consent/v1.

dsconfig create-policy-configuration-key \
 --key-name ConsentServiceBaseUri \
 --set policy-configuration-value:https://example.com/consent/v1

To learn how to use a policy configuration key in the Trust Framework, see Environment-specific Trust
Framework attributes on page 283.

Example: Define a policy information provider key store for MTLS
The policy engine supports the use of PIPs to dynamically retrieve data from external services at runtime.
In these cases, the policy engine can use a client certificate contained in a Java KeyStore (JKS) or
PKCS12 key store.

When using embedded PDP mode, the key store containing the client certificate is represented in the
PingAuthorize Server configuration as a Key Manager Provider, which is then assigned to the Policy
Decision Service.

The following example creates a Key Manager Provider named MyClientCertKeystore and makes it
available to the policy engine.

dsconfig create-key-manager-provider \
 --provider-name MyClientCertKeystore \
 --type file-based \
 --set enabled:true \
 --set key-store-file:<full path to a key store> \
 --set key-store-type:JKS \
 --set key-store-pin:<key store password>
dsconfig set-policy-decision-service-prop \
 --set service-key-store:MyClientCertKeystore

When you define the PIP in the Trust Framework, you can refer to the key store that you configured, using
the name MyClientCertKeystore.

Example: Define a policy information provider trust store
For a policy information provider (PIP), you can use the Java Runtime Environment (JRE)'s default trust
store or you can provide a custom Java KeyStore (JKS) or PKCS12 trust store.

The policy engine supports the use of PIPs to dynamically retrieve data from external services at runtime.
By default, the policy engine determines whether it should accept a PIP's server certificate using the
Java Runtime Environment (JRE)'s default trust store, which contains public root certificates for common
certificate authorities. However, if your PIP uses a server certificate issued by some other certificate
authority, for example, a private certificate authority operated by your organization, then you can provide a
custom Java KeyStore (JKS) or PKCS12 trust store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 276

When using embedded PDP mode, the trust store containing the client certificate is represented in the
PingAuthorize Server configuration as a Trust Manager Provider, which is then assigned to the Policy
Decision Service.

The following example creates a Trust Manager Provider named MyCATruststore and makes it available
to the policy engine.

dsconfig create-trust-manager-provider \
 --provider-name MyCATruststore \
 --type file-based \
 --set enabled:true \
 --set trust-store-file:<full path to a trust store> \
 --set trust-store-type:JKS
dsconfig set-policy-decision-service-prop \
 --set service-trust-store:MyCATruststore

When you define the policy information provider in the Trust Framework, you can refer to the trust store
that you configured using the name MyCATruststore.

Example: Add SpEL Java classes to the allowed list
When you develop policies, you can use SpEL expressions in your deployment packages. Configure the
Java classes used during SpEL expression evaluation by adding classes to the allowed list.

When using embedded PDP mode, the policy engine allows use of the following classes by default.

java.lang.String
java.util.Date
java.util.UUID
java.lang.Integer
java.lang.Long
java.lang.Double
java.lang.Byte
java.lang.Math
java.lang.Boolean
java.time.LocalDate
java.time.LocalTime
java.time.LocalDateTime
java.time.ZonedDateTime
java.time.DayOfWeek
java.time.Instant
java.time.temporal.ChronoUnit
java.text.SimpleDateFormat
java.util.Collections

Use dsconfig or the administrative console to add non-standard classes to the allowed list. In the
administrative console, you can find SpEL allowed classes in the Policy Decision Service configuration.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 277

Example

The following example shows how to add the java.time.format.DateTimeFormatter and
java.util.Base64 classes to the allowed list. Run dsconfig with the set-policy-decision-
service-prop option.

dsconfig set-policy-decision-service-prop \
 --set spel-allowed-class:java.time.format.DateTimeFormatter \
 --set spel-allowed-class:java.util.Base64

 Important:

After you add non-standard classes to the allowed list, you must make them available on the server
classpath at server start.

For more information, see Adding non-standard Java classes to the server classpath.

Example: Add non-standard Java classes to the server classpath
After you add non-standard SpEL Java classes to the allowed list, you must make them available on the
server classpath at server start.

Example

The following example shows how to add .jar files containing the classes to the lib folder and restart
the server.

cd <paz-instance-root>
cp <jar-file-dir>/addl-spel-classes.jar lib
bin/stop-server -R

Policy database backups
The PingAuthorize Policy Editor uses a policy database to store its Trust Framework, policies, commit
history, and other data needed for proper operation.

By default, the Policy Editor backs up the policy database to a compressed file once a day by making an
HTTP request to an admin connector. You can configure the admin port, backup schedule, and output
location.

 Note:

If you are using a managed RDBMS, such as PostgreSQL, instead of the default H2 database, make sure
you implement backup strategies in line with your organization's best practices.

Configure or disable backup

To change the backup configuration, you can:

▪ Set the relevant environment variables and restart the Policy Editor.
▪ Run the Policy Editor setup tool with the relevant command-line options.

The following table describes the relevant environment variables and command-line options.

For more information about using the environment variables, see Starting PingAuthorize Policy Editor on
page 162.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 278

Environment variable Command-line option Description

PING_ADMIN_PORT --adminPort <port> Specifies the admin port, where
administrative task endpoints like
periodic policy database backups
are handled.

PING_BACKUP_SCHEDULE --backupSchedule <cron-
expression>

Specifies a cron expression
to indicate when to perform
backups.

The default is 0 0 0 * * ?,
which is midnight every day.

For more information, see Quartz
2.3.0 cron format.

 Note:

The PAP evaluates the
expression against the system
timezone. For the PingAuthorize
Docker images, the default
timezone is UTC.

PING_H2_BACKUP_DIR N / A Specifies the directory in which
to place the policy H2 database
backup files.

The default is SERVER_ROOT/
policy-backup.

 Note:

If you are using a Docker image,
set this value to a directory on a
volume that you mount when you
start the Docker container.

N / A --disablePeriodicBackups Turns off the periodic policy
database backups.

For information about how to use a backup, see Restoring a policy database from a backup on page 278.

Restoring a policy database from a backup
The policy database stores PingAuthorize Policy Editor items such as the Trust Framework, policies, and
commit history. If someone accidentally deletes or changes those items or the database gets corrupted,
restore the database from a backup.

For information about how to configure backups, see Policy database backups on page 277.

 Note:

Copyright ©2024

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format

PingAuthorize | PingAuthorize Server Administration Guide | 279

If you are using a managed RDBMS, such as PostgreSQL, instead of the default H2 database, make sure
you implement backup strategies in line with your organization's best practices.

Restoring a database when not using Docker

About this task

To restore a policy database when not in a Docker environment:

Steps

1. Ensure the Policy Editor server is no longer running by either using bin/stop-server or killing the
process.

2. Locate the backup .zip file that you want to restore.

The default location is SERVER_ROOT/policy-backup. However, the location might have been
changed using the PING_H2_BACKUP_DIR environment variable.

3. Extract the .zip file to the configured database location overwriting the previous policy database file,
if present.

The default location is the root of the Policy Editor server installation directory. If it's not there, check
the location specified by the PING_H2_FILE environment variable.

4. Start the Policy Editor server.

$ bin/start-server

Restoring a database when using Docker

About this task

To restore a policy database in a Docker environment:

Steps

1. Locate the backup .zip file that you want to restore.

The location should be a directory specified using the PING_H2_BACKUP_DIR environment variable,
as mentioned in Policy database backups on page 277.

2. Extract the .zip file to the database location that you will specify using the PING_H2_FILE
environment variable when you start the Docker container.

3. Start the Docker container with a mounted volume that has the extracted backup file and use
PING_H2_FILE to specify that backup file in the container file system.

For example, the following command assumes the uncompressed database file is named
Symphonic.mv.db in the host file system. The PING_H2_FILE environment variable specifies the
file name without the .mv.db extension.

$ docker run --network=<network_name> --env-file ~/.pingidentity/config \
 --env PING_H2_FILE=/opt/out/Symphonic \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 280

 --volume <HOST_BACKUP_DIR>:/opt/out pingidentity/pingauthorizepap:<TAG>

 Tip:

For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network_type> <network_name>, and then connect to
that network with the --network=<network_name> option.

 Note:

The Docker image <TAG> used in the example is only a placeholder.For actual tag values, see
Docker Hub.

Policy application management with signed deployment packages
Signed deployment packages ensure a PingAuthorize Server uses only deployment packages from a
certain PingAuthorize Policy Editor, allowing you to avoid the use of packages intended for a different
context or to use packages from only a designated source.

Use case: Distinct PingAuthorize deployments

Consider an organization with two distinct PingAuthorize deployments: healthcare and banking. Each
deployment has a unique set of policies. Using the healthcare policies for the banking deployment, or vice
versa, would make the deployment ineffective. Signed deployment packages avoid this issue. To set up
signed deployment packages for these two deployments, the steps are outlined next.

1. Set up the healthcare configuration.

a. Create a signing key pair with a private key and a public key for healthcare.
b. Set up a Policy Editor to create all healthcare policies. Configure that GUI to sign its deployment

packages with the healthcare private key.
c. Configure the healthcare PingAuthorize Server to use the healthcare public key to verify

deployment packages. Now the healthcare deployment only accepts healthcare policies and does
not accept banking policies.

2. Set up the banking configuration.

a. Create a signing key pair with a private key and a public key for banking.
b. Set up a Policy Editor to create all banking policies. Configure that GUI to sign its deployment

packages with the banking private key.
c. Configure the banking PingAuthorize Server to use the banking public key to verify deployment

packages. Now the banking deployment only accepts banking policies and does not accept
healthcare policies.

Use case: Designated source for deployment packages

An organization has several people who write policies. Each policy writer has their own Policy Editor to
develop and test policies. However, to ensure the organization fully verifies each deployment package
before it goes into preproduction or production, only one Policy Editor can actually sign deployment
packages with the key accepted by the PingAuthorize Server.

Example: Configure signed deployment packages for healthcare
In this example, you configure a PingAuthorize Policy Editor to sign its deployment packages for a
PingAuthorize Server dedicated to healthcare policies.

 Note:

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorize

PingAuthorize | PingAuthorize Server Administration Guide | 281

This example uses the manage-certificates tool that comes with PingAuthorize. The tool provides
many of the same features as the Java keytool utility but can be easier to use. If you prefer to use
keytool, use manage-certificates --display-keytool-command to show a command you can
use to obtain a similar result with keytool.

1. Generate a signing key pair for the Policy Editor.

Create a key pair consisting of a private key and the corresponding public key. Put the key pair in
a key store so that the Policy Editor can use it. The following command accomplishes both of these
goals by generating a key store with a self-signed certificate.

$ manage-certificates generate-self-signed-certificate \
 --keystore "healthcare-pap-signing.jks" \
 --keystore-type jks \
 --keystore-password "<keystore-password>" \
 --private-key-password "<private-key-password>" \
 --alias "healthcare-pap" \
 --subject-dn "cn=Healthcare PAP,dc=example,dc=com" \
 --days-valid 90

▪ This command creates a key store with the filename healthcare-pap-signing.jks. The
Policy Editor uses this to sign deployment packages.

▪ The key store contains the Policy Editor's private signing key and the corresponding public key.
▪ The key store itself has the password <keystore-password>.
▪ The private key itself also has a password, <private-key-password>.
▪ The signing key pair has the nickname/alias healthcare-pap.
▪ The subject DN is arbitrary.
▪ The keys are valid for 90 days.
▪ This key store is a sensitive asset that you should carefully protect.

2. Export a public certificate from the Policy Editor's key store.

$ manage-certificates export-certificate \
 --keystore "healthcare-pap-signing.jks" \
 --keystore-password "<keystore-password>" \
 --alias "healthcare-pap" \
 --export-certificate-chain \
 --output-format pem \
 --output-file "healthcare-pap.pem"

▪ This command creates a public certificate file with the filename healthcare-pap.pem.
▪ The public certificate file is an input during the next step. It is not used directly by either the Policy

Editor or PingAuthorize Server.
▪ This public certificate represents the public key created in the previous step.

 Note:

The alias is used to specify the key.

▪ This public certificate is not a sensitive asset.
3. Create a trust store for PingAuthorize Server for the public certificate from the previous step.

$ manage-certificates import-certificate \
 --keystore "healthcare-pap-verification.jks" \
 --keystore-password "<keystore-password>" \
 --keystore-type jks \
 --alias "healthcare-pap" \
 --certificate-file "healthcare-pap.pem" \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 282

 --no-prompt

▪ This command creates a trust store with the filename healthcare-pap-verification.jks.
PingAuthorize Server uses this to verify that deployment packages created by the Policy Editor
were actually created by that GUI.

▪ The trust store contains the Policy Editor's public certificate.
▪ The trust store itself has the password <truststore-password>.
▪ This trust store is not a sensitive asset.

4. Configure the Policy Editor to use the key store to sign the deployment packages it creates.

a. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

b. Edit the new options file to include a configuration block like the following one, substituting your
passwords and other values. Place this new block at the top level, parallel to the core block,
either before or after it.

deploymentPackageData:
 contentType: json
 keystore:
 resource: /path/to/healthcare-pap-signing.jks
 password: keystore-password
 securityLevel: signed
 signingKey:
 alias: healthcare-pap
 password: private-key-password

c. Stop the Policy Editor.

$ bin/stop-server

d. Run setup using the --optionsFile my-options.yml argument. Customize all other
options as appropriate for your needs.

e. Start the Policy Editor.

$ bin/start-server

5. Configure the PingAuthorize Server to use the trust store for verification so that it accepts only
deployment packages created by this Policy Editor.

a. Create a trust manager provider, which is how the PingAuthorize Server configuration refers to a
trust store file. Include the path to the trust store file and the trust store's password.

$ dsconfig create-trust-manager-provider \
 --provider-name "Healthcare PAP Verification Store" \
 --type file-based \
 --set enabled:true \
 --set "trust-store-file:/path/to/healthcare-pap-verification.jks" \
 --set trust-store-type:JKS \
 --set "trust-store-pin:<truststore-password>"

b. Configure the policy decision service.

$ dsconfig set-policy-decision-service-prop \
 --set pdp-mode:embedded \
 --set "deployment-package</path/to/deployment-package.deploymentpackage" \
 --set deployment-package-security-level:signed \
 --set "deployment-package-trust-store:Healthcare PAP Verification Store" \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 283

 --set "deployment-package-verification-key-nickname:healthcare-pap"

Deployment packages are only for the embedded PDP mode, so this command sets the pdp-
mode property accordingly. The other properties are described in the following table.

Property Description

deployment-
package-
security-level

Determines whether PingAuthorize Server require a deployment
package to be signed.

Valid values are:

▪ unsigned (the default)

PingAuthorize Server does not check a deployment package for a
trusted signature.

▪ signed

PingAuthorize Server checks a deployment package for a trusted
signature and rejects a deployment package that fails that check.

Whenever a deployment package fails a check, PingAuthorize
Server continues to use the last accepted deployment package.

deployment-
package-trust-
store

Specifies a trust manager provider, which specifies in turn a trust store
containing a Policy Editor's public certificate.

This property is required if deployment-package-security-level
is signed.

deployment-
package-
verification-
key-nickname

Specifies the nickname or alias of the Policy Editor's public certificate.

This property is required if deployment-package-security-level
is signed.

 Note:

For more information about the properties, see the Configuration Reference located in the server's
docs/config-guide directory.

Environment-specific Trust Framework attributes
With dynamic authorization, policies must be able to retrieve attributes frequently from policy information
providers (PIPs) at runtime.

The services and datastores from which additional policy information is retrieved range from development
and testing environments to preproduction and production environments.

For example, you might use a Trust Framework service to retrieve a user's consent from the PingDirectory
Consent API. This service depends on the URL of the Consent API, the username and password that are
used for authentication, and other items that vary between development, preproduction, and production
environments.

About policy configuration keys

To avoid hard-coding values such as URLs, usernames, or passwords, Trust Framework attributes can
refer to policy configuration keys, which are key/value pairs defined outside of the Trust Framework and
provided to the policy engine at runtime.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 284

To define a Trust Framework attribute that uses a policy configuration key, configure the attribute with a
Configuration Key resolver and the name of the policy configuration key.

For example, in the following image, an attribute called ConsentServiceBaseUri is configured to use a
policy configuration key called ConsentBaseUri.

The means by which policy configuration keys are provided to the policy engine differ based on whether
the PingAuthorize Server is configured to use external PDP mode or embedded PDP mode, as shown in
the following table.

Mode Where to define policy configuration keys

External PDP mode An options file and run the Policy Editor’s setup tool.

See Example: Configure policy configuration keys on page 239.

Embedded PDP mode The PingAuthorize Server configuration.

See Example: Define policy configuration keys on page 274.

Example
In this example, you define a policy information provider (PIP) in the Trust Framework so that various
properties needed to connect to the PIP can be changed from those needed for a development
environment to those needed for a preproduction environment.

You can complete the PIP definition without needing to update the Trust Framework.

Define a policy information provider for the PingDirectory Consent API that uses the following policy
configuration keys:

Policy configuration key Description

ConsentBaseUri The base URL to use when making requests to the Consent API.

ConsentUsername The username for a privileged Consent API account.

ConsentPassword The password for a privileged Consent API account.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 285

Define the policy information provider in the Trust Framework
Complete the following steps to define the policy information provider (PIP).

Steps

1. Define an attribute in the Trust Framework for the Consent API’s base HTTPS URL.

a. Go to Trust Framework and then click Attributes.
b. Add a new attribute.

1. Name the attribute ConsentServiceBaseUri.
2. Add a resolver.
3. Set the Resolver type to Configuration Key.
4. Set the Resolver value to ConsentBaseUri.
5. Save the attribute.

The following image shows the attribute configuration.

2. Repeat the previous steps for ConsentUsername and ConsentPassword.

Result:

When complete, you should have defined the following attributes.

Attribute name Policy configuration key name

ConsentServiceBaseUri ConsentBaseUri

ConsentServiceUsername ConsentUsername

ConsentServicePassword ConsentPassword

 Note:

Both the attribute names and the policy configuration key names that you use are arbitrary, and
you can use any names that you like. For the sake of this example, attribute names do not match
configuration key names, but they do not need to differ.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 286

3. Define the policy information provider using the attributes that you just defined.

a. Go to Trust Framework and then Services.
b. Add a new service.

1. Name the service Consent API.
2. Leave the Parent value blank. If a value is already present, clear it.
3. Set Service Type to HTTP.
4. Set the URL to {{ConsentServiceBaseUri}}/consents?

subject={{HttpRequest.AccessToken.subject}}.
5. Set Authentication to Basic.
6. For Username, select the attribute ConsentServiceUsername.
7. For Password, select the attribute ConsentServicePassword.

c. Save the new service.

The following image shows the attributes being used.

Result:

You can use the new Consent API policy information provider to build policies.

Define policy configuration keys in a development environment
Before you can use any policies that you developed with the Consent API policy information provider (PIP),
you must configure the Policy Editor to provide values for the PIP’s base URL, username, and password.

About this task

To configure the Policy Editor to provide these values, re-run the setup tool using an options file to
generate a new configuration, as shown in the following steps.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 287

Steps

1. Make a copy of the default options file.

Example:

$ cp config/options.yml my-options.yml

2. Edit the new options file and define the policy configuration keys in the core section.

Example:

core:
 ConsentBaseUri: https://consent-us-east.example.com/consent/v1
 ConsentUsername: cn=consent admin
 ConsentPassword: Passw0rd123
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

Example:

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret pingauthorize \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Editor.

Example:

$ bin/start-server

Define policy configuration keys in a preproduction environment
Do not use the Policy Editor in a pre-production or production environment. Define policy configuration
keys in the PingAuthorize Server configuration.

About this task

To define policy configuration keys, use either dsconfig or the administrative console, as shown in the
following steps.

Steps

1. In the administrative console, under Authorization and Policies, click Policy Decision Service.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 288

2. Click New Policy Configuration Key.

a. For Name, enter ConsentBaseUri.
b. For Policy Configuration Value, type the base URI. For example, https://consent-us-

east.example.com/consent/v1.

The following image shows the window.

3. Save the policy configuration key.

4. Repeat the previous steps for the policy configuration keys ConsentUsername and
ConsentPassword.

User profile availability in policies
In a policy, you might need to make a decision based on something about the requesting identity, meaning
the access token subject or token owner. PingAuthorize can automatically look up the token owner's
attributes and provide them in the policy request using a token resource lookup method.

Token resource lookup methods

PingAuthorize provides built-in support for retrieving token owner data using SCIM token resource lookup
methods on page 299. Using a SCIM token resource lookup method requires a SCIM resource type to
be configured, along with its prerequisite configuration objects. For information about SCIM configuration,
such as SCIM resource types, store adapters, load-balancing algorithms, and LDAP external servers, see
SCIM configuration basics on page 193.

For examples that show how to set up a token resource lookup method, see:

▪ Configuring the PingAuthorize OAuth subject search on page 360
▪ Sideband access token validation on page 190
▪ SCIM token resource lookup methods on page 299

User profile data from access tokens

When processing an incoming HTTP request, PingAuthorize Server invokes any applicable access token
validators to parse the request's access token. If an access token validator successfully validates the
access token, it then invokes any related token resource lookup methods. If a token resource lookup
method succeeds in retrieving the attributes for the token owner, then PingAuthorize Server includes a
TokenOwner attribute with the policy request. The contents of the TokenOwner attribute are a JSON
object containing the user profile.

The exact structure of the TokenOwner attribute varies from deployment to deployment. When using a
SCIM token resource lookup method, the contents of the TokenOwner attribute are a SCIM resource
using the schema of the SCIM resource type configured for the token resource lookup method, exactly as
if the resource had been retrieved via an HTTP GET without policy restrictions. For example, for a pass-

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 289

through SCIM resource type for the LDAP inetOrgPerson object class, a TokenOwner value might look
like the following.

{
 "cn": [
 "Mark E. Smith"
],
 "employeeNumber": "1",
 "entryDN": "uid=mark.e.smith,ou=people,dc=example,dc=com",
 "entryUUID": "8ac3d8b5-4f17-33fa-a4b4-854599ed9a89",
 "givenName": [
 "Mark"
],
 "id": "8ac3d8b5-4f17-33fa-a4b4-854599ed9a89",
 "initials": [
 "MES"
],
 "l": [
 "Manchester"
],
 "mail": [
 "mark.e.smith@example.com"
],
 "meta": {
 "location": "https://example.com/scim/v2/Users/8ac3d8b5-4f17-33fa-
a4b4-854599ed9a89",
"resourceType": "Users"
 },
 "mobile": [
 "+44 161 872 37676"
],
 "modifyTimestamp": "2020-06-03T03:56:54.168Z",
 "objectClass": [
 "top",
 "person",
 "organizationalPerson",
 "inetOrgPerson"
],
 "schemas": [
 "urn:pingidentity:schemas:store:2.0:UserStoreAdapter"
],
 "sn": [
 "Smith"
],
 "uid": [
 "mark.e.smith"
]
}

The default Trust Framework includes a TokenOwner attribute as an empty JSON object. If you need
to use a user profile attribute from a policy, add the attribute as a child of TokenOwner in the Trust
Framework.

For example, the SCIM user profile shown above uses the mail attribute to store a user's email
addresses. To make policy decisions involving the token owner's email address, you can add an Emails
attribute under TokenOwner in the PingAuthorize Policy Editor, as shown in the following Trust Framework
image.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 290

Access token validators
Access token validators verify the tokens that client applications submit when they request access to
protected resources.

Specifically, access token validators translate an access token into a data structure that constitutes part of
the input for policy processing.

To authenticate to PingAuthorize Server's HTTP services, clients use OAuth 2 bearer token authentication
to present an access token in the HTTP Authorization Request header. To process the incoming access
tokens, PingAuthorize Server uses access token validators, which determine whether to accept an access
token and translate it into a set of properties, called claims.

Most access tokens identify a user, also called the token owner, as its subject. Access token validators can
retrieve the token owner's attributes from the user store using a related component called a token resource
lookup method. The user data obtained by a token resource lookup method is sent to the policy decision
point (PDP) so that policies can determine whether to authorize the request.

For more information about the types of access tokens PingAuthorize can validate, see Access token
validator types on page 292.

Copyright ©2024

https://tools.ietf.org/html/rfc6750

PingAuthorize | PingAuthorize Server Administration Guide | 291

About access token validator processing

Each access token validator possesses an evaluation order index, an integer that determines its
processing priority. Lower values are processed before higher values.

The following image shows the validation process when using an access token validator with the System
for Cross-domain Identity Management (SCIM) token resource lookup method.

1. If an incoming HTTP request contains an access token, the token is sent to the access token validator
with the lowest evaluation order index.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 292

2. The access token validator validates the access token.

Validation logic varies by access token validator type, but the validator generally verifies the following
information:

▪ A trusted source issued the token.
▪ The token is not expired.

If the token is valid, its active flag is set to true. The flag and other access token claims are added
to the HttpRequest.AccessToken attribute of the policy request.

3. If the access token contains a subject, the access token validator sets the user_token flag to true,
and uses a token resource lookup method to fetch the token owner through SCIM.

A token resource lookup defines a SCIM filter that locates the token owner. If the lookup succeeds, the
resulting SCIM object is added to the policy request as the TokenOwner attribute.

 Note:

For deployments that don't use SCIM, token owner attributes can be retrieved from other user store
types by writing a token resource lookup method extension with the Server SDK. For more information,
see User profile availability in policies on page 288.

4. If the access token validator is unable to validate the access token, it passes the token to the access
token validator with the next lowest evaluation order index, and the previous two steps are repeated.

5. HTTP request processing continues, and the policy request is sent to the policy decision point (PDP).
6. Policies inspect the HttpRequest.AccessToken and TokenOwner attributes to make access

control decisions.

Access tokens issued using the OAuth 2 client credentials grant type are issued directly
to a client and do not contain a subject. An access token validator always sets the
HttpRequest.AccessToken.user_token flag to false for such tokens, which are called application
tokens, in contrast to tokens with subjects, which are called user tokens. Because authorization policies
often grant a broad level of access for application tokens, you should configure such policies to always
check the HttpRequest.AccessToken.user_token flag.

Access token validators determine whether PingAuthorize Server accepts an access token and uses it to
provide key information for access-control decisions, but they are neither the sole, nor the primary, means
of managing access. The responsibility for request authorization falls upon the PDP and its policies. This
approach allows an organization to tailor access-control logic to its specific needs.

Access token validator types
PingAuthorize Server works with many different types of access token validators.

Click the tabs to learn more about the following types of access token validators:

▪ PingFederate
▪ JSON web token (JWT)
▪ Mock access token
▪ Third-party
▪ External API gateway

PingFederate access token validator
To verify the access tokens that a PingFederate authorization server issues, the PingFederate access
token validator uses HTTP to submit the tokens to PingFederate Server's token introspection endpoint.

This step allows the authorization server to determine whether a token is valid.

 Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 293

If you are using PingFederate 10.0 or earlier, ensure that PingFederate is configured to respond to OAuth
and OpenID Connect (OIDC) requests by selecting the Enable OAuth 2.0 Authorization Server (AS)
role and OpenID Connect check boxes, as explained in Enabling the OAuth AS role. Starting with
PingFederate 10.1, these items are always enabled.

Because this step requires an outgoing HTTP request to the authorization server, the PingFederate
access token validator might perform slower than other access token validator types. The validation result
is guaranteed to be current, which is an important consideration if the authorization server permits the
revocation of access tokens.

Before attempting to use a PingFederate access token validator, create a client that represents the access
token validator in the PingFederate configuration. This client must use the Access Token Validation grant
type.

Example

Example PingFederate access token validator configuration

In PingFederate, create a client with the following properties:

▪ Client ID: PingAuthorize
▪ Client authentication: Client Secret
▪ Allowed grant types: Access Token Validation

Take note of the client secret that is generated for the client, and use PingAuthorize Server's dsconfig
command to create an access token validator:

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031
Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "PingFederate Access Token Validator" \
 --type ping-federate \
 --set enabled:true \
 --set "authorization-server:PingFederate External Server" \
 --set client-id:PingAuthorize \
 --set "client-secret:<client secret>"
 --set evaluation-order-index:2000
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "PingFederate Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Replace <client secret> with the client secret value generated by the PingFederate client.

JWT access token validator
The JWT access token validator verifies access tokens that are encoded in JSON web token (JWT)
format, which can be signed in JSON web signature (JWS) format or signed and encrypted in JSON web
encryption (JWE) format.

The JWT access token validator inspects the JWT token without presenting it to an authorization server
for validation. Because the JWT access token validator doesn't make a token introspection request for

Copyright ©2024

https://docs.pingidentity.com/bundle/pingfederate-100/page/tch1564002990742.html
https://docs.pingidentity.com/csh?Product=pf-latest&context=help_OAuthClientManagementTasklet_ExtendedPropertyManagementState

PingAuthorize | PingAuthorize Server Administration Guide | 294

every access token that it processes, it performs faster than the PingFederate access token validator. The
access token is self-validated however, so the JWT access token validator cannot determine whether the
token has been revoked.

Supported JWS/JWE features

For signed tokens, the JWT access token validator supports the following JWT web algorithm (JWA) types:

▪ RS256
▪ RS384
▪ RS512
▪ ES256
▪ ES384
▪ ES512

For encrypted tokens, the JWT access token validator supports the following key-encryption algorithms:

▪ RSA-OAEP
▪ ECDH-ES
▪ ECDH-ES+A128KW
▪ ECDH-ES+A192KW
▪ ECDH-ES+A256KW

For encrypted tokens, the JWT access token validator supports the following content-encryption
algorithms:

▪ A128CBC-HS256
▪ A192CBC-HS384
▪ A256CBC-HS512

The JWT access token validator configuration defines three [[allow lists]] for the JWS/JWE signing and
encryption algorithms that it will accept. You should customize these allow lists to reflect only the signing
and encryption algorithms used by your access token issuer and no others. Doing so minimizes the access
token validator's security threat surface.

Configure these allow lists using the following configuration properties.

Property Description

allowed-signing-algorithm Specifies the signing algorithms that the access
token validator accepts.

allowed-key-encryption-algorithm Specifies the key-encryption algorithms that the
access token validator accepts.

allowed-content-encryption-algorithm Specifies the content-encryption algorithms that the
access token validator accepts.

Handling signed tokens

About this task

All access tokens the JWT access token validator handles must be cryptographically signed by the token
issuer. The JWT access token validator validates a token's signature using a public signing key provided
by the issuer.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 295

Steps

▪ Configure the JWT access token validator with the issuer's public signing key in one of the following
ways:
Choose from:

▪ Store the public key as a trusted certificate in PingAuthorize Server's local configuration using the
trusted-certificate property.

▪ Provide the issuer's JSON Web Key Set (JWKS) endpoint using the jwks-endpoint-path
property. The JWT access token validator then retrieves the issuer's public keys when it initializes.
This method ensures that the JWT access token validator uses updated copies of the issuer's
public keys.

Example: Use a locally configured trusted certificate

Example

The following example configures a JWT access token validator to use a locally stored public signing
certificate to validate access token signatures. The signing certificate is assumed to have been obtained
out of band and must be a PEM-encoded X.509v3 certificate.

Add the public signing certificate to the server configuration
dsconfig create-trusted-certificate \
 --certificate-name "JWT Signing Certificate" \
 --set "certificate</path/to/signing-certificate.pem"

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set allowed-signing-algorithm:RS256 \
 --set "trusted-certificate:JWT Signing Certificate"

Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Example: Use the issuer's JWKS endpoint

Example

The following example configures a JWT access token validator to retrieve public keys from a
PingFederate authorization server's JWKS endpoint.

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 296

 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set allowed-signing-algorithm:RS256 \
 --set "authorization-server:PingFederate External Server" \
 --set jwks-endpoint-path:/ext/oauth/jwks

Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Handling encrypted tokens

About this task

The JWT access token validator can accept encrypted access tokens. To enable this functionality, you
must configure the access token validator with a private/public key pair and provide the public key to the
token issuer.

The examples in each step configure a JWT access token validator to handle access tokens signed and
encrypted using elliptic curve algorithms. For RSA signing and encryption algorithms, the configuration is
similar, but you would choose different values for the allowed-signing-algorithm and allowed-
encryption-algorithm properties.

Steps

1. Create an encryption key pair.

Example:

Create an encryption key pair
dsconfig create-key-pair \
 --pair-name "JWT Elliptic Curve Encryption Key Pair" \
 --set key-algorithm:EC_256

2. Create the JWT access token validator.

Example:

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set allowed-signing-algorithm:ES256 \
 --set "authorization-server:PingFederate External Server" \
 --set jwks-endpoint-path:/ext/oauth/jwks \
 --set "encryption-key-pair:JWT Elliptic Curve Encryption Key Pair" \
 --set allowed-key-encryption-algorithm:ECDH_ES

Match the token's subject (sub) claim to the uid attribute

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 297

of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

3. Export the public encryption key from PingAuthorize Server and provide it to your token issuer.

Without this public encryption key, the issuer cannot encrypt tokens that can be decrypted by the JWT
access token validator.

Example:

You can run dsconfig to copy the public key to a file, or you can copy the value of the key pair's
certificate-chain property in the administrative console.

dsconfig get-key-pair-prop \
 --pair-name "JWT Elliptic Curve Encryption Key Pair" \
 --property certificate-chain \
 --no-prompt \
 --script-friendly > jwt-public-encryption-key.pem

Mock access token validator

A mock access token validator is a special access token validator type used for development or testing
purposes; it accepts arbitrary tokens without validating whether a trusted source issued them. This
approach allows a developer or tester to make bearer token-authenticated requests without first setting up
an authorization server.

Mock access tokens are formatted as plain-text JSON objects using standard JSON web token (JWT)
claims.

Always provide the Boolean active claim when creating a mock token. If this value is true, the token is
accepted. If this value is false, the token is rejected.

If the sub claim is provided, a token owner lookup populates the TokenOwner policy request attribute, as
with the other access token validator types.

The following example cURL command provides a mock access token in an HTTP request:

curl -k -X GET https://localhost:8443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub":"user.3", "scope":"email profile",
 "client":"client1"}'

 Important:

Never use mock access token validators in a production environment because they do not verify whether a
trusted source issued an access token.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 298

Example

Example mock access token validator configuration

The configuration for a mock access token validator resembles the configuration for a JWT access token
validator. However, the JSON web signature (JWS) signatures require no configuration because mock
tokens are not authenticated.

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true \
 --set evaluation-order-index:9999
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Third-party access token validator

To create custom access token validators, use the Server SDK.

External API gateway access token validator

An external API gateway access token validator is a special access token validator that the Sideband API
can use when the API gateway itself can validate and parse access tokens. This type of access token
validator accepts a set of parsed access token claims from a trusted gateway and performs no further
parsing or validation of its own. For information about how the tokens are processed, see Sideband access
token validation on page 190.

 Note:

External API gateway access token validators are exclusively for use by Sideband API endpoints. If you
assign an external API gateway access token validator to any other server component, either explicitly or
implicitly, it is ignored.

Example

Example configuration

The following example shows how to configure an external API gateway access token validator with a
token resource lookup method and assign it to an existing Sideband API endpoint.

dsconfig create-access-token-validator \
 --validator-name "API Gateway Access Token Validator" \
 --type external-api-gateway \
 --set enabled:true \
 --set evaluation-order-index:0
dsconfig create-token-resource-lookup-method \
 --validator-name "API Gateway Access Token Validator" \
 --method-name "Users by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 299

 --set evaluation-order-index:0
dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "My API" \
 --set "access-token-validator:API Gateway-Provided Access Token Validator"

Token resource lookup methods
Access token validators can use token resource lookup methods to search a datastore and retrieve the
subject's profile data for use in policy decisions.

Most access tokens include a subject, which identifies the user who granted access to the application
using the token. Token resource lookup methods use the access token subject value, which is usually
a string identifier such as a GUID or username, to perform a search in an external datastore, such as
a PingDirectory Server or an API providing user data. For this reason, the datastore or API must be
accessible to PingAuthorize Server; and in most cases, it should be the same datastore or API used by the
authorization server that issues the access tokens. After the lookup completes, the token subject's user
attributes get passed into the policy request's TokenOwner attribute, allowing policies to make decisions
based on some aspect of the user.

 Note:

Using a token resource lookup method is optional. If your policies don't need user profile information, you
don't need to configure token resource lookup methods.

PingAuthorize Server provides the following types of token resource lookup methods:

▪ SCIM token resource lookup methods on page 299
▪ Third-party token resource lookup methods on page 300

SCIM token resource lookup methods

System for Cross-domain Identity Management (SCIM) token resource lookup methods use PingAuthorize
Server's SCIM subsystem to retrieve a token subject's attributes.

 Note:

Before you create a SCIM token resource lookup method, you must configure SCIM. See SCIM
configuration basics on page 193.

To configure a SCIM token resource lookup method, you need to know the name of the access token claim
that the authorization server uses for the subject identifier (typically, sub). You also need to know which
user attribute is used as the subject identifier by the authorization server when it issues access token. If
you have configured a mapping SCIM resource type, then the attribute name used by the authorization
server and the attribute name in your SCIM schema might differ.

A SCIM token resource lookup method retrieves the token subject's attributes using the combination of the
scim-resource-type and match-filter configuration properties.

Property Description

scim-resource-type The SCIM resource type that represents users that can
be access token subjects.

match-filter A SCIM 2 filter expression that matches a SCIM
resource based on one or more access token claims.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 300

The match-filter value must be a valid SCIM 2 filter expression that uniquely matches a single
resource. The filter expression can include one or more variables that refer to claims found in the access
token. These variables are indicated by enclosing a token claim name in percent (%) characters. When
the token resource lookup method is invoked, the variable is filled in with the actual value from the access
token claim.

For example, if a match filter has the value id eq "%sub%" and an access token contains a sub claim
with the value 8ac3d8b5-4f17-33fa-a4b4-854599ed9a89, then the token resource lookup method
performs a SCIM search using the filter id eq "8ac3d8b5-4f17-33fa-a4b4-854599ed9a89".

Example

The following example shows how to create a SCIM token resource lookup method using dsconfig. It
assumes that a SCIM resource type called Users and an access token validator called JWT Access
Token Validator already exist.

dsconfig create-token-resource-lookup-method
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set evaluation-order-index:10 \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"'

Third-party token resource lookup methods

A third-party token resource lookup method is a custom implementation of a token resource lookup
method that you write using the Server SDK. A third-party token resource lookup method can be useful for
PingAuthorize Server deployments where SCIM is not otherwise needed. For example, you could use a
third-party token resource lookup method to connect a PingAuthorize Server to a system that stores user
data in a cloud directory.

For more information about writing custom server extensions, see the Server SDK documentation.

Server configuration
For a detailed look at configuration, see the Ping Identity PingAuthorize Server Configuration Reference,
located in the server's docs/config-guide directory.

This section covers basic server configuration.

PingAuthorize Server is built upon the same foundation as PingDirectory Server. Both servers use a
common configuration system, and their configurations use the same tools and APIs.

The configuration system is fundamentally LDAP-based, and configuration entries are stored in a special
LDAP backend, called cn=config. The structure is a tree structure, and configuration entries are
organized in a shallow hierarchy under cn=config.

Administration accounts
Administration accounts, called root distinguished names (DNs), are stored in a branch of the configuration
backend: cn=Root DNs,cn=config.

When setup is run, the process creates a superuser account that is typically named cn=Directory
Manager. Although PingAuthorize Server is not an LDAP directory server, it follows this convention by
default. As a result, its superuser account is also typically named cn=Directory Manager.

To create additional administration accounts, use dsconfig or, to add root DN users, use the
PingAuthorize administrative console.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 301

About the dsconfig tool
The dsconfig tool provides a command-line interface to configure the underlying server configuration.

Use the dsconfig tool whenever you administer the server from a shell. When run without arguments,
dsconfig enters an interactive mode that lets you browse and update the configuration from a menu-
based interface. Use this interface to list, update, create, and delete configuration objects.

When viewing any configuration object in dsconfig, use the d command to display the command line that
is necessary to recreate a configuration object. You can use a command line in this form directly from a
shell or placed in a dsconfig batch file, along with other commands.

Batch files are a powerful feature that enable scripted deployments. By convention, these scripts use a
file extension of dsconfig. Batch files support comments by using the # character, and they support line
continuation by using the \, or backslash, character.

Example

This example dsconfig script configures the PingAuthorize Server policy service.

Define an external PingAuthorize PAP
dsconfig create-external-server \
 --server-name "PingAuthorize Policy Editor" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set "branch:Default Policies"
Configure the policy service
dsconfig set-policy-decision-service-prop \
 --type scim \
 --set pdp-mode:external \
 --set "policy-server:PingAuthorize PAP" \
 --set "decision-response-view:request" \
 --set "decision-response-view:decision-tree"

Example

To load a dsconfig batch file, run dsconfig with the --batch-file argument.

$ PingAuthorize/bin/dsconfig -n --batch-file example.dsconfig

Batch file 'example.dsconfig' contains 2 commands.

Pre-validating with the local server Done

Executing: create-external-server -n --server-name "PingAuthorize PAP"
 --type policy --set base-url:http://localhost:4200 --set "branch:Default
 Policies"

Arguments from tool properties file: --useSSL --hostname localhost --port
 8636 --bindDN cn=root --bindPassword ***** --trustAll

The Policy External Server was created successfully.

Executing: set-policy-decision-service-prop -n --set pdp-mode:external --set
 "policy-server:PingAuthorize PAP" --set
decision-response-view:request --set decision-response-view:decision-tree

The Policy Decision Service was modified successfully.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 302

PingAuthorize administrative console
The PingAuthorize administrative console is a web-based application that provides a graphical
configuration and administration interface. It is available by default from the /console path.

Setting the console session timeout

The session timeout for the console is 24 hours by default. When this duration is exceeded, all inactive
users are logged off automatically.

To set a different timeout value, configure the server.sessionTimeout application parameter, which
specifies the timeout duration in seconds. You can set the value as an init parameter either in the console
or on the command line.

▪ Console

In the PingAuthorize administrative console, go to Web Application Extensions # Console. Specify
the timeout value in the Init Parameter field.

▪ Command line

Use the dsconfig tool. The following example uses a value of 1800 seconds (30 minutes).

dsconfig set-web-application-extension-prop --no-prompt \
--extension-name Console \
--add init-parameter:server.sessionTimeout=1800

For the changes to take effect, restart the HTTP(S) Connection Handler, or the server itself.

About the configuration audit log
The configuration audit log records the configuration commands that represent configuration changes, as
well as the configuration commands that undo the changes.

All successful configuration changes are recorded to the file logs/config-audit.log.

Example

$ tail -n 8 PingAuthorize/logs/config-audit.log
[23/Feb/2019:23:16:24.667 -0600] conn=4 op=12 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
Undo command: dsconfig delete-external-server --server-name "PingAuthorize
 PAP"
dsconfig create-external-server --server-name "PingAuthorize PAP" --type
 policy --set base-url:http://localhost:4200 --set "branch:Default Policies"

[23/Feb/2019:23:16:24.946 -0600] conn=5 op=22 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
This change was made to mirrored configuration data, which is
 automatically kept in sync across all servers.
Undo command: dsconfig set-policy-decision-service-prop --set "policy-
server:PingAuthorize (Gateway Policy Example)"
dsconfig set-policy-decision-service-prop --set "policy-server:PingAuthorize
 PAP"

About the config-diff tool
The config-diff tool compares server configurations and produces a dsconfig batch file that lists the
differences.

When run without arguments, the config-diff tool produces a list of changes to the configuration,
as compared to the server’s baseline or out-of-the-box configuration. Because this list captures the

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 303

customizations of your server configuration, it is useful when you transition from a development
environment to a staging or production environment.

Example

$ PingAuthorize/bin/config-diff
No comparison arguments provided, so using "--sourceLocal --sourceTag
 postSetup --targetLocal" to compare the local configuration with the post-
setup configuration.
Run "config-diff --help" to get a full list of options and example usages.

