PingAuthorize

Ping

Identity.

PingAuthorize | Contents | ii

Contents

PINGAULNOTIZE. ... e e s 7
REIEASE NOTES.. .t e e e e e e aeees 7
PingAuthorize 9.1.0.5 (May 2024).......ccccciiiiieiie ettt e e e e e s e s s e e e e e e e e e s e e annnbrrannreeraeeeees 7
PingAuthorize 9.1.0.4 (NOVEMDBET 2023)......uuuiiiiiiieee e ieecie e e e e e e e e s s s e e e e e e e e s s s asnsrarrerreeeaeaeees 8
PingAuthorize 9.1.0.3 (AUGUSE 2023).........uuiiiiiiiiiieeee e e ieeriire e e e e e e e e s e s s e e e e aaeeeesssanrnrrarereraeaeees 8
PingAuthorize 9.1.0.2 (MArCh 2023)......cciiiieeeiiiiiiiiieie et e e e e e s s s e e e e e ae e e e s e s sssanbaeareeraaaeeesseannnnnnes 8
PingAuthorize 9.1.0.1 (DeCEMDBEI 2022).......uuuuiiiiieeeeeeieeicitiee et e e e e e e e e s s s re e e e e e e e e e s s s annrarrrrreeaaaaeees 8
PIiNGAULNONZE 9.1 (JUNE 2022).....cceiieeeee ittt ettt e e e e e e s e et e e e e e e s s s ss e e e e et eeaeeesassnnnsrnanneeeeeeeas 8
PingAuthorize 9.0.0.6 (AUGUSTE 2023)........c.cuuiiiiiiiiieieeeeiesieeirre e e e e ee e e e s e ss st erreeeeeeesssaannnnrrnrneereees 11
PingAuthorize 9.0.0.5 (APFil 2023).....cccciiii e r e e e e e e s e s s e e e e e e e e e e s e s annn s 11
PingAuthorize 9.0.0.4 (JANUATY 2023)......ccuiiieieeeiieiieiieiieieeeree e e e e s sssssstareeeeraaaeeesssssssssraraeeeraaaeeesanannns 11
PingAuthorize 9.0.0.2 (JUIY 2022)........uiiiiiiiiiiie et e e e e e e s e s er e e ea e e e s e s s s ssnraraaeeraaaaeeeseaanns 11
PingAuthorize 9.0.0.1 (FEbruary 2022)..........ccccccuiimiiiieiee e e e seeeciteeee e e e e e e e s s ssnrarareeeaaaeeeseesnnnnnnneees 11
PingAuthorize 9.0 (DeCeMBEr 2021).........coiiiiiiiiiiiie it e e r e e e e e e e e e e e e e ae e e e e e s s ennnreneeees 11
PrEVIOUS REIEASES........veiiiiiie ittt ettt sttt e st e e st e e n e e e nnre e e nene e e nneeenn 16
Introduction to PINQAULNOIIZE.........iiiiiii e 16
Getting started with PingAuthorize (tutorials).......cccooevvviiiiiiiiiiiiiiiinee, 17
USING thE TULOTIAIS. ...ttt e ettt e e e e st e e e e s et b b e e e e e aabbe e e e e s aabeeeeeeaaes 17
Setting UP YOUr @NVIFONIMENT......iiutiiiieiiiiie ettt e ettt e e st e e e et e e e s s ibr e e e e e snbeeeeeannees 18

Starting PINGAULINOIIZE.cooiiiiiii e 18

VErifyiNg PrOPEr STAITUD.....eeiiiiiiiiiie ittt sttt e s st e e e s nbb e e e s annneeas 19

ACCESSING the GUIS.... .ottt e e e s sbre e e e e 19

StoppiNg PINGAULNOTIZE.oiiiiie e e 20

About the tutorial CoONfIQUIALION.c.uuiiiiiii e 20

Tutorial 1: Importing default POLICIES.uviiiiiiii e 21
Introduction to the Trust Framework and default poliCies............coeviiiiiiiiiiii e, 24

Tutorial 2: Configuring fine-grained access control for an APL..........ccccciiiiiii e 26
Configuring a reverse proxy for the Meme Game APL.........cccoooiiiiiniiice e 28

TESHNG thE TEVEISE PIrOXY......veeiieiitiiiieeiitttiee e e sttt e e e ettt e e e ettt e e e s asbb e e e e e s bbb e e e e s abbeeeeesanbneeeesane 29

For further consideration: The PingAuthorize API security gateway, part L........cccccccovvvveeen. 30

Adding a policy for the Create Game enNdPOiNt..........c..eeeeiiiiiiiieiiiiiiee e 31

For further consideration: The PingAuthorize API security gateway, part 2..........cccccovevveeen. 32

Testing the policy from the POlICY EditOr...........cooiiiiiiiiiiiieeieee e 34

Testing the policy by making an HTTP reqUESL..........coocuiiiiiiiiiiiie e 37

For further consideration: DecCiSiON ViSUAISET...........cueiiiiiiiiiiieiiiieee e 38

Modifying the rule for the Create Game endpoint............oocvueiiieiiiiiiieieiiiiiee e 39

For further consideration: Resolvers and value proCeSSOrS..........cueuiiiiieeiiiiieieeiiiiiee e 43

Lo} o1 11153 o] o O URRRRRRR 43

Tutorial 3: Configuring attribute-based access control for APl reSOUrCes........ccccvvveeeeeeeeeeeiiiiciinnnee, 44
Configuring the APl SECUILY AEWAY..........ueiieiiiiiiiieiiieiie sttt 44

Creating a policy based on user credentials.............cooiiiiiiiiiiiiii e 47

Creating a policy based on the AP re@SPONSE..........uuiiiiiiiiiieeii e 52

Lo} o1 11153 o] o O PURRRRRR 58

Copyright ©2024

PingAuthorize | Contents | iii

Tutorial (optional): Creating SCIM POIICIES.uuuiiiiiiiieeii e 59
Tutorial: Creating the POLICY TrEE.......o i 60

Tutorial: Creating SCIM access tOKEN POIICIES.uuiiiiiiiiiiiiiiiiiie e 62

Tutorial: Creating a policy for role-based access CONtrol.............oooviiiiiiiiiiiiiiieee 74

EXAMPIE FIES..... et e e e e 77

[07e] 0T 11153 o] o TP PP PP PPPPPPPPR 77
Installing PINGAULNOTIZE.......ccooviii e 77
D oTo] (T a0 [T o] [0)Y] 0 1= o O PSP TUPPTRPPPPPIN 83
Deployment requirements when using DOCKET ... 83

Deploying PingAuthorize Server and Policy Editor using DOCKer.............cccccvvviiiiiiieieeeiinnne 84

Y= T 10 = VT] = = o T o RO UPRRRRPRR 88
Before you install ManUALY ... 88

Installing the server and the Policy Editor manually............cccoooiiiiiiniiiieii e 95

Signing on to the PINgAUthOrize POlICY EdItOr..........uviiiiiiiiieeeiiiiiee e 108
Changing the PingAuthorize Policy Editor authentication mode...........ccccccceveeeiiiiiiiciiiiennenn. 108

Configuring an OIDC provider for single sign-on requests from PingAuthorize.................... 110
Upgrading PINQAULNOTIZE........ccoovviii e 126
(@] Te] = To [T ot 0] g <o [=T = 110 g < SRR 127
Upgrade considerations introduced in PINGAULNONIZE 8.X......ccuvviiiiiiiiie e e e 128

Do o3 =T AU oo =T [T SRR 131
Upgrading PingAuthorize Server using DOCKET............uuuiiiiiiieeiiii e e e seeeeeeee e 131

Upgrading the PingAuthorize Policy Editor using DOCKET...........ccuvveviieeeeeeieiiiiiiieeeeee e, 132

Y= T 1U = V0o | =T =TSRSS 133
Upgrading PingAuthorize Server manually............ccuveiiiiiieeii e 133

VL= i o = L T U] o o - - PO 134

Upgrading the PingAuthorize Policy Editor manually.............ccccccviiiieiiieie e, 134

(0] (103 V2 (=1 F= 1 (= To U] oo | = Uo [PPSR 136
BaCKING UP POLICIES.iiiiiiieiii ettt e e s e s e e e e e e e e e s s e aeeeeaaaeeesesannnnrnneees 136

Upgrading the Trust Framework and poliCIES..........uvvvveiii i 136

Upgrading a PostgreSQL policy database...........ccooviiiiiiiiiiiiiiie e e e 137
Uninstalling PINQAULNOTIZE........cooeiiii e 138
PIiNgAUthorize INtegratioNS........cccuuuiiii e e 139
Kong API gateway INTEOIAtION.coiuuiiiieiiiiie ettt e e e e ee e e e e e 139
Preparing PingAuthorize for Kong Gateway integration...........c.ccueeeeiiiieeeeeiniieeeesiieeeee s 141

Setting UP KONG GAIEWAY.........uueiieiiiiiiieeiiiteie ettt ettt e s et e e s e abre e e e e eneeee 143
Troubleshooting the Kong Gateway integration.............cccueeeeiiiiiire i 148

MuleSoft APl gateWay INtEGratioN.eeieiiiiiiiee ettt e et e e e e e e e neees 151
Deploying the custom MuleSoft policy for PINGAULNONZE.............covviiiiiiiiiiiieiee e 152

Applying the custom MuleSoft policy for PINQAUtNONZE.........cccveiiiiiiiii e, 153
PingAuthorize Server Administration Guide...........ccccceeieeeiiiiiiineeeeeenn, 158
RUNNING PINGAUINOTIZE.eeeiiiiiee ettt e e e e e e e s r e e e e e e e e s s e et e aanaereeaaaeeens 159
Starting PINQAULNONZE SEIVEN..........oo ittt a e e e 159

Running PingAuthorize Server as a foreground ProCesS.........uuuiiieeeieiiiiiiiiiiieeeeeeeeessessennns 159

Starting PingAuthorize Server at boot time (UNiX/LINUX)........cuuveriiireeeeiiniiiiiiiieeeeeeeeee e 159

Starting PingAuthorize Server at boot time (WINAOWS).........ccoovviiiiiiiiiiiieeie e 160

Starting PingAUthorize PoliCY EQItOr.........uuiiiieeiiiiiiciiieece e e e 162

Copyright ©2024

PingAuthorize | Contents | iv

StoppPINg PINGAULNOIZE SEIVET.....eeiiiiiiiii et a e e e 165
Stopping PINgAUthorize POIICY EdITOr.......c..uuiiiiiiiiiiiee et 166
Restarting PINGAULNOIZE SEIVET......couii ittt a e e e e 166
ADbOUL the API SECUNLY GAIEWAY......coii ittt e e e e e et e e e e e e e e e e e s nbbbbe e e e eeeaaaeeas 166
API gateway request and reSPONSE flOW..........uuuiiiiiiiiiiii e 166
Gateway configuration DASICS.........cocuuiiiiiiii e 167
API security gateway auth@ntiCatioN...........c.cuieiiiiiiiiiiiiie e 168
API security gateway POIICY FEOUESES. ..ottt e e e e e e e e 169
API security gateway HTTP 1.1 SUPPOIT......uuuiiiiiiiaieaiiiiiiiiii ettt e e e e e e e e e e e e 175
Gateway ErTOr TEMPIALES.uuieiiiiiie ettt et e e e e e e s st bbb e e e e e e e e e e e e e aannnes 176
ADOUL the SIdERANT AP e e e 178
API gateWay INTEGIAtION.eieiiiiieei ettt e e e e e e e e e e e s e s abbb e e e eeaaaeeeeaaaanes 179
Sideband API configuration DASICS..........uuuiiiiiiiiiiii e 180
Authenticating to the Sideband APL...........o e 181
Authenticating AP| SEIVEIr MEQUESES.uuuiiiiiiiiiee ettt e e e e e e e e e e anbeeeeees 183
Sideband API POIICY FEOUESES.t e e eee s 183
Request context CONfIQUIALION.........cooi ittt e e e e e e e eneees 189
Sideband access token Validation..............cooiiieiiiiiiie e 190
Sideband error TEMPIALES. e et a e e 191
ADOUL T SCIM SEIVICE.eeiiiiiitiiie ettt e e et e e s s e e e e an e e e s e e e e e e annes 192
SCIM API request and reSpoNSe flOW...........ueiiiiiiiiiiiiie e 192
SCIM configuIation DASICS.uuueiiiiiiiiee e e e e e e e e e 193
SCIM EBNAPOINTS. ...ttt e e e e e e bbb bttt e e e e e e e s e s sa bbb be e e e e e e e aaeeesaaannrbbbeeeeeeas 196
SCIM AUINENTICALION.eeiiiiiiii it e e s 197
SCIM POHCY FEOUESES. ...ttt ettt e e e e e e e e e e bbb e e e e e e e e e e e e s e e aannbaneees 197
Lookthrough limit for SCIM SEarChES..........coouuiiiiiiiiiiiee e 207
Disabling the SCIM REST APL.....ooiiiiiiiiiii et e e 207
ADOUL the SCIM USEI STOIE....ciiiiiie ittt e s e e s e e e s e e e e e nnes 208
DefiniNg the LDAP USEI SEOME....cciiii ittt ettt et e e e e e e s s e e e e e e e aeaeeeeaannaes 210
Location management for load balanCing..........cc..uuuiiiiiiiiiiii e 213
Automatic backend LDAP SErver diSCOVEIY........coicuuuiiiiiieiiaaae ettt 213
LDAP NEAIN CHECKS.....ciiiiiiiieee ittt e e e s e e e 218
Connecting NON-LDAP dat@ SIOFES.......ccoiiiiiiiiiiiiiiiit ettt e e e e e e e 221
About the Authorization Policy DECISION APIS.......cooiiiiiiiiiiieeeee e 222
JSON PDP API request and reSponse flOW.........ocuuiiiiiiiiiiieii e 222
Authenticating to the JSON PDP APL.........uuiiiiiiiii et 227
XACML-JSON PDP API request and response flOW..........cccuuuiiiiiiiiiiiiiiiieeeeeee e 228
Policy EAItOr CONTIGUIALION.uuueiiiiiieee ettt ettt e e e e e e et e e e e e e e e e e e e aannbabeeeeeeas 238
Specifying custom configuration with an options file..........cccccriiiiiiiii e, 238
Manage policy database Credentials...............eeieiiiiiiiiiii e 250
Configuring SpEL Java classes for value proCeSSINg.........coocuurriiiiiieiieeieeiiiiieieieee e 255
Setting the request list length for Decision ViSUaliZer...........cccccoviiiiiiiiiiiiii e 256
HT TP CACNING .« ittt e e e e e e s ettt e et e e e e e e e e e e ennbeeneees 257
o] (103 VA= To [0 11 a1 IS3 £ £= 4[] o O T PP TT P TR PTPPP 258
ADOUL the TTUSE FramMEWOTK......coiiieiiiiiiiieiie it e e e e e 258
Create policies in a development eNVIFONMENT..........cooiiiiiiiiiiiiiiiiee e 260
Using the Deployment ManAgET............uuuiiiiiiiiiaeai ittt e e e e e e e e s aaebeeeees 267
Use policies in a production @NVIFONMENT..........ooiiiiiiiiiiiiieeee e ee e 273
Policy database DaCKUPS.........ooo e 277
Restoring a policy database from a backup..........c..eeeiiiiiiiiiii e 278
Policy application management with signed deployment packages..........ccccccceeeeiiiiniinnnnnee. 280
Environment-specific Trust Framework attribUutes. ..., 283
User profile availability in PONCIES.ouii i 288
ACCESS tOKEN VAIIAALIOIS.eeiiiiiieiiie et e e e e e s e e e e nnee 290
Access toKken Validator TYPES......cooi i 292
Token resource 100KUP MELNOMS.ooiiiiiiiiiei e e 299

Copyright ©2024

PingAuthorize | Contents | v

SEIVEI CONTIGUIATION.eeiiiiiie ettt e e e e e e s ettt e e et e e e e e e s e e aanbbbbeeeeeeaaaaeeeaaaannns 300
AdMINISTIAtION BCCOUNTS......eiiiiiiiiiiee ittt e s e e e e e s e e e e enees 300
About the dSCONFIG TOOL..........uiiiiiiiiiiee e e e e e 301
PingAuthorize adminiStrative CONSOIE...........eiiiii i 302
About the configuration QuUAit 10Q...........eueiiiiiiiiiii e 302
About the config-aiff tO0L........ooi i e 302
(02T 1] o= 1 =2 J OO PSP PPPRRPO 303
Configure the Policy DECISION SEIVICE..........uuuiiiiiiiiieiiii ittt 354
USEr StOre CONTIGUIALION.uueiiiiiiie ettt e e e e e e e et e e e e e e e e e e e e aannnees 354
Configure access token Validation..............cceiiiiiiiiiiiii e 355
Configure PingOne to use SSO for the administrative console.............cccccceieiiniiiiiiiiiinnen. 355
Configure traffic through a load balancCer................eooi e 357
PingAuthorize Server configuration with dsconfig...........cccuueiiiiiiii s 358

Deployment automation and Server Profiles........ .. 361
Variable substitution using Manage-profile............ e 362
Layout of @ Server Profile........eeeeee s 363
About the manage-profile tOO0L..............uuiiiiiiii e 365
Common manage-profile WOrKflOWS.oooiiiiiiii e 366

SEIVEE SLALUS......ciiiititte ettt r e e e e e e s s e e r e e e e e e e e e e e e 370

SEIVEr QVAIIADIITY......eeeeeiiiee et e e e e e e e e e e e e e e 371
User Store Availability Qauge........oooiueiiiiiieie e 371
Endpoint Average Response Time (Milliseconds) gauge............eeevveeeeiiiiiiiiiiiiiieiieeeee e 372
HTTP Processing (PEercent) QAUGE.........uuuuueeiiiieaaaieiaiiitieiieeee e e e e e e e e s e e e e e e ae e e e s e aaaneeeeees 373
Policy Decision Service Availability gauge..........cccuuiiiiiiiiiiii e 374
Auto-healing for unavailable SErVers........... 375

AVAIIADIE QAUGES. ...ttt ettt et e e e e e e o bbb ettt et e e e e e e e e e e e aba b b e rr e e e e e aeeeeaeaannae 375

COMMON SEIVET BIBIMNIS. ..ceii ittt ettt et e e s et e e st e e s s et e e s s nn e e e e s annre e e s 379

[\ F=Tat= o I aTe I s aTe] a1 (o] {1 o T PP PTTTT TR TOPPPP 381
Profiling server performance using the StatS LOgQer.........coouiiiiiiiiiiiiiieeeeee e 381
Logging HTTP performance statistics using the Periodic Stats Logger.........cccccccveveeeinnnnne 383
StatsD MOoNitoriNg @NAPOINT........coiiii it e e e e e e e e e e e e e s e e aannees 383
Sending MEtricS 0 SPIUNK.........uuiiii e 384

Managing HTTP COITEIAtION IDS........ciiiiiiiiiiiiie ettt e e e e e e e e e e e e e e s aannaees 385
ADOUL HTTP COITEIAtION IDS.....ciiiiiiiiiii ettt 385
Enabling or disabling correlation 1D SUPPOIT..........uuuiiiiiiiieaiiiiiiiiiiiie e 386
Configuring the correlation ID response header..............ccoiiiiiiiiiiiiiii e 386
How the server manages COorrelation IDS..........oooiiiiiiiiiiiiiiie e 386

ComMMANT-IINE TOOIS.eeiiiiieee e e s e e e s n e e s e e e e e s an e e e e e nnes 388
Saving command OptioNS N @ fil€.........uuiiiiiiiii e 393
Sample dsconfig DatCh filES.........ueii e 395
RUNNING taSK-DASEA TO0IS.......uuiiiiiiiiiei i e e e 395

Diagnostic and AECISION TALA........uuuiiiiiiiieieiii ittt e e e e e e s e bbb e e e e e e e e e e e e s e s annneees 397
EXPOrting POLICY ALA.eeeeiiiieiiiiiie et e e e e e e e e e eeeeas 397
Enable detailed 10gging. ... et 397
About the DeciSIoN RESPONSE VIBW.....ccoiiiiiiiiiiiiiieee ettt e e e e e e e e e 399
Visualizing a policy deCiSION FESPONSE......ccuiiiiiiiiitiite ettt et e e e e 400
Capture debugging data with the collect-support-data tool.............ooociiiiiiiiiii, 402

About the layout of the PingAuthorize Server folders........ ... 402

About the layout of the PingAuthorize Policy Editor folders..........ccccoviiiiiiiiiiiiieeieee, 403

PingAuthorize Policy Administration Guide...........cccceeeveivviiiiiiieeeeeennn, 404

[CT= 11 o TS =4 1= o PRSPPI 404

Version control (BranCh MaNAGET)..........uuuiiiiiiiiiieeee ettt e e e e e e s e e e e e e e e e s s e aannbereeeeeeeeens 405
Creating a new top-1evel BranCh...........ocuuiiiii e 405
Creating a subbranch from a COMMIL..........occuiiiiiiiiiii e 406

Copyright ©2024

PingAuthorize | Contents | vi

IMPOITING @ DIANCRL....eiii et e e e 406
Deleting @ DIranCh..........oo e 407
MErgiNg DraNCRES.t e e e e e 407
Reverting branCh Changes............ue e 408
COMMITEING CRANGES. ... ittt e ettt e e e e e e e e e s bbb b e e e e aaaeeeaa s 408
GENEratiNg SNAPSNOTS.cci ittt e e e et e e e e e e e e e e s s bbb e e e eeeaaaeeas 409
Partial snapshot export and MErgING........cccuuuuiiiiiiiiie e e e e e e 409
Creating a deployment PACKAGE.oocuuiiiiiiiiiie ettt 410
Deleting a deployment PACKAGE.ccuia ittt 411
TRUSE FTAMEWOIK.......eieeeeeit ettt e et e e e s s e e e e e aa bt e e e s s r e e e e e e annre e e e e annnes 411
Domains (Authorization Policy Decision APIS ONlY)...........uiiiiiiiiiiiiieieee e 411
L= Yot PP PPPPPP PP 411
ATHDULES. ... e e et e e e 417
o1 110] L PSP PPPPRPPON 426
Identity classifications and IdP SUPPOIt............uuiiiiiiiiiiiiii e 426
NAMEA CONAITIONS.eeiiiiiiiiiee ettt e e st r e e s st e e e e s snr e e e e e sanrreeeenaans 427
V2= 1D o] oot SIS1ST [o o [TP PTPP PPN 427
Chained ValUE PrOCESSOIS......ccoiiiiiiiitte ettt e e e e e e e e e e e e e e e e aananbeeseees 431
Trust FrameWOrk tESTING.ooi ittt e e e e e e e e e e s e anab e aeeeeeeas 431
Viewing Trust Framework entity dependenCi€S..........coouiuuiiiiiiiiiiieeeee e 432
POlICY MANAGEMENT.. ... it e ettt e e e e e e e e e s e b et b e b e e e e e e e e e e e aeaannnbabbeeeeeas 433
Policy sets, POlICIES, AN TUIES........ooii i 434
POlICIES ANd POIICY SIS ...ttt e e e e e e et e e e e e e e e e e e e aaaes 434
o] 103V (=251 (] T PSP PUUTPPURN 444
Repeating policies and attribDULES.ueiiiiiiiiii e a s 446
(o] (103 VAR=To] (V11 o] o F=J PP PP TP RPPPPPPPPPP 448
Use case: Using consent to determine acCess 10 @ MESOUICE.......uuuuieiieeeeeeiariiiiiiieeeeeeaaaenns 448
Use case: Using consent t0 Change a reSPONSE........cooiiiiiiiiiiiiiiiiiee e 463
Use case: Using a SCIM resource type or a policy request action to control behavior........ 471
Restricting the modification of attribULES...........oooiiiiiiiii e 487
TEST SUITE. ..ttt ettt ettt e ekt e e e ottt e e s saE et e e et b b e e e e e e s b e e e e e e s anEa e e e e s e b re e e e e s nnrneee e e 489
F o AV (od I Y o1 T PP U PP PPPPPPPRRN 492
e (o I =T PP PPPPPPR P 492
Combine SCIM Search AUhOMZALIONS...........oooiiiiiiiiie e 492
DENIEA REASON.....ciiitiiiee ettt e e e e s e b e e e e s sar e e e e s anre e e e e s anreeeeenn 493
EXCIUAE ATIDULES.eii ittt e e e e e 493
FILEI RESPONSE. ...ttt ettt e e e e e e s e s st b e e e e e e e e e e e e e e e annnanes 494
INClude ATHHDULES.o e e e 495
MOIfY ALLFDULES. ...ttt e e et e e e e e e e e e e e e eanebbeeeeeas 496
YT o 11V o L= To [T £SO TPOOPPPPPTPPPPTO 496
Y[o 11 YA @ 1 1= YOO PP TP U PP PURTPPPPP 497
MOy SCIM PAICH......eeiiiiiiiiie et e e e s b e e s nrrr e e e e 497
Regex Replace AMIDULES.ooi et e e e 499
REST API AOCUMENTATION.ciuttiiieeiiiieite sttt ettt e e e s e e s e e e e s anr e e e e e ennnes 500

Copyright ©2024

PingAuthorize

PingAuthorize | PingAuthorize | 7

PingAuthorize software provides fine-grained, attribute-based access control and dynamic authorization
management, enabling you to protect resources and filter data for databases, applications, and APIs.

=]
Release Notes

= Current

I;:? Get Started with PingAuthorize
= Introduction to PingAuthorize on page
16
= Installing PingAuthorize on page 77

@ Use PingAuthorize

= Use cases
= Server admin guide
= Policy admin guide

Troubleshoot PingAuthorize

= Enable detailed logging on page 397
= Capture debugging data
= Monitor server availability

-‘ 0
Learn More

= API reference guide

= PingAuthorize Server Docker image

= PingAuthorize Policy Editor Docker image
= PingAuthorize Community

Release Notes

Uninstalling PingAuthorize on page 138
PingAuthorize Tutorials

Policy development and promotion
API gateway integrations

Troubleshoot TLS-related issues
Configure LDAP health checks
Visualize a policy decision response

Ping Identity Support Portal
PingAuthorize customer training (existing
customers only)

Partner Portal (partners)

New features and improvements in PingAuthorize. Updated May 31, 2024.

PingAuthorize 9.1.0.5 (May 2024)

Fixed SCIM case-sensitivity error

PAZ-8473 Fixed

We fixed an issue where requests to create SCIM entries were not always observing the case-
exact=false property, leading to incorrect case-sensitivity errors. Now, requests featuring this property

will not be case-sensitive.

Fixed a NullPointerException caused by an unconfigured alert handler

Copyright ©2024

DS-47455 Fixed

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/
https://hub.docker.com/r/pingidentity/pingauthorize
https://hub.docker.com/r/pingidentity/pingauthorizepap
https://support.pingidentity.com/s/topic/0TO1W000000dcxNWAQ/pingauthorize
https://support.pingidentity.com/s/
https://education.pingidentity.com/learn/course/1143/introduction-to-pingauthorize-90?generated_by=13429&hash=d85bf6092a769d1b6671371d7fc89fa5b55dfd3b
https://education.pingidentity.com/learn/course/1143/introduction-to-pingauthorize-90?generated_by=13429&hash=d85bf6092a769d1b6671371d7fc89fa5b55dfd3b
https://www.pingidentity.com/en/account/sign-on.html?retURL=/bin/pic/sso/community?retURL=/PartnerPortal/s/

PingAuthorize | Release Notes | 8

We fixed an issue where a NullPointerException was thrown when an alert or alarm was raised, and
one or more of the alert handlers were not configured. This most commonly happened when the server
was being stopped.

Now, instead of throwing a NullPointerException, the server logs this message: Alert
notification '<notification>' will not be processed by alert handler '<alert
handler>' since that alert handler does not have configuration

PingAuthorize 9.1.0.4 (November 2023)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1.0.3 (August 2023)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1.0.2 (March 2023)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1.0.1 (December 2022)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.1 (June 2022)

Updated commons-codec to address a security issue DS-45898 Security
Updated the commons-codec library to version 1.13 to address a security issue.

Updated Jackson Databind to address a security vulnerability DS-45806 Security
Updated Jackson Databind to 2.13.3 to address the CVE-2020-36518 security vulnerability.

Updated Google Guava to address a security vulnerability DS-45903 Security
Updated the Google Guava dependency in common libraries to address the CVE-2020-8908 security
vulnerability.

Added conditional effects for policy rules New

Rules now include conditional effects, allowing policy builders to write one rule with two possible effects.
The effect produced depends on whether the effect condition evaluates to true or false.

Copyright ©2024

https://nvd.nist.gov/vuln/detail/CVE-2020-36518
https://nvd.nist.gov/vuln/detail/cve-2020-8908

PingAuthorize | Release Notes | 9

E m Permit when using Mobile Banking App

- Effect

Effect

Permit if condition holds, otherwise deny -

- Wh
en Permit

ALL ANY Deny

| R

E M Deny if condition holds, otherwise permit

| + Comparison I | + Named Condition I | + Group |

Show "Appliesto” Show Advice and Obligations Show Properties

Note:

Previous rule conditions are now set as targeting conditions in the Applies To section.

Added the ability to configure attribute logging for the Policy Decision Service New
Added the option to configure logging for Trust Framework attributes. The Policy Decision Service logs

the designated attributes when they are evaluated as part of a request. This option is only available in
embedded mode.

Added the ability to sanitize error logging to protect sensitive data New
Added the ability to sanitize error log messages as they are generated. This can help prevent sensitive
information from being leaked through log messages, although the resulting log messages can potentially
be less useful for troubleshooting purposes. See Log Sanitization for more information.

Updated the administrative console browser support Info
The administrative console now supports Microsoft Edge. Administrative console support for Microsoft
Internet Explorer 11 has been deprecated.

Deprecated Apache Camel for PIP connections Info
Using Apache Camel to connect policy information points (PIPs) to PingAuthorize has been deprecated,
and the feature will be removed in a future release of the product. We recommend using HTTP services
instead, where applicable.

Made it easier to present a custom SSL certificate to the Policy Editor Improved
We added a new environment variable named KEYSTORE_PIN FILE to the Policy Editor setup and
start-server tools. This variable takes precedence over PING_KEYSTORE PASSWORD when validating
and presenting the server certificate.

Improved Ul performance in the Policy Editor Improved
The Policy Editor now supports APl HTTP caching, which is enabled by default to improve Ul performance.
Disable this feature and restore the legacy behavior by providing the --disableApiHttpCache option

to the setup tool. Alternatively, set the environment variable PING_ENABLE_API_HTTP_CACHE to false
when running start-server to disable it for a particular server runtime instance.

Added a command-line configuration tool for PingAuthorize Docker containers Improved
Added a docker-pre-start-config command-line tool for PingAuthorize Docker containers. Use the
tool before the server is started to make configuration changes to the server that depend on the running
container's environment.

Added and updated PingAuthorize Server profile command-line tools Improved

Added a --skipValidation argument for the manage-profile replace-profile command. This
argument allows skipping the final server validation step when running on an offline server.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=pd-latest&context=pd_ds_log_sanitization

PingAuthorize | Release Notes | 10

Added an --excludeSetupArguments argument for the manage-profile generate-
profile command. This argument allows generating a server profile that does not include a setup-
arguments. txt file.

Updated the setup and replace-profile subcommands to fail when a server profile includes an
encryption-settings-db file in the profile's server-root/pre-setup/ directory.

Enhanced advice logging Improved
During advice processing, the File Based Error Log Publisher publishes additional helpful messages to the
configured output file.

Removed the OIDC offline_access scope requirement for the Policy Editor PAZ-3061 Fixed
The Policy Editor no longer requires the offline access scope when configured in OpenlD Connect
mode using the Authorization Code with PKCE grant type.

Fixed the Policy Editor issue rejecting bearer tokens with array-type aud claims PAZ-1088 Fixed
Fixed an issue that prevented the Policy Editor REST APIs from accepting a bearer token when the aud
claim was an array of strings.

Enabled the Policy Editor to decode JWTs with underscores PAZ-4325 Fixed
The Policy Editor is now able to decode JWTs that contain underscore characters.

Enhanced HTTP performance PAZ-3238, PAZ-2291 Fixed
This release includes general HTTP performance improvements and bug fixes.

Fixed alert consistency for cleared alarms DS-45578 Fixed

Fixed issues where gauges could raise an alarm and create an alert, but not create an alert when that

same alarm was later cleared, making it unclear when the reported condition had abated.

Updated the API gateway behavior for handling trailing zeros PAZ-2705 Fixed
When operating as an API gateway, PingAuthorize will no longer remove trailing zeros from numbers in
non-SCIM response bodies and advice payloads.

Fixed the Policy Editor Ul tab switching error PAZ-2110 Fixed
Fixed an issue where the Policy Editor threw an error when rapidly switching between Trust Framework
tabs under slow network conditions.

Fixed the Policy Editor error that occurs when updating entities concurrently PAZ-3667 Fixed

Fixed an issue where concurrent updates to the same entities in the Policy Editor could sometimes
produce an error.

Fixed an issue resolving JSONPath expressions that contain the keys () function PAZ-4501 Fixed
Fixed an issue where calling keys () in a JSONPath expression did not return the object’s keys.

Fixed the PIN retrieval issues with third-party passphrase providers DS-45336 Fixed
Fixed issues that prevented obtaining key and trust store PINs with the Amazon Secrets Manager,
CyberArk Conjur, and HashiCorp Vault passphrase providers.

Fixed erroneous certificate expiration warnings DS-41468 Fixed
Fixed an issue that prevented the server from refreshing the monitor data used to detect and warn about

an upcoming certificate expiration. This could cause the server to continue to warn about an expiring
certificate even after that certificate had been replaced.

Fixed the PingAuthorize name and version in collect-support-data DS-45280 Fixed
The collect-support-data (CSD) tool now correctly displays the name and version of PingAuthorize.
Updated the incorrect version information for collect-support-data DS-44481 Fixed
The status tool now shows the current collect-support-data version.

Updated to LDAP SDK version 6.0.5 DS-45746 Fixed
Updated to LDAP SDK for Java version 6.0.5 for bug fixes and new functionality.

Recovering from a failed setup on Windows DS-45941 Issue

The setup command might fail on Windows operating systems due to the presence of Bouncy Castle JAR
files that begin with bc in the 1ib directory. The JAR files are mentioned in an error message similar to the
following:

An unexpected error occurred while attempting to copy the non-FIPS Bouncy
Castle jar file into the server's classpath:

FileSystemException:

lib\bcprov-jdkl5tol8-1.71.jar:

Copyright ©2024

PingAuthorize | Release Notes | 11

The process cannot access the file because it is being used by another
process.

A temporary workaround is to delete the JAR files that begin with bc from the 1ib directory before
attempting to run setup again.

PingAuthorize 9.0.0.6 (August 2023)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.0.0.5 (April 2023)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.0.0.4 (January 2023)

Fixed erroneous certificate expiration warnings DS-41468 Fixed
Fixed an issue that prevented the server from refreshing the monitor data used to detect and warn about

an upcoming certificate expiration. This could cause the server to continue to warn about an expiring
certificate even after that certificate had been replaced.

PingAuthorize 9.0.0.2 (July 2022)

Updated to LDAP SDK version 6.0.5 DS-45746 Fixed
Updated to LDAP SDK for Java version 6.0.5 for bug fixes and new functionality.
Fixed an incorrect SCIM POST error response DS-45647 Fixed

Fixed an issue where SCIM POST requests that violated a unique attribute constraint received an internal
error instead of the expected SCIM error response.

Fixed an incorrect SCIM POST error code DS-45863 Fixed
Fixed an issue where SCIM POST requests that violated a unique attribute constraint received an error
response with status 400 Bad Request instead of 409 Conflict.

Fixed the PingAuthorize name and version in collect-support-data DS-45280 Fixed
The collect-support-data (CSD) tool now correctly displays the name and version of PingAuthorize.

PingAuthorize 9.0.0.1 (February 2022)

Version incremented for administrative purposes Info
The PingAuthorize version number was incremented due to changes released for PingDirectory. There are
no release notes for this version of PingAuthorize.

PingAuthorize 9.0 (December 2021)

Added support for policy deployment from Microsoft Azure blob storage New
The PingAuthorize Server can now consume deployment packages published to Microsoft Azure blob
storage. This enables policy writers to deploy new policies to a central Azure deployment package store
read by the PingAuthorize Server running in embedded mode. For more information, see Adding an Azure

Copyright ©2024

PingAuthorize | Release Notes | 12

deployment package store on page 271, Configuring the Policy Editor to publish policies to a deployment
package store on page 248, and Using the Deployment Manager on page 267.

Enabled configuration of the SpEL allow list in PDP mode New
Now you can configure the SpEL allow list when the Policy Decision Service is running in embedded policy
decision point (PDP) mode. An out-of-the-box PingAuthorize installation adds the following classes to

the default allow list: String, Date, Random, UUID, Integer, Long, Double, Byte, Math, Boolean
LocalDate, DayOfWeek, Instant, ChronoUnit, and SimpleDateFormat. When configuring a policy
deployment package containing SpEL expressions that reference additional Java classes, administrators
must use dsconfig or the administrative console to add spel-allowlisted-class attributes to the Policy
Decision Service. The class must also be available on the server classpath at server start. For non-
standard Java classes, place the . jar file in the server 11ib folder.

Expanded Policy Editor database support to include PostgreSQL New
The PingAuthorize Policy Editor can now persist its policies, Trust Framework, and versioning data in a
PostgreSQL policy database instead of the default H2 file-based database. To initialize the database,

use the instructions at https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresqgl. To
configure the Policy Editor for PostgreSQL, use the following setup options:

= —-dbConnectionString

= The JDBC connection string (for example, "jdbc:postgresgl://localhost:5432/
policy db")
» —-dbAppUsername

= The PostgreSQL user
= —-dbAppPassword

= The user's password

Added support for the MuleSoft APl Gateway in a sideband architecture New
Now you can deploy PingAuthorize in a sideband configuration with the MuleSoft APl Gateway. With a
sideband deployment, your organization can quickly set up an environment for fine-grained, dynamic
authorization that integrates with existing identity management infrastructure and requires minimal changes
to your network configuration. For more information about our custom MuleSoft policy, see MuleSoft API
gateway integration on page 151.

OpenlID Connect (OIDC) Authorization Code with Proof Key for Code Exchange (PKCE) New
Policy Editor setup in OpenlID Connect (OIDC) authentication mode now uses the Authorization Code

with Proof Key for Code Exchange (PKCE) grant type by default, instead of the implicit grant type.

For information about configuring the Policy Editor in OIDC authentication mode, see Installing the
PingAuthorize Policy Editor noninteractively on page 102.

Upgrading from early access to general availability Info
If you are upgrading from PingAuthorize 9.0.0.0 Early Access to 9.0.0.0 General Availability, you

must upgrade both the PingAuthorize Server and the Policy Editor before you use the Policy Decision
Service in external mode. Upgrading only one component results in this error: Please upgrade to
PingAuthorize Policy Editor version '9.0.0.0°".

Server profiles replace peer setup Info
Peer server setup and clustered configuration have been removed from setup. To manage server
configuration, use server profiles instead of peer setup. Server profiles support deployment best practices
such as automation and Infrastructure-as-Code (laC). For more information about server profiles, see
Deployment automation and server profiles on page 361.

Upgrading from earlier versions of PingAuthorize Info

For more considerations, see Upgrade considerations on page 127.

Added support for password storage schemes Improved
Added support for password storage schemes that allow users to authenticate with passwords stored in

the Amazon AWS Secrets Manager service, the Microsoft Azure Key Vault service, a CyberArk Conjur
instance, or a HashiCorp Vault instance.

Added redaction capability for dsconfig Improved

Copyright ©2024

https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql

PingAuthorize | Release Notes | 13

Added a global configuration property that can be used to indicate that the values of sensitive configuration
properties should be redacted when constructing the dsconfig representation for a configuration change,
given that these values might be included in the server's configuration audit log or administrative alerts
whenever a configuration change is applied. By default, the values of configuration properties that are
defined as sensitive get obscured rather than redacted, which allows the change to be replayed without
revealing the actual value of the property. However, it is now possible to redact such values rather than
obscuring them, which provides stronger protection against exposing those values but might interfere with
the ability to replay the configuration audit log if it contains changes involving sensitive properties.

Mirrored configuration change logging Improved
Updated the server to record the original requester's DN and IP address in access log and configuration
audit log messages for mirrored configuration changes.

Added support for obtaining secrets from CyberArk Conjur Improved
The Conjur cipher stream provider can use a retrieved secret to generate the encryption key used to

protect the contents of the encryption settings database. The Conjur passphrase provider can be used in
other cases where the server might need a clear-text secret, including PINs for accessing certificate key
stores or credentials for authenticating to external services. The server can authenticate to Conjur with a
username and password or an API key.

Added support for obtaining secrets from Azure Key Vault Improved
The Azure Key Vault cipher stream provider can use a retrieved secret to generate the encryption key

used to protect the contents of the encryption settings database. The Azure Key Vault passphrase provider
can be used in other cases where the server might need a clear-text secret, including PINs for accessing
certificate key stores or credentials for authenticating to external services.

Added a PKCS #11 cipher stream provider Improved
Added a PKCS #11 cipher stream provider that can require access to a certificate in a PKCS #11 token

to unlock the server's encryption settings database. Only certificates with RSA key pairs can be used
because JVMs do not currently provide adequate key wrapping support for elliptic curve key pairs.

Runtime server problem-status handling Improved
When the Policy Decision Service is unable to handle requests due to misconfiguration or problems with

the runtime environment, the PingAuthorize Server status is now DEGRADED instead of UNAVAILABLE.
Orchestration systems like Kubernetes now remove such servers from pools instead of restarting them,
allowing server administrators to investigate and correct the issue.

Added administrative console PIN support Improved
The administrative console can now be configured to supply PINS to its trust stores through the oidc-
trust-store-pin-passphrase-provider and trust-store-pin-passphrase-provider
settings. This means trust store types that require passphrases (for example, PKCS12 or BCFKS) are now
properly supported.

Administrative console file retrieval with SSO Improved
The administrative console can now retrieve files created from collect-support-data Or server-
profile tasks when using single sign-on (SSO) to authenticate with the managed server.

Added file servlet support for OIDC and OAuth 2.0 Improved
Updated the file servlet to add support for token-based authentication using an OAuth 2.0 access token or
an OpenlD Connect ID token. The servlet previously only supported basic authentication.
manage-profile generate-profile argument validation Improved
Improved includePath argument validation performed by the manage-profile generate-profile
tool. The tool will only use relative paths that exist below the server root, and it previously silently ignored
absolute paths or relative paths that referenced files outside of the server root. It will now exit with an error

if the includePath argument is used to provide an absolute path or a path outside the server root. It will
accept—but warn about—paths that reference files that do not exist.

Expanded 1dap-diff capabilities Improved
Made several improvements to the 1dap-di£ff tool:

= Added the ability to perform a byte-for-byte comparison of attribute values rather than using schema-
based logical equivalence.

= Added the ability to use a properties file to obtain default values for command-line arguments.
= Improved the ability to use different TLS-related settings for the source and target servers.
= Improved support for SASL authentication.