Configuration changes to bring source (config-postSetup.gz) to target
 (config.ldif)
Comparison options:
Ignore differences on shared host
Ignore differences by instance
Ignore differences in configuration that is part of the topology
 registry

dsconfig create-external-server --server-name "DS API Server" --type api
--set base-url:https://localhost:1443 --set hostname-verification-
method:allow-all --set "trust-manager-provider:Blind Trust" --set user-
name:cn=root --set "password:AADaK6dtmjJQ7W+urtx9RGhSvKX9qCS8q5Q="

dsconfig create-external-server --server-name "FHIR Sandbox" --type api
--set base-url:https://fhir-open.sandboxcerner.com
...

Certificates
The server presents a server certificate when a client uses a protocol like LDAPS or HTTPS to initiate a
secure connection. A client must trust the server's certificate to obtain a secure connection to it.

PingAuthorize Server uses server certificates.

During setup, administrators have the option of using self-signed certificates or certificate authority (CA)-
signed certificates for the server certificate. Use CA-signed certificates wherever possible. Use self-signed
certificates for demonstration and proof-of-concept environments only.

If you specify the option --generateSelfSignedCertificate during setup, the server certificate
generates automatically with the alias server-cert. The key pair consists of the private key and the
self-signed certificate, and is stored in a file named keystore, which resides in the server's /config
directory. The certificates for all the servers that the server trusts are stored in the truststore file, which
is also located under the server’s /config directory.

To override the server certificate alias and the files that store the key pair and certificates, use the following
arguments during setup:

▪ --certNickname
▪ --use*Keystore
▪ --use*Truststore

For more information about these arguments, see the setup tool’s Help and the Installation Guide.

Replacing the server certificate
Whether the server was set up with self-signed or certificate authority (CA)-signed certificates, the steps to
replace the server certificate are nearly identical.

About this task

This task makes the following assumptions:

Copyright ©2024

https://fhir-open.sandboxcerner.com

PingAuthorize | PingAuthorize Server Administration Guide | 304

▪ You are replacing the self-signed server certificate.
▪ The certificate alias is server-cert.
▪ The private key is stored in keystore.
▪ The trusted certificates are stored in truststore.
▪ The keystore and truststore use the Java KeyStore (JKS) format.

If a PKCS#12 keystore format was used for the keystore and truststore files during setup,
change the --keystore-type argument in the manage-certificate commands to PKCS12 in the
relevant steps.

While the certificate is being replaced, existing secure connections continue to work. If you restart the
server, or if a topology change requires a reset of peer connections, the server continues authenticating
with its peers, all of whom trust the new certificate.

To replace the server certificate with no downtime, perform the following steps:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new truststore file.

3. Update the server configuration to use the new certificate by adding it to the server’s list of listener
certificates in the topology registry.

Result: Other servers will trust the certificate.

4. Replace the server’s keystore and truststore files with the new ones.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.
Preparing a new keystore with the replacement key pair

You can replace the self-signed certificate with an existing key pair. As an alternative, you can use the
certificate that is associated with the original key pair.

Using an existing key pair
To use an existing key pair, use the manage-certificates tool that is located in the server's bin or
bat directory, depending on your operating system.

About this task
If a private key and certificate already exist in PEM-encoded format, they can replace both the original
private key and the self-signed certificate in keystore, instead of replacing the self-signed certificate
associated with the original server-generated private key.

Steps

▪ Import the existing certificates using the manage-certificates import-certificate.

Order the certificates that use the --certificate-file option so that each subsequent certificate
functions as the issuer for the previous one.

List the server certificate first, then any intermediate certificates, and then list the root certificate
authority (CA) certificate. Because some deployments do not feature an intermediate issuer, you might
need to import only the server certificate and a single issuer.

For example, the following command imports the existing certificates into a new keystore file named
keystore.new.

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 305

 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Replacing the certificate associated with the original key pair
Replace the certificate associated with the original server-generated private key (server-cert) if it has
expired or must be replaced with a certificate from a different certificate authority (CA).

About this task

Perform the following steps to replace the certificate associated with the original key pair:

Steps

1. Create a CSR file for the server-cert.

Example:

manage-certificates generate-certificate-signing-request \
 --keystore keystore \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file server-cert.csr

2. Submit server-cert.csr to a CA for signing.

3. Export the server’s private key into server-cert.key.

Example:

manage-certificates export-private-key \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file server-cert.key

4. Import the certificates obtained from the CA, including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates, into keystore.new.

Example:

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file server-cert.key \
 --certificate-file server-cert.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Importing earlier trusted certificates into the new keystore
You must import the trusted certificates of other servers in the topology into the new truststore file.

About this task

To export trusted certificates from truststore and import them into truststore.new, perform the
following steps for each trusted certificate:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 306

Steps

1. Locate the currently trusted certificates.

manage-certificates list-certificates \
 --keystore truststore

2. For each alias other than server-cert, or whose fingerprint does not match server-cert, perform
the following steps:

a. Export the trusted certificate from truststore.

manage-certificates export-certificate \
 --keystore truststore \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file trusted-cert-alias.crt

b. Import the trusted certificate into truststore.new.

manage-certificates import-certificate \
 --keystore truststore.new \
 --keystore-type JKS \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file trusted-cert-alias.crt

Updating the server configuration to use the new certificate
Before updating the server to use the appropriate key pair, update the listener-certificate property
for the server instance's LDAP listener in the topology registry.

About this task

To support the transition from an existing certificate to a new one, earlier and newer certificates might
appear within their own beginning and ending headers in the listener-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Steps

1. Export the server’s previous server-cert into old-server-cert.crt.

manage-certificates export-certificate \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file old-server-cert.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command.

cat old-server-cert.crt new-server-cert.crt > old-new-server-cert.crt

3. Use dsconfig to update the listener-certificate property for the server instance's LDAP
listener in the topology registry.

$ bin/dsconfig -n set-server-instance-listener-prop \
 --instance-name instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<old-new-server-cert.crt"

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 307

Replacing the key store and trust store files
Replace the key store and trust store files in the server's config directory to make the new server
certificates take effect.

About this task
Because the server still uses the previous server-cert, you must replace the earlier keystore and
truststore files with the new ones in the server’s config directory when you want the new server-
cert to take effect.

Steps

▪ Replace the keystore and truststore as shown in the following example.

$ mv keystore.new keystore
 mv truststore.new truststore

Retiring the previous certificate
Retire the previous certificate by removing it from the topology registry after it expires.

Steps

▪ Remove the previous certificate from the topology registry, as shown in the following example.

$ dsconfig -n set-server-instance-listener-prop \
 --instance-name <instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<new-server-cert.crt"

Listener certificates
When a client initiates TLS negotiation with the server, the server presents a certificate chain to the client
and the certificate at the head of the chain functions as a listener certificate.

Because the client decides whether to trust the certificate chain, it is recommended that the chain be
signed by an issuer whom the client is likely to trust or that the client can be easily configured to trust.

You can create self-signed certificates with long lifespans, but a certificate that a certification authority
signs is likely to have a relatively short lifespan. Commercial authorities typically issue certificates that are
valid for only one or two years, but some authorities use shorter validity windows.

Short certificate lifespans offer some security benefits. In particular, because most clients do not verify
whether a certificate has been revoked, a shorter validity window minimizes the timeframe that a
compromised certificate can be used. If the process for replacing certificates is streamlined or automated,
administrative inconvenience can be kept to a minimum.

Listener certificates are stored in key stores that are referenced by key manager providers, which in turn
provide the logic and configuration for accessing the key stores. If a server component, like a connection
handler, requires access to a certificate that it presents to a peer during the TLS negotiation process,
that component must reference the key manager provider that points to the key store containing the
appropriate certificate. If the key store contains multiple certificates, and if the component referencing the
key store includes a property specifying the certificate's nickname, the certificate with that alias is selected.
Otherwise, the server lets the Java virtual machine (JVM) select a certificate that might not be well-defined.

The server also provides trust manager providers, which determine whether to trust the certificate chains
with which it is presented. A trust manager provider can reference a specified trust store file, but other
options include the JVM default trust store, which uses the Java installation's default set of trusted issuers,
and the blind trust manager provider, which automatically trusts every certificate chain that is presented to
it.

 Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 308

Never use a blind trust manager in a production environment because it leaves the server vulnerable to
impersonation and man-in-the-middle attacks. However, a blind trust manager can be convenient in test
environments when troubleshooting certain types of problems.

Replacing listener certificates
Certificate authorities typically restrict the lifespans of the certificates that they sign. If you use a
certification authority to issue listener certificates, you are likely replacing the certificates on a regular
basis.

About this task

The replace-certificate tool performs the following steps:

1. Obtain a new certificate chain.
2. Make necessary updates to the key manager provider and the connection handler configurations
3. Update the server instance listener configuration with the new certificate.

The replace-certificate tool offers the following modes of operation:

Interactive mode

Walks you through the process of obtaining a new certificate and installing it in the server.
Interactive mode also displays the non-interactive commands that are required to achieve the same
result.

Non-interactive mode

Useful when scripting the process of replacing a certificate.

Steps

▪ To replace a listener certificate, run the replace-listener-certificate subcommand of the
replace-certificate tool.

 Note:

You can replace certificates manually, but the replace-certificate tool automates the process.
The replace-certificate tool provides information about multiple listener certificates during the
transitional phase that occurs when you install them.

The replace-listener-certificate subcommand takes arguments that provide the following
information:

▪ Arguments required to authenticate to , such as --bindDN and --bindPasswordFile
▪ Details about the key store that contains the new certificate
▪ Updates that must be made to the key and trust manager providers
▪ Whether to signal the HTTP connection handler to reload its certificates after the update is

complete

The following arguments are available:

Argument Description

--source-key-store-file {path} Path to the Java KeyStore (JKS) or PKCS #12
file that contains the private key entry with the
new certificate chain. This argument is required.

--source-key-store-password
{password}

Clear-text password that is needed to access the
contents of the source key store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 309

Argument Description

--source-key-store-password-file
{path}

Path to the file that contains the password
necessary to access the contents of the source
key store. The file can contain the password in
the clear or can be encrypted with a definition
from the server's encryption settings database.

--source-certificate-alias {alias} Password that is required to access the
appropriate private key in the source key store.
If neither the --source-private-key-
password nor the --source-private-key-
password-file argument is provided, the
key store password is used as the private key
password.

--source-private-key-password-file
{path}

Path to the file that contains the password
needed to access the appropriate private key
in the source key store. The file can contain the
password in the clear or can be encrypted with
a definition from the server's encryption settings
database. If neither the --source-private-
key-password nor the --source-private-
key-password-file argument is provided, the
key store password is used as the private key
password.

--key-manager-provider {name} Name of the key manager provider that is
updated to use the new certificate chain. The
value must identify a file-based key manager
provider, and the new certificate chain must
be enabled. Defaults to JKS if a value is not
specified.

--trust-manager-provider {name} Name of the trust manager provider that is
updated with the information required to trust the
new certificate chain. The value must identify
a file-based trust manager provider, and the
new certificate chain must be enabled. If neither
this argument nor the --use-jvm-default-
trust-manager-provider argument is
provided, the tool assumes that the name of the
trust manager provider is identical to the name of
the key manager provider.

--use-jvm-default-trust-manager-
provider

Indicates that the server must be configured to
use the JVM-default trust manager provider,
which trusts certificates signed by issuers in
the cacerts trust store provided with the Java
virtual machine (JVM), rather than updating an
existing trust manager provider.

--target-certificate-alias {alias} Alias to use for the new certificate in the key
manager provider's key store, and for appropriate
updates in the trust manager provider's trust
store. Defaults to an alias of server-cert if a
value is not specified.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 310

Argument Description

 Note:

If the key manager provider's key store, or the
trust manager provider's trust store, already
contains an entry with the given alias, the existing
entry is renamed.

--reload-http-connection-handler-
certificates

Indicates that the tool is requesting that the
server cause any HTTPS-based connection
handlers to reload their certificates, so that
the connection handlers can use the updated
certificate.

LDAP connection handlers react to the change
immediately and start presenting the new
certificate chain during subsequent TLS
negotiations. HTTPS connection handlers
continue using the former certificate until the
connection handler is restarted or until the
connection handler is asked specifically to reload
its certificates.

 Note:

This option might prevent clients with existing
TLS sessions that were negotiated with the
former certificate from being resumed.

▪ To remove earlier certificates from the server instance listener configuration, run the purge-
retired-listener-certificates subcommand.

 Note:

The purge-retired-listener-certificates subcommand does not take arguments other than
the ones that are required to authenticate to the server.

By default, the replace-certificate tool updates the server instance listener configuration
object to include the new listener certificate, and it merges the old and new certificates residing in the
configuration object.

X.509 certificates
The server supports X.509 certificates, the most common type of certificates. RFC 5280 describes
X.509v3, which provides the current version of the specification.

An X.509v3 certificate includes the following components:

X.509 encoding version

Enables the differentiation between an X.509v3 certificate and one that conforms to an earlier or
later version of the specification.

Serial number of the certificate

Integer value that uniquely identifies a certificate as issued by a certification authority.

Copyright ©2024

https://www.ietf.org/rfc/rfc5280.txt

PingAuthorize | PingAuthorize Server Administration Guide | 311

Subject DN

Distinguished name for the certificate, which often provides details about the context in which the
certificate is to be used. For more information, see Certificate subject DNs on page 311.

Issuer DN

Distinguished name for the issuer certificate, which is the certificate used to sign the certificate. For
a self-signed certificate, this value matches the subject DN.

Validity window

Indicates the timeframe during which the certificate is considered valid. This component includes the
following elements:

▪ notBefore

Specifies the earliest time at which the certificate is considered valid.
▪ notAfter

Specifies the latest time at which the certificate is considered valid.

Public key

Public portion of a pair of cryptographically linked keys. For more information, see Certificate key
pairs on page 312.

Signature

A type of cryptographic proof that the certificate truly was sent from the issuer and has remained
unaltered. A self-signed certificate is signed with its own private key. Otherwise, it is signed with the
issuer's private key.

An X.509v3 certificate might also include the following optional components:

Subject unique ID

Uniquely identifies the certificate. This component has been deprecated in favor of the subject key
identifier extension, so it is generally omitted from X.509v3 certificates.

Issuer unique ID

Subject unique ID of the issuer certificate, if available. This component has been deprecated in favor
of the authority key identifier extension.

Set of extensions

Provides additional context for the certificate and the manner in which it is used. For more
information, see Certificate extensions on page 313.

Certificate subject DNs
A certificate's subject distinguished name (DN) provides information about how the certificate should be
used.

Like an LDAP DN, a certificate's subject DN consists of a comma-delimited series of attribute-value pairs.
However, unlike an LDAP DN, the attribute names in a certificate subject DN are typically written in all
uppercase characters.

A certificate's subject DN is also referred to as its subject. The following attributes commonly appear in a
certificate subject.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 312

Attribute name Attribute description

CN Common name

 Note:

For a listener certificate, the CN attribute typically identifies the host name that
clients use to access the certificate. However, the subject alternative name
extension is recommended more highly for accomplishing the same task. Most
certificate subject DNs include at least the CN attribute.

E Email address

OU Name of the organizational unit, such as the relevant department

O Name of the organization or company

L Name of the locality, such as the appropriate city

ST Full name of the state or province

C ISO 3166 country code

A certificate subject includes at least one attribute-value pair, and the CN attribute is typically present.
Other attributes can be omitted, although the O and C attributes are also common. For example, a listener
certificate for a server with an address of ldap.example.com, which is run by the US-based company
Example Corp, might have a subject of CN=ldap.example.com,O=Example Corp,C=US.

Certificate key pairs
Each certificate contains a key pair that consists of two keys that are linked cryptographically. If you
encrypt data with one key, the data can be only decrypted with the other key.

Although a key pair can be created easily when both keys are generated simultaneously, the process
of deriving one key from the other is extremely difficult, a process categorized in cryptographic terms as
computationally infeasible.

When generating a key pair, one key is designated as the public key, and the other key is designated the
private key. The public key can be made widely available, but the private key must be kept secret and not
shared with anyone.

As long as the secrecy of the private key is maintained, the key pair can be used to perform the following
functions:

▪ Encryption, sometimes referred to as confidentiality

If someone wants to send you a secret message without anyone else viewing it, the message can
be encrypted with your public key. Only you possess the private key, so only you can decrypt the
message.

▪ Digital signatures

If you encrypt data with your private key, it can be decrypted only with your public key. Because your
public key can be made widely available, this encryption method does not actually protect the content.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 313

However, digital signatures prove that a message came from you because only your private key could
have generated it.

 Note:

When generating a digital signature, the entire message is generally not encrypted. Only a hash of the
message is encrypted, typically by using a digest algorithm like SHA-256.

This approach protects the integrity of a message. A decrypted signature that matches the digest of
the original message guarantees that the message came from you and that it has remained unaltered
since you signed it.

The following public key algorithms are used primarily in certificates that facilitate TLS communication:

▪ RSA, which is based on the multiplication of large prime numbers
▪ EC, which is based on computations that involve special types of elliptical curves

Although RSA is supported more widely than EC, it is slower and requires larger keys to achieve the same
level of security. To support legacy clients, you should use an RSA certificate and choose a key size of at
least 2,048 bits.

If all of your clients support EC certificates, you should use an EC certificate with a key size of at least 256
bits.

Certificate extensions
Extensions provide additional context for a certificate.

Some of the more common extension types include the following:

Subject key identifier

Holds a unique identifier for the certificate, which is generally derived from the certificate's public
key.

Authority key identifier

Holds the subject key identifier for the issuer certificate. This extension type helps to identify the
issuer certificate, especially when presented with an incomplete certificate chain.

Subject alternative name

Holds a list of ways that clients are expected to reference a server when establishing a connection
to it.

 Note:

Clients must take this information into account when deciding whether to trust a server's certificate.

The most common types of values include DNS names, IP addresses, and URIs. DNS names
must be fully qualified, but can optionally use an asterisk in the leftmost component to match any
single name in that component. For example, *.example.com could match www.example.com or
ldap.example.com, but would not match ldap.east.example.com or example.com.

Key usage

Provides information about the manner in which the certificate is expected to be used. The following
key usages are allowed:

digitalSignature

Indicates that the certificate can be used for digitally signing data, excluding certificates and
certificate revocation lists (CRL).

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 314

nonRepudiation

Indicates that the certificate can be used to prevent denying the authenticity of a message.
nonRepudiation is also known as contentCommitment.

keyEncipherment

Indicates that the certificate can be used to protect encryption keys, such as symmetric keys
that are derived during TLS key agreement.

dataEncipherment

Indicates that the certificate can be used for encrypting data directly.

keyAgreement

Indicates that the certificate's public key can be used for key agreement, such as deriving the
symmetric key that protects TLS communication.

keyCertSign

Indicates that the certificate can act as a certification authority and be used for signing other
certificates.

cRLSign

Indicates that the certificate can be used to sign CRLs.

encipherOnly

When used in conjunction with keyEncipherment, indicates that the public key can be used
only for encrypting data during key agreement.

decipherOnly

When used in conjunction with keyEncipherment, indicates that the public key can be used
only for decrypting data during key agreement.

Extended key usage

Acts as an alternative to the key usage extension and provides additional high-level functionality.
The following extended key usages are allowed:

serverAuth

Indicates that the server can present the certificate to the client during TLS negotiation.

clientAuth

Indicates that the client can present the certificate to the server during TLS negotiation.

codeSigning

Indicates that the certificate can be used to sign source and compiled code.

emailProtection

Indicates that the certificate can be used to sign or encrypt email messages.

timeStamping

Indicates that the certificate can be used to assert the time that an event occurred.

ocspSigning

Indicates that the certificate can be used to sign an online certificate status protocol (OCSP)
response.

Basic constraints

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 315

Indicates whether the certificate can act as a certification authority and, if so, the maximum number
of intermediate certificates that can follow it in a certificate chain.

Certificate chains
A certificate chain is an ordered list of one or more certificates. In such a chain, each subsequent certificate
is the issuer of the previous certificate.

During TLS negotiation, the server presents a certificate chain to the client, which determines whether to
trust the chain and continue with the negotiation. The client can also present its own certificate chain to the
server.

If a certificate is self-signed, its chain contains only that single certificate. If a certificate is signed by a
self-signed certificate authority (CA) certificate, such as a root CA, the chain contains two certificates: the
server certificate and the CA certificate that follows it. If a single intermediate CA (a CA certificate that is
signed by a root CA) is present, the chain contains the server certificate, followed by the intermediate CA,
and then the root CA.

Intermediate certificate authorities are useful for security purposes, especially in commercial authorities. If
a client trusts a root CA certificate, it is likely to trust anything with that root CA certificate at the base of its
chain. Consequently, the root CA certificate must be kept secure.

 Note:

If the root CA certificate is compromised, any certificate that is directly or indirectly signed by it can no
longer be trusted.

With intermediate CA certificates, the root certificate can be kept offline in secure storage and used only
when a new intermediate CA certificate must be signed. The intermediate CA certificates can be used
to sign end-entity certificates, but must be protected to avoid compromising any of the certificates. A
compromised certificate must be revoked along with all of the certificates that it signed. In such a scenario,
the root CA can be used to sign a new certificate.

 Note:

The certificate chain that the server presents to the client, or that the client presents to the server, during
TLS negotiation does not always need to be the complete chain. If the root CA at the end of the chain is
widely trusted, the server can assume that the client already has that root CA in its default set of trusted
certificates. The server can leave that root CA off the chain with the assumption that the client will retrieve
it from its default trust store. While the same assumption could theoretically be true for intermediate
CA certificates, only the root CA certificate is commonly omitted. When a client receives an incomplete
chain, the client looks in its default trust store to determine whether the trust store contains the issuer
certificate, which it can identify by using properties like the issuer distinguished name (DN) or an authority
key identifier extension.

The certificate at the head of a certificate chain, which appears as the first one in the list, is often called the
end-entity certificate. If this certificate appears at the head of the chain that a server presents during TLS
negotiation, it is referred to as the server certificate. If the certificate appears at the head of a chain that a
client presents, it is referred to as a client certificate. The certificate at the end of a complete chain must be
a root CA certificate. In the case of a self-signed certificate, the chain contains only a single certificate that
serves both roles.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 316

About representing certificates, private keys, and certificate signing requests
X.509 is an encoding format that uses the ASN.1 distinguished encoding rules (DER), which exist in binary
format. When writing a certificate to a file, either a raw DER format or a plaintext format called PEM can be
used.

PEM encoding consists of a line that contains the text -----BEGIN CERTIFICATE-----, followed by a
set of lines that contains the base64-encoded representation of the raw DER bytes (typically with no more
than 64 characters per line), followed by a line that contains the text -----END CERTIFICATE-----.

The X.509 encoding contains a certificate's public key, but not its private key. The PKCS #8 specification
in RFC 5958 describes the encoding for private keys. This approach uses a DER encoding with a PEM
variant that instead uses the following header and footer, respectively.

-----BEGIN PRIVATE KEY-----
-----END PRIVATE KEY-----

RFC 5958 also describes an encrypted representation of the private key, but that format is currently
unsupported.

The PKCS #10 specification in RFC 2986 describes the CSR format. This format uses a DER encoding
with a PEM variant that uses the following header and footer, respectively.

-----BEGIN CERTIFICATE REQUEST-----
-----END CERTIFICATE REQUEST-----

Some implementations use the following alternate, nonstandard forms.

-----BEGIN NEW CERTIFICATE REQUEST-----
-----END NEW CERTIFICATE REQUEST-----

Certificate trust
When a server presents its certificate chain to a client during TLS negotiation, the client decides whether to
trust the certificate chain and concludes whether it is communicating with a legitimate server instead of an
impostor.

If a client is tricked through DNS hijacking into communicating with a rogue application instead of with a
legitimate server, the application can steal the client's credentials, or can fool the client into concluding
that it has performed an action that it has not performed. If a rogue application acts as a broker between
the client and the legitimate server, the client might be unable to detect the change, and the malicious
application might be capable of stealing data or altering the communication. Consequently, you should
avoid trust all or blind trust options in a production environment.

When determining whether to trust a server certificate chain, a client performs the following steps.

Processing steps

1. Verifies that it has received the complete certificate chain.

If a server presents an incomplete chain, the client must ensure that it can complete the chain with
information in an explicitly provided trust store or default trust store. If the client cannot complete the
certificate chain, the chain is not trusted.

Copyright ©2024

https://www.ietf.org/rfc/rfc5958.txt
https://www.ietf.org/rfc/rfc2986.txt

PingAuthorize | PingAuthorize Server Administration Guide | 317

2. Verifies that each subsequent certificate in the chain is the issuer certificate for, and that its private key
was used to sign, the certificate that precedes it.

 Note:

If a certificate chain contains extraneous certificates, or if a subsequent certificate did not issue the
certificate that precedes it, the chain is not trusted.

3. Confirms that it has a reason to trust the certificate at the root of the chain.

 Note:

This step is generally performed by ensuring that the root certificate authority (CA) certificate can be
found in either a default trust store or a trust store that is configured for use by the client. If the client
has no prior knowledge of the root CA certificate, the chain is not trusted.

4. Verifies that the current time lies within the validity window for each certificate in the chain.

 Note:

The chain is not trusted under the following conditions:

▪ When the notBefore value of any certificate in the chain is later than the current time.
▪ When the notAfter value of any certificate in the chain is earlier than the current time.

5. Verifies that the server certificate at the head of the chain is suitable for the server with which the client
thinks it is communicating.

 Note:

The client must verify that the address used to connect to the server matches one of the following
values:

▪ The CN attribute of the certificate's subject.
▪ One of the values of any subject alternative name extension.

These steps represent a starting point. If necessary, the client can perform additional types of validation.
For example, if a root or intermediate certification authority maintains a certificate revocation list (CRL) or
supports the online certificate status protocol (OCSP), the client must verify that none of the certificates in
the chain has been revoked. The client can also verify that the CA certificates include the basic constraints
extension, and that the server certificate does not contain too many levels. Other checks, like those that
use certificate policy extensions, can also be performed.

Keystores and truststores
A keystore is a type of database that holds certificates.

The following examples represent the most common forms of keystores:

▪ File that uses the Java-specific Java KeyStore (JKS) format
▪ File that uses the standard PKCS #12 format
▪ Collection of files that holds certificates and private keys, typically in PEM or DER format
▪ Hardware security module (HSM) that makes the certificate information available through an interface

like PKCS #11

The server supports file-based keystores by using the JKS and PKCS #12 formats and by using hardware
security modules that are accessible through PKCS #11. The server does not currently support a keystore

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 318

format that consists of individual certificate and private key files. To import these files into a JKS or PKCS
#12 keystore, use the manage-certificates tool.

A keystore also represents a collection of entries, each of which is identified by a name that an alias calls.
Keystores can have the following entry types:

Private key entries

Contain a certificate chain and a private key. When a server accepts a TLS-based connection, it
uses a private key entry to obtain the certificate chain that it presents to the client. The server can
also use the private key from the same entry to process its key agreement. Similarly, a client uses a
private key entry when presenting its own certificate chain to a server.

Trusted certificate entries

Contain a single certificate without a private key. As the name implies, a trusted certificate entry is
intended primarily for use when determining whether to trust a certificate chain that is presented
during TLS negotiation.

Secret key entries

Contain a secret key only, without an associated certificate. These types of entries are not used for
TLS processing. Instead, they hold symmetric encryption keys or other types of secrets.

A password, sometimes called a PIN, protects the contents of a keystore. In some cases, like with JKS
keystores, some content might be accessible without a password, and a password might be required only
when trying to access private keys or secret keys. In other cases, like with PKCS #12 keystores, you might
need a password for any interaction with the keystore.

Additional passwords can further protect private keys. This approach is often the same as with the keystore
password, but the password can be different. This tactic is useful when a single keystore is shared for
multiple purposes, for example, and when merely having access to the keystore does not guarantee
access to all of the data that it contains.

 Note:

A truststore is another name for a keystore that is intended primarily for use when determining whether to
trust a certificate chain that has been presented. Truststores generally contain primarily trusted certificate
entries, but that case is not required.

Java runtime environments typically include a default truststore, often jre/lib/security/cacerts
or lib/security/cacerts, that is prepopulated with several widely trusted certification authority
certificates. When presented with a certificate that one of these authorities has signed, the default
truststore can allow the certificate to be trusted without any additional configuration. When presented with
a self-signed certificate, or when presented with a certificate that is signed by an issuer not in the default
truststore, such as a private corporate certification authority, a separate truststore is required.

Transport Layer Security (TLS)
TLS describes a mechanism for securely communicating between two parties that might have no prior
knowledge of each other.

TLS is the successor to SSL, and the two terms are often used interchangeably, even though such usage
might not technically be correct.

 Note:

SSL remains the more widely recognized term. The abbreviation TLS occasionally generates confusion
with the StartTLS extended operation, particularly in LDAP.

TLS provides security in the form of the following main components:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 319

Certificate trust

Is about reassuring a connection-initiating client that it is communicating with the server to which
it intended to connect. To ensure that the server shares the same degree of confidence in the
identity and legitimacy of the client, it can ask the client to present its own certificate chain. For more
information, see Certificate Trust.

Cipher selection

Involves choosing the cipher and the key to protect the bulk of the communication. Although a client
can use a server certificate's public key to encrypt data before sending it, this approach can lead to
the following issues:

▪ Unless the client presents its own certificate chain to the server, the server cannot encrypt the
data that it sends back to the client.

▪ Public key encryption is considerably slower than symmetric encryption, in which the same
key is used for both encryption and decryption. Public key encryption is also called asymmetric
encryption because different keys are used to encrypt and decrypt data.

▪ If you rely entirely on the security of a private key to ensure the secrecy of a communication,
and if the private key becomes compromised, data that has been encrypted with the private key
must also be considered compromised.

Rather than relying solely on public key encryption to protect communication between a client and server,
the TLS negotiation process allows a client and server to agree on the type of encryption and the secret
key to use after completing the negotiation process.

TLS handshakes
The process of negotiating the TLS is referred to as the handshake.

Although the exact process depends on the TLS version that is ultimately chosen, the following steps
represent the basic components of a TLS 1.2 handshake:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 320

TLS processing steps

1. The client sends a hello message that provides the server with the following information:

▪ Highest supported version of the TLS protocol
▪ The cipher suites that the client uses
▪ Set of extensions with additional information:

▪ The address that the client uses to communicate with the server
▪ The signature algorithms and elliptic curves that the client supports
▪ Whether the client supports secure renegotiation

2. The server returns a server hello message that provides the client with the following information:

▪ The TLS protocol version that the server uses
▪ The cipher suite that the server selects

The server can also provide its own extensions to the client.
3. The server sends a certificate message that provides its certificate chain to the client.
4. The server can optionally send a server key exchange message with additional information that

the client might need to securely derive the same symmetric encryption key that the server generates.
5. The server can optionally send a certificate request message that asks the client to present its

own certificate chain to the server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 321

6. The server sends a server hello done message to inform the client that it has completed its
hello sequence.

7. The client can optionally send a certificate message to the server with its own certificate chain.

 Note:

The client sends a certificate message only when the server initially sends a certificate request.
If the client receives such a request, it can refuse to, and probably will not, send a certificate chain.
The server decides whether to require a client certificate chain. In LDAP, the server commonly asks
the client to present a certificate, but continues with TLS negotiation even if the client does not present
one. This approach supports authentication methods like SASL EXTERNAL, in which a client uses the
certificate chain that it presents during TLS negotiation as proof of its identity.

8. The client derives a symmetric key to use for the remainder of the encrypted processing, and sends
a client key exchange message to the server. The client key exchange message includes
the information that the server needs to generate the same key. Only the client and server know the
value of the key, even if another entity can observe the communication that passes between the client
and the server.

9. If the client presents a certificate chain to the server, it also sends a certificate verify message
to prove that the private key for the certificate is included at the head of the chain.

10. The client sends a change cipher spec message to the server, which informs the server that the
client will use the agreed-upon symmetric key to encrypt everything else that it sends to the server.

11. The client sends a finished message to the server to indicate that it has completed its portion of the
handshake.

12. The server sends a change cipher spec message to the client, which informs the client that the
server will use the agreed-upon symmetric key to encrypt everything else that it sends to the client.

13. The server sends a finished message to the client to indicate that it has completed its portion of the
handshake.

TLS 1.3 uses a different handshake sequence that can require only a single round-trip to exchange the
necessary information between the client and the server. TLS 1.2 requires two round-trips. To accomplish
this task, TLS 1.3 tries to guess the type of key agreement that the server wants to use, and sends the
relevant information to the server up front instead of waiting to hear from the server.

Because an extra round of communication between the client and server is eliminated, the server finishes
its portion of the negotiation before the client. The server must assume that the client trusts its certificate
chain. Because the server might log a successful negotiation only to discover late, through a TLS alert, that
the client rejected the certificate, this approach might complicate certain types of troubleshooting.

Key agreement
Key agreement processing provides a critical component of TLS negotiation.

It allows the client and server to select the symmetric key that encrypts the remainder of the
communication, but does not reveal the key to anyone who can access the communication. Although
several key agreement algorithms are available, the following types are the most common:

RSA key exchange

The client generates random data, uses the server's public key to encrypt it, and provides it to the
server, which uses its private key to decrypt it. The client and server alike derive the encryption key
from the randomly generated data.

Diffie-Hellman (DH) key exchange

The client and server agree publicly on a pair of mathematically linked numbers, and each
participant chooses its own secret value. Through a special computation, they generate a key that
can be discovered only by someone who knows one of the secret values. Although several variants
of the Diffie-Hellman algorithm can be used in key exchange, we recommend the ECHDE and DHE

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 322

versions because they use ephemeral keys with no relation to the server's certificate. Of those two
versions, ECDHE is faster and uses smaller keys.

When possible, use ECHDE over DHE, and either of those options over RSA. The DH algorithms provide
a substantial benefit over RSA in the form of forward secrecy. Because RSA key exchange uses the
server certificate's public key to encrypt data, the encryption can be broken if the certificate's private key is
compromised. This warning applies to previously captured data as well as to communication on new TLS
connections. The use of ephemeral keys in ECDHE and DHE ensures that, even if the certificate's private
key is compromised, the encrypted communication remains indecipherable to anyone but the client and
server, although anyone with the private key can still impersonate the legitimate server.

LDAP StartTLS extended operation
In most scenarios, a client that uses TLS establishes a connection to a port that is dedicated to its use, like
636 (LDAPS) or 443 (HTTPS).

The client begins the TLS-negotiation process by sending a client hello message over the
connection. In some scenarios, the client establishes a non-secure connection and later converts it to a
secure one. In LDAP, this task is accomplished by using the StartTLS extended operation.

The StartTLS extended operation provides the following advantages over a dedicated LDAPS
connection:

▪ To enable secure as well as insecure communication, only one port needs to be opened through a
firewall.

▪ A client can use opportunistic encryption, in which the client performs the following steps:

1. Queries the root DSE to determine whether the server supports StartTLS.
2. Secures the connection, if possible.

Opportunistic encryption is useful in scenarios like following referrals because LDAP URLs do not
officially support LDAPS as a scheme.

To ensure that a communication is always secure, use LDAPS instead of establishing an insecure
connection that you secure later with the StartTLS extended operation. If you enable support for
unencrypted LDAP communication, as StartTLS requires, a client might send a password-containing
bind request or other sensitive data over an unencrypted connection. A server can be configured to reject
unencrypted communication, but it cannot prevent a client from sending an unencrypted request.

 Note:

Although you can use StartTLS to temporarily secure a connection before falling back on an unencrypted
LDAP communication, the server does not support this strategy.

About the manage-certificates tool
PingAuthorize Server offers a manage-certificates tool that enables interaction with Java KeyStore
(JKS) and PKCS #12 key stores.

Although it behaves similarly to the keytool utility that accompanies most Java distributions, manage-
certificates is easier to use, provides improved usage information, and offers additional functionality.

Available manage-certificates subcommands

The manage-certificates tool uses the following subcommands to indicate which function to invoke:

Subcommand Function

list-certificates Lists the certificates in a keystore.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 323

Subcommand Function

import-certificate Imports a certificate into a trusted certificate entry
or imports a certificate chain and private key into a
private key entry.

export-certificate Exports a certificate from a keystore.

export-private-key Exports a private key from a keystore.

generate-self-signed-certificate Generates a self-signed certificate.

generate-certificate-signing-request Generates a certificate-signing request that can be
provided to a certification authority.

sign-certificate-signing-request Signs a certificate-signing request with a specified
issuer certificate.

check-certificate-usability Checks a specified certificate in a keystore to verify
whether it is suitable for use as a listener certificate.

trust-server-certificate Initiates the TLS-negotiation process with a
specified server to obtain its certificate chain so
that a truststore can be updated with the necessary
information to trust the chain.

display-certificate-file Displays the contents of a file that contains one
or more PEM-encoded or DER-encoded X.509
certificates.

display-certificate-signing-request-
file

Displays the contents of a file that contains a PEM-
encoded or DER-encoded PKCS #10 certificate-
signing request (CSR).

change-certificate-alias Changes the alias for an entry in a keystore.

change-keystore-password Changes the password for a keystore.

change-private-key-password Changes the password that protects the private key
for a specified entry in a keystore.

Using manage-certificates as a simple certification authority
If your server instances need to support an arbitrary or unknown set of clients, configure them with
certificates from a trusted issuer, such as a commercial authority or the free Let's Encrypt service.

About this task

If you control every client that accesses the servers, you might want to create your own internal certification
authority so that you have a common issuer for all servers. In such a scenario, the clients need to trust only
the certificates that the issuer signs. Commercial and open-source software packages provide full-featured
certification authority functionality, but you can use the manage-certificates tool to create a certificate
authority (CA) certificate that you can use to sign certificate-signing requests.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 324

Steps

1. Create a CA certificate.

A CA certificate is a self-signed certificate that possesses the following extensions:

▪ A key usage extension that includes at least the keyCertSign usage
▪ A basic constraints extension that identifies the certificate as a CA certificate

If you do not plan to use an intermediate CA certificate, the basic constraints extension must have a
path length constraint of 0. If you plan to use an intermediate CA certificate, the path length constraint
must be 1. Because certificates that the CA certificate signs are valid only for as long as all certificates
in the chain remain valid, we recommend that you specify a long lifespan for the CA certificate.

Example:

The following example creates a new root CA certificate.

$ bin/manage-certificates generate-self-signed-certificate \
 --keystore /ca/root-ca-keystore \
 --keystore-password-file /ca/root-ca-keystore.pin \
 --keystore-type JKS \
 --alias root-ca-cert \
 --subject-dn "CN=Example Root CA,O=Example Corp,C=US" \
 --days-valid 7300 \
 --key-algorithm RSA \
 --key-size-bits 4096 \
 --signature-algorithm SHA256withRSA \
 --basic-constraints-is-ca true \
 --basic-constraints-maximum-path-length 1 \
 --key-usage key-cert-sign \
 --key-usage crl-sign

Successfully created a new JKS keystore.

Successfully generated the following self-signed certificate:
Subject DN: CN=Example Root CA,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Monday, January 27, 2020 at 03:47:29 PM CST (0
 seconds ago)
Validity End Time: Sunday, January 22, 2040 at 03:47:29 PM CST
 (7299 days, 23 hours, 59 minutes, 59 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with RSA
Public Key Algorithm: RSA (4096-bit)
SHA-1 Fingerprint:
 bc:8e:5b:30:52:ec:03:63:b4:9a:aa:1a:45:a0:fc:84:49:dd:e8:64
SHA-256 Fingerprint:

 d5:47:06:cd:a2:95:42:61:1f:c7:aa:04:16:1e:c1:70:41:c4:44:48:bf:74:20:5f:1c:
 61:e2:aa:40:08:3a:ff

2. Export the public portion of the root CA certificate for future reference.

When you import a signed certificate, you can import the public portion of the root CA certificate as a
standalone certificate into trust stores as well as into part of a certificate chain.

3. Create a new certificate signing request to create an intermediate CA certificate,

The certificate signing request uses essentially the same settings as the root CA. If you anticipate
only a single intermediate CA, its basic constraints extension must have a path length constraint of

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 325

0, rather than 1, to indicate that it is used only to sign end-entity certificates and that it cannot create
subordinate CA certificates by itself.

Example:

The following example command creates a certificate signing request.

$ bin/manage-certificates generate-certificate-signing-request \
 --keystore /ca/intermediate-ca-keystore \
 --keystore-password-file /ca/intermediate-ca-keystore.pin \
 --keystore-type JKS \
 --alias intermediate-ca-cert \
 --subject-dn "CN=Example Intermediate CA,O=Example Corp,C=US" \
 --key-algorithm RSA \
 --key-size-bits 4096 \
 --signature-algorithm SHA256withRSA \
 --basic-constraints-is-ca true \
 --basic-constraints-maximum-path-length 0 \
 --key-usage key-cert-sign \
 --key-usage crl-sign \
 --output-file /ca/intermediate-ca-cert.csr \
 --output-format PEM

Successfully created a new JKS keystore.

Successfully generated the key pair to use for the certificate signing
request.

Successfully wrote the certificate signing request to file
'/ca/intermediate-ca-cert.csr'.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 326

4. Use the root CA certificate to sign the certificate signing request for the intermediate CA certificate with
the sign-certificate-signing-request subcommand.

The sign-certificate-signing-request subcommand takes most of the same arguments as
generating a self-signed certificate. The primary differences between the argument sets are as follows:

▪ The key store that contains the certificate uses the provided key store arguments to sign the
request. To specify the name of the certificate to use when signing the request, use the --
signing-certificate-alias argument.

▪ To specify the path to the file that contains the certificate signing request file to generate, provide
a --request-input-file argument.

▪ To specify the path to the file to which the signed certificate is written, provide a --
certificate-output-file argument. If this argument is omitted, the PEM representation of
the certificate is written to standard output.

▪ To specify the format, PEM or DER, in which the certificate is written to the output file, provide an
--output-format argument.

▪ To specify the subject to use for the signed certificate, use the --subject-dn argument. To use
the subject DN from the certificate signing request, omit this argument.

▪ To specify the name of the signature algorithm, use the --signature-algorithm argument.

 Note:

Because the requester generated the key, you cannot specify the key algorithm or the key length.

▪ To indicate that the signed certificate includes every extension that is listed in the certificate
signing request, use the --include-requested-extensions argument. If this argument is not
provided, explicitly specify the set of extensions to include.

Example:

The following example command signs the certificate signing request for an intermediate CA
certificate.

$ bin/manage-certificates sign-certificate-signing-request \
 --keystore /ca/root-ca-keystore \
 --keystore-password-file /ca/root-ca-keystore.pin \
 --signing-certificate-alias root-ca-cert \
 --days-valid 7300 \
 --include-requested-extensions \
 --request-input-file /ca/intermediate-ca-cert.csr \
 --certificate-output-file /ca/intermediate-ca-cert.pem \
 --output-format PEM

Read the following certificate signing request:

PKCS #10 Certificate Signing Request Version: v1
Subject DN: CN=Example Intermediate CA,O=Example Corp,C=US
Signature Algorithm: SHA-256 with RSA
Public Key Algorithm: RSA (4096-bit)

Do you really want to sign this request? yes

Successfully wrote the signed certificate to file
'/ca/intermediate-ca-cert.pem'.

5. After you obtain the intermediate CA certificate, create secure, offline backups of the root CA
certificate.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 327

6. Remove the root CA certificate, or at least its private key, from all systems.

 Note:

Make certain that all end-entity certificates are signed with the intermediate CA certificate, and that the
process is identical to the previous example. Restore the root CA certificate only if you need to sign
another intermediate CA certificate.

Common manage-certificates arguments
Most of the manage-certificates subcommands require access to a Java KeyStore (JKS) or PKCS
#12 keystore. In such instances, use the --keystore argument to specify the path to the keystore.

If the keystore already exists, the tool detects automatically whether it is a JKS or PKCS #12 keystore. If
the operation creates a new keystore, you can specify the type explicitly by using the --keystore-type
argument, followed by a value of JKS or PKCS12. If you do not specify the keystore type, a default value of
JKS is used.

Some situations require you to provide the password that is needed to access the keystore. For a
JKS keystore, you might need to provide a keystore password only for operations that involve creating
a keystore or accessing a private key. However, you will likely need to provide the password for all
operations that involve a PKCS #12 keystore.

To provide a keystore password, use one of the following arguments:

▪ --keystore-password, followed by the clear-text password for the keystore.
▪ --keystore-password-file, followed by the path to a file that contains the password for the

keystore. The file might contain the password in the clear, or it might be encrypted with a definition
from the server's encryption-settings database.

▪ --prompt-for-keystore-password. If this argument is provided, the tool prompts you
interactively to provide the password.

If a private key is protected with a different password than the keystore itself, specify one of the following
arguments to provide the private key password:

▪ --private-key-password, followed by the plaintext password.
▪ --private-key-password-file, followed by the path to a file that contains the clear-text or

encrypted password.
▪ --prompt-for-private-key-password, which causes the tool to prompt interactively for the

password.

Several operations require you to specify the keystore entry to target. In such scenarios, provide the --
alias argument, followed by the name of the alias for that entry.

Listing the certificates in a keystore
List the certificates available in a keystore.

Steps

▪ To list the certificates in a keystore, use the list-certificates subcommand.

This subcommand requires you to specify the path to the keystore file, and possibly the password that
is needed to access the keystore. The following options are also available:

Option Description

--alias {alias} Specifies the alias of the certificate to display.
If this value is not provided, all certificates
are displayed. To list more than one specific
certificate, specify this value multiple times.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 328

Option Description

--display-pem-certificate Includes a PEM-encoded representation of each
certificate as part of the output.

--verbose Includes details about each certificate.

Example:

The following command demonstrates the basic listing of a keystore that contains a single certificate
chain.

$ bin/manage-certificates list-certificates \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin

Alias: server-cert (Certificate 1 of 2 in a chain)
Subject DN: CN=ds1.example.com,O=Example Corp,C=US
Issuer DN: CN=Example Certification Authority,O=Example Corp,C=US
Validity Start Time: Saturday, November 9, 2019 at 11:26:09 AM CST
 (8 minutes, 15 seconds ago)
Validity End Time: Sunday, November 8, 2020 at 11:26:09 AM CST
(364 days, 23 hours, 51 minutes, 44 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP256r1)
SHA-1 Fingerprint: 42:f8:85:97:bf:88:bc:74:4b:5b:ce:0c:54:43:9b:44:6b:
 81:23:a3
SHA-256 Fingerprint: 4f:be:47:ed:36:68:13:38:ba:e8:c0:c5:6c:85:51:97:
 8b:40:1b:76:10:c0:be:80:15:62:06:96:c5:71:30:df
Private Key Available: Yes
The certificate has a valid signature.

Alias: server-cert (Certificate 2 of 2 in a chain)
Subject DN: CN=Example Certification Authority,O=Example Corp,C=US
Issuer DN: CN=Example Certification Authority,O=Example Corp,C=US
Validity Start Time: Saturday, November 9, 2019 at 11:26:08 AM CST
 (8 minutes, 16 seconds ago)
Validity End Time: Friday, November 4, 2039 at 12:26:08 PM CDT
 (7299 days, 23 hours, 51 minutes, 43 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP256r1)
SHA-1 Fingerprint: b8:d0:16:9b:5d:f2:e7:a1:80:79:95:a2:64:b5:aa:ad:80:
 23:64:16
SHA-256 Fingerprint: cf:98:2a:66:35:6e:6d:f9:5d:25:c6:68:68:04:5a:a8:
 88:43:ca:b5:c8:e5:c9:95:09:e9:fc:ab:b9:41:ec:71
The certificate has a valid signature.

Example:

The following sample represents the verbose version of the previous command.

$ bin/manage-certificates list-certificates \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --verbose

Alias: server-cert (Certificate 1 of 2 in a chain)
X.509 Certificate Version: v3
Subject DN: CN=ds1.example.com,O=Example Corp,C=US
Issuer DN: CN=Example Certification Authority,O=Example Corp,C=US
Serial Number: 7b:2d:91:6a:ff:51:4f:7a:19:16:26:4f:ce:cb:cb:31

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 329

Validity Start Time: Saturday, November 9, 2019 at 11:26:09 AM CST
(9 minutes, 48 seconds ago)
Validity End Time: Sunday, November 8, 2020 at 11:26:09 AM CST
 (364 days, 23 hours, 50 minutes, 11 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Signature Value:
 30:46:02:21:00:cb:d5:5e:45:b2:8a:33:5e:2d:85:23:39:49:d1:3f:8f:dc:
 f8:9e:2f:f3:44:2f:41:0d:69:95:ec:f0:f5:c0:80:02:21:00:ef:8f:32:35:
 3c:88:f4:89:ed:f3:a6:76:
 bb:92:6c:eb:c6:17:ac:61:dc:67:26:f0:ec:67:90:51:28:a1:d0:d5
Public Key Algorithm: EC (secP256r1)
Elliptic Curve Public Key Is Compressed: false
Elliptic Curve X-Coordinate:
 -242531537200112594084676766080816663423582032543698976420161979758741
 05796326
Elliptic Curve Y-Coordinate:
 487227145385914945527872889161867481853236780821268431652936646431343
 52536146
Certificate Extensions:
 Subject Key Identifier Extension:
 OID: 2.5.29.14
 Is Critical: false
 Key Identifier:

 21:ad:b9:7a:15:e4:08:13:05:e1:c2:64:0c:86:aa:9b:f0:4c:fb:a0
 Authority Key Identifier Extension:
 OID: 2.5.29.35
 Is Critical: false
 Key Identifier:

 01:4b:69:99:93:5f:76:51:39:95:61:cc:a9:a8:cb:16:f2:0f:8c:c8
 Subject Alternative Name Extension:
 OID: 2.5.29.17
 Is Critical: false
 DNS Name: ds1.example.com
 DNS Name: ds.example.com
 DNS Name: ldap.example.com
 DNS Name: localhost
 IP Address: 127.0.0.1
 IP Address: 0:0:0:0:0:0:0:1
 Key Usage Extension:
 OID: 2.5.29.15
 Is Critical: false
 Key Usages:
 Digital Signature
 Key Encipherment
 Key Agreement
 Extended Key Usage Extension:
 OID: 2.5.29.37
 Is Critical: false
 Key Purpose ID: TLS Server Authentication
 Key Purpose ID: TLS Client Authentication
SHA-1 Fingerprint:
 42:f8:85:97:bf:88:bc:74:4b:5b:ce:0c:54:43:9b:44:6b:81:23:a3
SHA-256 Fingerprint:
 4f:be:47:ed:36:68:13:38:ba:e8:c0:c5:6c:85:51:97:8b:40:1b:76:
 10:c0:be:80:15:62:06:96:c5:71:30:df
Private Key Available: Yes
The certificate has a valid signature.

Alias: server-cert (Certificate 2 of 2 in a chain)
X.509 Certificate Version: v3
Subject DN: CN=Example Certification Authority,O=Example Corp,C=US

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 330

Issuer DN: CN=Example Certification Authority,O=Example Corp,C=US
Serial Number: 43:b7:bb:0c:82:58:42:d8:06:fc:2a:f6:04:e8:2e:8c
Validity Start Time: Saturday, November 9, 2019 at 11:26:08 AM CST
 (9 minutes, 49 seconds ago)
Validity End Time: Friday, November 4, 2039 at 12:26:08 PM CDT
 (7299 days, 23 hours, 50 minutes, 10 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Signature Value:
 30:45:02:21:00:b9:87:50:5d:b7:6a:19:82:99:9b:aa:f1:5d:25:a1:90:3c:
 17:9d:7f:f5:7f:8d:06:b4:57:41:9e:15:c6:5a:af:02:20:0c:00:5e:17:bf:
 ca:bf:0b:ff:db:9f:dc:55:ad:35:eb:df:f6:37:4e:23:83:36:88:d2:cc:
 7d:9e:23:da:78:28
Public Key Algorithm: EC (secP256r1)
Elliptic Curve Public Key Is Compressed: false
Elliptic Curve X-Coordinate:

 -2075310300192093905980033536741576173876470035377253976540506997872632403964
Elliptic Curve Y-Coordinate:

 6707935650390842729237891844088941200265948573168357073736512795355450855373
Certificate Extensions:
 Subject Key Identifier Extension:
 OID: 2.5.29.14
 Is Critical: false
 Key Identifier:

 01:4b:69:99:93:5f:76:51:39:95:61:cc:a9:a8:cb:16:f2:0f:8c:c8
 Basic Constraints Extension:
 OID: 2.5.29.19
 Is Critical: false
 Is CA: true
 Path Length Constraint: 0
 Key Usage Extension:
 OID: 2.5.29.15
 Is Critical: false
 Key Usages:
 Key Cert Sign
 CRL Sign
SHA-1 Fingerprint:
 b8:d0:16:9b:5d:f2:e7:a1:80:79:95:a2:64:b5:aa:ad:80:23:64:16
SHA-256 Fingerprint:

 cf:98:2a:66:35:6e:6d:f9:5d:25:c6:68:68:04:5a:a8:88:43:ca:b5:c8:e5:c9:95:09:
 e9:fc:ab:b9:41:ec:71
The certificate has a valid signature.

Generating self-signed certificates
The process of creating a self-signed certificate is straightforward because a self-signed certificate claims
itself as its own issuer.

Although self-signed certificates are convenient for testing environments, clients do not trust them by
default. Consequently, you should not use them as listener certificates in production environments.

The manage-certificates tool offers a generate-self-signed-certificate subcommand
that can create a self-signed certificate. In addition to the arguments that provide information about the
keystore, certificate alias, and optional private key password, the following arguments are available.

Argument Description

--subject-dn {subject} Subject DN for the certificate to create. This value
is required.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 331

Argument Description

--days-valid {number} Number of days that the certificate remains valid.
Defaults to 365 if no value is specified.

--validity-start-time {timestamp} Indicates the time at which the certificate begins
its validity window. This value is assumed to reflect
the local time zone, and must be expressed in
the form YYYYMMDDhhmmss, where a value of
20190102030405 indicates January 2, 2019, at
3:04:05 AM.

Defaults to the current time if no value is specified.

--key-algorithm {name} Name of the algorithm to use when generating
the key pair. For a listener certificate, this value is
typically RSA or EC.

Defaults to RSA if no value is specified.

 Note:

This argument cannot be used in conjunction
with the --replace-existing-certificate
argument.

--key-size-bits {number} Length of the key, in bits, to generate. If the --
key-algorithm argument is given, then --key-
size-bits {number} must also be specified.
Conversely, if the --replace-existing-
certificate argument is given, then --key-
size-bits {number} must not be specified.
Typical key sizes are:

▪ RSA key – 2048 or 4096 bits

If a default RSA key is used but this argument
is not provided, a default key size of 2048 bits
is used.

▪ Elliptic curve key – 256 or 384 bits

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 332

Argument Description

--signature-algorithm {name} Name of the algorithm to use to sign the certificate.
If the --key-algorithm argument is used to
specify an algorithm other than RSA, then --
signature-algorithm {name} must also be
specified.

If the --replace-existing-certificate
argument is used, then --signature-
algorithm {name} must not be specified.

Typical signature algorithms include
SHA256withRSA for certificates with RSA keys,
and SHA256withECDSA for certificates with elliptic
curve keys. If a default key algorithm is used but
the --signature-algorithm {name} argument
is not provided, a default value of SHA256withRSA
is used.

--replace-existing-certificate Uses the new certificate to replace an existing
certificate in the key store (within the same alias),
and reuses the key for that certificate.

--inherit-extensions Indicates that, when replacing an existing
certificate, the new certificate contains the same
set of extensions as the existing certificate. If the
--replace-existing-certificate argument
is provided, but the --inherit-extensions
argument is omitted, the new certificate contains
only arguments that are provided explicitly.

--subject-alternative-name-dns {name} Indicates that the certificate is expected to have
a subject alternative name extension with the
provided DNS name. The given name must be fully
qualified, although it can contain an asterisk (*) as
a wildcard in the leftmost component.

To include multiple DNS names in the subject
alternative name extension, specify the --
subject-alternative-name-dns {name}
argument multiple times.

--subject-alternative-name-ip-address
{address}

Indicates that the certificate is expected to have
a subject alternative name extension with the
provided IP address. The given address must be
a valid IPv4 or IPv6 address. No wildcards are
allowed.

To include multiple IP addresses in the subject
alternative name extension, specify the --
subject-alternative-name-ip-address
{address} argument multiple times.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 333

Argument Description

--subject-alternative-name-email-
address {address}

Indicates that the certificate is expected to have
a subject alternative name extension with the
provided email address.

To include multiple email addresses in the subject
alternative name extension, specify the --
subject-alternative-name-email-address
{address} argument multiple times.

--subject-alternative-name-uri {uri} Indicates that the certificate is expected to have
a subject alternative name extension with the
provided URI.

To include multiple URIs in the subject alternative
name extension, specify the --subject-
alternative-name-uri {uri} argument
multiple times.

--subject-alternative-name-oid {oid} Indicates that the certificate is expected to have
a subject alternative name extension with the
provided object identifier (OID). The given value
must be a valid OID.

To include multiple OIDs in the subject alternative
name extension, specify the --subject-
alternative-name-oid {oid} argument
multiple times.

--basic-constraints-is-ca {value} Indicates that the certificate is expected to have a
basic constraints extension, with a specified value
of true or false, for the flag indicating whether to
consider the certificate a certification authority that
can be used to sign other certificates.

▪ For root and intermediate certificate
authority (CA) certificates, the --basic-
constraints-is-ca {value} argument
must be present with a value of true.

▪ For end-entity certificates, the --basic-
constraints-is-ca {value} argument
can optionally be present with a value of
false.

▪ For a self-signed certificate, specify the --
basic-constraints-is-ca {value}
argument with a value of false to indicate
that the certificate is not considered a CA
certificate.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 334

Argument Description

--basic-constraints-maximum-path-
length {number}

Indicates that the basic constraints extension
is expected to include a path length constraint
element with the specified value. Use this argument
only if --basic-constraints-is-ca is
provided with a value of true.

A path length constraint value of 0 indicates that
the certificate can be used to issue only end-
entity certificates. A path length constraint value
of 1 indicates that the certificate can be used to
sign end-entity certificates or intermediate CA
certificates, the latter of which can be used to sign
only end-entity certificates.

A value greater than 1 indicates the presence of
several intermediate CA certificates between it and
the end-entity certificate at the head of the chain.

--key-usage {value} Indicates that the certificate is expected to have a
key usage extension with the specified value. The
following values are allowed:

▪ digital-signature
▪ non-repudiation
▪ key-encipherment
▪ data-encipherment
▪ key-agreement
▪ key-cert-sign
▪ crl-sign
▪ encipher-only
▪ decipher-only

To include multiple key usages, specify the --key-
usage {value} argument multiple times.

--extended-key-usage {value} Indicates that the certificate is expected to have an
extended key usage extension with the specified
value. The following values are allowed:

▪ server-auth
▪ client-auth
▪ code-signing
▪ email-protection
▪ time-stamping
▪ ocsp-signing

Example

For example, the following command can be used to generate a self-signed server certificate.

bin/manage-certificates generate-self-signed-certificate \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --keystore-type JKS \
 --alias server-cert \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 335

 --subject-dn "CN=ds.example.com,O=Example Corp,C=US" \
 --key-algorithm EC \
 --key-length-bits 256 \
 --signature-algorithm SHA256withECDSA \
 --subject-alternative-name-dns ds.example.com \
 --subject-alternative-name-dns ds1.example.com \
 --subject-alternative-name-dns localhost \
 --subject-alternative-name-ip-address 1.2.3.4 \
 --subject-alternative-name-ip-address 127.0.0.1 \
 --subject-alternative-name-ip-address 0:0:0:0:0:0:0:1 \
 --key-usage digital-signature \
 --key-usage key-encipherment \
 --key-usage key-agreement \
 --extended-key-usage server-auth \
 --extended-key-usage client-auth

Successfully created a new JKS keystore.

Successfully generated the following self-signed certificate:
Subject DN: CN=ds.example.com,O=Example Corp,C=US
Issuer DN: CN=ds.example.com,O=Example Corp,C=US
Validity Start Time: Monday, January 27, 2020 at 03:40:13 PM CST
 (0 seconds ago)
Validity End Time: Tuesday, January 26, 2021 at 03:40:13 PM CST
 (364 days, 23 hours, 59 minutes, 59 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP256r1)
SHA-1 Fingerprint:
 4f:41:82:7f:08:e9:d8:05:8c:19:8b:3e:5b:bc:59:98:d3:15:71:3a
SHA-256 Fingerprint:

 76:e6:8e:c5:c8:8d:27:ce:2b:85:b9:8c:9d:49:3c:06:f4:40:f1:d0:70:67:39:24:fc:
 31:bc:f8:51:83:f2:42

Generating certificate signing requests
A certificate signing request (CSR) contains all of the information that a certification authority requires to
issue a certificate.

RFC 2986 defines the request format, also known as PKCS #10, and includes the following elements:

▪ Certificate signing request version
▪ Requested subject distinguished name (DN) for the certificate
▪ Public key for the requested certificate
▪ Requested set of extensions for the certificate
▪ Signature that proves the requester has the private key for the given public key

To create a certificate signing request, use the manage-certificates generate-certificate-
signing-request command, which performs the following steps:

1. Generated a public and private key pair.
2. Stores the key pair in a key store with a given alias.
3. Outputs the certificate signing request to the terminal.
4. Optionally writes the certificate signing request to a file.

Because a certificate signing request contains many of the same elements as a certificate, the command to
generate one takes most of the same arguments as for generating a self-signed certificate. The following
arguments are unavailable when generating a CSR:

▪ --replace-existing-certificate
▪ --days-valid {number}
▪ --validity-start-time {timestamp}

Copyright ©2024

https://tools.ietf.org/rfc/rfc2986.txt

PingAuthorize | PingAuthorize Server Administration Guide | 336

The following arguments are available when generating a certificate signing request but not when
generating a self-signed certificate:

--output-file {path}

Path to a file to which the certificate signing request is written. If this value is not provided, the
request is written only to the terminal in PEM form.

--output-format {value}

Format to use when writing the certificate signing request. This value can be PEM or DER, but the
DER format is used only in conjunction with the --output-file argument. Defaults to PEM if the
--output-format {value} argument is not provided.

--use-existing-key-pair

Indicates that the CSR uses a key pair that already exists in the key store with the given alias, rather
than generating a new key pair, in which case the specified alias must not already be in use in the
key store.

The following example command creates a CSR.

bin/manage-certificates generate-certificate-signing-request \
 --output-file ds1-cert.csr \
 --output-format PEM \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --keystore-type JKS \
 --alias server-cert \
 --subject-dn "CN=ds.example.com,O=Example Corp,C=US" \
 --key-algorithm EC \
 --key-length-bits 256 \
 --signature-algorithm SHA256withECDSA \
 --subject-alternative-name-dns ds.example.com \
 --subject-alternative-name-dns ds1.example.com \
 --subject-alternative-name-dns localhost \
 --subject-alternative-name-ip-address 1.2.3.4 \
 --subject-alternative-name-ip-address 127.0.0.1 \
 --subject-alternative-name-ip-address 0:0:0:0:0:0:0:1 \
 --key-usage digital-signature \
 --key-usage key-encipherment \
 --key-usage key-agreement \
 --extended-key-usage server-auth \
 --extended-key-usage client-auth

If the contents of the resulting CSR file are made available to a certification authority to be signed, the
resulting signed certificate can be imported into the key store.

To print the contents of a certificate signing request file, use the display-certificate-signing-
request-file subcommand, which supports the following arguments:

--certificate-signing-request-file {path}

Path to the file that contains the certificate signing request to display.

--verbose

Indicates that the command is expected to display verbose information about the request, rather
than a basic information set.

The following example demonstrates the basic output from the command.

$ bin/manage-certificates display-certificate-signing-request-file \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 337

 --certificate-signing-request-file ds1-cert.csr

 PKCS #10 Certificate Signing Request Version: v1
 Subject DN: CN=ds.example.com,O=Example Corp,C=US
 Signature Algorithm: SHA-256 with ECDSA
 Public Key Algorithm: EC (secP256r1)

The following example demonstrates the verbose output.

$ bin/manage-certificates display-certificate-signing-request-file \
 --certificate-signing-request-file ds1-cert.csr \
 --verbose

PKCS #10 Certificate Signing Request Version: v1
Subject DN: CN=ds.example.com,O=Example Corp,C=US
Signature Algorithm: SHA-256 with ECDSA
Signature Value:

 30:45:02:20:46:31:be:9e:6d:2f:0e:e3:d0:80:5c:88:ef:da:86:07:fd:15:b7:62:
 83:45:39:0a:c9:f2:f9:17:eb:08:94:ff:02:21:00:c8:bd:df:57:fa:ea:8c:04:
 df:c5:27:76:e5:b3:3b:4f:df:ec:d3:e4:09:5b:c0:6c:7b:86:39:ec:d0:0e:c1:64
Public Key Algorithm: EC (secP256r1)
Elliptic Curve Public Key Is Compressed: false
Elliptic Curve X-Coordinate:
 2086285379047579631978894716670982397622966387996624365020701122793024
 3221133
Elliptic Curve Y-Coordinate:
 479697739226644990505743464941788269420922508654777168408919906254139
 60212095
Certificate Extensions:
 Subject Key Identifier Extension:
 OID: 2.5.29.14
 Is Critical: false
 Key Identifier:
 f2:de:fd:bf:d3:2f:96:ef:01:70:2d:0e:85:f5:fb:17:d5:a0:9e:67
 Subject Alternative Name Extension:
 OID: 2.5.29.17
 Is Critical: false
 DNS Name: ds.example.com
 DNS Name: ds1.example.com
 DNS Name: localhost
 IP Address: 1.2.3.4
 IP Address: 127.0.0.1
 IP Address: 0:0:0:0:0:0:0:1
 Key Usage Extension:
 OID: 2.5.29.15
 Is Critical: false
 Key Usages:
 Digital Signature
 Key Encipherment
 Key Agreement
 Extended Key Usage Extension:
 OID: 2.5.29.37
 Is Critical: false
 Key Purpose ID: TLS Server Authentication
 Key Purpose ID: TLS Client Authentication

Importing signed and trusted certificates
Use the manage-certificates import-certificate command to import certificates into a
keystore.

This command is used to accomplish the following tasks:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 338

▪ Import a certificate that a certification authority has signed into the keystore in which the key pair was
generated. In this scenario, the certificate is imported into a private key entry and must be imported as
a certificate chain rather than an end-entity certificate.

▪ Import a trusted issuer certificate into a trust store. In this scenario, the certificate is imported into a
trusted certificate entry as a single certificate instead of as a chain.

▪ Import a certificate chain, along with the private key for the end-entity certificate. This approach
imports certificates that were generated through another library, like OpenSSL.

In addition to the arguments that provide information about the key store and the alias into which the
certificate or certificate chain is imported, the manage-certificates import-certificate
command accepts the following arguments:

--certificate-file {path}

Path to the file that contains the certificate to import. The certificate can be in PEM or DER format
and can be a single certificate or a certificate chain. If the certificates in the chain reside in separate
files, specify the --certificate-file {path} argument multiple times when you import a
certificate chain.

--private-key-file {path}

Path to the file containing the private key that corresponds to the certificate at the head of the
imported chain. The private key can be in PEM or DER format.

--no-prompt

Indicates that the certificate is to be imported without prompting for confirmation. By default, a
summary of the certificate is displayed, and you must confirm that you want to import it.

The following example command imports a signed certificate into the key store that generates the
certificate signing request.

$ bin/manage-certificates import-certificate \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --alias server-cert \
 --certificate-file ds1-cert.pem \
 --certificate-file ca-cert.pem

The following certificate chain will be imported into the keystore into
 alias
'server-cert', preserving the existing private key associated with that
 alias:

Subject DN: CN=ds.example.com,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Sunday, November 10, 2019 at 09:09:23 PM CST
 (4 minutes, 16 seconds ago)
Validity End Time: Monday, November 9, 2020 at 09:09:23 PM CST
 (364 days, 23 hours, 55 minutes, 43 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP256r1)
SHA-1 Fingerprint:
 02:51:25:43:3e:68:f5:71:36:e3:5d:df:74:de:f6:a1:5a:db:0f:eb
SHA-256 Fingerprint: 1d:b5:eb:3c:f5:ff:bf:79:a2:a5:86:b8:e4:33:76:4d:d7:
 50:dc:a4:34:95:37:be:89:45:86:1f:5d:79:c3:93

Subject DN: CN=Example Root CA,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Sunday, November 10, 2019 at 09:00:07 PM CST
 (13 minutes, 32 seconds ago)
Validity End Time: Saturday, November 5, 2039 at 10:00:07 PM CDT

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 339

 (7299 days, 23 hours, 46 minutes, 27 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP384r1)
SHA-1 Fingerprint:
 0e:5c:21:c9:a5:36:0a:24:eb:aa:55:b6:a5:94:0e:e0:56:03:22:e6
SHA-256 Fingerprint:
 77:cf:66:d7:3c:8a:fd:67:2d:b7:36:fd:60:1d:ca:eb:1b:03:b1:
 12:7b:10:1f:26:05:b7:b9:0d:02:e0:38:3e

Do you want to import this certificate chain into the keystore? yes

Successfully imported the certificate chain.

If you do not provide the --no-prompt argument, the manage-certificates import-certificate
tool still displays information about the certificates to import. To view additional information about a
certificate before you import it, use the display-certificate-file subcommand, which supports the
following arguments:

--certificate-file {path}

Path to the file that contains the certificate to view.

--verbose

Displays verbose information about the certificate.

The output of the display-certificate-file subcommand has the same format and content as the
list-certificates subcommand.

Exporting certificates
Use the export-certificate subcommand to export a single certificate or a certificate chain from a
key store to a file in PEM or DER format.

The export-certificate subcommand supports the normal arguments about the key store and
certificate alias, in addition to the following arguments:

--output-file {path}

Path to the file to which exported certificates are written. If this value is not provided, the certificates
are written to standard output rather than a file.

--output-format {format}

Format in which exported certificates are written. The value can be PEM or DER, but the DER format
can be used only if the output is written to a file. Defaults to PEM if no value is specified.

--export-certificate-chain

Indicates that a certificate chain, rather than the end-entity certificate only, is to be exported.

--separate-file-per-certificate

Indicates the use of separate output files for each exported certificate, rather than placing all of the
certificates in a single file. If this argument is provided and multiple certificates are to be exported,
then .1 is appended to the path for the indicated output file for the first certificate in the chain, .2 is
appended for the second certificate, and so on.

The following example exports a certificate chain.

$ bin/manage-certificates export-certificate \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --alias server-cert \
 --output-file server-cert.pem \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 340

 --output-format PEM \
 --export-certificate-chain \
 --separate-file-per-certificate

Successfully exported the following certificate to '/ds/server-cert.pem.1':
Subject DN: CN=ds.example.com,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Sunday, November 10, 2019 at 09:09:23 PM CST
 (3 hours, 26 minutes, 23 seconds ago)
Validity End Time: Monday, November 9, 2020 at 09:09:23 PM CST
 (364 days, 20 hours, 33 minutes, 36 seconds from
 now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP256r1)
SHA-1 Fingerprint:
 02:51:25:43:3e:68:f5:71:36:e3:5d:df:74:de:f6:a1:5a:db:0f:eb
SHA-256 Fingerprint:
1d:b5:eb:3c:f5:ff:bf:79:a2:a5:86:b8:e4:33:76:4d:d7:50:dc:a4:34:95:37:be:89:45:
86:1f:5d:79:c3:93

Successfully exported the following certificate to '/ds/server-cert.pem.2':
Subject DN: CN=Example Root CA,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Sunday, November 10, 2019 at 09:00:07 PM CST
 (3 hours, 35 minutes, 39 seconds ago)
Validity End Time: Saturday, November 5, 2039 at 10:00:07 PM CDT
 (7299 days, 20 hours, 24 minutes, 20 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with ECDSA
Public Key Algorithm: EC (secP384r1)
SHA-1 Fingerprint:
 0e:5c:21:c9:a5:36:0a:24:eb:aa:55:b6:a5:94:0e:e0:56:03:22:e6
SHA-256 Fingerprint:
 77:cf:66:d7:3c:8a:fd:67:2d:b7:36:fd:60:1d:ca:eb:1b:03:b1:12:7b:10:1f:26:
 05:b7:b9:0d:02:e0:38:3e

The export-certificate subcommand exports only the public portion of a certificate. Its private key is
not included. To export the private key, use the export-private-key subcommand, which supports the
following arguments, in addition to the usual key store and alias arguments:

--output-file {path}

Path to the file to which the exported private key is written. If this value is not provided, the key is
written to standard output rather than a file.

--output-format {format}

Format in which the exported private key is written. The value can be PEM or DER, but the DER
format is used only if the output is written to a file. Defaults to PEM if no value is specified.

The following code provides an example of the export-private-key subcommand .

$ bin/manage-certificates export-private-key \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --alias server-cert \
 --output-file server-cert-key.pem \
 --output-format PEM

Successfully exported the private key.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 341

Enabling TLS support during server setup
Enable TLS support in the server.

To enable TLS support in the server, you should complete one of the following tasks during the setup
procedure:

▪ Provide a key store that contains the certificate to use.
▪ Make the installer generate a self-signed certificate.

When using the setup tool in interactive mode, it prompts you for the information that it needs to configure
secure communication.

When using setup in non-interactive mode, use the following arguments to configure TLS support.

Argument Description

--ldapsPort {port} Server enables support for LDAPS (LDAP over
TLS) on the specified TCP port.

--httpsPort {port} Server enables support for HTTPS for SCIM,
the Directory REST API, and the web-based
administration console on the specified TCP port.

--enableStartTLS LDAP connection handler enables support for the
StartTLS extended operation.

--generateSelfSignedCertificate setup generates a self-signed certificate that is
presented to clients that use LDAPS, HTTPS, and
the StartTLS extended operation.

--useJavaKeyStore {path} Server uses the specified Java KeyStore (JKS)
key store to obtain the certificate chain that it
presents to clients that use LDAPS, HTTPS, and
the StartTLS extended operation.

--usePKCS12KeyStore {path} Server uses the specified PKCS #12 key store
to obtain the certificate chain that it presents to
clients that use LDAPS, HTTPS, and the StartTLS
extended operation.

--usePKCS11KeyStore Server uses a PKCS #11 key store, like a hardware
security module, to obtain the certificate chain that
it presents to clients that use LDAPS, HTTPS,
and the StartTLS extended operation. The Java
Virtual Machine (JVM) must already be configured
to access the appropriate key store through PKCS
#11.

--keyStorePassword {password} Password that is needed to interact with the
specified JKS, PKCS #12, or PKCS #11 key store.
The setup tool assumes that the private key
password matches the key store password.

--keyStorePasswordFile {path} Path to the file that contains the password needed
to interact with the specified JKS, PKCS #12, or
PKCS #11 key store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 342

Argument Description

--certNickname {alias} Alias of the private key entry in the specified key
store that contains the certificate chain to present
to clients during TLS negotiation. This argument is
optional but recommended if the key store contains
multiple certificates.

--useJavaTrustStore {path} Server uses the specified JKS trust store to
determine whether to trust certificate chains that
are presented to it during TLS negotiation.

--usePKCS12TrustStore {path} Server uses the specified PKCS #12 trust store to
determine whether to trust certificate chains that
are presented to it during TLS negotiation

--trustStorePassword {password} Password that is needed to interact with the
specified JKS or PKCS #11 trust store.

--trustStorePasswordFile {path} Path to the file that contains the password needed
to interact with the specified JKS or PKCS #11 trust
store.

The following example command sets up PingAuthorize in non-interactive mode with an existing certificate.

$./setup \
 --no-prompt \
 --acceptLicense \
 --ldapPort 8389 \
 --ldapsPort 8636 \
 --httpsPort 8443 \
 --enableStartTLS \
 --useJavaKeyStore config/keystore \
 --keyStorePasswordFile config/keystore.pin \
 --certNickname server-cert \
 --useJavaTrustStore config/truststore \
 --trustStorePasswordFile config/truststore.pin \
 --rootUserDN "cn=Directory Manager" \
 --rootUserPasswordFile root-pw.txt \
 --maxHeapSize 1g \
 --location Austin \
 --instanceName paz1
 .
 .
 .

Initializing Done
Configuring PingAuthorize Server Done
Configuring Certificates Done
Creating Encryption Settings Done
Starting PingAuthorize Server Done

The server is now ready for configuration. You may either run the
create-initial-config tool to continue configuration or import an
existing configuration using dsconfig.

Access product documentation from https://myhostname:8443/docs/index.html

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 343

Enabling TLS support after setup
If the server has been set up without support for TLS, enable TLS support later by completing the following
tasks.

Steps

1. Obtain a certificate chain.

For more information about obtaining a certificate chain, see Certificate chains on page 315. To
prepare a Java KeyStore JKS or PKCS #12 key store with an appropriate certificate chain and private
key, use the manage-certificates tool. We also recommend that you create a trust store that the
server can use.

2. Configure the key and trust manager providers.

For more information, see Configuring key and trust manager providers on page 343.

3. Configure connection handlers.

For more information, see Configuring TLS connection handlers on page 343.

Configuring key and trust manager providers
After you have a key store, configure a key manager provider to access it.

The server is preconfigured with key manager providers, JKS and PKCS12, that you can use with JKS or
PKCS #12 key stores, respectively. You can update the appropriate key manager provider in most cases to
reference the key store that you plan to use. The following code provides an example.

dsconfig set-key-manager-provider-prop \
 --provider-name JKS \
 --set enabled:true \
 --set key-store-file:config/keystore \
 --set key-store-pin-file:config/keystore.pin

A similar change configures a trust manager provider to reference the appropriate trust store. The following
code provides an example.

dsconfig set-trust-manager-provider-prop \
 --provider-name JKS \
 --set enabled:true \
 --set include-jvm-default-issuers:true \
 --set trust-store-file:config/truststore \
 --set trust-store-pin-file:config/truststore.pin

 Note:

If all clients and servers use certificates that are signed by issuers and are included in the JVM's default
trust store, you can use the JVM-Default trust manager provider to accomplish this task.

Configuring TLS connection handlers
After you configure the key and trust manager providers, update the connection handlers to use the key
and trust manager providers.

Steps

▪ For the LDAP connection handler, use the following command to enable StartTLS with a configuration
change. By default, the LDAP connection handler accepts non-secure connections.

Example:

dsconfig set-connection-handler-prop \
 --handler-name "LDAP Connection Handler" \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 344

 --set allow-start-tls:true \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS \
 --set ssl-cert-nickname:server-cert \
 --set ssl-client-auth-policy:optional

▪ If you did not configure secure communication during setup, the LDAPS connection handler is
disabled. To configure LDAPS support in this scenario, enable the connection handler and configure
most of the same settings. You must set allow-start-tls to false and use-ssl to true. See
the following code for an example configuration.

Example:

dsconfig set-connection-handler-prop \
 --handler-name "LDAPS Connection Handler" \
 --set enabled:true \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS \
 --set ssl-cert-nickname:server-cert \
 --set ssl-client-auth-policy:optional

Example: The following example uses a similar configuration change to enable the HTTPS connection
handler.

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true \
 --set listen-port:443 \
 --set key-manager-provider:JKS \
 --set trust-manager-provider:JKS \
 --set ssl-cert-nickname:server-cert

Updating the topology registry
After the server connection handlers are updated to enable TLS, update the topology registry to provide
information about the new configuration.

The topology registry holds information about server instances that are part of the environment, and it
helps to facilitate inter-server communication, such as replication, mirroring portions of the configuration,
and the PingAuthorize automatic backend server-discovery functionality.

The following table details the two types of entries that require updating.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 345

Configuration types and their update descriptions

Configuration Type Update description

Server instance listener configuration ▪ Provides information that is needed to trust the
TLS certificates that instances in the topology
present.

▪ The server instance listener configuration must
include the server certificate, which is defined
as the certificate at the head of the chain. This
version must be the multi-line, PEM-formatted
representation of the certificate. You can use
dsconfig to import the certificate from a file,
as shown in the following example.

bin/dsconfig set-server-instance-
listener-prop \
 --instance-name ds1 \
 --listener-name ldap-listener-
mirrored-config \
 --set server-ldap-port:636 \
 --set connection-security:ssl \
 --set 'listener-certificate>/
ca/ds1-cert.pem'

 Note:

The less-than operator > in the final line
indicates that the value is read from a file
rather than provided directly. In addition,
you might not need to enclose the property
name and path within single straight quotes to
prevent the shell from interpreting the less-than
symbol as an attempt to redirect input.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 346

Configuration Type Update description

Server instance configuration ▪ Provides information about options for
communicating with those instances.

▪ Update the server instance configuration
object to reflect the new methods that are
available for communication with the instance.
For example, the preferred-security
property identifies the mechanism by which
other instances in the topology attempt to
communicate with the instance.

The following example code sets the LDAPS and
HTTPS ports, indicates that StartTLS support is
enabled, and instructs other instances to use SSL
(LDAPS) when communicating with the instance.

dsconfig set-server-instance-prop \
 --instance-name ds1 \
 --set ldaps-port:636 \
 --set https-port:443 \
 --set preferred-security:ssl \
 --set start-tls-enabled:true

Troubleshooting TLS-related issues
Use this section for troubleshooting problems that might arise during TLS configuration, including
communication and security issues that affect clients as well as PingAuthorize.

▪ Log messages
▪ manage-certificates check-certificate-usability
▪ ldapsearch
▪ Using low-level TLS debugging

Log messages
The following describes how to use the server's log messages to troubleshoot TLS-related issues.

To troubleshoot TLS-related issues, start by checking the server's access log. If the client can establish a
TCP connection to the server, which must occur before TLS negotiation can start, the access log shows a
CONNECT message with the following information:

▪ Source and destination address and port for the connection
▪ Protocol
▪ Selected client connection policy

The CONNECT message does not appear

If the CONNECT does not appear, the client might be unable to communicate with the server. The culprit
can be a network problem, a firewall that is blocking attempts to communicate, or the client is trying to use
an incorrect address or port.

The CONNECT message does appear

If the CONNECT message appears in the access log, it typically includes a conn element that specifies the
connection ID. To view additional log messages for the client connection, use the search-logs tool. For
example, if the connection ID is 12345, the following command displays the complete set of associated log
messages.

$ bin/search-logs --logFile logs/access conn=12345

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 347

If you are using LDAPS

If you are attempting to use LDAPS, one of the following log messages appears next:

▪ SECURITY-NEGOTIATION message – Indicates that the client and server successfully completed
the negotiation process and that the issue likely occurred after the TLS session was established. This
message also includes details about the negotiation, including the TLS protocol and the selected
cipher suite.

▪ DISCONNECT message – The issue might involve a failure in the TLS-negotiation process. In such
scenarios, the message usually includes a reason element that provides additional information about
the reason for the disconnect.

If the failure occurred during TLS negotiation, the usefulness of the DISCONNECT message depends
in part on whether the failure occurred on the client or the server. For example, if the server decided to
abort the negotiation, the message ideally contains the specific reason. If the problem occurred on the
client, the log message likely contains only the general category for the failure.

 Note:

The TLS protocol does not provide a mechanism for conveying detailed error messages. Instead, it
offers only a basic alert mechanism with a fixed set of alert types. For example, if a client does not
trust the certificate chain that the server presents to it, the server might receive a generic alert like
certificate_unknown, even if the client knows the precise reason for rejecting the chain. In such
instances, you might need to determine whether the client can provide additional details about the
issue.

If the access log does not provide useful information

If the access log does not provide useful information, check the server error log. Although the error
log does not normally include information about issues that relate to client communication, it provides
helpful information in certain circumstances, like when an internal error within the server interferes with
communication attempts.

About manage-certificates check-certificate-usability
The manage-certificates tool offers a check-certificate-usability subcommand to
examine a specified entry in a key store and to identify potential issues that might interfere with secure
communication.

The check-certificate-usability tool completes the following tasks:

▪ Ensures that a specified entry in the key store includes a private key and a complete certificate chain
▪ Checks whether the certificate at the root of the chain is found in the Java virtual machine's (JVM's)

default set of trusted certificates
▪ Ensures that the current time lies is within the validity window for all certificates in the chain
▪ Validates the signatures for all certificates in the chain
▪ Warns if the end-entity certificate is self-signed
▪ Warns if the end-entity certificate does not contain an extended key usage extension with the
serverAuth usage

▪ Warns if the issuer certificates do not have a key usage extension with the keyCertSign usage
▪ Warns if the issuer certificates do not have a basic constraints extension indicating that it can operate

as a certification authority

If the chain violates a path length constraint, the check-certificate-usability tool reports an
error.

▪ Ensures that the signature algorithm uses a strong message digest algorithm, like SHA-256

The check-certificate-usability tool reports an error for weak digest algorithms like MD5 or
SHA-1, and reports a warning for unrecognized digest algorithms.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 348

▪ Ensures that none of the certificates that use an RSA key pair have a key size less than 2048 bits

The following example demonstrates the usage for the manage-certificates check-certificate-
usability command and its output when no problems are identified.

$ bin/manage-certificates check-certificate-usability \
 --keystore config/keystore \
 --keystore-password-file config/keystore.pin \
 --alias server-cert

Successfully retrieved the certificate chain for alias 'server-cert':

Subject DN: CN=ds1.example.com,O=Example Corp,C=US
Issuer DN: CN=Example Intermediate CA,O=Example Corp,C=US
Validity Start Time: Tuesday, November 12, 2019 at 03:52:44 PM CST
 (5 minutes, 45 seconds ago)
Validity End Time: Wednesday, November 11, 2020 at 03:52:44 PM CST
 (364 days, 23 hours, 54 minutes, 14 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with RSA
Public Key Algorithm: RSA (2048-bit)
SHA-1 Fingerprint:
 84:e4:00:b9:f0:6b:58:bb:ac:67:79:28:2f:43:9f:e3:ac:24:ee:98
SHA-256 Fingerprint:
 63:85:4d:2c:50:ea:a8:84:54:e0:73:9a:e7:5b:e7:1b:06:85:0e:
 28:2b:76:a9:8b:57:fc:27:f7:60:81:48:41

Subject DN: CN=Example Intermediate CA,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Tuesday, November 12, 2019 at 03:52:42 PM CST
 (5 minutes, 47 seconds ago)
Validity End Time: Monday, November 7, 2039 at 03:52:42 PM CST
 (7299 days, 23 hours, 54 minutes, 12 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with RSA
Public Key Algorithm: RSA (4096-bit)
SHA-1 Fingerprint:
 de:da:3d:fc:d4:1f:67:79:0a:a1:5a:cd:ca:4a:7e:a5:d3:46:88:27
SHA-256 Fingerprint:

 02:3c:af:ad:b7:07:81:89:45:48:d0:09:31:a8:90:c4:17:11:1c:00:11:fd:49:b2:2c:
 ba:ac:dd:c4:9f:03:36

Subject DN: CN=Example Root CA,O=Example Corp,C=US
Issuer DN: CN=Example Root CA,O=Example Corp,C=US
Validity Start Time: Tuesday, November 12, 2019 at 03:52:38 PM CST
 (5 minutes, 51 seconds ago)
Validity End Time: Monday, November 7, 2039 at 03:52:38 PM CST
 (7299 days, 23 hours, 54 minutes, 8 seconds from now)
Validity State: The certificate is currently within the validity window.
Signature Algorithm: SHA-256 with RSA
Public Key Algorithm: RSA (4096-bit)
SHA-1 Fingerprint:
 8e:03:e4:58:e6:e3:59:9a:55:77:c0:88:3c:fa:d7:29:f4:ff:de:6c
SHA-256 Fingerprint:
 95:54:0d:e2:aa:48:29:c1:25:7c:20:69:c0:27:33:31:81:07:02:
 2e:00:24:ae:49:5e:98:bd:a3:72:a5:05:26

OK: The certificate chain is complete. Each subsequent certificate is
the issuer for the previous certificate in the chain, and the chain ends
with a self-signed certificate.