Copyright ©2024

PingAuthorize | Release Notes | 14

Added TLS protocol configuration to the crypto manager Improved
Updated the crypto manager configuration to add properties for controlling the set of TLS protocols and
cipher suites that will be used for outbound connections, as well as properties for controlling whether to
enable TLS cipher suites that rely on the SHA-1 digest algorithm or the RSA key exchange algorithm.

Added JDK support Improved
Added support for the use of JDKs obtained through Eclipse Foundation and BellSoft.
Added certificate management support Improved

Added support for new extended operations that can be used to help manage the server's listener and
inter-server certificates. Updated the replace-certificate tool to add support for replacing and
purging certificates in a remote instance, and to allow skipping validation for the new certificate chain.
Secret key loss when removing a server from the topology DS-44591 Fixed

Fixed an issue introduced in version 7.0.0.0 where secret keys under cn=Topology, cn=config could
be lost when removing a server from the topology. When a server is removed via the dsreplication
disable or remove-defunct-server tools, its secret keys will now be distributed among the remaining
members of the topology. The keys from the rest of the topology will also be copied to the server being
removed.

The cipher secret keys in the topology that are affected by this change are used by reversible password
storage schemes (except for AES256, which uses the encryption settings database). If you are using a
reversible password storage scheme other than AES256, prior to this fix, you could lose access to keys
that had been used for reversible password encryption when removing servers from the topology.

Note:

Since this change only applies to the most recent version of remove-defunct-server and
dsreplication disable, if you are removing a server from a multi-version topology, you should run
that tool from the most recent version. In the past, dsreplication disable and remove-defunct-
server could only be run from an older version. Now, when removing a server from the topology, they
should be run from the most recent version in the topology. If you run the tool from an older server, it
will not include this fix, and you might lose access to secret keys from servers that are removed from the

topology.

Shutting down PingAuthorize Server with an invalid package store DS-44770 Fixed
An invalid deployment package store no longer prevents the PingAuthorize Server from shutting down.
remove-defunct-server attribute removal DS-44793 Fixed

Fixed an issue in which remove-defunct-server would remove attributes from config.1dif if they
were identical apart from case.

Policy Editor batch scripts refer to non-existent Java files DS-45105 Fixed
The PingAuthorize Policy Editor start-server.bat and stop-server .bat scripts no longer output
messages referring to non-existent java.properties or dsjavaproperties files.

JVM segmentation faults during start-server DS-45124 Fixed
Removed -Xx:RefDiscoveryPolicy=1 from the default start-server Java arguments. In rare
cases, this argument was related to segmentation faults in the Java virtual machine, especially when used
with the G1 garbage collector.

Configuration keys and values in the Policy Editor Test Suite PAZ-1481 Fixed
The Policy Editor now uses policy configuration keys and values correctly in Test Suite tests. For details
about configuring policy configuration keys, see Environment-specific Trust Framework attributes on page
283.

OlIDGuthenticationndhdPolicyEditofoPingOnaiserswitirLS. 3nightPiifisb8idesal gy

When PingOne users authenticate with OIDC to the Policy Editor, environments using OpenJDK versions
older than 11.0.3 might run into an intermittent TLS 1.3 issue preventing them from loading test scenarios.
The issue appears in the logs as com. symphonicsoft.authentication.OidcAuthenticator:
Could not retrieve jwks information from '<ping-one-url>/as/jwks' and includes the
following message: javax.net.ssl.SSLException: No PSK available. Unable to resume.
This is an OpenJDK bug that has been fixed in version 11.0.3. To circumvent this issue, you can upgrade
to OpenJDK 11.0.3 or newer. Disabling TLS 1.3 also prevents this issue.

Copyright ©2024

https://bugs.openjdk.org/browse/JDK-8213202

PingAuthorize | Release Notes | 15

Deployment package store detection DS-44549 Issue
If the configured deployment package store is not available when the PingAuthorize Server starts, it will

not be able to detect when the store becomes available again. To ensure that the PingAuthorize Server
begins using the deployment package store when the store is available again, you must restart the server
or change the Policy Decision Service configuration.

Can't use an existing persistent database with Docker volumes DS-44206 Issue
The pingdatagovernancepap and pingauthorizepap Docker images now run as unprivileged (non-
root) users by default. If you have existing pingdatagovernancepap policy databases, configure the
containers to run as root. For more information, see Deploying PingAuthorize Policy Editor using Docker
on page 86.

Can't persist the database in /opt/db with Docker volumes DS-44206 Issue
To persist a policy database in a Docker volume, create a new Docker volume with a mount target of /
opt/out instead of /opt/db. For more information, see Deploying PingAuthorize Policy Editor using
Docker on page 86.

Reconfiguring the Policy Editor in a Docker volume DS-44207 Issue
When you use the Policy Editor in a Docker volume, changing the configuration using an options.yml

file also requires that you create an empty file such as /opt/out/instance/delete-after-setup
before you restart pingauthorizepap. Consider this example:

1. You start the container with a command like the following:

$ docker run --network=<network name> --name pap -p 8443:1443 \
-—env-file ~/.pingidentity/config \

--volume /home/developer/pap/server-profile:/opt/in/ \

--env PING OPTIONS FILE=custom-options.yml \

-—-volume /home/developer/pap/Symphonic.mv.db:/opt/out/Symphonic.mv.db \
--env PING H2 FILE=/opt/out/Symphonic \
pingidentity/pingauthorizepap: <TAG>

Note:

This example command bind mounts a customized options.yml file named custom-options.yml
to the server root using the server profile capability. The host system server-profile folder must
contain instance/custom-options.yml for this example to work correctly. The Docker image
<TAG> is only a placeholder. See https://devops.pingidentity.com/reference/config/.

2. You decide to change the configuration, so you edit the custom-options. yml file.
3. You create the empty file with a command like this:

docker exec -it pap /bin/sh -c "touch /opt/out/instance/delete-after-
setup"

4. With that file in place, you can now restart the Policy Editor with the following commands:

$ docker stop pap
$ docker start --attach pap

Upgrading multi-server topologies from earlier versions DS-44165 Issue
Upgrading multi-server topologies that contain PingDataGovernance 6.x or 7.x to PingAuthorize is not
supported.

Using the Periodic Stats Logger DS-43622 Issue

Published throughput and latency stats for SCIM, sideband, and gateway requests for the Periodic Stats
Logger are not recorded until the requests are made and the logger is reset.

Policy Editor snapshot import error DS-41741 Issue
The Policy Editor produces an error when a user attempts to import an exported snapshot that contains
references to named value processors.

Using the administrative console with Tomcat 9.0.31 DS-41836 Issue

Copyright ©2024

https://devops.pingidentity.com/reference/config/

PingAuthorize | Introduction to PingAuthorize | 16

Several known issues can occur when you use the administrative console with Tomcat 9.0.31. You can
resolve these issues by upgrading to Tomcat 9.0.33 or later.

Harmless failure message when stopping the PingAuthorize service DS-42365 Issue
If you use the create-systemd-script tool to create a forking systemd service, the service is stopped
by the systemctl stop ping-authorize.serwvice command. At that time, you can see the status
using the systemctl status ping-authorize.service command. That status might contain an
indication of failure: Active: failed (Result: exit-code). This error has to do with the way the
service exits. It is harmless.

Previous Releases

For information about enhancements and issues resolved in previous major and minor releases of
PingAuthorize, follow these links to their release notes:

= PingAuthorize 8.3 (June 2021)

Introduction to PingAuthorize

PingAuthorize is a solution for fine-grained, attribute-based access control and dynamic authorization
management.

Digital transactions worldwide are increasing at exponential rates. At the heart of every transaction are
questions of authorization;

= Can a given user perform this action or access this resource?
= How much data can a given partner access?

With more sophisticated use cases and more regulations for sensitive data, the rules that guide these
questions of authorization get more complex. For example, a user can only transfer funds if their account
is in good standing and they've agreed to the terms of service, or a partner can only access user data for
those users who have given explicit consent.

Using traditional, static authorization solutions, like role-based access control (RBAC), to address
complex authorization requirements lacks the full transaction context available only with dynamic,
runtime authorization. PingAuthorize dynamic authorization can evaluate any identity attribute, consent,
entitlement, resource, or context to make attribute-based access control (ABAC) decisions in real time.
PingAuthorize gives you centralized control over your digital transactions and application access to data.

The following components provide the main capabilities for PingAuthorize.

PingAuthorize Policy Editor

Policy Administration and Delegation

PingAuthorize Policy Editor enables nontechnical stakeholders to collaborate with IT and application
developers to build and test authorization policies with a drag-and-drop Ul. The editor supports
fine-grained permissions and workflows to enable the right operational processes and delegated
administration scenarios.

Attribute Resolution and Orchestration

Authorization policies depend on any combination of attribute expressions that are evaluated at
runtime by PingAuthorize Server. These attribute values might be present in the transaction itself,
like an identifier of the authenticated user.

PingAuthorize Policy Editor enables additional attribute values to be determined at runtime by
configuring attribute sources and attribute processing without writing any code.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=paz-83&Page=relnotes

PingAuthorize | Getting started with PingAuthorize (tutorials) | 17

PingAuthorize Server

PingAuthorize Server includes the runtime policy decision service and multiple integration capabilities:

Authorization Policy Decision APIs

Applications or services obtain policy decisions at runtime using a policy decision point (PDP) API.
Applications then enforce the decision in their own application or service code. This integration
configuration is the most flexible, supporting any application or service use case.

API Security Gateway and Sideband API

For fine-grained access control and data protection within application, platform, or microservice
APIs, customers can integrate the API Security Gateway or Sideband API into their API architecture.

In this configuration, PingAuthorize Server inspects API requests and responses, and then enforces
policy by blocking, filtering, obfuscating, or otherwise modifying request and response data and
attributes. This approach requires little or no code changes by the API developer.

SCIM Service

For fine-grained data access control and protection for structured data stores like LDAP and
RDBMS, customers can deploy the SCIM Service in front of their data stores.

In this configuration, PingAuthorize Server provides SCIM-based APIs through which clients create,
read, update, and delete (CRUD) data. The SCIM Service enforces policy by blocking, filtering,
obfuscating, or otherwise modifying data and attributes.

Important:

The available enforcement features described above vary depending on your subscription. For more
information, check your PingAuthorize license key or contact your Ping ldentity account representative.

Get started

To quickly see PingAuthorize in action, see Getting started with PingAuthorize (tutorials) on page 17.

Getting started with PingAuthorize (tutorials)

This section provides tutorials for installing and configuring PingAuthorize Server with different fine-grained
access control policies.

As you complete this section, you will quickly get up and running with PingAuthorize Server and its Policy
Editor. You will also learn how to implement data access policies for REST APIs and System for Cross-
domain Identity Management (SCIM).

Using the tutorials

Use the tutorials to familiarize yourself with the capabilities of PingAuthorize dynamic authorization
management by walking through the provided configuration exercises.

Before you begin
To complete these tutorials, you must:

= Complete the instructions at https://devops.pingidentity.com/get-started/introduction/.
= Have access to Git.

Copyright ©2024

https://devops.pingidentity.com/get-started/introduction/

PingAuthorize | Getting started with PingAuthorize (tutorials) | 18

= Increase your Docker memory limit to at least 4GB.
To change this setting, go to Docker Dashboard # Settings # Resources # Advanced.
The tutorials provide sample requests that use curl. However, you can use any program that can send
HTTP requests, such as wget or Postman.

Setting up your environment

About this task

To help you get started quickly with PingAuthorize, we provide Docker containers that have everything you
need. Deploy these containers using Docker commands and then start using PingAuthorize.

Steps
1. Clone the GitHub repository that contains the supporting source files.

Replace the variable <X.X> with the first two digits of the PingAuthorize release you want to clone.

git clone --branch <X.X> https://github.com/pingidentity/pingauthorize-
tutorials && cd pingauthorize-tutorials

This command places the files in the pingauthorize-tutorials directory and changes to that
directory. The directory contains a docker-compose . yml file that defines the containers used in the
tutorial.

You shouldn't need to modify this file or understand its contents to follow the tutorial steps. However,
you might need to change some configuration values that the Docker Compose environment uses.
The env-template. txt file contains various configuration values, including the default port
definitions used by the Docker Compose containers.

2. Copy the template to a new . env file at the root of the cloned repository and edit its contents using
any text editor.

cp env-template.txt .env
vi .env

You might not need to modify any values if all the default ports are available.

Note:

You must still have a . env file in place for the environment to start.

Starting PingAuthorize

About this task

To start the Docker Compose environment:

Steps

1. Gotothe pingauthorize-tutorials directory you cloned in Setting up your environment on page
18.

2. Run the following command.

docker-compose up --detach

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 19

Verifying proper startup

About this task

The command shows the status of the containers started by the docker-compose command. Each of the
four containers should initially have a status of starting. All four containers should reach an equilibrium
state of healthy.

Steps

= To verify that both PingAuthorize Server and Policy Editor started properly and are running, run the
following command.

docker container 1ls —--format '{{ .Names }}: {{ .Status }}'

Note:

It could take up to 15 minutes for all four containers to reach this equilibrium state.

= If you have any issues, check the log files using the docker-compose logs command.

Accessing the GUIs

About this task
PingAuthorize has two GUIs:

= Administrative console
= Policy Editor

Tip:

If you have problems connecting because of self-signed certificates, try a different browser.

Steps

= Access either the administrative console or the Policy Editor.
Choose from:

= To make configuration changes to PingAuthorize Server, access the administrative console.

Description Details

URL https://localhost:5443/console/login

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 20

Description

Details

Details to enter at sign-on

= Server: pingauthorize: 1636
= Username: administrator
» Password: 2FederateMOre

Note:

If submitting the form results in a Server unavailable error,
wait longer for the containers to reach an equilibrium healthy
state, as described in Verifying proper startup on page 19.

= To make and test policy changes, access the Policy Editor.

This GUI calculates decision responses when you configure PingAuthorize to use the GUI as an

external policy decision point.

Description

Details

URL

https://localhost:8443

Details to enter at sign-on

= User ID: admin
= Password: password123

Stopping PingAuthorize

About this task

If you have completed the tutorials and no longer need the containers, run the following commands to stop

and remove the containers.

Warning:

To simplify the prerequisites for using Docker with this tutorial, all of the changes you make are lost when
you destroy your Docker Compose environment. For customer installations, persistent volumes are used to
maintain data across container deployments.

Steps

1. Gotothe pingauthorize-tutorials directory you cloned in Setting up your environment on page

18.
2. Run the following command.

docker-compose down

About the tutorial configuration

The provided Docker containers are pre-configured so that you can develop policies immediately.

The following Docker containers are provided through the Docker Compose environment.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 21

Container Description

pingauthorize PingAuthorize Server

The server enforces the policies you define.

pingauthorizepap PingAuthorize Policy Editor

Use this GUI to define the policies that determine access
control and data protection.

pingdirectory PingDirectory

A directory of user information.

Note:

PingAuthorize doesn't require PingDirectory.

However, some of the tutorials do use PingDirectory as an
attribute provider. You can reference the attributes in your
policies.

pingdataconsole administrative console

Use this GUI to configure PingAuthorize.

Tutorial 1: Importing default policies

This tutorial describes how to use the PingAuthorize Policy Editor to import default attribute-based access
control policies. It also introduces the Trust Framework and describes the default policies.

About this task

Before you can begin writing policies, you must import the default policies from a snapshot file. This file
contains a minimal set of policies and the default Trust Framework. The Trust Framework defines the
foundational elements that you use to build policies, such as API services, HTTP methods, and HTTP
requests.

The default policies and Trust Framework are stored in a snapshot file named
defaultPolicies.SNAPSHOT, which is bundled with both PingAuthorize Server and the Policy Editor.
You must base all policies that you create for use with PingAuthorize on the policies and Trust Framework
entities defined in this file.

To use the default policies that are distributed with PingAuthorize Server:

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 22

Steps

1. Copy defaultPolicies.SNAPSHOT from the PingAuthorize Policy Editor container to the current
directory on your computer using the following command.

Note:

Be sure to include the trailing . character.

docker cp pingauthorizepap:/opt/out/instance/resource/policies/
defaultPolicies.SNAPSHOT

2. Sign on to the Policy Editor using the URL and credentials from Accessing the GUIs on page 19.

3. Inthe Import a Branch from a Snapshot section, click Snapshot and select the file that you just
copied to your computer.

4. Inthe Name field, enter PingAuthorize Tutorials.

Create a Branch

Branch name Create new branch

Or

Import a Branch from a Snapshot

Snapshot defaultPolicies SNAPSHOT
Name PingAuthorize Tutorials Import
Sign out

5. Click Import.

Result: The Policy Editor displays the Version Control page. From this page, you can manage policy
changes similar to how you would in a software source control system.

6. To select the policy branch that you just created, click PingAuthorize Tutorials.
Result: A Commits table opens. This table provides a log of all changes made to a policy branch.

Copyright ©2024

Copyright ©2024

7. Click the expand arrow at the left of the top line for Uncommitted Changes.
Result: This opens a list of all changes to the policy branch that are yet to be committed. In this case,

the list includes all of the contents of the snapshot that you just imported.

I.? PingAuthorize Tutorials

- Commits
Options Commit Message

] = Uncommitted Changes
Changes

Name

Global Decision Point
PDP API Endpoint Policies
Token Validation

Token Authorization
Access token is inactive

Permitted SCIM scope for user

Permitted OAuth client

Inline target

80006060))2
£

Inline target
95 items

— SYSTEM BOOTSTRAP
2itermns

8. Click Commit New Changes.

Token does not contain PDP scope

Operation
CZD
CID
CID

Commited on

M/A
Changed on Creator
3/22/2021, 11:14:59 AM admin
3/22f2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin
3/22/2021, 11:14:59 AM admin

3/22/2021, 11:07:49 AM

Creator Approvals
M/A
Entity Details Revert

@eeeCeCCCe

SYSTEM

Ly

Ly

B4l Page 1of 10 g3

PingAuthorize | Getting started with PingAuthorize (tutorials) | 23

]]

PingAuthorize | Getting started with PingAuthorize (tutorials) | 24

9. Inthe Commit Message field, enter ITnitial commit. Click Commit.

Commit New Changes

Commit Message Initial commit

= Commit

Tip:

As you work with your own policies, you can use the Policy Editor's version control feature to manage
your changes. As you develop policies, a good practice is to set a checkpoint every time you achieve a
satisfactory working state by committing your changes.

Introduction to the Trust Framework and default policies

You can now use the Policy Editor with PingAuthorize Server. First though, explore the interface, paying
particular attention to the Trust Framework and Policies sections in the left pane.

Trust Framework

In the Trust Framework section, shown below, you define the foundational elements that you use to build
policies and make access control decisions.

Definitions
Branch Manager Doma srvices Attributes Identity Classe lentity Providers Identity Properties Actic anditions Proce:
3 Trust Framework [+] Details ~ Hist: est
Policies AccessToken
¥ Gateway Q>
Test Suite - HttpRequest
AP| Reference 5 AccessToken JSOM abject representing the decoded access token that was passed from t
access_token fields of the access token are consistent with those defined by RFC 7519, IS4
active
audience Parent HttpRequest
client_id
expiration = Resolvers (1 total)
issued_at
. r
issuer I * Request
nat_befare
scope + Add Resolver
subject

The Trust Framework provides several types of entities. The following table describes the ones you will use
most.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 25

Entity Description

Services Services perform two functions. Most often, they represent a specific API
service or API resource type to be protected by your policies. They can
also define [[policy information points]] , external data sources (such

as APIs or LDAP directory servers) that PingAuthorize can use to make
policy decisions.

Attributes Attributes on page 417 provide the context that informs fine-grained
policy decisions. Attributes often correspond to elements of an HTTP
request, such as an access token subject. However, you can obtain their
values from a variety of sources.

Actions Actions label the type of a request and generally correspond to HTTP
methods (GET, POST, and so on) or CRUD actions (create, delete, and
SO on).

Look at the Trust Framework's default attributes and consider how you could use them in your own
policies. Some important Trust Framework attributes include those in the following table.

Attribute Description

HttpRequest.AccessToken This is the introspected or deserialized access token
from the HTTP request.

HttpRequest.RequestBody This is the HTTP request body, typically present for
POST, PUT, and PATCH operations.

HttpRequest.ResponseBody This is the upstream API server's HTTP response
body.

SCIM.resource For SCIM operations, this is the SCIM resource being

retrieved or modified.

TokenOwner For requests authorized using an access token, this is
the user who granted the access token.

Policies

In the Policies section, shown below, you define your organization's access control policies.

Policies

B Policies

Global Decision Point
Token Validation

PDP API Endpoint Policies

Select a Policy or Set in the br

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 26

You define your policies as a hierarchical tree of policies. This tree consists of two types of items.
Policy Set

A container for one or more policies.
Policy

A policy, which defines a set of rules that yield a policy decision when evaluated.

When the policy engine receives a policy request from PingAuthorize Server in response to an API call, it
starts at the Global Decision Point and walks down the policy tree, first checking if each policy set or policy
is applicable to the current policy request, and then evaluating the rules defined by each policy. Each rule
returns a policy decision, typically PERMIT or DENY. Likewise, each policy might return a different policy
decision. The policy engine evaluates an overall decision using [[combining algorithms]] .

The default policy tree contains the following policy sets and policies:

Global Decision Point

This is the root of the policy tree. Place all other policy sets or policies under this point. This node's
combining algorithm is set to A single deny will override any permit. This algorithm requires no
denies and at least one policy to permit the API call.

Token Validation

For most cases, this is the only default policy. It checks for a valid access token. In combination with
the Global Decision Point combining algorithm, this is rather permissive. Any API caller can succeed
with a valid access token.

PDP API Endpoint Policies

The PingAuthorize Server XACML-JSON PDP API uses these policies. They are not discussed
further in this tutorial.

You will use the following items in the Ul in a tutorial.
Library

The default policy library contains example advice and rules.
Decision Visualiser

You will use this tool to examine policy decisions in detail.

Tutorial 2: Configuring fine-grained access control for an API

This tutorial shows you how to set up PingAuthorize for attribute-based access control of a JSON REST
API.

API access control is often categorized in terms of [[granularity]] .

Access control granularity Description
type
Coarse-grained Typically describes scenarios in which users or clients are entitled to all

or none of particular applications or APIs.

Medium-grained Typically applies to URL-based scenarios in which users or clients are
entitled to some pages or resources within applications or APIs.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 27

Access control granularity Description
type
Fine-grained When applied to the actions a user or client can take on an application

page or an API resource, typically implies that [[action-specific
conditions]] dictate whether the user or client is entitled to take the
action. For example, a request to transfer bank funds might be denied
if the amount exceeds the average of recent transfers by 20% or more.

Scenario

For this tutorial, you are the producer of an online game in which players compete with friends to create the
funniest meme. When starting a new game, the first player optionally invites other players by their emalil
addresses. To prevent email spam, you must create a policy that blocks a user from starting a new game
with other players if the user's email address comes from a generic mail domain.

Game activities are represented using an example Meme Game API.

Note:

The Meme Game API is publicly available and does not need to be installed for the PingAuthorize tutorials.

Tasks

This tutorial teaches you how to configure two fine-grained API access control rules by walking you through
the following tasks.

1. Configure a reverse proxy for the Meme Game API.

Test the reverse proxy.

Add a policy for the Meme Game API's Create Game endpoint.
Test the policy from the Policy Editor.

Test the reverse proxy by making an HTTP request.

Modify the rule for the Meme Game API's Create Game endpoint.

I

The following sections provide the details for completing these tasks.

Copyright ©2024

https://github.com/babbtx/meme-game

PingAuthorize | Getting started with PingAuthorize (tutorials) | 28

Configuring areverse proxy for the Meme Game API
Configure a reverse proxy by configuring an API External Server and a Gateway API Endpoint. The API
reverse proxy acts as an intermediary between your HTTP client and the HTTP API, providing fine-grained
access control for the API.

Steps

1. Configure an APl External Server for the Meme Game API. An API External Server controls how
PingAuthorize Server handles connections to an HTTPS API server, including configuration related to
TLS. In this case, we simply need to provide a base URL.

a. Sign on to the administrative console using the URL and credentials from Accessing the GUIs on
page 19.

b. Click External Servers.
c. Click New External Server and choose API External Server.
d. For Name, specify Meme Game API.
e. For Base URL, specify https://meme-game . com.
The following image shows this configuration.
New API| External Server
AFI External Servers are used by Gateway APl Endpoints to specify connections to external AP| servers using HTTP or HTTPS.
View dsconfig Canc
* Meme Game API
Description
4
* hitps:/meme-game.com
Hostname Verification Method strict X -
Key Manager Provider The Java Runtime Environment's default key manar +
Trust Manager Provider The Java Runtime Environment's default trust marw +
SSL Cert Nickname
Connect Timeout A0 s
Response Timeout a0 s
f. Click Save.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 29

2. Configure a Gateway API Endpoint. A Gateway API Endpoint controls how PingAuthorize Server
proxies incoming HTTP client requests to an upstream API server.
a. Inthe administrative console, click Configuration and then Gateway APl Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify Meme Game - Games.
d. For Inbound Base Path, specify /meme-game/api/vl/games.

The inbound base path defines the base request path for requests to be received by
PingAuthorize Server.

e. For Outbound Base Path, specify /api/v1/games.
The outbound base path defines the base request path for requests that PingAuthorize Server
forwards to an API server.

f. For API Server, specify Meme Game API. This is the API External Server you defined previously.

New Gateway AP| Endpoint

s an endpoint at an AP service that is protected by the PingAuthorize Server Gateway, which acts as

View APl commands Save To F'ing.ﬂ.ulhnrize Serve

Pl Endpoint represe
Pl service.

General Configuration

#* - .
Meme Game - Games

Description

Error Template If no errar template is specified, then a default error +
Correlation ID Header

/meme-game/apivl/games

lapiivl/igames

Meme Game AP ®=- £+
g. Save your changes.

Testing the reverse proxy

PingAuthorize Server is now configured to accept HTTP requests beginning with the path /meme-games/
api/vl/games and forward them to the Meme Game API. Before proceeding, we will confirm that this
configuration is working by making a request to the Meme Game API through the PingAuthorize Server.

About this task
These tutorials use curl to make HTTP requests.
The Meme Game API provides an API to create a new game, which looks like this:

POST /api/vl/games

{
"data": {
thpeu: "game",

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 30

"attributes": {
"invitees": ["friend@example.com"]

}
}

We configured a Gateway API Endpoint to forward any requests to /meme-game/api/v1/games to the
Meme Game API endpoint.

Steps

= Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/vl/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@example.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
"data": {
"type": "game",
"attributes": {
"invitees": [
"user.99%@example.com"

1
J o

This example uses [[Bearer token authorization]] with a [[mock access token]] . For an explanation
of this authorization, see For further consideration: The PingAuthorize API security gateway, part 1 on
page 30.

Result:

If the PingAuthorize Server is configured correctly, then the response status should be 201 Created
with a response body like the following.

{

"data": {
"id": "130"’
"type" . ugamesu
b
"meta": {}

For further consideration: The PingAuthorize API security gateway, part 1
Additional concepts to consider include request routing and Bearer token authorization.

Request routing

You configure request routing by defining a Gateway API Endpoint in the PingAuthorize Server
configuration. Each Gateway API Endpoint determines which incoming HTTP requests are proxied

to an API server and how PingAuthorize Server translates the HTTP request into a policy decision
request.

Bearer token authorization

The testing in Testing the reverse proxy on page 29 uses this authorization. The token itself is a
[[mock access token]] , which is a special kind of Bearer token that a PingAuthorize Server in test
environments can accept. A mock Bearer token is formatted as a single line of JSON, with the same
fields used in standard JWT access tokens, plus a boolean "active™" field, which indicates whether
the token should be considered valid. When you use mock access tokens, you do not need to obtain
an access token from an actual OAuth 2 auth server, which saves you time during testing.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 31

Adding a policy for the Create Game endpoint
Now that we have confirmed that PingAuthorize Server is correctly configured to act as a reverse proxy to
the Meme Game API, we can define a policy to try out its access control capabilities. This policy will accept
or deny a request to create a game based on the identity making the request.

About this task

First, we define a [[service]] in the Trust Framework. Services have various uses, but at their most basic
level, you use them to define a specific API that can be governed by your policies. By defining different
services in your Trust Framework, you can target each policy specifically to their applicable APIs.

Then, we define a policy. This policy will reject any requests to start a new meme game if the user's
identifier ends with Rexample.com. We will identify users using the subject of the request's access token.

Steps

1. Define the service.

a.

b.
c.

Sign on to the Policy Editor using the URL and credentials from Accessing the GUIs on page
19.

Go to Trust Framework and click Services.

From the + menu, select Add new Service.

For the name, replace Untitled with Meme Game - Games.

The service name must match the endpoint name. To understand why, see For further
consideration: The PingAuthorize API security gateway, part 2 on page 32.

Verify that in the Parent field, no parent is selected.
To remove a parent, click the trash can icon to the right of Parent field.

'l:!' Meme Game - Games

Parent

= Service Settings

Service Type None v

f. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 32

2. Define the policy.

a.

-~ ® 2 0o T

In the Policy Editor, go to Policies in the left pane and then click Policies along the top.

Select Global Decision Point.

From the + menu, select Add Policy.

For the name, replace Untitled with Users starting a new game.

Click + next to Applies to.

In the upper-right corner of the left pane, click Components. This reveals a tree of items to target
the policy and restrict the types of requests to which the policy applies.

From the Actions list, drag inbound-POST to the Add definitions and targets, or drag from
Components box.

From the Services list, drag Meme Games - Games to the Add definitions and targets, or drag
from Components box.

Using these components restricts the policy to incoming POST requests and the Meme Games -
Games service.

Set the Combining Algorithm to Unless one decision is deny, the decision will be permit.
Click + Add Rule. This reveals an interface to define a condition. Define the rule as follows.

1. Forthe name, replace Untitled with Deny if token subject ends with
@example.com.

2. For Effect, select Deny.

3. Specify the condition.

a. Click + Comparison.

b. From the Select an Attribute list, select HttpRequest.AccessToken.subject.
c. Inthe second field, select Ends With.

d. In the third field, type @Gexample. com.

The following screen shows the rule.

E o Deny if token subject ends with @example.com

Effect Deny -
=~ Condition

ALL ANY NONE CLEARALL
E HttpRequest.AccessToken.subject - Ends With - @example.com
‘ 4 Comparison | <+ Named Condition | + Group

Show "Appliesto" Show Advice and Obligations Show Properties

k. Click Save changes.

For more information about API security gateway processing, see For further consideration: The
PingAuthorize API security gateway, part 2 on page 32.

For further consideration: The PingAuthorize API security gateway, part 2

Additional concepts to consider include the phases of API security gateway processing and the need for
the service name to match the Gateway API Endpoint name.

API security gateway processing occurs in two phases

The inbound phase

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 33

When the API security gateway receives an HTTP request, it generates a policy request with an
action label including the phase and the HTTP method, such as inbound-POST or inbound-GET.
Based on the result returned by the policy engine, the request might be rejected immediately or it
might be forwarded to the API server, potentially with modifications.

The following diagram illustrates the inbound request processing.

Inbound request processing

HTTP client @

1. Client HTTP request

PingAuthorize

2. Policy request /I

!

API Security Gateway Policy Engine

4, Forwarded HTTP request

€¢-------

API

(@

The outbound phase

When the API server returns an HTTP response to the API security gateway, another policy request
is generated, again with an action label including the phase and HTTP method, such as outbound-
POST or outbound-GET. Based on the result returned by the policy engine, the response might be
modified, and then it is forwarded back to the HTTP client.

The following diagram illustrates the outbound request processing.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 34

Outbound request processing

1. API server HTTP response

PingAuthorize

2. Policy request /I

!

API Security Gateway Policy Engine

4. Final HTTP response

HTTP client @

Service name must match Gateway API Endpoint name

€¢-------

In Adding a policy for the Create Game endpoint on page 31, we named the service to match the name

of the Gateway API Endpoint in the PingAuthorize configuration. This is important. When PingAuthorize
receives an HTTP request, it generates a [[policy request]] that represents the HTTP request and sends it
to its policy engine for processing. The policy request will include a service field, and its name will be the
name of the Gateway API Endpoint that handled the HTTP request.

Testing the policy from the Policy Editor

We can now test the policy and make sure that it works as we intend. First, we test the policy directly from
the Policy Editor's test interface.

Steps

1. Inthe Policy Editor, click the Test tab at the top of the main pane to display the test interface.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 35

2. Fill out the Request section. The test uses this information to simulate the policy request that
PingAuthorize Server makes when it receives an HTTP request.

Description Details

Service Meme Games - Games

Action inbound-POST

Attributes HttpRequest.AccessToken
{ "active": true, "sub":
"user.99%Qexample.com" }

The following image shows the test.

Test

Ia Users starting a new game

Testing Scenario

= Request

Domain -
Service Meme Game - Games -
Identity Provider ;
Action inbound-POST -

Attributes HttpRequest.Acc. .. {"active": true, "sub": "user.99@example.com" }

= Overrides

Attributes -~

Services -

Import JSON Load Scenario Save Scenario > Execute

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 36

3. Click Execute.
Result:

The policy test result displays. If the policy worked as expected, the leftmost result is red, indicating a
DENY result.

Test

[2) users starting a new game

Test Results x

Visualisation

v Deny if token subject ends with

[® Users starting a new game @example.com

(% Y X |

PermitUnlessDeny

<l ms <l ms

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 37

4. (Optional.) Experiment with testing.

Click the Testing Scenario tab and try different inputs to see how they policy result changes. For
example, change the HttpRequest.AccessToken attribute value to { "active": true, "sub":
"user.99@my-company.com" }. The policy result is now PERMIT, as shown in the following image.

Test

B Users starting a new game
Test Results X

Visualisation

Deny if token subject ends with

B Usersstarting a new game @example.com

=

PermitUnlessDeny

<l ms <1 ms

Testing the policy by making an HTTP request

Having tested the policy from the Policy Editor to prove the policy works as intended, we can confirm
that policy enforcement from end-to-end by sending an HTTP request through the PingAuthorize Server
reverse proxy.

Steps

1. Send arequest using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/vl/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@example.com" }' \
--header 'Content-Type: application/json' \
-—-data-raw '{
"data": {
"type": "game",
"attributes": {
"invitees": [
"user.99%@example.com"

]

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 38

} L}
Result:
You should receive an error response with a response status of 403 Forbidden.

The request has an access token value of { "active": true, "sub":
"user.99%QRexample.com" }. The sub field of the access token corresponds to the
HttpRequest.AccessToken.subject Trust Framework attribute that your policy uses to make its

decision.
2. As an experiment, edit the access token value in curl to change the sub value to an email address
for a different domain. What should happen with this new request?

Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/vl/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@my-company.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
"data": {
"type": "game",
"attributes": {
"invitees": [
"user.99%@example.com"

]
e

Result:
The HTTP response status should now be 201 Created.

To better understand how policy decisions work, see For further consideration: Decision Visualiser on
page 38.

For further consideration: Decision Visualiser
Returning to the Policy Editor, we can view a log of how the policy engine handled the HTTP request.

Steps
1. Inthe Policy Editor, go to Policies and click Decision Visualiser.

2. Click the Recent Decisions tab. The two most recent items listed correspond to your last HTTP
request and response. The first item should correspond to the HTTP response, while the second item

should correspond to the HTTP request.
3. Click the second decision. Its visualization appears.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 39

4. Click the Request tab. This displays a JSON representation of the policy request that PingAuthorize

generated to represent your HTTP request.
Here is a request example.

(O Recent Decisions

@ PERMIT
2020-09-10 19:29:06

@ PERMIT

2020-09-10 19:29:06

€ DENY
2020-09-10 19:28:28

@ PERMIT
2020-09-10 19:27:15

@ PERMIT
2020-09-10 19:27:14

@ PERMIT
2020-09-10 19:23:16

@ PERMIT
2020-09-10 19:23:04

Decision Visualiser

Request

"domain": "",

"service": "Meme Game - Games",
“identityProvider": "Mock Access Token Validater”,
"action": “inbound-POST",

"attributes": {

"HttpRequest.RequestBody": "{\"data\":{\"type\":\"game\",\"attributes\":{\"invitees
"HttpRequest.CorrelationId": "72b49636-f86e-405a-beec-3d9cde2clbdb™,
"HttpRequest.RequestURI": “https://calamity.local:7443/meme-game/api/vl/games",
"HttpRequest.IPAddress": "172.29.8.1"

"Gateway": "{\"_BasePath\":\"/meme-game/api/vl/gamesy"}",
"HttpReguest.RequestHeaders": "{\"Authorization\":[\"Bearer { \\\"active\\\": true,
"HttpReguest.ResponseHeaders": "{}",

"HttpRequest.AccessToken": "{\"access_token\":\"{ \\\"active\\\": true, \\\"sub\\\"

Click the Response tab. This displays a JSON representation of the policy response that the policy
engine returned after evaluating your policy.

Here is a response example.

(O Recent Decisions

@ PERMIT
2020-09-10 19:29:06

@ PERMIT
2020-09-10 19:29:06

© DENY
2020-09-10 19:28:28

@ PERMIT
2020-09-10 19:27:15

@ PERMIT
2020-09-10 19:27:14

@ PERMIT
2020-09-10 19:23:16

@ PERMIT
2020-09-10 19:23:04

I
"decision": "PERMIT",

Yantharicad': trua

Decision Visualiser

"id": "eB8ada6c-Tc96-45ea-9d64-9d3abecObbel",
"deploymentPackageId": "fdc5682a-4368-4561-8479-635836df500b0",
“timestamp": "2020-09-11T@0:29:06.338726Z",

"elapsedTime": 5578,

“request": {

"domain": ",

"service": "Meme Game - Games",
"identityProvider": "Mock Access Token Validator",
"action": "inbound-POST",

"attributes": {
"HttpRequest.RequestBody": "{\"data\":{\"type\":\"game\",\"attributes\": {\"invi
"HttpRequest.CorrelationId": "“72b49636-f86e-4@5a-beec-3d9cde2clbdb”,
"HttpRequest.RequestURI": "https://calamity.local:7443/meme-game/api/v1/games",
"HttpRequest.IPAddress": "172.29.0.1",
"Gateway": "{\"_BasePath\":\"/meme-game/api/v1l/games\"}",
"HttpRequest.RequestHeaders": "{\"Authorization\":[\"Bearer { \\\"active\\\": t
"HttpRequest.ResponseHeaders": "{}",
"HttpRequest.AccessToken": "{\"access_token\":\"{ \\\"active:\\\": true, \\\"sub'
}

Both the policy request and the policy response might be hard to understand at the moment, but as
you become familiar with PingAuthorize and its policy engine, you will find that the Decision Visualiser
is indispensable for troubleshooting and understanding your policies.

Modifying the rule for the Create Game endpoint

Now that we have defined a policy that permits or denies the ability to create a game based on the email
address of the person creating the game, we will modify the rule so that any user can create a game, but
only those with real email addresses can create games with invitees. This section demonstrates how a
policy can take an action based on data in the request body.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 40

About this task

To review, the Meme Game API offers a game creation endpoint that looks like this:

POST /api/vl/games
{
"data": {
"type" . "game",
"attributes": {
"invitees": ["friendW@example.com"]

}
}

The requester specifies one or more invitees using the data.attributes.invitees field. We will
update our policy with a second rule that disallows a new game if anybody else is invited to it.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 41

Steps

1. Define a Trust Framework attribute to represent the data.attributes.invitees field.
a. Inthe Policy Editor, go to Trust Framework and click Attributes.

From the + menu, select Add new Attribute.

For the name, replace Untitled with Meme Game invitees.

Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of Parent field.

Click the + next to Resolvers and click + Add Resolver.

Set Resolver type to Attribute.

Select the attribute HttpRequest.RequestBody.

Click the + next to Value Processors and click + Add Processor.

Set Processor to JSON Path.

Setthe value to $.data.attributes.invitees.

Set Value type to Collection.

For Value Settings, select Default value and specify square brackets ([1) to indicate an empty
collection.

m. Set Type to Collection.
n. Click Save changes.

oo

The following image shows the new attribute.

Details

€ Meme Game invitees

Parent -

= Resolvers (1 total)

Resolve attribute using

Resolver type ‘ Attribute - HttpRequest.RequestBody -

+ Add Resolver

= Value Processors (1 total)

.
.
.

Processor JSON Path - $.data.attributes.invitees
Value type Collection -
+ Add Processor

= Value Settings

Default value

Type Collection ~ | Secret [l

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 42

This Trust Framework attribute introduces resolvers and value processors, which are two
important components. To better understand these components, see For further consideration:
Resolvers and value processors on page 43.

2. Modify a rule to use the Meme Game invitees attribute we just created.
a. In the Policy Editor, go to Policies.
b. Select the Users starting a new game policy.

c. Rename the Deny if token subject ends with @example.com rule to Deny if token
subject ends with @example.com AND request contains invitees.

d. Expand the rule by clicking its + icon.
e. For Effect, select Deny.
f. Specify a second comparison.

1. Click + Comparison.
2. From the Select an Attribute list, select Meme Game invitees.
3. Inthe second field, select Does Not Equal.
4. In the third field, type [].
g. Click Save changes.

The following image shows the rule.

Details
B Users starting a new game Disabled [] =
A
+ Appliesto
= Rules (1 total)
Combining Algorithm | Unless one decision is deny, the decision will be permit -

E e Deny if token subject ends with @example.com AND request contains invitees

Effect Deny -
— Condition
ALL ANY NONE CLEARALL
E HttpRequest.... « Ends With - @example.com
E Meme Gameli... « Does Not Equal - i
‘ + Comparison | + Named Condition | + Group

Show "Appliesto"” Show Advice and Obligations Show Properties

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 43

3. Test the policy.

As before, you can test your policy from the Policy Editor using its test interface, and you can test the
policy by sending an HTTP request. Try testing using the following combinations of inputs:

= An access token with the subject user.0Rexample.com and with invitees.

This should be denied.
= An access token with the subject user.0@my-company . com and with invitees.

This should be permitted.
= An access token with the subject user.ORexample.com and no invitee list.

This should be permitted.
= An access token with the subject user.0@my-company.com and no invitee list.

This should be permitted.

For further consideration: Resolvers and value processors
Resolvers and value processors are key components in defining policies.

Modifying the rule for the Create Game endpoint on page 39 introduces their use. Here is more about
how you use them in your policies.

= Resolvers

A resolver defines the source of an attribute's value. In this case, the source is the
HttpRequest.RequestBody policy request attribute, which is set automatically by PingAuthorize
Server. Many other types of sources are available; for example, a resolver might define an attribute
value using a constant, or a resolver might call out to an external API to obtain the attribute value.

= Value Processors

Value processors extract and transform values from the source value provided by the resolver. In this
case, a value processor uses a JSON Path expression to extract the value of a specific field from the
HTTP request body provided by the resolver.

Conclusion

In this tutorial about fine-grained access control, you added anti-spam protections to the Meme Game

API by blocking requests using certain email addresses. In doing so, you learned how to configure
PingAuthorize Server to act as a reverse proxy to a JSON API. You then learned how to use the
PingAuthorize Policy Editor to create a fine-grained access control policy with rules that take effect based
on the access token and body of an HTTP request. You also learned how to test policies and inspect policy
requests using the Policy Editor.

You also learned:

= Gateway API Endpoint names in the PingAuthorize Server configuration must match Trust Framework
Service hames in the Policy Editor.

= Policies can pinpoint different API services and HTTP verbs.

= Policies can PERMIT or DENY transactions based on any combination of attributes.

= Mock access tokens make testing very easy.

= Trust Framework attributes obtain their values using resolvers and transform their values using
processors.

= PingAuthorize Server supplies Attributes for HTTP metadata, request data, and OAuth 2 access token
attributes.

= You can test policies directly from the Policy Editor.
= The Policy Editor's Decision Visualiser gives you a detailed view of recent policy decisions.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 44

Tutorial 3: Configuring attribute-based access control for APl resources

This tutorial describes how to build and test fine-grained access control (FGAC) policies that restrict access
to a resource based on attributes of both the resource and the caller.

Scenario

In some data use cases, it is necessary to know both the resource being requested and the requesting
user. For example, a counselor can only view the records of students in their department. In the scenario of
the meme game, users are allowed to invite their friends or family to like or critique their memes. Because
some memes are inappropriate for younger audiences, the city of Youngstown, Ohio passes an ordinance
that does not allow you to serve its citizens memes rated for ages 13 and older. You must create a policy
to enforce this by checking the city of the user's profile and the age rating of the shared meme.

Note:

Obviously, not all Youngstown residents are young. In a more realistic scenario, we might compare the age
of the requesting user to the age rating of the meme. However, computing the user's age from their date of
birth adds unnecessary complexity.

Tasks

This tutorial teaches you how to configure attribute-based API access control rules by walking you through
the following tasks.

1. Configure a proxy for the Meme Game API.

Create a policy blocking all users from viewing shared memes.

Add policy condition logic to allow users not from Youngstown to view shared memes.

Add policy condition logic to allow users from Youngstown to view shared memes rated under 13.
Add advice to set the API error response when policy blocks access.

akrwbd

The following sections provide the details for completing these tasks.

Configuring the API security gateway
This tutorial describes how to use the API security gateway to allow requests to a parameterized endpoint.

You will configure https://localhost:7443/meme-game/api/vl/users/{user}/answers to
proxy to https://meme-game.com/api/vl/users/{user}/answers, where user can be any
username.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 45

Creating the gateway API endpoint
Configure a reverse proxy by configuring an API External Server and a Gateway API Endpoint.

Steps

1. (Optional.) Configure an API External Server for the Meme Game API. An API External Server controls
how PingAuthorize Server handles connections to an HTTPS API server, including configuration
related to TLS. In this case, we simply need to provide a base URL.

Note:

This step is optional because if you completed Tutorial 2: Configuring fine-grained access control for
an API| on page 26, then you already set up this API External Server.

a. Sign on to the administrative console using the URL and credentials from Accessing the GUIs on
page 19.

b. Click External Servers.
c. Click New External Server and choose API External Server.
d. For Name, specify Meme Game API.
e. For Base URL, specify https://meme-game . com.
The following image shows this configuration.
New API External Server
API External Servers are used by Gateway AP Endpoints to specify connections to external AP| servers using HTTP or HTTPS.
View dsconfig Cancel
* Meme Game API
Description
P
* hitps://meme-game.com
Hostname Verification Method strict X -
Key Manager Provider The Java Runtime Environment's default key manar +
Trust Manager Provider The Java Runtime Environment's default trust man 4
SSL Cert Nickname
Connect Timeout a0s
Response Timeout 30 s
f. Click Save.

Copyright ©2024

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 46

2. Configure a Gateway API Endpoint. A Gateway API Endpoint controls how PingAuthorize Server
proxies incoming HTTP client requests to an upstream API server.

a.

b.
c.
d

g.

In the administrative console, click Configuration and then Gateway API Endpoints.
Click New Gateway API Endpoint.

For Name, specify Meme Game - Shared Answers.

For Inbound Base Path, specify /meme-game/api/vl/users/{user}/answers.

The inbound base path defines the base request path for requests to be received by
PingAuthorize Server.

By surrounding a value in curly braces, you can add a parameter to a gateway API endpoint's
inbound-base-path, and use it to fill in a parameter of the same name in the outbound path, as
well as to inform other elements of the policy request, such as the service.

For Outbound Base Path, specify /api/v1/users/{user}/answers.
The outbound base path defines the base request path for requests that PingAuthorize Server
forwards to an API server.

For API Server, specify Meme Game API. This is the APl External Server you defined in another
tutorial, in Configuring a reverse proxy for the Meme Game API on page 28.

Your screen should look like the following one.

New Gateway API Endpoint

A Gateway API Endpoint represents an endpoint at an API service that is protected by the PingAuthorize Server Gateway, which acts as a fac

enforcement point (PEP) for the API service.

View APl commands [EEEEVER EREG GRS

General Configuration

* Meme Game - Shared Answers

Description

Error Template f no error template is specified, then a default errov +
Correlation ID Header he correlation-id 0 der p ! he HTTP Connet
/meme-game/apifv1/users{useryanswers
fapifvifusersfuserianswers

* Meme Game API X~ &£+

Save your changes.

PingAuthorize | Getting started with PingAuthorize (tutorials) | 47

Testing the gateway
You can test the newly created Gateway API Endpoint with cURL or Postman.

Steps

= Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers \
-H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

Result: You should get a 200 OK response with a JSON response body that contains a series of
answers in an array titled data.

Creating a policy based on user credentials
This tutorial describes how to create a policy that acts on information about the user.

Creating a service for the Shared Answers endpoint
Create a service in the Trust Framework to ensure that our policy only affects requests to our new
endpoint.

About this task

This task passes the name of the Gateway API Endpoint configured in PingAuthorize Server as the service
to the PingAuthorize policy decision point (PDP).

Steps
1. From the PingAuthorize Policy Editor, go to Trust Framework and click Services.
2. From the + menu, select Add new service.
3. For the name, replace Untitled with Meme Game - Shared Answers.
4. Verify that in the Parent field, no parent is selected.
To remove a parent, click the delete icon to the right of the Parent field.

Your service should look like the example in the following image:

Details

'ﬁ' Meme Game - Shared Answers

Parent -

= Service Settings

I Service Type None -

5. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 48

Creating a policy for the Shared Answers endpoint
Create a policy to prevent users from accessing the Shared Answers endpoint.

Steps

In the PingAuthorize Policy Editor, go to the Policies tab.

Select Global Decision Point.

From the + menu, select Add Policy.

For the name, replace Untitled with Users viewing shared memes.
Click + next to Applies to.

In the upper-right corner of the left pane, click Components.

From the Actions list, drag outbound-GET to the Add definitions and targets, or drag from
Components box.

8. From the Services list, drag Meme Game - Shared Answers to the Add definitions and targets, or
drag from Components box.

9. For the combining algorithm, select Unless one decision is permit, the decision will be deny.
10. Click Save changes.

N o g~ wDdhPRE

Your policy should look like the one shown below.

Details

@ Users viewing shared memes

= Appliesto
Add definitions and targets, or drag from Components Meme Game - Shared Answers
<+ Comparison + Named Condition

= Rules (0 total)

Combining Algorithm | Unless one decision is permit, the decision will be deny

Testing the policy
You can test the new policy with cURL or Postman.

Steps

= Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/1. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme—-game/api/vl/users/user.0/answers/1 \

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 49

-H 'Authorization: Bearer {"active": true, "sub": "user.0"}'
Result: You should get a 403 Forbidden response with the following body.

{
"errorMessage": "Access Denied",
"status": 403

}

Creating an attribute from user data
Create an attribute to represent the city the user lives in.

Steps

In the PingAuthorize Policy Editor, go to Trust Framework and click Attributes.
From the + menu, select Add new Attribute.
For the name, replace Untitled with city.
For Parent, select TokenOwner.
Click the + next to Resolvers and click + Add Resolver.
For Resolver type, select Attribute and specify a value of TokenOwner.
Click the + next to Value Processors and click + Add Processor.
For Processor, select JSON Path and specify a value of $.1[0]. (The LDAP attribute 1 is short for
locality.)
9. For the processor's Value type, select String.
10. For Value Settings, set the Type to String.

© N o~ wWwDd R

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 50

11. Click Save changes.
Result: You have an attribute for the user's city, as shown in the following image.

Details

Q city

Parent TokenOwner -

= Resolvers (1total)

Resolve attribute using

Resolver type Attribute - TokenOwner -

+ Add Resolver

= Value Processors (1 total)

Processor JSON Path - Sl

Value type String

1 |
LL L]
4
29
&

= Value Settings
Default value []
Type String - | Secret]

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 51

Adding logic to allow non-Youngstown users
Add a rule to the Users viewing shared memes API policy to allow users who are not from Youngstown
to view answers.

Steps

From the PingAuthorize Policy Editor, go to the Policies tab.

Select Users viewing shared memes.

Click + Add Rule.

For the name, replace Untitled with A11ow people outside of Youngstown.
For Effect, select Permit.

To specify a Condition, perform the following steps:

a. Click + Comparison.

b. From the Select an Attribute list, select TokenOwner.city.

c. Inthe second field, select Does Not Equal.

d. In the third field, type Youngstown.

7. Click Save changes.

Result: You have a rule that allows users from outside Youngstown.

ok whPRE

Allow people outside of Youngstown

Effect Permit
Condition
ALL ANY NONE CLEARALL
TokenOwner.... ~ Does Not Equal - Youngstown

Show "Applies to" Show Advice and Obligations Show Properties

Testing that the policy blocks Youngstown users
You can test the new rule with cURL or Postman.

Steps

1. Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/1 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers/1 \
-H '"Authorization: Bearer {"active": true, "sub": "user.0"}'

Result: A 200 OK response with the following body.

{
"data": {
"id". "1iv,
"type": "answers",
"attributes": {
"url": "https://i.imgflip.com/2fm6x.jpg",
"captions": [

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 52

"Still waiting for the bus to Jennie’s"
I
"rating": null,
"created at": "2020-05-06T22:25:06+00:00"
}
bo
"meta": {}

}

2. Issue a GET requestto https://localhost:7443/meme—game/api/vl/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers/1 \
-H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result: The user is from Youngstown, so the resultis a 403 Forbidden response with the following
body.

{
"errorMessage": "Access Denied",
"status": 403

}

Creating a policy based on the APl response

This tutorial describes how to create a policy that acts on information about the response received from the
API server.

Creating an attribute from response data
Create an attribute to represent the age rating of the meme being requested.

Steps

1. From the PingAuthorize Policy Editor, go to Trust Framework and click Attributes.

2. From the + menu, select Add new Attribute.
3. For the name, replace Untitled with Meme game answer rating.
4. Verify that in the Parent field, no parent is selected.
To remove a parent, click the trash can icon to the right of the Parent field.
5. Click the + next to Resolvers and click + Add Resolver.
6. For Resolver type, select Attribute and specify a value of HttpRequest.ResponseBody.
7. Click the + next to Value Processors and click + Add Processor.
8. For Processor, select JSON Path and specify a value of $.data.attributes.rating.
9. For the processor's Value type, select Number.

10. For Value Settings, set the Type to Number.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 53

11. Click Save changes.
Result: You have a new attribute for the answer's age rating.

o\ i
> Meme game answer rating []

Parent -

= Resolvers (1 total)

= Resolve attribute using

Resolver type Attribute - HttpRequest.ResponseBody
+ Add Resolver
= Value Processors (1 total)
Processor JSON Path ~ $;data.attributes.rating
Value type Number -
+ Add Processor

= Value Settings

Default value O
Type Number a Secret O
+ Caching

Adding logic to allow family-friendly memes
Add a rule to the Users viewing shared memes API policy to allow users to view answers that are rated
for ages under 13.

Steps

From the PingAuthorize Policy Editor, go to the Policies tab.

Select Users viewing shared memes.

Click + Add Rule.

For the name, replace Untitled with Anyone can view family-friendly answers.
For Effect, select Permit.

Specify a Condition.

a. Click + Comparison.

b. From the Select an Attribute list, select Meme game answer rating.

c. Inthe second field, select Less Than.

d. In the third field, type 13.

o0k wbdE

Copyright ©2024

7. Click Save changes.
Result: You have a rule to allow family-friendly memes that looks like the following image.

Anyone can view family-friendly answers

Effect Permit

= Condition

ALL ANY NONE CLEARALL

E Meme Game answer.rating -

<+ Comparison |

<+ Named Condition } <+ Group

Show "Applies to" Show Advice and Obligations Show Properties

Less Than -

PingAuthorize | Getting started with PingAuthorize (tutorials) | 54

13

Testing that the policy blocks Youngstown users from viewing age 13+ memes
You can test the newly created rule with cURL or Postman.

Steps

Copyright ©2024

1.

2.

Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/2 as user. 0. The following cURL command makes such a request.

curl --insecure -X GET \

https://localhost:7443/meme-game/api/vl/users/user.0/answers/2 \

-H 'Authorization:

Result:

Bearer {"active":

true, "sub": "user.0"}'

When requesting answer 2 as user .0, expecta 200 OK response with the following body.

{
"data": {
"id": "2",
"type": "answers",
"attributes": {
"url":
"captions": [
"There was a spider",
"it's gone now"
1,
"rating": 13,
"created at":
}
by
"meta":

}

{}

Issue a GET request to https://localhost:

"https://i.imgflip.com/231s.jpg",

"2020-05-06T22:25:06+00:00"

7443 /meme-game/api/vl/users/user.0/

answers/2 as user. 660. The following cURL command makes such a request.

curl --insecure -X GET \

https://localhost:7443/meme-game/api/vl/users/user.0/answers/2 \

PingAuthorize | Getting started with PingAuthorize (tutorials) | 55

-H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result:

When requesting answer 2, which is rated age 13, as user. 660, who is from Youngstown, OH,
expecta 403 Forbidden response with the following body.

{
"errorMessage": "Access Denied",
"status": 403

}

3. Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/1 as user. 0. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers/1 \
-H 'Authorization: Bearer {"active": true, "sub": "user.0"}'
Result:

When requesting answer 1 as user. 0, expecta 200 OK response with the following body.

{
"data": {
"id": "1"’
"type": "answers",
"attributes": {
"url": "https://i.imgflip.com/2fm6x.Jjpg",
"captions": [
"Still waiting for the bus to Jennie’s"
I
"rating": null,
"created at": "2020-05-06T22:25:06+00:00"
}
bo
"meta": {}

}

4. Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers/1 \
-H 'Authorization: Bearer {"active": true, "sub": "user.660"}'
Result:

When requesting answer 1, which is unrated, as user. 660, who is from Youngstown, OH, expect
a 403 Forbidden response with the following body. Be aware that this is not the correct behavior;
however, to resolve it, we would need to change our attribute definitions.

{

"errorMessage": "Access Denied",
"status": 403
}

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 56

Allowing unrated memes

Answer 1 is not being served to user. 660, even though it has not been rated as 13+. In this scenario,
an unrated answer should be considered friendly to all users. Consider why an unrated meme is being
blocked for this user. To resolve this, you can add a default value to the age rating.

Steps

1. Inthe PingAuthorize Policy Editor, go to Trust Framework and click Attributes.
2. Select Meme game answer rating.
3. For Value Settings, check the befault Value box, and specify a value of 0.
4. Click Save changes.

Result:

Your attribute for answer age ratings has a default value of 0, as shown below.

Details

€ Meme game answer rating

Parent -

= Resolvers (1total)

L+
LL L

+ Add Resolver

= Value Processors (1 total)

[+ |
LL L

=+ Add Processor

= Value Settings

Default value 0

Type Number ~ Secret]

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 57

Testing the default value
You can test that the policy now works correctly with cURL or Postman.

Steps

= |Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers/1 \
-H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Result: You should get a 200 OK response with the following body.

{
"data": {
"id": "1",
"type": "answers",
"attributes": {
"url": "https://i.imgflip.com/2fm6x.jpg",
"captions": [
"Still waiting for the bus to Jennie’s"

I
"rating": null,
"created at": "2020-05-06T22:25:06+00:00"

Creating an advice to provide a more useful error message
Add a command, known as an advice, that instructs PingAuthorize to set the HTTP response code and
provide a more useful error message when rejecting the outbound response.

About this task

Because this problem is due to an attribute of a user (namely their location), use a 4xx response code to
indicate a user issue. The 451 response code has been suggested for use in cases where content cannot
be displayed for legal reasons.

Steps

From the PingAuthorize Policy Editor, go to the Policies tab.

Select Users viewing shared memes.

Click + Advice and Obligations.

Click + Add Advice and select Denied Reason.

For the name, replace Untitled with Send "not permitted" error.
From the Applies to drop-down list, select Deny.

For a Payload value, enter {"status": 451, "message": "Restricted", "detail™: "Not
permitted per regulation™"}.

No o~ wDdhRE

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 58

8. Click Save changes.
Result: You have a new advice, which looks something like the following image.

= Advice and Obligations (1 total)

Send "not permitted” error Obligatory [] =
Advice that allows a policy writer to provide an error message containing the reason that a request has been denied.

4
Code denied-reason Applies To Deny -
Payload tat 151, "message™ "R C tail":"No mitted perreg

Testing the advice
You can test that the advice works correctly with cURL or Postman.

Steps

= Issue a GET requestto https://localhost:7443/meme-game/api/vl/users/user.0/
answers/2 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
https://localhost:7443/meme-game/api/vl/users/user.0/answers/2 \
-H 'Authorization: Bearer {"active": true, "sub": "user.660"}'
Result:

Expecta 451 Unavailable For Legal Reasons response with the following body.

{

"errorMessage": "Restricted: Not permitted per regulation",
"status": 451
}

Conclusion
In this tutorial, you allowed users to access the meme game's shared answers functionality through
PingAuthorize. Following a request from government authorities, you blocked users from the town of
Youngstown, Ohio from viewing memes intended for audiences aged 13 or older. In doing so, you learned
about the PingAuthorize ability to control access to resources based on attributes of both the requesting
user and the resource being requested. You also learned how to use advice to modify response bodies.

You also learned:

= Policies can apply to outbound upstream server API responses before they are sent to the API client.

= HttpRequest.ResponseBody is the upstream server API response body before it is sent to the
client.

= Attributes that cannot be resolved because of any reason, including processing errors, might impact
policy outcomes.

= PingAuthorize supplies the user profile of the access token subject as the Trust Framework attribute
TokenOwner.

= You must populate the child attributes of the TokenOwner that you want to use in a policy.

= Many attributes in LDAP are multivalued.

= Advice is used to modify the API response in some way.

= In this case, denied-reason was used to set the HTTP status code and message body.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 59

Tutorial (optional): Creating SCIM policies

This tutorial demonstrates how to develop fine-grained access control (FGAC) policies for the System for
Cross-domain Identity Management (SCIM) REST API built into PingAuthorize Server.

In the previous section, you used PingAuthorize Server to filter data that an external REST API returned.

While PingAuthorize Server's API security gateway protects existing REST APIs, PingAuthorize Server's
built-in SCIM service provides a REST API for accessing and protecting identity data that might be
contained in datastores like LDAP and relational databases.

PingAuthorize Server uses SCIM in the following ways:

= Internally, user identities are represented as SCIM identities by way of one or more SCIM resource
types and schemas. This approach includes access token subjects, which are always mapped to a
SCIM identity.

= A SCIM REST API service provides access to user identities through HTTP.

You will now design a set of policies to control access to the SCIM REST API by using OAuth 2 access
token rules.

Before proceeding, make a test request to generate a SCIM REST API response using only the default
policies. As in the previous section, send a mock access token in the request.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
Bearer {"active": true, "sub": "user.l", "scope": "nonexistent.scope",
"client id": "nonexistent.client"}'

Although the precise attribute values might vary, the response returns the SCIM resource that corresponds

to user.1.
{"mail":["user.l@example.com"],"initials":["RJV"], "homePhone": ["+1 091 438
1890"],
"pager": ["+1 472 824 8704"],"givenName":
["Romina"], "employeeNumber":"1", "telephoneNumber": ["+1 319 624 9982"],
"mobile":["+1 650 622 7719"],"sn":["Valerio"],"cn":["Romina Valerio"],
"description":["This is the description for Romina Valerio."],"street":
["84095 Maple Street"],
"st":["NE"], "postalAddress": ["Romina Valerio$84095 Maple Street$Alexandria,
NE 39160"],
"uid": ["user.1"],"1":["Alexandria"], "postalCode":
["39160"],"entryUUID" :"355a133d-58ea-3827-8e8d-b39cf74ddb3e",
"objectClass": ["top", "person", "organizationalPerson", "inetOrgPerson"],

"entryDN":"uid=user.l, ou=people, o=yeah",

"meta": {"resourceType":"Users",
"location":"https://localhost:7443/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},

"id":"355a133d-58ea-3827-8e8d-b39%cf74ddb3e", "schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"]}

This response is a success response, although it is preferred that it not be one, because it shows that any
active access token referencing a valid user can be used to access any data.

Scenario

In this tutorial, you limit the requester's access to profile data, returning only specific attributes of the profile
that granted the access token. This is achieved using the OIDC-like scopes email and profile.

Also, you create a scope scimAdmin that has full access to SCIM-based User resources.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 60

Tasks
This tutorial walks you through these tasks.

1. Create a basic policy structure for scope-based access to SCIM resources.

2. Create a policy for the email scope that only allows access to the subject's mail attributes.
3. Create a policy for the profile scope that only allows access to a few other profile attributes.
4. Create a policy for the scimAdmin scope that allows access to all attributes.

The following sections provide the details for completing these tasks.

Tutorial: Creating the policy tree

This tutorial describes how to create a tree structure and ensure that your policies apply only to System for
Cross-domain Identity Management (SCIM) requests.

About this task

The default policies include the policy named Token Validation. In the PingAuthorize Policy Editor, you
can find this policy under Global Decision Point. This policy denies any request using an access token

if the token's active flag is set to false. This policy is augmented with a set of scope-based access
control policies.

Copyright ©2024

Steps

PingAuthorize | Getting started with PingAuthorize (tutorials) | 61

1. To create the tree structure, perform the following steps:

a. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs
on page 19.
b. Click Policies.
c. Highlight Global Decision Point.
d. From the + menu, select Add Policy Set.
e. For the name, replace Untitled with SCIM Policy Set.
f. Inthe Policies section, set the Combining algorithm to A single deny will override any permit
decisions.
A combining algorithm determines the manner in which the policy set resolves potentially
contending decisions from child policies.
g. Click + Applies to.
h. Click Components.
i. From the Services list, drag SCIM2 to the Add definitions and targets, or drag from
Components box.
This step ensures that policies in the SCIM policy set apply only to SCIM requests.
j. Click Save changes.
Result:

You should have a screen like the following.

Compaonents Details

) scim policy Set Disabled [] =
Library
~/ Rules
® Targets 4
3 advice = Appliesto
Trust Framework Add definitions and targets, or drag from Components SCIM2
~) Domains
Services + Comparison <+ Named Condition
1} OpenBanking Account and
Transaction API
POP = Policies (0)
£% Random Jokes API
L8 scimz Combining Algorithm = Asingle deny will override any permit decisions -

B5) Identity Classes

I Actions

+ Advice and Obligations (0 total)

Attributes R
+ Properties

Conditions

2. To add a branch under the SCIM policy set to hold SCIM-specific access token policies, go from
Components to Policies and perform the following steps:

a.

b.
C.
d

Copyright ©2024

Highlight SCIM Policy Set.

From the + menu, select Add Policy Set.

For the name, replace Untitled with Token Policies.

In the Policies section, set the Combining algorithm to A single deny will override any permit
decisions.

Click Save changes.

3.

PingAuthorize | Getting started with PingAuthorize (tutorials) | 62

To add another branch that holds a policy specific to access token scopes, perform the following
steps:

a. Highlight Token Policies.

b. From the + menu, select Add Policy Set.

c. For the name, replace Untitled with Scope Policies.

d

In the Policies section, set the Combining algorithm to Unless one decision is permit, the
decision will be deny.

e. Click Save changes.
Result:

After creating the new branches, they should look like the following.

Policies

Policies Details

pisabled [] =

aj Scope Policies

Global Decision Point
Token Validation
PDP API Endpoint Policies
Random jokes API policy
SCIM Policy Set

Token Policies

By Scope Policies

+ Appliesto

= Policies (0)

Combining Algorithm | Unless one decision is permit, the decision will be deny

Tutorial: Creating SCIM access token policies
This tutorial describes how to define access token policies after you define a structure.

In this section, you will define three policies that use a requester's access token to limit its access to data.

Creating a policy for permitted access token scopes
The first policy defines the access token scopes that PingAuthorize Server accepts for System for Cross-
domain Identity Management (SCIM) requests.

About this task

The following table defines these scopes.

Scope Allowed actions Applies to
scimAdmin search, retrieve, create/modify, Any data
delete
email retrieve Requester's email attributes
profile retrieve Requester's profile attributes

To create the policy and add rules to define the scopes, perform the following steps:

Steps

1.

S L

Copyright ©2024

Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

Click Policies.

Expand Global Decision Point, SCIM Policy Set, and Token Policies.
Highlight Scope Policies.

Next to Advice and Obligations, click +.

Click Components.

8.

9.
10.
11.
12.
13.
14.

PingAuthorize | Getting started with PingAuthorize (tutorials) | 63

From the Advice list, drag Insufficient Scope to the area immediately following Advice and
Obligations. A box appears for you to drop the item into.

Click Save changes.

Click Policies to the left of Components.

Highlight Scope Policies.

From the + menu, select Add Policy.

For the name, replace Untitled with Permitted Scopes.

Change the combining algorithm to A single deny will override any permit decisions.
Click Save changes.

Testing the policy with cURL
Test the newly created policy with cURL.

About this task

If you attempt the same HTTP request that you issued previously, it is now denied.

Steps

= Run the HTTP request to perform the test.

Example:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope":
"nonexistent.scope", "client id": "nonexistent.client"}'

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"], "status":"403",
"scimType":"insufficient scope","detail":"Requested operation not allowed
by the granted OAuth scopes."}

Defining the email scope
Define a permitted access token scope to retrieve email attributes.

Steps
1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.
2. Click Policies.
3. Expand Global Decision Point, SCIM Policy Set, Token Policies, and Scope Policies.
4. Highlight Permitted Scopes.
a. Click Components.
5. From the Rules list, drag Permitted SCIM scope for user to the Rules section.
6. To the right of the copied rule, click the hamburger menu.
7. Click Replace with clone.
8. Change the name to Scope: email.
9. To expand the rule, click +.
10. Change the description to Rule that permits a SCIM user to access its own mail
attribute if the access token contains the email scope.
11. Inthe HttpRequest.AccessToken.scope row of the Condition section, type email in the
CHANGEME field.
12. Within the rule, click Show "Applies to".

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 64

13. From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

Note:

This task uses different actions from the previous gateway example.

14. Within the rule, click Show Advice and Obligations.
15. Click + next to Advice and Obligations.
16. From the Advice section, drag Include email attributes to the Advice and Obligations section.

Note:

This predefined advice includes a payload. If the condition for this rule is satisfied, the response
includes the mail attribute.

17. Click Save changes.

Result

After completing the configuration, you will have a new email scope, which should look like the following.

E o Scope: email =

Rule that permits a SCIM user to access its own mail attribute if the access token contains the email scope

Effect Permit =
= Applies To
Add definitions and targets, or drag from Components retrieve
= Condition
ALL ANY NONE CLEARALL
E HttpRequest.AccessToken.scope ~ Contains - email
E HttpRequest.AccessToken.toke... ~ Equals - HttpRequest.ResourcePath -
| + Comparison I + Named Condition } + Group

= Advice and Obligations (1 total)

L4 . .
I ¢ Include email attributes Obligatory [

+ Add Advice

Hide "Appliesto" Hide Advice Show Properties

Testing the email scope with cURL
You can test a newly created email scope with cURL.

About this task
If you make the same request as earlier, a 403 is returned because the provided scope is not allowed.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
Bearer {"active": true, "sub": "user.l", "scope": "nonexistent.scope",
"client id": "nonexistent.client"}'

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 65

Steps

= Adjust the request to use the email scope.
Example:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope":
"email", "client id": "nonexistent.client"}'

{"id":"355a133d-58€a-3827-8e8d-b39cf74ddb3e", "meta":
{"resourceType" :"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"}, "schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"], "mail":
["user.l@example.com"]}

Result: The request succeeds, and only the mai1l attribute is returned.

Defining the profile scope
Define a permitted access token scope to retrieve profile attributes.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, Token Policies, and Scope Policies.

4. Highlight Permitted Scopes.

5. Click Components.

6. From the Rules list, drag Permitted SCIM scope for user to the Rules section.

7. To the right of the copied rule, click the hamburger menu.

8. Click Replace with clone.

9. Change the name to Scope: profile.
10. To expand the rule, click +.
11. Change the description to Rule that permits a SCIM user to access a subset of its

own profile attributes if the access token contains the profile scope.

12. Inthe HttpRequest.AccessToken.scope row of the Condition section, type profile in the

CHANGEME field.
13. Within the rule, click Show "Applies to".

14. From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

15. Within the rule, click Show Advice and Obligations.
16. Nextto Advice and Obligations, click +.
17. From the Advice section, drag Include profile attributes to the Advice and Obligations section.

Note:

This predefined advice includes a payload. If the condition for this rule is satisfied, the response
includes the uid, sn, givenName, and description attributes.

18. Click Save changes.

Result

After completing the configuration, you will have a new profile scope, which should look like the following.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 66

* Q Scope: profile

Rule that permits a SCIM user to access a subset of its

own profile attributes if the access token contains the profile scope

Effect Permit -
= Applies To
Add definitions and targets, or drag from Components retrieve
= Condition
ALL ANY NONE CLEAR ALL
E HttpRequest.AccessToken.scope Contains - profile
E HttpRequest. AccessToken.toke... « Equals - HttpRequest.ResourcePath -
‘ + Comparison } =+ Named Condition I + Group

= Advice and Obligations (1 total)

I E Include profile attributes Obligatory [=

+ Add Advice

Hide "Applies to" Hide Advice Show Properties

Testing the profile scope with cURL
Test your new profile scope with cURL.

Steps

= Make the same request as earlier, but change the email scope that the access token uses to
profile.

Example:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope":
"profile", "client id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e", "meta":
{"resourceType":"Users", "location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"}, "schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"], "uid":
["user.1"],"givenName": ["Romina"], "description":["This is the description
for Romina Valerio."],"sn":["Valerio"]}

Result: The attributes defined by the new rule's advice are returned.

= Because an access token might contain multiple scopes, confirm that an access token with the email
and profile scopes returns the union of the attributes that both scopes grant.

Result:

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope": "email
profile”, "client id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e", "meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"}, "schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"], "uid":
["user.1l"],"mail": ["user.l@example.com"], "givenName":

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 67

["Romina"],"description":["This is the description for Romina
Valerio."],"sn":["Valerio"]}

Defining the scimAdmin scope
For the scimAdmin scope, you will define different behaviors that depend on the action of the request.

As a result, the scope definition will be split into multiple rules.

Adding the scimAdmin retrieve rule
Add the scimAdmin retrieve rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

Click Policies.

Highlight Permitted Scopes.

Click + Add Rule.

For the name, replace Untitled with Scope: scimAdmin (retrieve).
From the Effect list, select Permit.

In the Condition section, perform the following steps:

a. Click + Comparison.

b. In the first field, select HttpRequest.AccessToken.scope.

c. From the comparator list, select Contains.

d. Inthe final field, type scimAdmin.

8. Within the rule, click Show "Applies to".
9. Click Components.

10. From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

11. Within the rule, click Show Advice and Obligations.

12. Click + next to Advice and Obligations.

13. From the Advice section, drag Include all attributes to the Advice and Obligations section.
14. Click Save changes.

No ok~ wN

Result
After completing the configuration, you will have a new scope for the scimAdmin retrieve rule, that should
look like the following.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 68

E o Scope: scimAdmin (retrieve)

Effect Permit =
= Applies To

Add definitions and targets, or drag from Components retrieve

= Condition

ALL ANY NONE CLEARALL
E HttpRequest.AccessToken.scope = Contains - scimAdmin
‘ =+ Comparison | + Named Condition | + Group

= Advice and Obligations (1 total)

H E Include all attributes Obligatory [

+ Add Advice

Hide "Appliesto" Hide Advice Show Properties

Adding the scimAdmin create/modify rule
Add the scimAdmin create/modify rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

Click Policies.

Highlight Permitted Scopes.

Click + Add Rule.

For the name, replace Untitled with Scope: scimAdmin (create/modify).
From the Effect list, select Permit.

In the Condition section, perform the following steps:

a. Click + Comparison.

b. In the first field, select HttpRequest.AccessToken.scope.

c. From the comparator list, select Contains.

d. Inthe final field, type scimAdmin.

8. Within the rule, click Show "Applies to".
9. Click Components.

10. From the Actions section, drag create to the Add definitions and targets, or drag from
Components box.

11. From the Actions sections, drag modify to the Add definitions and targets, or drag from
Components box.

12. Click Save changes.

No o~ wN

Adding the scimAdmin search rule
Add the scimAdmin search rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 69

Click Policies.

Highlight Permitted Scopes.

Click + Add Rule.

For the name, replace Untitled with Scope: scimAdmin (search).
From the Effect list, select Permit.

In the Condition section, perform the following steps:

a. Click + Comparison.

b. In the first field, select HttpRequest.AccessToken.scope.

c. From the comparator list, select Contains.

d. Inthe final field, type scimAdmin.

8. Within the rule, click Show "Applies to".
9. Click Components.

10. From the Actions section, drag search to the Add definitions and targets, or drag from
Components box.

11. Click Save changes.

No ok wN

Adding the scimAdmin delete rule
Add the scimAdmin delete rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingAuthorize Policy Editor using the URL and credentials from Accessing the GUIs on
page 19.

Click Policies.

Highlight Permitted Scopes.

Click + Add Rule.

For the name, replace Untitled with Scope: scimAdmin (delete).
From the Effect list, select Permit.

In the Condition section, perform the following steps:

a. Click + Comparison.

b. In the first field, type HttpRequest .AccessToken. scope.

c. From the comparator list, select Contains.
d. Inthe final field, type scimAdmin.

8. Within the rule, click Show "Applies to".
9. Click Components.

10. From the Actions section, drag delete to the Add definitions and targets, or drag from
Components box.

11. Click Save changes.

No o~ wN

Creating a policy for permitted OAuth2 clients
This tutorial describes how to configure a policy to allow specific OAuth2 clients for a REST service. A
REST service typically allows only requests from an allow list of OAuth2 clients.

About this task

In the PingAuthorize Policy Editor, define a policy in which each rule specifies an allowed client.

Steps

1. Goto Policies # Policies.
2. Expand Global Decision Point and SCIM Policy Set.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 70

3. Highlight Token Policies and click + and then Add Policy.
4. For the name, replace Untitled with Permitted Clients.
5. From the Combining Algorithm list, select Unless one decision is permit, the decision will be
deny.
6. Click + Add Rule.
7. For the name, replace Untitled with Client: clientl.
8. From the Effect list, select Permit.
9. Inthe Condition section:
a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.client id.
c. From the middle, comparison-type list, select Equals.
d. Inthe final field, enter client1.
10. Click + Add Rule.
11. For the name, replace Untitled with Client: client?2.
12. From the Effect list, select Permit.
13. Inthe Condition section:
a. Click + Comparison.
b. From the Select an Attribute list, select Ht tpRequest.AccessToken.client id.
c. From the middle, comparison-type list, select Equals. B
d. Inthe final field, enter client2.
14. Expand + Advice and Obligations.
Note:
Do not click Show Advice and Obligations within the clientl or client2 rules.
15. Click Components.
16. From Advice, drag Unauthorized Client to the Advice and Obligations box.
17. Click Save changes.
Result

The completed configuration should resemble the following image.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 71

[2) permitted Clients Disabled [] =

+ Appliesto

= Rules (2 total)

Combining Algorithm | Unless one decision is permit, the decision will be deny -

H S Client: clientl

E Client: client2
y,
Effect Permit -
Condition
ALL ANY NONE CLEARALL
HttpRequest.AccessToken.client_ic - Equals - client2

Show "Appliesto" Show Advice and Obligations Show Properties

= Advice and Obligations (1 total)
| $ Unauthorized Client Obligatory i =

Testing the client policy with cURL
To confirm that you successfully completed the tasks from the previous section, test the client policy with
CURL.

About this task

After completing the tasks in the previous sections, test the responses you receive for access tokens for
any client other than clientl or client2.

Steps
= To test that an access token for any client other than clientl or client2 is rejected, run the following.
curl --insecure -X GET https://localhost:7443/scim/v2/Me -H

'Authorization: Bearer {"active": true, "sub": "user.l", "scope":
"email", "client id": "nonexistent.client"}'

Result: Successful completion of the tasks in the previous sections will result in the following response.

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"], "status":"401", "scimType" :"The
client is not authorized to request this
resource.","detail":"unauthorized client"}

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 72

= To test that an access token for clientl is accepted, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope":
"email", "client id": "clientl"}'

Result: Successful completion of the tasks in the previous sections will result in the following response.

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e", "meta":
{"resourceType":"Users", "location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"}, "schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter”"], "mail":
["user.l@example.com"]}

Creating a policy for permitted audiences
This tutorial describes how to create a policy for a REST service to control access based on an acceptable
audience value.

About this task

An authorization server like PingFederate might set an audience field on the access tokens that it issues,
naming one or more services that are allowed to accept the access token. A REST service can use the
audience field to ensure that it does not accept access tokens that are intended for use with a different
service.

As with the Permitted Clients policy, each rule in the Permitted Audiences policy defines an acceptable
audience value.

Steps

1. Goto Policies # Policies.

2. Expand Global Decision Point and SCIM Policy Set.

3. Highlight Token Policies and click + and then Add Policy.

4. For the name, replace Untitled with Permitted Audiences.

5. From the Combining Algorithm list, select Unless one decision is permit, the decision will be
deny.

6. Click + Add Rule.

7. For the name, replace Untitled with Audience: https://example.com.

8. From the Effect list, select Permit.

9. Inthe Condition section:

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.audience.
c. From the middle, comparison-type list, select Equals.
d. Inthe final field, enter https://example.com.
10. Expand + Advice and Obligations.

11. Click the Components tab, expand Advice, and drag Unauthorized Audience tothe Advice and
Obligations box.

Note:

Do not click Show Advice and Obligations within the "Audience: https://example.com" rule.

12. Click Save changes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 73

Result
The final configuration should resemble the following image.

[2) Permitted audiences Disabled [] =

+ Appliesto

= Rules (1 total)

Combining Algorithm | Unless one decision is permit, the decision will be deny -

E o Audience: https://example.com

Effect Permit =
= Condition
ALL ANY NONE CLEARALL
E HttpRequest.Access Token.audience - Equals - https://example.com

‘ + Comparison } | + Named Condition I =+ Group

Show "Appliesto" Show Advice and Obligations Show Properties

= Advice and Obligations (1 total)
I ¢ Unauthorized Audience Obligatory [‘=

Testing the audience policy with cURL
Test the audience policy with cURL.

Steps

1. To test that an access token without a specific audience value is rejected, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope":
"email", "client id": "clientl"}'

Result: Successful creation of the audience policy will result in the following.

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"], "status":"403", "scimType":
"invalid token","detail":"The access token was issued for a different
audience."}

2. To test that an access token with an audience value of https://example.com is accepted, run the
following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
'Authorization: Bearer {"active": true, "sub": "user.l", "scope":

"email", "client id": "clientl", "aud": "https://example.com"}'

Result: Successful creation of the audience policy will result in the following.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 74

{"id":"355a133d-58€a-3827-8e8d-b39cf74ddb3e", "meta":
{"resourceType":"Users",
"location":"https://localhost:7443/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},

"schemas": ["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"], "mail":
["user.l@example.com"]}

Tutorial: Creating a policy for role-based access control

This tutorial describes how to create the final policy, which is an access-control rule that can base its
authorization decision on an attribute of the requesting identity, rather than on an access token claim.

About this task

When PingAuthorize Server authorizes a request, an access token validator resolves the subject of the
access token to a System for Cross-domain Identity Management (SCIM) user and populates a policy
request attribute called TokenOwner with the SCIM user's attributes. In this scenario, build a policy around
the employeeType attribute, which must be defined in the Trust Framework.

Steps

1. Goto Trust Framework and click the Attributes tab. Click TokenOwner.
Click + and then Add new Attribute.

For the name, replace Untitled with employeeType.

From the Parent list, select TokenOwner.

In the Resolvers section:

a. Click + Add Resolver.

b. From the Resolver type list, select Attribute and in the Select an Attribute list, specify a
value of TokenOwner.

Click + next to Value Processors and then + Add Processor.

From the Processor list, select JSON Path and enter the value employeeType.

Set the Value type to Collection.

In the Value Settings section:

a. Select the Default Value check box and in the Enter a default value field, enter the value [].

Note:

An empty array is specified as the default value because not all users have an employeeType
attribute. A default value of [] ensures that policies can safely use this attribute to define
conditions.

a s~ b

© © N o

b. From the Type list, select Collection.
10. Click Save changes.

Result
The final attribute configuration should resemble the following image.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 75

> employeeType

Parent okenOwne| -

= Resolvers (1 total)

=+ Add Resolver

= Value Processors (1 total)

Processor JSON Path - employeeType

Value type Collection -

= Value Settings

Defaultvalue j
Type Collection ~ | | Secret O
= Caching
I Cache Strategy Mo Caching -
Next steps

Add a policy that uses the employeeType attribute.

1. Goto Policies # Policies.

2. Highlight SCIM Policy Set and click + and then Add Policy.

3. For the name, replace Untitled with Restrict Intern Access.

4. From the Combining Algorithm list, select Unless one decision is deny, the decision will be
permit.

5. Click + Add Rule.

6. Forthe name, replace Untitled with Restrict access for interns.

7. From the Effect list, select Permit.

8. Inthe Condition section:

a. Click + Comparison.

b. Inthe Select an Attribute list, select TokenOwner.employeeType.
c. From the middle, comparison-type list, select Contains.

d. Inthe Type in constant value field, enter intern.

9. Within the rule, click Show Advice and Obligations and then click the + next to Advice and
Obligations.

10. Click + Add Advice # Custom Advice.

11. Forthe name, replace Untitled with Restrict attributes visible to interns.
12. Select the Obligatory check box.

13. Inthe Code field, enter exclude-attributes.

Copyright ©2024

PingAuthorize | Getting started with PingAuthorize (tutorials) | 76

14. From the Applies To list, select Permit.
15. Inthe Payload field, enter ["description"].
16. Click Save changes.

[2) Restrict Intern Access Disabled [] =

+ Appliesto

= Rules (1 total)

Combining Algorithm | Unless one decision is deny, the decision will be permit -

4 . .
¢ @ Restrictaccess for interns

Effect Permit =

= Condition

ALL ANY NONE CLEAR ALL

E TokenOwner.employeeType = — Contains - intern
‘ =+ Comparison | <+ Named Condition | ‘ + Group ‘

= Advice and Obligations (1 total)

E Restrict attributes visible to interns Obligatory E
y
Code exclude-attributes Applies To Permit -
Payload ["description"]
+ Add Advice

Show "Applies to" Hide Advice Show Properties

Testing the policy with cURL
Test the policy for role-based access control using cURL.