OK: Certificate 'CN=ds1.example.com,O=Example Corp,C=US' has a valid

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 349

signature.

OK: Certificate 'CN=Example Intermediate CA,O=Example Corp,C=US' has a
valid signature.

OK: Certificate 'CN=Example Root CA,O=Example Corp,C=US' has a valid
signature.

OK: Certificate 'CN=ds1.example.com,O=Example Corp,C=US' will expire at
Wednesday, November 11, 2020 at 03:52:44 PM CST (364 days, 23 hours, 54
minutes, 14 seconds from now), which is not in the near future.

OK: Issuer certificate 'CN=Example Intermediate CA,O=Example Corp,C=US'
will expire at Monday, November 7, 2039 at 03:52:42 PM CST (7299 days, 23
hours, 54 minutes, 12 seconds from now), which is not in the near future.

OK: Issuer certificate 'CN=Example Root CA,O=Example Corp,C=US' will
expire at Monday, November 7, 2039 at 03:52:38 PM CST (7299 days, 23
hours, 54 minutes, 8 seconds from now), which is not in the near future.

OK: Certificate 'CN=ds1.example.com,O=Example Corp,C=US' at the head of
the chain includes an extended key usage extension, and that extension
includes the serverAuth usage.

OK: Issuer certificate 'CN=Example Intermediate CA,O=Example Corp,C=US'
includes a basic constraints extension, and the certificate chain
satisfies those constraints.

OK: Issuer certificate 'CN=Example Intermediate CA,O=Example Corp,C=US'
includes a key usage extension with the keyCertSign usage flag set to
true.

OK: Issuer certificate 'CN=Example Root CA,O=Example Corp,C=US' includes
a basic constraints extension, and the certificate chain satisfies those
constraints.

OK: Issuer certificate 'CN=Example Root CA,O=Example Corp,C=US' includes
a key usage extension with the keyCertSign usage flag set to true.

OK: Certificate 'CN=ds1.example.com,O=Example Corp,C=US' uses a signature
algorithm of 'SHA-256 with RSA', which is is considered strong.

OK: Certificate 'CN=Example Intermediate CA,O=Example Corp,C=US' uses a
signature algorithm of 'SHA-256 with RSA', which is is considered strong.

OK: Certificate 'CN=Example Root CA,O=Example Corp,C=US' uses a signature
algorithm of 'SHA-256 with RSA', which is is considered strong.

OK: Certificate 'CN=ds1.example.com,O=Example Corp,C=US' has a 2048-bit
RSA public key, which is considered strong.

OK: Certificate 'CN=Example Intermediate CA,O=Example Corp,C=US' has a
4096-bit RSA public key, which is considered strong.

OK: Certificate 'CN=Example Root CA,O=Example Corp,C=US' has a 4096-bit
RSA public key, which is considered strong.

No usability errors or warnings were identified while validating the
certificate chain.

If any usability issues are identified, they might be responsible for communication problems.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 350

ldapsearch for TLS-related arguments
The ldapsearch command-line utility is a powerful tool for issuing searches against an LDAP directory
server. It also provides a convenient method for troubleshooting a variety of issues, including problems that
are relevant to TLS communication.

The following table details arguments that are the most useful for TLS-related communication.

TLS-related communication arguments and their descriptions

Argument Description

--hostname {address} Address of the server to which the connection is
established

--port {port} TCP port of the server to which the connection
is established. The standard port for non-secure
LDAP, or LDAP to be secured with StartTLS, is
389, and the standard port for secure LDAPS
is 636. Many deployments use alternate ports,
especially non-privileged ports above 1024.

--useSSL The tool establishes an initially insecure LDAP
connection, which is secured later with the StartTLS
extended operation.

--trustStorePath {path} Path to the trust store that is used when
determining whether to trust the certificate chain
that the server presents during TLS negotiation.
If neither this argument nor the --trustAll
argument is provided, the tool prompts you
interactively whether to trust server certificates
that are not signed by an issuer in the Java virtual
machine's (JVM's) default trust store.

--trustStoreFormat {format} Format for the trust store, which is typically JKS or
PKCS12.

--trustStorePassword {password} Password that is required to access the contents of
the trust store.

--trustStorePasswordFile {path} Path to the file that contains the password that is
required to access the contents of the trust store.

--trustAll The tool blindly trusts all TLS certificate chains that
are presented to it. Although this argument can
prove useful for troubleshooting purposes, it is not
recommended for general use.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 351

Argument Description

--keyStorePath {path} Path to the key store to use if a client certificate
chain is presented to the server.

 Note:

Use this argument only when one of the following
conditions is satisfied:

▪ The server is configured to require clients to
present a certificate.

▪ You intend to use the certificate to authenticate
through SASL EXTERNAL.

--keyStoreFormat {format} Format for the key store, which is typically JKS or
PKCS12.

--keyStorePassword {password} Password to access the key store.

--keyStorePasswordFile {path} Path to the file that contains the password
necessary to access the key store.

--certNickname {alias} Alias of the private key entry in the key store. Use
when obtaining the certificate chain to present to
the server.

--useSASLExternal The client authenticates with the EXTERNAL SASL
mechanism, which typically identifies the client
using the certificate chain that is presented during
TLS negotiation.

--enableSSLDebugging The tool activates the low-level TLS-debugging
feature that the JVM provides.

The following command provides an example of the simplest method for testing TLS communication with
PingAuthorize Server.

Example

$ bin/ldapsearch \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --baseDN "" \
 --scope base \
 "(objectClass=*)"
The server presented the following certificate chain:

 Subject: CN=ds1.example.com,O=Example Corp,C=US
 Valid From: Tuesday, November 12, 2019 at 08:28:08 PM CST
 Valid Until: Wednesday, November 11, 2020 at 08:28:08 PM CST
 SHA-1 Fingerprint:
 6a:22:2a:bd:0b:1b:09:35:63:bc:12:3e:2c:9e:e7:70:bc:a4:73:de
 256-bit SHA-2 Fingerprint:
 7a:8c:e4:76:d4:47:15:fd:65:f5:26:0e:d2:55:77:d7:03:7a:e6:79:9f:bc:
 ae:93:2c:76:9c:01:fc:ef:15:38

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 352

 -
 Issuer 1 Subject: CN=Example Intermediate CA,O=Example Corp,C=US
 Valid From: Tuesday, November 12, 2019 at 08:28:06 PM CST
 Valid Until: Monday, November 7, 2039 at 08:28:06 PM CST
 SHA-1 Fingerprint:
 01:b3:70:8b:6c:11:43:87:3b:e9:bb:73:27:99:ea:fd:08:c4:db:ec
 256-bit SHA-2 Fingerprint:
 49:60:69:df:33:9d:26:d0:66:c9:6d:7b:0b:cb:3b:96:

 40:22:dc:6d:11:32:b7:c0:30:47:d6:7c:6a:19:cd:60
 -
 Issuer 2 Subject: CN=Example Root CA,O=Example Corp,C=US
 Valid From: Tuesday, November 12, 2019 at 08:28:03 PM CST
 Valid Until: Monday, November 7, 2039 at 08:28:03 PM CST
 SHA-1 Fingerprint:
 b4:83:55:db:82:e4:63:5c:3a:44:13:8f:88:44:e3:60:f2:53:80:48
 256-bit SHA-2 Fingerprint:

 e8:af:6f:ed:b9:0e:df:94:9c:20:29:53:a9:74:44:a9:17:b4:08:65:c8:19:c1:fb:
 34:34:a1:90:83:8a:d5:12

Do you wish to trust this certificate? Enter 'y' or 'n': y
dn:
objectClass: top
objectClass: ds-root-dse
startupUUID: 8d574122-4584-4522-96d9-0cdcb9d2e339
startTime: 20191113061149Z

Result Code: 0 (success)
Number of Entries Returned: 1

Trust stores and trust-related arguments

If no trust-related arguments are provided, the tool uses the JVM's default trust store to verify whether to
trust the certificate chain, based on the information that it contains. If a trusted authority has signed the
server certificate, the negotiation process continues without further interaction.

If the chain cannot be trusted, based on the information in the JVM-default trust store, ldapsearch
prompts you interactively about whether to trust the certificate. If you accept the chain, the client and server
complete the negotiation process, and the client sends the search request to the server. If the search
succeeds, the server can communicate over TLS.

To test with a trust store instead of being prompted interactively, use the --trustStorePath argument
that points to the appropriate trust store. If you are using a Java Keystore (JKS) trust store, you might not
need to provide the trust store password. If you are using a PKCS #12 trust store, you need to provide the
trust store password. The following code provides an example.

Example

$ bin/ldapsearch \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustStorePath config/truststore.p12 \
 --trustStorePasswordFile config/truststore.pin \
 --trustStoreFormat PKCS12 \
 --baseDN "" \
 --scope base \
 "(objectClass=*)"
dn:
objectClass: top
objectClass: ds-root-dse

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 353

startupUUID: c8724159-8c37-45eb-b210-879bfcf74ad6
startTime: 20191113154023Z

Result Code: 0 (success)
Number of Entries Returned: 1

Client certificate chains and key stores

To present a client certificate chain to the server, either because the server's connection handler is
configured with an ssl-client-auth-policy value of required or because you plan to use the
certificate to authenticate by way of the SASL EXTERNAL mechanism, provide at least the key store
and its corresponding password. You can also specify the alias of the certificate chain to present, which
is recommended if your client key store contains multiple certificates. The following code provides an
example.

Example

$ bin/ldapsearch \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustStorePath config/truststore.p12 \
 --trustStorePasswordFile config/truststore.pin \
 --trustStoreFormat PKCS12 \
 --keyStorePath client-keystore \
 --keyStorePasswordFile client-keystore.pin \
 --certNickname client-cert \
 --useSASLExternal \
 --baseDN "" \
 --scope base \
 "(objectClass=*)"
dn:
objectClass: top
objectClass: ds-root-dse
startupUUID: c8724159-8c37-45eb-b210-879bfcf74ad6
startTime: 20191113154023Z

Result Code: 0 (success)
Number of Entries Returned: 1

If you need to further troubleshoot a TLS-related issue

If you encounter a TLS-related issue that you cannot resolve by examining the ldapsearch output or the
server logs, use the --enableSSLDebugging option to enable the JVM's support for low-level debugging
of TLS processing. For more information, see Using low-level TLS debugging.

Using low-level TLS debugging
Use tools other than the command-line tools that are provided with PingDirectory Server for performing
low-level TLS debugging.

Before you begin

 Note:

If you need to use low-level debugging options, enable the Java Virtual Machine (JVM)'s support for
TLS debugging. Many of the command-line tools that are provided with PingDirectory Server, such as
ldapsearch, offer an --enableSSLDebugging argument that simplifies this process.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 354

Steps

1. In the config/java.properties file, add the following line to the set of properties for the
appropriate tool.

-Djavax.net.debug=all

2. For the changes to take effect, run the bin/dsjavaproperties command.

Next steps

The next time the tool is run, an output is generated detailing the TLS-related processing that the JVM is
performing. You and the support team can use the output to identify the issue.

Configure the Policy Decision Service
Configure the Policy Decision Service before policies are enforced on data access.

For development environments in which policy administrators will be building and testing policies, configure
the Policy Decision Service to external mode. For other pre-production and production environments in
which policies will be tested and deployed, configure the Policy Decision Service for embedded mode.

For information about configuring the Policy Decision Service, see Policy administration on page 258.

User store configuration
If you want to control data access at the user level, configure PingAuthorize Server to use a user store so
you can obtain attributes about the user who is invoking APIs, or the user about whom a service is invoking
APIs, to evaluate the attributes as part of policy.

Although PingAuthorize Server assumes that PingDirectory Server is the default user store, other LDAPv3-
compliant directories are also supported.

You can configure a user store using the prepare-external-store and create-initial-config
commands.

prepare-external-store

When using PingDirectory Server as the user store, first prepare the server by running prepare-
external-store. This tool completes the following tasks:

▪ Creates the PingAuthorize Server user account on your instance of PingDirectory Server
▪ Sets the correct password
▪ Configures the account with the required privileges
▪ Installs the schema that PingAuthorize Server requires

create-initial-config

The create-initial-config command configures connectivity between PingAuthorize Server and the
user store. It also creates a System for Cross-domain Identity Management (SCIM) resource type through
which PingAuthorize Server obtains the user attributes.

The optional create-initial-config command is recommended for first-time installers. If you do not
use create-initial-config, you can configure the following objects:

▪ Store adapter
▪ SCIM resource type
▪ SCIM schema (optional)

 Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 355

If you do not configure these objects, you do not get the user's profile (the requester's attributes). For more
information, see User profile availability in policies on page 288.

For more information about configuring SCIM, see About the SCIM service on page 192.

Example

For an example, see Configuring the PingAuthorize user store on page 359.

Configure access token validation
You can configure access token validators to translate an access token for policy processing.

Clients authenticate themselves to HTTP APIs and the System for Cross-domain Identity Management
(SCIM) service by using OAuth2 bearer token authentication. PingAuthorize Server uses Access Token
Validators to translate and decode a bearer token to a set of attributes that it represents.

For user-authorized bearer tokens, Access Token Validators are required to map the subject of the access
token to the user in the user store, to evaluate the user's attributes as part of policy.

For more information about configuring Access Token Validation, see Access token validators on page
290.

Configure PingOne to use SSO for the administrative console
The steps below explain how to configure PingOne so that you can use SSO in PingOne to access the
PingAuthorize administration console.

Before you begin
You should have already set up the PingAuthorize server that will be administered. This server will host the
PingAuthorize administration console that is being configured for SSO.

 Tip:

You can use groups to organize user identities as explained in Groups. Also, you can set access to
applications as explained in Application access control.

Steps

1. In the PingOne administration console, add a PingAuthorize Server service to one of the existing
environments. Alternatively, add a custom environment solely for a PingAuthorize Server service.

a. When prompted, select the It's already been deployed option.
b. Provide https://<hostname>:<port>/console/login as the value for the Admin URL,

filling in the bracketed values with the PingAuthorize server's hostname and HTTP port.

 Tip:

By binding to the LDAP server, you can use a single console instance to administer multiple
PingAuthorize servers. Note that an LDAPS scheme is always assumed because an encrypted
connection is always required for SSO.

You can specify the LDAP server to bind to using the query parameters ldap-hostname and
ldaps-port when the administrative console is configured for SSO. Using these parameters,
you can specify the URL as follows:

https://<hostname>:<port>/console?ldap-hostname=<my-ldap-host>&ldaps-
port=<my-ldaps-port>

Copyright ©2024

https://docs.pingidentity.com/bundle/p14c/page/umy1607363883426.html
https://docs.pingidentity.com/bundle/p14c/page/xgv1612384834961.html

PingAuthorize | PingAuthorize Server Administration Guide | 356

2. Configure the matching administrator accounts for PingOne and the PingAuthorize server. Go to the
PingOne dashboard for the environment that will be used with the PingAuthorize server. Repeat the
following steps for each PingOne user for which you wish to enable SSO.

a. Locate the desired user under the Identities tab. For the example purposes, we will assume the
desired PingOne user has the following properties.

Description Details

Given Name Jane

Family Name Smith

Username jsmith

b. Run the following dsconfig command against the PingAuthorize server, filling in the bracketed
field with the previously located PingOne user's Username value.

dsconfig create-root-dn-user --user-name jsmith \
 --set first-name:Jane \
 --set last-name:Smith

3. Register the administrative console with PingOne. Follow the instructions for Adding an application
and select OIDC Web App for Application Type. Configure the application properties as shown in the
following table.

Property Value

Application Name PingAuthorize administrative console

Description Application for the PingAuthorize administrative
console

Redirect URLs https://<hostname>:<port>/console/
oidc/cb

Attribute Mapping Username = sub

 Note:

Fill in the bracketed values in redirect URLs with the PingAuthorize server's hostname and HTTP port,
similar to Step 2.

4. Edit the listed properties for the newly created application so that the properties have the values
show in the following table, following the instructions in Edit an application - OIDC in the PingOne
Administration Guide.

Property Value

Response Type Code

Grant Type Authorization Code

Token Endpoint Authentication Method Client Secret Basic

Copyright ©2024

https://docs.pingidentity.com/csh?context=pingone_applications_add_application
https://docs.pingidentity.com/bundle/pingone/page/jez1625773795534.html#qxp1584551500267

PingAuthorize | PingAuthorize Server Administration Guide | 357

5. Note the values for the following application properties to use in later steps:

▪ Issuer
▪ Client ID
▪ Client Secret

6. Locate the enable-pingone-admin-console-sso.dsconfig file in the PingAuthorize/
config/sample-dsconfig-batch-files/ directory. Make a copy of it, and edit the copy rather
than the source file.

7. Replace all the bracketed values in the batch file with the corresponding values from step 5. Then run
the file using the following command.

dsconfig --batch-file \
 enable-pingone-admin-console-sso-copy.dsconfig \
 --no-prompt

8. Click the link to the PingAuthorize server from the PingOne solutions home page. A PingOne login
page should appear. After you provide credentials, you should see the administrative console index
page.

Configure traffic through a load balancer
Use dsconfig or the administrative console to configure PingAuthorize Server to get traffic through a load
balancer and to record the actual client's IP address.

To record the actual client's IP address to the trace log, enable X-Forwarded-* handling in both the
intermediate HTTP server and the PingAuthorize Server.

By default, when a PingAuthorize Server is sitting behind an intermediate HTTP server, such as a load
balancer, a reverse proxy, or a cache, it logs incoming requests as originating with the intermediate HTTP
server instead of the client that sent the request.

When you set the use-forwarded-headers property and enable an HTTP connection handler to use
Forwarded or X-Forwarded-* headers, many intermediate HTTP servers add information about the
original request that would otherwise be lost.

If use-forwarded-headers is set to true, the server uses the client IP address and port information in
the Forwarded or X-Forwarded-* headers instead of the address and port of the entity that's sending
the request (the load balancer). This client address information shows up in logs, such as in the from field
of the HTTP REQUEST and HTTP RESPONSE messages.

 Note:

If both the Forwarded and X-Forwarded-* headers are included in the request, the Forwarded header
takes precedence. The X-Forwarded-Prefix header only overrides the context path for HTTP servlet
extensions, not for web application extensions.

Configuring traffic through a load balancer using dsconfig

Steps

1. Edit the HTTP or HTTPS connection handler object and set use-forwarded-headers to true by
running dsconfig.

Example:

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set use-forwarded-headers:true

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 358

2. To finalize the changes to the HTTP or HTTPS connection handler, use dsconfig to restart the
connection handler.

Example:

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:false

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

3. To provide the X-Forwarded-* information to your load balancer, consult your provider's guide on
configuring load balancer settings.

Configuring traffic through a load balancer using the administrative console

Steps

1. On the PingAuthorize administrative console Configuration page, click Connection Handlers.

2. To edit your HTTP or HTTPS connection handler, in the Connection Handlers list, select the
connection handler you want to edit.

3. To enable Forwarded headers, go to Use Forwarded Headers and select the Enabled check box.

4. Click Save.

5. To finalize the changes to the HTTP or HTTPS connection handler, use dsconfig to restart the
connection handler.

Example:

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:false

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

 Note:

Because disabling the connection handler brings down the administrative console, you must complete
this step in the command line instead of the administrative console.

6. To provide the X-Forwarded-* information to your load balancer, consult your provider's guide on
configuring load balancer settings.

PingAuthorize Server configuration with dsconfig
These examples show how to configure PingAuthorize Server using dsconfig.

The examples cover the following topics.

▪ Configuring the PingAuthorize user store on page 359
▪ Configuring the PingAuthorize OAuth subject search on page 360
▪ Configuring PingAuthorize logging on page 360

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 359

Configuring the PingAuthorize user store
Configure PingAuthorize Server to use PingDirectory Server as its user store.

Steps

1. To make a set of changes to PingDirectory Server that PingAuthorize Server needs, including the
creation of a service account, run the prepare-external-store command.

Example:

PingAuthorize/bin/prepare-external-store \
 --hostname <your-ds-host> --port 1636 --useSSL --trustAll \
 --governanceTrustStorePath PingAuthorize/config/truststore \
 --governanceTrustStorePasswordFile \
PingAuthorize/config/truststore.pin \
 --bindDN "cn=directory manager" \
 --bindPassword <your-ds-password> \
 --governanceBindDN "cn=Authorize User,cn=Root DNs,cn=config" \
 --governanceBindPassword <your-pingauthorize-service-account-password>
 \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --no-prompt

2. To configure PingAuthorize Server with a store adapter that allows it to communicate with
PingDirectory Server to retrieve identity attributes, run the create-initial-config command.

 Note:

Using create-initial-config is optional. However, if you do not use it, you do not get the user's
profile (the requester's attributes). For more information, see User profile availability in policies on
page 288.

Example:

PingAuthorize/bin/create-initial-config \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-pingauthorize-password> \
 --governanceBindPassword <your-pingauthorize-service-account-password>
 \
 --externalServerConnectionSecurity useSSL \
 --governanceTrustStorePath PingAuthorize/config/truststore \
 --governanceTrustStorePasswordFile \
PingAuthorize/config/truststore.pin \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --userStore "<your-ds-host>:1636:Austin" \
 --userObjectClass "inetOrgPerson" \
 --initialSchema pass-through

This command also sets up a System for Cross-domain Identity Management (SCIM) resource
type that defines a Users type with a SCIM schema that is automatically mapped to an LDAP type,
inetOrgPerson, on PingDirectory Server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 360

Configuring the PingAuthorize OAuth subject search
Configure PingAuthorize Server to search the user store for OAuth token subjects.

Steps

▪ To configure the PingAuthorize Server to mock OAuth access token validation, run the dsconfig
create-access-token-validator command.

Example:

PingAuthorize/bin/dsconfig create-access-token-validator \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-pingauthorize-password> \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true --set subject-claim-name:sub

The Mock Access Token Validator accepts tokens without authenticating them and is used only for
demonstration and testing purposes. To use an authorization server like PingFederate, see Access
token validators on page 290.

▪ To configure PingAuthorize Server to search the user store and retrieve the identity attributes of the
OAuth token subject so the attributes can be evaluated in a policy, run the dsconfig create-
token-resource-lookup-method command.

Example:

PingAuthorize/bin/dsconfig create-token-resource-lookup-method \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-pingauthorize-password> \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --type 'scim' \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%_subject_claim_name%"' \
 --set evaluation-order-index:100

A token resource lookup method defines the expression that is used to search System for Cross-
domain Identity Management (SCIM) resources by the access token subject or additional claims. In
this example, the value of the access token subject claim is used to search the uid attribute value of
the SCIM user resource.

Configuring PingAuthorize logging
Increase the default logging value to include details that will aid in debugging.

Steps

▪ To enable more detailed logging to understand how policy decisions are being made, including the
comparison values and results of the various expressions that comprise a policy decision tree, run the
dsconfig set-policy-decision-service-prop command.

Example:

PingAuthorize/bin/dsconfig set-policy-decision-service-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-pingauthorize-password> \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 361

 --add decision-response-view:evaluated-entities

 Warning:

decision-response-view:request causes the Policy Decision Logger to record potentially
sensitive data in API requests and responses.

 Note:

Policy Decision views affect the decision response payload of the request. You can remove added
views by using the --remove decision-response-view:<view_name> argument. See About
the Decision Response View on page 399 for more information.

▪ To enable Trace (detailed) logging, including complete HTTP requests and responses, run the
dsconfig set-log-publisher-prop command .

Example:

PingAuthorize/bin/dsconfig set-log-publisher-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-pingauthorize-password> \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

 Note:

Complete HTTP requests and responses might contain sensitive data.

For information about enabling detailed debug logging for troubleshooting purposes, see Enable
detailed logging on page 397.

Deployment automation and server profiles
Administrators can export the configuration of a PingAuthorize Server instance to a directory of mostly
text files, called a server profile. An administrator can then use that server profile to configure another
deployment.

Organizations are adopting DevOps practices to reduce risk while providing quicker time-to-value for
the services that they provide to their business and customers. Examples of such practices that are
central to DevOps include automation and Infrastructure-as-Code (IaC). Organizations that combine these
principles can manage the following infrastructure and service operations in the same manner as preparing
application code for general release:

▪ Appropriate versioning
▪ Continuous integration
▪ Quality control
▪ Release cycles

Server profiles enable organizations to adopt these DevOps practices more easily.

Administrators can also track changes to server profile text files in a version-control system, like Git, and
can install new instances of PingAuthorize Server, or update existing instances from a server profile.

The scripts and other files in the server-profile directory are declarative of the desired state of the
environment. Consequently, the definitions in the server-profile directory directly influence the

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 362

servers. No one needs to identify a server's current configuration and compute the differences that must be
applied to attain the appropriate end state.

The primary goal of a server profile is to simplify the deployment of PingAuthorize Server by using
deployment automation frameworks. By using server profiles, the amount of scripting that is required
across automation frameworks, such as Docker, Kubernetes, and Ansible, is reduced considerably.

As a declarative form of a full server configuration, a server profile provides the following advantages:

▪ Provides a more complete and easily comparable method of defining the configuration of an individual
server. Changes between different servers are easier to review and understand, and incremental
changes to a server's configuration are easier to track.

▪ Ensures that each server instance is configured identically to its peers.
▪ Applies to installing new instances as well as to updating the configuration of previously installed

instances.
▪ Shares a common configuration across a deployment environment of development, test, and

production without unnecessary duplication and error-prone, environment-specific modifications. For
more information about substituting variables that differ by environment, see Variable substitution
using manage-profile on page 362.

▪ Reduces the number of additional configuration steps that are required to place a server into
production.

▪ Makes the execution of various configuration changes more consistent and repeatable. The strategy of
using a server profile to represent the final state of a server is less error-prone than recording a step-
by-step process to attain that state.

▪ Can be managed easily in a version-control system.
▪ Simplifies the management of servers outside deployment-automation frameworks.

Variable substitution using manage-profile
You can use the manage-profile tool to substitute different variables in server profiles.

The manage-profile tool uses the format ${VARIABLE} to support the substitution of variables in
profiles. To escape this format, use another $. For example, after substitution, $${VARIABLE} becomes
${VARIABLE}.

Variable values can be read from a profile variables file or from environment variable values. If both options
are used, the values in the file overwrite any environment variables.

The following lines provide an example of how you can set user-defined variables by using a variables file
in the server profile.

HOSTNAME=testserver.example.com
PORT=389

The following table describes built-in variables that you can also reference in the server profile. Use these
variables in the format previously described.

Built-in variable Description

PING_SERVER_ROOT Evaluates to the absolute path of the server's root
directory

PING_PROFILE_ROOT Evaluates to the individual profile's root directory

 Note:

Use PING_PROFILE_ROOT only with files that are
not needed after initial setup, such as password
files in setup-arguments.txt. Do not use the
PING_PROFILE_ROOT variable for files needed

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 363

Built-in variable Description

while the server is running. The manage-profile
tool creates a temporary copy of the server profile
that is deleted after the tool completes, so files
are not accessible under PING_PROFILE_ROOT
when the server is running. For files you need
while the server is running, such as keystore and
truststore files, copy the files into the server root
using the profile's server-root/pre-setup
directory, and then refer to the files using with the
PING_SERVER_ROOT variable.

For more information about the tool's usage, run the command bin/manage-profile --help.

Layout of a server profile
When you create a server profile, you can review the typical server profile hierarchy structure.

Use either of the following methods to create a server profile:

▪ Extract the template named server-profile-template-paz.zip, which is located in the
resource directory.

▪ Run the manage-profile generate-profile subcommand. The manage-profile tool
references the file system directory structure.

You can add files to each directory as needed.

The following hierarchy represents the file structure of a basic server profile.

-server-profile/
 |-- dsconfig/
 |-- misc-files/
 |-- server-root/
 | |-- post-setup/
 | |-- pre-setup/
 |-- server-sdk-extensions/
 |-- setup-arguments.txt
 |-- variables-ignore.txt

setup-arguments.txt
When you create a new profile, you must add arguments to the setup-arguments.txt file.

When manage-profile setup is run, these arguments are passed to the server’s setup tool. To view the
arguments that are available in this file, run the server's setup --help command.

To provide the equivalent, non-interactive CLI arguments after any prompts have been completed, run
setup interactively. The setup-arguments.txt file in the profile template contains an example set of
arguments that you can change.

setup-arguments.txt is the only required file in the profile.

dsconfig/
You can use dsconfig batch files to apply dsconfig commands to PingAuthorize Server.

You can add dsconfig batch files to the dsconfig directory. These files, each of which must include a
.dsconfig extension, contain dsconfig commands to apply to server.

Because the dsconfig batch files are ordered lexicographically, 00-base.dsconfig runs before 01-
second.dsconfig, and so on.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 364

To produce a dsconfig batch file that reproduces the current configuration, run bin/config-diff.

server-root/
You can add a variety of server root files to the server-root directory.

Any server root files can be added to the server-root directory, including schema files, email template
files, custom password dictionaries, and other files that must be present on the final server root. Add these
files to the server-root/pre-setup or server-root/post-setup directory, depending on when
they need to be copied to the server root. Most server root files are added to the server-root/pre-
setup directory.

server-sdk-extensions/
Add server SDK extension .zip files to the server-sdk-extensions directory.

Include any configuration that is necessary for the extensions in the profile's dsconfig batch files.

variables-ignore.txt
You can use the variables-ignore.txt file to indicate the relative paths of any files whose variables
you do not want to have substituted.

The variables-ignore.txt file is an optional component of the server profile. It is useful when adding
bash scripts to the server root because such files often contain expressions that the manage-profile
tool normally interprets as variables.

Add variables-ignore.txt to a profile's root directory to indicate the relative paths of any files that are
not to have their variables substituted.

The following example shows the contents of a typical variables-ignore.txt file.

server-root/pre-setup/script-to-ignore.sh
server-root/post-setup/another-file-to-ignore.txt

server-root/permissions.properties
You can use server-root/permissions.properties to specify permissions you want to apply to
files copied to the server root.

The permissions.properties file, located in the server-root directory, is an optional file that
specifies the permissions to apply to files that are copied to the server root. These permissions are
represented in octal notation. By default, server root files maintain their permissions when copied.

The following example shows the contents of a typical permissions.properties file.

default=700
file-with-special-permissions.txt=600
new-subdirectory/file-with-special-permissions.txt=644
bin/example-script.sh=760

misc-files/
You can find additional miscellaneous documentation and other files in the misc-files directory.

The manage-profile tool does not use the misc-files directory. Use the variable
PING_PROFILE_ROOT to refer to files in this directory from other locations, such as setup-
arguments.txt.

 Note:

Use PING_PROFILE_ROOT only with files that are not needed after initial setup, such as password files in
setup-arguments.txt. Do not use the PING_PROFILE_ROOT variable for files needed while the server
is running. The manage-profile tool creates a temporary copy of the server profile that is deleted after
the tool completes, so files are not accessible under PING_PROFILE_ROOT when the server is running.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 365

For files you need while the server is running, such as keystore and truststore files, copy the files into the
server root using the profile's server-root/pre-setup directory, and then refer to the files using with
the PING_SERVER_ROOT variable.

For example, a password file named password.txt in the misc-files directory could be referenced
with ${PING_PROFILE_ROOT}/misc-files/password.txt in setup-arguments.txt. Use a
reference like this example to supply the file for the --rootUserPasswordFile argument in setup-
arguments.txt.

About the manage-profile tool

The manage-profile tool is provided with the server to work with server profiles. It includes
subcommands for creating, applying, and replacing server profiles, all of which significantly reduce the
effort required by an administrator to configure a server appropriately.

The following sections describe these subcommands in more detail. For more information about the
manage-profile tool, run manage-profile --help. For more information about each individual
subcommand and its options, run manage-profile <subcommand> --help.

manage-profile generate-profile

To create a server profile from a configured server, use the generate-profile subcommand. The
generated profile contains the following information, which provides a base for completing a profile:

▪ Command-line arguments that were used to set up the server
▪ dsconfig commands necessary to configure the server
▪ Installed server SDK extensions
▪ Files that are added to the server root

To produce a complete profile, some parts of the generated profile might require modifications,
such as adding password files that setup-arguments.txt uses. The --instanceName and --
localHostName arguments in setup-arguments.txt are made variables by generate-profile,
and must be provided values when other manage-profile subcommands use the generated profile.

LDIF files must also be added manually to the generated profile.

The --excludeSetupArguments option generates a server profile without a setup-arguments.txt file.
This is useful when generating server profiles for use with Docker images.

manage-profile setup

To apply a server profile to a fresh, unconfigured server, use the setup subcommand, which replaces the
normal setup tool when using a server profile. Run manage-profile setup to complete the following
tasks:

▪ Copies the pre-setup files to the server root
▪ Runs the setup tool
▪ Copies the post-setup files to the server root
▪ Installs any server SDK extensions
▪ Runs any dsconfig batch files
▪ Imports any LDIF files
▪ Starts the server

While manage-profile setup is running, a copy of the profile is created in a temporary directory that can
be specified by using the --tempProfileDirectory argument. The command leaves the server in a
complete and running state when finished, unless the --doNotStart argument is specified.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 366

manage-profile replace-profile

Run the replace-profile subcommand on a server that was originally set up with a server profile to
replace its configuration with a new profile. The tool applies a specified server profile to an existing server
while preserving its data, topology configuration, and replication configuration. New LDIF files from the
replacement server profile are not imported.

While manage-profile replace-profile is running, the existing server is stopped and moved to
a temporary directory that the --tempServerDirectory argument can specify. A fresh, new server
is subsequently installed and set up with the new profile. The final server is left running if it was running
before the command was started, and remains stopped if it was stopped.

Run manage-profile replace-profile from a second unzipped server install package on the same
host as the existing server, similar to the update tool. Use the --serverRoot argument to specify the
root of the existing server that will have its profile replaced.

If files have been added or modified in the server root since the most recent manage-profile setup
or manage-profile replace-profile was run, they are included in the final server with the replaced
profile. Otherwise, files specifically added from the server-root directory of the previous server profile
are absent from the final server with the replaced profile. If errors occur during the subcommand, such as
the new profile having an invalid setup-arguments.txt file, the existing server returns to its original
state from before manage-profile replace-profile was run.

The --skipValidation option skips the validation step when running on an offline server

 Note:

The manage-profile replace-profile tool can update the server version when needed. This tool
can also directly apply configuration changes when there are no other changes in the new profile. This is a
shorter process when making small changes to dsconfig.

Common manage-profile workflows
You can use the manage-profile tool to complete a variety of workflows in PingAuthorize.

This section describes how to use the manage-profile tool to accomplish typical server-management
tasks, like the following examples:

▪ Creating a server profile on page 366
▪ Installing a new environment on page 368
▪ Scaling up your environment on page 369
▪ Rolling out an update on page 369

The following sections describe these tasks in more detail. For more information about the manage-
profile tool, run manage-profile --help. For more information about each individual subcommand
and its options, run manage-profile <subcommand> --help.

Creating a server profile
You can create a server profile from a configured server in PingAuthorize Server.

About this task

To create a server profile from a configured server, use the generate-profile subcommand.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 367

Steps

1. Create a profile directory.

Example:

$ mkdir -p /opt/server-profiles/pingauthorize

2. Run generate-profile.

Example:

$ bin/manage-profile generate-profile --profileRoot /opt/server-profiles/
pingauthorize

3. Customize the resulting profile to suit your needs and to remove deployment environment-specific
values.
Choose from:

▪ Specify a consistent location for the license key file:

a. Copy the license key file to the server profile's misc-files directory.

$ cp PingAuthorize.lic /opt/server-profiles/pingauthorize/misc-
files/

b. Open the setup-arguments.txt file in a standard text editor.
c. Locate the --licenseKeyFile argument.
d. Change the value of --licenseKeyFile to the following value.

 Note:

Use PING_PROFILE_ROOT only with files that are not needed after initial setup, such as
password files in setup-arguments.txt. Do not use the PING_PROFILE_ROOT variable
for files needed while the server is running. The manage-profile tool creates a temporary
copy of the server profile that is deleted after the tool completes, so files are not accessible
under PING_PROFILE_ROOT when the server is running. For files you need while the server
is running, such as keystore and truststore files, copy the files into the server root using

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 368

the profile's server-root/pre-setup directory, and then refer to the files using with the
PING_SERVER_ROOT variable.

${PING_PROFILE_ROOT}/misc-files/PingAuthorize.lic

e. Save your changes.
▪ Remove deployment environment-specific values and replace them with variables. For example,

to refer to a different PingFederate server in your development environments versus your test
environments, perform the following steps:

a. Open the /opt/server-profiles/pingauthorize/dsconfig/00-config.dsconfig
file in a standard text editor.

b. Locate the value specified for base-url for the external server that identifies your
PingFederate server.

c. Replace the value with a variable, like ${PF_BASE_URL}.
d. Save your changes.
e. Create or update a server profile variables file for your development environment.
f. Add a row like the following example to the variables file.

PF_BASE_URL=https://sso.dev.example.com:9031

g. Save your changes.
h. Continue replacing deployment environment-specific values with variables until the server

profile contains no more deployment environment-specific values.

At this point, you can check the server profile in to a version-control system, like Git, share
with your team, and integrate into your deployment automation.

Installing a new environment
You can use manage-profile setup to set up a new server instance and deployment environment in
PingAuthorize Server.

Before you begin
The steps in this section make the following assumptions:

▪ A server profile has already been created at the path ~/git/server-profiles/pingauthorize.
▪ Your development environment's variables file is saved at the path ~/pingauthorize-variables-
dev.env.

About this task

After you create and customize a server profile, use the manage-profile setup subcommand to set up
new server instances and additional deployment environments.

The setup subcommand completes the following tasks:

▪ Copies the server root files
▪ Runs the setup tool
▪ Runs the dsconfig batch files
▪ Installs the server SDK extensions
▪ Sets the server's cluster name to a unique value

 Note:

Cluster-wide configuration is automatically mirrored across all servers in the topology with the same
cluster name. In a DevOps deployment with immutable servers, configuration mirroring introduces

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 369

risk. Therefore, in most cases, cluster names should be unique for each server to avoid configuration
mirroring.

Steps

1. Extract the contents of the compressed archive to a directory of your choice.

Example:

$ mkdir /opt/pingauthorize
$ cd /opt/pingauthorize
$ unzip PingAuthorize-<version>.zip

2. Change directories.

Example:

$ cd PingAuthorize

3. Run setup.

Example:

$ bin/manage-profile setup \
 --profile ~/git/server-profiles/pingauthorize \
 --profileVariablesFile ~/pingauthorize-variables-dev.env

Scaling up your environment
You can scale up the environment in your PingAuthorize Server instance.

About this task

The automation for this task is identical to the previous task of installing a new server in a new
environment. Because each instance of PingAuthorize Server requires a unique instance name and host
name, each instance must also be set up from a unique server profile variables file.

Rolling out an update
When you roll out a PingAuthorize Server update, run manage-profile replace-profile to use a
server profile that you have set up.

Before you begin
The steps in this section make the following assumptions:

▪ A server profile has been created at the path ~/git/server-profiles/pingauthorize.
▪ The server's server profile variables file is saved at the path /opt/pingauthorize/
pingauthorize-variables.env.

▪ The existing server with the earlier configuration is installed at /opt/
pingauthorize/PingAuthorize.

About this task

Run the replace-profile subcommand on a server that was originally set up with a server profile to
replace its configuration with a new profile. The replace-profile subcommand applies a specified
server profile to an existing server while also preserving its configuration.

While manage-profile replace-profile is running, the existing server is stopped and moved to
a temporary directory that the --tempServerDirectory argument specifies. A fresh, new server is
subsequently installed and set up with the new profile. If the final server was running before the command
was started, it is left running. If the final server was stopped, it remains stopped.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 370

If files have been added or modified in the server root since you ran the most recent manage-profile
setup or manage-profile replace-profile subcommand, they are included in the final server with
the replaced profile. Otherwise, files added specifically from the server-root directory of the previous
server profile are absent from the final server with the replaced profile.

If errors occur while running the subcommand, such as the new profile having an invalid setup-
arguments.txt file, the existing server returns to its original state from before you ran manage-
profile replace-profile.

Steps

1. Extract the distribution package for the same or a new version of PingAuthorize Server to a location
outside the existing server's installation.

Example:

$ mkdir ~/stage
$ cd ~/stage
$ unzip PingAuthorize-<version>.zip

2. Change directories.

You must run the replace-profile subcommand from the location of the distribution package, not
from the existing server.

Example:

$ cd PingAuthorize

3. Run replace-profile.

Example:

$ bin/manage-profile replace-profile \
 --serverRoot /opt/pingauthorize/PingAuthorize \
 --profile ~/git/server-profiles/pingauthorize \
 --profileVariablesFile ~/pingauthorize-variables-dev.env

Server status
You can check server status using the PingAuthorize Server administrative console, the status
command, or the availability servlet.

Administrative console

You can access status information in the console, in the Status tab.

For information about how to access the console, see PingAuthorize administrative console on page 302.

status command

The PingAuthorize distribution includes the bin/status command that you can use to see various
information about the server, including its status and the status of its LDAP external servers.

Availability servlet

PingAuthorize provides an HTTP servlet extension that you can use to retrieve the server's current
availability state. The servlet accepts any GET, POST, or HEAD request sent to a specified endpoint and
returns a minimal response whose HTTP status code can help you determine whether the server considers
itself to be AVAILABLE, DEGRADED, or UNAVAILABLE.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 371

The status code for each of these states is configurable, and the response can optionally include a JSON
object with an availability-state field with the name of the current state.

The servlet has these endpoints:

▪ /available-state

This endpoint can prove useful for load balancers that should only route requests to servers that are
fully available.

The following table shows the responses for this endpoint.

Endpoint responses and server status

Response Server state

200 (OK) AVAILABLE

503 (Service Unavailable) DEGRADED or UNAVAILABLE

▪ /available-or-degraded-state

This endpoint can prove useful for orchestration frameworks if you want to destroy and replace any
instance that is completely unavailable.

The following table shows the responses for this endpoint.

Endpoint responses and server status

Response Server state

200 (OK) AVAILABLE or DEGRADED

503 (Service Unavailable) UNAVAILABLE

Server availability
You can monitor the availability of PingAuthorize Server and set up load balancing or auto-healing for it.

Use the following gauges to monitor PingAuthorize Server availability:

▪ User Store Availability gauge
▪ Endpoint Average Response Time (Milliseconds) gauge
▪ HTTP Processing (Percent) gauge
▪ Policy Decision Service Availability gauge

With monitoring, you can set up load balancing or auto-healing.

For auto-healing, configure your container orchestrator to base a health check on the availability servlet
mentioned in Server status on page 370. If the availability is not as desired, fail the health check. The
orchestrator should then start a replacement server for the unhealthy server.

User Store Availability gauge
The User Store Availability gauge monitors the directory servers that provide user data to
PingAuthorize.

If PingAuthorize cannot reach these directory servers, it cannot:

▪ Retrieve token owner information using a SCIM Token Resource Lookup Method
▪ Handle SCIM 2 API requests

In this case, this gauge marks the status of PingAuthorize itself as UNAVAILABLE.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 372

The status appears in the following locations:

▪ The administrative console on the Status tab, in the Operational Status entry.
▪ The Operational Status line in the bin/status output.
▪ The Availability servlet. See Server status on page 370.

When PingAuthorize has a status of UNAVAILABLE, a load balancer can try to route traffic to a different
PingAuthorize server or take some other action. See Auto-healing for unavailable servers on page 375.

If you followed the standard setup and configuration given in Getting started with PingAuthorize (tutorials)
on page 17, the User Store Availability gauge should automatically work.