About this task

The PingAuthorize sample user data allows an employeeType attribute but does not populate it with
values for any users.

Confirm that user. 2 cannot read the description attribute, even though the profile scope allows it
by running the following command.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
Bearer {"active": true, "sub": "user.2", "scope": "profile", "client id":
"clientl", "aud": "https://example.com"}'

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 77

The response should be similar to the following response.

{"id":"c9cbfb8c-d915-3de3-8a2c-al0lcOccc6d09", "meta":
{"resourceType" :"Users","location":"https://localhost:7443/
scim/v2/Users/c9cbfb8c-d915-3de3-8a2¢c-a0lcO0ccc6d09"}, "schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"], "uid":
["user.2"],"givenName": ["Billy"],"sn":["Zaleski"]}

Example files

The compressed PingAuthorize Server file at PingAuthorize/resource/policies includes a policy
snapshot and deployment package that contains an example Trust Framework as well as example policies.

Conclusion
In this tutorial, you set scope-based access to SCIM resources.

You also learned:

= Like exclude-attributes used in this tutorial, include-attributes filters which attributes
can be returned to the caller. include-attributes works more like opt-in, while exclude-
attributes works more like opt-out.

= Multiple attributes can apply from multiple rules or even policies. They are combined by PingAuthorize
to include before exclude.

Installing PingAuthorize

As you plan your PingAuthorize dynamic authorization software deployment, review the components to
install as well as the potential deployment methods, architectures, and environments.

Seeing PingAuthorize in action

To quickly see PingAuthorize in action, see Getting started with PingAuthorize (tutorials) on page 17.

Components
Policy Editor

The PingAuthorize Policy Editor gives policy administrators the ability to develop and test data-
access policies.

PingAuthorize Server

Enforces policies to control fine-grained access to data.

REST APIs access data through PingAuthorize Server, which applies the data-access policies to
allow, block, filter, or modify data resources and data attributes.

Deployment methods

You can deploy PingAuthorize in either of the following ways.

Deployment method Recommended for

Docker Server administrators familiar with Docker who want to use orchestration
to manage their environments.

For more information, see Docker deployment on page 83.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 78

Deployment method

Recommended for

Manual

Server administrators familiar with their operating systems who want to
tweak and maintain their environments themselves.

For more information, see Manual installation on page 88.

Implementation architectures

PingAuthorize Server supports the following implementation and data flow architectures for enforcing fine-

grained access to data:

= System for Cross-domain ldentity Management (SCIM) API to datastores
= API security gateway as reverse proxy on page 79

= API security gateway in sideband configuration on page 80

= Policy Decision Point (PDP) APlIs, for non-API use cases

The following sections describe these architectures in more detail.

SCIM API to datastores

The PingAuthorize Server SCIM service provides a REST API for data that is stored in one or more
external datastores, based on the SCIM 2.0 standard. The policy is enforced by the SCIM service. See
SCIM API request and response flow on page 192 for more information.

Copyright ©2024

https://tools.ietf.org/html/rfc7644

PingAuthorize | Installing PingAuthorize | 79

PingAuthorize

—_—
——e

HTTP Client SCIM API
Policy

Information
Point (PIP)

(0=

API security gateway as reverse proxy

You can configure PingAuthorize Server's API security gateway as a reverse proxy to an existing JSON-
based REST API. In this architecture, PingAuthorize Server acts as an intermediary between clients and

existing API services. The policy is enforced by the API security gateway. See API gateway request and
response flow on page 166 for more information.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 80

PingAuthorize

...TO-)

<+ -—

HTTP Client Reverse Proxy

Point (PIP)

Policy | -|
Information .

u

L

API security gateway in sideband configuration

You can configure PingAuthorize Server's API security gateway as an extension to an existing API lifecycle
management gateway, which is commonly known as a sideband configuration. In this architecture, the API
lifecycle management gateway functions as the intermediary between clients and existing API services.

However, API request and response data still flows through PingAuthorize Server to enforce policy. See
API gateway integration on page 179 for more information.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 81

API| Gateway

Integration Kit

&

HTTP Client

TO-)—.-

I <+

PingAuthorize

PDP APIs for non-API use cases

You can implement either of the PingAuthorize Server's PDP APIs to support policy decisions in cases
where you don't need to protect an API resource. See About the Authorization Policy Decision APIs on

page 222 for more information.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 82

Requestor Servlet Container

Policy decision environments

You can configure PingAuthorize Server for either of the following policy decision environments:

Development environment (external)

PingAuthorize Server and the Policy Editor are used together during the development of policies,
with the PingAuthorize Server enforcing policy decisions, and the Policy Editor serving as the
external PDP.

Other pre-production and production environments (embedded)

Policies are developed and deployed to the PingAuthorize Server, which both enforces policy
decisions and serves as the PDP. This configuration supports policy testing in pre-production
environments and live policy decisions in production.

The following sections describe these policy decision environments in more detail.

Development environment

To allow teams to test data-access policies during their development, PingAuthorize Server is configured to
obtain policy decisions from the Policy Editor. To enable this configuration, set the Policy Decision Service
PDP Mode to external.

Note:

The following image shows PingAuthorize Server configured in the Reverse Proxy architecture. The
development environment supports all PingAuthorize implementation and data flow architectures.

As test API requests are proxied through PingAuthorize Server's API security gateway, policy decisions are
obtained from the Policy Editor and are enforced by the API security gateway.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 83

Other pre-production and production environments

The Policy Editor is not a part of so-called "higher" environments. Rather, for these environments, the
policy administrator bundles policies into a deployment package and then directly integrates them with the
PDP. Embedding the policies in the PDP helps to reduce latency in the decision request-response flow. To
enable this configuration, set the Policy Decision Service PDP Mode to embedded.

The Policy Editor can deploy policy deployment packages for integration with the PingAuthorize Server
using one of the following methods:

= Exporting the deployment package as a static file
= Publishing via the Deployment Manager to a cloud package store (AWS S3, Azure)
= Publishing via the Deployment Manager to a file system package store

Note:

The following image shows PingAuthorize Server configured in the Reverse Proxy architecture. Pre-
production and production environments support all PingAuthorize implementation and data flow
architectures.

Docker deployment

Running PingAuthorize Docker containers standardizes your deployments and helps support devops
principles.

For information about deployment methods and architectures, see Installing PingAuthorize on page 77.

Deployment requirements when using Docker

For a PingAuthorize software deployment using Docker devops, you need a supported version of Docker,
the Docker images, and a compatible browser.

Docker
This following version of Docker is supported:
= Docker 20.10.9

Important:

Increase your Docker memory limit to at least 4 GB. To change this setting, go to Docker Dashboard #
Settings # Resources # Advanced.

Containers

Docker images for Ping Identity's on-premise server products are available on Ping Identity Docker
Hub. For information about Docker deployments, visit the Ping Identity DevOps documentation. To start
deploying images, see Get Started.

The following Docker containers are available.

Copyright ©2024

https://hub.docker.com/u/pingidentity/
https://hub.docker.com/u/pingidentity/
https://devops.pingidentity.com/
https://devops.pingidentity.com/get-started/introduction/

PingAuthorize | Installing PingAuthorize | 84

Container Description

Image

pingdataconsole administrative console

Use the administrative console to configure
PingAuthorize.

DockerHub:
PingDataConsole

pingauthorize PingAuthorize Server

The server enforces the policies you define.

DockerHub: PingAuthorize

pingauthorizepap PingAuthorize Policy Editor

Use the Policy Editor to define the policies
that determine access control and data
protection.

DockerHub:
PingAuthorizePAP

pingdirectory PingDirectory

A directory of user information.

DockerHub: PingDirectory

Note:

PingAuthorize does not require PingDirectory.

Note:

Browsers

Only the PingDataConsole, PingAuthorize, PingAuthorize PAP, and PingDirectory software is licensed
under Ping ldentity’s end user license agreement. Any other software components contained in the image
are licensed solely under the terms of the applicable open source/third party license.

Ping Identity accepts no responsibility for the performance of any specific virtualization software and in no
way guarantees the performance or interoperability of any virtualization software with its products.

The PingAuthorize administrative console is compatible with several different web browsers, including:

= Google Chrome
= Mozilla Firefox
= Microsoft Edge

Deploying PingAuthorize Server and Policy Editor using Docker

Instead of manual software installation, you can run Docker images of the
Editor.

About this task

To start the setup process after you obtain the Docker images:

Steps

1. Run the PingAuthorize Server container, pingauthorize.
2. Run the PingAuthorize Policy Editor container, pingauthorizepap.

Copyright ©2024

PingAuthorize Server and Policy

https://hub.docker.com/r/pingidentity/pingdataconsole
https://hub.docker.com/r/pingidentity/pingdataconsole
https://hub.docker.com/r/pingidentity/pingauthorize
https://hub.docker.com/r/pingidentity/pingauthorizepap
https://hub.docker.com/r/pingidentity/pingauthorizepap
https://hub.docker.com/r/pingidentity/pingdirectory

PingAuthorize | Installing PingAuthorize | 85

3. Optional: To configure PingAuthorize with a GUI, run the PingAuthorize administrative console
container, pingdataconsole.

4. Optional: If you need user-level control of the data, set up a user store.

If you use PingDirectory, run the pingdirectory container.

Next steps

Perform additional configuration steps.

Deploying PingAuthorize Server using Docker
Perform a PingAuthorize Server deployment by running a Docker image.

About this task
The following command uses the ~/ .pingidentity/config environment file to configure common
environment variables. See https://devops.pingidentity.com/get-started/introduction.

Steps
= Run the following command.

docker run --network=<network name> \
--env-file ~/.pingidentity/config \
--name pingauthorize \
--publish 1389:1389 \
--publish 8443:1443 \
--detach \
--env SERVER PROFILE_URL=https://github.com/pingidentity/pingidentity-server-profiles.git \
--env SERVER PROFILE PATH=getting-started/pingauthorize \
--tmpfs /run/secrets \
pingidentity/pingauthorize:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub.

Note:

= For proper communication between containers, create a Docker network using a command, such
as docker network create --driver <network type> <network name>, and then
connect to that network with the ~-network=<network name> option.

= You can use server profiles to automate deployment of PingAuthorize Server. For more
information, see Deployment automation and server profiles on page 361.

Sighing on to the administrative console (Docker deployment)
After you deploy the server by running the Docker image, access the administrative console to verify the
server configuration and manage the server settings.

About this task

When using Docker containers, the containers must be on the same Docker network to communicate
properly.

Steps

1. Start the PingDataConsole.
The following command uses the ~/ .pingidentity/config environment file to configure common
environment variables. See https://devops.pingidentity.com/get-started/introduction.

docker run \
-—env-file ~/.pingidentity/config \

Copyright ©2024

https://devops.pingidentity.com/get-started/introduction
https://hub.docker.com/r/pingidentity/pingauthorize
https://devops.pingidentity.com/get-started/introduction

PingAuthorize | Installing PingAuthorize | 86

-—-name pingdataconsole \

--detach \

-—publish 5443:8443 \

-—tmpfs /run/secrets \
pingidentity/pingdataconsole: <TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub (https://hub.docker.com/r/pingidentity/pingdataconsole).

2. Sign on using the information in the following table.

Description Details
URL https://localhost:${HTTPS PORT}/console/login
Detalils to enter at login Server: pingauthorize:1636

Username: administrator

Password: 2FederateMOre

Note:

If submitting the form results in a "Server unavailable" error,
wait longer for the containers to reach an equilibrium "healthy"
state, as described in Verifying proper startup on page 19.

Deploying PingAuthorize Policy Editor using Docker
Deploy PingAuthorize Policy Editor by running its Docker image. Using Docker devops enables the
automated policy database update feature with mounted volumes.

About this task

When running the Ping Identity DevOps pingauthorizepap Docker container, you can use the following
commands to ensure that the policy database is on the mounted volume in preparation for future versions
of the image. The commands:

= Run apingauthorizepap Docker container named pap on host port 8443.

= Usethe ~/.pingidentity/config environment file to configure common environment variables.
See https://devops.pingidentity.com/get-started/introduction.

= Bind mount a customized options.yml file named custom-options.yml to the server root using
the server profile capability. The host system server-profile folder must contain instance/
custom-options.yml for this example to work correctly. See https://devops.pingidentity.com/
reference/config/.

= Setthe Ping_Options_File environment variable to tell setup to use custom-options.yml.

For an H2 database, the command:

= Bind-mounts a volume that maps a policy database to /opt/out/Symphonic.mv.db.

= Sets the PING_H2_ FILE environment variable to tell setup to use /opt/out/Symphonic.mv.db
for the policy database. The environment variable must exclude the .mv . db extension.

For a PostgreSQL database, the command sets environment variables to provide setup with username,
password, host, and port database credentials.

Note:

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingdataconsole
https://devops.pingidentity.com/get-started/introduction
https://devops.pingidentity.com/reference/config/
https://devops.pingidentity.com/reference/config/

PingAuthorize | Installing PingAuthorize | 87

The Ping Identity DevOps Docker image documentation is frequently updated as new features
are released. For the most recent instructions about running the Docker images, see https://
devops.pingidentity.com/.

Steps

= Runthe pingauthorizepap Docker container.
Choose from:

= If you are using an H2 database, run the following command.

$ docker run --network=<network name> --name pap -p 8443:1443 \
--env-file ~/.pingidentity/config \
--volume /home/developer/pap/server-profile:/opt/in/ \
—--env PING OPTIONS FILE=custom-options.yml \
--volume /home/developer/pap/Symphonic.mv.db:/opt/out/
Symphonic.mv.db \
--env PING H2 FILE=/opt/out/Symphonic \
pingidentity/pingauthorizepap: <TAG>

Note:

For proper communication between containers, create a Docker network using a command such
as docker network create --driver <network type> <network name>, and then
connect to that network with the ~-network=<network name> option.

= If you are using a PostgreSQL database, run the following command.

$ docker run --network=<network name> --name pap -p 8443:1443 \
-—env-file ~/.pingidentity/config \
--volume /home/developer/pap/server-profile:/opt/in/ \
-—env PING OPTIONS FILE=custom-options.yml \
--env PING DB APP USERNAME="<username>" \
—--env PING DB APP PASSWORD="<password>" \
-—env
PING DB CONNECTION STRING="jdbc:postgresqgl://<host>:<port>/<database>"
\
pingidentity/pingauthorizepap:<TAG>

Note:

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub.

Post-setup steps (Docker deployment)
After you successfully set up the PingAuthorize Policy Editor, you must start the server and then configure
PingAuthorize Server to use the Policy Editor as its policy decision point (PDP).

Note:

The containers must be on the same Docker network to communicate properly.

Sign on to the Policy Editor. For more information, see Signing on to the PingAuthorize Policy Editor
on page 108 and import a policy snapshot. You can find a set of default policies in the resource/
policies/defaultPolicies.SNAPSHOT file.

Copyright ©2024

https://devops.pingidentity.com/
https://devops.pingidentity.com/
https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Installing PingAuthorize | 88

To configure PingAuthorize Server to use the Policy Editor, use dsconfig or the administrative console to
create a Policy External Server to represent the Policy Editor, then assign the Policy External Server to the
Policy Decision Service and configure it to use external PDP mode. Also, set the Trust Framework Version
to the current version, v2.

Consider the following example. Assume a container named pingauthorize and that no files are needed
from the file system. The following commands run dscon£fig from within the container.

docker exec pingauthorize /opt/out/instance/bin/dsconfig create-external-server \
--server-name "Policy Editor" \
--type policy \
--set "base-url:https://<pap-hostname>:<pap-port>" \
--set "shared-secret:2FederateMOre" \
—--set "branch:Default Policies"

docker exec pingauthorize /opt/out/instance/bin/dsconfig set-policy-decision-service-prop \
--set pdp-mode:external \

--set "policy-server:Policy Editor" \
--set trust-framework-version:v2

In the example, the base URL consists of the host name and port chosen for the Policy Editor during setup.
The shared secret value is 2FederateMOre by default. The branch name corresponds to the branch
name that you chose when importing your policy snapshot.

Next steps
After installed, complete some configuration steps and then start developing policies to enforce fine-
grained access to data.

Consider performing the following next steps.
= Configure access token validation.

For more information, see Configure access token validation on page 355.
= Configure a user store.

For more information, see User store configuration on page 354
= Sign on to the administrative console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 166.
= Sign on to the administrative console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 192.
= Sign on to the PingAuthorize Policy Editor to create policies.

For more information, see the PingAuthorize Policy Administration Guide.

Manual installation

Instead of running Docker images, you can deploy the PingAuthorize software in a manual install mode
using . zip files.

For information about deployment methods and architectures, see Installing PingAuthorize on page 77.

Before you install manually

You must prepare your computing environment by installing certain system requirements before a manual
PingAuthorize software installation.

The following components are required to install PingAuthorize:

= Supported Linux or Windows platform
= Valid license key
= Java

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 89

The following sections describe these prerequisites in more detail.

System requirements
Ensure that your computing environment meets the system requirements for the PingAuthorize dynamic
authorization management software.

Ping Identity has qualified the configurations in this section and has certified that they are compatible with
the product. PingAuthorize supports differences in operating system versions, service packs, and other
platform variations until the platform or other required software is suspected of causing issues.

Platforms
You can run PingAuthorize on a variety of different platforms and operating systems, including:

= Amazon Linux 2

= Canonical Ubuntu 18.04 LTS and 20.04 LTS

= CentOS Linux 7.7 and 8.1

= Microsoft Windows Server 2016 and 2019 (Policy Editor not supported)
= Oracle Linux 7.9, 8.2, and 8.4

= Red Hat Enterprise Linux ES 7.9, 8.1, 8.2, and 8.4

= SUSE Linux Enterprise 12 SP5 and 15 SP1

Note:

This product was tested with the default configurations of all operating system components. Customized
implementations or third-party plugins could affect the deployment of this product.

Java Runtime Environment
Make sure your Java Runtime Environment (JRE) meets the system requirements for PingAuthorize:

= Amazon Corretto 8
= OpenJDK 8 and 11, obtained from AdoptOpenJDK
= Oracle Java SE Development Kit 8 and 11 LTS

Note:

The Ping Identity Java Support Policy applies to your JRE.

Browsers
The PingAuthorize administrative console is compatible with several different web browsers, including:

= Google Chrome
= Mozilla Firefox
= Microsoft Edge

Databases

The Policy Editor persists its policies, trust framework, and versioning data in a policy database. By default,
this is an embedded H2 file-based database. Optionally, you can configure the Policy Editor to use a
PostgreSQL database.

For more information, see Setting up a PostgreSQL database on page 99.

Supported databases:

Copyright ©2024

https://adoptopenjdk.net/
https://support.pingidentity.com/s/article/PingIdentity-Java-Support-Policy

PingAuthorize | Installing PingAuthorize | 90

= H2
= PostgreSQL 11.2 and 12.1

About license keys
License keys are required to install, update, and renew all Ping products.

How to obtain a license

To obtain a license key, contact your account representative or use the Ping ldentity licensing portal.

When do you need a license

A license is required for setting up a new single server instance and can be used site-wide for all servers
in an environment. Additionally, you must obtain a new license when updating a server to a new major
version, such as when upgrading from 7.3 to 8.0. When cloning a server instance with a valid license, you
do not need a new license.

Note:

The update process displays a prompt for a new license.

How to specify a license
= Specify a license at setup
You have these options:

= Usethe --1licenseKeyFile <path-to-license> option with setup.

= Copy the license file to the PingAuthorize Server root directory and then run the setup tool. The
tool discovers the license file.

= Specify a license after setup

Use the administrative console or dsconfig (in the Topology section, select License).

Note:

Placing the new license file in the PingAuthorize Server root directory does not work in this case.

For information about how to specify the license with the Policy Editor, see Installing the PingAuthorize
Policy Editor noninteractively on page 102.

How to view the license status
To view the details of a license, including its expiration, you have these options:

= The server's status tool
= The administrative console's Status page (On the Monitors tab, search for License.)

License expiration
The server provides a notification as the expiration date approaches.

Before a license expires, obtain a new one and install it by using dsconfig or the administrative console.

Note:

An expiring license causes alerts and alarms but does not affect the functionality of PingAuthorize Server.

Copyright ©2024

https://www.pingidentity.com/en/account/request-license-key.html

PingAuthorize | Installing PingAuthorize | 91

However, PingAuthorize Policy Editor fails to start if the license has expired.

Creating a Java installation dedicated to PingAuthorize
Create a Java installation for PingAuthorize Server using the Java Development Kit (JDK).
About this task

PingAuthorize Server requires Java for 64-bit architectures. Even if Java is already installed on your
system, you should create a separate Java installation for PingAuthorize Server. This setup ensures that
updates to the system-wide Java installation do not inadvertently impact PingAuthorize Server.

Note:

This setup requires that you install the JDK, rather than the Java Runtime Environment (JRE).

Steps
1. Download and install a JDK.

2. Setthe JAVA HOME environment variable to the Java installation directory path.
3. Add the bin directory to the PATH environment variable.

Preparing a Linux environment
For Linux computing environments, complete the required tasks described in this section before initiating a
PingAuthorize Server installation.

About this task

Complete the following tasks before you install PingAuthorize Server in a Linux environment:

Steps

Set the file descriptor limit

Set the maximum user processes

Disable file system swapping

Manage system entropy

5. Enable the server to listen on privileged ports

A wbdpE

Setting the file descriptor limit
PingAuthorize Server allows for an unlimited number of connections. The following steps describe how to
manually increase the file descriptor limit on the operating system.

About this task

Note:

If the operating system relies on systemd, see the Linux operating system documentation for instructions
on setting the file descriptor limit.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 92

Steps

Copyright ©2024

1. Display the current £s.file-max limit of the system.

sysctl fs.file-max

The £s.file-max limit is the maximum server-wide file limit you can set without tuning the kernel
parameters in the proc file system.

Edit the /etc/sysctl.conf file.

If there is a line that sets the value of the fs. file-max property, make sure that its value is set to

at least 1.5 times the per-process limit. If there is no line that sets a value for this property, add the
following to the end of the file (100000 is just an example here; specify a value of at least 1.5 times the
per-process limit).

fs.file-max = 100000

Display the current hard limit of the system.
ulimit -aH

The open files (-n) value is the maximum number of open files per process limit.
Verify that its value is set to at least 65535.
Editthe /etc/security/limits.conf file.

If the file contains lines that set the soft and hard limits for the number of file descriptors, verify that
the values are set to 65535. If the properties are absent, add the following lines to the end of the file,
before #End of file, inserting a tab between the columns.

£ soft nofile 65535
25 hard nofile 65535

Note:

The number of open file descriptors is limited by the physical memory available to the host. You can
determine this limit with the following command.

cat /proc/sys/fs/file-max

If the £ile-max value is significantly higher than the 65535 limit, consider increasing the file
descriptor limit to between 10% and 15% of the system-wide file descriptor limit. For example, if the
file-max value is 810752, you could set the file descriptor limit to 100000. If the £ile-max value is
lower than 65535, the host is likely not sized appropriately.

Reboot the server.
Verify that the file descriptor limit is set to 65535.

ulimit -n
For RedHat 7 or later, modify the /etc/security/limits.d/20-nproc.conf file to set limits for
the open files and max user processes.

Add or edit the following lines if they do not already exist.

soft nproc 65536
soft nofile 65536
hard nproc 65536
hard nofile 65536

X X% o %

PingAuthorize | Installing PingAuthorize | 93

root soft nproc unlimited

Next steps

After the operating system limit is set, use one of the following methods to configure the number of file
descriptors that the server uses:

- Use aNUM_FILE DESCRIPTORS environment variable.

= Create a config/num-file-descriptors file with a single line, such as
NUM FILE DESCRIPTORS=12345.

If these values are not set, the default value of 65535 is used.

Note:

This optional step ensures that the server shuts down safely before it reaches the file descriptor limit.

Setting the maximum user processes
Set the maximum user processes higher than the default to improve memory when running multiple
servers on a machine.

About this task

On some Linux distributions, such as RedHat Enterprise Linux (RHEL) Server/CentOS 6.0 or later, the
default maximum number of user processes is set to 1024, which is considerably lower than the same
parameter on earlier distributions, such as RHEL/CentOS 5.x. The default value of 1024 leads to some
Java virtual machine (JVM) memory errors when running multiple servers on a machine, due to each Linux
thread being counted as a user process.

At startup, PingAuthorize Server attempts to raise this limit to 16383 if the value reported by ulimit is
less than that number. If the value cannot be set, an error message is displayed. In such a scenario, you
must explicitly set the limitin /etc/security/limit.conf, as the following example shows.

* soft nproc 100000
* hard nproc 100000

Steps

= Set the 1683 value in the NUM_USER_PROCESSES environment variable.
= Setthe 1683 value in config/num-user-processes.

Disabling file system swapping
To disable the file system swapping in PingAuthorize, use vm. swappiness.

About this task

Disable all performance-tuning services, like tuned. If performance tuning is required, perform the
following steps to set vm. swappiness.

Steps

1. Clone the existing performance profile.

2. Add vm.swappiness = 0 tothe new profile's tuned.conf filein /usr/1ib/tuned/
profilename/tuned.conf.

3. Select the updated profile by running tuned-adm profile customized profile.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 94

Managing system entropy
Entropy is used to calculate random data that the system uses in cryptographic operations.

About this task

Some environments with low entropy might experience intermittent performance issues with SSL-based
communication, such as certificate generation. This scenario is more typical on virtual machines but can
also occur in physical instances. For best results, monitor the value of kernel.random.entropy avail
in the configuration file /etc/sysctl.conf.

Note:

To increase system entropy on a Windows system, move the mouse pointer in circles or type characters
randomly into an empty text document.

Steps

= On a UNIX or Linux system, ensure that rng-tools is installed and run the following command.

sudo rngd -r /dev/urandom -o /dev/random

= To check the level of a system entropy on a UNIX or Linux system, run the following command.

cat /proc/sys/kernel/random/entropy avail

Note:

Values smaller than 3200 are considered too low to generate a certificate and might cause the system
to hang indefinitely.

Enabling the server to listen on privileged ports
To enable PingAuthorize Server to listen on privileged ports as a non-root user, grant capabilities to
specific commands.

About this task

Linux systems provide capabilities that grant specific commands the ability to complete tasks that are
normally permitted only by a root account. Instead of granting an ability to a specific user, capabilities are
granted to a specific command. For convenience, you might enable the server to listen on privileged ports
while running as a non-root user.

Steps
= To assign capabilities to an application, run the setcap command.

For example, the cap_net_bind_service capability enables a service to bind a socket to privileged
ports, which are defined as ports with numbers less than 1024. If Java is installed in /ds/java, and if

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 95

the Java command to run the server is /ds/java/bin/java, then you can grant the Java binary the
cap_net_bind_service capability by running the following command.

$ sudo setcap cap net bind service=+eip /ds/java/bin/java

The Java binary requires an additional shared library, 1ibj11. so, as part of the Java installation.

Because additional limitations are imposed on where the operating system looks for shared libraries
to load for commands with assigned capabilities, you must create the file /etc/1d.so.conf.d/
1libjli.conf with the path to the directory that contains the 1ibj1li. so file.

Example: For example, if the Java installation is located in /ds/java, the contents must be as shown
in this example.
/ds/java/lib/amd64/j11i

Run the following command for the change to take effect.

$ sudo ldconfig -v

Obtaining the installation packages
To begin the software installation process for PingAuthorize, obtain the server component's .zip installation
packages.

About this task

The PingAuthorize distribution consists of two compressed files, one for each of the following server
components:

= PingAuthorize Server
= PingAuthorize Policy Editor

To start the installation process, complete the following steps.

Steps

1. Obtain the latest compressed release bundles from Ping Identity.
2. Expand the release bundles into the folders of your choice.

Installing the server and the Policy Editor manually
Use manual install mode for the PingAuthorize Policy Editor and PingAuthorize Server installations.

About this task

After you obtain the installation files, start the setup process.

Steps

1. Install PingAuthorize Server.
2. Install PingAuthorize Policy Editor.
3. Perform additional configuration steps.

The following sections describe these installation and configuration steps.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 96

Installing the server manually
Choose your manual install mode for PingAuthorize Server and then perform the server installation.

Steps

1. Read about the server installation modes and decide which mode you want to use.
2. Complete the steps for your chosen mode, interactive or noninteractive.

About the server installation modes
There are several different installation modes for PingAuthorize Server.

PingAuthorize Server provides the following tools to help install and configure the system:

= The setup tool performs the initial tasks needed to start PingAuthorize Server, including configuring
Java virtual machine (JVM) runtime settings and assigning listener ports for the PingAuthorize Server's
HTTP services.

= The create-initial-config tool configures connectivity between a System for Cross-domain
Identity Management (SCIM) 2 user store and PingAuthorize Server. During the process, the
prepare-external-store tool prepares each PingDirectory Server to serve as a user store by
PingAuthorize Server. Configuration can be written to a file to use for additional installations.

Note:

Using create-initial-config is optional. However, if you do not use it, you do not get the user's
profile (the requester's attributes). For more information, see User profile availability in policies on
page 288.

= After the initial setup is finished, you can use the dsconfigtool and the administrative console to
perform additional configuration.

Tip:

You can use server profiles to automate deployment of PingAuthorize Server. For more information, see
Deployment automation and server profiles on page 361.

To install a server instance, run the setup tool in one of the following modes:
Interactive command-line mode

Prompts for information during the installation process. To run the installation in this mode, use the
setup --cli command.

Noninteractive command-line mode

Designed for setup scripts to automate installations or for command-line usage. To run the
installation in this mode, setup must be run with the --no-prompt option as well as the other
arguments required to define the appropriate initial configuration

You can perform all installation and configuration steps while signed on to the system as the user or the
role under which PingAuthorize Server will run.

Installing the server interactively

Run the setup tool, which prompts you interactively for the information that it needs to install
PingAuthorize Server.

Before you begin

Be prepared to provide the following information:

= The location of a valid license file

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 97

The name and password for an administrative account, which is also called the root user distinguished
name (DN)

An available port for PingAuthorize Server to accept HTTPS requests

An available LDAPS port for PingAuthorize Server to accept administrative requests

Information related to the server's connection security, including the location of a keystore that
contains the server certificate, the nickname of that server certificate, and the location of a truststore

The amount of memory to reserve for usage by the Java virtual machine (JVM)
A unigue instance name for the server

Steps
1. Runthe setup command.
Example:
$./setup

2.

To start and stop PingAuthorize Server, use the start-server and stop-server commands,
respectively.

For additional options, see Starting PingAuthorize Server on page 159.

Installing the server noninteractively
For an automated installation, run the setup tool in noninteractive, command-line mode.

Before you begin
Be prepared to provide the following settings using command-line arguments:

The location of a valid license file

The name and password for an administrative account, which is also called the root user distinguished
name (DN).

An available port for PingAuthorize Server to accept HTTPS requests

An available LDAPS port for PingAuthorize Server to accept administrative requests

Information related to the server's connection security, including the location of a keystore that
contains the server certificate, the nickname of that server certificate, and the location of a truststore

The amount of memory to reserve for usage by the Java virtual machine (JVM)
A unique instance name for the server

Steps

Run the setup tool to install the server noninteractively.

For more information about the available setup options, run setup with the --help argument, which
displays a complete list of setup options, along with examples.

$./setup --help

Example
The following example sets up PingAuthorize with these settings:

Copyright ©2024

LDAP port 8389

LDAPS port 8636

HTTPS port 8443

An automatically generated self-signed server certificate
1 GB of memory reserved for the server's JVM

A unique server instance name of pingauthorizel

PingAuthorize | Installing PingAuthorize | 98

= A server location of Austin

$./setup \
--cli --no-prompt --acceptLicense \
--licenseKeyFile <path-to-license> \
--rootUserDN "cn=directory manager" \
--rootUserPassword <your-password> \
--ldapPort 8389 --ldapsPort 8636 \
--httpsPort 8443 \
-—-generateSelfSignedCertificate \
--maxHeapSize 1g \
--instanceName pingauthorizel \
--location Austin

Signing on to the administrative console (manual installation)
After a manual software installation, access the administrative console to verify the server configuration
and manage the server settings.

Steps
1. To access the administrative console, go to https://<host>:<port>/console/login.

The default port is 8443.

2. To sign on to the administrative console, use the initial root user distinguished name (DN) and root
user password specified during setup.

The default DN is cn=Directory Manager

Installing the PingAuthorize Policy Editor manually
Choose the database for your fine-grained access control use case, resources, and computing
environment and install the PingAuthorize Policy Editor.

About this task

You can install the PingAuthorize Policy Editor in one of two ways: interactively or noninteractively.

Steps

1. Choose the database to use:
Choose from:

= H2: The default embedded database.
= PostgreSQL: This is optional and requires additional configuration.
2. Optional: If you are using a PostgreSQL database, set up the database.
For more information, see Setting up a PostgreSQL database on page 99.

3. Install the PingAuthorize Policy Editor:
Choose from:

= Interactive: The setup tool prompts you for information during the installation process.

For more information, see Installing the PingAuthorize Policy Editor interactively on page 99.

= Noninteractive: Automated installation allows more control over configuration. If you are using a
PostgreSQL database, you must use this mode.

For more information, see Installing the PingAuthorize Policy Editor noninteractively on page
102.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 99

Setting up a PostgreSQL database
To set up a PostgreSQL database for your attribute-based access control policies, create the database and
a user role and add tables and privileges.

About this task

If you're using a PostgreSQL database instead of the default H2 database, you must set up the new
database before you install the Policy Editor. If you're using the default H2 database, you don't need to
complete this setup.

Steps

1. Create the database.
Example:

In this example, the command creates a database named pap using the postgres super user.

[postgres] createdb pap
2. Create a user role for the application to use.
Example:

In this example, the command creates a user named pap_user.

[postgres] createuser —--pwprompt pap user

3. Add tables and grant privileges to the application user.

PingAuthorize provides DDL scripts to create the necessary schema. For the scripts and more details,
go to https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql.

Next steps
Configure the Policy Editor to use the PostgreSQL database:

= To configure a Docker container, see Installing PingAuthorize Policy Editor using Docker.
= To configure a manual installation, see Installing the PingAuthorize Policy Editor noninteractively.

Installing the PingAuthorize Policy Editor interactively
You can run the PingAuthorize Policy Editor setup command interactively in CLI install mode.

Before you begin
You must have the following information:

= The location of a valid license file
= An available port for the PingAuthorize Policy Editor to accept HTTPS requests

About this task

The setup tool prompts you interactively for the information that it needs.

Note:

You cannot configure some setup options when installing the PingAuthorize Policy Editor interactively,
such as PostgreSQL database configuration. For more information, see Installing the PingAuthorize Policy
Editor noninteractively on page 102.

Copyright ©2024

https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql

PingAuthorize | Installing PingAuthorize | 100

Steps

1. Choose the authentication mode for the PingAuthorize Policy Editor:
Choose from:

= Demo mode: Configures the PingAuthorize Policy Editor to use form-based authentication with
a fixed set of credentials. Unlike OpenID Connect (OIDC) mode, this mode doesn't require an
external authentication server. However, it is inherently insecure and should only be used for
demonstration purposes.

= OIDC mode: Configures the PingAuthorize Policy Editor to delegate authentication and sign-on
services to a PingFederate OIDC provider.

In OIDC mode, you must provide the following additional information:

= The host name and port of an OIDC provider
= Information related to the server's connection security, including the location of a keystore that
contains the server certificate, the nickname of that server certificate, and the location of a

trust store

Note:
To use PingAuthorize Policy Editor with other OIDC providers, such as PingOne, see Installing the
PingAuthorize Policy Editor noninteractively on page 102.

2. Run the setup command.

Note:

If you don't want to use the default database credentials, see Setting database credentials at initial
setup on page 251.

3. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingAuthorize, under External Servers # Policy External Server #
Shared Secret.
4. To start the Policy Editor, or policy administration point (PAP), run bin/start-server.

The Policy Editor runs in the background, so you can close the terminal window in which it was started
without interrupting it.

Next steps

1. Complete the steps in Post-setup steps (manual installation) on page 107.
2. Consider additional configuration options in Specifying custom configuration with an options file on
page 238.

Example: Installing and configuring the PingAuthorize Policy Editor
This tutorial describes how to install an instance of the PingAuthorize Policy Editor.

About this task

Note:

These installation instructions are for tutorial purposes. They will only provide a limited install.

Steps
1. Extract the contents of the compressed PingAuthorize-PAP distribution file.

Copyright ©2024

Change the directory to PingAuthorize-PAP.

PingAuthorize | Installing PingAuthorize | 101

To configure the application, run the . /bin/setup script.

Answer the on-screen questions.

For the following questions, use the recommended answers provided.

Question

Answer

How would you like to configure the Policy
Editor?

Use Quickstart to set up a demo server with
credentials admin/password123 and to use a
self-signed certificate for SSL

On which port should the Policy Editor listen
for HTTPS communications?

You can use any unused port here, but most of
the examples in this guide assume that port 9443
is used for the PingAuthorize Policy Editor.

Enter the fully qualified host name or IP
address that users’ browsers will use to
connect to this GUI?

Unless you are testing on localhost, ensure
that the provided API URL uses the public DNS
name of the PingAuthorize Policy Editor server as

shown in the following example.

pap.example.com

5. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingAuthorize, under External Servers # Policy External Server #
Shared Secret.

6. To start the Policy Editor, or policy administration point (PAP), run bin/start-server.
The Policy Editor runs in the background, so you can close the terminal window in which it was started
without interrupting it.

Result

Your demo configuration should resemble the following example.

[/opt/PingAuthorize-PAP]$ bin/setup

Please enter the location of a valid PingAuthorize with Symphonic license file
[/opt/PingAuthorize-PAP/PingAuthorize.lic]: /opt/PingAuthorize/PingAuthorize.lic

PingAuthorize Policy Editor

How would you like to configure the Policy Editor?

1) Quickstart (DEMO PURPOSES ONLY): This option configures the server with a form
based authentication and generates a self-signed server certificate

2) OpenID Connect: This option configures the server to use an OpenID Connect
provider such as PingFederate

3) Cancel the setup

Enter option [1]: 1

On which port should the Policy Editor listen for application HTTPS communications? [9443]: 9443
Enter the fully qualified host name or IP address that users' browsers will use to

connect to this GUI [centos.localdomain]: pap.examplecom

On which port should the Policy Editor listen for administrative HTTPS communications? [9444]:

9444

Would you like to enable periodic policy database backups? (yes / no) [yes]: yes

Enter the backup schedule as a cron expression [0OOO0 * * 2]: 0

@@ = & P

(defaults to daily at midnight):

Setup Summary

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 102

Host Name: pap.example.com

Server Port: 9443

Secure Access: Self-signed certificate
Admin Port: 9444

Periodic Backups: Enabled

Backup Schedule: © @0 O % = 2

Command-line arguments that would set up this server non-interactively:
setup demo --hostname pap.example.com --adminPort 9444 --port 9443 --certNickname server-
cert \
--licenseKeyFile /opt/PingAuthorize/PingAuthorize.lic \
--backupSchedule '0 0 0 * * ?' --pkcsl2KeyStorePath config/keystore.pl2 \
--generateSelfSignedCertificate

What would you like to do?
1) Set up the server with the parameters above
2) Provide the setup parameters again
3) Cancel the setup

Enter option [1]:

Setup completed successfully

Please configure the following values

PingAuthorize Server - Policy External Server

Base URL: https://pap.example.com: 9443
Shared Secret: 7Ted6£f52d6e71411ca%9e58£9567c7de2e
Trust Manager Provider: Blind Trust

Please start the server by running bin/start-server

In this example, the PingAuthorize Policy Editor is now running and listening on port 9443.

Next steps
To sign on to the interface, go to https://<host>:9443. The default credentials are admin and
passwordl23.

Note:

Use the default user name and password sign on credentials for demo and testing purposes only, such as
this initial walk-through. To configure the PingAuthorize Policy Editor for PingFederate OpenlD Connect
(OIDC) single sign-on (SSO), see Installing the PingAuthorize Policy Editor noninteractively on page 102.

Installing the PingAuthorize Policy Editor noninteractively
For an automated software installation, run PingAuthorize Policy Editor setup in the noninteractive CLI
install mode.

About this task

Note:

You must run setup in noninteractive command-line mode instead of interactive mode if you need to do any
of the following:

= Configure the Policy Editor with a policy configuration key.
= Configure a key store for a policy information provider.

= Configure a trust store for a policy information provider.

= Customize the Policy Editor’'s logging behavior.

= Configure the Policy Editor for a PostgreSQL database.

= Configure the Policy Editor to present an existing SSL certificate instead of generating a self-signed
certificate.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 103

For more information, see Specifying custom configuration with an options file on page 238.

Steps

1. Optional: If you choose to use a PostgreSQL policy database, you must set up the database before
you install the Policy Editor.

After you set up your PostgreSQL policy database, be prepared to provide the following information
when installing the Policy Editor:

= PostgreSQL Java Database Connectivity (JDBC) connection string, with the host, port, and
database name
= The PostgreSQL user and password for the application to use when accessing the database

2. Choose the authentication mode for the PingAuthorize Policy Editor:
Choose from:

= Demo mode: Configures the PingAuthorize Policy Editor to use form-based authentication with
a fixed set of credentials. Unlike OpenlID Connect (OIDC) mode, this mode doesn't require an
external authentication server. However, it's inherently insecure and should only be used for
demonstration purposes.

= OIDC mode: Configures the PingAuthorize Policy Editor to delegate authentication and sign-on
services to an OIDC provider, such as PingFederate.

If you choose OIDC mode, you must provide the host name and port of an OIDC provider or its
base URL.

Note:

If you don't use the setup tool to generate a self-signed certificate, you must also provide
information related to the PingAuthorize Policy Editor's connection security, including the location
of a keystore that contains the server certificate and the nickname of that server certificate.

If the OIDC provider presents a certificate that is not trusted by the Policy Editor's JRE, do one of
the following:

= Add the certificate to the JRE trust store. For details, see Configuring PingFederate as an
OIDC provider for PingAuthorize on page 114.

= Disable certificate validation by starting the Policy Editor with the
PING_OIDC_TLS_VALIDATION=NONE environment variable. See the tabs below for
examples.

Tip:

The setup tool's --help option displays the options available for a noninteractive installation.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 104

3. Run the correct command based on your needs (see the tabs below for examples of the setup
command in different authentication modes):

Note:

If you don't want to use the default database credentials for your H2 policy database, see Setting
database credentials at initial setup on page 251.

Choose from:

= To see the general options for running setup:

$ bin/setup —--help

= To see the options for running setup in demo mode:

$ bin/setup demo —--help

= To see the options for running setup in OIDC mode:

$ bin/setup oidc --help

4. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingAuthorize, under External Servers # Policy External Server #
Shared Secret.

5. To start the Policy Editor, or policy administration point (PAP), run bin/start-server.

The Policy Editor runs in the background, so you can close the terminal window in which it was started
without interrupting it.

Next steps
Click the following tabs for examples of the setup command in different authentication modes.

1. After you complete setup, see Post-setup steps (manual installation) on page 107.
2. Consider additional configuration options in Specifying custom configuration with an options file on
page 238.

Example: Set up the PingAuthorize Policy Editor in OIDC mode (PingFederate)
Use this example as a reference to set up the PingAuthorize Policy Editor for sign-ons using a
PingFederate OpenID Connect (OIDC) provider.

$ bin/setup oidc \
--oidcHostname <ping-federate-hostname> \
--oidcPort <ping-federate-port> \
--clientId pingauthorizepolicyeditor \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
—--licenseKeyFile <path-to-license>

The Policy Editor uses the provided OIDC host name and OIDC to query the PingFederate server’s
autodiscovery endpoint for the information it needs to make OIDC requests. The provided client ID
represents the Policy Editor and must be configured in PingFederate.

The Policy Editor can skip hostname verification and accept self-signed SSL certificates from the OIDC
provider.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 105

This example uses the PING_OIDC_TLS_VALIDATION environment variable to set up the Policy Editor to
handle sign-ons for a provider using a self-signed certificate.

$ env PING OIDC TLS VALIDATION=NONE bin/setup oidc \
--oidcHostname <ping-federate-hostname> \
--oidcPort <ping-federate-port> \
--clientId pingauthorizepolicyeditor \
-—-generateSelfSignedCertificate \
-—-decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
—-licenseKeyFile <path-to-license>

For more information about configuring PingFederate, see Configuring an OIDC provider for single sign-on
requests from PingAuthorize on page 110.

Example: Set up the PingAuthorize Policy Editor in OIDC mode (generic OIDC provider)
This example sets up the PingAuthorize Policy Editor for sign-ons using an arbitrary OpenID Connect
(OIDC) provider.

This example departs from the PingFederate example by specifying the OIDC provider’s base URL, rather
than a host name and port. This can be useful if the OIDC provider's autodiscovery and authorization
endpoints include an arbitrary prefix, such as a customer-specific environment identifier.

$ bin/setup oidc \
--oidcBaseUrl https://auth.example.com/9595f417-a117-3f24-a255-5736ab01f543/auth/ \
—--clientId 7cb9f2c9-c366-57e0-9560-db2132b2d813 \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
--adminPort <admin-port> \
--licenseKeyFile <path-to-license>

The Policy Editor uses the provided OIDC base URL to query the OIDC provider’s autodiscovery endpoint
for the information it needs to make OIDC requests. The provided client ID represents the Policy Editor and
must be configured in the OIDC provider as well.

The Policy Editor can skip hostname verification and accept self-signed SSL certificates from the OIDC
provider.

This example uses the PING_OIDC_TLS_VALIDATION environment variable to set up the Policy Editor to
handle sign-ons for a provider using a self-signed certificate.

$ env PING _OIDC_TLS VALIDATION=NONE bin/setup oidc \
--oidcBaseUrl https://auth.example.com/9595f417-a117-3f24-a255-5736ab01f543/auth/ \
—--clientId 7cb9f2c9-c366-57e0-9560-db2132b2d813 \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
--adminPort <admin-port> \
--licenseKeyFile <path-to-license>

For more information about configuring an OIDC provider, see Configuring an OIDC provider for single
sign-on requests from PingAuthorize on page 110.

Example: Set up the PingAuthorize Policy Editor in demo mode
This example sets up the PingAuthorize Policy Editor in demo mode with an automatically generated self-
signed server certificate.

After completing setup, the Policy Editor will accept sign-ons using the username admin and the password
passwordl23.

$ bin/setup demo \

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 106

-—adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \

--port <pap-port> \

-—adminPort <admin-port> \

--licenseKeyFile <path-to-license>

The decision point shared secret is a credential that the PingAuthorize Server uses to authenticate to the
Policy Editor when it uses the Policy Editor as an external policy decision point (PDP).

For information about how to configure PingAuthorize Server to use the decision point shared secret, see
Post-setup steps (manual installation) on page 107.

Example: Set up the PingAuthorize Policy Editor with a PostgreSQL policy database
This example sets up the PingAuthorize Policy Editor in demo mode with an automatically generated self-
signed server certificate and a PostgreSQL policy database.

$ bin/setup demo \
-—adminUsername admin \
--dbConnectionString "jdbc:postgresqgl://<host>:<port>/<database>" \
--dbAppUsername "<postgresgl-user>" \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
—--port <pap-port> \
-—adminPort <admin-port> \
--licenseKeyFile <path-to-license>

Note:

Using the --dbAppPassword option to provide the PostgreSQL database password to the setup tool
persists the password to a configuration file.

Instead, run the following command to populate the PING_DB_APP_PASSWORD environment variable at
server start.

$ env PING DB APP PASSWORD=<password> bin/start-server

Example: Set up the PingAuthorize Policy Editor to use a custom SSL certificate
This example sets up the PingAuthorize Policy Editor in demo mode with a provided SSL server certificate
in PKCS12 format.

$ env KEYSTORE PIN FILE=<path-to-keystore.pin> bin/setup demo
-—adminUsername admin \
--pkcsl2KeyStorePath <path-to-keystore.pl2> \
--certNickname <certificate-nickname> \
--decisionPointSharedSecret <shared-secret> \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
—--licenseKeyFile <path-to-license>

Note:

If you don't use the KEYSTORE_PIN_ FILE during setup, you can supply the --keystorePassword
argument.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 107

The following information describes the previous example code block:

» The KEYSTORE PIN_FILE environment variable, along with the --pkcs12KeyStorePath and --
certNickname command-line options, affect the server's SSL certificate configuration.

» KEYSTORE_PIN_FILE contains the path to a file containing a valid key store PIN value.
= The --pkcsl2KeyStorePath value is a path to a valid PKCS12 key store file.
= The --certNickname value is the certificate nickname or alias.

Warning:

= The PingAuthorize Policy Editor only supports lowercase certificate nicknames.
» Because the KEYSTORE_PIN_FILE is not persisted, it must also be available in the environment of
start-server.

Post-setup steps (manual installation)
After you set up the PingAuthorize Policy Editor, you must start the server from the CLI and then change
the PingAuthorize Server configuration to use the Policy Editor as its policy decision point (PDP).

To start the Policy Editor, run the following command.
$ bin/start-server

Then, sign on to the Policy Editor. For more information, see Signing on to the PingAuthorize Policy Editor
on page 108 and import a policy snapshot. You can find a set of default policies in the resource/
policies/defaultPolicies.SNAPSHOT file.

To configure PingAuthorize Server to use the Policy Editor, use dsconfig or the administrative console to
create a Policy External Server to represent the Policy Editor, then assign the Policy External Server to the
Policy Decision Service and configure it to use external PDP mode. Also, set the Trust Framework Version
to the current version, v2. Consider the following example.

dsconfig create-external-server \
-—-server-name "Policy Editor" \
-—type policy \
--set "base-url:https://<pap-hostname>:<pap-port>" \
--set "shared-secret:pingauthorize" \
--set "branch:Default Policies" \

dsconfig set-policy-decision-service-prop \
-—-set pdp-mode:external \
--set "policy-server:Policy Editor"
--set trust-framework-version:v2

In the example, the base URL consists of the host name and port chosen for the Policy Editor during setup.
Similarly, the shared secret value was chosen during setup. The branch name corresponds to the branch
name that you chose when importing your policy snapshot. The decision node is the ID of the root node in
your policy tree. If you are using the default policies, then use the ID shown in the example.

Clustering and scaling

PingAuthorize Servers are stateless. They do not require intra-cluster communication to scale. Instead,
similarly configured independent server instances can be added behind the same network load balancer to
achieve higher throughput while maintaining low latency.

Automated environments

To maintain identically configured PingAuthorize Server instances behind your load balancer, use DevOps
principles of Infrastructure-as-Code (laC) and Automation. For more information about using server

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 108

profiles to scale upward by installing a new, identically configured instance of PingAuthorize Server, see
Deployment automation and server profiles on page 361.

Next steps
After installed, complete some configuration steps and then start developing policies to enforce fine-
grained access to data.

Consider performing the following next steps.

Configure access token validation.

For more information, see Configure access token validation on page 355.
Configure a user store.

For more information, see User store configuration on page 354
Sign on to the administrative console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 166.
Sign on to the administrative console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 192.
Sign on to the PingAuthorize Policy Editor to create policies.

For more information, see the PingAuthorize Policy Administration Guide.

Signing on to the PingAuthorize Policy Editor

You can sign on to the PingAuthorize Policy Editor by entering your username and password credentials in
the appropriate web browser URL.

Steps

1.

After completing setup for demo mode, sign on to the PingAuthorize Policy Editor by going to the
following URL in a web browser: https://<host>:<port>

Substitute the host name and port that you specified during setup.

Use the following demo credentials to sign on to the PingAuthorize Policy Editor:

= User name: admin
= Password: passwordl123

Optional: If you set up the PingAuthorize Policy Editor to use OpenID Connect (OIDC) mode, you must
also configure an OIDC provider. For more information, see Configuring an OIDC provider for single
sign-on requests from PingAuthorize on page 110.

Then, when you sign on using the URL mentioned previously, the GUI prompts you to proceed to the
OIDC provider to sign on. After OIDC authentication is complete, the GUI redirects you back to the
PingAuthorize Policy Editor.

Changing the PingAuthorize Policy Editor authentication mode
You can change the authentication mode after the initial setup.

Steps

Copyright ©2024

For a manually installed Policy Editor, see Changing the Policy Editor authentication mode for manual
installs on page 109.

For a Policy Editor Docker deployment, see Changing the Policy Editor authentication mode for
Docker deployments on page 109.

PingAuthorize | Installing PingAuthorize | 109

Changing the Policy Editor authentication mode for manual installs

About this task

To change the authentication mode that a manually installed PingAuthorize Policy Editor uses, re-run the
setup tool and choose a different authentication mode. This action overwrites the PingAuthorize Policy
Editor's existing configuration.

Steps
1. Stop the Policy Editor.
Example:

$ bin/stop-server
2. Run the setup command and select a different authentication mode.
The modes are:
= Demo mode

Configures the PingAuthorize Policy Editor to use form-based authentication with a fixed set of
credentials. Unlike OIDC mode, this mode does not require an external authentication server.
However, it is inherently insecure and is recommended only for demonstration purposes.

= OpenlD Connect (OIDC) mode

Configures the PingAuthorize Policy Editor to delegate authentication and sign-on services to an
OpenlD Connect provider, such as PingFederate.

Example:

$ bin/setup

3. Start the Policy Editor.
Example:

$ bin/start-server
Changing the Policy Editor authentication mode for Docker deployments

About this task

To switch to OIDC authentication for a Docker deployment of the PingAuthorize Policy Editor, re-run the
docker run command using the OIDC environment variables.

Steps
1. Stop the Policy Editor Docker container.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 110

2. Run the Policy Editor Docker container in OIDC mode by using the
PING OIDC_ CONFIGURATION ENDPOINT and PING CLIENT_ ID environment variables in your
docker run command, as shown in the following example.

Example:

Note:

For proper communication between containers, create a Docker network using a command like
docker network create --driver <network type> <network name>, and then connect to
that network with the --network=<network name> option.

docker run --network=<network name> -p 8443:1443 -d \

--env-file ~/.pingidentity/config \

--env PING EXTERNAL BASE URL=localhost:8443 \

-—env PING CLIENT ID=c2f081c0-6a2e-4249-b07d-d60234bb5b21 \

--env PING_OIDC_CONFIGURATION_ ENDPOINT=https://auth.pingone.com/3e665735-23da-40a9-
a2bb-7ccddcl7laaa/as/.well-known/openid-configuration \
pingidentity/pingauthorizepap: <TAG>

Note:

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see the
PingAuthorize PAP Docker Image on Docker Hub.

Configuring an OIDC provider for single sign-on requests from PingAuthorize

When you install the PingAuthorize software with OpenID Connect (OIDC) authentication, configure an
OIDC provider to accept SSO requests from PingAuthorize.

About this task

If you chose OIDC mode when you set up the PingAuthorize Policy Editor, you must configure an OIDC
provider, such as PingFederate or PingOne, to accept sign-on requests from the PingAuthorize Policy
Editor.

If you're using another OIDC provider, see the provider's documentation for specific client configuration
steps. The following steps show the general procedure:

Steps
1. Use the following configuration values to create an OAuth 2 client that represents the PingAuthorize
Policy Editor.
OAuth 2 client configuration | Configuration value
Client ID pingauthorizepolicyeditor
Redirect URI https://<host>:<port>/idp-callback
Grant type Authorization Code with PKCE
Response type code
Scopes = openid
= email
= profile

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Installing PingAuthorize | 111

OAuth 2 client configuration | Configuration value

Refresh tokens Enable

Client authentication on the Disable

token endpoint The Policy Editor doesn't have access to the client secret and

doesn't send credentials to the token endpoint.

Return ID token on refresh true
grant

Always re-roll refresh tokens |true

Important:

When an authentication token expires, the Policy Editor performs a silent renewal, triggering a
background process to retrieve a new token from the OIDC provider. For this process to work, you
must configure your OIDC provider to issue refresh tokens in the following manner:

= Issue an id token as part of the refresh grant.

= Re-roll the refresh token after each use. The Policy Editor will not use refresh tokens more than
once.

Because these constraints apply to silent renewal, a misconfiguration of the previous items will still
allow you to sign on. After your token expires, though, the application will eject you from your session
and redirect you to the sign-on screen. This could cause you to lose unsaved changes in the Policy
Editor.

2. Configure the access tokens and ID tokens issued for the OAuth 2 client with the following claims:

= sub
= name
= email

3. Configure the OIDC provider to accept a cross-origin resource sharing (CORS) origin that matches the
PingAuthorize Policy Editor's scheme, public host, and port, such as https://<host>:<port>.

4. Configure the OIDC provider to issue tokens to the PingAuthorize Policy Editor only when the
authenticated user is authorized to administer policies according to your organization's access rules.

Note:

Sign the tokens with a signing algorithm of RSA using SHA-256.

For PingFederate, this level of authorization is controlled with issuance criteria. For more information,
see the PingFederate documentation.

Configuring PingOne as an OIDC provider for PingAuthorize
To improve security and ensure a consistent authentication experience across all enterprise applications,
enable single sign-on (SSO) for the PingAuthorize Policy Editor using PingOne as an OIDC provider.

Components

= PingOne
= PingAuthorize 9.0 or later

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 112

Instructions and screenshots might differ slightly from other product versions. For the latest documentation,
see PingOne documentation.

Before you begin

= Confirm that PingOne is accessible from the subnet on which the Policy Editor is running.
= Extract the Policy Editor distribution to your specified install location, with appropriate permissions set
for write access, for example /opt/PingAuthorize-PAP.

Configuring PingOne for PingAuthorize policy administration
Configure PingOne to authorize external access to the PingAuthorize Policy Editor.

About this task
The following configuration allows any authenticated user to access the Policy Editor.

Steps

1. Sign on to PingOne and click your environment.
Choose from:

= If you have an account, go to the URL for your environment. Each environment has a unique URL
for signing in. It follows the format https://console.pingone.com/?env=<environmentiD>.

= If you do not already have an account, create one at Try Ping.

To create an application in PingOne to represent the PingAuthorize Policy Editor, go to Connections
Applications and click + Add Application.

Go to Connections # Applications and click + Add Application.

Click Single Page App and then click Configure.

Enter a name for the application, such as PingAuthorize Policy Editor.

Optional: Enter a description and add an icon.

Click Next.

Add a redirect URL that follows the format https://pap.hostname:port/idp-callback.
Click Save and Continue.

10. On the Grant Access to Your Application window, add scopes for email and profile.
11. Click Save and Continue.

N

© 0N Ok~ W

Copyright ©2024

https://docs.pingidentity.com/bundle/pingone

PingAuthorize | Installing PingAuthorize | 113

12. On the Attribute Mapping window:

a. Accept UserlD = sub.
b. Click + Add Attribute # PingOne Attribute to add Email Address = email.
c. Click + Add Attribute # PingOne Attribute to add Formatted = name or Username = name.

Attribute Mapping

Map your PingOne user defined attributes to the corresponding Application attribute for accessibility between users and this app.

OIDC ATTRIBUTES

— User ID e
Advanced Expression
email Lo Email Address ~ Required
Advanced Expression
name =~ Username L Required

Advanced Expression

ADD ATTRIBUTE
13. Click Save and Close.
14. To enable the application, click the Enable toggle.

PingAuthorize Policy Editor .
- Client ID: (:) * X

15. Copy the following IDs:
Client ID
To find the Client ID, go to the application's Profile tab.
Environment ID

To find the Environment ID, click Environment in the left navigation pane.

Note:

You'll need them when you configure the Policy Editor to use PingOne.

Configuring PingAuthorize policy administration to use PingOne
Configure the PingAuthorize Policy Editor to use PingOne for authentication.

About this task
The following instructions apply to a manually installed PingAuthorize Policy Editor.

Steps

1. Run the PingAuthorize-PAP /bin/stop-server command to stop the Policy Editor.

2. Using the client ID and environment ID from Configuring PingOne for PingAuthorize policy
administration on page 112, run the following command to configure the GUI.

bin/setup oidc \

--licenseKeyFile </path/to/PingAuthorize.lic> \
--generateSelfSignedCertificate \

--hostname <pap-hostname> --port <pap-port> \

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 114

-—adminPort <admin-port> \
--o0idcBaseUrl https://auth.pingone.com/<environment-id>/as \
--clientId <client-id>

3. Runthe bin/start-server command to start the PingAuthorize Policy Editor.

4. Verify that you can sign on to the Policy Editor using the application you created in PingOne.
a. Go to the Policy Editor.
b. Click Click to Sign in.

Result: Your browser will redirect to the URL you set in Configuring PingOne for PingAuthorize
policy administration on page 112.

Configuring PingFederate as an OIDC provider for PingAuthorize
To improve security and ensure a consistent authentication experience across all enterprise applications,
enable single sign-on (SSO) for the PingAuthorize Policy Editor using PingFederate as an OIDC provider.

This document describes one way to configure PingFederate as an OpenID Connect provider for the
PingAuthorize Policy Editor. In this example, PingFederate also acts as the identity provider and uses a
PingDirectory LDAP server with sample data as the backing store.

Components

= PingFederate 10.3 or later
= PingDirectory 9.0 or later
= PingAuthorize 9.0 or later

Instructions and screenshots might differ slightly from other product versions. For the latest documentation,
see the PingFederate documentation and PingDirectory documentation.

Before you begin
Make sure of the following:

= PingFederate is running and accessible from the subnet on which the Policy Editor is running.

= PingDirectory is running and accessible from the subnet on which PingFederate is running.

= PingDirectory is loaded with the identities to be used. This document uses the sample data provided
when running the PingDirectory setup command line tool with option —-sampleData 1000.

= You have extracted the Policy Editor distribution to your specified install location, with
appropriate permissions set for write access. This document uses an installation directory of /
opt/PingAuthorize-PAP.

= If using SSL, the certificate chain is available as a PKCS12 keystore to upload as the server certificate
chain for PingFederate.

= The signing certificate for JWT tokens is available for upload to PingFederate.

Note:

If the PingFederate certificate chain contains certificates that are not trusted by the default Java
truststore on the system that the Policy Editor is running on, you will need to add them. An example of
how to do this is provided in the “Add Certificate to Java Trust Store” subsection below.

Configuring PingFederate for PingAuthorize
Configure PingFederate to authorize external access through tokens to the PingAuthorize Policy Editor.

About this task

You can also use PingAccess to authorize external access through rules. See Rule Creation in PingAccess
for information.

Copyright ©2024

https://docs.pingidentity.com/csh?Product=pf-latest&Page=home
https://docs.pingidentity.com/csh?Product=pd-latest&Page=home
https://docs.pingidentity.com/csh?Product=pa-latest&context=pa_access_control_rules

PingAuthorize | Installing PingAuthorize | 115

The following example configuration assumes that any authenticated user can access the PingAuthorize
Policy Editor. To limit access to members of a specific group, see Configuring PingFederate group access
for PingAuthorize on page 124.

Steps

1. Inthe PingFederate administration console, go to System # Data & Credential Stores # Data Stores.

2. Click Add New Data Store.

3. On the Data Store Type tab, in the Name field, enter a name for the data store.

4. From the Type list, select Directory (LDAP), and then click Next.

5. Onthe LDAP Configuration tab, enter the address and authentication information for PingFederate to
use when accessing PingDirectory, and then click Next.

6. On the Summary tab, review your configuration and click Save.

Copyright ©2024

PingFedef’a‘te AUTHENTICATION APPLICATIONS SECURITY SYSTEM

< Data & Credential

Stores Data Stores | Data Store
=
ata Store Type onfiguration
] Data Store T LDAP Configurati
| Data Stores
=
IE= Click a heading link to edit a configuration setting.
Password Credential
Validators
& Data Store
Active Directory
N Domains/Kerberos Data Store Type
fiealms Type of Data Store LDAP
a Identity Store LDAP Configuration
Provisioners
&5 Data Store Name PingDirectory Data Store
Hostname(s) Hostnameis): ds.example.com:1636
Default
LDAP Type PingDirectory
LDAPS true
Username ccn=Directory Manager,cn=Root DNs,cn=config
Mask Values in Log false
Test Connection on Borrow false
Test Connection on Return false
Create New Connections if Necessary true
Verify LDAPS Hostname true
Minimum Connections 10
Maximum Connections 100
Maximum Wait (ms) -1
Time Between Eviction (ms) 60000
Read Timeout (Ms) 3000
Connection Timeout (ms) 3000
DNS TTL (ms) 80000
LDAP DNS SRV Record prefix _Idap._tep
LDAPs DNS SRV Record prefix _ldaps._tcp
Cancel Previous
Inttps://localhost:9899/render/pingfederate/app?service=direct/1/Home/HolderfsummaryCard.$ Summary.direct&sp=1

PingAuthorize | Installing PingAuthorize | 116

7. Go to Authentication # Policies # Sessions and enable authentication sessions. The following
example enables authentication sessions for all sources. Make the appropriate change for your
environment, and then click Save.

PingFederate AUTHENTICATION APPLICATIONS SECURITY SYSTEM
< Policies .
Sessions
o R ‘Sessions define how frequently users are challenged to authenticate. Application sessions apply to PingFederate user facing endpoints, such as the profile endpoint.
sesslons wrap authentication sources (IdP adapters and IdP connections) to control when they are invoked. Additional tracking options for logout are available to control If all adapters should be
l[= Fragments involved in the logout process, and if the user's revoked session should be published. Publishing revoked sessions is recommended in order to provide a secure single logout (SLO) experience with
PingAccess deployments.
(7] Seisctors TRACK ADAFTER SESSIONS FOR LOGOUT
+| TRACK REVOKED SESSIONS ON LOGOUT
.0‘ Policy Contracts

SESSION REVOCATION

LIFETIME (MINUTES) 490
| sessions

Local ldentity Profiles
APPLICATION SESSIONS

IDLE TIMEOUT (MINUTES) 60

MAX TIMEOUT (MINUTES) 480

AUTHENTICATION SESSIONS
+| ENABLE AUTHENTICATION SESSIONS FOR ALL SOURCES
MAKE AUTHENTICATION SESSIONS PERSISTENT

HASH UNIQUE USER KEY VALUE

8. Goto Security # Certificate & Key Management # SSL Client Keys & Certificates and import your
JWT signing certificate. Click Save.

Note:

PingFederate expects the certificate chain and keys to be encoded in PKCS12 format.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 117

9. Configure your OAuth server using the OpenlD Connect protocol.

a. Go to System # OAuth Settings # Scope Management and create scopes.

b. Inthe Scope Value field, enter the email, openid, and profile scopes, clicking Add after
each entry. Click Save.

PingFederateé AUTHENTICATION APPLICATIONS SECURITY SYSTEM

< OAuth Settings
g Scope Management

Ey ::;Tmn“on Server Common Scopes Exclusive Scopes Default Scope
ngs

[
Tir

Common scopes are available to OAuth clients by default unless individual clients are configured to restrict common scopes. Scopes can be declared as dynamic, which allows OAuth clients to

S M t
I oG RLJ request scopes where a component of the scope name is variable.
@ Virtual 1ssuers Scope Value Scope Description Dynamic Action
e email Openld Connect Profile Email Access Edit | Delete
Client Settings
openid OpenlD Connect Enablement Edit | Delete
a Client Reglstrations profile OpeniD User Profile Access Edit | Delete
Policles
<> Add
Scope Group Value Scope Group Description Sub Scopes Action
email Add
‘openid
profile

Cancel Next

c. Goto Applications # OAuth # Access Token Management and click Create New Instance.

d. Onthe Type tab, from the Type list, select JSON Web Tokens. From the Parent Instance list,
select None. Click Next.

e. Onthe Instance Configuration tab, click Add a new row to 'Certificates' and add the previously
imported signing certificate. Select the desired signing algorithm and token timeout, and then click
Next.

f. Onthe Session Validation tab, enable the session validation options.

PingFederaté AUTHENTICATION APPLICATIONS SECURITY SYSTEM

< OAuth
Access Token Management | Create Access Token Management Instance

’:1 Clants Type Instance Configuration Session Validation

A CERD D On this page, a policy can be defined to bind together the validity of access tokens with the user's session. A session ich
Management query session status and tailor the application flow. You can require that the session has not been revoked through a log
"' session that has not timed out. Activity on associated authentication sessions can also be updated to slide idle timeouts
Access Token
Mappings | INCLUDE SESSION IDENTIFIER IN ACCESS TOKEN

«| CHECK FOR VALID AUTHENTICATION SESSION
OpenlD Connect

Policy Management +| CHECK SESSION REVOCATION STATUS
+ | UPDATE AUTHENTICATION SESSION ACTIVITY
CIBA Request
Policies
g. Onthe Access Token Attribute Contract tab, add the attributes to be included in the OAuth
access token. This example extends the contract with cn, email, scope, sub, and uid
attributes.

Copyright ©2024

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 118

PingFederaté AUTHENTICATION APPLICATIONS SECURITY SYSTEM

< OAuth
Access Token Management | Create Access Token Management Instance

7] Glienty Instance Configuration Session Validation Access Token Attribute Contract Resource URIs

g Access Token

" ot Provide the names of the attributes that will be carried in (or referenced by) the OAuth access token. For auditing purposes, an attribute may be chosen as the subject.
lanageme!
”w Extend the Contract Action
R4
Access Token cn Edit | Delete
Mappings
email Edit | Delete
OpeniD Connect scope Edit | Delete
Policy Management
sub Edit | Delete
CIBA Request uid Edit | Delete
Policies
Add

Click Next until you reach the Summary tab, and then click Save. Accept the default values for
the Resources URIs and Access Control settings.

Go to Applications # OAuth # Access Token Mappings to create an Access Token Mapping

in the Default context for the Access Token Manager you just created. Click Add Mapping, and
then click Add Attribute Source.

From the Active Data Store list, select the PingDirectory data store that you created in step 2.
Click Next.

PingFederaté AUTHENTICATION APPLICATIONS SECURITY SYSTEM

¢ OAuth Access Token Mappings | Access Token Mapping | Attribute Sources & User Lookup

3| ‘:ﬂ"“s T"ke‘" Data stores are used to retrieve supplemental atiributes. Specify the attribute store's details to use it in your configuration.
lanagemen
|"V ATTRIBUTE SOURCE ID PingDirectory
Access Token
Mappings
ATTRIBUTE SOURCE . .
DESCRIPTION Policy Token Mapping|
OpeniD Connect
Policy Management
ACTIVE DATA STORE PingDirectory Data Store v
CIBA Request
Palicies DATA STORE TYPE LDAP

Manage Data Stores

On the LDAP Directory Search tab, in the Base DN field, enter the base DN for the PingDirectory
data that provides your identities.

In the Attributes to return from search section, click Add Attribute and enter the attributes to
be retrieved.

The sample data uses ou=People, dc=example, dc=com and the configuration shown in the
following image retrieves the cn, mail, and uid attributes.

PingAuthorize | Installing PingAuthorize | 119

Access Token Alribute Mapping | Access Token Mapping | Attribute Sources &
User Lockup

R
Ph e DO Youl (o Cloey Search This informason, aking sith thie bt P

m. On the LDAP Filter tab, in the Filter field, enter uid=${USER_KEY} to match the PingDirectory
sample data with the authenticating user information.

Access Taken Attnibute Mapping | Access Teken Mapping | Allribute Sources &

Lser Lookup

o oo

n. Click Next and Save on the Summary tab.
0. On the Contract Fulfillment tab, fulfill the contract with the LDAP attributes from the
PingDirectory data store. Leave the remaining settings as their defaults and click Save.

The scope attribute is fulfilled from the OAuth context.

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 120

Access Token Attribute Mapping | Access Token Mapping

Cerlract Souree Ve Acticns

p. Goto Applications # OAuth # OpenID Connect Policy Management and click Add Policy.

g. Inthe Manage Policy tab, from the Access Token Manager list, select the access token
manager you previously created.

r. Ensure that the Include User Info in ID Token check box is selected. Click Next.

s. On the Attribute Contract tab, extend the policy contract with the email and name attributes.
Click Next.

t. On the Attribute Scopes tab, map the previously defined email and profile scopes to the
email and name ID token attributes. Click Next.

Policy Man:

gement | Policy
T

Scope Afeributes Action

o -

u. On the Contract Fulfillment tab, fulfill the contract with the values in the access token. Click Next
until you reach the Summary tab, and then click Save.

Copyright ©2024

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 121

PingFederaté AUTHENTICATION APPLICATIONS SECURITY SYSTEM

gleLriy OpenlD Connect Policy Management | Policy

‘a R Manage Policy Attribute Scopes Attribute Sources & User Lookup Contract Fulfillment

El Access Token Fulfill the Attribute Contract with values from the Access Token or from other sources listed.
Management

™ Attribute Contract Source Value Actions

M Access Token
Rerp o email Access Token v emalil v None avallable
OpeniD Connect
Policy Management name Access Token v cn v None available
CIBA Request
Policles sub Access Token v sub v None available

Cancel Previous Next m

Click Set as Default to set the newly created policy as the default policy.
Go to Applications # OAuth # Clients and click Add Client.

To provide the Policy Editor with appropriate defaults, configure PingFederate with a Client ID of
pingauthorize-pap and select the Implicit check box in the Allowed Grant Types section.
From the Default Access Token Manager list, select the JWT Manager created earlier, and in
the Redirection URIs field, add the correct callback URL for the Policy Editor, such as https://
pap.example.com:9443/idp-callback.

Click Save.

Go to Authentication # OAuth # IdP Adapter Grant Mapping and create a new Form Adapter
Mapping, fulfilling the contracts for USER_NAME and USER_KEY with the username form field.
Click Next and Save on the Summary tab.

PingFederaté AUTHENTICATION APPLICATIONS SECURITY SYSTEM

SCLL IdP Adapter Grant Mapping | IdP Adapter Mapping

9 Pollcy Contract Grant Aftribute Sources & User Lookup | Contract Fulfiliment
Mapping
i+ Select a Source and Value to map into each item in the Contract list.
IdP Adapter Grant
0 Mapping Contract Source Value Actions
Resourca Cumgr USER_KEY Adapter v username v None available
- Credentials Grant
LY
Mapping
USER_NAME Adapter ~ username ~ None available

CIBA Authenticators

Cancel Previous m

Because this PingFederate instance uses a different domain from the Policy Editor, you must
modify the PingFederate CORS settings. Go to System # OAuth Settings # Authorization
Server Settings. In the Cross-Origin Resource Sharing Settings section, enter the domain for
the Policy Editor in the Allowed Origin field. Click Add and then Save.

Cross-Origin Resource Sharing Settings
Allgwed Origin Action

hitaz"pap.example.com:BIE0

Devloe Authorization Grant Settings

Result: PingFederate is configured to handle OpenID Connect requests.

PingAuthorize | Installing PingAuthorize | 122

Next steps

Configuring PingAuthorize Policy Editor to use PingFederate on page 122
Configuring PingAuthorize Policy Editor to use PingFederate

Configure the PingAuthorize Policy Editor to use PingFederate for authorization.

Before you begin
Configure PingFederate to handle OpenlD Connect requests as described in Configuring PingFederate for
PingAuthorize on page 114.

About this task

Reconfigure a manually installed PingAuthorize Policy Editor to use PingFederate for authorization.

Steps
1. Add the certificate to the Java Trust Store.

If the certificate chain added to PingFederate uses an intermediate certificate authority that is not
trusted by the default Java trust store, you must add the certificate. Use the following command (root
permissions are usually required). $JAVA HOME must be defined as the installation location of the
JVM on which the Policy Editor will run.

keytool —-import \

-file /path/to/IntermediateCA.cer \

-keystore $JAVA HOME/jre/lib/security/cacerts \
-storepass changeit

2. Reconfigure PingAuthorize to point unauthenticated users to PingFederate.
a. Stop the application.

$ bin/stop-server
The server was successfully stopped.

b. Re-run bin/setup to reconfigure the application.
c. Select OpenlD Connect to configure the Policy Editor.

[/opt/PingAuthorize-PAP]S$ bin/setup

There is an existing configuration file at /config/configuration.yml.
Overwrite? (yes /

no) [no]: yes

Detected valid license file in server root PingAuthorize.lic

PingAuthorize Policy Editor

How would you like to configure the Policy Editor?

1) Quickstart (DEMO PURPOSES ONLY): This option configures the
server with a form based authentication and
generates a self-signed server certificate
2) OpenID Connect: This option configures the server to use an
OpenID Connect provider such as PingFederate
3) Cancel the setup

Enter option [1]: 2

On which port should the Policy Editor listen for HTTPS
communications? [9443]:

Copyright ©2024

Copyright ©2024

PingAuthorize | Installing PingAuthorize | 123

Enter the fully qualified host name or IP address that users' browsers
will use to connect to this GUI [pap.example.com]: pap.example.com

d. Ensure that the PingFederate discovery endpoint uses the public DNS name of the PingFederate

server. In this example, the Policy Editor uses a self-signed SSL certificate.

Enter the port of the OpenID Connect provider [9031]:

Enter the fully qualified host name or IP address of the OpenID
Connect provider [pap.example.com]: pf.example.com

Certificate server options:

1) Generate self-signed certificate (recommended for testing
purposes only)
2) Use an existing certificate located on a Java Keystore (JKS3)

3) Use an existing certificate located on a PKCS12 keystore
Enter option [1]:

There already exists a keystore at /config/keystore.pl2. Do you want
to delete it? (yes / no) [no]: yes

e. Follow the remaining prompts.

Setup Summary

Host Name: pap.example.com

Server Port: 9443

Secure Access: Self-signed certificate
Admin Port: 9444

Periodic Backups: Enabled
Backup Schedule: 0 0 0 * * ?

Command-line arguments that would set up this server non-
interactively:
setup oidc --pkcsl2KeyStorePath config/keystore.pl2 --
licenseKeyFile PingAuthorize.lic \
--oidcHostname pf.example.com --oidcPort 9031 --certNickname
server-cert --backupSchedule '0 0 0 * * ?2' \
--hostname pap.example.com --port 9443 --
generateSelfSignedCertificate --adminPort 9444

What would you like to do?
1) Set up the server with the parameters above
2) Provide the setup parameters again
3) Cancel the setup

Enter option [1]:

Setup completed successfully

Please configure the following values

PingAuthorize Server - Policy External Server

Base URL: https://
pap.example.com: 9443

Shared Secret:

2222142a754f4838adle3dccb6e93940

Trust Manager Provider: Blind Trust

PingFederate - OAuth Client Config

f.

PingAuthorize | Installing PingAuthorize | 124

Client ID:
pingauthorizepolicyeditor

CORS Allowed Origin: https://
pap.example.com: 9443

Redirect URL: https://

pap.example.com:9443/idp-callback

Please start the server by running bin/start-server

Restart the application by running bin/start-server.

3. Verify that you can log into the Policy Editor using OpenID Connect provided by PingFederate.

a.

b.
C.

Go to the Policy Editor, for example, https://pap.example.com:9443. Your browser should be
redirected into the OAuth flow.

Click Click to Sign In.
Sign on with your user name and password.

The sample configuration in this document creates an identity with the user name user.20 and
password password.

Once authenticated, PingFederate will prompt the user with the scopes associated with the OAuth
client. Check all of them to continue.

Reqguest for Approval

din as user20

Result: You are now authenticated and authorized to view the Policy Editor.

Configuring PingFederate group access for PingAuthorize
Configure PingFederate so that only members of a specific LDAP group are authorized to access the
application.

About this task

Configuring PingFederate for PingAuthorize on page 114 and Configuring PingAuthorize Policy

Editor to use PingFederate on page 122 explain how to configure the PingAuthorize Policy Editor

and PingFederate so that any authenticated user can access the PingAuthorize Policy Editor. This task
describes how to configure PingFederate to limit access to a specific LDAP group.

Steps

1. Create an LDAP group in PingDirectory and add the desired user (user.20) to the group.

a.

Copyright ©2024

Create a file named create-policy-writer-group.1dif and add the following.

dn: ou=groups,dc=example, dc=com
objectclass: top

PingAuthorize | Installing PingAuthorize | 125

objectclass: organizationalunit
ou: groups

dn: cn=PolicyWriter, ou=groups,dc=example,dc=com
objectclass: top

objectclass: groupOfUniqueNames

cn: PolicyWriter

ou: groups

uniquemember: uid=user.20,ou=People,dc=example,dc=com

b. Use the PingDirectory 1dapmodi £y tool to load the newly created 1di £ file.

/opt/PingDirectory/bin/ldapmodify -a -f create-policy-writer-
group.ldif

2. Add the group membership claim requirement in PingFederate.
a. Inthe PingFederate console, go to Applications # OAuth # Access Token Mappings.

b. Select the PingDirectory mapping from the list, and then on the Attribute Sources & User

Lookup tab, select the PingDirectory source.

c. Click the LDAP Directory Search tab, and in the Root Object Class list, select Show All

Attributes.
d. Add the isMemberOf attribute, and then click Done to return to Access Token Attribute
Mapping.

Access Token Attribute Mapping | Access Token Mapping | Attribute Sources & User Lookup

LDAP DiectorySearch | LOAP Fiter

Please configure your directory search, This information, along with the attributes supplied in the contract, will be used to fulfill the contract
ou=People dc=example,dc=com
One Level £
Attributes to return from search
Subject DN

mail

%]
B
<
¢

Previous

e. Goto the Issuance Criteria tab and add a new row with the following values:

Action

Add Attribute

Column Value

Source LDAP (pingdir)

Attribute Name isMemberOf

Condition multi-value contains (case sensitive)

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 126

Column Value

Value cn=PolicyWriter,ou=groups,dc=example,dc=com

Access Token Attribute Mapping | Access Token Mapping

Attribute Sources & User Loockup Contract Fulfillment
vl to determine whether to issue an access

P 'KJ-:I =derate can evaluate various criteria token. Use this optional screen b
Source Aftribute Name Condition
LDAP pingdir) isMemberOf multi-value contains (case insensitive)
- SELECT - e - SELECT - w - SELECT -
Click Save.

confl

igure the ¢

Value

en=PolicyWriterou=groups.dc

Result: Only user .20 can access the PingAuthorize Policy Editor.
3. Verify that only specified users can access the PingAuthorize Policy Editor.

iteria for use with this token

authorization

Error Result

example,dc=com

Previous MNext Done

Note:

Clear any active SSO sessions before you sign on as each user.

Sign on as user.O0.

Result: Access is denied.
Sign on as user.20.

Result: Access is granted.

Upgrading PingAuthorize

Server and the Policy Editor.

improved server performance.

PingAuthorize includes two server applications you must upgrade in tandem—the main PingAuthorize

Ping Identity issues software release builds periodically with new features, enhancements, and fixes for

Note:

PingAuthorize Server used in external PDP mode requires a Policy Editor with the same version. When
upgrading PingAuthorize Server, you must also upgrade the Policy Editor.

Copyright ©2024

Action

Add

PingAuthorize | Upgrading PingAuthorize | 127

Upgrade considerations

When upgrading, you must consider factors such as the scope of the update, the PingAuthorize or
PingDataGovernance version from which you are upgrading, and if you are not using Docker, your installed
version of Java.

Note:

The 8.3.0.0 release is the first release of PingAuthorize. Previously, the product was known as
PingDataGovernance.

General considerations
For Docker deployments, the upgrade process involves downloading and deploying the latest containers.

For manual installations, the upgrade process involves downloading and extracting a new version of the
PingAuthorize Server . zip file on the server and running the update utility with the -—serverRoot or -R
option value from the new root server pointing to the installation.

Consider the following when upgrading:

= If you are upgrading from a PingAuthorize Early Access release to a PingAuthorize General Availability
release, you must upgrade both the PingAuthorize Server and the Policy Editor before you use the
Policy Decision Service in external mode. Upgrading only one component results in this error: Please
upgrade to PingAuthorize Policy Editor version <X.X.X.X>.

= The update affects only the server being upgraded. The process does not alter the configuration of
other servers, so you must update those servers separately.

= The update tool verifies that the installed version of Java meets the new server requirements. To
simplify the process, install the version of Java that is supported by the new server before running the
tool.

= Upgrades for PingDataGovernance Server are only supported from versions 7.0.0.0 or later. If
upgrading from a version of PingDataGovernance prior to 7.3.0.0, configuration loss will occur. The
update tool has a warning message about this.

Tip:

For additional considerations, see Planning your upgrade.

Note:

For information about important fixes made over several releases, see Critical Fixes.

Considerations introduced in PingAuthorize 9.0.0.0

Keep in mind the following important upgrade considerations introduced in this version of PingAuthorize
Server.

General

Peer server setup has been removed. To manage server configuration, use server profiles
instead of peer setup. Server profiles support deployment best practices such as automation
and Infrastructure-as-Code (laC). For more information about server profiles, see Deployment
automation and server profiles on page 361.

Copyright ©2024

https://docs.pingidentity.com/bundle/solution-guides/page/piw1575669702172.html
https://docs.pingidentity.com/access/sources/dita/topic?category=pdg-82&dita:id=odo1597677014942

PingAuthorize | Upgrading PingAuthorize | 128

Spring compatibility

Spring configuration properties in PingAuthorize administrative console configuration files prior
to version 9.0.0.0 are not compatible with the administrative console bundled with PingAuthorize
9.0.0.0 and later. This incompatibility is caused by major updates to Spring dependencies.
Attempting to use these older configuration files will result in the administrative console failing to
start.

If you are using older PingAuthorize administrative console configuration files, these should be
updated. Replace the following excerpt in the old application.yml file:

spring:
profiles.active: default
main.show-banner: false
thymeleaf.cache: true
thymeleaf.prefix: classpath:/public/app/

with the following:

spring:
profiles.active: default
web.resources:
1 year. Update the corresponding value in MvcConfig if this
changes.
cache.period: 31536000
add-mappings: false # use our custom mappings instead of the
defaults
main:
banner-mode: "OFE"
thymeleaf:
prefix: classpath:/public/app/

Upgrade considerations introduced in PingAuthorize 8.x

Considerations introduced in PingAuthorize 8.3.0.0

Keep in mind the following important considerations introduced in this version of PingAuthorize Server.
General

= If you are upgrading to PingAuthorize 8.3.0.0, you must also upgrade to PingAuthorize Policy
Editor 8.3.0.0.

= The policy decision service configuration has changed. When using embedded pdp mode,
you must specify a deployment-package-source-type for the policy decision service
in your configuration. You might need to update the dscon£fig files in your server profile
when upgrading to version 8.3 to set a deployment-package-source-type. If you want
to maintain the existing behavior from previous releases, use "static-file™ as your
deployment-package-source-type.