 Important:

The gauge assumes the PingAuthorize LDAP Store Adapter name is UserStoreAdapter. If your
PingAuthorize SCIM configuration uses a different name, you must edit the gauge's data source to reflect
the custom store adapter name. Use the following dsconfig command to make this change, replacing
<CustomStoreAdapter> in the last line with the actual name.

dsconfig set-gauge-data-source-prop \
 --source-name "User Store Availability" \
 --set "include-filter:(store-adapter-name=<CustomStoreAdapter>)"

If your PingAuthorize deployment does not use SCIM or SCIM Token Resource Lookup Methods, you can
disable the gauge with the following command.

dsconfig set-gauge-prop \
 --gauge-name "User Store Availability" \
 --set enabled:false

Endpoint Average Response Time (Milliseconds) gauge
The Endpoint Average Response Time (Milliseconds) gauge monitors the average time that
PingAuthorize takes to respond to queries on various endpoints.

The gauge monitors the following types of endpoints:

▪ Gateway endpoints
▪ Sideband endpoints
▪ System for Cross-domain Identity Management (SCIM) 2 endpoints
▪ OpenBanking endpoints

The gauge can raise alarms or generate a DEGRADED or UNAVAILABLE status that you can use to
configure load balancing or auto-healing.

This gauge does not count the time spent waiting for an upstream server response.

By default, this gauge does nothing. To begin using it, set the levels at which the gauge activates to
reasonable values for your environment using dsconfig.

The following table explains the values you set for this gauge.

Value Description

minor-value This value, in milliseconds, represents a warning condition. An
alarm is raised, but the server continues to operate as normal.

major-value This value, in milliseconds, represents the point at which the
server is considered DEGRADED.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 373

Value Description

critical-value This value, in milliseconds, represents the point at which the
server is considered UNAVAILABLE.

You can find the server's availability state by using an option discussed in Server status on page 370.

The following example shows how to activate the gauge.

 Note:

You might need to experiment to find values that work for your environment.

Example

dsconfig set-gauge-prop
 --gauge-name "Endpoint Average Response Time (Milliseconds)"
 --set minor-value:200
 --set major-value:500
 --set critical-value:2000

HTTP Processing (Percent) gauge
The HTTP Processing (Percent) gauge monitors usage of available HTTP worker threads.

The gauge can raise alarms or generate a DEGRADED or UNAVAILABLE status that you can use to
configure load balancing or auto-healing.

By default, this gauge raises an alarm at 70% usage, and it raises an alert at 90% usage. Also by default,
the gauge does not mark the server as DEGRADED or UNAVAILABLE.

The following table explains the values and descriptions you set for this gauge.

HTTP processing gauge values and descriptions

Value Description

warning-value This percentage value represents a warning condition. An alarm
is raised, but the server continues to operate as normal.

It defaults to 70%.

major-value This percentage value represents a severe condition. An alarm
is raised, and the server enters a DEGRADED state.

It is not set by default. To enable the DEGRADED state, you
must set server-degraded-severity-level.

critical-value This percentage value represents a critical condition. An alarm
is raised, an alert is generated, and the server is put into an
UNAVAILABLE state.

It defaults to 90%. To enable the UNAVAILABLE state, you
must set server-unavailable-severity-level.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 374

Value Description

server-degraded-severity-
level

The alarm level at which the server enters a DEGRADED state.

By default, this gauge does not mark the server as
DEGRADED.

To enable the DEGRADED state, set to major.

server-unavailable-severity-
level

The alarm level at which the server enters an UNAVAILABLE
state.

By default, this gauge does not mark the server as
UNAVAILABLE.

To enable the UNAVAILABLE state, set to critical.

You can find the server's availability state by using an option discussed in Server status on page 370.

The following example shows how to activate the gauge.

 Note:

You might need to experiment to find values that work for your environment.

Example

dsconfig set-gauge-prop
 --gauge-name "HTTP Processing (Percent)"
 --set major-value:85
 --set server-degraded-severity-level:major
 --set server-unavailable-severity-level:critical

Policy Decision Service Availability gauge
The Policy Decision Service Availability gauge monitors the ability of the Policy Decision
Service to respond to requests using the configured policies.

If the Policy Decision Service is misconfigured, or the configured deployment package store is not
reachable, PingAuthorize can't handle requests for the following services:

▪ API Security Gateway
▪ Sideband API
▪ SCIM 2
▪ Authorization Policy Decision APIs

In this case, this gauge marks the status of PingAuthorize as DEGRADED.

Possible causes of the Policy Decision Service being unavailable include:

▪ The pdp-mode is set to disabled
▪ The trust-framework-version is set to undefined
▪ The configured deployment package store can't be reached

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 375

Auto-healing for unavailable servers
Using gauges, set up auto-healing in a container deployment to address an unavailable server.

Steps

1. Configure one or more of the gauges described in Server availability on page 371.

2. Configure the gauges to trigger the UNAVAILABLE status.

By default, the gauges do not trigger the UNAVAILABLE status.

As discussed in Endpoint Average Response Time (Milliseconds) gauge on page 372 and HTTP
Processing (Percent) gauge on page 373, use the dsconfig command to adjust the following
values for your environment. Each system is different so you might need to adjust the values several
times to determine your ideal configuration.

a. For the Endpoint Average Response Time (Milliseconds) gauge, set critical-
value.

b. For the HTTP Processing (Percent) gauge, set both critical-value and server-
unavailable-severity-level.

3. Configure the container orchestrator to use the available-or-degraded-state endpoint to detect
whether the server is alive.

For information about the endpoint, see Availability servlet on page 370.

Available gauges
PingAuthorize makes the following gauges available. You can manage these gauges using the
administrative console or the dsconfig tool.

Gauge name Enabled by
default

Description

Available File Descriptors true Monitors the number of file descriptors available
to the server process. The server allows for an
unlimited number of connections by default but
is restricted by the file descriptor limit on the
operating system.

You can configure the number of file descriptors
that the server uses by either setting the
NUM_FILE_DESCRIPTORS environment
variable or by creating a config/num-file-
descriptors file with a single line such as,
NUM_FILE_DESCRIPTORS=12345. If you do not
use either of these options, the server uses the
default of 65535.

Running out of available file descriptors can lead
to unpredictable behavior and severe system
instability.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 376

Gauge name Enabled by
default

Description

Certificate Expiration (Days) true Monitors the expiration dates of key server
certificates.

A server certificate expiring can cause server
unavailability, degradation, or loss of key server
functionality.

Replace certificates nearing the end of their
validity as soon as possible.

For more information about server certificates and
how they are managed, see the status tool or
Status in the administrative console.

CPU Usage (Percent) true Monitors server CPU use and provides an
averaged percentage for the interval defined.

The monitored resource is the host system's
CPU, which does not include a resource identifier.
If CPU use is high, check the server's current
workload and other processes on the system and
make any needed adjustments. Reducing the load
on the system will lead to better response times.

Disk Busy (Percent) true Monitors the percentage of disk use time
averaged over the specified update interval.

This gauge requires that you enable the Host
System Monitor Provider and that you register
any monitored disks by using the disk-devices
property of that configuration object.

The resource identifier for this gauge is the disk
device name. Use the iostat command or a
similar system utility to see a list of disk device
names. A separate gauge monitor entry is created
for each monitored disk.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 377

Gauge name Enabled by
default

Description

Endpoint Average Response
Time (Milliseconds)

false Monitors the average response time across all
endpoints since the server was started. This
number does not include requests to the upstream
server.

There is no resource identifier associated with this
gauge.

The monitored resource is overall response time
of all requests to PingAuthorize servlets since the
server was started.

High response times might be indicative of a
number of factors including a disk-bound server,
network latency, or misconfiguration. Enabling the
Stats Logger plugin can help isolate problems.

For more information, see Endpoint Average
Response Time (Milliseconds) gauge on page
372.

HTTP Processing (Percent) true Monitors the percentage of time that request
handler threads spend processing HTTP
requests. This percentage represents the inverse
of the server's ability to handle new requests
without queueing.

For more information, see HTTP Processing
(Percent) gauge on page 373.

JVM Memory Usage (Percent) true Monitors the percentage of Java Virtual Machine
memory that is in use. This value naturally
fluctuates due to garbage collection, so the
minimum value within an interval is reported
because it is a better indication of overall memory
growth.

When the memory usage exceeds 90%, open
a case with Ping Identity Support because the
server is either misconfigured or has a memory
leak.

As memory usage approaches 100%, the
server is more and more likely to experience
garbage collection pauses, which leave the server
unresponsive for a long time. Restarting the
server is likely the only remedy for this situation.
Before you restart the server, run collect-
support-data and capture the output of jmap
-histo <server-pid> to provide to customer
support. The PID of the server is in <server-
root>/logs/server.pid.

Copyright ©2024

https://support.pingidentity.com/

PingAuthorize | PingAuthorize Server Administration Guide | 378

Gauge name Enabled by
default

Description

License Expiration (Days) true Monitors the expiration date of the product
license. An expired license causes warnings to
appear in the server's logs and in the status tool
output.

Request a license key through the Ping Identity
licensing website https://www.pingidentity.com/
en/account/request-license-key.html or contact
sales@pingidentity.com.

Use the dsconfig tool to update the License
configuration's license key property.

Memory Usage (Percent) false Monitors the percentage of memory use averaged
over the update interval defined. The monitored
resource is the host system's memory use, which
does not have a resource identifier.

Some operating systems, including Linux, use the
majority of memory for file system cache, which
is freed as applications need it. If memory use is
high, check the applications that are running on
the server.

Policy Decision Service
Availability

true Monitors availability of the Policy Decision
Service.

If the Policy Decision Service is misconfigured
or cannot reach the deployment package store,
PingAuthorize services will be unavailable.

Ensure that the pdp-mode and trust-
framework-version are correctly set, and that
the deployment package store is reachable.

For more information, see Policy Decision Service
Availability gauge on page 374.

Strong Encryption Not Available true Indicates the JVM does not appear to support
strong encryption algorithms, like 256-bit
AES. The server will fall back to using weaker
algorithms, like 128-bit AES.

To enable support for strong encryption, update
your JVM to a newer version that supports it
by default; alternatively, install or enable the
unlimited encryption strength jurisdiction policy
files in your Java installation.

Copyright ©2024

https://www.pingidentity.com/en/account/request-license-key.html
https://www.pingidentity.com/en/account/request-license-key.html

PingAuthorize | PingAuthorize Server Administration Guide | 379

Gauge name Enabled by
default

Description

User Store Availability true Monitors availability of the SCIM user store.

If the LDAP directory servers are unavailable,
the "UserStoreAdapter" cannot forward requests.
Also, the server cannot process SCIM requests or
perform token owner lookups.

Ensure that LDAP directory servers are available.

For more information, see User Store Availability
gauge on page 371.

Common server alarms
The server uses alarms and alerts to notify administrators of situations that might require intervention.

Policy Decision Service unavailable

PingAuthorize Server raises this alarm if it cannot process policy decisions because the Policy Decision
Service requires further configuration. When this alarm is present, PingAuthorize Server cannot handle
requests for the following services:

▪ API Security Gateway
▪ Sideband API
▪ SCIM 2
▪ Authorization Policy Decision APIs

The alarm message typically indicates the cause for the Policy Decision Service's UNAVAILABLE state.
The administrator should check the Policy Decision Service configuration's pdp-mode and trust-
framework-version properties to ensure that they are set correctly and that configured deployment
package stores are reachable.

Trust framework update needed

The server raises this alarm if the Policy Decision Service is configured with a deprecated trust-
framework-version value. When this alarm is present, PingAuthorize does continue to accept requests.
However, the administrator is strongly encouraged to take the following actions:

1. Update policies to use a new Trust Framework version. See Upgrading the Trust Framework and
policies on page 136.

2. Export a new deployment package (if using embedded PDP mode).
3. Load the updated policies and set trust-framework-version in the Policy Decision Service to the

current version.

The following example uses dsconfig to set trust-framework-version to v2.

dsconfig set-policy-decision-service-prop \
 --set trust-framework-version:v2

LDAP External Server Health Reclassified from AVAILABLE to UNAVAILABLE

The server raises this alarm if an LDAP health check determines that an LDAP external server used by
the SCIM subsystem is unavailable. This can occur for a number of reasons; the most typical cause is a
network or SSL connectivity problem.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 380

External server initialization failed

You see this alarm at server startup if an LDAP health check determines that an LDAP external server
used by the SCIM subsystem is unavailable. This can occur for a number of reasons; the most typical
cause is a network or SSL connectivity problem.

User Store Availability

The server raises this alarm if the SCIM subsystem's UserStoreAdapter is unavailable. When this alarm is
present, PingAuthorize Server cannot process SCIM API requests or SCIM token resource lookup method
operations. This alarm generally occurs if the underlying data stores are unavailable. To resolve this alarm,
determine why the data stores are unavailable and resolve the problem.

If your PingAuthorize deployment does not require SCIM, you can disable this alarm by disabling the User
Store Availability gauge using the following command.

dsconfig set-gauge-prop \
 --gauge-name "User Store Availability" \
 --set enabled:false

No Enabled Alert Handlers

By default, an administrator can check for server alerts through the error log, the status tool, and the
administrative console. This alarm warns the administrator that they should also configure an alert handler
to ensure that the server can actively notify them of current or impending problems. The server provides
alert handlers for this purpose. The handlers can deliver alerts by email or through a monitoring application
using JMX or SNMP.

The following example shows how to configure an alert handler to send alert emails through the SMTP
server <smtp.example.com>.

dsconfig create-external-server \
 --server-name "SMTP Server" \
 --type smtp \
 --set server-host-name:<smtp.example.com>

dsconfig set-global-configuration-prop \
 --add "smtp-server:SMTP Server"

dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set 'sender-address:joey@example.com' \
 --set 'recipient-address:deedee@example.com'

If you are running a nonproduction environment, you can disable this alarm by running the following
dsconfig command.

dsconfig set-alarm-manager-prop \
 --set suppressed-alarm:no-enabled-alert-handlers

Insecure access token validator enabled

This alarm warns the administrator that a mock access token validator is enabled. Mock access token
validators can be very useful in test environments because they allow PingAuthorize Server to accept
HTTP API requests without the overhead of setting up an OAuth 2 authorization server. However,
because they do not actually authenticate access tokens, they are insecure and should never be used in a
production environment.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 381

The following example shows how to disable an access token validator called "Mock Token Validator."

dsconfig set-access-token-validator-prop \
 --validator-name "Mock Token Validator" \
 --set enabled: false

Sensitive data may be logged

This alarm warns the administrator that a trace log publisher has been configured to record debug
messages. Debug log messages are not guaranteed to exclude potentially sensitive data, so their use is
strongly discouraged in a production environment. You should not use them with anything but test data.

To disable a trace log publisher called "Debug Trace Logger," run this command.

dsconfig set-log-publisher-prop \
 --publisher-name "Debug Trace Logger" \
 --set enabled:false

Managing monitoring
PingAuthorize provides several monitoring options.

The following sections describe the options.

▪ Profiling server performance using the Stats Logger on page 381
▪ Logging HTTP performance statistics using the Periodic Stats Logger on page 383
▪ StatsD monitoring endpoint on page 383
▪ Sending metrics to Splunk on page 384

Profiling server performance using the Stats Logger
PingAuthorize provides a Stats Logger plugin you can use to profile server performance for a given
configuration.

At a specified interval, the Stats Logger can write server statistics to a JSON file or to a log file in a comma-
separated value (.csv) format.

The logger has a negligible impact on server performance unless the log-interval property is set to a
very small value (less than 1 second). You can customize the statistics logged and their verbosity.

You can also use the Stats Logger to view historical information about server statistics including LDAP
operations, host information, and gauges. Your options include:

▪ Update the configuration of the existing Stats Logger Plugin to set the advanced gauge-info
property to basic/extended to include this information.

▪ Create a dedicated Periodic Stats Logger for information about statistics of interest.

Enabling the Stats Logger
By default, the Stats Logger plugin is disabled. Enable it using the dsconfig tool (and its Advanced
Objects menu and Plugin option) or the administrative console (and its Advanced Configuration menu and
Plugin Root option).

About this task
The steps below show how to use dsconfig to enable the plugin.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 382

Steps

1. Run dsconfig in interactive mode. Enter the LDAP or LDAPS connection parameters when
prompted.

Example:

$ bin/dsconfig

2. Enter o to change to the Advanced Objects menu.

3. On the main menu, enter the number for the Plugin menu.

4. On the Plugin menu, enter the number corresponding to view and edit an existing plugin.

5. On the Plugin selection list, enter the number corresponding to the Stats Logger.

6. On the Stats Logger Plugin menu, enter the number to set the enabled property to TRUE.

If the server is idle, nothing is logged. You can log data even when idle by setting the suppress-if-
idle property to FALSE (suppress-if-idle=false).

 Note:
On this menu, you can also change the format from csv to json.

7. When done changing properties, enter f to save and apply the configuration.

The default logger logs information about the server every second to <server-root>/logs/
dsstats.csv. You can open the file in a spreadsheet.

Configuring multiple Periodic Stats Loggers
Create multiple, Periodic Stats Loggers to log different statistics or to view historical information about
gauges. Also, you might create multiple loggers to create a log at different intervals (such as logging
cumulative operations statistics every hour). To create a new log, use the existing Stats Logger as a
template to get reasonable settings, including rotation and retention policy.

Steps

1. Run dsconfig in interactive mode. Enter the LDAP or LDAPS connection parameters when
prompted.

Example:

$ bin/dsconfig

2. Enter o to change to the Advanced Objects menu.

3. On the main menu, enter the number for the Plugin menu.

4. From the Plugin management menu, enter the number to create a new plugin.

5. Enter t to use an existing plugin as a template.

6. Enter the number corresponding to the existing stats logger as a template.

7. Enter a descriptive name for the new stats logger.

8. Enter the log file path to the file.

For example, type logs/dsstats2.csv.

9. On the menu, make any desired changes to the properties for the logger.

For information about the included-http-servlet-stat property, see Logging HTTP performance statistics
using the Periodic Stats Logger on page 383.

 Note:
On this menu, you can also change the format from csv to json.

10. Enter f to save and apply the configuration.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 383

Logging HTTP performance statistics using the Periodic Stats Logger
To log HTTP performance statistics, set the Periodic Stats Logger property included-http-servlet-
stat.

About this task

You can log HTTP performance statistics for any combination of the following servlet extensions:

▪ gateway
▪ scim2
▪ sideband-api

The provided statistics come in pairs:

▪ One statistic represents the average latency introduced by PingAuthorize during the current log
interval in microseconds. The calculation is total time to respond to a request less the time spent
waiting for the upstream server.

▪ The other statistic represents the number of requests made during the current log interval.

These throughput and latency pairs exist for every service, action combination for the scim2 and
sideband-api servlet extensions and for every service, HTTP method combination for the gateway servlet
extension.

To log these statistics:

Steps

1. Enable the Periodic Stats Logger.

For more information, see Enabling the Stats Logger on page 381.

2. Set the included-http-servlet-stat property.

For more information, see Configuring multiple Periodic Stats Loggers on page 382.

StatsD monitoring endpoint

The Monitoring Endpoint configuration type provides the StatsD Endpoint type that you can use to transfer
metrics data in the StatsD format.

Examples of metrics you can send are:

▪ Busy worker thread count
▪ Garbage collection statistics
▪ Host system metrics such as CPU and memory

For a list of available metrics, use the interactive dsconfig menu for the Stats Collector plugin, or in the
administrative console, edit the Stats Collector plugin as explained in the second example.

You configure the monitoring endpoint using the dsconfig command. When you configure the monitoring
endpoint, you include:

▪ The endpoint's hostname
▪ The endpoint's port
▪ A toggle to use TCP or UDP
▪ A toggle to use SSL if you use TCP

The following example shows how to configure a new StatsD monitoring endpoint to send UDP data to
localhost port 8125 using dsconfig.

dsconfig create-monitoring-endpoint \
 --type statsd \
 --endpoint-name StatsDEndpoint \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 384

 --set enabled:true \
 --set hostname:localhost \
 --set server-port:8125 \
 --set connection-type:unencrypted-udp

If you are using the administrative console, perform the following steps.

1. Click Show Advanced Configuration.
2. In the Logging, Monitoring, and Notifications section, click Monitoring Endpoints.
3. Click New Monitoring Endpoint.

You can send data to any number of monitoring endpoints.

The Stats Collector plugin controls the metrics used by the StatsD monitoring endpoint. To send metrics
with the StatsD monitoring endpoint, you must enable the Stats Collector plugin. Also, you must configure
the Stats Collector plugin to indicate the metrics to send.

To enable the Stats Collector plugin or to configure the type of data sent, use the dsconfig command or
the administrative console. This example shows how to enable the Stats Collector plugin to send host CPU
metric, memory metrics, and server status metrics using dsconfig.

dsconfig set-plugin-prop \
 --plugin-name "Stats Collector" \
 --set enabled:true \
 --set host-info:cpu \
 --set host-info:disk \
 --set status-summary-info:basic

If you are not using Data Metrics Server to monitor your server, you can disable the generation of some
metrics files that are not necessary for the StatsD Monitoring Endpoint. To do this, set the generate-
collector-files property on the Stats Collector Plugin to false.

If you are using the administrative console, perform the following steps.

1. Click Show Advanced Configuration.
2. In the LDAP (Administration and Monitoring) section, click Plugin Root
3. Edit the Stats Collector plugin.

After you enable the Stats Collector and create the StatsD monitoring endpoint, you can:

▪ Use the data with Splunk as explained in Sending metrics to Splunk on page 384.
▪ Configure other tools that support StatsD, such as CloudWatch or a Prometheus StatsD exporter, to

use the data. For more information about this configuration, see your tool's StatsD documentation.
Configure the PingAuthorize StatsD monitoring endpoint to use the correct host and port. The
dsconfig create-monitoring-endpoint example above uses a host of localhost and a port of
8125. You can also set these values in the administrative console.

Sending metrics to Splunk
Use a Splunk Universal Forwarder to securely send UDP (or TCP) data to Splunk.

About this task

With the StatsD Endpoint type, you can send metric data to a Splunk installation. In Splunk, you can use
SSL to secure ports that are open for StatsD.

 Note:

StatsD metrics are typically sent over UDP. By using UDP, the client sending metrics does not have to
block as it would if using TCP. However, using TCP guarantees order and ensures no metrics are lost.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 385

You can configure open UDP (or TCP) ports in Splunk to accept only connections from a certain hostname
or IP address.

Steps

1. Send the data to a Splunk Universal Forwarder.

2. Have the forwarder communicate with the Splunk Indexer over SSL.

Managing HTTP correlation IDs
An HTTP correlation ID is a unique ID that you can use to track requests as they make their way through
the system.

The following sections explain how to configure and use these IDs.

About HTTP correlation IDs
HTTP correlation IDs let you trace requests.

A typical request to a software system is handled by multiple subsystems, which might be distinct servers
on distinct hosts across different locations. Tracing the request flow on such distributed systems can be
challenging because log messages are scattered across various systems and intermingled with messages
for other requests.

To solve this problem, a system can assign a correlation ID to a request that it adds to every associated
operation as the request flows through the larger system. With the correlation ID, you can easily locate and
group related log messages.

PingAuthorize, PingDirectory, and their related products support correlation IDs for all HTTP requests
received through the HTTP(S) Connection Handler. For more information about HTTP connection handlers
in PingDirectory, see HTTP connection handlers.

How PingAuthorize handles correlation IDs

▪ When any HTTP request is received, PingAuthorize automatically assigns the request a
correlation ID.

▪ All related activity appears in the trace logs with this correlation ID.
▪ The PingAuthorize gateway adds the correlation ID header to requests it forwards.
▪ The LDAP Store Adapter used by the SCIM 2 service uses the correlation ID as the client

request ID value in Intermediate Client Request Controls that it sends to the downstream Ping
LDAP server.

You can find this value in the via key of records logged by the LDAP server's access log.

If the LDAP server is a PingDirectoryProxy Server, the Intermediate Client Request Control is
forwarded in turn to the downstream LDAP server.

How other Ping products handle correlation IDs

▪ When any HTTP request is received, it is automatically assigned a correlation ID.
▪ You can use this correlation ID to correlate HTTP responses with messages recorded to the

HTTP Detailed Operation log and the trace log.
▪ For specific web APIs, the correlation ID might also be passed to the LDAP subsystem.
▪ For the SCIM 1, SCIM 2, Delegated Admin, Consent, and Directory REST APIs, the correlation

ID appears with associated requests in LDAP logs in the correlationID key.

Copyright ©2024

https://docs.pingidentity.com/bundle/pingdirectory-80/page/ppo1564011495630.html

PingAuthorize | PingAuthorize Server Administration Guide | 386

Server SDK support
For Server SDK extensions that have access to the current HttpServletRequest, the extension
can retrieve the current correlation ID as a String through the HttpServletRequest's
com.pingidentity.pingdata.correlation_id attribute.

Consider this example.

(String) request.getAttribute("com.pingidentity.pingdata.correlation_id");

Enabling or disabling correlation ID support
Correlation ID support is enabled by default for each HTTP connection handler, but you can optionally
disable it.

Steps

▪ To disable correlation ID support for the HTTPS connection handler, run the following command.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" --set use-correlation-id-header:false

▪ To enable correlation ID support for the HTTPS connection handler, run the following command.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" --set use-correlation-id-header:true

Configuring the correlation ID response header
You can optionally change the correlation ID response header that PingAuthorize Server sends with HTTP
requests.

About this task

By default, PingAuthorize Server generates a correlation ID for every HTTP request and response header.

To customize this response header name:

Steps

▪ By default, PingAuthorize Server generates a correlation ID for every HTTP request and sends it in the
response with the dsconfig command.

Example: The following example changes the correlation ID response header to X-Request-Id.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" --set correlation-id-response-header:X-Request-Id

How the server manages correlation IDs
By default, the server looks for a correlation ID header on the request and uses the value if found. This
behavior integrates the server into a larger system of other servers using correlation IDs.

If a correlation ID header is not found, the server generates a new, unique correlation ID for each HTTP
request.

The connection handler uses the correlation-id-request-header property to determine which
request headers are correlation ID headers, as shown in the following configuration. The actual default
configuration might differ.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 387

 --set correlation-id-request-header:X-Request-Id \
 --set correlation-id-request-header:X-Correlation-Id \
 --set correlation-id-request-header:Correlation-Id \
 --set correlation-id-request-header:X-Amzn-Trace-Id

If a request contains more than one of the previous correlation ID headers, the server checks the
configured header names in order, and then uses the first one found.

Example: HTTP correlation ID
This example shows a SCIM 2 request with a correlation ID assigned in the response. Then the example
uses that ID to locate entries in the debug trace log and the policy decision log.

First, make a SCIM 2 GET request.

The response includes a Correlation-Id header with the value c52af735-788d-4798-
be3b-8d1f3c8f9d64. The ellipsis (...) in the response indicates lines removed to keep the example
brief. Because the request does not include a correlation ID, the server generates the header and value.

GET https://localhost:8443/scim/v2/Me HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer ...
Connection: keep-alive
Host: localhost:1443
User-Agent: HTTPie/0.9.9

HTTP/1.1 200 OK
Content-Length: 903
Content-Type: application/scim+json
Correlation-Id: c52af735-788d-4798-be3b-8d1f3c8f9d64
Date: Mon, 15 Mar 2021 15:23:06 GMT
Request-Id: 371

{
 "mail": [
 "user.0@example.com"
],
 "initials": [
 "AOR"
],
 "homePhone": [
 "+1 295 940 2750"
],
 "pager": [
 "+1 604 109 3407"
],
 "givenName": [
 "Anett"
],
 ...
}

Use the correlation ID to search the HTTP debug trace log for matching log records.

$ grep 'correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"' PingAuthorize/
logs/debug-trace

Also, use the correlation ID to search the policy decision log for matching log records.

$ grep 'correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"' PingAuthorize/
logs/policy-decision

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 388

Command-line tools
PingAuthorize Server provides a full suite of command-line tools to administer the server. You can run
these tools in interactive, noninteractive, or script mode.

 Note:

Most of these tools are in the bin directory for Linux systems and the bat directory for Microsoft Windows
systems; however, some of the tools are in the root directory of the distribution.

Tools help

For Use this option Example

Information about arguments and
subcommands

Usage examples

--help dsconfig --help

A list of subcommands --help-subcommands dsconfig --help-
subcommands

More information about a
subcommand

--help with the subcommand dsconfig list-log-
publishers --help

For more information and examples, see the PingAuthorize Command-Line Tool Reference at docs/cli/
index.html.

Command-line tools

Tool Description

backup Run full or incremental backups on one or more
PingAuthorize Server backends.

This tools supports the use of a properties file
to pass command-line arguments. See Saving
command options in a file on page 393.

base64 Encode raw data using the base64 algorithm or
decode base64-encoded data back to its raw
representation.

collect-support-data Collect and package system information useful
in troubleshooting problems. The information is
packaged as a zip archive that you can send to a
technical support representative.

config-diff Compares PingAuthorize Server configurations and
produces a dsconfig batch file needed to bring
the source inline with the target.

create-initial-config Create an initial PingAuthorize Server configuration.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 389

Tool Description

create-rc-script Create a Run Control (RC) script to start, stop, and
restart the PingAuthorize Server on UNIX-based
systems.

create-systemd-script Create a systemd script to start and stop the
PingAuthorize Server on Linux-based systems.

docker-pre-start-config Run this tool before starting PingAuthorize Server
to make configuration changes to the server that
depend on the running container’s environment.

dsconfig View and edit the PingAuthorize Server
configuration.

dsjavaproperties Configure the JVM options used to run
PingAuthorize Server and its associated tools.

Before launching the command, edit the properties
file located in config/java.properties to
specify the desired JVM options and JAVA_HOME
environment variable.

encrypt-file Encrypt or decrypt data using a key generated
from a user-supplied passphrase, a key generated
from an encryption settings definition, or a key
shared among servers in the topology. The data to
be processed can be read from a file or standard
input, and the resulting data can be written to a file
or standard output. You can use this command to
encrypt and subsequently decrypt arbitrary data, or
to decrypt encrypted backups, LDIF exports, and
log files generated by the server.

encryption-settings Manage the server encryption settings database.

ldap-diff Compare the contents of two LDAP servers.

ldap-result-code Display and query LDAP result codes.

ldapcompare Perform compare operations in an LDAP directory
server. Compare operations can be used to
efficiently determine whether a specified entry has
a given value.

ldapdelete Delete one or more entries from an LDAP directory
server. You can provide the DNs of the entries
to delete using named arguments, as trailing
arguments, from a file, or from standard input.
Alternatively, you can identify entries to delete
using a search base DN and filter.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 390

Tool Description

ldapmodify Apply a set of add, delete, modify, and/or modify
DN operations to a directory server. Supply the
changes to apply in LDIF format, either from
standard input or from a file specified with the
ldifFile argument. Change records must be
separated by at least one blank line.

ldappasswordmodify Update the password for a user in an LDAP
directory server using the password modify
extended operation (as defined in RFC 3062),
a standard LDAP modify operation, or an Active
Directory-specific modification.

ldapsearch Process one or more searches in an LDAP
directory server.

ldif-diff Compare the contents of two files containing LDIF
entries. The output will be an LDIF file containing
the add, delete, and modify change records needed
to convert the data in the source LDIF file into the
data in the target LDIF file.

ldifmodify Apply a set of changes (including add, delete,
modify, and modify DN operations) to a set of
entries contained in an LDIF file. The changes
will be read from a second file (containing change
records rather than entries), and the updated
entries will be written to a third LDIF file. Unlike
ldapmodify, ldifmodify cannot read the
changes to apply from standard input.

ldifsearch Search one or more LDIF files to identify entries
matching a given set of criteria.

list-backends List the backends and base DNs configured in
PingAuthorize Server.

manage-certificates Manage certificates and private keys in a JKS,
PKCS #12, PKCS #11, or BCFKS key store.

manage-extension Install or update PingAuthorize Server extension
bundles.

manage-profile Generate, compare, install, and replace server
profiles.

manage-tasks Access information about pending, running, and
completed tasks scheduled in the PingAuthorize
Server.

manage-topology Tool to manage the topology registry.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 391

Tool Description

prepare-external-store Prepare a PingAuthorize Server and an external
server for communication.

reload-http-connection-handler-
certificates

Reload HTTPS Connection Handler certificates.

remove-backup Safely remove a backup and optionally all
of its dependent backups from the specified
PingAuthorize Server backend.

remove-defunct-server Remove a server from this server's topology.

replace-certificate Replace the listener certificate for this
PingAuthorize Server server instance.

restore Restore a backup of a PingAuthorize Server
backend.

revert-update Revert this server package's most recent update.

review-license Review and/or indicate your acceptance of
the license agreement defined in legal/
LICENSE.txt.

rotate-log Trigger the rotation of one or more log files.

sanitize-log Sanitize the contents of a server log file to
remove potentially sensitive information while still
attempting to retain enough information to make it
useful for diagnosing problems or understanding
load patterns. The sanitization process operates
on fields that consist of name-value pairs. The field
name is always preserved, but field values might be
tokenized or redacted if they might include sensitive
information. Supported log file types include the file-
based access, error, sync, and resync logs, as well
as the operation timing access log and the detailed
HTTP operation log.

 Note:

To sanitize error log content as it's being written,
see Log Sanitization.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=pd-latest&context=pd_ds_log_sanitization

PingAuthorize | PingAuthorize Server Administration Guide | 392

Tool Description

schedule-exec-task Schedule an exec task to run a specified command
in the server. To run an exec task, a number of
conditions must be satisfied: the server's global
configuration must have been updated to include
com.unboundid.directory.server.tasks.ExecTask
in the set of allowed-task values, the requester
must have the exec-task privilege, and the
command to execute must be listed in the exec-
command-whitelist.txt file in the server's
config directory. The absolute path (on the
server system) of the command to execute must
be specified as the first unnamed trailing argument
to this program, and the arguments to provide
to that command (if any) should be specified as
the remaining trailing arguments. The server root
is used as the command's working directory, so
any arguments that represent relative paths are
interpreted as relative to that directory.

search-logs Search across log files to extract lines matching
the provided patterns, like the grep command-line
tool. The benefits of using this tool over grep are
its ability to handle multi-line log messages, extract
log messages within a given time range, and the
inclusion of rotated log files.

server-state View information about the current state of the
PingAuthorize Server process.

setup Perform the initial setup for a server instance.

start-server Start the PingAuthorize Server.

status Display basic server information.

stop-server Stop or restart the server.

sum-file-sizes Calculate the sum of the sizes for a set of files.

uninstall Uninstall PingAuthorize Server.

update Update a deployed server so its version matches
the version of this package.

validate-file-signature Validate file signatures. For best results, file
signatures should be validated by the same
instance used to generate the file. However, it
might be possible to validate signatures generated
on other instances in a replicated topology.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 393

Saving command options in a file
PingAuthorize Server supports the use of a tools properties file (config/tools.properties by default)
to simplify command-line invocations by reading in a set of options for each tool from a text file.

Properties files are convenient when quickly testing PingAuthorize Server in multiple environments.

Each property takes the form of a name-value pair that defines predetermined values for a tool's options.

PingAuthorize Server supports the following types of properties:

▪ Default properties that apply to all command-line tools
▪ Tool-specific properties

Creating a tools properties file
You can set properties that apply to all tools or are tool-specific. These properties serve as defaults for the
command-line options they represent.

Steps

1. Use a text editor to open the default tools properties file (config/tools.properties) or a different
properties file.

 Note:

If you use a file other than config/tools.properties, invoke the tool with the --
propertiesFilePath option to specify the path to your properties file.

2. Set or change properties that apply to all tools.

Use the standard Java properties file format (name=value) to set properties. For example, the
following properties define a set of LDAP connection parameters.

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret
baseDN=dc=example,dc=com

 Note:

Properties files do not allow quotation marks of any kind around values.

Escape spaces and special characters.

Whenever you specify a path, do not use ~ to refer to the home directory. The server does not expand
the ~ value when read from a properties file.

3. Set or change properties that apply to specific tools.

Tool-specific properties start with the name of the tool followed by a period. These properties
take precedence over properties that apply to all tools. The following example sets two ports:
one that applies to all tools (port=1389) and a tool-specific one that ldapsearch uses instead
(ldapsearch.port=2389).

hostname=server1.example.com
port=1389
ldapsearch.port=2389
bindDN=cn=Directory\ Manager

4. Save your changes and close the file.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 394

Evaluation priority of command-line options
You can specify options for a command-line tool on the command line, in a properties file, or both.

Options you specify on a tool’s command line take priority over options in a properties file.

Consider the following scenarios.

Command-line options PingAuthorize Server uses ...

No command-line options The options in the default <server-root>/config/tools.properties file

Command-line options other than
the --propertiesFilePath
<my-properties-file> option

The command-line options, which take priority if the options are also in the
<server-root>/config/tools.properties file

The file options for options that are only in the default <server-root>/
config/tools.properties file

Only the --propertiesFilePath
<my-properties-file> option

The options in <my-properties-file>

The --propertiesFilePath
<my-properties-file> option
and other command-line options

The command-line options, which take priority if the options are also in <my-
properties-file>

The file options for options that are only in <my-properties-file>

The --noPropertiesFile option
and other command-line options

Only the options you specify on the command line, ignoring the default
properties file

Example

Consider this example properties file that is saved as <server-root>/bin/tools.properties:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

PingAuthorize Server checks command-line options and file options to determine the options to use, as
explained below.

▪ All options presented with the tool on the command line take precedence over any options in a
properties file.

In the following example, the command runs with the options specified on the command line (--
port and --baseDN). With the port value both on the command line and in the properties file, the
command-line value takes priority. The command uses the bindDN and bindPassword values
specified in the properties file.

$ bin/ldapsearch --port 2389 --baseDN ou=People,dc=example,dc=com \
 --propertiesFilePath bin/tools.properties “(objectclass=*)”

▪ If you specify the properties file using the --propertiesFilePath option and no other command-
line options, PingAuthorize Server uses only the options in the specified properties file:

$ bin/ldapsearch --propertiesFilePath bin/tools.properties \
 “(objectclass=*)”

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 395

▪ If do not specify any command-line options, PingAuthorize Server attempts to locate the default
properties file in the following location:

<server-root>/config/tools.properties

By moving your tools.properties file from <server-root>/bin to <server-root>/config,
you do not have to specify the --propertiesFilePath option. That change shortens the previous
command to the following command.

$ bin/ldapsearch "(objectclass=*)"

Sample dsconfig batch files
PingAuthorize provides sample dsconfig batch files that you can use to easily make a number of
common or recommended changes to the server configuration.

The config/sample-dsconfig-batch-files directory contains dsconfig batch files that you can
use to configure various aspects of the server. For example, these files can enable additional security
capabilities or take advantage of features that might require customization from one environment to
another.

Each file includes comments that describe the purpose and benefit of its configuration change. You can
choose which of the changes you want to apply.

You need to customize some of the batch files to provide values that might vary from one environment to
another. To apply a batch file that requires changes, copy it to another directory and edit the copy. Leave
the files in the config/sample-dsconfig-batch-files directory unchanged so that they can be
updated when you upgrade the server. To specify the path to the file that contains the changes to apply,
use the dsconfig tool (bin/dsconfig on UNIX-based systems or bat\dsconfig.bat on Windows)
with the --batch-file argument.

You should also provide the arguments needed to connect and authenticate to the server. The --no-
prompt argument ensures that the tool does not block while waiting for input if any necessary arguments
are missing. Consider this example.

bin/dsconfig --hostname localhost \
 --port 636 --useSSL --trustStorePath config/truststore \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPasswordFile admin-password.txt \
 --batch-file config/hardening-dsconfig-batch-files/reject-insecure-request.dsconfig \
 --no-prompt

Running task-based tools
PingAuthorize Server has a Tasks subsystem that allows you to schedule basic operations, such as
backup, restore, rotate-log, schedule-exec-task, and stop-server. All task-based tools
require the --task option that explicitly indicates the tool is to run as a task rather than in offline mode.

The following table shows the options you can use for task-based operations.

Options for task-based operations

Option Description

--task Indicates that the tool is invoked as a task. The --task option is
required. If you invoke a tool as a task without this --task option,
then a warning message is displayed stating that it must be used.
If the --task option is provided but the tool was not given the
appropriate set of authentication arguments to the server, then an
error message is displayed and the tool exits with an error.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 396

Option Description

--start <startTime> Indicates the date and time, expressed in the format
'YYYYMMDDhhmmss', when the operation is to start.

A value of '0' causes the task to be scheduled for immediate
execution.

After the scheduled run, the tool exits immediately.

--dependency <taskID> Specifies the ID of a task upon which this task depends.

A task does not start execution until all its dependencies have
completed execution.

You can use this option multiple times in a single command.

--failedDependencyAction
<action>

Specifies the action this task takes if one of its dependent tasks fail.

Valid action values are:

▪ CANCEL (the default)

Cancels the task.
▪ DISABLE

Disables the task so that it is not eligible to run until you manually
enable it again.

▪ PROCESS

Runs the task.

--startAlert Generates an administrative alert when the task starts running.

--errorAlert Generates an administrative alert when the task fails to complete
successfully.

--successAlert Generates an administrative alert when the task completes
successfully.

--startNotify
<emailAddress>

Specifies an email address to notify when the task starts running.

You can use this option multiple times in a single command.

--completionNotify
<emailAddress>

Specifies an email address to notify when the task completes,
regardless of whether it succeeded or failed.

You can use this option multiple times in a single command.

--errorNotify
<emailAddress>

Specifies an email address to notify if an error occurs when this task
executes.

You can use this option multiple times in a single command.

--successNotify
<emailAddress>

Specifies an email address to notify when this task completes
successfully.

You can use this option multiple times in a single command.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 397

Diagnostic and decision data
For problems with PingAuthorize Server or a supporting component, such as the Java Virtual Machine
(JVM), the operating system, or the hardware, you can capture diagnostic data.

With this data, you can troubleshoot the problem quickly to determine the underlying cause and the best
course of action to resolve it.

For specific details, see the following topics:

▪ Exporting policy data on page 397
▪ Enable detailed logging on page 397
▪ About the Decision Response View on page 399
▪ Visualizing a policy decision response on page 400
▪ Capture debugging data with the collect-support-data tool on page 402

Exporting policy data
Export all Trust Framework and policy data from the PingAuthorize Policy Editor to a snapshot that
captures all of the policy data contained within a branch of the PingAuthorize Policy Editor.

About this task

Snapshots provide a convenient way to load policy data into a separate PingAuthorize Policy Editor
instance.

To export policy data:

Steps

1. Go to Branch Manager.

2. Select the Version Control tab.

3. Click the name of the branch to export.

4. Click the branch's Options icon and select Export Snapshot.

Result: A snapshot file downloads to your computer.

Enable detailed logging
Enable detailed debug logging for troubleshooting.

 Note:

This level of logging captures request and response data that contains potentially sensitive information. Do
not use this level of logging when working with actual customer data.

Policy Decision logger
Enabled by default, the Policy Decision logger records decision responses that are received from the policy
decision point (PDP).

Regardless of whether PingAuthorize Server is configured to evaluate a policy in embedded or
external mode, a policy-decision file logs every policy decision per request. The file is located at
PingAuthorize/logs/policy-decision and contains the following information:

Policy-decision response

Each client request triggers a policy-decision response that specifies the inbound actions to perform,
and another policy-decision response that specifies the outbound actions to perform. If you think of

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 398

a policy-decision response as a set or decision tree of policies, all inbound and outbound requests
are read from that set or tree.

Policy rules determine whether a request is denied, permitted, or indeterminate.

Most recent policy decision

To debug the most recent inbound request, open the policy-decision log file and locate the highest
DECISION requestID in the section near the bottom of the file.

Alternatively, you can use the most recent request timestamp to locate the most recent request.

Policy advice

If the policy contains advice, it is logged after the policy-decision response JSON. Advice features
the same corresponding requestID as the most recent policy decision.