Deployments with multi-server topologies

= Upgrading from PingDataGovernance 6.x or 7.x

Upgrading multi-server topologies that contain PingDataGovernance 6.x or 7.x is not supported.
= Upgrading from PingDataGovernance 8.0.0.0 or later

You can upgrade multi-server topology deployments that contain PingDataGovernance 8.0.0.0
or later to PingAuthorize. When updating a PingDataGovernance multi-server topology to

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 129

PingAuthorize, you must remove all servers from the topology, update each server individually,
then add all the servers back to the topology, as explained below.

Note:

The known issues and workarounds in this section apply only to deployments with multi-server
PingDataGovernance topologies. Deployments with single-server topologies can upgrade
without these issues.

For each server to be upgraded:

1. Remove the server from the topology by running a command like this one.

manage-topology remove-server <connection args>

2. Update the server.

After you have successfully upgraded every server, you can then join each server to the
topology by running a command like this one.

manage-topology add-server <connection args> <remote server
connection args>

If you do not follow these steps, adding a PingAuthorize server to a PingDataGovernance
topology could result in the following error message:

Entry cn=License,cn=Topology,cn=config cannot be modified because
one of the

configuration change listeners registered for that entry rejected
the change: The provided

license key was generated for PingAuthorize but this is
PingDataGovernance with Symphonic

Another consequence of not following these steps is that restarting any server in the topology
that is not updated fails. To use the server again, you must remove the server from the topology
and reset its license to a PingDataGovernance license.

Upgrading from a version earlier than 7.3.0.0

If you are upgrading from a PingDataGovernance version earlier than 7.3.0.0, PingAuthorize
creates the deleted-oauth2-scopes. txt file to capture data that can simplify the upgrade. For
information about what to do with this file, contact your Ping Identity account representative.

Considerations introduced in PingDataGovernance 8.2.0.0

Keep in mind the following important considerations introduced in this version of PingDataGovernance
Server.

General

= If you are upgrading to PingDataGovernance 8.2.0.0, you must also upgrade to Policy
Administration GUI 8.2.0.0.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 130

= Changes to SpEL expressions using collection projection might cause policy errors with the

following form.

EL1004E: Method call: Method <Symphonic Value method>() cannot be
found on type <native Java type>

If your policies rely on SpEL collection projection and methods like intValue(), stringValue(),
jsonRepresentation(), or pojoRepresentation(), you must update these expressions. It is
recommended that you update the policies to use collection transforms instead of SpEL
collection projection. For information about collection transforms, see the PingDataGovernance
Policy Administration Guide.

This upgrade moves to Jetty 9.4. As a result, the HTTPS connection handler will no longer
support TLS_RSA ciphers by default. If you use any legacy HTTPS clients that still require
TLS_RSA ciphers, modify the ss1-cipher-suite property of the HTTPS Connection Handler
to include them.

Gateway API Endpoint and Sideband APl Endpoint configurations

= PingDataGovernance now strictly validates path parameters used in Gateway APl Endpoint

and Sideband API Endpoint configurations. The inbound-base-path value (for Gateway API
Endpoints) and the base-path value (for Sideband API Endpoints) no longer allow duplicate
path parameters. For example, "/Users/{userld}/Manager/{userld}" defines the "userld" path
parameter twice and is invalid. In addition, other configuration properties cannot refer to a path
parameter that is not defined by inbound-base-path or base-path.

Previously, the server would allow such invalid configuration changes to be saved, but now the
server rejects them. Upgrades or server profile deployments including invalid configuration of
this kind will now fail. If this happens, correct the invalid configuration values.

Considerations introduced in PingDataGovernance 8.1.0.0

General

Copyright ©2024

= PingDataGovernance 8.1.0.0 uses a new policy request format that requires changes to the

Trust Framework.

If you are using policies intended for a previous release, you can continue to use your existing
policies by setting the trust-framework-version property of the Policy Decision Service to
v1. If you upgrade your server using the update tool, this property is set for you automatically.

The v1 format is deprecated, however, and you are strongly encouraged to update your
Trust Framework as soon as possible. To do this, load your existing policies in the Policy
Administration GUI and apply the Trust Framework changes by going to Branch Manager #
Merge Snapshot and selecting the resource/policies/upgrade-snapshots/8.0.0.0-
to-8.1.0.0.SNAPSHOT file included with the server. Then, configure PingDataGovernance
Server to issue policy requests using the new Trust Framework by setting the trust-
framework-version property of the Policy Decision Service to v2.

If you are upgrading to PingDataGovernance 8.1.0.0, an updated version of the Policy
Administration GUI is required.

The PingDataGovernance Policy Administration GUI no longer uses the UNIX

environment variable PING_HOSTNAME. Instead, server administrators should use
PING_EXTERNAL_BASE_URL to specify both the domain and the port. For more information,
see the PingDataGovernance Server Administration Guide.

Policy processing and advice

PingAuthorize | Upgrading PingAuthorize | 131

= The Allow Attributes advice and the Prohibit Attributes advice have been removed and can no
longer be used. Requests involving policies that refer to these advice types will fail.

= The HttpRequest.Headers policy request attribute is not available starting with Trust
Framework version v2. It has been replaced by the Ht tpRequest .RequestHeaders
and HttpRequest .ResponseHeaders policy request attributes. Update existing
policies or Trust Framework entities that refer to Ht tpRequest .Headers to refer to
HttpRequest.RequestHeaders.

= SCIM 2 requests now include the resource type in the service value during policy processing.
For example, for a SCIM 2 request that affects the "Users" resource type, the service value
will now be "SCIM2.Users" instead of "SCIM2". Existing policy rules or targets that rely on an
exact equality match for "SCIM2" must be updated. For example, a condition of "Service Equals
SCIM2" would need to be updated to "Service Matches SCIM2".

= For security, by default, the policy engine's SpEL processor now invokes Java classes only in
the allow-1ist presented in the PingDataGovernance Server Administration Guide. To use
other classes, add a key to the core section of the Policy Administration GUI's configuration
called AttributeProcessing.SpEL.AllowedClasses with a list of the classes to include.
If you are using embedded PDP mode, add a policy configuration key of the same name to the
PingDataGovernance Server configuration.

PDP API

= The XACML-JSON PDP API now requires a different request format. With this new format, you
can make multiple decisions using a single HTTP request. In addition, the response format
is now compliant with the XACML-JSON specification. The 8.0 PDP API request format is no
longer supported. For more information, see the PingDataGovernance Server Administration
Guide.

Peer setup and clustered configuration

= Peer setup and clustered configuration are deprecated and will be removed in PingAuthorize
9.0. We encourage deployers to manage server configuration using server profiles, which
support deployment best practices such as automation and Infrastructure-as-Code (laC). For
more information about server profiles, see the PingAuthorize Server Administration Guide.

= If you have upgraded a server that is in a cluster (that is, has a cluster name set in the Server
Instance configuration object) to version 8.1, you will not be able to make cluster configuration
changes until all servers with the same cluster name have been upgraded to version 8.1.
If needed, you could create temporary clusters based on server versions and modify each
server's cluster name appropriately to minimize the impact while you are upgrading.

Docker upgrades

Upgrading PingAuthorize Server using Docker

When using Docker, instead of upgrading PingAuthorize Server, you deploy a container with the new
PingAuthorize version and use the same server profile.

About this task
If you deployed a container using a server profile, when you want to deploy a newer PingAuthorize Server
version, you deploy a container with that version using the same server profile.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 132

Steps

= For more information, see https://devops.pingidentity.com/reference/config/.

(The server profiles for Docker deployments differ from those discussed in Deployment automation
and server profiles on page 361.)

Upgrading the PingAuthorize Policy Editor using Docker

If you originally installed the Policy Editor with Docker per Deploying PingAuthorize Policy Editor using
Docker on page 86, use this procedure to upgrade the PingAuthorize Policy Editor when a new version
is released.

Steps

1. Inyour current Policy Editor, complete the steps in Backing up policies on page 136.
2. Stop the old Docker container and start the new one.

When a new Docker image for the PingAuthorize Policy Editor is available, you stop the existing
Docker container and start the new container from the new image while mounting the same volumes.

Warning:

If you use a shared volume, you should always stop the Docker container running the older version of
the Policy Editor before you start the new container.

The following commands stop the running container and run a new image named <pap_new>. This
image uses the volumes from <pap_old> to house the policy database. Also, the command uses the
same PING_H2_ FILE |location from Example: Override the configured policy database location on
page 165.

Note:

The Ping Identity DevOps Docker images use the PingAuthorize setup tool to update the H2
policy database on the mounted volume. If you store your policies in a PostgreSQL database,
follow the instructions and use the scripts provided in this GitHub repository to update your policy

database.
= For proper communication between containers, create a Docker network using a command such
as docker network create --driver <network type> <network name>, and then

connect to that network with the --network=<network name> option.

docker container stop <pap old>

docker run --network=<network name> --name <pap new> \
-p 443:1443 -d --env-file ~/.pingidentity/config \
--volumes-from <pap old> \
--env PING H2 FILE=/opt/out/Symphonic \
pingidentity/pingauthorizepap: <TAG>

Uy U

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub (https://hub.docker.com/r/pingidentity/pingauthorizepap).

Warning:

The setup tool uses the default credentials to upgrade the policy database. If the credentials
no longer match the default values, the server administrator should pass the correct credentials

Copyright ©2024

https://devops.pingidentity.com/reference/config/
https://github.com/pingidentity/pingauthorize-contrib/tree/main/sql/postgresql
https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Upgrading PingAuthorize | 133

to the setup tool using the PING_DB_ADMIN USERNAME, PING DB_ADMIN PASSWORD,
PING DB_APP_USERNAME, and PING DB_APP_PASSWORD UNIX environment variables.

For example, if the old policy database admin credentials have been previously set to admin/
PasswO0rd, and the application credentials have been set to app/S3cret, the docker run command
should include those environment variables as shown in this example.

$ docker container stop <pap old>

$ docker run --network=<network name> --name <pap new> \
-p 443:1443 -d --env-file ~/.pingidentity/config \

--—env PING H2 FILE=/opt/out/Symphonic \

--env PING DB ADMIN USERNAME=admin \

-—env PING DB ADMIN PASSWORD=PasswOrd \

-—env PING DB APP USERNAME app \

--env PING DB APP PASSWORD=S3cret \
pingidentity/pingauthorizepap: <TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see
Docker Hub (https://hub.docker.com/r/pingidentity/pingauthorizepap).

This command ensures that the setup tool has the correct credentials to access the policy database,
and that it does not reset credentials to their defaults.

3. Inthe new Policy Editor, complete the steps in Upgrading the Trust Framework and policies on page
136.

Manual upgrades

Upgrading PingAuthorize Server manually
Perform the following steps to upgrade a PingAuthorize server.

Steps
1. Download and unzip the new version of PingAuthorize Server in a location outside the existing server's
installation.

For these steps, assume the existing server installation is in /opt/
pingauthorize/PingAuthorize and the new server version is extracted into /home/
stage/PingAuthorize

2. Provide a copy of the PingAuthorize license file for the version to which you are upgrading in the /
home/stage/PingAuthorize directory, or give the location of the license file to the tool using the
--licenseKeyFile option.

3. Run the update tool provided with the new server package to update the existing PingAuthorize
Server.

The update tool might prompt for confirmation on server configuration changes if it detects
customization.

Example:

/home/stage/PingAuthorize/update --serverRoot /opt/
pingauthorize/PingAuthorize

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorizepap

PingAuthorize | Upgrading PingAuthorize | 134

Reverting an update

After you've updated PingAuthorize Server, you can revert to the previous version (one level back) using
the revert-update tool.

About this task

The revert-update tool accesses a log of file actions taken by the updater to put the file system back to
its previous state. If you have run multiple updates, you can run the revert-update tool multiple times
to sequentially revert to each prior update. You can only revert back one level at a time with the revert-
update tool. For example, if you had to run the update twice since first installing PingAuthorize Server,
you can run the revert-update tool to revert to its previous state, then run the revert-update tool
again to return to its original state.

When starting the server for the first time after running a revert, the server displays warnings about "offline
configuration changes," but these are not critical and will not appear during subsequent start-ups.
Steps

= Run revert-update in the server root directory to revert back to the most recent previous version of
the server, as shown in the following example.

/opt/pingauthorize/PingAuthorize/revert-update

Upgrading the PingAuthorize Policy Editor manually

If you originally installed the PingAuthorize Policy Editor using .zip files, use this procedure to upgrade the
Policy Editor when a new version is released.

Steps

1. Inyour current Policy Editor, complete the steps in Backing up policies on page 136.
2. Stop the Policy Editor.

$ bin/stop-server

3. Obtain and unzip the new version of the PingAuthorize Policy Editor in a location outside the existing
Policy Editor's installation.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 135

4. Prepare the existing policy database.

Note:

The new server installation might require changes to the policy database structure.

Choose from:

= If you store your policies in the H2 policy database, copy the existing database. The server setup
tool performs these upgrades and generates a new configuration.xml file.

This example assumes the old installation is in /opt/pingauthorize/PingAuthorize-PAP-
previous, and the new installation is in /opt/pingauthorize/PingAuthorize-PAP

To upgrade a Run this command
database from

8.1 and later versions
$ cp /opt/pingauthorize/PingAuthorize-PAP-previous/

Symphonic.mv.db opt/pingauthorize/PingAuthorize-PAP

8.0 and earlier

Versions $ cp /opt/pingauthorize/PingAuthorize-PAP-previous/

admin-point-application/db/Symphonic.mv.db opt/
pingauthorize/PingAuthorize-PAP

= If you store your policies in a PostgreSQL database, follow the steps for Upgrading a PostgreSQL
policy database on page 137.

5. Run setup.

Note:

Updating PingAuthorize Server uses an update tool. PingAuthorize Policy Editor does not have this
tool though. Instead of updating the Policy Editor in-place, you install the new Policy Editor.

Warning:

The setup tool uses the default credentials to upgrade the H2 policy database. If the credentials no
longer match the default values, the server administrator should pass the correct credentials to the
setup tool using the -—-dbAdminUsername, —-—dbAdminPassword, -—dbAppUsername, and --
dbAppPassword command-line options. Otherwise, setup fails when it cannot access the H2 policy
database, or it might reset credentials to their default values. For more information, see Manage policy
database credentials on page 250.

Follow the instructions in one of the following topics:
= Installing the PingAuthorize Policy Editor interactively on page 99
= Installing the PingAuthorize Policy Editor noninteractively on page 102
6. Start the new Policy Editor.
Follow the instructions in Post-setup steps (manual installation) on page 107.

7. Inthe new Policy Editor, complete the steps in Upgrading the Trust Framework and policies on page
136.

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 136

Policy-related upgrades

As part of the PingAuthorize upgrade process, you must upgrade specific Policy Editor components and
dependencies, including policies, policy databases, and the Trust Framework.

See the following topics for instructions on upgrading Policy Editor components and dependencies:

= Backing up policies on page 136
= Upgrading the Trust Framework and policies on page 136
= Upgrading a PostgreSQL policy database on page 137

Backing up policies
Back up existing policies before upgrading the Policy Editor. Do this by exporting policy snapshots.

About this task
Back up policies manually as described below or rely on the automatic backups covered in Policy database
backups on page 277.

Steps

1. Sign on to the Policy Editor and choose any existing branch to go to the main landing page.
2. To display your current branches, select Branch Manager # Version Control.
3. From the Branches list, click a branch that you want to export.

Result: You should see a list of the commits for that branch, and the most recent version of the branch
is named Uncommitted Changes.

4. Identify the commit that represents the snapshot that you want to export and click the three-line icon in
the Options column.

5. Choose Export Snapshot.
Result: Your browser downloads the file.
6. Repeat for any additional branches that you want to back up.

Upgrading the Trust Framework and policies

PingAuthorize ships with a default Trust Framework and policy snapshot that policy writers should use
as a starting point when developing their policies. Occasionally, a server upgrade results in changes
to the default Trust Framework and policies, and policy writers must upgrade any policies based on
defaultPolicies.SNAPSHOT

Steps

1. Sign on to the Policy Editor and choose any branch to go to the main landing page.
2. Select Branch Manager from the navigation bar on the left, and open the Merge Snapshot tab.

3. Click the file selection option, and go to the resource/policies/upgrade-snapshots folder of
the new Policy Editor deployment.

4. Select the correct SNAPSHOT file based on the version you are upgrading from and the version to
which you are upgrading.

Important:
If you are upgrading from 7.3.0.x, use the 7.3.0.x-to-8.0.0.0-SNAPSHOT and merge that (per
the next step) before you select and merge 8.0.0.0-to-8.1.0.0.SNAPSHOT.

Example: When upgrading from version 8.0.0.0 to version 8.1.0.0, use resource/policies/
upgrade-snapshots/8.0.0.0-to-8.1.0.0.SNAPSHOT

Copyright ©2024

PingAuthorize | Upgrading PingAuthorize | 137

5. Merge the partial snapshot.

Note:

Merge conflicts might occur where objects have been updated. If you have not modified the objects in
conflict, you can safely select Keep Snapshots.

6. Return to your PingAuthorize Server installation.

7. Run the following dsconfig command to configure PingAuthorize Server to use the latest Trust
Framework version.

dsconfig set-policy-decision-service-prop \
--set trust-framework-version:v2

Upgrading a PostgreSQL policy database

To upgrade an existing PostgreSQL policy database from version 9.0.X.X to version 9.1.X.X, use the
provided upgrade SQL scripts as directed.

About this task

These instructions apply only to non-Docker deployments of PingAuthorize versions 9.0.X.X (EA and GA)
and 9.1.X.X (EA and GA). Earlier versions don't support PostgreSQL, and later versions require the db-
cli tool to upgrade PostgreSQL databases.

Steps

1. Prepare the Policy Editor by selecting one of the following options:
Choose from:

= If you haven't upgraded the Policy Editor, follow the steps for Installing the PingAuthorize Policy
Editor noninteractively on page 102 to create and start up a new instance of the server at the
target version.

= If you have already upgraded the Policy Editor to the target version, run the start-server
command, as follows:

$ bin/start-server

Result:

After you execute the start-server command, the application checks the PostgreSQL database
schema version against the version of the Policy Editor and provides the locations of any necessary
upgrade scripts, as illustrated in the following example:

The policy database at
'jdbc:postgresql://<postgresql host>:<postgresql port>/<postgresql db name>'
is older than this version of PingAuthorize (9.1.0.0). Please use the
following scripts to upgrade the policy database before running start-

server again:

A) https://github.com/pingidentity/pingauthorize-contrib/blob/main/sqgl/

postgresqgl/9.1-EA.sql

B) https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/

postgresqgl/9.1-GA.sqgl

Copyright ©2024

https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/postgresql/README.md
https://github.com/pingidentity/pingauthorize-contrib/blob/main/sql/postgresql/README.md

PingAuthorize | Uninstalling PingAuthorize | 138

2. Download and apply the upgrade scripts for the policy database schema versions between your
current version and the target version, as indicated in the previous step.

Important:

You must apply the scripts incrementally, not concurrently, and in sequence from oldest to newest.

Example:

For example, to upgrade from 9.0.X.X-GA to 9.1.X.X-GA, you must apply both the 9.1-EA and 9.1-GA
upgrade scripts:

$ wget https://raw.githubusercontent.com/pingidentity/pingauthorize-
contrib/main/sqgl/postgresqgl/9.1-EA.sqgl

$ psql --dbname=<postgresqgl db name> --file=9.1-EA.sql >/dev/null

$ wget https://raw.githubusercontent.com/pingidentity/pingauthorize-
contrib/main/sql/postgresqgl/9.1-GA.sqgl

$ psql --dbname=<postgresql db name> --file=9.1-GA.sql >/dev/null

Result

After you apply the specified SQL scripts, the PostgreSQL database upgrade is complete. The Policy
Editor should now start successfully using the target version of the PostgreSQL database. You can verify
this by running the start-server command.

Uninstalling PingAuthorize

For manual installations, PingAuthorize Server provides an uninstall tool to remove its components
from the system.

Steps
1. Go to the PingAuthorize Server root directory.
2. Runthe uninstall command.

$./uninstall

3. Select the option to remove all components or select the components you want to remove.
Example:

To remove selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes

Remove Log Files? (yes / no) [yes]: no

Remove Configuration and Schema Files? (yes / no) [yes]: yes

Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no

Remove LDIF Export Files Contained in 1dif Directory? (yes / no) [yes]:
no

The files will be permanently deleted, are you sure you want to continue?
(yes / no) [yes]:

4. Manually delete any remaining files or directories.

Next steps
To remove PingAuthorize Policy Editor, run stop-server and remove its installation directory.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 139

PingAuthorize Integrations

Ping Identity provides the following API gateway integrations to enable you to use PingAuthorize for
attribute-based access control and policy decisions with your API gateway:

= Kong API gateway integration on page 139
= MuleSoft API gateway integration on page 151

Kong API gateway integration

Ping Identity provides the ping-auth Kong Gateway integration plugin, which enables PingAuthorize to
be used for attribute-based access control and policy decisions.

Integration with Kong Gateway allows PingAuthorize to handle the complexities of attribute-based access
control and dynamic authorization, making it easier for you to control access to your API resources. Instead
of configuring policies multiple times, deploy the Kong Gateway integration once and manage your policy
rules in PingAuthorize.

The following diagram explains how traffic flows through Kong Gateway and PingAuthorize.

Copyright ©2024

Copyright ©2024

N

© No O

PingAuthorize | PingAuthorize Integrations | 140

API| Gateway

Integration Kit

&

HTTP Client

TO-)—.-

I <+

PingAuthorize

The HTTP client sends an inbound request to Kong Gateway.
Kong Gateway sends a sideband request to PingAuthorize.

PingAuthorize Server evaluates the request against policies defined in the PingAuthorize Policy Editor
and sends a permit or deny response to Kong Gateway.

Kong Gateway analyzes the response from PingAuthorize to determine whether the request should
be allowed to the resource server—and if so, whether there should be any modification to the request.
Should the request be denied, then PingAuthorize includes directives to influence how Kong Gateway
responds to the HTTP client.

If the request is permitted, the resource server sends an outbound response to Kong Gateway.

Kong Gateway passes the response to PingAuthorize for processing.

PingAuthorize sends a response to Kong Gateway.

Kong Gateway processes the response from PingAuthorize. This includes directives for how to modify
the response to the HTTP client, if any modifications should be made.

PingAuthorize | PingAuthorize Integrations | 141

Note:

The following notes are important to consider when using the ping-auth Kong Gateway integration
plugin for PingAuthorize:

Mutual TLS (mTLS)

This plugin supports client certificate authentication using mTLS; however this feature requires using
the mt1s-auth plugin (only available in the enterprise edition of Kong) in conjunction with ping-
auth. For more information, see the Kong mTLS documentation. When configured, mt1s-auth
uses the mTLS process to retrieve the client certificate, which allows ping-auth to provide the
certificate in the client certificate field of the sideband requests.

Transfer-Encoding

Because of an outstanding defect in Kong, ping-auth is unable to support the Transfer-Encoding
header, regardless of the value.
Logging limit

Because of OpenResty's log level limit, log messages are limited to 2048 bytes by default, which
is less than the size of many requests and responses. For more information, see the OpenResty
reference documentation.

Preparing PingAuthorize for Kong Gateway integration

For Kong Gateway to use PingAuthorize as an external authorization policy runtime service, you must
prepare PingAuthorize to receive authorization requests from Kong Gateway.

Before you begin

= Install and start Kong Gateway. For more information, see the Kong Gateway documentation.
= Install and start PingAuthorize. For more information, see Installing PingAuthorize on page 77.

Steps

1. In the PingAuthorize admin console, go to Configuration # HTTP Servlet Extensions # Sideband
API.

In the Request Context Method list, select State.

In the Shared Secret Header Name field, modify the value to CLIENT-TOKEN.

Next to the Selected table for Shared Secrets, click the + icon to create a new shared secret.

In the modal dialog, create a suitably long shared secret value and click Save To PingAuthorize
Server Cluster.

a s wbn

Copyright ©2024

https://docs.konghq.com/hub/kong-inc/mtls-auth/
https://openresty-reference.readthedocs.io/en/latest/Lua_Nginx_API/#ngxlog
https://openresty-reference.readthedocs.io/en/latest/Lua_Nginx_API/#ngxlog
https://docs.konghq.com/gateway/

PingAuthorize | PingAuthorize Integrations | 142

6. At the top of the Edit Sideband API HTTP Servlet Extension page, click Save.

Pingldentity. PingData Administrative Console

Configuration

i d38098802088 Configuration HTTP Serviet Extensions

Status Edit Sideband AP| HTTP Servlet Extension

The Sideband API HTTP Serviet Extension is used by a third-party APl Gateway to authorize JSOM-based H’

Name * Sideband API

Description

Cross Origin Policy Mo cross-origin policy is defined and no CORS hex || # | 4
Response Header Enter a value to add

Correlation ID Response Header The correlation-id-response-header property of the HTTP Connect

Request Limit MNa size limit will be enforced on requests.
state X ~
* CLIENT-TOKEN
Available Selected

Search Q Search
¥ Kong Gateway
»
4
“

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 143

Setting up Kong Gateway
Download, install, and configure the ping-auth plugin to set up Kong Gateway with PingAuthorize.

About this task

To configure the ping-auth plugin in Kong to set up a connection between PingAuthorize and Kong
Gateway:

Steps
1. Install the plugin by running the luarocks install kong-plugin-ping-auth command.

See the Kong Gateway plugin installation guide for more information.

2. After installation, load the plugin into Kong by editing the plugins = bundled, ping-auth property
in the kong. conf file.

3. Restart Kong Gateway.

4. To confirm loading, look for the debug-level message Loading plugin: ping-auth in Kong's
error.log.

Next steps

= To complete Kong Gateway setup using Kong Manager, proceed to Using the GUI.
= To complete Kong Gateway setup using API requests, proceed to Using the API.

Copyright ©2024

https://docs.konghq.com/gateway-oss/2.5.x/plugin-development/distribution/#installing-the-plugin

PingAuthorize | PingAuthorize Integrations | 144

Setting up Kong Gateway using the GUI

Steps

1. In Kong Manager, select the default workspace and then click Plugins.

,.s Kong Manager Wwo

Change Workspace

Plugins
m default

Plugins allow you to extend Kong's capabilities with features like rate limiting, authen
Dashboard

API Gateway
Name Enabled Id Applied To

Services
ping-auth false 3e78ecY%a.. @O Global
Routes
Consumers
Plugins
Upstreams

Certificates +* | wish this page would...

SNis

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 145

2. Forthe ping-auth plugin, click Edit, and then click the toggle to enable the plugin.

"i Kong Manager Workspaces Dev Portals Vitals Teams

Change Workspace

m default

Plugins »

Update ping-auth plugin

Dashboard
@ his plugin is Enabled

AP| Gateway

. Global
Services @ -

All services, routes, and consumers
Routes Scoped

Specific consumers, services, and/or routes
Consumers
Plugins

Tags @

Upstreams 9
e esiies Enter list of tags
SNlS e.g. [agil, lags, laga

3. Optional: If you want to enable the plugin for specific consumers, services, or routes, click Scoped,
and then enter Service, Route, and Consumer information as needed.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 146

4. Connect Kong Gateway to PingAuthorize:

a. Copy the PingAuthorize sideband client’s shared secret.
b. Enter the hostname of your PingAuthorize server and the port of the HTTPS Connection Handler
into the Config.Service URL field.

You can find this port number in the PingAuthorize Admin Console by going to Configuration #
System # Connection Handlers.

Example:
For example, this field's value could be https://pingauthorize:8443.

c. Paste the shared secret into the Config.Shared Secret field in Kong Manager.

d. Ensure the Config.Secret Header Name value in Kong Manager matches the secret header
name configured for the Sideband API Servlet Extension in PingAuthorize.

Config.Secret Header Name

CLIENT-TOKEN

Config.Service Url

https://pingauthorize:8443

Config.Shared Secret

KRX KKK HHKK

Config.Verify Service Certificate

Update Cancel Delete Plugin

5. Optional: Configure the rest of the optional fields in Kong Manager or the API.

Option API Field Name Description

Config.Connection KeepAlive |connection_keepAlive ms |The duration to keep the
Ms connection alive for reuse. The
default is 60000.

Config.Connection Timeout connection_timeout ms The duration to wait before
Ms the connection times out. The
defaultis 10000.

Config.Enable Debug Logging | enable_debug_logging Controls if requests and
responses are logged at the
debug level. The default is
false. For log messages to
show in error.log, you must
set log level = debugin
kong.conf.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 147

Option API Field Name Description
Config.Verify Service verify service_certificat€&ontrols whether the service
Certificate certificate is verified. This is

intended for testing purposes
and the default is true.

6. Click Update, and then click Update Plugin.

Result
Kong Gateway is now configured to work with PingAuthorize.
Setting up Kong Gateway using the API

Steps
1. Send the following in a POST request to https://<KONG_URL>/plugins:

{

"name": "ping-auth",
"enabled": true,
"config": {
"service url": "https://<PingAuthorize Server hostname>:<HTTPS
Connection Handler port>/",
"shared secret": "<shared secret>",
"secret header name": "<shared secret header name>"

}
}

Note:

See the following list for more information about the required fields for the previous API request:

service url

The full URL of the Ping policy provider. This should not contain /sideband in the path.
shared secret

The shared secret value to authenticate this plugin to the policy provider.
secret_header name

The header name in which the shared secret is provided.

You can provide additional configuration in accordance with the Kong API specification. For
more information, see the Kong documentation.

2. Optional: Configure the rest of the optional fields through the API.

Option API Field Name Description

Config.Connection KeepAlive |connection_keepAlive ms |The duration to keep the
Ms connection alive for reuse. The
defaultis 60000.

Config.Connection Timeout connection_timeout ms The duration to wait before
Ms the connection times out. The
default is 10000.

Copyright ©2024

https://docs.konghq.com/gateway/2.8.x/admin-api/#add-plugin

Pin

gAuthorize | PingAuthorize Integrations | 148

Option

API Field Name

Description

Config.Enable Debug Logging

enable_debug logging

Controls if requests and
responses are logged at the
debug level. The default is
false. For log messages to
show in error.log, you must
set log level = debugin
kong.conf.

Config.Verify Service

verify service_certificat

t&ontrols whether the service

Certificate certificate is verified. This is
intended for testing purposes
and the default is true.

Result

Kong Gateway is now configured to work with PingAuthorize.

Troubleshooting the Kong Gateway integration

Consult the following sections to troubleshoot issues with the Kong Gateway integration with
PingAuthorize:

Troubleshooting API client HTTP 5xx errors on page 148

API client HTTP 4xx errors on page 149

Enabling error logging in Kong Gateway on page 150

Enabling debug logging for the Kong Gateway plugin on page 150

Troubleshooting API client HTTP 5xx errors

About this task

Kong Gateway might return HTTP 502 when there is misconfiguration or miscommunication between the
Ping Identity plugin for Kong Gateway and PingAuthorize Server.

Trouble:

The plugin for Kong Gateway logs warning messages to the Kong Gateway error log when it encounters
problems communicating with PingAuthorize.

For more information, see Enabling error logging in Kong Gateway on page 150.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 149

Steps

1. Check the ping-auth shared secret value in Kong Gateway to confirm it matches your PingAuthorize
environment.

Example:

If the ping-auth Config.Shared Secret value doesn’'t match the PingAuthorize sideband client's
shared secret value, the Kong error log message might indicate that the plugin received an HTTP 401
error from PingAuthorize, which gets translated to a 5xx error sent to the API client. For example:

2022/03/28 16:19:49 [warn] 78#0: *85187 [lua] network handler.lua:145:
is failed request(): [ping-auth] Sideband request denied with status
code 401: The Gateway Token is invalid

a. If there is a shared secret mismatch, go to Configuration # Web Services and Applications #
Sideband API Shared Secrets in the PingAuthorize Admin Console.
b. Update the shared secret value for PingAuthorize.
c. Copy the value to the Config.Shared Secret field in the Kong Gateway ping-auth plugin
configuration.
2. Check the ping-auth Config.Service URL value in Kong Gateway to confirm that it matches your
PingAuthorize environment.

Example:

If the Config.Service URL value doesn’t contain the hostname and HTTPS Connection Handler port
configured for your PingAuthorize server, the Kong error log message might indicate that the plugin
received an invalid response from the server. For example:

2022/03/28 16:19:49 [error] 78#0: *90929 [lua] access.lua:114:
handle response(): [ping-auth] Unable to parse JSON body returned from
policy provider. Error: Expected value but found T END at character 1

a. If necessary, confirm that the values entered in the Config.Service Url field of the ping-auth
plugin in Kong Gateway correspond to the hostname and HTTPS Connection Handler port of your
PingAuthorize server.

You can find this port number in the PingAuthorize Admin Console by going to Configuration #
System # Connection Handlers.

b. Update any mismatched values in Config.Service Url.

API client HTTP 4xx errors
The API gateway could return 4xx errors to API clients in these situations:

= PingAuthorize cannot match an API client’s request to any of the base paths configured for a sideband
API endpoint.

= The API client’s request cannot be authenticated for a sideband API endpoint.

Tip:

For more information, see Diagnostic and decision data on page 397.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 150

Enabling error logging in Kong Gateway

Steps

1. To view error log messages, configure Kong Gateway error logging.
For more information on log levels, see the Kong Gateway Logging Reference documentation.
Example:

For example, in a Docker environment, you can set the environment variable
KONG_PROXY ERROR_LOG to /dev/stderr to send the error log to the container console.

2. View the Kong Gateway error log.
Example:
For example, in a Docker deployment, you can use the docker-compose logs kong --follow
command.

Enabling debug logging for the Kong Gateway plugin

About this task

Ping Identity Support might ask you to enable debug logging for the Kong Gateway integration Kit.
Changing these settings logs the full authorization request and response between the ping-auth plugin
in Kong Gateway and PingAuthorize.

This could log sensitive and personally identifiable information (PII). Enable debug logging only when
troubleshooting and disable it afterward.

Steps

1. Enable error logging in Kong Gateway.
2. To view debug messages, configure Kong error log verbosity.

For more information, see the Kong Gateway Logging Reference documentation.

Example:
For example, in a Docker environment, you can set the environment variable KONG_LOG_LEVEL to
debug to set the verbosity.

3. To enable debug logging, edit settings for the ping-auth plugin and select the Config.Enable
Debug Logging check box.

4. View the Kong Gateway error log.
Example:
For example, when depoloying Docker, you can use the docker-compose logs kong --follow
command.
5. Look for messages containing ping-auth.
Example:

A typical log message looks like: [ping-auth] Sending sideband request to policy
provider.

Copyright ©2024

https://docs.konghq.com/gateway/2.8.x/configure/logging/
https://docs.konghq.com/gateway/2.8.x/configure/logging/

PingAuthorize | PingAuthorize Integrations | 151

MuleSoft APl gateway integration

Learn how to enable fine-grained access control through the MuleSoft APl Gateway by deploying the
PingAuthorize API integration kit and connecting to the Sideband API.

Ping Identity provides a custom MuleSoft policy to enable this configuration.

soe APl Gateway

= 1
0ooo >

ooo | |
oo 8 5
[]

. Int tion Kit
HTTP Client g on

i

2 3 6 7

X

PingAuthorize

The custom MuleSoft policy acts as the sideband adapter, allowing MuleSoft to be used as the API
gateway as follows:
1. The client sends an incoming request to MuleSoft.

2. The custom MuleSoft policy passes the incoming request to PingAuthorize Server.
3. PingAuthorize Server determines whether to permit or deny the request based on policies defined in

the PingAuthorize Policy Editor (not to be confused with MuleSoft policies). The server also performs
any desired request modifications.

4. If the request is permitted, MuleSoft makes the request to the backend resource.

Copyright ©2024

8.

PingAuthorize | PingAuthorize Integrations | 152

MuleSoft receives a response from the backend resource.

The custom MuleSoft policy makes a second API call to pass response information to PingAuthorize
Server.

PingAuthorize Server determines whether to permit or deny based on the backend response. Before
the server returns the request to MuleSoft, it also modifies the request based on policies defined in
PingAuthorize.

MuleSoft sends the response to the client.

Deploying the custom MuleSoft policy for PingAuthorize

Before you begin

You must:

Have the correct MuleSoft version.

The custom policy supports MuleSoft 4.3.0. If you are using any other version, contact Ping Identity
support.
Install and configure PingAuthorize software.

See the PingAuthorize installation information for your environment.
Download the MuleSoft Integration Kit for PingAuthorize, which contains the custom MuleSoft policy.
Create a sideband adapter shared secret.

Sideband adapters like the custom MuleSoft policy use a shared secret header to authorize against
PingAuthorize. For information, see Creating a shared secret on page 181.

Note:

Make sure you record the shared secret value. You need it to configure the MuleSoft policy.

Configure the sideband adapter request context.

For more information, see Request context configuration on page 189. Complete the section titled
Request context using the state field.

Install Apache Maven.

About this task

To begin integrating PingAuthorize with MuleSoft 4.3.0, deploy the custom MuleSoft policy. The MuleSoft
policy package has a . zip archive that contains the policy files.

Steps

1.
2.

Copyright ©2024

Extract the policy files to create a project folder.
Edit the pom. xm1 file to enter your organization's groupID.
Example:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchemainstance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupld>aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee</groupld>

<artifactId>PingAuthorize</artifactId>
<version>0.4.0</version>

https://support.pingidentity.com/s/marketplace-integration/a7i8Z000000XjgRQAS/mulesoft-integration-kit-for-pingauthorize

PingAuthorize | PingAuthorize Integrations | 153

<name>PingAuthorize</name>
<description>PingAuthorize sideband policy for Mule 4.X APIs deployed

on Mule Cloudhub from Ping Identity</description>

3. From the command line in your project folder, run the following command to package the
PingAuthorize policy and create a deployable . jar file.
> mvn clean install
Note:
You must have a MuleSoft Enterprise Repository license to compile the policy. For more information,
see Configure Maven to Access MuleSoft Enterprise Repository in Maven Reference.
4. Upload the PingAuthorize policy to Exchange.
For more information, see the instructions in Deploying a Policy Created Using the Maven Archetype.
Result

The custom MuleSoft policy is now available to your APIs. For more information, see Applying the custom
MuleSoft policy for PingAuthorize on page 153.

Applying the custom MuleSoft policy for PingAuthorize

About this task

The PingAuthorize policy supports HTTP APIs configured with the Endpoint with proxy Or Basic
Endpoint options.

Steps

1. Sign on to your MuleSoft Anypoint account.
2. Go to the APl manager, expand the API to which you want to attach the PingAuthorize policy, and click

Copyright ©2024

Version.

= APl Manager

APl Administration (Sandbox)

SANDBOX Manage APl v r te from enviror t ‘ PingAuthorizeAPI ‘

AP Administration
API Groups
= 5

Automated Policies
Client Applications

APl Name Version Status Client Applications Creation Date
Custom Policies
Analytics

Unregistered 0 06-15-2021 1:

https://docs.mulesoft.com/mule-runtime/4.3/maven-reference#configure-maven-to-access-mulesoft-enterprise-repository
https://docs.mulesoft.com/api-manager/2.x/custom-policy-uploading-to-exchange

PingAuthorize | PingAuthorize Integrations | 154

3. In the left navigation pane, click Policies.

The Policies page supports applying the PingAuthorize policy to the API.

— API| Manager

AP| Administration (Sandbox)

SANDBOX

Alerts
Contracts
SLA Tiers
Settings

4. Click Apply New Policy.

PingAuthorizeAP! (v1) - Settings

PingAuthorizeAPl v

APl Status: Unregistered Asset Version: 1.0.0 Latest ® Type: HTTP

(1 Add consumer endpoint

API Instance (D Autodiscovery (D

ID: 16971110 API'ID: 16971110

Label: () Add a label

= APl Manager

APl Administration (Sandbox)

SANDBOX

Alerts
Contracts

Policies
SLA Tiers

Settings

PingAuthorizeAPI (v1) - Policies

PingAuthorizeAPl v1

API Status: Unregistered Asset Version: 1.0.0 Latest ® Type: HTTP

® Add consumer endpoint

API level policies

Apply New Policy

There are no applied policies.

Result: The Select Policy window opens.

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 155

5. Inthe Select Policy window, select the PingAuthorize policy and current version. Click Configure
Policy.

Select Policy

All Categories v All Mule Versions v
Policies Min Mule Version

> Message Logging

> Rate limiting

> Rate limiting - SLA based

> Spike Control

> Tokenization You need permission to apply

> XML threat protection

> Add Attribute

v PingAuthorize

() o433 @

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 156

6. Onthe Apply Policy page, enter the following values:

a. Inthe PAZ Token field, enter the sideband adapter shared secret generated as part of the
prerequisites in Deploying the custom MuleSoft policy for PingAuthorize on page 152

b. Inthe PAZ Host field, enter the PingAuthorize host and port.

Note:

Do not include the connection scheme (http:// or https://).

c. Select the Enable SSL check box for a secure HTTPS connection between MuleSoft and
PingAuthorize.

d. Select the Allow self-signed certificate check box to enable MuleSoft to accept a self-signed
certificate from PingAuthorize.

For information about configuring PingAuthorize to use trusted certificates, see Importing signed
and trusted certificates on page 337.

e. Select an access token type:
Choose from:
= Use Authorization Header.

Indicates that the authorization header of an incoming request should be passed to
PingAuthorize and used to authorize the client.
= Use hard-coded parsed access token.

Allows configuration of an access token that will be used for every request. Use this only for
testing purposes.
= Use parsed access token.

Allows configuration of a DataWeave expression for retrieving a parsed access
token from the Mule message. When you use MuleSoft's OAuth 2.0 Token
Enforcement policies to obtain a parsed access token, use the expression
#[authentication.properties.userProperties]. For more information, see
DataWeave Language.

f. Optional: Configure the Connection Timeout and Read Timeout.

Timeouts govern the behavior of the API gateway when it cannot connect to PingAuthorize or the
response from PingAuthorize is delayed.

Timeout parameter Description

Connection Timeout Governs the time the API gateway waits
to establish a connection with PingAuthorize,
following which it sends the client request to the
backend server.

Copyright ©2024

https://docs.mulesoft.com/mule-runtime/4.3/dataweave

Copyright ©2024

PingAuthorize | PingAuthorize Integrations | 157

Timeout parameter

Description

Read Timeout

Governs the time the APl Gateway waits for
PingAuthorize's response before sending the
request to the backend server.

Note:

The default value is 5000 milliseconds (5 seconds). It's good practice to configure a small value to
limit the delay in case PingAuthorize isn't reachable or is unresponsive.

Optional: Select the Enable debug logging check box to see requests sent to PingAuthorize

Server along with responses.

Optional: Configure Methods & Resource Conditions.