To increase the level of detail that is returned in PDP decision responses, configure the Policy Decision
Service as follows:

dsconfig set-policy-decision-service-prop \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request \
 --add decision-response-view:evaluated-entities \
 --add decision-response-view:evaluation-log-with-attribute-values

 Note:

Policy Decision views also affect the decision response payload of the request. You can remove added
views by using the --remove decision-response-view:<view_name> argument. See About the
Decision Response View on page 399 for more information.

Configurable attribute logging for embedded mode

When running the Policy Decision Service in embedded mode, you can exercise some control over which
attributes get logged as part of the policy-decision response. The dsconfig set-policy-decision-
service-prop command supports an attribute-logging argument. This argument allows you to log the full
details of the specified attributes when they're evaluated as part of the policy-decision request.

Here's an example of how to use the attribute-logging argument for embedded mode:

dsconfig set-policy-decision-service-prop \
 --set embedded-mode-logged-attributes:<attribute1> \
 --set embedded-mode-logged-attributes:<attribute2>

 Warning:

Attributes specified using this argument are only logged if they get evaluated as part of the of policy-
decision request. Enabling certain decision response views could override this configuration and cause all
evaluated attributes to be included in the response.

Including additional attributes could cause the Trace Log Publisher or the Policy Decision Log Publisher to
record sensitive data.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 399

Debug Trace logger
The Debug Trace logger records detailed information about the processing of HTTP requests and
responses.

The following example enables the log.

dsconfig set-log-publisher-prop \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

By default, the corresponding log file is located at PingAuthorize/logs/debug-trace.

Debug logger
The Debug logger records debugging information that a developer might find useful.

The following example enables the log.

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.broker.http.gateway \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.config.GatewayConfigManager \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.core.policy.PolicyEnforcementPoint \
 --set debug-level:verbose

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

By default, the corresponding log file is located at PingAuthorize/logs/debug.

About the Decision Response View
You can use the Decision Response View to increase or decrease the size of the policy decision
response from the Policy Decision Point (PDP).

When a client application makes a request for API resources, the PingAuthorize server returns a decision
response payload that includes, at minimum, basic information about the server instance, the API
resources, and the inbound and outbound flow of data. The payload also includes any views selected
in the Decision Response View. By default, no views are selected. PingAuthorize then passes the full
response payload to the Policy Decision Logger.

To configure the selected views for the Decision Response View, do one of the following:

▪ In the administrative console, go to Configuration # Policy Decision Service and change the
Selected views included for Decision Response View.

▪ Use CLI commands to add or remove views.

You can change the verbosity of the response payload and the size of the policy-decision log files by
changing the selected views in the Decision Response View by either:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 400

▪ Adding views increases the size of response payloads and policy-decision log files.
▪ Removing views decreases the size of response payloads and policy-decision log files.

 Note:

▪ Some views are more verbose than others.
▪ If you remove all views, the Policy Decision Logger still logs an abbreviated response. To prevent

this abbreviated logging, disable include-pdp-response for the File Based Policy Decision Log
Publisher.

▪ The Decision Response View behavior doesn't significantly change between embedded and external
PDP modes.

You can select the following additional views in the Decision Response View.

Decision Response View Description

attributes Full details of attributes evaluated during policy
decision evaluation.

decision-tree Detailed output tracing the decision's policy
evaluation flow.

evaluated-entities Attribute and service resolution details. This is
equivalent to specifying both attributes and
services.

evaluation-log Attribute and service resolution details. This is
similar to specifying evaluated-entities, but the
data are expressed in a flat format.

evaluation-log-with-attribute-values Attribute and service resolution details. This is
equivalent to specifying evaluation-log but also
includes values and types for successful attribute
resolutions.

request The policy decision request. Might include sensitive
data.

services Full details of services invoked during policy
decision evaluation.

 Warning:

Selecting the request view causes the Policy Decision Logger to record potentially sensitive data in API
requests and responses.

Visualizing a policy decision response
Visualize a decision by selecting a recent decision or by copying and pasting a decision from a log.

Steps

1. Sign on to the PingAuthorize Policy Editor.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 401

2. Choose a method for visualizing a decision.
Choose from:

▪ Select a recent decision

a. In the Policy Editor, go to Policies.
b. Click the Decision Visualiser tab.
c. Click Recent Decisions and select a decision.
d. Click Visualise.

 Note:

You can control the number of recent decisions that appear in the list as explained in Setting the
request list length for Decision Visualizer on page 256.

▪ Copy and paste a decision from a log

 Note:

Before attempting to troubleshoot or trace a policy-decision response, ensure that the Policy
Decision logger is enabled. For more information, see Configuring PingAuthorize logging on page
360.

Each policy-decision response is presented in JSON format. To view the details of a policy-
decision response:

a. From within the policy-decision file, copy the policy-decision response JSON.
b. In the Policy Editor, go to Policies.
c. Click the Decision Visualiser tab.
d. Click Paste Logs.
e. In the field beneath Paste Logs, paste the policy-decision response JSON.
f. Click Visualise.

Result
An interactive decision tree of your policies is displayed.

This image depicts the final decision sent to the client. The node to the far left, Global Decision Point,
represents the root node, and the child nodes contain the subset of policies and rules.

The following color-coded icons convey important information:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 402

▪ A green check mark indicates that the request permit on the policy or rule.
▪ A red X indicates that the request deny on the policy or rule.
▪ A gray N/A indicates that the request is not applicable to the policy or rule.

In the previous example, the client received a final decision of deny. The Token Validation policy permitted
the request initially but was overridden after the Random Jokes API policy was applied.

Capture debugging data with the collect-support-data tool
Run the collect-support-data tool to capture the PingAuthorize Server’s configuration, server state,
environment, and other information to use for troubleshooting issues.

When you run PingAuthorize/bin/collect-support-data, the tool generates a compressed file
that can be attached to a message or report.

By default, the tool excludes log files that might contain sensitive customer information, including the
debugging logs that are described in Enable detailed logging on page 397. When you use test data, send
the following log files alongside collect-support-data’s compressed output file:

▪ PingAuthorize/logs/policy-decision
▪ PingAuthorize/logs/debug-trace
▪ PingAuthorize/logs/debug

About the layout of the PingAuthorize Server folders
The following table describes the contents of the PingAuthorize Server distribution file. In addition, the table
describes items created as you use PingAuthorize Server.

PingAuthorize Server directories, files, and tools

Directories, files, and tools Description

README README file that describes the steps to set up and
start PingAuthorize Server.

bak Stores the physical backup files used with the
backup command-line tool.

bat Stores Windows-based command-line tools for
PingAuthorize Server.

bin Stores UNIX/Linux-based command-line tools for
PingAuthorize Server.

build-info.txt Contains build and version information for
PingAuthorize Server.

collector Used by the server to make monitored statistics
available to PingDataMetrics Server.

config Stores the configuration files for the backends
(admin, config) as well as the directories for
messages, schema, tools, and updates.

docs Provides the product documentation.

extensions Stores Server SDK extensions.

ldif Serves as the default location for LDIF exports and
imports.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 403

Directories, files, and tools Description

legal Stores any legal notices for dependent software
used with PingAuthorize Server.

lib Stores any scripts, jar, and library files needed for
the server and its extensions.

locks Stores any lock files in the backends.

logs Stores log files for PingAuthorize Server.

metrics Stores the metrics that can be gathered for this
server and surfaced in PingDataMetrics Server.

resource Stores supporting files such as default policies, a
sample server profile template, and MIB files for
SNMP.

revert-update The revert-update tool for UNIX/Linux systems.

revert-update.bat The revert-update tool for Windows systems.

setup The setup tool for UNIX/Linux systems.

setup.bat The setup tool for Windows systems.

tmp Stores temporary files and directories used by the
server, including extracted WAR files and compiled
JSP files used by Web Application Extensions.

uninstall The uninstall tool for UNIX/Linux systems.

uninstall.bat The uninstall tool for Windows systems.

update The update tool for UNIX/Linux systems.

update.bat The update tool for Windows systems.

velocity Stores any customized Velocity templates and
other artifacts (CSS, Javascript, images), or
Velocity applications hosted by the server.

webapps Stores web application files such as the
administrative console.

About the layout of the PingAuthorize Policy Editor folders
The following table describes the contents of the PingAuthorize Policy Editor distribution file.

PingAuthorize Policy Editor directories, files, and tools

Directories, files, and tools Description

admin-point-application Stores any .jar and library files needed for the
server.

bin Stores UNIX/Linux-based command-line tools for
the PingAuthorize Policy Editor.

build-info.txt Contains build and version information for the
PingAuthorize Policy Editor.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 404

Directories, files, and tools Description

config Stores the configuration, including the keystore for
the web server HTTPS certificate.

lib Stores any .jar and library files needed by the
command-line tools.

logs Stores log files for the PingAuthorize Policy Editor.

resource Stores supporting files such as policy snapshots.

PingAuthorize Policy Administration Guide

PingAuthorize Policy Editor includes policy development and testing capabilities:

▪ Policy administration and delegation
▪ Attribute resolution and orchestration

Getting started
This guide introduces the dynamic authorization features of the PingAuthorize Policy Editor. It shows
you how to create attribute-based access control policies that reflect your business requirements. It also
provides a tour of the various concepts involved in modeling policies in the Policy Editor.

About this task

To get started with the Policy Editor, complete the following tasks:

Steps

1. Sign on to the Policy Editor.

In demo environments, you can use the default credentials:

▪ User name: admin
▪ Password: password123

2. Create a branch.

This branch stores your policies and other entities.

3. Define the Trust Framework.

This allows you to define the elements that will form the building blocks of your policies – the WHO,
WHAT, WHERE, WHY, and WHEN.

4. Define your policies and policy sets.

Build your policies to reflect your business needs.

5. Test polices and policy sets.

Verify that your policies correctly implement your business rules.

6. Commit changes.

This creates a commit, which is an immutable representation of the Trust Framework and Policies at a
point in time.

7. Create a deployment package.

This creates a file that can you deploy to PingAuthorize Server instances across multiple
environments.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 405

Next steps

After you sign on to the Policy Editor, the system prompts you to set the branch on which to work. You can
create a new (empty) branch, select an existing branch, or import a branch from a snapshot file.

The PingAuthorize Policy Editor embraces similar principles to general software source control. As such, it
begins with the creation of a branch. When you first deploy the Policy Editor, the Branches repository is
empty, and the system prompts you to create or import a branch. You must complete one of these actions
to continue using the product.

Version control (Branch Manager)
Use the Branch Manager to manage your fine-grained authorization policy branches, commits, snapshots,
and deployment packages.

Creating a new top-level branch
The PingAuthorize Policy Editor allows you to create a new branch in two ways: using the startup window
or the Branch Manager.

About this task

 Note:

Branch names must be unique. No two branches in the Policy Editor can share the same name.

Steps

1. Sign on to the Policy Editor.

2. Choose how to create the branch per the following table.

To create a new top-level branch from Do this

The startup window Specify a Branch name and click Create new
branch.

Branch Manager From Branch Manager # Version Control, you
can create a new root, or top-level, branch:

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 406

To create a new top-level branch from Do this

a. From the + menu, select Create new root
branch.

b. For the name, replace Untitled with a name
for your new branch.

c. Click Save Branch.

Creating a subbranch from a commit
Create a branch from a commit. For more information, see Committing changes on page 408.

About this task

This subbranch is a child of the branch from which the commit was selected. The subbranch shares the
history and contents of the parent branch up to that commit.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the commit from which to branch.

To branch from the latest uncommitted changes, make certain to commit before proceeding.

4. Click the three-line menu and select Create new branch from commit.

5. Specify a name for the branch.

6. Click Save Branch.

Result

The system creates a new subbranch with the selected commit as the branch-point.

Importing a branch
Import branches from previously exported snapshot files to share and restore Trust Framework definitions
and policies across users and environments.

About this task

 Note:
A snapshot file contains all the entities and policies from an existing branch. You can share the file like any
other file. For more information about creating snapshots, see Generating snapshots on page 409.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Click + and select Import Snapshot.

4. Select the appropriate snapshot file.

5. Specify a name for the branch.

6. Click Import.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 407

Deleting a branch
Delete a branch to remove the branch, its history, and any commits created on it from the system.

About this task

You cannot delete a branch if a deployment package has been created from that branch.

 CAUTION:

This operation is irreversible.

To recover data from a deleted branch, load a snapshot exported from the branch if one exists. If no such
snapshot is available, contact your system administrator, who might be able to recover the deleted branch
from a database backup.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the branch to delete.

4. Click Delete Branch.

Merging branches
Merge branches to apply all of the changes made in the source branch to the target branch.

About this task

You can only merge committed branches.

 Important:

If two branches each contain a Trust Framework or Test Suite definition that was created natively in that
branch but has the same exact name and hierarchy in the other branch, the merge operation will not
complete successfully.

This happens because the duplicated items don't come from the same source, making the branches
ineligible for merge conflict resolution. Rename any such duplicated items in one branch before attempting
to merge.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the source branch.

You can select top-level branches and subbranches.

4. Click Set branch as Merge Source.

5. Go to the target branch and click Set branch as Merge Target.

With the source and target branches selected, the Merge Branches button should appear.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 408

6. Click Merge Branches.

The PingAuthorize Policy Editor checks for merge conflicts.

If no conflicts are found, the changes are merged from the source branch into the target branch. Your
merge is complete, and you can skip the remaining step.

If conflicts are found, complete the following step to resolve the conflicts.

7. Resolve conflicts.

If an entity has changed in both the incoming and existing branches, the Policy Editor flags a conflict.
You must resolve the conflict for the merge to continue. Conflicts appear in the Merge Conflicts table.

a. If you need all or almost all of the sections from one branch, click either the Take All Incoming
button or the Keep All Existing button.

b. To examine conflicts one at a time, click Resolve Individual Conflicts.

On the resulting screen, select the Show diff check box to highlight differences.

Decide which change to keep and click either Keep Existing or Take Incoming.
c. After you resolve all conflicts, close the entity difference box.

The Apply Merge button becomes available.
d. Click Apply Merge.

Reverting branch changes
To undo changes since the last commit, use the Revert button.

About this task

Each branch has a list of previous commits and Uncommitted Changes. To show the changes since the
last commit, click the arrow to the left of the three-line icon in the Uncommitted Changes section.

 Note:

Reverting a change reverts all changes that have been made since that change as well. Make sure that
you understand all the changes that will be reverted before reverting.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the branch with the uncommitted changes to revert.

4. Expand the Uncommitted Changes section by clicking the arrow to the left of the three-line icon to
show all the changes that have happened since the last commit.

To the right of each change is a Revert button.

5. Click the Revert button and confirm the revert.

Committing changes
To save your policy and Trust Framework changes, commit your changes.

About this task

After you finish building, testing, and analyzing your policies, commit the changes. Committed changes
cannot be reverted.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 409

With changes committed, you can create a deployment package from the commit. See Creating a
deployment package on page 410.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the branch in which to put the commit.

4. Click Commit New Changes.

Generating snapshots
A snapshot contains all the details from a commit or from the Uncommitted Changes head. You can
export a snapshot to import later.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the three-line icon for item to snapshot.

4. Click Export Snapshot.

5. Specify a name for the snapshot.

6. Click Export.

Partial snapshot export and merging

With the partial snapshot export feature, you can package a subset (partial) of the policies or Trust
Framework entities for export. Then you can import the partial snapshot, either as an imported new branch
or merged into an existing branch.

Creating a partial snapshot export
Create a partial export to build an export snapshot of specifically selected entities from a combination of
the Trust Framework, Policy Sets, and the Library set.

Steps

1. Click Branch Manager.

2. Click Export Partial Snapshot.

3. Select the desired items from the list on the left.

4. Click Add selection to Snapshot at the top of the pane on the left.

This step adds the entity to the Selected entities list. The exported snapshot automatically includes all
dependencies so you do not need to explicitly select each individual dependency.

5. Click Export.

Merging a partial snapshot
Merge a snapshot to add or update all of the entities into the current branch.

Steps

1. Click Branch Manager.

2. Click Merge Snapshot.

3. Select the appropriate snapshot file from your system.

4. Click Merge.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 410

Result

The system displays a Summary page that details the result of the merge.

Next steps

In some cases, the merge function detects conflicts that arise when the current branch version differs
from the snapshot version of the same entity. For example, this situation might occur if you update one of
the merged entities in your current branch and then try to re-merge the snapshot. In such a scenario, the
system displays the following Merge Conflict Resolution page.

For each conflict detected, you can choose whether to keep your local changes or to overwrite them with
the changes from the merged snapshot.

After you resolve the conflicts, click Merge.

Creating a deployment package
Create a deployment package from committed changes.

About this task

A deployment package is a compiled version of the policy tree and is the key element that is deployed to
PingAuthorize Server.

Steps

1. Click Branch Manager.

2. Click Deployment Packages.

3. Click +.

4. Replace Untitled with a name for the deployment package.

5. Select a Branch, Commit, and Policy Node from which to generate the package.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 411

6. Click Create Package.

The package can be exported any number of times and will remain the same even if further changes
are made to the branch.

To export the deployment package, select the package and click Export Package.

Deleting a deployment package
Delete a deployment package to remove it from the Packages list.

Steps

1. Click Branch Manager.

2. Click Deployment Packages.

3. Select the package.

4. Click Delete Package.

Trust Framework
The Trust Framework tool lets you define all the entities within your organizations about which you want to
build policies at a later time.

You must define anything you want to express in your policies in the Trust Framework. As a result, your
policies are tightly coupled to the definitions in your Trust Framework, with strict restrictions on intermixing
of values with differing data types.

When defining and using these items, you can identify all the places they are used as described in Viewing
Trust Framework entity dependencies on page 432.

Domains (Authorization Policy Decision APIs only)
You need to define the organizational structure of any other organizations with which you intend to interact
and, consequently, on which you want to specify authorization policies.

Define these organizations under Trust Framework, using the Domains section, which is available only
on servers with Authorization Policy Decision APIs enabled. Start with a relatively clean and simple domain
ontology. You can extend it later if you need more granular levels.

You can import these values from your existing organizational directory, such as Active Directory. Make
certain that you do not import redundant and unnecessary entities.

Services

The Services section enables the definition of the following types of services:

▪ The resources to which you want to control access (what your policies will protect)
▪ The policy information providers that are used as a source of data for the attributes that comprise

policy decisions

Resources

For a resource, define only the top-level fields, such as Name, Parent, and Description. Unless you plan
to also use the service as a policy information provider, leave the Service Type as None.

Policy information providers
Setting up services as policy information providers makes use of various service connectors.

When you make a selection from the Service Type list, settings specific to the service appear. Settings
that apply to all service endpoints also appear.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 412

When a service returns a value to resolve an attribute, you can:

▪ Map the response to a type.
▪ Apply a processor to the response to transform that response or to extract a specific part of it.

Use a processor when a service returns more information than is required or returns information that
you must convert to a different format.

For information about processors and how to combine multiple processors, see Value processing on
page 427.

Common settings
The settings in this section apply to all service types.

Request Timeout

The number of milliseconds that PingAuthorize Server waits for the request to complete. If this time
elapses before receiving a successful response, the server cancels request. If the server has retries
configured, the server attempts the request again. If all requests fail to complete in time, the service result
is an error that represents the timeout.

Number of Retries

If the initial request fails or times out, this value indicates the number of times PingAuthorize Server
attempts the request again. To try the request only once, set this value to zero.

 Note:

If the service responds with a 4xx error, PingAuthorize Server won't make any retry attempts.

Retry Strategy

Options are:

Fixed Interval (default)

PingAuthorize Server waits for the retry delay between each attempt to perform a service request.

Exponential Backoff

PingAuthorize Server waits for an exponentially increasing amount of time between attempts.

Retry Delay

For a fixed interval strategy, this value represents the number of milliseconds that PingAuthorize Server
waits between request attempts.

For Exponential Backoff, PingAuthorize Server multiplies this value by 2^n, where n represents the number
of retries already made. For example, if the retry delay is 1000 and you have Exponential Backoff selected,
PingAuthorize Server makes the initial request, then waits 1000ms before making a second attempt,
2000ms before the third attempt, 4000ms before the fourth attempt, and so on.

Delay Jitter

This setting is a percentage value that indicates the amount of variability to apply to the retry delay on each
attempt. For example, if this value is set to 10%, the delays in the previous example are 1000±100ms,
2000±100ms, 4000±100ms, and so on.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 413

Value Processors

Specify an optional processor to transform the resolved value. See Value processing on page 427.

Value Settings

These are required settings that are applied and describe the resolved value after any preprocessing. Set
the Type field to String for plain text, or JSON or XML for those types, and so forth.

Secret

Select the Secret check box to mark a service’s response as secret and ensure this data is never leaked to
log files.

HTTP services
The policy decision point (PDP) can perform requests to HTTP services. These requests can send and
receive Text, JSON, and XML content.

HTTP authentication is supported by using a simple user name and password, or by using an OAuth2
token.

You can send custom headers with any request, which you can make dynamically in various ways by
interpolating attribute values into various parameters. See Attribute interpolation on page 425.

Core settings

▪ URL

URL for the REST endpoint that the PDP accesses. The Policy Manager can interpolate attributes
anywhere in the URL. Because no escaping of attribute values takes place, make certain that this
action is completed in the attribute definition, if necessary.

▪ HTTP Method

Method to send in the HTTP request.
▪ Content Type

Content-Type header to send, which relates to the body of the request.
▪ Body

Body to send with the request. The Policy Manager can interpolate attributes anywhere in the body
with no escaping.

Authentication

The Authentication drop-down lists the following HTTP authentication types, which correspond to an
authorization header sent with the request:

▪ None

Default value that indicates the PDP sends no authorization header.
▪ Basic

Reveals the choices for attributes whose values function as the user name and password of an HTTP
request with basic authentication.

▪ OAuth2

Reveals a token selector. The PDP sends the selected attribute as the authorization token in an HTTP
request with bearer authentication.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 414

Headers

You can add any number of custom headers to the request. The header names are fixed strings, but their
values can be constants or attribute values. To switch between constant and attribute, toggle C / A, which
is next to a header value.

Certificate validation

With certificate validation, you can define TLS and Mutual-TLS (M-TLS) certificates and keys when
connecting to the TLS (or SSL) based service.

When using external PDP mode, you can declare local file-based trust stores and key stores by providing
an options file during setup. See Specifying custom configuration with an options file on page 238.

When using embedded PDP mode, you do this by assigning Trust Manager Providers and Key Manager
Providers to the Policy Decision Service. See Use policies in a production environment on page 273.

Server (TLS)

Server (TLS) settings apply when validating the certificate or certificate chain sent from the server.
You have three options when validating a server certificate.

▪ No Validation

Skips validating the server certificates and initiates connection without any restriction.
▪ Default

This option is the default for Server (TLS).

Uses the default trust store provided by the runtime environment.

Use this if you are trying to connect to a service that has a certificate issued from a valid
certificate authority.

▪ Custom

Allows the user to define a custom certificate or certificate chain that is stored in a trust store.

Custom trust store settings:

▪ Source

Trust store source. Currently, it only supports file-based trust stores.
▪ Trust store name

The name given to the trust store in configuration.yml.
▪ Alias

Certificates in the trust stores are mapped by alias. You must set the alias in the trust store
to specify which certificate to use for validation.

Attributes can be interpolated anywhere in the value.
▪ Alias password

If the certificate is password-protected, it might need to provide the password.

Attributes can be interpolated anywhere in the value.

Client (M-TLS)

Some services might require the client to provide a client certificate when initializing the connection.
To provide a client certificate, enable this setting and provide a custom key store to be sent to the
service.

Custom key store settings:

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 415

▪ Source

Key store source. Currently, it only supports file-based key stores.
▪ Key store name

The name given to the key store in configuration.yml.
▪ Alias

Key-value pairs and the certificate entry in the key stores are mapped by alias. You must set the
alias in the key store to specify which entry to use for validation.

Attributes can be interpolated anywhere in the value.
▪ Alias password

If the entry is password-protected, it might need to provide the password.

Attributes can be interpolated anywhere in the value.

LDAP services
The policy decision point (PDP) can make LDAP queries to retrieve information.

You can make requests dynamic by interpolating attribute values into different parameters. See Attribute
interpolation on page 425.

Configuration

Specify the following settings to configure an LDAP service. A publicly available LDAP service is used as
an example.

Host and Port

The host name and port number of the LDAP server. For example:

Host: ldap.forumsys.com
Port: 389

Username / Bind DN and Password

The user or bind credentials for the LDAP server. For example:

Bind DN: cn=read-only-admin,dc=example,dc=com
Password: password

Use SSL

If the LDAP server is secured using SSL, enable this setting.

Enabling this setting populates the Certificate Validation section, which is useful when configuring TLS and
M-TLS certificates. For more information, see Certificate validation on page 414.

Search Base DN / LDAP filter

These settings define the LDAP query. For example:

Search Base DN: dc=example,dc=com
LDAP Filter: ou=mathematicians

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 416

Results

Because the server converts the result of an LDAP query to an XML document, you must set the service
value type to XML. The previous example query results in the following document.

<searchResponse>
 <searchResultEntry dn="OU=MATHEMATICIANS,DC=EXAMPLE,DC=COM">
 <attr name="ou">mathematicians</attr>
 <attr name="objectClass">groupOfUniqueNames</attr>
 <attr name="objectClass">top</attr>
 <attr name="uniqueMember">uid=euclid,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=riemann,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=euler,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=gauss,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=test,dc=example,dc=com</attr>
 <attr name="cn">Mathematicians</attr>
 </searchResultEntry>
</searchResponse>

You can extract Individual parts or collections of the data from the resulting XML document by using XPath
processors.

Camel services
You can retrieve information from any endpoint that the Apache Camel enterprise integration platform
supports. See the list of Camel components for a full list of supported systems.

 Warning:

Using Camel to connect policy information points (PIPs) to PingAuthorize has been deprecated and is no
longer supported. You should use HTTP services on page 413 instead, where applicable.

Overview

Configure Camel components by using a combination of URI, Headers, Body, and Configuration
settings. The appropriate values to provide for each setting depend on the component that is used. See the
documentation on the Camel website for the particular component that you want to use.

You can make requests dynamic by interpolating attribute values into different parameters. See Attribute
interpolation on page 425.

URI

URIs identify Camel endpoints. As well as identifying the system, URIs can specify configuration options
for components. For information about configuring a URI for the component to which you want to connect,
go to the Apache Camel website. The system can interpolate attribute values anywhere in the field.

Headers

You can send additional information to the external policy information provider by using Camel headers. If
the component to which you will connect uses headers, you can read more about them in the instructions
for your component on the Apache Camel website. The system can interpolate attribute values anywhere
in the field.

Body

Some Camel components operate on a message body, which you can provide by using this setting. If
the component to which you will connect requires a message body, you can read more about it in the
instructions for your component on the Apache Camel website. The system can interpolate attribute values
anywhere in the field.

Copyright ©2024

https://camel.apache.org/
https://camel.apache.org/components/latest/

PingAuthorize | PingAuthorize Policy Administration Guide | 417

Configuration

Some Camel components require you to configure helper components for them to work. Specify these
components by using the Groovy scripting language to write a Spring Bean configuration block. For
information about writing such a configuration, go to Class GroovyBeanDefinitionReader.

 Warning:

The system cannot interpolate attribute values into the configuration.

 Note:

The Camel JDBC component makes use of the Headers and Body settings, and requires a JDBC data
source to be set up in the Camel Configuration setting.

Attributes
Attributes provide the context that enables fine-grained policies.

Attribute values come from a multitude of sources. You can use the original values or modify the values.
You can then use the final values in other attributes, Named conditions on page 427, or rules.

The system resolves an attribute only when its value is required as part of the decision request evaluation.
For example, if a rule checks whether a customer’s device "Risk Score" is high, then the system only
attempts to resolve the attribute corresponding to "Risk Score" if that rule is required.

Creating an attribute
Create attributes using the business terms that business users and policy writers already understand.

About this task

Consider the manner in which you will structure the attributes and the naming conventions that you
will use. You want policy writers to be able to build and manage policies without developing a deep
understanding of the often-complex underlying data endpoints or data manipulation.

Steps

1. Click Trust Framework.

2. Click Attributes.

3. Click +.

4. Select Add new Attribute.

5. Update the attribute to include resolvers, value processing, and other changes, as discussed in the
subsections after this one.

6. Click Save changes.

After you create an attribute, you can modify it to be a repeating attribute. For more information, see
Repeating policies and attributes on page 446.

Attribute name, description, and location
You can give attributes any name that is unique and does not contain a period (.).

To ensure that the system can interpolate the attribute, avoid the following characters:

▪ {
▪ }
▪ |

Copyright ©2024

http://www.groovy-lang.org/
https://docs.spring.io/spring-framework/docs/4.3.13.RELEASE/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

PingAuthorize | PingAuthorize Policy Administration Guide | 418

You can give the attribute a description to help policy editors understand the attribute's purpose. This
description is only displayed when a user navigates to the attribute.

You can change the location of an attribute in the attribute tree using the Parent field.

Resolvers
Use resolvers to define where the initial data for an attribute comes from.

An attribute can have multiple resolvers, and the resolvers can be conditional. In addition, you can add a
processor to a resolver to modify the resolver's value before the attribute uses it.

You can reorder collapsed resolvers by dragging the handles on the left. To reorder using the keyboard,
press Tab to go to the resolver, press Enter to select the resolver, press the Up Arrow or Down Arrow to go
to the desired location, press Enter to drop the resolver in the new location.

For more information, see:

▪ Resolver types on page 418
▪ Conditional resolvers on page 419
▪ Value processing for a resolver on page 420

Resolver types
Each attribute can have one or more resolver types.

The resolvers apply in the order listed. You can reorder the resolver types by dragging and dropping them
to the appropriate position.

The following table describe the various resolver types.

Resolver type Description

Request This resolver type looks inside the authorization request itself to determine
whether the attribute has been provided by the caller. Specify the full name
of the attribute, including any parents, in the request.

Constant This resolver setting takes a constant value defined on the resolver itself.
The type and value of the constant are required.

 Note:

As with all other resolved values, constants undergo any value processing
defined on the attribute. To define a constant that does not undergo value
processing, consider using a Default value on page 425.

Service This resolver setting uses a Trust Framework # Services endpoint to
invoke the service at runtime to resolve the attribute. The service might
rely on other attributes being supplied to invoke the service.

The PDP handles this process automatically.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 419

Resolver type Description

Attribute PingAuthorize Server can also resolve attributes from other attributes. This
ability is useful when you have attributes that contain multiple pieces of
information and you want to create nested or child attributes as subset
extracts from them.

For example, the Customer.Name attribute might return the following
JSON representation.

{ "firstname": "Joe", "middlename": "Bod", "surname":
 "Bloggs" }

In this example, you could create the Customer.Name.Surname attribute
to resolve against the Customer.Name attribute and could use a JSON
parser to extract only the Surname property of the JSON.

System The PingAuthorize Policy Editor provides many of out-of-the-box System
attributes that you can use without additional configuration. For example,
the CurrentDateTime returns the current system datetime according
to the Type defined for the attribute..

Configuration Key The policy engine can resolve attribute values using policy configuration
keys.

When using external PDP mode, you can declare local file-based trust
stores and key stores by providing an options file during setup. See
Specifying custom configuration with an options file on page 238.

When using embedded PDP mode, you do this by creating Policy
Configuration Keys in the Policy Decision Service. See Use policies in a
production environment on page 273.

Conditional resolvers
All resolver types support the ability to add conditional logic so that the system invokes the resolver only
under certain defined conditions.

To add a conditional logic to a resolver, from the three-line icon beside the appropriate resolver, select Add
Condition. You can then add a comparison or named condition.

In the following example, the service resolver Callsign.ApprovalResult applies only when the
attribute PrimaryAccountHolder has a value of Confirmed.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 420

You can combine multiple conditions for a resolver using ALL, ANY, or NONE. To allow more
permutations, create subgroups by clicking + Group.

Value processing for a resolver
Use value processing for a resolver to modify data before using that data as the attribute's final value.

To add or remove a processor to a resolver, within the resolver definition, click the three-line icon in the
upper-right corner and choose Add Processing or Remove Processing.

For information about how to define a processor, see Value processing on page 427.

The following examples show how you might use these resolvers.

Example

If you expect responses from different resolved sources to vary, you can add a processor to the resolvers
to normalize the output. In this example, the attribute's value can come from one of the following resolvers:

▪ A service named GET User Profile

With this resolver, if the Cache is Valid attribute is false, the resolver calls the GET User
Profile service and uses a JSON Path processor to extract the key from the profile JSON.

▪ An attribute named Key

In the second resolver, the attribute value comes from the Key attribute, and the value requires no
processing.

The following image shows the resolvers. The resolvers apply in the order shown.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 421

Example

This example uses a condition and a processor together to resolve an attribute that might have a prefix.
The attribute has two resolvers:

▪ The first resolver has a condition to check whether the Client ID attribute has a prefix of 002. If so,
the value processor removes the prefix.

▪ The second resolver has no condition and passes the Client ID attribute value through with no
processing.

The following image shows the resolvers. The resolvers apply in the order shown.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 422

Attribute caching
The policy decision point (PDP) and the PingAuthorize Policy Editor support caching for attributes. The
ability to cache resolved attributes can deliver significant performance gains for the PDP.

Carefully consider this concept to ensure optimum configuration.

This section focuses on the individual cache options that you can set at the attribute level.

Attribute caching can be indefinite or time-limited, with or without the scope of another attribute value.

With time-limited caching, you set the duration for which the cache lives (Time to Live) before it expires.

With Scope set to an attribute, if the value of that attribute changes, the system invalidates the cache
for the attribute you are defining. In the example below, as long as the sessionId value remains the
same, the value of the attribute you are defining is cached. When the sessionId changes, the system
invalidates the cache and uses normal resolution.

If the attribute does not exist in the cache, the PDP resolves the attribute automatically by using the
appropriate attribute resolvers and then adds it to the cache. All subsequent attribute usages use the
cached value until it expires from the cache, which results in another attribute resolution.

 Note:

The cache key for a Trust Framework attribute value includes a hash of the values required for it to
resolve. If one of these values changes, the cache key automatically becomes invalid. You can think of
this arrangement as an aggregation of Scope parameters that guard against inconsistencies between your
cached values.

Value processing for an attribute

See Value Processors on page 413 in Services on page 411.

Value settings
Every attribute has a defined data type that constrains the set of allowable values and provides a
predictable behavior model for value processing and other data transformations.

Catching type inconsistencies early aids building and testing the Trust Framework. The primary types for
accepting data into the system and for producing output data are JSON, XML, and UTF-8 text (known as
String). The remaining types are used within a Trust Framework for more fine-grained data processing. All
data types have conversions to and from a canonical String representation. Conversion of other formats,
such as alternative date or time representations, requires the use of user-defined value processing. See
Value processing for an attribute on page 422.

Examples of type conversions when data enters the policy decision point (PDP) include:

▪ Attribute default values you define in the user interface are textual. The system converts these to the
type defined by the attribute before use.

▪ Attributes might take their values from fields in the decision request, which are again textual. The
system converts the value to the type defined by the attribute before use.

▪ The PDP might invoke external services to retrieve data. Typical response formats are JSON, XML
and String. JSON Path or XPath value processing can extract components of a response, typically as
text, which the system then converts to the types defined by an attribute before use.

Examples of type conversions when exporting data from the PDP include:

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 423

▪ Building a request for a service invocation. Attributes might be request parameters directly or might be
used in Attribute interpolation on page 425. In both cases, the system uses the canonical conversion
to a String format.

▪ Adding attribute data to Obligations or Advice, either directly or through Attribute Interpolation. Again,
the system uses the canonical conversion to String format.

▪ In all logging and response data that includes attribute values, the system renders those values using
their canonical String representations.

The following table lists the data types.

Data type Description

Boolean A simple true or false.

True can be represented in textual form, such as in default values
or decision request parameters, as true, yes or 1. False can be
represented by false, no or 0.

Case is insignificant.

In value processing contexts such as SpEL expressions, the value is a
java.lang.Boolean instance.

Number A numeric value.

Decimal integers and reals are supported, including scientific notation.

In value processing contexts, the value is a java.math.BigDecimal
instance.

Date A date, such as "23 April 2020".

The textual representation is ISO-8601; for example, 2020-04-23.

In value processing contexts, the value is a java.time.LocalDate.

Date values can be converted to the following types:

▪ Date Time (the time component becomes 00:00:00)
▪ Zoned Date Time (the time zone is assumed to be UTC)

Time A time of day, such as "4:15pm and 30 seconds".

The textual representation is ISO-8601.

The maximum resolution is microsecond. For example, 16:15:30,
16:15:30.783, and 16:15:30.783239 are all valid.

In value processing contexts, the value is a java.time.LocalTime.

Time values cannot be converted to other types.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 424

Data type Description

Date Time A date and time of day, such as "4:15pm and 30 seconds on 23 April
2020".

The textual representation is ISO-8601.

The maximum resolution is microseconds. For example,
2020-04-23T16:15:30 or 2020-04-23T16:15:30.783239.

In value processing contexts, the value is a
java.time.LocalDateTime.

Date Time values can be converted to the following types:

▪ Date and Time (dropping the appropriate information in each case)
▪ Zoned Date Time (the time zone is assumed to be UTC)

Zoned Date Time A date and time of day with a time zone expressed as an offset from
UTC.

The textual representation is ISO-8601; for example,
2020-04-23T16:15:30.783+01:00.

In value processing contexts, the value is a
java.time.ZonedDateTime.

Zoned Date Time values can be converted to the following types,
dropping information in each case:

▪ Date Time
▪ Date
▪ Time

Duration A time duration expressible in seconds or a fraction thereof.

The textual representation is ISO-8601; for example:

▪ PT3H for 3 hours
▪ PT2M45.836S for 2 minutes and 45.836 seconds

In value processing contexts, the value is a java.time.Duration.

Duration values cannot be converted to other types.

Period A time period expressible in calendric units such as a number of days or
months.

The textual representation is ISO-8601; for example:

▪ P9Y for 9 years
▪ P3M2D for 3 months and 2 days

In value processing contexts, the value is a java.time.Period.

Period values cannot be converted to other types.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 425

Data type Description

JSON A JSON document.

This type is most useful for bringing data into and out of the PDP. It is
the only type that is subject to JSON Path value processors.

The textual representation is JSON.

In value processing contexts, the value is a java.util.Map or
java.util.Collection.

XML An XML document.

This type is most useful for bringing data into and out of the PDP. It is
the only type that is subject to XPath value processors.

The textual representation is XML.

In value processing contexts, the value is a org.w3c.Document.

Collection An ordered collection of other value types.

Only valid value types as described here can be members of
collections. JSON-formatted arrays are valid textual representations of
collections.

In value processing contexts, a collection is a
java.util.Collection; however, the objects contained are of an
internal type.

Use only the get() method to retrieve items by zero-based integer
index.

String All other data is interpreted as UTF-8 text, stored internally as UTF-16.

In value processing contexts, these values are java.lang.String.

The legacy Date Time and Time Period types are ambiguous unions of the types described above. They
are retained for backward compatibility only. For new Trust Frameworks, use the more specific types.

Default value

You can give attributes an optional default value in the event that the attribute cannot be resolved.

In addition, you can use a default value to encode constant attributes within the Trust Framework by not
setting any resolvers and thus always resolving to the default value.

Attribute interpolation
With attribute interpolation, you reference an attribute in a field. The system resolves the value of the
referenced attribute, replacing the reference with the value itself.

About this task

You can use attribute interpolation in any field that has the label icon, shown below.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 426

Steps

1. To reference an attribute in one of these fields, type two open curly brackets ({{) to open the attribute
tree menu. Continue typing the full path to the attribute or select each level of the attribute in the
attribute tree menu.

2. Complete the reference by typing two close curly brackets (}}) or by selecting the }} complete
expression item from the attribute tree menu.

Actions
Actions represent arbitrary values that a typical authorization request might ask to perform on a specific
resource, such as view or update.

Common actions you might want to configure in the PingAuthorize Policy Editor are:

▪ inbound-GET
▪ inbound-PATCH
▪ inbound-POST
▪ inbound-PUT
▪ outbound-GET
▪ outbound-PATCH
▪ outbound-POST
▪ outbound-PUT
▪ create
▪ delete
▪ modify
▪ retrieve
▪ search
▪ search-results

Identity classifications and IdP support
The PingAuthorize Policy Editor provides the ability to generate smart identity classifications.

The purpose of these classifications is to abstract the underlying identity providers (IdPs) from their
presumed level of trust. The outcome is that you will be able to build policies that target levels of trust
instead of specific IdPs.

Defining trust levels has the following distinct parts:

▪ Identity properties – Arbitrary properties that can relate to specific IdPs
▪ Identity providers

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 427

▪ Identity classifications – Levels of classifications

Identity properties

Use the Identity Properties window to define objects and elements to attach to specific identity providers
(IdPs).

You use these properties later to map IdPs to specific identity classification levels.

Identity providers

Use the Identity Providers window to define different identity providers (IdPs) and to attach identity
properties to them.

This task might appear irrelevant when your enterprise expects to use only one or two IdPs, but it provides
significant abstraction for more complicated ecosystems in which tens or hundreds of IdPs participate.

Identity classifications

Use the Identity Classes window to create different levels of classification.

For each classification level, attach the properties that an identity provider (IdP) must have to be in that
level.

Named conditions
Named conditions provide the ability to create reusable conditional logic that helps abstract some of the
logical complexity from the people who write the policies.

Named conditions also provide an effective way to minimize repetition throughout policies. Policy builders
remain able to create their own conditions, which can coexist with the named conditions.

You can also use named conditions to replace entire conditions and to function as components of more
complicated condition expressions. To add a named condition within the condition builder, click + Named
Condition.

Value processing
Use value processing on responses returned from attributes or services to transform the resolved value.

Add a value processor when you create or edit an attribute or service. Alternatively, you can define a value
processor to reference by name by going to Trust Framework # Processors.

The PingAuthorize Policy Editor supports these value processors:

▪ Collection filter
▪ Collection transform
▪ JSON Path
▪ X Path
▪ Spring Expression Language (SpEL)
▪ Named

You can combine these processors to form a chain of processors.

All processors have a type that indicates what the output data type should be after applying the expression.

You can reorder collapsed value processors by dragging the handles on the left. To reorder using the
keyboard, press Tab to go to the processor, press Enter to select the processor, press the Up Arrow or
Down Arrow to go to the desired location, press Enter to drop the processor in the new location.

Collection filter

When the data being processed is a collection, you can set a filter to examine each item in the collection
and keep only the items that satisfy some condition. A collection filter uses a value processor to yield a true

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 428

or false for each item in the collection. When true, the original item goes in the resulting collection; when
false, it is omitted.

Each item in the collection can optionally be preprocessed by one or more value processors before
applying the condition. For example, suppose we received a JSON collection from a service invocation and
we want to filter the items by the score field. The input data might look like the following lines.

[
 { "name": "Alice", "role": "Sender", "score": 72 },
 { "name": "Bob", "role": "Receiver", "score": 36 },
 { "name": "Carol", "role": "Observer", "score": 47 },
 { "name": "Dave", "role": "Attacker", "score": 99 }
]

A collection filter processor could achieve this by using a JSON Path preprocessor to extract the score.

$.score

The following SpEL condition yields a true or false decision for each item.

#this > 50

Each list item is in turn passed through the preprocessing and the condition. The first item has score 72,
which is greater than 50 so the condition yields true and the item is retained for the result collection. The
second and third items have scores less than 50, so the condition yields false and these items are omitted.
The final item also has a score higher than 50 and is retained. The result of the collection filter is:

[
 { "name": "Alice", "role": "Sender", "score": 72 },
 { "name": "Dave", "role": "Attacker", "score": 99 }
]

The values produced by the preprocessing and condition are only used to determine inclusion. The
final result of a collection filter consists of those original collection items that satisfied the predicate after
preprocessing. Here is the collection filter in the GUI.