See Resource-Level Policies for more information.

https://docs.mulesoft.com/api-manager/2.x/policies-policy-level

PingAuthorize | PingAuthorize Server Administration Guide | 158

Apply PingAuthorize policy

PingAuthorize sideband policy for Mule 4.X APIs deployed on Mule Cloudhub from Ping Identity

PAZ TOKEN

PingAuthorize sideband shared secret

PAZ Host *
Hostname or IP:Port

Enable SSL
If enabled, Mulesoft will connect to PingAuthorize over HTTPS

Allow self-signed certificate
If enabled, Mulesoft will accept self-signed certificates from PingAuthorize

Access token type *
How the adapter should handle access tokens

© Use Authorization header
O Use hard-coded parsed access token (for testing purposes only)

() Use parsed access token

Connection Timeout *
Connection imeout in milliseconds

5000

Read Timeout *
Read timeout in milliseconds

5000
Enable debug logging
If enabled, logs requests to and responses from the PingAuthorize server.

Method & Resource conditions
o Apply configurations to all APl methods & resources

O Apply configurations to specific methods & resources

Next steps

If there are any changes to PingAuthorize endpoints, repeat the process explained in step 6 and re-deploy
the configuration.

PingAuthorize Server Administration Guide

PingAuthorize Server includes the runtime policy decision service and multiple integration capabilities:

= Authorization policy decision APIs
= API security gateway and sideband API
= SCIM service

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 159

Running PingAuthorize

For manual software installations of PingAuthorize Server and the PingAuthorize Policy Editor, you can
launch the applications from the CLI.

Starting PingAuthorize Server
To start PingAuthorize Server in a Unix/Linux computing environment, use the bin/start-server CLI

command. On Windows, use the bat/start-server.bat command.
Steps

1. In aterminal window, enter go to the directory where you have installed PingAuthorize Server.
2. Run the command for your operating system.

Operating System Command
Unix/Linux bin/start-server
Windows bat/start-server.bat

Running PingAuthorize Server as a foreground process
Run or stop PingAuthorize Server as a foreground process in Unix/Linux computing environments through

the CLI.
Steps

= To launch PingAuthorize Server as a foreground process, run $ bin/start-server --nodetach.

= To stop a running PingAuthorize Server, do one of the following:
Choose from:

= In the terminal window running the server, press and hold CTRL+C.
= In a new terminal window, run bin/stop-server.

Starting PingAuthorize Server at boot time (Unix/Linux)
Create a script to run PingAuthorize Server when the system boots.

About this task

PingAuthorize Server does not start automatically when the system is booted. By default, you must use the
bin/start-server command to start it manually.

Steps

= To configure PingAuthorize Server to start automatically when the system boots, complete one of the
following tasks:
Choose from:

= Use the create-systemd-script utility to create a script.

1. Create the service unit configuration file in a temporary location, as in the following example.

$ bin/create-systemd-script \
--outputFile /tmp/ping-authorize.service \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 160

--userName pingauthorize

In this example, pingauthorize represents the username assigned to PingAuthorize
Server.

2. Switch to root user. The command for doing this will vary depending on your distribution.

3. As aroot user, copy the ping-authorize.service configuration file to the /etc/
systemd/ system directory as shown.

cp ping-authorize.service /etc/systemd/

4. Reload systemd to read the new configuration file as shown.

$ systemctl daemon-reload

5. To start PingAuthorize Server, use the start command.

$ systemctl start ping-authorize.service
6. To configure PingAuthorize Server to start automatically when the system boots, use the
enable command, as in the following example.
$ systemctl enable ping-authorize.service

7. Sign off from the system as the root user.
= Create a Run Control (RC) script manually.

1. Runbin/create-rc-script to create the startup script.
2. Move the script to the /etc/init.d directory.
3. Create symlinks to the script from the /etc/rc3.d directory.

To ensure that the server is started, begin the symlinks with an s.
4. Create symlinks to the script from the /etc/rc0.d directory.

To ensure that the server is stopped, begin the symlinks with a K.

Starting PingAuthorize Server at boot time (Windows)

On Windows Server systems you can register PingAuthorize Server as a service to start it up when
booting.

About this task

PingAuthorize Server can run as a service on Windows Server operating systems. This approach allows
the server to start at boot time, and allows the administrator to log off from the system without stopping the
server.

Registering PingAuthorize Server as a Windows service
Registering PingAuthorize Server as a service allows you to automate startup when booting.

About this task

Note:

The following options are not supported when PingAuthorize Server is registered to run as a Windows
service:

= Command-line arguments for the start-server.bat and stop-server.bat scripts
= Using a task to stop the server

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 161

Steps

1. Runbin/stop-server to stop PingAuthorize Server.

Note:

You cannot register a server while it is running.

2. From a Windows command prompt, run bat/register-windows-service.bat to register the
server as a service.

3. Use one of the following methods to start PingAuthorize Server:
Choose from:

= The Windows Services Control Panel
» Thebat/ start-server.bat command

Running multiple service instances
You can run multiple instances of PingAuthorize Server as Windows services by altering the wrapper-
product.conf file.

About this task

Only one instance of a particular service can run at a time. Services are distinguished by the
wrapper .name property in the <server-root>/config/wrapper-product.conf file.

To run additional service instances, change the wrapper . name property on each additional instance. You
can also add or change service descriptions in the wrapper-product.conf file.

Steps

1. Openthe <server-root>/config/wrapper-product.conf file.

2. Change the wrapper . name property to a unique string, such as pingauthorizel.
3. Save the wrapper-product.conf file.
4

Register PingAuthorize Server as a service. For more information, see Registering PingAuthorize
Server as a Windows service on page 160.

5. Repeat these steps for each service instance you want to create.

Deregistering and uninstalling services
When a server is registered as a service, it cannot run as a non-service process or be uninstalled.

About this task

Steps

1. Toremove the service from the Windows registry, run the bat /deregister-windows-
service.bat script.

2. To uninstall PingAuthorize Server, run the PingAuthorize/uninstall.bat script. For more
information, see Uninstalling PingAuthorize on page 138.

Log files for Windows services
You can configure the log files generated by PingAuthorize Server running as a Windows service.

Log files are stored in <server-root>/1logs, and file names begin with windows-service-wrapper.
You can edit the log file configurations in the <server-root>/config/wrapper.conf file.

Log files are configured to rotate each time the wrapper starts due to file size. You can edit the allowed file
size using the wrapper.logfile.maxsize parameter. The default size is 50 Mb.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 162

By default, only the two most recent log files are retained. You can change how many log files to retain by
editing the wrapper.logfile.maxfiles parameter.

Starting PingAuthorize Policy Editor

For a manual software installation, use the start-server CLI command to start the Policy Editor. Also,
you can use environment variables to override configuration variables at startup.

To start PingAuthorize Policy Editor, use the bin/start-server command.

$ bin/start-server

Note:

You can run bin/start-server manually from the command line or within a script.

Overriding the configuration at startup

You can override a number of Policy Editor settings by defining specific environment variables before
starting the server. By overriding some of the configuration, you can redefine certain aspects of the
configuration without re-running the setup tool.

To override the configuration, stop the Policy Editor, define one or more of the environment variables, and
restart the Policy Editor.

Environment variables you can use to override configuration variables

The following table lists the environment variables that you can define, sorted based on expected
frequency of use with related variables grouped together.

Environment variable | Example value Description

PING_EXTERNAL_BASE_[JRip.example.com:9443 | The policy Editor hostname and port.

PingAuthorize uses this value to construct AJAX
requests.

The port value must match the value of PING_PORT
for web browsers to pass CORS checks.

PING_PORT 443 The Policy Editor HTTPS port.

The server binds to this listen port.

PING_KEYSTORE_TYPE [JKS The Policy Editor's key store type. Valid values
include JKS and PKCS12.

PING_KEYSTORE_PATH |/path/to/keystore.jks The path to the Policy Editor's key store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 163

Environment variable [Example value

Description

KEYSTORE PIN FILE |(/path/to/keystore.pin

The path to the Policy Editor's key store PIN file.
When present, this environment variable takes
precedence over PING_KEYSTORE _PASSWORD
when validating and presenting the server
certificate. The key store PIN value itself does

not persist to the configuration. yml file and

is not visible on the command-line. For a more
complete example, see the Demo mode (custom
SSL certificate) tab of Installing the PingAuthorize
Policy Editor noninteractively on page 102.

PING_KEYSTORE_PASSWOREssword1234

The Policy Editor’s key store password.

PING_CERT_ALIAS server-cert

The alias for the Policy Editor’s server certificate.

PING_SHARED_ SECRET |pingauthorize

The Policy Editor’s shared secret, which
PingAuthorize Server needs to make policy
requests to the Policy Editor.

PING_OIDC

- https://
CONFIGURATION ENDPO

[migc.example.com:9031/.y
known/openid-
configuration

The OpenID Connect (OIDC) provider’s discovery
VBIRL. Used when the Policy Editor is set up in OIDC
mode.

PING_OIDC_TLS_VALIDRYOONE

The OpenID Connect (OIDC) Transport Layer
Security (TLS) validation setting. Set to NONE to
configure the Policy Editor to accept self-signed
SSL certificates from the OpenID Connect provider
and skip hostname verification.

Used when the Policy Editor is set up in OIDC
mode. For non-production use only.

8ch9f2c9-
€c366-47e0-9560-
db2132b2d813

PING_CLIENT ID

The Policy Editor’s client ID with the OpenlD
Connect provider. Used when the Policy Editor is
set up in OIDC mode.

PING_USERNAMES admin, userl, user2

Used in demo mode. A comma-separated list of
usernames accepted by the Policy Editor for sign
on.

PING_H2 FILE ./Symphonic

The path to the policy database H2 file.

Leave off the .mv . db extension.

PING_DB_APP_USERNAMEdb_user

The username the application uses to access the
server database.

PING_DB_APP_PASSWORPPa$$wOrd!23

The password the application uses to access the
server database.

PING DB_ADMIN_USERNRME admin

The username the setup tool uses when
upgrading the policy database.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 164

Environment variable [Example value Description

PING_DB_ADMIN_PASSWC¥ECr3T The password the setup tool uses when upgrading
the policy database.

PING_OPTIONS_FILE |/path/to/options.yml The path to an options.yml file to use with the
Policy Editor's setup tool.

PING_ADMIN_PORT 9444 The admin port where the H2 database backup
endpoint is available.

The policy administration point, or PAP, uses this
endpoint to back up the H2 database, which stores
your Trust Framework, policies, commit history, and
other data.

Related environment variables:
PING_BACKUP_SCHEDULE,
PING_H2 BACKUP DIR

PING_BACKUP_SCHEDULED 00 **? The periodic database backup schedule for the
Policy Editor (also known as the PAP) in the form of
a cron expression.

Note:

The PAP evaluates the expression against the
system timezone. For the PingAuthorize Docker
images, the default timezone is UTC.

The defaultis0 0 0 * * 2, which is midnight
every day.

For more information, see Quartz 2.3.0 cron format.

Related environment variables:
PING ADMIN PORT, PING H2 BACKUP DIR

PING_H2_ BACKUP DIR [/opt/out/backup The directory in which to place the H2 database
backup files.

The default is SERVER_ROOT/policy-backup.

Related environment variables:
PING_ADMIN_PORT, PING_BACKUP_SCHEDULE

PING_ENABLE_API_HTTHaGRCHE Controls the API HTTP caching on page 257
feature for the run-time instance of the server. APIs
are cached by default.

Provide this environment variable at run time and
setitto false to disable APl HTTP caching for that
server instance.

Copyright ©2024

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format

PingAuthorize | PingAuthorize Server Administration Guide | 165

Example: Use an existing SSL certificate for HTTPS connections

This example shows how to provide the environment variables necessary for the Policy Editor to present a
different SSL certificate than the one configured during setup:

env PING CERT ALIAS=<certificate-nickname> \
PING KEYSTORE PATH=<path-to-keystore-file> \
PING KEYSTORE TYPE=<PKCS12-or-JKS> \

KEYSTORE PIN FILE=<path-to-keystore-pin-file> \
bin/start-server

Example: Override the configured HTTPS port

In this example, the Policy Editor is started using an HTTPS port that differs from the value
configured during installation. The override requires two environment variables: PING_PORT and
PING_EXTERNAL BASE URL.

$ bin/stop-server
$ export PING PORT=9443 PING EXTERNAL BASE URL=pap.example.com:9443; bin/
start-server

Example: Override the configured policy database location

This example changes the policy database location. The new value must be a policy server Java Database
Connectivity (JDBC) connection string for an H2 embedded database. To use a file located at /opt/
shared/Symphonic.mv.db, use the following commands.

$ bin/stop-server
$ export PING H2 FILE=/opt/shared/Symphonic
$ bin/setup demo {ADDITIONAL ARGUMENTS} && bin/start-server

Note:

Even though the actual filename of the policy database includes the extension .mv . db, the JDBC
connection string excludes the extension.

If /opt/shared/Symphonic.mv.db does not exist, setup creates a new one. If the file does exist and
is from an older PingAuthorize server, setup updates the file to the latest version.

Troubleshooting startup errors

The bin/start-server command prints an error message if it detects that an error has occurred during
startup. For more information about the error, see the 1ogs/authorize-pe.logand logs/start-
server.log files.

Stopping PingAuthorize Server
PingAuthorize Server provides a simple shutdown script to stop the server.

Steps

= To stop the PingAuthorize Server, run the $ bin/stop-server command.

Note:

You can run bin/stop-server manually from the command line or within a script.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 166

Stopping PingAuthorize Policy Editor
PingAuthorize Policy Editor provides a simple shutdown script to stop the system.

Steps

= To stop the PingAuthorize Policy Editor, run the bin/stop-server command.

Note:

You can run bin/stop-server manually from the command line or within a script.

Restarting PingAuthorize Server
You can stop and restart PingAuthorize Server with a single command.

About this task

Running this command is equivalent to shutting down PingAuthorize Server, exiting the Java virtual
machine (JVM) session, and starting the server again.

Steps

1. Go to the PingAuthorize Server root directory.
2. Runbin/stop-server with the --restart or -R option.
Example:

$ bin/stop-server —--restart

About the API security gateway

When you configure PingAuthorize Server for the API gateway pattern, the server and gateway provide
dynamic authorization management between a client and a REST API.

See the following topics for specific details about the functionality of the API security gateway.

= API gateway request and response flow on page 166
= Gateway configuration basics on page 167

= API security gateway authentication on page 168

= API security gateway policy requests on page 169

= API security gateway HTTP 1.1 support on page 175
= Gateway error templates on page 176

API gateway request and response flow

Using the API gateway pattern, PingAuthorize processes JSON requests and responses in two distinct
phases according to a defined sequence.

The gateway handles proxied requests in the following phases:

= Inbound phase — When a client submits an API request to PingAuthorize Server, the gateway forms
a policy request based on the API request and submits it to the policy decision point (PDP) for
evaluation. If the policy result allows it, PingAuthorize Server forwards the request to the API server.

= Outbound phase — After PingAuthorize Server receives the upstream API server's response, the
gateway again forms a policy request, this time based on the API server response, and submits it to
the PDP. If the policy result is positive, PingAuthorize Server forwards the response to the client.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 167

Client PingAuthorize ﬂ REST API

I I

Client makes |
REST API |
request I

| request

|
PingAuthorize
validates access token

|

|

token validation

Inbound phase:
PingAduthorize filters

submit API request
for policy processing

apply policy result
10 API request

I
| I
| |
| |
| |
| |
| |
| |
| |
I 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
PingAuthorize ‘ I
forwards API request I |
to REST API | |
| |
| |
| |
|
|
|
|
|
|
|
{
|
|
|
|
|
|
I

REST API handles request
AP request and response

response
response

|

Outbound phase: |

PingAuthorize filters I

AP response |

| submit API response |

| for policy processing |

| |

| apply policy result |

I 10 API response I

| |

Client receives | |
filtered REST API | |
| |

| |

[|

Client PingAuthorize ﬂ REST API

The API gateway supports only JSON requests and responses.

Gateway configuration basics
You can configure the API gateway architecture by creating and modifying its components.

The API security gateway consists of the following components:

= One or more gateway HTTP servlet extensions
= One or more Gateway API Endpoints
= One or more API external servers

An API external server represents the upstream API server and contains the configuration for the server's
protocol scheme, host name, port, and connection security. You can create the server in the PingAuthorize
administrative console, or with the following example command.

PingAuthorize/bin/dsconfig create-external-server \
-—-server-name "API Server" \
-—type api \
--set base-url:https://api-service.example.com:1443

A Gateway API Endpoint represents a public path prefix that PingAuthorize Server accepts for handling
proxied requests. A Gateway API Endpoint configuration defines the base path for receiving requests
(inbound-base-path) as well as the base path for forwarding the request to the API server (outbound-
base-path). It also defines the associated API external server and other properties that relate to policy
processing, such as service, which targets the policy requests generated for the Gateway APl Endpoint to
specific policies.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 168

The following example commands use the API external server from the previous example to create a pair
of Gateway API Endpoints.

PingAuthorize/bin/dsconfig create-gateway-api-endpoint \
--endpoint-name "Consent Definitions" \
--set inbound-base-path:/c/definitions \
--set outbound-base-path:/consent/vl/definitions \
-—-set "api-server:API Server" \
--set service:Consent

PingAuthorize/bin/dsconfig create-gateway-api-endpoint \
--endpoint-name "Consent Records" \
--set inbound-base-path:/c/consents \
--set outbound-base-path:/consent/vl/consents \
--set "api-server:API Server" \
--set service:Consent

The gateway HTTP servlet extension is the server component that represents the API security gateway
itself. In most cases, you do not need to configure this component.

Changes to these components do not typically require a server restart to take effect. For more information
about configuration options, see the Configuration Reference, located in the server's docs/config-
guide directory.

API security gateway authentication

The API security gateway authenticates requests through bearer tokens by default, and you can configure
it to handle authentication according to your preferences.

Although the gateway does not strictly require the authentication of requests, the default policy set requires
bearer token authentication.

To support this approach, the gateway uses the configured access token validators to evaluate bearer
tokens that are included in incoming requests. The result of that validation is supplied to the policy request
in the Ht tpRequest . AccessToken attribute, and the user identity associated with the token is provided
in the TokenOwner attribute.

Policies use this authentication information to affect the processing of requests and responses. For
example, a policy in the default policy set requires that all requests are made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
Code: denied-reason
Applies To: Deny
Payload: {"status":401, "message": "invalid token", "detail":"Access token
is expired or otherwise invalid"}

Gateway API Endpoints include the following configuration properties to specify the manner in which they
handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Gateway API Endpoint
evaluates bearer tokens, and if so, whether the
bearer token is forwarded to the API server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 169

Property Description

access-token-validator Sets the access token validators that the Gateway
API Endpoint uses. By default, this property has
no value, and the Gateway API Endpoint can
evaluate every bearer token by using each access
token validator that is configured on the server. To
constrain the set of access token validators that a
Gateway API Endpoint uses, set this property to
use one or more specific values.

If http-auth-evaluation-behavior is set to
do-not-evaluate, this setting is ignored.

APl security gateway policy requests

The API security gateway creates policy requests for incoming requests and API responses, and you can
observe how it creates them.

Before accepting an incoming request and forwarding it to the API server, the gateway creates a policy
request based on the incoming request and sends it to the policy decision point (PDP) for authorization.
Before accepting an API server response and forwarding it back to the client, the gateway creates a
policy request based on the incoming request and response and sends it to the PDP for authorization. An
understanding of the manner in which the gateway formulates policy requests can help you create and
troubleshoot policies more effectively.

You can selectively disable response policy processing on a per-API-Endpoint basis. This ability is useful
if the Gateway authorizes requests but does not filter responses. Disabling this processing can improve
performance for frequent requests or requests that return very large responses. To disable processing, set
the Gateway APl Endpoint's disable-response-processing property to true.

To better understand how the gateway formulates policy requests, enable detailed decision logging and
viewing all policy request attributes in action, particularly when first developing API security gateway
policies. For more information, see Policy Decision logger on page 397.

APl gateway policy request attributes

There are many policy request attributes generated by the security gateway, including attributes nested
within the attributes, HttpRequest.AccessToken, HttpRequest.ClientCertificate, and
Gateway fields.

The following table identifies the attributes of a policy request that the gateway generates.

Policy request attributes Description Type

action Identifies the gateway request String
processing phase and the HTTP
method, such as GET or POST.

The value is formatted as
<phase>-<method>.

Example values include
inbound-GET, inbound-
POST, outbound-GET, and
outbound-POST.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 170

Policy request attributes Description

Type
Object

Identifies additional attributes
that do not correspond to

a specific entity type in the
PingAuthorize Trust Framework.
For more information about these
attributes, see the following table.

attributes

Unused. String

domain

Identifies the access token
validator that evaluates the
bearer token used in an incoming
request.

identityProvider String

service

Identifies the API service. By
default, this attribute is set

to the name of the Gateway
API Endpoint, which can be
overridden by setting the
Gateway API Endpoint's service
property. Multiple Gateway API
Endpoints can use the same
service value.

String

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type
Gateway Provides additional gateway-specific Object
information about the request not provided
by the following attributes.
HttpRequest.AccessToken Parsed access token. For more information, | Object
see the following table.
HttpRequest.ClientCertificate Properties of the client certificate, if one was | Object
used.
HttpRequest.CorrelationId A unigue value that identifies the request String
and response, if available.
HttpRequest.IPAddress The client IP address. String
HttpRequest.QueryParameters Request URI query parameters. Object
HttpRequest.RequestBody The request body, if available. Object
HttpRequest.RequestHeaders The HTTP request headers. Object
HttpRequest.RequestURI The request URI. String
HttpRequest.ResourcePath Portion of the request URI path following String
the inbound base path that the Gateway
API Endpoint defines.
HttpRequest.ResponseBody The response body, if available. This Object
attribute is provided only for outbound policy
requests.
HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 171

Attribute Description Type

HttpRequest.ResponseStatus The HTTP response status code, if Number
available.

TokenOwner The access token subject as a SCIM Object
resource, as obtained by the access token
validator.

The access token validator populates the HttpRequest . AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

access_token The actual access token from the | String
client request.

active Indicates whether this access Boolean
token is currently active, as
determined by the access token
validator.

audience Identifies the recipients for whom | Array
the access token is intended.
Typically, the authorization server
sets this field to indicate the
resource servers that might
accept the token.

client id The client ID of the application String
that was granted the access
token.

expiration Date and time at which the DateTime

access token expires.

issued at Date and time at which the DateTime
access token was issued.

issuer Token issuer. This attribute is String
usually a URI that identifies the
authorization server.

not before Date and time before which a DateTime
resource server does not accept
the access token.

scope Identifies the list of scopes Collection
granted to this token.

subject Token subject. This attribute String
is a user identifier that the
authorization server sets.

token owner User identifier that was resolved | String
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

Copyright ©2024

https://tools.ietf.org/html/rfc7662

PingAuthorize | PingAuthorize Server Administration Guide | 172

Attribute

Description

Type

token type

The token type, as set by the
authorization server. This value is
typically set to bearer.

String

user token

Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a
client.

Boolean

username

Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

The following table identifies the fiel

ds that the HttpRequest.Client

Certificate attribute contains.

valid.

Attribute Description Type
algorithm Name of the certificate String
signature algorithm, such as
SHA256withRSA.
algorithmOID Signature algorithm OID. String
issuer Distinguished name (DN) of the String
certificate issuer.
notAfter Expiration date and time of the DateTime
certificate.
notBefore Earliest date on which the DateTime
certificate is considered valid.
subject DN of the certificate subject. String
subjectRegex Regular expression that must String
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.
valid Indicates whether the certificate is | Boolean

The following table identifies the fiel

ds that the Gateway attribute contains.

Attribute Description Type
_BasePath Portion of the HTTP request URI | String
that matches the Gateway API
Endpoint's inbound-base-
path value.
_TrailingPath Portion of the HTTP request URI | String

that follows the BasePath.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 173

Attribute Description Type

base path parameters Parameters used in a Gateway String
API Endpoint's inbound-base-
path configuration property are
included as fields of the Gateway
attribute.

custom attribute The Gateway attribute might String
contain multiple arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Gateway API Endpoint
configuration.

Gateway API Endpoint configuration properties that affect policy requests
The following table identifies Gateway API Endpoint properties that might force the inclusion of additional
attributes in a policy request.

Gateway API Endpoint property Description

inbound-base-path Defines the URI path prefix that the gateway uses
to determine whether the Gateway API Endpoint
handles a request.

The inbound-base-path property value can
include parameters. If parameters are found and
matched, they are included as attributes to policy
requests.

The following configuration properties reference
parameters that the inbound-base-path
introduces:

* outbound-base-path

* service

* resource-path

» policy-request-attribute

service Identifies the API service to the PDP.

The service value appears in the policy request as
the service attribute.

If undefined, the service value defaults to the name
of the Gateway API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest .ResourcePath
attribute.

If undefined, the resource path value defaults to
the portion of the request that follows the base path
defined by inbound-base-path.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 174

Gateway API Endpoint property Description

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, key-value pairs are always added
as attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute

Gateway. foo is added to the policy request with a
value of bar.

API gateway path parameters
The inbound-base-path property value can include parameters. If parameters are found and matched,
they are included in policy requests as fields of the Gateway policy request attribute.

Gateway API Endpoint configuration properties that affect policy requests on page 173 identifies
additional configuration properties that can use these parameters.

You must introduce parameters by the inbound-base-path property. Other configuration properties
cannot introduce new parameters.

Basic example
The following example configuration demonstrates how request URIs are mapped to the outbound path to
alter policy requests.

Gateway API Endpoint property Example value

inbound-base-path /accounts/{accountId}/transactions

outbound-base-path /api/vl/accounts/{accountId}/
transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the inbound base path and
is mapped to the outbound path /api/vl/accounts/XYZ/transactions/1234

The following properties are added to the policy request:

» HttpRequest.ResourcePath : 1234
* Gateway.accountId : XYZ
* Gateway.foo : bar

Advanced example
Request URIs are mapped to the outbound path to alter policy requests.

Consider the following example configuration.

Gateway API Endpoint property Example value

inbound-base-path /health/{tenant}/{resourceType}
outbound-base-path /api/v1l/health/{tenant}/{resourceType}
service HealthAPI. {resourceType}

resource-path {resourceType}/{ TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/health/OmniCorp/patients/1234.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 175

The following properties are added to the policy request:

service : HealthAPI.patients
HttpRequest.ResourcePath : patients/1234
Gateway.tenant : OmniCorp
Gateway.resourceType : patients

API security gateway HTTP 1.1 support

In its capacity as a reverse proxy, the API security gateway must modify HTTP requests and responses in
addition to the changes required by policy processing.

Forwarded HTTP request headers

HTTP requests often pass through a chain of intermediaries before reaching a destination server. The
HTTP 1.1 specifications define two categories of headers that are pertinent to this context.

End-to-end headers

Headers requiring transmission to all recipients on the chain, such as Content-Type.

Hop-by-hop headers

Headers that are only relevant to the next recipient on the chain, such as Connection and Keep-
Alive.

The API security gateway never forwards hop-by-hop headers. It generally forwards all end-to-end
headers, with the following exceptions:

Headers related to HTTP resource versioning and conditional requests, such as If-None-Match and
If-Modified-Since, are never forwarded.

Headers related to CORS, such as Origin or Access-Control-Request-Method, are never
forwarded.

Headers that you exclude by using the allowed-headers configuration property of an APl External
Server to define an allow list of forwarded headers.

Headers that you remove by using a custom advice extension.

The API security gateway always adds the Host, Accept-Encoding, Via, X-Forwarded-For, X-
Forwarded-Host, X-Forwarded-Port, and X-Forwarded-Proto headers to forwarded requests.
If the HTTP Connection Handler is configured to use or generate correlation IDs, then a correlation 1D
header is also added to the forwarded request.

You can use the http-auth-evaluation-behavior property of a Gateway API Endpoint to alter the
Authorization header of a forwarded request.

Forwarded HTTP response headers

The API security gateway forwards most HTTP response headers, with the following exceptions:

Copyright ©2024

The Date header is replaced with a value generated by the API security gateway.

The Content-Length header is replaced with a value generated by the API security gateway.

The Location header is replaced with a value generated by the API security gateway.

If the HTTP Connection Handler is configured to use or generate correlation IDs, then a correlation 1D
header is added to the response.

Headers related to HTTP resource versioning and conditional requests, such as ETag and Last-
Modi fied, are never forwarded.

Headers related to CORS, such as Access-Control-Allow-Origin Or Access-Control-
Allow-Headers, are never forwarded.

PingAuthorize | PingAuthorize Server Administration Guide | 176

Unsupported HTTP request header
The API security gateway does not support the Upgrade header.

Unsupported advice changes
The API security gateway does not support using advice to add, modify, or delete the following headers:

= Hop-by-hop headers that the gateway always removes, such as Connection and Keep-Alive
= Conditional request headers that the gateway always removes, such as If-None-Match and ETag
= Proxy-specific headers that the gateway always adds, such as Via and X-Forwarded-For

The gateway overrides any changes to these headers.

Gateway error templates

REST API clients are often written with the expectation that the API produces a custom error format. Some
clients might fail unexpectedly if they encounter an error response that uses an unexpected format.

When a REST API is proxied by PingAuthorize Server, errors that the REST API returns are forwarded
to the client as is, unless a policy dictates a modification of the response. In the following scenarios,
PingAuthorize Server returns a gateway-generated error:

= When the policy evaluation results in a deny response. This scenario typically results in a 403 error.

= When an internal error occurs in the gateway, or when the gateway cannot contact the REST API
service. This scenario typically results in a 500, 502, or 504 error.

By default, these responses use a simple error format, as in the following example.

{

"errorMessage": "Access Denied",
"status": 403
}

The following table describes this default error format.

Field Type Description
errorMessage String Error message
status Number HTTP status code

Because some REST API clients expect a specific error response format, PingAuthorize Server provides
a facility for responding with custom errors, called error templates. An error template is written in Velocity
Template Language and defines the manner in which a Gateway AP Endpoint produces error responses.

Error templates feature the following context parameters.

Parameter Type Description

status Integer HTTP status

message String Exception message

requestURI String Original Request URI

requestQueryParams Object Query parameters as JSON
object

headers Object Request headers as JSON object

correlationID String Request correlation 1D

For more information, see Sideband error templates on page 191.

Copyright ©2024

http://velocity.apache.org/engine/1.7/user-guide.html
http://velocity.apache.org/engine/1.7/user-guide.html

PingAuthorize | PingAuthorize Server Administration Guide | 177

Configuring error templates example
The example in this section demonstrates the configuration of a custom error template for a Gateway API
Endpoint named Test API.

About this task
Error responses that use this error template feature the following fields:

= code
= message

Steps

1. Create afile named error-template.vtl with the following contents.

#set (Scode = "UNEXPECTED ERROR")
#if (Sstatus == 403)
#set ($code = "ACCESS FAILED")
#end
{
"code":"S$code",
"message":"Smessage"

}

2. Add the error template to the configuration, as follows.

dsconfig create-error-template \
--template-name "Custom Error Template" \
--set "velocity-template<error-template.vtl"

3. Assign the error template to the Gateway API Endpoint, as follows.
dsconfig set-gateway-api-endpoint-prop \

--endpoint-name "Test API"™ \
--set "error-template:Custom Error Template"

Note:

The error template is used whenever the gateway generates an error in response to a request.

Example: A policy deny results in a response like the following example.

HTTP/1.1 403 Forbidden

Content-Length: 57

Content-Type: application/json;charset=utf-8
Correlation-Id: e7c8fb82-f43e-4678-b7ff-ae8252411513
Date: Wed, 27 Feb 2019 05:54:50 GMT

Request-Id: 56

{
"code": "ACCESS FAILED",
"message": "Access Denied"

}

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 178

About the Sideband API

The Sideband API provides dynamic authorization management for requests and responses and returns
them in a potentially modified form, which the API gateway forwards to the backend REST API or the
client.

As a gateway, PingAuthorize Server functions as a reverse proxy that performs the following steps:

= Intercepts client traffic to a backend REST API service

= Authorizes the traffic to a policy decision point (PDP) that operates either within the PingAuthorize
process, called Embedded PDP mode, or outside the PingAuthorize process, called External PDP
mode

Using the Sideband API, you can configure the PingAuthorize Server instead as a plugin to an external API
gateway. In Sideband mode, an API gateway integration point intercepts client traffic to a backend REST
API service and passes intercepted traffic to the PingAuthorize Sideband API.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 179

API gateway integration

Enable attribute-based access control through your API gateway by installing the PingAuthorize API
integration plugin (where supported) and connecting to the Sideband API.

. API .
Client Gateway PingAuthorize “ REST API

API Gateway receives

REST API request from
client

API Gateway makes
Sideband API request
including REST API

I
|
|
|
|
| REST AP request |
Sl s
|
|
|
request :

Sideband API request

PingAuthorize
authenticates
Sideband API request

|
|
|
|
| | authenticate request
| | !
| " : |
| PingAuthorize |
validates access token
| from REST API request I
| l token validation
I I P K -
| Inbound phase: I
| PingAuthorize filters |
| REST API request |
| []
| | | | apply policy result to
| | | REST API request
| PingAduthorize returns
| Sideband API response
| to AP Gateway
| |
| Sideband AP response
API Gateway forwards
request to REST API
REST API request

REST API returns response
to APl Gateway

REST API response

API Gateway makes
Sideband API request

including REST API
request

Sideband AP request

PingAuthorize I
authenticates |
Sideband API request |
| c----1
| | authenticate request

| -

Outbound phase: |
PingAuthorize filters |
REST API response | |

| submit REST API response |

|
| |l 22T
|
|

| apply policy result to
REST API response

|
PingAuthorize returns
Sideband API response

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| to API Gateway
|

|

APl Gateway forwards |
response to client |
REST API response

|
le—— 1
]]

. API .
Client Gateway PingAuthorize ﬂ REST API

|
|
|
|
|
|
| sideband API response | |
|
|
|
|
|
|

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 180

Processing steps

1. When the API gateway receives a request from an API gateway plugin, it makes a call to the Sideband
API to process the request.
2. The Sideband API returns a response that contains a modified version of the HTTP client's request.

The API gateway forwards the response to the REST API.
3. If the Sideband API returns a response that indicates the request is unauthorized or not to be
forwarded, the response includes the response to be returned to the client.

The API gateway returns the response to the client without forwarding the request to the REST API.

4. When the API gateway receives a response from the REST API, it makes a call to the Sideband API to
process the response.

5. The Sideband API returns a response that contains a modified version of the REST API's response.

The API gateway forwards the response to the client.

Sideband API configuration basics

The Sideband API provides fine-grained access control to supported third-party API gateways through an
API integration.

The Sideband API consists of the following components.

Sideband API Shared Secrets

Defines the authentication credentials that the Sideband API might require an API gateway plugin to
present. For more information, see Authenticating to the Sideband API on page 181.

Sideband API HTTP Servlet Extension

Represents the Sideband API itself. If you require shared secrets, you might need to configure this
component. For more information, see Authenticating to the Sideband API on page 181.

Sideband API Endpoints

Represents a public path prefix that the Sideband API accepts for handling proxied requests. A
Sideband API Endpoint configuration defines the following items:

= The base path (base-path) for requests that the Sideband API accepts

= Properties that relate to policy processing, such as service, which targets the policy requests
that are generated for the Sideband API Endpoint to specific policies

PingAuthorize Server's default configuration includes a Default Sideband APl Endpoint that accepts all API
requests and generates policy requests for the service Default. To customize policy requests further,

an administrator can create additional Sideband API Endpoints. For more information about using the
Sideband API Endpoint configuration to customize policy requests, see Sideband API policy requests on
page 183.

Note:

Changes to these components do not typically require a server restart to take effect. For more information,
see the Configuration Reference, located in the server's docs/config-guide directory.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 181

Example

Example

The following example commands create a pair of Sideband API Endpoints that target specific requests to
a consent service.

PingAuthorize/bin/dsconfig create-sideband-api-endpoint \
--endpoint-name "Consent Definitions" \
--set base-path:/c/definitions \
--set service:Consent

PingAuthorize/bin/dsconfig create-sideband-api-endpoint \
-—endpoint-name "Consent Records" \
--set base-path:/c/consents \
--set service:Consent

Authenticating to the Sideband API
The Sideband API can require an API gateway plugin to authenticate to it by using a shared secret.

To define shared secrets, use Sideband API Shared Secret configuration objects. To manage shared
secrets, use the Sideband API HTTP Servlet Extension.

Creating a shared secret
Define the authentication credentials that the Sideband API might require an API gateway plugin to
present.

Steps

1. To create a shared secret, run the following example dsconfig command, substituting values of your
choosing.
Example:

PingAuthorize/bin/dsconfig create-sideband-api-shared-secret \
--secret-name "Shared Secret A" \
--set "shared-secret:secretl23"

Note:

= The shared-secret property sets the value that the Sideband API requires the API gateway
plugin to present. After you set this value, it is no longer visible.

= The secret-name property is a label that allows an administrator to distinguish one Sideband
API| Shared Secret from another.

2. Toupdate the shared-secrets property, run the following example dsconfig command.
Example:
PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
-—extension-name "Sideband API" \

-—-add "shared-secrets:Shared Secret A"

A new Sideband API Shared Secret is not used until the shared-secrets property of the Sideband
API HTTP Servlet Extension is updated.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 182

Deleting a shared secret
You can remove a shared secret from use or delete it entirely.

Steps
= Toremove a Sideband API Shared Secret from use, run the following example dsconfig command,
substituting values of your choosing.
Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
--extension-name "Sideband API"™ \
—--remove "shared-secrets:Shared Secret A"
= To delete a Sideband API Shared Secret, run the following example dsconfig command.
Example:

PingAuthorize/bin/dsconfig delete-sideband-api-shared-secret \
—--secret-name "Shared Secret A"

Rotating shared secrets
To avoid service interruptions, the Sideband API allows multiple, distinct shared secrets to be accepted at
the same time.

About this task

You can configure a new shared secret that the Sideband APl accepts alongside an existing shared secret.
This allows time to update the API gateway plugin to use the new shared secret.

Steps

1. Create a new Sideband API Shared Secret and assign it to the Sideband APl HTTP Servlet Extension.
For more information, see Creating a shared secret on page 181.

2. Update the API gateway plugin to use the new shared secret.

3. Remove the previous Sideband API Shared Secret. For more information, see Deleting a shared
secret on page 182.

Customizing the shared secret header
By default, the Sideband API accepts a shared secret from an API gateway plugin through the CLIENT-
TOKEN header.

Steps

= To customize a shared secret header, change the value of the Sideband API HTTP Servlet
Extension's shared-secret-header property.

Example:

The following command changes the shared secret header t0 x-shared-secret.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
--extension-name "Sideband API"™ \
-—-set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
--extension-name "Sideband API"™ \
--reset shared-secret-header-name

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 183

Authenticating API server requests

As with the PingAuthorize API Security Gateway mode, API server requests that the Sideband API
authorizes do not strictly require authentication. However, the default policy set requires bearer token
authentication.

About this task

The Sideband API uses configured Access Token Validators to evaluate bearer tokens that are included in
incoming requests. The HttpRequest .AccessToken attribute supplies the validation result to the policy
request, and the TokenOwner attribute provides the user identity that is associated with the token.

Policies use this authentication information to affect the processing requests and responses. For example,
the following policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
Code: denied-reason
Applies To: Deny
Payload: {"status":401, "message": "invalid token", "detail":"Access token
is expired or otherwise invalid"}

The following table identifies the configuration properties that determine the manner in which Sideband API
Endpoints handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Sideband API Endpoint
evaluates bearer tokens, and if so, whether the
Sideband API Endpoint forwards them to the API
server by way of the API gateway.

access-token-validator Sets the Access Token Validators that the
Sideband API Endpoint uses. As this property
contains no value by default, the Sideband API
Endpoint can potentially use each Access Token
Validator that is configured on the server to
evaluate every bearer token.

To constrain the set of Access Token Validators
that a Sideband API Endpoint uses, set this
property to use one or more specific values.

This setting is ignored if http-auth-
evaluation-behavior is setto do-not-
evaluate.

Sideband API policy requests

Understanding how the Sideband API formulates policy requests can help you create and troubleshoot
policies more effectively.

To authorize an incoming request, the Sideband API performs the following steps:

= Creates a policy request that is based on the incoming request
= Sends the policy request to the Policy Decision Point (PDP) for evaluation

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 184

Sideband API policy request attributes
The following tables provide an overview of policy request attributes.

The following table identifies the attributes that are associated with a policy request that the Sideband API
generates.

Attribute Description Type

action Identifies the request-processing | String
phase and the HTTP method,
such as GET or POST.

The value is formatted as
<phase>-<method>. Example
values include inbound-GET,
inbound-POST, outbound-
GET, and outbound-POST.

attributes Additional attributes that do not | Object
correspond to a specific entity
type in the Trust Framework.

For more information, see the
next table.

domain Unused. String

identityProvider Name of the Access Token String
Validator that evaluates the
bearer token in an incoming
request.

service Identifies the API service. By String
default, this value is set to the
name of the Sideband API
Endpoint.

To override the default value,
set the Sideband API Endpoint's
service property.

Multiple Sideband API Endpoints
can use the same service value.

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

Gateway Additional gateway-specific information Object
about the request not provided by the
following attributes.

HttpRequest.AccessToken Parsed access token. Object
For more information, see the following
table.

HttpRequest.ClientCertificate Properties of the client certificate, if one was | Object
used.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 185

Attribute Description Type
HttpRequest.CorrelationId A unique value that identifies the request String
and response, if available.

HttpRequest.IPAddress The client IP address. String
HttpRequest.QueryParameters Request URI query parameters. Object
HttpRequest.RequestBody The request body, if available. Object
HttpRequest.RequestHeaders The HTTP request headers. Object
HttpRequest.RequestURI The request URI. String
HttpRequest.ResourcePath Portion of the request URI path that follows | String

the inbound base path that the Sideband
API Endpoint defines.

HttpRequest.ResponseBody The response body, if available. This Object
attribute is provided only for outbound policy
requests.

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if Number
available.

TokenOwner The access token subject as a SCIM Object
resource, as obtained by the access token
validator.

Note:

When handling an outbound response, HTTP request data is only available if specifically provided by the
API gateway plugin.

The following table identifies the fields that are associated with the HttpRequest.AccessToken
attribute, which is populated by the access token validator.

Note:

These fields correspond approximately to the fields that are defined by the IETF Token Introspection
specification, RFC 7662.

Attribute Description Type

access_token The actual access token from the | String
client request.

active Indicates whether this access Boolean
token is currently active, as
determined by the access token
validator.

Copyright ©2024

https://tools.ietf.org/html/rfc7662

PingAuthorize | PingAuthorize Server Administration Guide | 186

Attribute Description Type

audience Identifies the recipients for whom | Array
the access token is intended.
Typically, the authorization server
sets this field to identify the
resource servers that can accept
the token.

client id Client ID of the application that String
was granted the access token.

expiration Date and time at which the DateTime
access token expired.

issued at Date and time at which the DateTime
access token was issued.

issuer Token issuer. Typically, this String
value is a URI that identifies the
authorization server.

not before Date and time before which a DateTime
resource server does not accept
an access token.

scope Identifies the list of scopes Collection
granted to this token.

subject Token subject. This value String
represents a user identifier that
the authorization server sets.

token owner User identifier that was resolved | String
by the access token validator's
token resource lookup method.
This value is always a SCIM 1D
of the form <resource type>/
<resource ID>.

token type Token type, as set by the String
authorization server. Typically,
this value is bearer.

user token Flag that the access token Boolean
validator sets to indicate the
token was originally issued to a
subject. If the flag is false, the
token contains no subject and
was issued directly to a client.

username Subject's user name. This value | String
represents a user identifier that
the authorization server sets.