If the condition or preprocessing produces an error for any item in the input collection (for example, if a
score field is missing or not a number in the source data), the whole collection filter is considered to have
failed.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 429

Collection transform

When the data being processed is a collection, you can set a transform to apply a processor or a sequence
of processors to each item in the collection.

Assume we have the following input collection.

[
 { "name": "Alice", "role": "Sender", "score": 72 },
 { "name": "Bob", "role": "Receiver", "score": 36 },
 { "name": "Carol", "role": "Observer", "score": 47 },
 { "name": "Dave", "role": "Attacker", "score": 99 }
]

The following JSON Path processor extracts the name field for each item.

$.name

This SpEL processor converts each name to upper case.

#this.toUpperCase()

Then the resulting collection consists of just the extracted names converted to upper case, preserving the
order of the original collection.

["ALICE", "BOB", "CAROL", "DAVE"]

Here is the collection transform in the GUI.

If the item processor produces an error for any item, the overall collection transform processor produces an
error.

JSON Path

With JSON Path, you can extract data from JSON objects. For example, assume we have a service that
resolves to the following JSON.

{
 "name": "Joe Bloggs",
 "requestedItems": [

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 430

 {
 "id": "b5f963fa-111e-49ff-994b-b89a20a2c1d5",
 "price": 125.00
 },
 {
 "id": "84e204dd-44f5-4a84-8e58-972c2a9c80b4",
 "price": 299.99
 }
]
}

To extract the price fields of all requested items, we set the Value Processor to JSON Path with the
expression $.requestedItems[*].price.

For more information about JSON Path expressions, see https://github.com/json-path/JsonPath.

X Path

XPath is the XML-equivalent for JSON Path and follows a very similar syntax. For more information about
XPath expressions, see the XPath tutorial on w3schools.com.

 Note:

The Policy Editor only supports the use of XPath 1.0. Functions added in later versions are not available.

SpEL (Spring Expression Language)

With the Spring Expression Language, you can perform more complicated data processing. Expressions
are applied directly to the resolved value. For example, assume you want to search for a substring that
matches the following regular expression.

\[[0-9]*\.[0-9]\]

You then set the processor to SpEL and set the expression to this following text.

matches(\[[0-9]*\.[0-9]\])

Attribute values can be interpolated into the SpEL expression directly using curly brackets, which can be
useful if you want to combine multiple attribute values into a single value (see Attribute interpolation on
page 425):

{{Customer.Age}} - {{State.Drinking Age}} >= 0

For information about the Spring Expression language, see the official Spring Framework docs.

For information about the Java classes available for SpEL processing, see Configuring SpEL Java classes
for value processing on page 255.

Named

Use named value processors to create reusable value processing logic.

Extracting this logic into reusable components helps abstract some of the complexity when you define an
attribute or a service. Also, it reduces repetition.

You can still create inline value processors that co-exist with named value processors.

To define a named value processor that you can reference, go to Trust Framework # Processors.

Copyright ©2024

https://github.com/json-path/JsonPath
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-language-ref

PingAuthorize | PingAuthorize Policy Administration Guide | 431

Chained value processors
You can chain processors together to combine data preprocessing steps.

For example, you can extract data using JSONPath and then apply a SpEL processor to the extracted
data. Assume you have a service that resolves to the following JSON response.

{
 "name": "Joe Bloggs",
 "city": "London",
 "country": "UK"
}

You have a requirement to extract the country and transform the value to United Kingdom whenever
the current value is UK. You would add a JSONPath processor to select the country followed by a SpEL
expression to transform the selection, as shown in the following figure.

Reusing chained processors

You can make a chained processor reusable by creating it as a named value processor. Then you can
construct more complex processor chains made up of those named value processors.

Trust Framework testing
The PingAuthorize Policy Editor provides testing capabilities for applicable definition types.

To prepare a test request, select a definition of type Attribute or Service and go to the Test tab.

To form a request, select the following main elements:

▪ Domain
▪ Service
▪ IdP
▪ Action
▪ Attributes

If the information endpoints that your attribute resolvers require are running, click Execute. If your
endpoints are not running or are otherwise unavailable, as is often the case in development, use the
Overrides section to provide stubbed values for attributes and services that might be required during the
evaluation process. This step overrides the attribute and service resolution and uses the specified values
instead.

After the system evaluates the request , you will see the following set of result tabs:

Request

Shows the actual JSON request sent to the decision engine

Response

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 432

Contains the complete (high verbosity) response for the decision

Output

Provides a summary of the decision

Attributes

Contains an expandable list of all attributes executed as part of the test

Services

Contains an expandable list of all services executed as part of the test

Testing repeating attributes

Repeating attributes are resolved from values in a specified collection. A repeating attribute requires a
repetition source that points to a collection. Also, to get its values from each repetition of the collection, the
repeating attribute’s resolver must be set to Current Repetition Value. When you properly configure a
repeating attribute, you can test it the same way you test regular, nonrepeating attributes.

The Output tab in the test results will show results for each matching value from the collection. The results
are ordered with indices that reflect the order of resolution.

For more information about these variables, see Repeating policies and attributes on page 446.

Viewing Trust Framework entity dependencies
Before you change an entity, check what depends on that entity so that you do not introduce unintended
consequences.

Steps

1. Go to the Trust Framework entity.

2. Click the Trust Framework entity.

3. Click the three-line icon to the right of the entity name.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 433

4. Click View Dependents.

The following image shows the scope attribute.

If the entity has dependents, they are shown in a new window. For example, the following image
shows the dependents for scope.

Policy management
The Policy Manager provides the tools to implement attribute-based access control and dynamic
authorization management, allowing you to govern the use of your organization's services and data.

Use the Policy Manager to create policies that answer the question, "Should this resource-access request
be permitted or denied"? In a traditional role-based access control (RBAC) system, this question might
instead be, "Who is the user making the access request, and have they been assigned a role that is
permitted access to the resource?" Although you can model such a policy, the PingAuthorize Policy Editor
functions essentially as an attribute-based access-control (ABAC) system. In such a system, the question
can be rephrased as, "Given the facts that I know about the user, the resource being accessed, what
the user wants to do with the resource, how sure I am the user is who they say they are, and any other
pertinent facts about the world at this point in time, should the user's access request be permitted, and
must anything else be done in addition to permitting or denying access?"

The length of that question speaks to the inherent power of the Policy Editor. Fortunately, the Policy
Manager makes harnessing this power straightforward.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 434

Policy sets, policies, and rules
The PingAuthorize Policy Editor reflects the structure of grouping rules for attribute-based access control
with three types of entities and the relationship between them. The entities are policy sets, policies, and
rules.

A typical enterprise-level organization might impose hundreds or thousands of conditions and constraints
around access control. Such constraints comprise the business rules that define the circumstances under
which users access certain resources.

You can group these rules together naturally, so you can understand them without focusing on all of them
at the same time. For example, a set of policies around authentication might require a user to authenticate
to a certain level before they can access a certain resource. Another set of policies might gather together
all of the business rules around accessing the resources of a particular business unit. Yet another set
of policies might define the audit processes triggered with each attempt to access a set of restricted
resources.

This structure is inherent in the problem domain of resource-access control. This section examines the
different entity types, discusses how they are work together, and provides an overview of their properties.

Policies and policy sets

To view the Policy Manager, click Policies.

The Policy Manager organizes policy nodes in a tree structure within the navigation panel on the left side
of the page. Add a root policy set to contain all other policy sets. This tactic is useful when you build a
deployment package from the entire policy tree.

Creating policies and policy sets
Create policies and policy sets to define the circumstances under which users access certain resources.

Steps

1. Click Policies.

2. Click +.

3. Select Add Policy Set or Add Policy, as appropriate.

You can name policies and policy sets anything you like. However, we recommend that you use
relevant and contextual names, especially as the policy tree grows larger and more complex. When
naming policies, consider the business rule that they are trying to model and verify that the names
adequately represent the operational policies of the organization.

4. Update the policy to include targets, advice, and other changes, as discussed in the subsections after
this one.

5. Click Save changes.

After you create a policy, you can modify it to be a repeating policy. For more information, see
Repeating policies and attributes on page 446.

Example

In the following example, the policy name is My Basic Policy. The red dot in the upper-right corner
signifies that, because the name has been changed, the policy contains unsaved changes. If you try to
leave the page, a popup window prompts you to save your changes.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 435

Adding targets to a policy
Add targets to identify the requests to which the policy applies its fine-grained authorization logic. If no
targets are attached to a policy, the policy applies to all requests. To make a policy only apply for all
requests to a certain database, for example, add the database domain as a target.

Steps

1. Go to the policy where you want to add targets.

2. Click the + next to Applies to.

3. In the left pane, click Components.

The list of components includes the items you created in the Trust Framework. Drag the appropriate
domains, services, identity classes, and actions from the components to the Applies to target section
on the policy.

For example, to target Mobile Banking requests, drag that domain in. To target all banking groups,
add the Banking Channels domain, which is the parent of the Online Banking domain as well as the
Mobile Banking domain. Because the top level is also a target, this step adds a total of three targets.

4. Click Save changes.

Example

The following example features three domains because the Banking Channels definition is the parent
of the other definitions. Logically, applying an OR operation within the definition type selects one of the
channels.

The following graph shows how the server evaluates the group of targets.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 436

Conditional targets (applies when)
You can use conditional targets to extend the capability of the "Applies to" concept when creating attribute-
based access control rules and policies.

Conditional targets extend the capability of the "Applies to" concept because they:

▪ Permit the interweaving of targets with other conditional logic.
▪ Allow standalone logic to determine if and when a policy or rule applies.

To enable this functionality, click Applies to and then When.

You can include the following types of conditions in a logical expression:

▪ Attribute comparison – Allows the comparison of an attribute with another attribute or with a constant.
▪ Request comparison – Allows the matching of incoming requests by answering questions like, "Is the

requested service equal to Banking.Payment?"
▪ Named condition – Click + Named Condition to show a Named Condition drop-down list that

displays named conditions.

The following image provides an example.

You can navigate conditions using the Up Arrow and the Down Arrow to move between members of a
group or using the Left Arrow and Right Arrow to move in and out of nested groups.

You can reorder conditions by dragging the handles on the left. To reorder using the keyboard, press Tab
to go to the condition, press Enter to select the condition, press the Up Arrow or Down Arrow to go to the
desired location, press Enter to drop the condition in the new location.

To switch between Attribute Comparison mode and Request Comparison mode, click A and R,
respectively, to the left of the comparator.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 437

Advice
An advice is additional information you can attach to a decision response.

An advice returns to the governance engine so that, depending on the evaluation response from the policy,
PingAuthorize can take the appropriate action. If you have a policy set up to verify the authentication level
of a user, and if the policy evaluates that a user does not possess the required access privileges, then
PingAuthorize can send details about the reason for denying access.

To indicate that the final decision applies only if an advice can be fulfilled, mark the advice as Obligatory.
Typically, the service that calls PingAuthorize Server handles this responsibility.

Each advice contains the following mandatory fields:

▪ Name – Human-readable label for reference in the Policy Manager
▪ Code – Identifier that distinguishes between different types of advice
▪ Applies To – Type of decision to which the advice is attached

If an advice applies, PingAuthorize uses it in the final response if its origin decision contributes to the final
result. The decision agrees with every decision between its origin and the top-level policy or policy set.

Advice carries additional data in the form of payloads and attributes, as follows:

▪ The optional field Payload can consist of static or interpolated data.
▪ The Attributes field lets you return a key-value mapping of attributes that might be relevant to the

advice.

You can reorder collapsed advices by dragging the handles on the left. To reorder using the keyboard,
press Tab to go to the advice, press Enter to select the advice, press the Up Arrow or Down Arrow to go to
the desired location, press Enter to drop the advice in the new location.

The following table identifies significant advice properties.

Property Description

Name Friendly name for the advice.

Obligatory If true, the advice must be fulfilled as a condition of authorizing the request.

If PingAuthorize cannot fulfill an obligatory advice, it fails the operation and returns
an error to the client application.

If PingAuthorize cannot fulfill a non-obligatory advice, the server logs an error, but
the client's requested operation continues.

Code Identifies the advice type. This value corresponds to an advice ID that the
PingAuthorize configuration defines.

Applies To Specifies the policy decisions, such as permit or deny, that include the advice
with the policy result.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 438

Property Description

Payload Set of parameters governing the actions that the advice performs when
PingAuthorize applies the advice. The appropriate payload value depends on the
advice type.

PingAuthorize Server supports the following advice types:

▪ Add Filter on page 492
▪ Combine SCIM Search Authorizations on page 492
▪ Denied Reason on page 493
▪ Exclude Attributes on page 493
▪ Filter Response on page 494
▪ Include Attributes on page 495
▪ Modify Attributes on page 496
▪ Modify Headers on page 496
▪ Modify Query on page 497
▪ Modify SCIM Patch on page 497
▪ Regex Replace Attributes on page 499

To develop custom advice types, use the Server SDK.

 Note:

Many statement types let you use the JSONPath expression language to specify JSON field paths. To
experiment with JSONPath, use this JSONPath evaluator.

Provided advice
The PingAuthorize Policy Editor comes with preconfigured advice types that are also in PingAuthorize
Server.

Policy writers can use this advice out of the box, and PingAuthorize Server fulfills the advice as
documented. To view the full set of provided advice types, click + Add Advice.

Copyright ©2024

https://jsonpath.com/

PingAuthorize | PingAuthorize Policy Administration Guide | 439

You can see the documentation for the provided advice types from within the Policy Editor. After you click
+ Add Advice, hover over an advice type to view its description.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 440

Selecting an advice type prepopulates the Description and Code fields and provides an example Payload
value. Most users replace the example Payload value with one that is appropriate for their policy.

For more information, see Advice types.

Custom advice
In addition to the advice types that are available out of the box in the PingAuthorize Policy Editor, policy
writers can use a custom advice that leverages the PingAuthorize Server SDK.

For information about the implementation and configuration of such advice, see the PingAuthorize Server
Administration Guide.

After configuring the advice properly, you can use it in a policy by selecting Custom Advice from the
Create new Advice drop-down list.

Properties

Use properties to add metadata to a policy in the format of a key-value pair.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 441

Rules and combining algorithms
Policies can include one or more rules to produce a fine-grained authorization decision of Permit, Deny,
Indeterminate, or Not Applicable.

To evaluate the overall decision of a policy, the policy decision point (PDP) applies a combining algorithm.
The default algorithm that is set on a new policy is The first applicable will be the final decision. This
algorithm stops evaluating as soon as it reaches a decision that is not Not Applicable.

The following table identifies the available combining algorithms and describes their effects:

Combining algorithm Summary Details

PermitUnlessDeny Unless one decision is deny, the
decision is permit.

The policy defaults to Permit unless any of
its children produce the decision Deny. The
evaluation of rules stops as soon as a Deny is
produced.

DenyUnlessPermit Unless one decision is permit,
the decision is deny.

The policy defaults to Deny unless any of its
children produce the decision Permit. The
evaluation of rules stops as soon as a Permit is
produced.

PermitOverrides A single permit overrides any
deny decisions.

If any children produce the decision Permit, the
policy returns Permit and stops evaluating rules.
If no Permit is generated, all rules are evaluated;
also, the policy returns Indeterminate if a child
produces Indeterminate. Otherwise, the policy
returns Deny if a child produces Deny. If none of
the previous situations occur, the policy returns
Not Applicable.

DenyOverrides A single deny overrides any
permit decisions.

If any children produce the decision Deny, the
policy returns Deny and stops evaluating rules.
If no Deny is generated, all rules are evaluated;
also, the policy returns Indeterminate if a child
produced Indeterminate. Otherwise, the policy
returns Permit if a child produces Permit. If
none of the previous situations occur, the policy
returns Not Applicable.

FirstApplicable The first applicable decision is
the final decision.

Evaluates the children in turn until one produces
an applicable value of Permit, Deny, or
Indeterminate. If the evaluation produces
no applicable decisions, the policy returns Not
Applicable.

OnlyOneApplicable Only one child can produce a
decision. If more than one child
produces a decision, the result
is indeterminate.

Evaluates the children in turn. If at any point
two children produce a decision other than Not
Applicable, the policy returns Indeterminate.
Otherwise, if precisely one child produces an
applicable decision, the policy uses it. If evaluation
produces no applicable decisions, the policy
returns Not Applicable.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 442

Combining algorithm Summary Details

DenyUnlessThreshold Permit if the weighted average
of applicable child decisions
meets the threshold; otherwise
deny.

Assigns the policy's children weights between 0
and 100. If a child returns Permit, the weight is
added to a running total. If a child returns Deny,
the weight is subtracted from the running total.
After evaluating all children, the PDP divides the
total by the number of children and compares that
average against the threshold. If the average is
greater than or equal to the threshold, the policy
returns Permit. Otherwise, the policy returns
Deny.

Rule structure
Policy rules power the fine-grained access control capability in PingAuthorize. Rules contain logical
conditions that evaluate to true or false.

When you create a rule, you set the conditions and criteria that dictate when the rule applies and how the
rule evaluates. The rule structure begins with the Applies to criteria, which define the conditions under
which the rule applies.

Applies to

By default, rules target all requests with no conditions. You can leave this default criteria in place, if
desired. You can also add targets, set a condition, or include a group of conditions. If the Applies to
criteria are not met, the rule effect is Not Applicable.

 Note:

The Applies to criteria are always enabled, whether shown or hidden. When there are Applies to criteria
that are not met, the effect is always Not Applicable, regardless of which effect type is selected.

Effect

Whether you choose to change the Applies to criteria or not, you must give each rule one of the following
effects:

▪ Permit
▪ Deny
▪ Permit if condition holds, otherwise deny
▪ Deny if condition holds, otherwise permit

If the Applies to criteria evaluate to true, the Permit and Deny effects cause the rule to permit or deny,
respectively.

The following example includes an Applies to condition and a Permit effect:

▪ If the condition evaluates to true, the rule permits.
▪ If it evaluates to false, the effect is Not Applicable.

If the example included a Deny effect instead, the rule would deny when the Applies to condition
evaluated to true.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 443

To configure a rule to permit or deny based on how its Effect conditions evaluate, choose one of the
following effect types:

▪ The Permit if condition holds, otherwise deny effect causes the rule to permit if the conditions are
met and to deny if the conditions are not met.

▪ The Deny if condition holds, otherwise permit effect does the opposite, causing the rule to deny if
the conditions are met and to permit if the conditions are not met.

 Note:

Effect conditions are hidden until you select one of the if condition holds effect types.

 Tip:

▪ When a logical condition involves comparing two attributes, try to ensure the attributes have the same
data type. Comparing different data types requires an implicit conversion that might not always yield
the intended result.

▪ Just as with Trust Framework entities, you can check which entities depend on a policy or policy set.

The following example includes a Permit if condition holds, otherwise deny effect without any Applies
to criteria:

▪ If the group Effect condition evaluates to true, the rule permits.
▪ If the group condition evaluates to false, the rule denies.

When there are no Applies to criteria, the rule always permits or denies.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 444

 Tip:

Rules with conditional effects display two effect icons in the rule header. The icon for the if condition
holds effect displays on the left and is larger than the icon for the otherwise effect.

Rule order

When a policy has multiple rules, rule order can affect the way the policy evaluates. You can reorder
collapsed rules by dragging the handles on the left. To reorder rules using the keyboard, do the following:

1. Press Tab to move the cursor to a rule. When the cursor is positioned on the entire rule, a blue box
displays and the rule changes color to purple.

2. Press Enter to select the rule. When a rule is selected, it changes color to dark green.
3. Press the Up Arrow or Down Arrow to move the cursor to the desired location.
4. Press Enter to drop the selected rule in the new location.

Policy testing
The PingAuthorize Policy Editor provides testing capabilities to evaluate test authorization requests against
any or all policy nodes.

To specify the nodes to test policies against, select the root node from the tree on the left side of the page.

In the following example, the evaluation runs against all policies because the root policy set is selected.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 445

Select the following main elements to form a request:

▪ Domain
▪ Service
▪ IdP
▪ Action

If the information endpoints that your attribute resolvers require are running, click Execute. If your
endpoints are not running or are otherwise unavailable, as is often the case in development, use the
Overrides section to provide stubbed values for the attributes and services that might be required during
evaluation. This step overrides the attribute resolution and uses these values instead.

After a request is evaluated, you will see the following set of result tabs:

▪ Request – Shows the actual JSON request sent to the policy engine.
▪ Response – Contains the complete, high-verbosity response for the decision.
▪ Attributes – Contains an expandable list of the attributes executed as part of the test.
▪ Services – Contains an expandable list of the services executed as part of the test.
▪ Visualization – Contains a visual representation of the decision tree.
▪ Output – Provides a summary of the decision.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 446

Repeating policies and attributes
Use repeating policies and attributes to evaluate a policy multiple times, once for each item in a collection.

For example, assume the Accounts attribute contains a list of accounts associated with a customer. You
want to filter access to the accounts based on the account type. With repeating policies, a decision is made
for each item in the Accounts attribute, returning advice for each account that is permitted.

Repeating policies

To make a policy repeat, from the three-line menu, select Add repetition settings.

 Note:

You can only add repetition settings to an existing policy. The three-line menu to add these settings does
not appear when you are creating a new policy.

The policy repetition settings are described below.

▪ Apply this policy to each item of

The collection attribute to repeat over.

This item is referred to as the repetition source.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 447

▪ Filtering by

The decision and any attached advice to filter by.

The following example uses the Accounts attribute and Permit decision. In this case, the policy applies
to every item in the Accounts collection attribute. The policy keeps each result that returns Permit.

When you define rules and advice for a repeating policy, you can use:

▪ Attributes with no repetition source
▪ Attributes with the same repetition source as the policy

Repeating attributes

To make an attribute repeat, from the three-line menu, select Add repetition settings.

 Note:

You can only add repetition settings to an existing attribute. The three-line menu to add these settings does
not appear when you are creating a new attribute.

The policy repetition settings are described below.

▪ Repeat for each item of

 Note:

If you set this field, you can only use the attribute in repeating policies. However, the attribute can then
resolve against attributes repeating against the same collection. The attribute can still resolve against
attributes that do not have this field set.

The attribute to repeat over.

This item is referred to as the repetition source.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 448

▪ Resolvers, Value Processors, Caching

For a resolver, if Resolver type is Current Repetition Value, resolution is against individual items in
the collection itself.

For information about these items, see Resolvers on page 418, Value processing for an attribute on
page 422, and Attribute caching on page 422.

You can use repeating attributes in named conditions and value processors. If an attribute uses a named
condition or value processor, any repeating attributes referenced in the condition or value processor must
have the same repetition source as the attribute itself. If a policy uses a named condition, any repeating
attributes referenced in the condition must have the same repetition source as the policy itself.

Policy solutions
This section recommends how to implement commonly needed business rules in policy.

▪ Use case: Using consent to determine access to a resource on page 448
▪ Use case: Using consent to change a response on page 463
▪ Use case: Using a SCIM resource type or a policy request action to control behavior on page 471
▪ Restricting the modification of attributes on page 487

Use case: Using consent to determine access to a resource
PingAuthorize can provide attribute-based access control to a specific resource based on the resource
owner's consent to share.

Examples of resources include:

▪ Health care records shared with a spouse (an individual)
▪ Banking records shared with a known third party, such as an asset-monitoring tool
▪ Purchase history shared with an anonymous third party, possibly for improved promotional offers

In this scenario, we continue using the meme games API used in Getting started with PingAuthorize
(tutorials) on page 17. Assume my friend has crafted several funny memes that she wants to share with
me. When my browser or app requests her memes, PingAuthorize enforces access based on her consent
to share.

We first set up some Trust Framework attributes and services and then create a policy that uses those
items to check consent and then permit or deny access. The following topics cover these tasks.

1. Getting a path component from the request URL on page 448
2. Getting the requestor identifier from the access token on page 453
3. Searching for consent by resource owner to requestor on page 453
4. Getting consent status from the consent record on page 459
5. Creating a policy to check consent and then permit or deny access on page 460

Getting a path component from the request URL
For this use case, the resource owner is given in the URL for the meme game API. To get the owner
requires pulling the corresponding path component from the request URL.

Before you begin
This procedure assumes you have created a meme game API server named meme-game, similar to
the one shown in the "Configure an API External Server for the Meme Game API" step in Configuring a
reverse proxy for the Meme Game API on page 28.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 449

About this task

In general, you can configure PingAuthorize to control access based on the path component that best suits
your needs. For example, consider the /purchases/1234 path. The purchases component is a class of
resources, while 1234 is a specific resource for a given purchase.

The meme game API has URLs of the form meme-game/api/v1/users/user.0/answers. The user.0 path
component is a specific resource owner. The following steps explain how to get the specific resource
owner from a request URL.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 450

Steps

1. In the PingAuthorize administrative console, create a new gateway API endpoint.

A Gateway API Endpoint controls how PingAuthorize Server proxies incoming HTTP client requests to
an upstream API server.

a. In the administrative console, click Configuration and then Gateway API Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify meme-game user_answers.
d. For Inbound Base Path, specify /meme-game/api/v1/users/{UserFromUrl}/answers.

The inbound base path defines the base request path for requests to be received by
PingAuthorize Server.

Using the curly braces ({ and }) around a string creates an item with the name given by the string
so that we can refer to it later. That notation also preserves the item to pass along in the next step.

e. For Outbound Base Path, specify /api/v1/users/{UserFromUrl}/answers.

The outbound base path defines the base request path for requests that PingAuthorize Server
forwards to an API server.

f. For API Server, specify meme-game. This is the API External Server you defined previously.
g. For Service, specify meme-game.user_answers.

You will use this service in the PingAuthorize Policy Editor to get a value to define an attribute.

The following image shows this configuration.

h. Save your changes.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 451

2. Send a test request to the gateway to see how PingAuthorize handles the request. The following
request uses Postman.

3. Check the request in the Policy Editor.

Go to Policies in the left pane and then click Decision Visualiser along the top. Under Recent
Decisions, click Refresh icon. Select the decision and click Request.

In the request, the attributes include a Gateway object. Items set in the gateway API endpoint in the
previous step are in this Gateway object. One of the items in the object is UserFromUrl, providing the
exact path component we want. The following image shows the Gateway object.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 452

4. Create an attribute to pull UserFromUrl from the object.

a. Go to Trust Framework and then click Attributes along the top.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with Users identifier from the URL.
d. Click the + next to Resolvers and click + Add Resolver.
e. Set Resolver type to Attribute and select the Gateway attribute.
f. Click the + next to Value Processors and click + Add Processor.
g. Set Processor to JSON Path to pull an item from a JSON object and specify a value of

$.UserFromUrl.

The following image shows this configuration.

h. Click Save changes.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 453

5. Test the new attribute.

a. Click Test just above the attribute name.
b. Pass in a gateway object that uses UserFromUrl.

In the Request, set Attributes to Gateway and specify a value of
{"UserFromUrl":"user.0"}.

The next image shows the test setup.

c. Click Execute.

The test results should be user.0.

Result
The Users identifier from the URL attribute is available for use in policies.

Getting the requestor identifier from the access token
We need the requestor identifier to check whether the resource owner has given the requestor access to
the resource.

About this task
The PingAuthorize Policy Editor provides many attributes, including HttpRequest.AccessToken. The
HttpRequest.AccessToken.subject attribute has the needed information.

Steps

▪ Be prepared to use the HttpRequest.AccessToken attribute in a later step.

Searching for consent by resource owner to requestor
Using the resource owner information from the Users identifier from the URL attribute, we need
to determine what consent the owner has granted to a given requestor.

About this task

This task is useful for:

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 454

▪ Resource sharing or delegation where consent is granted to an individual (based on the
collaborator claim)

▪ Data sharing where consent is granted to a third party (based on the audience claim)

This task uses the Trust Framework HTTP service to pull a claim from a request.

Steps

1. Make sure you understand the body of the request that you are pulling a claim from.

The following Postman image shows a request being made to a directory server.
The consent definition is in the request URL and has the form share-meme-game-
answers&subject=user.0&collaborator=user.1. The resource owner is given by the subject, and the
person being shared with is given by the collaborator.

We use the Consent Admin account for the service. In Postman, for Authorization, we use BasicAuth
with the username Consent Admin and its password.

The consent record is for the PingDirectory Consent API, but you can use other consent stores. We
use this consent record to determine who a resource owner has given consent to.

2. Copy the request URL to use in defining a Trust Framework service in the Policy Editor.

3. Sign on to the Policy Editor.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 455

4. Create Trust Framework attributes for the Consent Admin account credentials.

This is the Consent Admin account we used with Postman. We will create attributes for the username
and password and then use those attributes when we define the Trust Framework HTTP service.

a. Go to Trust Framework and click Attributes.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with ConsentService and click Save changes.

This attribute will serve as a parent to the username and password attribute and will help organize
the attributes.

d. From the + menu, select Add new Attribute.

Because the ConsentService attribute is selected, the new attribute is a child to it.
e. For the name, replace Untitled with Username, set Default value to Consent Admin, select the

Secret option, and then click Save changes.

The following image shows this configuration.

f. From the + menu, select Add new Attribute.
g. For the name, replace Untitled with Password, set Default value to Consent Admin, select the

Secret option, and then click Save changes. Selecting the Secret option keeps the item out of
logs.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 456

5. Create the HTTP service.

a. Click Services along the top.
b. From the + menu, select Add new Service.
c. For the name, replace Untitled with Search for consent to share game answers.
d. Set Service Type to HTTP.
e. Set URL to the request URL.

In this case, the URL is https://pingdirectory:18443/consent/v1/consents?definition=share-meme-
game-answers&subject=user.0&collaborator=user.1.

f. Set Authentication to Basic.

This setting requires a username and password. We will use the attributes we just created.

1. Set Username to ConsentService.Username.
2. Set Password to ConsentService.Password.

g. This setup uses a self-signed certificate, so set Server (TLS) to No Validation.

 Note:
This case is for a development environment only. Do not use this setting for other environments.

h. Under Value Settings, set Type to JSON.

The following image shows this configuration.

i. Click Save changes.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 457

6. Test the service.

a. Click Test above the Search for consent to share game answers service name.
b. Click Execute.

The results should include a consents array.

So the service works with hard-coded values: subject=user.0&collaborator=user.1. We need
to use parameters in place of the subject and collaborator values so that the service works for
anyone using the API.

7. Click Details above the service name to update the service definition to replace the values with
parameters.

a. In the URL field, replace the collaborator value, which is user.1. Delete user.1
and type two open curly braces ({{). Use the pop-up that appears to choose the
HttpRequest.AccessToken.subject attribute. Recall from Getting the requestor identifier

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 458

from the access token on page 453 that this attribute specifies the requestor. The resource
owner must have a consent record for the requestor to grant access.

With this change, the URL changes from

https://pingdirectory:18443/consent/v1/consents?definition=share-meme-game-
answers&subject=user.0&collaborator=user.1

to

https://pingdirectory:18443/consent/v1/consents?definition=share-meme-game-
answers&subject=user.0&collaborator={{HttpRequest.AccessToken.subject}}

b. Click Save changes.
c. Test the change by clicking Test, in the Request section, setting Attributes to

HttpRequest.AccessToken.subject, specifying a value such as {"sub":"user.1"},
where user.1 has a consent record in your consent store, and clicking Execute.

The result should include a consents array. Repeat the step for a user who does not have a
consent record to verify that those results do not include a consents array.

d. Click Details to replace the subject value with a parameter.

The subject is the resource owner. Recall from Getting a path component from the request
URL on page 448 that we have that information in the Users identifier from the URL
attribute. Using curly braces to interpolate that attribute, the URL becomes

https://pingdirectory:18443/consent/v1/consents?definition=share-
meme-game-answers&subject={{Users identifier from the
URL}}&collaborator={{HttpRequest.AccessToken.subject}}

e. Click Save changes.
f. Test this change the same way you tested the previous change, using two users where one has a

consent record and one does not.

In the Overrides section, set Attributes to Users identifier from the URL with the value
specifying the resource owner, which is user.0 in this case.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 459

8. Update the service to pull only the first consent record from the response instead of the entire
response.

The response starts with

{"_embedded":{"consents":[{_links":"localization":

We want to pull the first consent record for the user, which starts after the square bracket ([).

a. Click Details to return to the service definition.
b. Click the + next to Value Processors and click + Add Processor.
c. Set Processor to JSON Path with a value of $._embedded.consents[0].
d. Set Value type to JSON.

This image shows such a screen.

e. Click Save changes.
f. Test the change by clicking Test, in the Request section, setting Attributes to

HttpRequest.AccessToken.subject, and specifying a value such as {"sub":"user.1"},
where user.1 has a consent record in your consent store. Then in the Overrides section, setting
Attributes to Users identifier from the URL with the value specifying user.0 again, and
clicking Execute.

Result
The service returns only the user's first consent record. With the record isolated, you can pull the given
requestor's status from the record.

Getting consent status from the consent record
This task defines an attribute that uses a service to get a consent record and then uses a processor to pull
the consent status from that record.

Steps

1. Sign on to the Policy Editor.

2. Go to Trust Framework and click Attributes.

3. From the + menu, select Add new Attribute.

4. For the name, replace Untitled with Sharing consent status.

5. Click the + next to Resolvers.

6. Click + Add Resolver.

7. Set Resolver type to Service with a value of Search for consent to share game answers.

8. Click the + next to Value Processors.

9. Click + Add Processor.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 460

10. Set Processor to JSON Path with a value of $.status.

11. Set Value type to String.

The following image shows this configuration.

12. Click Save changes.

Result
The Sharing consent status attribute is available for use in policies.

Creating a policy to check consent and then permit or deny access
Using the Trust Framework attributes and services we created, we now create a policy for the meme
game API to get a user's answers. The policy permits access if consent exists and the consent status is
accepted.

Steps

1. In the Policy Editor, go to Policies in the left pane and then click Policies along the top.

The following steps create a policy under an existing policy called meme-game policies. This existing
policy is for all requests to the meme game.

2. Select the existing meme-game policies policy.

3. From the + menu, select Add Policy.

4. For the name, replace Untitled with Requests for a user's answers.

5. Click the + next to Applies to.

6. Click Add definitions and targets, or drag from Components and add the meme-
game.user_answers service, which we set up in Getting a path component from the request URL on
page 448. Also add the inbound-GET action.

7. Set Combining Algorithm to Unless one decision is permit, the decision will be deny.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 461

8. Add a rule so that a user can access their own answers.

a. Click + Add Rule.
b. For the name, replace Untitled with Permit a user to request their own answers.
c. Click + Comparison.
d. From the Select an Attribute list, select Users identifier from the URL, which we also set up in

Getting a path component from the request URL on page 448.
e. In the second field, select Equals.
f. In the third field, click the C to toggle to an A (for attribute) so that you can select the

HttpRequest.AccessToken.subject attribute.

The following image shows this configuration.

g. Click Save changes.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 462

9. Test the rule.

The following image shows a test with Postman making a request to the user.0 answers as user.0.
The response shows the rule works.

If we try again with user.1, the request is denied. Even though user.1 does have a consent record in
our consent store, the policy does not do anything with that consent record. We need another rule to
look at the consent record and get the status from that record.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 463

10. Add a rule to get status from a consent record.

a. Click + Add Rule.
b. For the name, replace Untitled with Permit if resource owner gave consent to

share answers.
c. Click + Comparison.
d. From the Select an Attribute list, select Sharing consent status, which we set up in Getting

consent status from the consent record on page 459.
e. In the second field, select Equals.
f. In the third field, type accepted.

This value is the status to check against.

The following image shows this rule.

g. Click Save changes.

11. Test the policy with both rules in place now.

A request to the user.0 answers as user.1 should now work.

However, a request to the user.0 answers as a user without a consent record, say user.2, is denied.

The user.2 request is denied because of the combining algorithm, Unless one decision is permit,
the decision will be deny. When the policy engine evaluates the policy rules, the Permit a user
to request their own answers rule does not produce a permit because user.2 is not requesting
their own answers. The Permit if resource owner gave consent to share answers rule uses the
Sharing consent status attribute. user.0 does not have a consent record for user.2. With no
consent record to get status from, the policy engine cannot evaluate the rule. So this rule also does not
produce a permit. Thus, the combining algorithm produces a deny for the user.2 request.

If user.0 revokes the consent given to user.1, the status in the consent record becomes revoked. The
rule no longer applies, so user.1 requests are then denied.

Use case: Using consent to change a response
PingAuthorize can change a server response based on the resource owner's consent to share.

This feature is useful for:

▪ Data control
▪ Information security
▪ Resource management

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 464

Again, we continue using the meme games API used in Getting started with PingAuthorize (tutorials) on
page 17.

We first set up some Trust Framework attributes and services to provide consent status. Then we create a
policy with rules that use the consent status to include, exclude, or modify attributes in the response. The
following topics cover the Trust Framework tasks. If you completed Use case: Using consent to determine
access to a resource on page 448, you have already finished the tasks of setting up Trust Framework
attributes and services. Those tasks are the same for both use cases.

1. Getting a path component from the request URL on page 448
2. Getting the requestor identifier from the access token on page 453
3. Searching for consent by resource owner to requestor on page 453
4. Getting consent status from the consent record on page 459
5. What is different for this use case is the policy itself. The following topic explains how to add rules with

advices to include, exclude, or modify attributes in the response.

Creating a policy to check consent and then change the server response on page 464

Creating a policy to check consent and then change the server response
Using the Trust Framework attributes and services we created, we now create a policy for the meme game
API to get a user's answers and change the server response with various advices based on the consent
status.

About this task

Here is a snippet of an unedited response. It shows the id, type, and attributes attributes.

{
 "data": [{
 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https: //l.imqflip.com/2fm6x.jpq",
 "captions": ["Still waiting for the bus to
 Jennie's"],
 "rating": null,
 "created_at": "2020-05-e6T22:25:06-00:00"
 }
 },

Steps

1. Sign on to the Policy Editor, click Policies in the left pane and then click Policies along the top.

2. Select the existing meme-game policies policy. The new policy is created under this policy.

3. From the + menu, select Add Policy.

4. For the name, replace Untitled with Control user's response to answers request.

5. Click + next to Applies to.

6. Click Add definitions and targets, or drag from Components and add the meme-
game.user_answers service, which we set up in Getting a path component from the request URL
on page 448. Also, because we want to control the response to the client, add the outbound-GET
action.

7. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 465

8. Add a rule to include attributes.

a. Click + Add Rule.

1. For the name, replace Untitled with If consent to share status is accepted
then include attributes.

2. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute list, select Sharing consent status, which we created in

Getting consent status from the consent record on page 459.
c. In the second field, select Equals.
d. In the third field, type accepted.

3. Specify the advice.

a. Click Show Advice and Obligations.
b. Click + next to Advice and Obligations.
c. Click + Add Advice # Include Attributes.

Use this advice to be explicit about what attributes to keep, especially when you have a
large set of attributes where you only need a small subset in the response.

For information about this advice, see Include Attributes on page 495.
d. For the name, replace Untitled with Include id and attributes attribute.
e. In the Code field, enter include-attributes.
f. From the Applies To list, select Permit.
g. In the Payload field, enter the following text to include the id attribute and the

attributes attribute but not the type attribute.

["data[*].id","data[*].attributes.*"]
h. Click Save changes.

The following screen shows the rule.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 466

With the policy in place, trying the request again gets a response with the type attribute removed,
as shown in the following snippet.

{
 "data": [{
 "attributes": {
 "url": "https: //l.imqflip.com/2fm6x.jpq",
 "captions": ["Still waiting for the bus to
 Jennie's"],
 "rating": null,
 "created_at": "2020-05-e6T22:31:06-00:00"
 "id": "1",
 }
 },

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 467

9. Add a rule to exclude attributes.

a. Click + Add Rule.

1. For the name, replace Untitled with If consent to share status is revoked then
exclude attributes.

2. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute list, select Sharing consent status, which we created in

Getting consent status from the consent record on page 459.
c. In the second field, select Equals.
d. In the third field, type revoked.

3. Specify the advice.

a. Click Show Advice and Obligations.
b. Click + next to Advice and Obligations.
c. Click + Add Advice # Exclude Attributes.

Use this advice to be explicit about what attributes to leave out. For example, a third-party
client might request banking records; the client does not need account numbers, so give
them everything but the account number.

For information about this advice, see Exclude Attributes on page 493.
d. For the name, replace Untitled with Exclude the id attribute.
e. In the Code field, enter exclude-attributes.
f. From the Applies To list, select Anything.
g. In the Payload field, enter the following text to exclude the id attribute.

["data[*].id"]
h. Click Save changes.

The following screen shows the rule.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 468

With the policy in place, trying the request again gets a response with the type attribute removed,
as shown in the following snippet.

{
 "data": [{
 "type": "answers",
 "attributes": {
 "url": "https: //l.imqflip.com/2fm6x.jpq",
 "captions": ["Still waiting for the bus to
 Jennie's"],
 "rating": null,
 "created_at": "2020-05-e6T22:35:06-00:00"
 }
 },

You can use the Decision Visualiser to see how the decision engine processed the decision. In
the Policy Editor, click Policies in the left pane, then click Decision Visualiser along the top,
and then click Recent Decisions. Click a decision and follow the green paths to see what polices
are executed and which rules are invoked. Click Attributes along the top to see the names and
values of attributes that are used in the decision.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 469

10. Add a rule to modify attributes.

a. Click + Add Rule.

1. For the name, replace Untitled with If consent to share status is restricted
then modify attributes.

2. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute list, select Sharing consent status, which we created in

Getting consent status from the consent record on page 459.
c. In the second field, select Equals.
d. In the third field, type restricted.

3. Specify the advice.

a. Click Show Advice and Obligations.
b. Click + next to Advice and Obligations.
c. Click + Add Advice # Modify Attributes.

Use this advice to change attributes. For example, the client might request health records
and require all items from a record, such as a social security number, even if partially or
fully hidden.

For information about this advice, see Modify Attributes on page 496.
d. For the name, replace Untitled with Modify all the values in attributes.
e. In the Code field, enter modify-attributes.
f. From the Applies To list, select Permit.
g. In the Payload field, enter the following text to replace all values in the attributes

attribute with three dashes.

{"data[*].attributes.*":"---"}
h. Click Save changes.

The following screen shows the rule.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 470

With the policy in place, trying the request now gets a response with the id and type attributes
unchanged but all the attributes values changed to dashes, as shown in the following snippet.

{
 "data": [{
 "id": "168",
 "type": "answers",
 "attributes": {
 "url": "---",
 "captions": "---",
 "rating": "---",
 "created_at": "---"
 }
 },

Result
The following image shows the what policy applies to and the three rules.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 471

Use case: Using a SCIM resource type or a policy request action to control behavior
SCIM (System for Cross-domain Identity Management) resource types define a class of resources, such as
users or devices. The PingAuthorize Server SCIM service provides a REST API for data stored in external
datastores that are based on the SCIM 2.0 standard.

The SCIM service translates each SCIM request or response into one or more policy requests to the policy
decision point (PDP).

These policy requests have an action value that you can reference in the policies you write to deny or
permit the action.

For more background information, see About the SCIM service on page 192.

For more information about actions, see SCIM policy requests on page 197.

This feature is useful for:

▪ Data control
▪ Information security
▪ Resource management

Example scenarios include:

▪ A bank that wants to prevent delete operations of their client profiles
▪ A health care system that should only allow the creation of new patient records and should not allow

the modification of existing patient records
▪ A university system that only allows the retrieval of student information from the student's defined

department; the system can modify the information differently based on the department

In this use case, we define services in the Trust Framework. We then create policies that use those
services or policy request actions to control various operations. The following topics cover these tasks.

1. Getting the SCIM resource type and the action being executed on page 472
2. Creating a policy to permit or deny the creation of resources on page 474
3. Creating a policy to control the set of actions for a specific resource on page 477

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 472

4. Creating a policy to restrict the ability to delete based on resource type on page 481
5. Creating a policy to dynamically modify a resource based on the SCIM resource type on page 484

Getting the SCIM resource type and the action being executed
The SCIM resource type indicates the class of resources with which to interact. The action indicates what
the user is trying to do. Here we define Trust Framework services to use in policies and locate the resource
type and actions.

About this task
The PingAuthorize Policy Editor provides a SCIM2 service in the Trust Framework. This service is for
the SCIM2 REST API and does not reference resource types. This task creates two services: Users and
Devices.

Steps

1. Sign on to the Policy Editor.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 473

2. Create the Users and Devices services.

a. Go to Trust Framework and click Services.
b. Click the SCIM2 service so the service we create is listed under SCIM2.
c. From the + menu, select Add new Service.
d. For the name, replace Untitled with Users.
e. Click Save changes.
f. Click the SCIM2 service again.
g. From the + menu, select Add new Service.
h. For the name, replace Untitled with Devices.
i. Click Save changes.

With the services defined, you should have a screen similar to the following one.

We will use these services in the policies we create.

Also, we will use the attribute SCIM2.resource.meta.resourceType.

To see the attribute in the Trust Framework, click Attributes and navigate to it starting from SCIM2.

 Note:
The SCIM2.resource attribute is only available when the SCIM resource exists. For example, the
search and create actions do not have this attribute. However, the search action does have a policy
request with a retrieve action that does have the attribute.

Your policy can use a service you define or the SCIM2.resource.meta.resourceType attribute.

Also, we can use these actions in our policies: create, delete, modify, retrieve, search, search-results.

To see the actions in the Trust Framework, click Actions.

When you are creating your policy, use the Policy Editor's Decision Visualiser to make sure your
policy accurately reflects the policy requests. For example, consider the following screen showing the
request.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 474

We can use the following lines from the Decision Visualiser:

▪ service line

Verify the name of the service in your Trust Framework and policy.
▪ action line

Verify that the request produces the expected action that the policy uses.

The PingAuthorize SCIM translates a get request in the SCIM REST API to retrieve action. For
more information about actions, see SCIM policy requests on page 197.

▪ RequestURI line

Verify that the endpoint belongs to the expected service.
▪ SCIM2 line

Scroll right to see the verify that the resourceType is as expected.

Creating a policy to permit or deny the creation of resources
This policy allows the creation of one resource type but not another. In particular, the policy focuses on the
create action and then allows the creation of Device resources but denies the creation of User resources.

Steps

1. In the Policy Editor, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with User can only create Device resources.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the create action.

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 475

7. Add a rule to allow the creation of Device resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Permit the creation of Device resources.
c. Click + Comparison.
d. In the first field, click the A to toggle to an R and from that field's drop-down list, select Service.
e. In the second field, select Equals.
f. In the third field, select the SCIM2.Devices service.
g. Click Save changes.

You should have a screen similar to the following one for the policy and this rule.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 476

8. Add a rule to deny the creation of User resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Deny the creation of User resources.
c. Set Effect to Deny.
d. Click + Comparison.
e. In the first field, click the A to toggle to an R and from that field's drop-down list, select Service.
f. In the second field, select Equals.
g. In the third field, select the SCIM2.Users service.
h. Add advice to provide a custom message.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice # Denied Reason.
4. For the name, specify denied-reason.
5. Set Applies To to Deny.
6. In the Payload field:

▪ Remove

Example:
▪ Change

Human-readable error message

to

System has restricted the ability to create User resources
i. Click Save changes.

You should have a screen similar to the following one for the second rule.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 477

9. Send test requests to the SCIM service and verify data using the Policy Editor's Decision Visualiser.

Creating a policy to control the set of actions for a specific resource
For a given resource, control the outcomes (deny or permit) of actions on the resource. In particular, the
policy focuses on the Users resource, and then denies deletes but permits retrieves.

Steps

1. In the Policy Editor, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with Control actions for the User resource.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the SCIM2.Users service.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 478

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

You should have a screen similar to the following one for the policy so far.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 479

7. Add a rule to deny the deletion of User resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Action: delete.
c. Set Effect to Deny.
d. Click + Comparison.
e. In the first field, click the A to toggle to an R and from that field's drop-down list, select Action.
f. In the second field, select Equals.
g. In the third field, select the delete action.
h. Add advice to provide a custom message.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice # Denied Reason.
4. For the name, specify denied-reason.
5. Set Applies To to Deny.
6. In the Payload field:

▪ Remove

Example:
▪ Change

Human-readable error message

to

System has restricted the ability to delete User resources
i. Click Save changes.

Your rule should be similar to the following one.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 480

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 481

8. Add a rule to permit the retrieval of User resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Action: retrieve.
c. Click + Comparison.
d. In the first field, click the A to toggle to an R and from that field's drop-down list, select Action.
e. In the second field, select Equals.
f. In the third field, select the retrieve action.
g. Click Save changes.

Your rule should be similar to the following one.

9. Send test requests to the SCIM service and verify data using the Policy Editor's Decision Visualiser.

Creating a policy to restrict the ability to delete based on resource type
For a given resource type, restrict the ability to delete. In particular, the policy focuses on the delete action
and then denies the action when the resource type is Devices.

Steps

1. In the Policy Editor, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with User cannot delete a Device resource.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the delete action.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 482

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

You should have a screen similar to the following one for the policy so far.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 483

7. Add a rule to deny the deletion of Device resources.

a. Click + Add Rule.
b. For the name, replace Untitled with If the SCIM resource type is Device, then

deny.
c. Set Effect to Deny.
d. Click + Comparison.
e. In the Select an Attribute list, select the SCIM2.resource.meta.resourceType attribute.
f. In the second field, select Equals.
g. In the third field, specify Devices as the constant.
h. Add advice to provide a custom message.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice # Denied Reason.
4. For the name, specify denied-reason.
5. Set Applies To to Deny.
6. In the Payload field:

▪ Remove

Example:
▪ Change

Human-readable error message

to

System has restricted the ability to delete Device resources
i. Click Save changes.

Your rule should be similar to the following one.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 484

8. Send test requests to the SCIM service and verify data using the Policy Editor's Decision Visualiser.

Creating a policy to dynamically modify a resource based on the SCIM resource type
Given an attribute defined in multiple resource types, modify the attribute differently depending on the
resource type. In particular, this policy focuses on the retrieve action and changes the cn attribute to one
value for the Users resource type and to another value for the Devices resource type.

Steps

1. In the Policy Editor, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with Modify cn attribute based on the resource type.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the retrieve action.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 485

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

You should have a screen similar to the following one for the policy so far.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 486

7. Add a rule for the Users resource.

a. Click + Add Rule.
b. For the name, replace Untitled with If resource type is Users.
c. Click + Comparison.
d. From the Select an Attribute list, select the SCIM2.resource.meta.resourceType attribute.
e. In the second field, select Equals.
f. In the third field, specify Users as the constant.
g. Add advice to modify attributes.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice # Modify Attributes.
4. For the name, specify Modify cn for users resource.
5. Set Applies To to Permit.
6. Set the Payload field to {"cn":"USERS_MOD"}.

h. Click Save changes.

Your rule should be similar to the following one.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 487

8. Add a rule for the Devices resource.

a. Click + Add Rule.
b. For the name, replace Untitled with If resource type is Devices.
c. Click + Comparison.
d. From the Select an Attribute list, select the SCIM2.resource.meta.resourceType attribute.
e. In the second field, select Equals.
f. In the third field, specify Devices as the constant.
g. Add advice to modify attributes.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice # Modify Attributes.
4. For the name, specify Modify cn for devices resource.
5. Set Applies To to Permit.
6. Set the Payload field to {"cn":"DEVICES_MOD"}.

h. Click Save changes.

Your rule should be similar to the following one.

9. Send test requests to the SCIM service and verify data using the Policy Editor's Decision Visualiser.

Restricting the modification of attributes
Starting with PingDataGovernance 8.1, the Allow Attributes advice and Prohibit Attributes advice
are no longer supported. If you have policies that use those advices, change them to use the
impactedAttributes policy attribute.

About this task

The impactedAttributes attribute is defined in resource/policies/
defaultPolicies.SNAPSHOT. If you are using a branch created from that snapshot, the attribute
already exists in the branch. If not, create the attribute.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 488

Steps

1. Go to Trust Framework, and then click Attributes.

2. From the + menu, select Add new Attribute.

3. For the name, replace Untitled with impactedAttributes.

4. Verify that in the Parent field, no parent is selected. To remove a parent, click the trash can icon to the
right of the Parent field.

5. Click + Add Resolver and set the Resolver type to Request.

6. In the Value Settings section:

a. Select the box next to Default value and specify square brackets with no space between them
([]) as the value.

b. Set Type to Collection.

7. Click Save changes.

Allowing attributes to be modified by administrators
To allow any attribute to be modified, such as for an administrator account, the policy decision point (PDP)
does not need to check the impactedAttributes attribute.

About this task

To create a policy that allows an administrator to modify any attributes, complete the following step.

Steps

▪ Create a policy with a rule with Effect set to Permit the decision based on the Condition that the user
is an administrator.

To check the user, for example, you can set up a condition to compare whether
HttpRequest.AccessToken.scope equals administrator.

Adding attributes to an allow list
To allow the user to modify a set of attributes limited to an allow list and return an error if the user attempts
to modify any attribute outside of the allow list, create a constant in the Trust Framework and then use the
constant in a policy.

Steps

1. Create a constant in the Trust Framework.

a. Go to Trust Framework and then Attributes.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with allowlistAttributes.
d. Verify that in the Parent field, no parent is selected. To remove a parent, click the trash can icon

to the right of the Parent field.
e. Click + Add Resolver and set the Resolver type to Constant.
f. Set the value of the constant to a set of square brackets that contains a comma-delimited list of

the attributes that can be modified.

For example, to allow the email or userName attributes to be modified, you would set the value
of the constant to [email, userName].

As another example, to allow the user to modify a property or any of its subproperties, you must
explicitly list them. So to allow modification of the name field on the default Users pass-through
schema, set the value of the constant to [name, name.formatted, name.givenName,
name.familyName].

g. In the Value Settings section, set Type to Collection.
h. Click Save changes.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 489

2. Modify or create a policy to use that constant collection.

a. Go to Policies.
b. Select a policy or create a new one.
c. In the Rules section:

1. Set the Combining Algorithm to Unless one decision is permit, the decision will be
deny.

2. Click + Add Rule.
3. For the name, replace Untitled with Allow only the email and userName

attributes.
4. Set the Effect to Permit.
5. Under Condition, click + Comparison.
6. In the comparison, we want to compare the constant collection of permitted attributes to the

impactedAttributes collection.

▪ For the left field, select the allowlistAttributes attribute, which is the constant
collection of permitted attributes defined in the beginning.

You might see the field as shown below. Click the R immediately above + Comparison to
toggle to attribute selection.

▪ Set the middle field (the operator) to Contains.
▪ Set the right field to the impactedAttributes attribute.

If that field has a C before it, click the C to toggle to attribute selection.

 Note:

If impactedAttributes is not available, see Restricting the modification of attributes
on page 487.

When applied to two collections, the Contains operator returns true if and only if the
right-side collection is a subset of the left-side collection. Thus, the rule only returns
PERMIT if the set of impactedAttributes is a subset of the list of allowed attributes in
allowlistAttributes.

Test Suite
Use the Test Suite to define tests, scenarios, and assertions to validate behavior for most Trust Framework
and Policy Manager entities.

Policy writers can build a library of test cases to use as part of a test-driven development approach to
policy and Trust Framework design. The library you develop can form a suite of regression checks that you
run against each new version of policies or the Trust Framework.

The Test Suite has these components: Tests, scenarios, and assertions. The following table highlights
the similarities and differences. The components are very similar. However, with test cases, you specify a
Trust Framework or Policy Manager entity to test. Scenarios do not use such entities and are instead for
reuse across tests.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 490

Test cases Scenarios

A test case definition includes:

▪ A decision request
▪ Optional overrides for attributes
▪ Optional overrides for services
▪ An entity to test
▪ Optional assertions

A scenario definition includes:

▪ A decision request
▪ Optional overrides for attributes
▪ Optional overrides for services

You can reuse a scenario within a test suite.

Tests

In the Test Suite, use the Tests tab to view and manage tests and test groups. A test group is a collection
of tests.

To add a test or test group, click +.

When you create a test, keep the following items in mind:

Field Description

Name A unique name avoiding the following characters:

{ } | .

Description A description for the test to clarify its intention and usage.

Tested Entity The entity to verify with the test.

After you assign an entity, you can run the test on that entity using
the Test tab in the Trust Framework or Policy Manager pages.

Scenario Type The type of scenario to use:

▪ Inline—you define the scenario on the same page where you
define the test

▪ Referenced—you select a scenario that you already defined in
the Scenarios tab

 Tip:

You can use a referenced scenario as a template for a new inline
scenario by selecting that referenced scenario and then switching
to Inline Scenario.

When you create a test group, you need only provide a name and description.

Scenarios

In the Test Suite, use the Scenarios tab to view and manage scenarios and scenario groups. A scenario
group is a collection of scenarios.

Scenarios define a decision request and optional attribute and service overrides to serve as input for a test.
After you define a scenario, you can reference it by name in your tests. Also, on the Test tab in the Trust
Framework or Policy Manager pages, you can load a scenario directly into the test by clicking the Load
Scenario button in the lower, right corner.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 491

To add a test or test group, click +.

You can specify request and override data by hand or by importing it in JSON format by clicking the Import
JSON button in the lower, right corner.

When you create a scenario group, you need only provide a name and description.

Assertions

After you define a test scenario, you can create assertions to verify content in the decision response
generated by the scenario. Use assertions to ensure that a particular property in the response is behaving
correctly.

In the Test Suite, use the Assertions tab to view and manage assertions and assertion groups.

To create an assertion, your options include:

▪ Using the Assertions tab.

 Tip:

For assertions you create using the Assertions tab, use them in a test by clicking + Add Assertion,
setting Assertion Type to Referenced, and then selecting the assertion in the drop-down list.

▪ Creating them inline when you define a test on the Tests tab.

When you define an assertion, you:

1. Provide a JSONPath accessor to extract information from the response.
2. Specify a matcher to indicate how to compare the extracted information against an expected value.
3. Specify the expected value type.
4. Specify the expected value.

The following image shows an assertion that checks whether result value equals PERMIT:

Test execution

After you assign a testable entity, such as a policy or attribute, to a test case, you can run the test. To view
and run the test, your options are:

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 492

▪ In the test definition, after you add the tested entity to the test and save changes, click the name of the
tested entity to view the entity. Next, click Test and then Tests.

▪ View the entity through a tab on the left, such as the Policies tab. Next, click Test and then Tests.

You see a table of the tests available for the entity. Click a test's Execute button to run that test. For longer
running tests, you can go to other tasks in the Policy Editor and return to this page later to check progress.

If a test uses assertions, when you expand the row for the test case, an Assertions tab appears. Use this
tab to see the results for the assertions.

Advice types
When a policy is applied to a request or response, the policy result might include one or more advices.
An advice is a directive that instructs the policy enforcement point to perform additional processing in
conjunction with an authorization decision.

Advices allow the policy enforcement point—PingAuthorize Server, in this case—to do more than allow or
deny access to an API resource. For example, an advice might cause the removal of a specific set of fields
from a response.

You can add an advice directly to a single policy or rule, as well as modify that advice as part of a policy
definition. You can also add an advice in Components for use with multiple policies or rules.

This section describes the advice types built into PingAuthorize Server.

Add Filter
Use add-filter to add administrator-required filters to System for Cross-domain Identity Management
(SCIM) search queries.

Description Details

Applicable to SCIM.

Additional
information

The Add Filter advice places restrictions on the resources returned to an application that can
otherwise use SCIM search requests. The filters that the advice specifies are ANDed with any filter
that the SCIM request includes.

The payload for this advice is a string that represents a valid SCIM filter, which can contain multiple
clauses separated by AND or OR. If the policy result returns multiple instances of Add Filter advice,
they are ANDed together to form a single filter that passes with the SCIM request. If the original SCIM
request body included a filter, it is ANDed with the policy-generated filter to form the final filter value.

Combine SCIM Search Authorizations
Use combine-scim-search-authorizations to optimize policy processing for System for Cross-
domain Identity Management (SCIM) search responses.

Description Details

Applicable to SCIM.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 493

Description Details

Additional
information

By default, SCIM search responses are authorized by generating multiple policy decision
requests with the retrieve action, one for each member of the result set. The default mode
enables policy reuse but might result in greater overall policy processing time.

When you use this advice type, the current SCIM search result set is processed using an
alternative authorization mode in which all search results are authorized by a single policy
request that uses the search-results action. The policy request includes an object with
a single Resources field, which is an array that consists of each matching SCIM resource.
Advices that the policy result returns are applied iteratively against each matching SCIM
resource, allowing for the modification or removal of individual search results.

This advice type does not use a payload.

For more information about SCIM search handling, see About SCIM searches on page 202.

Denied Reason
Use denied-reason to allow a policy writer to provide an error message that contains the reason for
denying a request.

Description Details

Applicable to DENY decisions.

 Note:

The denied-reason advice only applies to SCIM searches using the optimized search
response authorization mode.

Additional
information

The payload for Denied Reason advice is a JSON object string with the following fields:

▪ status – Contains the HTTP status code returned to the client. If this field is absent, the
default status is 403 Forbidden.

▪ message – Contains a short error message returned to the client.
▪ detail (optional) – Contains additional, more detailed error information.

The following example shows a possible response for a request made with insufficient scope

{"status":403, "message":"insufficient_scope", "detail":"Requested
operation not allowed by the granted OAuth scopes."}

Exclude Attributes
Use exclude-attributes to specify the attributes to exclude from a JSON response.

Description Details

Applicable to PERMIT decisions, although you cannot apply Exclude Attributes advice directly to a System for
Cross-domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 497 advice type.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 494

Description Details

Additional
information

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath
into the response body of the request being authorized. Each JSONPath can select multiple
attributes in the object. The portions of the response that a JSONPath selects are removed
before sending the response to the client.

The following example instructs PingAuthorize Server to remove the attributes secret and
data.private.

["secret","data.private"]

For more information about the processing of SCIM searches, see Filter Response on page
494.

Filter Response
Use filter-response to direct PingAuthorize Server to invoke policy iteratively over each item of a
JSON array contained within an API response.

Description Details

Applicable to PERMIT decisions from Gateway, although you cannot apply Filter Response advice directly to
a System for Cross-domain Identity Management (SCIM) search. However, the SCIM service
performs similar processing automatically when it handles a search result. For every candidate
resource in a search result, the SCIM service makes a policy request for the resource with an
Action value of retrieve.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 495

Description Details

Additional
information

When presented with a request to permit or deny a multivalued response body, Filter Response
advice allows policies to require that a separate policy request be made to determine whether
the client can access each individual resource that a JSON array returns.

The following table identifies the fields of the JSON object that represents the payload for this
advice.

Field Required Description

Path Yes JSONPath to an array within the API's response body. The
advice implementation iterates over the nodes in this array and
makes a policy request for each node.

Action No Value to pass as the action parameter on subsequent policy
requests. If no value is specified, the action from the parent
policy request is used.

Service No Value to pass as the service parameter on subsequent policy
requests. If no value is specified, the service value from the
parent policy request is used.

ResourceType No Type of object contained by each JSON node in the array,
selected by the Path field. On each subsequent policy request,
the contents of a single array element pass to the policy
decision point as an attribute with the name that this field
specifies. If no value is specified, the resource type of the
parent policy request is used.

On each policy request, if policy returns a deny decision, the relevant array node is removed
from the response. If the policy request returns a permit decision with additional advice, the
advice is fulfilled within the context of the request. For example, this advice allows policy to
decide whether to exclude or obfuscate particular attributes for each array item.

For a response object that contains complex data, including arrays of arrays, this advice type
can descend through the JSON content of the response.

 Note:

Performance might degrade as the total number of policy requests increases.

Include Attributes
Use include-attributes to limit the attributes that a JSON response can return.

Description Details

Applicable to PERMIT decisions, although you cannot apply Include Attributes advice directly to a System for
Cross-domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 497 advice type.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 496

Description Details

Additional
information

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath
into the response body of the request being authorized. The response includes only the portions
that one of the JSONPaths selects. When a single JSONPath represents multiple attributes, the
response includes all of them. If the policy result returns multiple instances of Include Attributes
advice, the response includes the union of all selected attributes.

For more information about the processing of SCIM searches, see Filter Response on page
494.

Modify Attributes
Use modify-attributes to modify the values of attributes in the JSON request or response.

Description Details

Applicable to All, although you cannot apply the Modify Attributes advice directly to a System for Cross-
domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 497 advice type.

Additional
information

The payload for this advice is a JSON object. Each key-value pair is interpreted as an attribute
modification on the request or response body of the request being authorized. For each pair, the
key is a JSONPath that selects the attribute to modify, and the value is the new value to use for
the selected attribute. The value can be any valid JSON value, including a complex value like
an object or array.

Modify Headers
Use modify-headers to modify the values of request headers before PingAuthorize sends them to the
upstream server or to modify the values of response headers before PingAuthorize returns them to the
client.

Description Details

Applicable to All, although you cannot apply the Modify Headers advice directly to a System for Cross-domain
Identity Management (SCIM) search.

Additional
information

The payload for this advice is a JSON object. The keys are the names of the headers to set, and the
values are the new values of the headers.

A value can be:

▪ Null, which removes the header
▪ A string, which sets the header to that value
▪ An array of strings, which sets the header to all of the string values

If the header already exists, PingAuthorize overwrites it.

If the header does not exist, PingAuthorize adds it (unless the value is null).

If a payload value is an array of strings:

▪ Given a header that supports multiple values, such as Accept, PingAuthorize repeats the
header for each string in the array.

▪ Given a header that does not support multiple values, such as Content-Type, PingAuthorize
sends the last string in the array.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 497

Modify Query
Use modify-query to modify the query string of the request sent to the API server.

Description Details

Applicable to All.

Additional
information

The payload for this advice is a JSON object. The keys are the names of the query parameters
that must be modified, and the values are the new values of the parameters. A value can be
one of the following options:

▪ null – Query parameter is removed from the request.
▪ String – Parameter is set to that specific value.
▪ Array of strings – Parameter is set to all of the values in the array.

If the query parameter already exists on the request, it is overwritten. If the query parameter
does not already exist, it is added. For example, if a request is made to a proxied API with
a request URL of https://example.com/users?limit=1000, you can set a policy to
limit certain groups of users to request only 20 users at a time. A payload of {"limit": 20}
causes the URL to be rewritten as https://example.com/users?limit=20.

Modify SCIM Patch
Use modify-scim-patch to add operations to a SCIM patch in a modify request before it is submitted to
the store adapter.

Description Details

Applicable to SCIM requests with an action of modify.

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 498

Description Details

Additional
information

The payload for this advice is either a JSON array or a JSON object.

If the payload is an array, PingAuthorize treats it as a list of operations in the SCIM patch format
to add to the end of the operations in the patch. For example, assume the modify has the
following patch.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John Doe"}
]
}

Also, assume the advice payload is as follows.

[
 {"op": "add", "path": "name.first", "value": "John"},
 {"op": "remove": "path": "name.last"}
]

Then the resulting request to the store adapter looks like this.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John
 Doe"},
 {"op": "add", "path": "name.first", "value": "John"},
 {"op": "remove", "path": "name.last"}
]
}

If the payload is an object, PingAuthorize interprets it as a set of new replace operations to add
to the end of the operations in the patch. In these replace operations, the keys from the object
become the paths to modify, and the values from the object become the values for those paths.
For example, assume the modify has the following patch.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John Doe"}
]
}

Also, assume the advice payload is as follows.

{"name.first": "John", "name.last": "Doe"}

Then the resulting request to the store adapter looks like this.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John
 Doe"},
 {"op": "replace", "path": "name.first", "value": "John"},
 {"op": "replace", "path": "name.last", "value": "Doe"}
]
}

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 499

Regex Replace Attributes
Use regex-replace-attributes to specify a regex to search for attributes in a request or response
body and replace their values with a regex replacement string.

Description Details

Applicable to All, although you cannot apply the Regex Replace Attributes advice directly to a System for Cross-
domain Identity Management (SCIM) search.

Additional
information

The payload for this advice is either a JSON object or an array of JSON objects. Each object
represents a single replacement operation and has up to four keys.

Key Description

"regex" Required.

Represents the regular expression to use to find the attribute values to replace.

"replace" Required.

Represents the regex replacement string to use to replace the attribute values with a
new value.

"path" Optional.

Is a JSONPath expression that represents the nodes to start searching under.

"flags" Optional.

Is a string that contains the regex flags to use.

Recognized flags are:

▪ "i"

Performs case-insensitive matching.
▪ "l"

Treats the "regex" value as a literal string.
▪ "c"

Performs "canonical equivalence" matching.

You can combine flags. For example: "il"

PingAuthorize replaces any portion of the attribute value that matches the regular expression in the
"regex" value in accordance with the "replace" replacement string. If multiple substrings within
the attribute value match the regular expression, PingAuthorize replaces all occurrences.

The regular expression and replacement string must be valid as described in the API documentation
for the java.util.regex.Pattern class, including support for capture groups.

Example

For example, consider the following body.

{
 "id":5,
 "username":"jsmith",
 "description":"Has a registered ID number of '123-45-6789'.",
 "secrets":{

Copyright ©2024

PingAuthorize | PingAuthorize Policy Administration Guide | 500

 "description":"Has an SSN of '987-65-4321'."
 }
}

Also, consider the following payload.

{
 "path":"$.secrets",
 "regex":"\\\\d{3}-\\\\d{2}-(\\\\d{4})",
 "replace":"XXX-XX-$1"
}

Applying the advice produces the following body with a changed "secrets.description" value.

{
 "id":5,
 "username":"jsmith",
 "description":"Has a registered ID number of '123-45-6789'.",
 "secrets":{
 "description":"Has an SSN of 'XXX-XX-4321'."
 }
}

REST API documentation
The PingAuthorize Policy Editor provides a set of REST APIs for managing policies, snapshots, and
deployment packages. Swagger documentation for these APIs is available through the PingAuthorize
Policy Editor if it was installed in demo mode.

For more information, click API Reference in the Policy Editor.

Copyright ©2024

	Contents
	PingAuthorize
	Release Notes
	PingAuthorize 9.1.0.5 (May 2024)
	PingAuthorize 9.1.0.4 (November 2023)
	PingAuthorize 9.1.0.3 (August 2023)
	PingAuthorize 9.1.0.2 (March 2023)
	PingAuthorize 9.1.0.1 (December 2022)
	PingAuthorize 9.1 (June 2022)
	PingAuthorize 9.0.0.6 (August 2023)
	PingAuthorize 9.0.0.5 (April 2023)
	PingAuthorize 9.0.0.4 (January 2023)
	PingAuthorize 9.0.0.2 (July 2022)
	PingAuthorize 9.0.0.1 (February 2022)
	PingAuthorize 9.0 (December 2021)
	Previous Releases

	Introduction to PingAuthorize
	Getting started with PingAuthorize (tutorials)
	Using the tutorials
	Setting up your environment
	Starting PingAuthorize
	Verifying proper startup
	Accessing the GUIs
	Stopping PingAuthorize
	About the tutorial configuration

	Tutorial 1: Importing default policies
	Introduction to the Trust Framework and default policies

	Tutorial 2: Configuring fine-grained access control for an API
	Configuring a reverse proxy for the Meme Game API
	Testing the reverse proxy
	For further consideration: The PingAuthorize API security gateway, part 1
	Adding a policy for the Create Game endpoint
	For further consideration: The PingAuthorize API security gateway, part 2
	Testing the policy from the Policy Editor
	Testing the policy by making an HTTP request
	For further consideration: Decision Visualiser
	Modifying the rule for the Create Game endpoint
	For further consideration: Resolvers and value processors
	Conclusion

	Tutorial 3: Configuring attribute-based access control for API resources
	Configuring the API security gateway
	Creating the gateway API endpoint
	Testing the gateway

	Creating a policy based on user credentials
	Creating a service for the Shared Answers endpoint
	Creating a policy for the Shared Answers endpoint
	Testing the policy
	Creating an attribute from user data
	Adding logic to allow non-Youngstown users
	Testing that the policy blocks Youngstown users

	Creating a policy based on the API response
	Creating an attribute from response data
	Adding logic to allow family-friendly memes
	Testing that the policy blocks Youngstown users from viewing age 13+ memes
	Allowing unrated memes
	Testing the default value
	Creating an advice to provide a more useful error message
	Testing the advice

	Conclusion

	Tutorial (optional): Creating SCIM policies
	Tutorial: Creating the policy tree
	Tutorial: Creating SCIM access token policies
	Creating a policy for permitted access token scopes
	Testing the policy with cURL
	Defining the email scope
	Testing the email scope with cURL
	Defining the profile scope
	Testing the profile scope with cURL
	Defining the scimAdmin scope
	Adding the scimAdmin retrieve rule
	Adding the scimAdmin create/modify rule
	Adding the scimAdmin search rule
	Adding the scimAdmin delete rule

	Creating a policy for permitted OAuth2 clients
	Testing the client policy with cURL

	Creating a policy for permitted audiences
	Testing the audience policy with cURL

	Tutorial: Creating a policy for role-based access control
	Testing the policy with cURL

	Example files
	Conclusion

	Installing PingAuthorize
	Docker deployment
	Deployment requirements when using Docker
	Deploying PingAuthorize Server and Policy Editor using Docker
	Deploying PingAuthorize Server using Docker
	Signing on to the administrative console (Docker deployment)

	Deploying PingAuthorize Policy Editor using Docker
	Post-setup steps (Docker deployment)

	Next steps

	Manual installation
	Before you install manually
	System requirements
	About license keys
	Creating a Java installation dedicated to PingAuthorize
	Preparing a Linux environment
	Setting the file descriptor limit
	Setting the maximum user processes
	Disabling file system swapping
	Managing system entropy
	Enabling the server to listen on privileged ports

	Obtaining the installation packages

	Installing the server and the Policy Editor manually
	Installing the server manually
	About the server installation modes
	Installing the server interactively
	Installing the server noninteractively

	Signing on to the administrative console (manual installation)
	Installing the PingAuthorize Policy Editor manually
	Setting up a PostgreSQL database
	Installing the PingAuthorize Policy Editor interactively
	Example: Installing and configuring the PingAuthorize Policy Editor

	Installing the PingAuthorize Policy Editor noninteractively
	Example: Set up the PingAuthorize Policy Editor in OIDC mode (PingFederate)
	Example: Set up the PingAuthorize Policy Editor in OIDC mode (generic OIDC provider)
	Example: Set up the PingAuthorize Policy Editor in demo mode
	Example: Set up the PingAuthorize Policy Editor with a PostgreSQL policy database
	Example: Set up the PingAuthorize Policy Editor to use a custom SSL certificate

	Post-setup steps (manual installation)

	Clustering and scaling
	Next steps

	Signing on to the PingAuthorize Policy Editor
	Changing the PingAuthorize Policy Editor authentication mode
	Changing the Policy Editor authentication mode for manual installs
	Changing the Policy Editor authentication mode for Docker deployments

	Configuring an OIDC provider for single sign-on requests from PingAuthorize
	Configuring PingOne as an OIDC provider for PingAuthorize
	Configuring PingOne for PingAuthorize policy administration
	Configuring PingAuthorize policy administration to use PingOne

	Configuring PingFederate as an OIDC provider for PingAuthorize
	Configuring PingFederate for PingAuthorize
	Configuring PingAuthorize Policy Editor to use PingFederate
	Configuring PingFederate group access for PingAuthorize

	Upgrading PingAuthorize
	Upgrade considerations
	Upgrade considerations introduced in PingAuthorize 8.x

	Docker upgrades
	Upgrading PingAuthorize Server using Docker
	Upgrading the PingAuthorize Policy Editor using Docker

	Manual upgrades
	Upgrading PingAuthorize Server manually
	Reverting an update
	Upgrading the PingAuthorize Policy Editor manually

	Policy-related upgrades
	Backing up policies
	Upgrading the Trust Framework and policies
	Upgrading a PostgreSQL policy database

	Uninstalling PingAuthorize
	PingAuthorize Integrations
	Kong API gateway integration
	Preparing PingAuthorize for Kong Gateway integration
	Setting up Kong Gateway
	Setting up Kong Gateway using the GUI
	Setting up Kong Gateway using the API

	Troubleshooting the Kong Gateway integration
	Troubleshooting API client HTTP 5xx errors
	API client HTTP 4xx errors
	Enabling error logging in Kong Gateway
	Enabling debug logging for the Kong Gateway plugin

	MuleSoft API gateway integration
	Deploying the custom MuleSoft policy for PingAuthorize
	Applying the custom MuleSoft policy for PingAuthorize

	PingAuthorize Server Administration Guide
	Running PingAuthorize
	Starting PingAuthorize Server
	Running PingAuthorize Server as a foreground process
	Starting PingAuthorize Server at boot time (Unix/Linux)
	Starting PingAuthorize Server at boot time (Windows)
	Registering PingAuthorize Server as a Windows service
	Running multiple service instances
	Deregistering and uninstalling services
	Log files for Windows services

	Starting PingAuthorize Policy Editor
	Stopping PingAuthorize Server
	Stopping PingAuthorize Policy Editor
	Restarting PingAuthorize Server

	About the API security gateway
	API gateway request and response flow
	Gateway configuration basics
	API security gateway authentication
	API security gateway policy requests
	API gateway policy request attributes
	Gateway API Endpoint configuration properties that affect policy requests
	API gateway path parameters
	Basic example
	Advanced example

	API security gateway HTTP 1.1 support
	Gateway error templates
	Configuring error templates example

	About the Sideband API
	API gateway integration
	Sideband API configuration basics
	Authenticating to the Sideband API
	Creating a shared secret
	Deleting a shared secret
	Rotating shared secrets
	Customizing the shared secret header

	Authenticating API server requests
	Sideband API policy requests
	Sideband API policy request attributes
	Sideband API Endpoint configuration properties
	Sideband API path parameters
	Basic example
	Advanced example

	Request context configuration
	Sideband access token validation
	Sideband error templates
	Example: Configure error templates

	About the SCIM service
	SCIM API request and response flow
	SCIM configuration basics
	About the create-initial-config tool
	Example: Mapped SCIM resource type for devices

	SCIM endpoints
	SCIM authentication
	SCIM policy requests
	SCIM policy request attributes
	About SCIM searches
	SCIM search policy processing
	Search request authorization
	Search response authorization

	Using paged SCIM searches

	Lookthrough limit for SCIM searches
	Disabling the SCIM REST API

	About the SCIM user store
	Defining the LDAP user store
	Defining the LDAP user store with create-initial-config
	Defining the LDAP user store manually

	Location management for load balancing
	Automatic backend LDAP server discovery
	Joining a PingAuthorize Server to an existing PingDirectory Server topology
	Joining a topology at setup
	Joining a topology with manage-topology

	Configuring a load-balancing algorithm with an LDAP external template
	Configuring automatic backend LDAP server discovery

	LDAP health checks
	Configuring a health check using dsconfig

	Connecting non-LDAP data stores

	About the Authorization Policy Decision APIs
	JSON PDP API request and response flow
	JSON PDP API request format
	JSON PDP API response format

	Authenticating to the JSON PDP API
	Creating a shared secret
	Deleting a shared secret
	Rotating shared secrets
	Customizing the shared secret header

	XACML-JSON PDP API request and response flow
	Requests
	Authorization
	Decision processing
	Responses
	Example

	Policy Editor configuration
	Specifying custom configuration with an options file
	Example: Configure policy configuration keys
	Key store configuration for policy information providers
	Example: Configure a trust store for a policy information provider
	Policy Editor configuration with runtime environment variables
	Example: Configure JWT claims
	Configuring the Policy Editor to publish policies to a deployment package store
	Configuring Policy Editor security headers

	Manage policy database credentials
	Setting database credentials at initial setup
	Changing database credentials
	Specifying database credentials when you start the GUI
	Docker: Setting the initial database credentials
	Docker: Changing database credentials

	Configuring SpEL Java classes for value processing
	Setting the request list length for Decision Visualizer
	HTTP caching

	Policy administration
	About the Trust Framework
	Create policies in a development environment
	Configuring external PDP mode
	Configuring external PDP mode using the administrative console
	Configuring external PDP mode using dsconfig

	Changing the active policy branch
	Default and example policies
	Importing and exporting policies
	Loading a policy snapshot
	Exporting a policy snapshot

	Publishing a deployment package to a deployment package store
	Exporting a deployment package

	Using the Deployment Manager
	Adding a filesystem deployment package store
	Adding a new filesystem deployment package store using the administrative console
	Adding a new filesystem deployment package store using dsconfig

	Adding an Amazon S3 deployment package store
	Adding an Amazon S3 deployment package store using the administrative console
	Adding an Amazon S3 deployment package store using dsconfig

	Adding an Azure deployment package store
	Adding an Azure deployment package store using the administrative console
	Adding an Azure deployment package store using dsconfig

	Use policies in a production environment
	Configuring embedded PDP mode with a deployment package store
	Configuring embedded PDP mode with an exported deployment package
	Example: Define policy configuration keys
	Example: Define a policy information provider key store for MTLS
	Example: Define a policy information provider trust store
	Example: Add SpEL Java classes to the allowed list
	Example: Add non-standard Java classes to the server classpath

	Policy database backups
	Restoring a policy database from a backup
	Restoring a database when not using Docker
	Restoring a database when using Docker

	Policy application management with signed deployment packages
	Example: Configure signed deployment packages for healthcare

	Environment-specific Trust Framework attributes
	Example
	Define the policy information provider in the Trust Framework
	Define policy configuration keys in a development environment
	Define policy configuration keys in a preproduction environment

	User profile availability in policies

	Access token validators
	Access token validator types
	PingFederate access token validator
	JWT access token validator
	Handling signed tokens
	Example: Use a locally configured trusted certificate
	Example: Use the issuer's JWKS endpoint

	Handling encrypted tokens

	Mock access token validator
	Third-party access token validator
	External API gateway access token validator

	Token resource lookup methods

	Server configuration
	Administration accounts
	About the dsconfig tool
	PingAuthorize administrative console
	About the configuration audit log
	About the config-diff tool
	Certificates
	Replacing the server certificate
	Preparing a new keystore with the replacement key pair
	Using an existing key pair
	Replacing the certificate associated with the original key pair

	Importing earlier trusted certificates into the new keystore
	Updating the server configuration to use the new certificate
	Replacing the key store and trust store files
	Retiring the previous certificate

	Listener certificates
	Replacing listener certificates

	X.509 certificates
	Certificate subject DNs
	Certificate key pairs
	Certificate extensions
	Certificate chains
	About representing certificates, private keys, and certificate signing requests

	Certificate trust
	Keystores and truststores
	Transport Layer Security (TLS)
	TLS handshakes
	Key agreement
	LDAP StartTLS extended operation

	About the manage-certificates tool
	Available manage-certificates subcommands
	Using manage-certificates as a simple certification authority
	Common manage-certificates arguments
	Listing the certificates in a keystore
	Generating self-signed certificates
	Generating certificate signing requests
	Importing signed and trusted certificates
	Exporting certificates

	Enabling TLS support during server setup
	Enabling TLS support after setup
	Configuring key and trust manager providers
	Configuring TLS connection handlers
	Updating the topology registry

	Troubleshooting TLS-related issues
	Log messages
	About manage-certificates check-certificate-usability
	ldapsearch for TLS-related arguments
	Using low-level TLS debugging

	Configure the Policy Decision Service
	User store configuration
	Configure access token validation
	Configure PingOne to use SSO for the administrative console
	Configure traffic through a load balancer
	Configuring traffic through a load balancer using dsconfig
	Configuring traffic through a load balancer using the administrative console

	PingAuthorize Server configuration with dsconfig
	Configuring the PingAuthorize user store
	Configuring the PingAuthorize OAuth subject search
	Configuring PingAuthorize logging

	Deployment automation and server profiles
	Variable substitution using manage-profile
	Layout of a server profile
	setup-arguments.txt
	dsconfig/
	server-root/
	server-sdk-extensions/
	variables-ignore.txt
	server-root/permissions.properties
	misc-files/

	About the manage-profile tool
	manage-profile generate-profile
	manage-profile setup
	manage-profile replace-profile

	Common manage-profile workflows
	Creating a server profile
	Installing a new environment
	Scaling up your environment
	Rolling out an update

	Server status
	Server availability
	User Store Availability gauge
	Endpoint Average Response Time (Milliseconds) gauge
	HTTP Processing (Percent) gauge
	Policy Decision Service Availability gauge
	Auto-healing for unavailable servers

	Available gauges
	Common server alarms
	Managing monitoring
	Profiling server performance using the Stats Logger
	Enabling the Stats Logger
	Configuring multiple Periodic Stats Loggers

	Logging HTTP performance statistics using the Periodic Stats Logger
	StatsD monitoring endpoint
	Sending metrics to Splunk

	Managing HTTP correlation IDs
	About HTTP correlation IDs
	Server SDK support

	Enabling or disabling correlation ID support
	Configuring the correlation ID response header
	How the server manages correlation IDs
	Example: HTTP correlation ID

	Command-line tools
	Saving command options in a file
	Creating a tools properties file
	Evaluation priority of command-line options

	Sample dsconfig batch files
	Running task-based tools

	Diagnostic and decision data
	Exporting policy data
	Enable detailed logging
	Policy Decision logger
	Debug Trace logger
	Debug logger

	About the Decision Response View
	Visualizing a policy decision response
	Capture debugging data with the collect-support-data tool

	About the layout of the PingAuthorize Server folders
	About the layout of the PingAuthorize Policy Editor folders

	PingAuthorize Policy Administration Guide
	Getting started
	Version control (Branch Manager)
	Creating a new top-level branch
	Creating a subbranch from a commit
	Importing a branch
	Deleting a branch
	Merging branches
	Reverting branch changes
	Committing changes
	Generating snapshots
	Partial snapshot export and merging
	Creating a partial snapshot export
	Merging a partial snapshot

	Creating a deployment package
	Deleting a deployment package

	Trust Framework
	Domains (Authorization Policy Decision APIs only)
	Services
	Resources
	Policy information providers
	Common settings
	HTTP services
	LDAP services
	Camel services

	Attributes
	Creating an attribute
	Attribute name, description, and location
	Resolvers
	Resolver types
	Conditional resolvers
	Value processing for a resolver

	Attribute caching
	Value processing for an attribute
	Value settings
	Attribute interpolation

	Actions
	Identity classifications and IdP support
	Identity properties
	Identity providers
	Identity classifications

	Named conditions
	Value processing
	Chained value processors
	Trust Framework testing
	Viewing Trust Framework entity dependencies

	Policy management
	Policy sets, policies, and rules
	Policies and policy sets
	Creating policies and policy sets
	Adding targets to a policy
	Conditional targets (applies when)
	Advice
	Provided advice
	Custom advice

	Properties
	Rules and combining algorithms
	Rule structure

	Policy testing

	Repeating policies and attributes
	Policy solutions
	Use case: Using consent to determine access to a resource
	Getting a path component from the request URL
	Getting the requestor identifier from the access token
	Searching for consent by resource owner to requestor
	Getting consent status from the consent record
	Creating a policy to check consent and then permit or deny access

	Use case: Using consent to change a response
	Creating a policy to check consent and then change the server response

	Use case: Using a SCIM resource type or a policy request action to control behavior
	Getting the SCIM resource type and the action being executed
	Creating a policy to permit or deny the creation of resources
	Creating a policy to control the set of actions for a specific resource
	Creating a policy to restrict the ability to delete based on resource type
	Creating a policy to dynamically modify a resource based on the SCIM resource type

	Restricting the modification of attributes
	Allowing attributes to be modified by administrators
	Adding attributes to an allow list

	Test Suite
	Advice types
	Add Filter
	Combine SCIM Search Authorizations
	Denied Reason
	Exclude Attributes
	Filter Response
	Include Attributes
	Modify Attributes
	Modify Headers
	Modify Query
	Modify SCIM Patch
	Regex Replace Attributes

	REST API documentation