The following table identifies the fields that the HttpRequest.ClientCertificate attribute can
contain.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 187

Attribute Description Type

algorithm Name of the certificate String
signature algorithm, such as
SHA256withRSA.

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the String
certificate issuer.

notAfter Expiration date and time of the DateTime
certificate.

notBefore Earliest date on which the DateTime

certificate is considered valid.

subject DN of the certificate subject. String

subjectRegex Regular expression that must String
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

valid Indicates whether the SSL client | Boolean
certificate is valid.

The following table identifies the fields that the Gateway attribute can contain.

Attribute Description Type

_BasePath Portion of the HTTP request URI | String
that matches the Sideband API
Endpoint's base-path value.

_TrailingPath Portion of the HTTP request URI | String
that follows the BasePath.

base path parameters Parameters in a Sideband String
API Endpoint's base-path
configuration property are
included as fields of the Gateway
attribute.

base path parameters The Gateway attribute can String
contain multiple, arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Sideband API Endpoint
configuration.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 188

Sideband API Endpoint configuration properties
The following table identifies Sideband APl Endpoint properties that might force the inclusion of additional
attributes with the policy request.

Property Description

base-path Defines the URI path prefix that the Sideband
API uses to determine whether the Sideband API
Endpoint handles a request.

The base-path property value can include
parameters. If parameters are found and matched,
they are included as attributes to policy requests.

The following configuration properties can
reference parameters that base-path introduces:

*» service
* resource-path
» policy-request-attribute

service Identifies the API service to the PDP. A policy can
use this value to target requests.

The service value appears in the policy request
as the service attribute. If undefined, the
service value defaults to the name of the
Sideband API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest .ResourcePath
attribute. If undefined, the resource-path value
defaults to the portion of the request that follows the
base path, as defined by base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, the pairs are always added as
attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute

Gateway. foo is added to the policy request with
the value bar.

Sideband API path parameters
If parameters are found and matched for the base-path property, they are included in policy requests as
fields of the Gateway policy request attribute.

Other configuration properties can use these parameters. For more information, see Sideband API
Endpoint configuration properties on page 188.

The base-path property must introduce parameters. Other configuration properties cannot introduce new
parameters.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 189

Basic example
The following table demonstrates a basic configuration of path parameters.

API Endpoint property Example value
base-path /accounts/{accountId}/transactions
policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the example base-path
value.

The following properties are added to the policy request:

= HttpRequest.ResourcePath : 1234
* Gateway.accountId : XYZ
* Gateway.foo : bar

Advanced example
The following table demonstrates an advanced configuration of path parameters.

APl Endpoint property Example value

base-path /health/{tenant}/{resourceType}
service HealthAPI. {resourceType}
resource-path {resourceType}/{ TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the example base-path
value.

The following properties are added to the policy request:

» service : HealthAPI.patients

= HttpRequest.ResourcePath : patients/1234
= Gateway.tenant : OmniCorp

= Gateway.resourceType : patients

Request context configuration

The API gateway plugin provides data and metadata to the Sideband API about HTTP requests received
from a client and HTTP responses received from an API server.

When the Sideband API handles an API server's HTTP response, you can enable the API gateway plugin
to also provide data and metadata for the original HTTP request, which can be used to make policy
decisions. For example, data about access token claims and the token owner are request data, but they
might be useful when authorizing an HTTP response.

The Sideband API provides two methods to supply HTTP request data during HTTP response processing.
Select a method according to the API gateway plugin's capabilities. By default, both methods are disabled.
You can enable them by configuring the request-context-method property of the Sideband API HTTP
Servlet Extension.

Request context using the state field

When enabled, the Sideband API adds a state field to its responses for inbound HTTP requests.
This field contains an encoded form of the request data, including preprocessed authentication
data, such as access token claims and token owner attributes. The API gateway plugin is expected
to provide this state data when it next makes a request corresponding to the outbound HTTP
response. The Sideband API can then pass this data about the HTTP request in its policy request.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 190

As the state data includes preprocessed authentication information, this information can be made
available for policy processing without the overhead of re-invoking an access token validator.
However, the size of the state data is proportional to the size of the original HTTP request.

To enable this option, use the following command.

PingAuthorize/bin/dsconfig \
set-http-servlet-extension-prop \
--extension-name "Sideband API" \
—--set request-context-method:state

Request context using the request field

When enabled, an API gateway plugin making a request to handle an outbound HTTP response
provides all data about the original HTTP request in the request field. If this data includes an
Authorization header with a bearer token, the Sideband API invokes its access token validators
to produce a set of access token claims and token owner attributes, which are then made available
in the policy request.

To enable this option, use the following command.

PingAuthorize/bin/dsconfig \
set-http-servlet-extension-prop \
--extension-name "Sideband API" \
--set request-context-method:request

Disabling request context handling

The request context feature is disabled by default. If you have enabled it, you can disable it with the
following command.

PingAuthorize/bin/dsconfig \
set-http-servlet-extension-prop \
--extension-name "Sideband API" \
--reset request-context-method

Sideband access token validation

HTTP requests often include an access token with an Authorization header using the bearer token
scheme, as described by RFC 6750.

By default, if a Sideband API request contains an Authorization header, the Sideband API processes
the access token as follows:

= An access token validator parses and validates the access token, and the Sideband API adds the
access token parsed claims to the policy request’s Ht tpRequest . AccessToken field.

= If the access token has a subject, a token resource lookup method retrieves the subject’s attributes,
and the Sideband API adds them to the policy request’'s TokenOwner field.

In some cases, the parsing and validation performed by the access token validator might duplicate
processing already performed by the API gateway itself. To eliminate redundant processing, you can
configure a Sideband API endpoint to use an external API gateway access token validator, which is a
unigue access token validator that performs no parsing or validation of its own. The API gateway plugin
might then pass the parsed access token claims directly to the Sideband API, which would ignore the
Authorization header and accept the parsed access token claims as-is.

Copyright ©2024

https://tools.ietf.org/html/rfc6750

PingAuthorize | PingAuthorize Server Administration Guide | 191

Example

Example configuration

The following example shows how to configure an external API gateway access token validator with a
token resource lookup method and assign it to an existing Sideband API endpoint.

dsconfig create-access-token-validator \
--validator-name "API Gateway Access Token Validator" \
--type external-api-gateway \
--set enabled:true \
--set evaluation-order-index:0
dsconfig create-token-resource-lookup-method \
--validator-name "API Gateway Access Token Validator" \
--method-name "Users by uid" \
--type scim \
--set scim-resource-type:Users \
--set 'match-filter:uid eg "%$sub%"' \
--set evaluation-order-index:0
dsconfig set-sideband-api-endpoint-prop \
-—endpoint-name "My API" \
--set "access-token-validator:API Gateway-Provided Access Token Validator"

Sideband error templates

REST API clients often expect a custom error format that the API produces. Some clients might fail
unexpectedly if they encounter an error response that uses an unexpected format.

When PingAuthorize Server proxies a REST API, it forwards errors that the API returns to the client as they
are, unless a policy dictates modifications to the response. In the following scenarios, PingAuthorize Server
returns an error that the Sideband API generates:

= The policy evaluation results in a deny response. This typically results in a 403 error.
= An internal error occurs in the Sideband API. This typically results in a 500 error.

By default, these responses use a simple error format, as shown in the following example.
{
"errorMessage": "Access Denied",

"status": 403
}

The following table describes the default error format.

Field Type Description
errorMessage String Error message
status Number HTTP status code

Because some REST API clients expect a specific error-response format, PingAuthorize Server provides
error templates to respond with custom errors. Error templates, which are written in Velocity Template
Language, define the manner in which a Sideband API Endpoint produces error responses.

The following table identifies the context parameters that are provided with error templates.

Parameter Type Description
status Integer HTTP status
message String Exception message

Copyright ©2024

http://velocity.apache.org/engine/1.7/user-guide.html
http://velocity.apache.org/engine/1.7/user-guide.html

PingAuthorize | PingAuthorize Server Administration Guide | 192

Example: Configure error templates
This example demonstrates the configuration of a custom error template for a Sideband API Endpoint
called Test API.

The following fields are associated with the error responses that use this error template:

= code
= message

To create the error template, perform the following steps:

1. Create afile named error-template.vtl with the following contents:

#set (Scode = "UNEXPECTED ERROR")
#if (Sstatus == 403)
#set ($code = "ACCESS FAILED")
#end
{
"code":"Scode",
"message":"Smessage"

}

2. Add the error template to the configuration.

dsconfig create-error-template \
--template-name "Custom Error Template" \
--set "velocity-template<error-template.vtl"

3. Assign the error template to the Sideband API Endpoint.
dsconfig set-sideband-api-endpoint-prop \
--endpoint-name "Test API" \

--set "error-template:Custom Error Template"

The error template is used whenever the Sideband API generates an error in response to a request.

About the SCIM service

PingAuthorize Server's built-in System for Cross-domain Identity Management (SCIM) service provides a
REST API for data that is stored in one or more external datastores, based on the SCIM 2.0 standard.

For information about the SCIM service, see the following topics:

= SCIM API request and response flow on page 192
= SCIM configuration basics on page 193

= SCIM endpoints on page 196

= SCIM authentication on page 197

= SCIM policy requests on page 197

= Lookthrough limit for SCIM searches on page 207
= Disabling the SCIM REST API on page 207

SCIM API request and response flow

The System for Cross-domain Identity Management (SCIM) REST API provides an HTTP API for data
contained in a user store.

Although user stores typically consist of a single datastore, such as PingDirectory Server, they can also
consist of multiple datastores.

When a SCIM request is received, it is translated into one or more requests to the user store, and the
resulting user store response is translated into a SCIM response. The SCIM response is authorized by

Copyright ©2024

https://tools.ietf.org/html/rfc7644

PingAuthorize | PingAuthorize Server Administration Guide | 193

sending a policy request to the policy decision point (PDP). Depending on the policy result, including the
advices that are returned in the result, the SCIM response might be filtered or rejected.

. . . DIRECTORY

\
\
\
\
reques \

"
PingAuthorize [
validates access token |
|

I token validation

I
I
|
I
|
I
I
|
|
|
| oo 1
|
|
|
|
|
|

,,,,,,,,,,,,,,,

PingAuthorize makes ‘
user store request I
|

translate SCIM request
to LDAP request

|

|

|

| I |
I ‘ LDAP reuest ind response
| I f
|

|

|

I
|
I
|
I
|
I
|
I
1
I
|
I
|
I
|
I
|
f 1
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|

translate L DAP response
t0 SCIM response

I

<
PingAuthorize filters I
SCIM response |
| I
|

| submit SCIM response for

[~

policy processing

,,,,,,,,,,,,,,,,,,,, -

apply policy result

F |

to SCIM response | |

== !

n . | |

client receives I I
filtered SCIM

- | |

| |

response ‘

|

I

|

I
I
I
. . ,
. . . DIRECTORY

SCIM configuration basics

PingAuthorize Server's System for Cross-domain Identity Management (SCIM) subsystem consists of the
following components.

SCIM resource types

SCIM resource types define a class of resources, such as users or devices. Every SCIM resource
type features at least one SCIM schema, which defines the attributes and subattributes that are
available to each resource, and at least one store adapter, which handles datastore interactions.

The following SCIM resource types differ according to the definitions of the SCIM schema:

= Mapping SCIM resource type — Requires an explicitly defined SCIM schema, with explicitly
defined mappings of SCIM attributes to store adapter attributes. Use a mapping SCIM resource
type to exercise detailed control over the SCIM schema, its attributes, and its mappings.
Pass-through SCIM resource type — Does not use an explicitly defined SCIM schema. Instead,
an implicit schema is generated dynamically, based on the schema that is reported by the store
adapter. Use a pass-through SCIM resource type when you need to get started quickly.

SCIM schemas

SCIM schemas define a collection of SCIM attributes, grouped under an identifier called a schema
URN. Each SCIM resource type possesses a single core schema and can feature schema

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 194

extensions, which act as secondary attribute groupings that the schema URN namespaces. SCIM
schemas are defined independently of SCIM resource types, and multiple SCIM resource types can
use a single SCIM schema as a core schema or schema extension.

Note:

A SCIM attribute defines an attribute that is available under a SCIM schema. The configuration for
a SCIM attribute defines its data type, regardless of whether it is required, single-valued, or multi-

valued. Because it consists of SCIM subattributes, a SCIM attribute can be defined as a complex

attribute.

Store adapters

Store adapters act as a bridge between PingAuthorize Server's SCIM system and an external
datastore. PingAuthorize Server provides a built-in LDAP store adapter to support LDAP datastores,
including PingDirectory Server and PingDirectoryProxy Server. The LDAP store adapter uses a
configurable load-balancing algorithm to spread the load among multiple directory servers. Use the
Server SDK to create store adapters for arbitrary datastore types.

Each SCIM resource type features a primary store adapter and can also define multiple secondary
store adapters. Secondary store adapters allow a single SCIM resource to consist of attributes
retrieved from multiple datastores.

Store adapter mappings define the manner in which a SCIM resource type maps the attributes in its
SCIM schemas to native attributes of the datastore.

About the create-initial-config tool
The create-initial-config tool helps to quickly configure PingAuthorize Server for the System for
Cross-domain Identity Management (SCIM).

Run this tool after completing setup to configure a SCIM resource type named Users, along with a related
configuration.

For an example of using create-initial-config to create a pass-through SCIM resource type, see
Configuring the PingAuthorize user store on page 359.

Example: Mapped SCIM resource type for devices
This example demonstrates the addition of a simple mapped SCIM resource type, backed by the standard
device object class of a PingDirectory Server.

To add data to PingDirectory Server, create a file named devices. 1dif with the following contents.

dn: ou=Devices,dc=example, dc=com
objectClass: top

objectClass: organizationalUnit
ou: Devices

dn: cn=device.0, ou=Devices,dc=example,dc=com
objectClass: top

objectClass: device

cn: device.O0

description: Description for device.O

dn: cn=device.l,ou=Devices,dc=example,dc=com
objectClass: top

objectClass: device

cn: device.l

description: Description for device.l

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 195

Use the 1dapmodi fy tool to load the data file.

PingDirectory/bin/ldapmodify --defaultAdd --filename devices.ldif

Start configuring PingAuthorize Server by adding a store adapter.

dsconfig create-store-adapter \
--adapter—-name DeviceStoreAdapter \

--type ldap \

--set enabled:true \

--set "load-balancing-algorithm:User Store LBA" \
--set structural-ldap-objectclass:device \

--set include-base-dn:ou=devices,dc=example,dc=com \
--set include-operational-attribute:createTimestamp \
--set include-operational-attribute:modifyTimestamp \

——set

create-dn-pattern:entryUUID=server-

generated, ou=devices,dc=example, dc=com

The previous command creates a store adapter that handles LDAP entries found under the base DN
ou=devices, dc=example, dc=com with the object class device. This example uses the user store
load-balancing algorithm that is created when you use the create-initial-config tool to setup a
users SCIM resource type.

The following command creates a SCIM schema for devices with the schema URN
urn:pingidentity:schemas:Device:1.0.

dsconfig create-scim-schema \
--schema-name urn:pingidentity:schemas:Device:1.0 \

SEEE

display-name:Device

Under this schema, add the string attributes name and description.

dsconfig create-scim-attribute \
--schema-name urn:pingidentity:schemas:Device:1.0 \
-—attribute-name name \

—-—-set

required:true

dsconfig create-scim-attribute \
--schema-name urn:pingidentity:schemas:Device:1.0 \
--attribute-name description

After you create a store adapter and schema, create the SCIM resource type.

dsconfig create-scim-resource-type \
-—-type-name Devices \
--type mapping \

—-—-set
SEEE
—-—-set
——set
—-—set

enabled:true \

endpoint:Devices \
primary-store-adapter:DeviceStoreAdapter \
lookthrough-1imit:500 \
core-schema:urn:pingidentity:schemas:Device:1.0

Map the two SCIM attributes to the corresponding LDAP attributes. The following commands map the
SCIM name attribute to the LDAP cn attribute, and map the SCIM description attribute to the LDAP
description attribute.

Copyright ©2024

dsconfig create-store-adapter-mapping \
--type-name Devices \
--mapping-name name \

—-—-set
——set
—-—set

scim-resource-type-attribute:name \
store-adapter-attribute:cn \
searchable:true

PingAuthorize | PingAuthorize Server Administration Guide | 196

dsconfig create-store-adapter-mapping \
--type-name Devices \
--mapping-name description \
--set scim-resource-type-attribute:description \
--set store-adapter-attribute:description

To confirm that the new resource type has been added, send the following request to the SCIM resource
types endpoint.

curl -k https://localhost:8443/scim/v2/ResourceTypes/Devices
The response is:

{"schemas":
["urn:ietf:params:scim:schemas:core:2.0:ResourceType"],"id":"Devices", "name":
"Devices", "endpoint":"Devices", "schema":"urn:pingidentity:schemas:Device:1.0",
"meta":{"resourceType":"ResourceType", "location":"https://localhost:8443/
scim/v2/ResourceTypes/Devices"}}

For a more advanced example of a mapped SCIM resource type, see the example User schema in
PingAuthorize/resource/starter-schemas.

SCIM endpoints

The following table identifies the endpoints that the System for Cross-domain Identity Management (SCIM)
2.0 REST API provides.

Endpoint Description Supported HTTP methods

/ServiceProviderConfig Provides metadata that indicates |[GET
the PingAuthorize Server
authentication scheme, which

is always OAuth 2.0, and its
support for features that the SCIM
standard considers optional.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

/Schemas Lists the SCIM schemas that GET
are configured for use on
PingAuthorize Server and that
define the various attributes
available to resource types.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

/Schemas/<schema> Retrieves a specific SCIM GET
schema, as specified by its ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 197

Endpoint

Description

Supported HTTP methods

/ResourceTypes

Lists all of the SCIM resource
types that are configured for

use on PingAuthorize Server.
Clients can use this information
to determine the endpoint, core
schema, and extension schemas
of any resource types that the
server supports.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes/
<resourceType>

Retrieves a specific SCIM
resource type, as specified by its
ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/<resourceType>

Creates a new resource (POST),
or lists and filters resources
(GET).

GET, POST

/<resourceType>/.search

Lists and filters resources.

POST

/<resourceType>/ Retrieves a single resource GET, PUT, PATCH, DELETE
<resourcelId> (GET), modifies a single resource

(PUT, PATCH), or deletes a

single resource (DELETE).
/Me Alias for the resource that the GET, PUT, PATCH, DELETE

subject of the access token
identifies.

Retrieves the resource (GET),
modifies the resource (PUT,
PATCH), or deletes the
(DELETE).

SCIM authentication

You must authenticate all System for Cross-domain Identity Management (SCIM) requests using OAuth

2.0 bearer token authentication.

Bearer tokens are evaluated using access token validators. The HttpRequest .AccessToken attribute
supplies the validation result to the policy request, and the TokenOwner attribute provides the user identity
associated with the token. Policies use this authentication information to affect the processing of requests

and responses.

SCIM policy requests

For every System for Cross-domain Identity Management (SCIM) request or response, one or more policy
requests are sent to the policy decision point (PDP) for authorization.

Policies can use a policy request's action value to determine the processing phase and to act
accordingly. Understanding how the SCIM service formulates policy requests will help you to create and
troubleshoot policies more effectively.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 198

Most SCIM operations are authorized in the following phases:

1. The operation itself is authorized.
2. The outgoing response is authorized with the retrieve action.

In most cases, you can reuse policies that target the retrieve action to specify read-access control rules.
You can disable this retrieve action for a SCIM Resource Type if policies are only used for authorization
before the operation. To do so, set the SCIM Resource Type's disable-response-processing
property to true. The resource is then returned as-is after the operation completes. This property also
affects SCIM searches.

Operation Actions

POST /scim/v2/<resourceType> create, retrieve
GET /scim/v2/<resourceType>/ retrieve
<resourceld>

PUT /scim/v2/<resourceType>/ modify, retrieve
<resourceId>

PATCH /scim/v2/<resourceType>/

<resourceId>

DELETE /scim/v2/<resourceType>/ delete
<resourceId>

GET /scim/v2/<resourceType> search, retrieve
POST /scim/v2/<resourceType>/.search -OR-

search, search-results

For more information about authorizing searches,
see About SCIM searches on page 202.

Enable detailed decision logging and view all policy request attributes in action, particularly when learning
how to develop SCIM policies. For more information, see Policy Decision logger on page 397.

SCIM policy request attributes
The following tables describe policy request attributes and their functions.

The following table identifies the attributes associated with a policy request that the System for Cross-
domain Identity Management (SCIM) service generates.

Policy request attribute Description Type

action Identifies the SCIM request as String
one of the following types:

= create

= modify

= retrieve

» delete

» search

* search-request

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 199

Policy request attribute Description Type

attributes Additional attributes that do Object
not correspond to a specific
entity type in the PingAuthorize
Trust Framework. For more
information, see the following

table.
domain Unused. String
identityProvider Name of the access token String

validator that evaluates the
bearer token used in an incoming
request.

service Identifies the SCIM service and | String
resource type using a value of
the form SCIM2.<resource

type>.

For example, for a request
using the "Users" resource
type, the service value would be
SCIM2.Users.

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type
HttpRequest.AccessToken Parsed access token. For more information, | Object
see the following table.
HttpRequest.ClientCertificate Properties of the client certificate, if one is | Object
used.
HttpRequest.CorrelationId A unique value that identifies the request String
and response, if available.
HttpRequest.IPAddress The client IP address. String
HttpRequest.QueryParameters Request URI query parameters. Object
HttpRequest.RequestBody The request body, if available. This attribute | Object
is available for POST, PUT, and PATCH
requests.
HttpRequest.RequestHeaders The HTTP request headers. Object
HttpRequest.RequestURI The request URI. String
HttpRequest.ResourcePath Uniquely identifies the SCIM resource String

that is being requested, in the format
<Resource Type>/<SCIM ID>, as the
following example shows:

Users/0450b8db-
£f055-35d8-8e2f-0£f203a291cdl

HttpRequest.ResponseBody The response body, if available. This Object
attribute is provided only for outbound policy
requests.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 200

Attribute Description Type

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if Number
available.

impactedAttributes Provides the set of attributes that the Collection

request modifies.

SCIM2 Provides additional, SCIM2-specific Object
information about the request.

TokenOwner Access token subject as a SCIM resource, | Object
as obtained by the access token validator.

The access token validator populates the Ht tpRequest . AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

access_token The actual access token from the | String
client request.

active Indicates whether this access Boolean
token is currently active, as
determined by the access token
validator.

audience Identifies the recipients for whom | Array
the access token is intended.
Typically, the authorization server
sets this field to indicate the
resource servers that might
accept the token.

client id The client ID of the application String
that was granted the access
token.

expiration Date and time at which the DateTime

access token expires.

issued at Date and time at which the DateTime
access token was issued.

issuer Token issuer. This attribute is String
usually a URI that identifies the
authorization server.

not before Date and time before which a DateTime
resource server does not accept
the access token.

scope Identifies the list of scopes Collection
granted to this token.

subject Token subject. This attribute String
is a user identifier that the
authorization server sets.

Copyright ©2024

https://tools.ietf.org/html/rfc7662

PingAuthorize | PingAuthorize Server Administration Guide | 201

Attribute Description Type

token owner User identifier that was resolved | String
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

token type The token type, as set by the String
authorization server. This value is
typically set to bearer.

user token Flag that the access token Boolean
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a
client.

username Subject's user name. This String
attribute is a user identifier that
the authorization server sets.

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate String
signature algorithm, such as
SHA256withRSA.

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the String
certificate issuer.

notAfter Expiration date and time of the DateTime
certificate.

notBefore Earliest date on which the DateTime

certificate is considered valid.

subject DN of the certificate subject. String

subjectRegex Regular expression that must String
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

valid Indicates whether the certificate is | Boolean
valid.

The following table identifies the fields that the scIM2 attribute contains.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 202

Attribute Description Type

modifications Contains a normalized SCIM Object
2 PATCH request object that
represents all of the changes to
apply. This attribute is available
for PUT and PATCH requests.

resource Complete SCIM resource that the [Object
request targets. This attribute is
available for GET, PUT, PATCH,
and DELETE requests.

The resource attribute is
also available in the policy
requests that are performed for
each matching SCIM resource
in a search result. For more
information, see About SCIM
searches on page 202.

About SCIM searches
Search requests are used to return System for Cross-domain Identity Management (SCIM) resources. You
can constrain search requests using filters.

A request that potentially causes the return of multiple SCIM resources is considered a search request.
Perform such requests in one of the following manners:

= Make a GET requestto /scim/v2/<resourceType>.
= Make a POST request to /scim/v2/<resourceType>/.search.

To constrain the search results, clients should supply a search filter through the £il1ter parameter. For

example, a GET request to /scim/v2/Users?filter=st+eg+"TX" returns all SCIM resources of the
Users resource type in which the st attribute possesses a value of "Tx". Additionally, the Add Filter
policy can add a filter automatically to search requests.

SCIM search policy processing
System for Cross-domain ldentity Management (SCIM) policy processing involves denying or modifying a
search request and then filtering the results.

Policy processing for SCIM searches occurs in the following phases:

1. Policies deny or modify a search request. For more information, see Search request authorization on
page 202.

2. Policies filter the search result set. For more information, see Search response authorization on page
203.

Search request authorization

In the first phase, a policy request is issued for the search itself, using the search action. If the policy
result is deny, the search is not performed. Otherwise, advices in the policy result are applied to the
search filter, giving advices a chance to alter the filter.

Note:

You can only use advice types that are written specifically for the search action. For example, you can
use the Add Filter advice type to constrain the scope of a search.

You can also use the Combine SCIM Search Authorizations advice type at this point. If you use this advice,
search results are authorized by using a special mode, described in Search response authorization on
page 203.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 203

Search response authorization
After a search is performed, the resulting search response is authorized in one of three ways: default
authorization, optimized search response authorization, and no authorization.

Default authorization

The default authorization mode simplifies policy design but can generate a large number of policy requests.
For every System for Cross-domain Identity Management (SCIM) resource that the search returns, a policy
request is issued by using the retrieve action. If the policy result is deny, the SCIM resource is removed
from the search response. Otherwise, advices in the policy result are applied to the SCIM resource, which
gives advices a chance to alter the resource. Because the retrieve action is used, policies that are
already written for single-resource GET operations are reused and applied to the search response.

Optimized search response authorization

If the search request policy result includes the Combine SCIM Search Authorizations advice type, an
optimized authorization mode is used instead. This mode reduces the number of overall policy requests but
might require a careful policy design. Instead of generating a policy request for each SCIM resource that
the search returns, a single policy request is generated for the entire result set. To distinguish the policy
requests that this authorization mode generates, the action search-results is used.

Write policies that target these policy requests to accept an object that contains a Resources array with all
matching results. Advices that the policy result returns are applied iteratively to each member of the result
set. The input object that is provided to advices also contains a Resources array, but it contains only the
single result currently under consideration.

The following JSON provides an example input object.

{

"Resources": [{
"name": "Henry Flowers",
"id": "40424a7d-901e-45ef-a95a-7dd31e4474b0",
"meta": {
"location”: "https://example.com/scim/v2/Users/40424a7d-901le-45ef-
a95a-7dd31e4474b0",
"resourceType": "Users"
}y
"schemas": [

"urn:pingidentity:schemas:store:2.0:UserStoreAdapter"”
]
}
]
}

The optimized search response authorization mode checks policies efficiently and is typically faster than
the default authorization mode. However, the optimized search response authorization mode might be less
memory-efficient because the entire result set, as returned by the datastore, is loaded into memory and
processed by the policy decision point (PDP).

No authorization

If you do not need policy processing for the search results on a SCIM Resource Type, such as if policies
are only used for authorization before the search and not filtering the results, set that SCIM Resource
Type's disable-response-processing property to true. The search results will be returned as they
were received from the external server. This behavior can improve performance for requests that return
large numbers of search results. This property also affects other SCIM operations.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 204

Using paged SCIM searches

When searching large data sets, the results can be numerous and produce errors about a request
matching too many results relative to the lookthrough limit. Paged searches avoid these errors and also
reduce memory utilization.

Before you begin
The paged SCIM searches feature is not available for entry-balanced data sets.

To use paged SCIM searches, your SCIM service's backend servers must be LDAP directory servers and
you must use the LDAP store adapter.

Complete the following one-time operations. For either command, you only need to run the command one
time per backend server. If you are not sure whether you have run the command, you can run it again
safely.

= Set the service account’s permissions by running the prepare-external-store command on the
PingAuthorize server for each backend server.

Note:

If you have run this command with PingDataGovernance 8.1.0.0 or earlier, run it again using the
command from a PingDataGovernance 8.2.0.0 or a PingAuthorize 8.3.0.0 or later release.

For example:

$ prepare-external-store —--hostname server.example.com —--port 1389 \
--bindDN "cn=Directory Manager" --bindPassword <passwordl> \
--governanceBindDN "cn=Authorize User,cn=Root DNs,cn=config" \
-—-governanceBindPassword <password2> \

—-—-userStoreBaseDN ou=people,dc=example,dc=com

= If your LDAP store adapter points to a PingDirectoryProxy server, run the following command on that
server.

$ dsconfig set-request-processor-prop \
--processor-name <proxylng-request-processor> \

--set supported-control-0id:2.16.840.1.113730.3.4.9 \
--set supported-control-0id:1.2.840.113556.1.4.473

where <proxying-request-processor> is the request processor handling the entries targeted by
the search.

About this task

PingAuthorize does SCIM searches using LDAP requests. After you complete the steps below,
PingAuthorize creates LDAP requests that include request controls that ask the backend servers to sort
and page the search results before returning the results. These request controls are marked noncritical,
meaning that if the backend server cannot page the results, the backend server still returns the results. In
this case, PingAuthorize handles the sorting and paging itself.

If your SCIM searches result in an error because the request matched too many results, as discussed in
Lookthrough limit for SCIM searches on page 207, you can avoid the error by using paged searches.

Complete the following steps for each search.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 205

Steps
1. Decide your SCIM search.

Note:

To get paged results, your search must include at least one of these parameters: startindex, count, or
sortBy.

For example, your search might look like the following search.

https://<pingauthorize-hostname>:<pingauthorize-port>/scim/v2/Users/?
filter=st eq "TX"&sortBy=sn&sortOrder=ascending

Here is the corresponding encoded version.

https://<pingauthorize-hostname>:<pingauthorize-port>/scim/v2/Users/?
filter=st%20eg%20%22TX%22&sortBy=sn&sortOrder=ascending
On your PingAuthorize Server, collect some information to use later.

a. Given a SCIM resource type that you want to search for, find the primary LDAP store adapter that
the SCIM resource type uses by looking at its primary-store-adapter property.
b. Find the corresponding adapter by running the following command.

$ dsconfig list-store-adapters

c. Findthe structural-ldap-objectclass, include-base-dn, and include-filter
values for the adapter by running this command.

$ dsconfig get-store-adapter-prop --adapter—-name <name-of-store-adapter> \
--property structural-ldap-objectclass \

--property include-base-dn \

--property include-filter

2. On each backend server, complete the following steps.
a. Create a Virtual List View (VLV) index for your search.

Each SCIM search that you want to produce paged results must have its own VLV index.

Create this index using dsconfig create-local-db-vlv-index with the following options.

Option Description
--index-name Names the index.
--backend-name Specifies the name of the local database backend in which to

place the index.

The default database backend for PingDirectory is userRoot.

--set base-dn Specifies the desired base dn. This value must match the
value of the include-base-dn property that you found in the
previous step.

--set scope Is always whole-subtree.

Copyright ©2024

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 206

Option

Description

--set filter

Specifies the filter.
Specify

" (objectclass=<name-of-store-adapter-
objectclass>)"

where <name-of-store-adapter-objectclass>is the
name of the objectclass used by the adapter, which you found
in the previous step.

If the primary LDAP store adapter has the include-
filter property set, also specify that property value in the
filter. For example, if the filter for the adapter objectclass

iSs (objectclass=inetorgperson) andthe include-
filter valueis (st=CAa), specify the --set filter
argument as " (& (objectclass=inetorgperson)
(st=Ca))".

Specify the LDAP attributes for all the components of your
SCIM search filter.

For example, if a mapping SCIM resource type maps the
LDAP attribute st to the SCIM attribute address.region
and the SCIM search filter requires that address.region
eq TX, then this filter must include (st = TX) instead of
(address.region = TX).

--set sort-order

Specifies whether to sort ascending (+) or descending (-) and
the LDAP attribute to sort by.

If the SCIM search does not specify the sortBy parameter,
specify the sort order as +entryUUID.

Recall the original, decoded SCIM search, shown here.

https://<pingauthorize-hostname>:<pingauthorize-port>/scim/v2/Users/?
filter=st eqg "TX"&sortBy=sn&sortOrder=ascending

For example, to create a VLV index for that search, run the following command.

$ dsconfig create-local-db-vlv-index --index-name sn \

--backend-name userRoot —--set base-dn:ou=people,dc=example,dc=com \
--set scope:whole-subtree \

--set filter:" (& (objectclass=inetorgperson) (st=TX))" --set sort-order:
+sn

Stop the server. Rebuild the index. Start the server. Run the rebuild-index command
specifying the baseDN and the name of the index.

S rebuild-index --baseDN <baseDN-value> —--index <name-of-index>

For example, run these commands.

$ stop-server

$ rebuild-index --baseDN dc=example,dc=com --index vlv.sn

$ start-server

PingAuthorize | PingAuthorize Server Administration Guide | 207

3. Run your SCIM search filter.

Note:

The search can include only the filter you specified with --set filter in the earlier step without the
" (objectclass=<name-of-store-adapter-objectclass>) " portion.

In addition to the Virtual List View request control, PingAuthorize adds a Server Side request control

to the LDAP request. These request controls require certain parameters be set. To satisfy this
requirement, PingAuthorize uses the following parameters. If the client does not provide values for one
of the parameters, the search uses the corresponding default value shown in the following table.

Parameter Default
startindex 1
count The value of the 1lookthrough-1limit property of the SCIM resource

type being searched. That default is 500.

sortBy entryUulID

With this default, the results appear unsorted.

sortOrder ascending

Lookthrough limit for SCIM searches
Because a policy evaluates every System for Cross-domain Identity Management (SCIM) resource in a
search result, some searches might exhaust server resources. To avoid this scenario, cap the total number
of resources that a search matches.

The configuration for each SCIM resource type contains a lookthrough-1imit property that defines this
limit, with a default value of 500. If a search request exceeds the lookthrough limit, the client receives a
400 response with an error message that resembles the following example.

{

}

"detail": "The search request matched too many results",

"schemas": [
"urn:ietf:params:scim:api:messages:2.0:Error"

1,

"scimType": "tooMany",

"status": "400"

To avoid this error, you have these options:

The client must refine its search filter to return fewer matches.

= Configure paged searches as explained in Using paged SCIM searches on page 204.

Disabling the SCIM REST API
Disable the System for Cross-domain Identity Management (SCIM) REST API.

About this task

If you have no need to expose data through the SCIM REST API, disable it by removing the SCIM2 HTTP
servlet extension from the HTTPS connection handler, or from any other HTTP connection handler, and
restart the handler.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 208

Steps

= Use the following command to remove the extension from the HTTP connection handler and restart it.

dsconfig set-connection-handler-prop \
--handler-name "HTTPS Connection Handler" \
--remove http-servlet-extension:SCIM2 \
--set enabled:false

dsconfig set-connection-handler-prop \
-—-handler-name "HTTPS Connection Handler" \
—--set enabled:true

Note:

When the SCIM REST API is disabled, access token validators still use PingAuthorize Server's SCIM
system to look up token owners.

About the SCIM user store

This topic focuses on the relationship between the PingAuthorize Server SCIM subsystem and its backend
data stores, particularly LDAP directory servers.

For general information about SCIM configuration, see SCIM configuration basics on page 193.

The PingAuthorize Server SCIM 2.0 REST API and SCIM token resource lookup methods rely on external
data stores, collectively called a user store, to locate user records. Typically, a user store is composed

of a set of PingDirectory Servers, optionally fronted by a set of PingDirectoryProxy Servers. The SCIM
subsystem manages communication with the user store through a store adapter, which translates SCIM
requests into requests native to the data stores. The following diagram shows an example setup.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 209

LDAP store ®

adapter

Load-balancing

algorithm
S— S—
- e - e
LDAP external LDAP external
server server
LDAP requests LDAP requests

t : l PingDirectory
| I Server

PingAuthorize Server includes a store adapter type for use with LDAP data stores, the LDAP store adapter.
The LDAP store adapter manages communications to a pool of LDAP servers using a load-balancing
algorithm. PingAuthorize Server supports two types of load-balancing algorithms.

PingDirectory
Server

(0

(11

Load-balancing algorithm type | Description

Failover load-balancing algorithm | Attempts to always send requests to the same backend LDAP
server. If the preferred server is not available, then it fails over to
alternate servers.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 210

Load-balancing algorithm type | Description

Fewest operations load-balancing | Forwards requests to the backend LDAP server with the fewest
algorithm operations currently in progress.

You should only use this load-balancing algorithm when all backend
servers are Directory Proxy Servers.

Typically, you connect a load-balancing algorithm to its backend LDAP servers by defining LDAP external
servers in the configuration and attaching them to the load-balancing algorithm configuration. An LDAP
external server configuration manages the actual LDAP connections to a backend LDAP server, such as
PingDirectory Server.

Note:

Alternatively, if all backend LDAP servers are PingDirectory Servers (version 8.0.0.0 and later), you
can configure a load-balancing algorithm to automatically discover the backend servers. See Automatic
backend LDAP server discovery on page 213.

LDAP external servers monitor and report the availability of backend LDAP servers using LDAP health
checks. See LDAP health checks on page 218.

Defining the LDAP user store

You can define your user store with the external data servers using create-initial-config. If you
need more flexibility though, you can define the LDAP store manually.

For information about these options, see:

= Defining the LDAP user store with create-initial-config on page 210
= Defining the LDAP user store manually on page 211

Defining the LDAP user store with create-initial-config
The create-initial-config tool provides limited support for configuring SCIM and the user store
configuration needed to connect the SCIM subsystem to a set of LDAP directory servers.

This tool creates the following configuration:

= An LDAP store adapter named UserStoreAdapter

= A load-balancing algorithm named User Store LBA

= One or more LDAP external servers

= (Optional) A SCIM resource type named Users

= (Optional) SCIM schema, attributes, and attribute mappings for the Users resource type

If run interactively, create-initial-config walks you through the configuration process. You should
be prepared to provide connection information for your directory servers.

You can also run create-initial-config noninteractively, which is useful when performing a scripted
deployment. For an example, see Configuring the PingAuthorize user store on page 359.

The following table describes a key subset of the tool's command-line options.

Option Description

--governanceBindDN The bind DN for a user account that PingAuthorize Server will
use to access backend LDAP servers. Create this account using
the prepare-external-store tool.

--governanceBindPassword The password for the above account.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 211

Option Description

--userStore The host, LDAP / LDAPS port, and optional location of a backend
LDAP server. You can specify this option once per each backend
server.

--userStoreBaseDN The base DN under which entries are stored.

--userObjectClass The structural LDAP object class of entries for the SCIM

subsystem to handle if -—initialSchema has the none or
pass-through value.

--initialSchema The SCIM schema and resource type configuration to use.
Supports the following values:

* pass—-through

Creates a pass-through SCIM resource type called
Users for the LDAP object class specified by the --
userObjectClass option.

" user

Creates a mapping SCIM resource type called Users
with an example schema. For more information about this
schema, see <server-root>/resource/starter-
schemas/README. txt

" none

Does not create a SCIM resource type.

For more information about running create-initial-config, see its help by running the following
command.

create-initial-config --help

When using create-initial-config noninteractively, you should also run prepare-external-
store for each backend LDAP server. This tool creates a privileged user account on the LDAP server for
use by PingAuthorize Server and configures a set of global access control instructions (ACIs) needed by
this account.

Defining the LDAP user store manually

If you require more flexibility than create-initial-config provides, you can manually configure the
SCIM subsystem and its connectivity to the LDAP user store. However, if you have not done this before,
first use create-initial-config to generate an example configuration and then customize that
configuration.

About this task

This task shows how to define two backend LDAP servers and a failover load-balancing algorithm.
Also, it shows how to connect the load-balancing algorithm to an existing LDAP store adapter named
UserStoreAdapter.

Note:

The example is simplified and does not discuss SSL connection management. When using SSL to
connect to an LDAP external server, you must configure PingAuthorize Server to trust the server certificate
presented by the LDAP external server using a trust manager provider.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 212

Steps

Copyright ©2024

1. Runprepare-external-store for each backend LDAP server. This tool creates a service account

with the access rights needed by PingAuthorize Server.
Example: For example:

prepare-external-store \
-—hostname dsl.example.com \
--port 636 \
--useSSL \
-—-trustAll \
--bindDN "cn=directory manager" \
--bindPassword password \
--governanceBindDN 'cn=Authorize User,cn=Root DNs,cn=config'
-—-governanceBindPassword password \
—--userStoreBaseDN 'ou=People,dc=example,dc=com'

\

2. Create an LDAP external server entry for each backend LDAP server. This configures how

PingAuthorize Server connects to each LDAP server.
Example: For example:

dsconfig create-external-server \
-—-server-name DS1 \
--type ping-identity-ds \
--set server-host-name:dsl.example.com \
-—-set server-port:636 \
--set location:Minneapolis \
--set 'bind-dn:cn=Authorize User, cn=Root DNs,cn=config' \
--set password:password \
--set connection-security:ssl \
--set key-manager-provider:Null \
--set trust-manager-provider:JKS

dsconfig create-—-external-server \
-—-server-name DS2 \
--type ping-identity-ds \
--set server-host-name:ds2.example.com \
-—-set server-port:636 \
--set location:Minneapolis \
--set 'bind-dn:cn=Authorize User, cn=Root DNs,cn=config' \
--set password:password \
--set connection-security:ssl \
--set key-manager-provider:Null \
--set trust-manager-provider:JKS

3. Create a failover load-balancing algorithm that uses the two LDAP external servers.
Example: For example:

dsconfig create-load-balancing-algorithm \
--algorithm-name 'User Store LBA' \
--type failover \
--set enabled:true \
--set backend-server:DS1 \
--set backend-server:DS2

4. Assign the load-balancing algorithm to an LDAP store adapter. This example assumes that the store

adapter UserStoreAdapter already exists.
Example: For example:

dsconfig set-store-adapter-prop \
-—-adapter-name UserStoreAdapter \

PingAuthorize | PingAuthorize Server Administration Guide | 213

--set 'load-balancing-algorithm:User Store LBA'

Location management for load balancing

All PingDirectory and PingAuthorize servers have a location, which is a label that defines a group of
servers with similar response time characteristics. Each location consists of a name and an optional list of

preferred failover locations.

The failover and fewest operations load-balancing algorithms, discussed in About the SCIM user store on
page 208, take server location into account when routing requests. By default, they always prefer LDAP
backend servers in the same location as the PingAuthorize Server. If no servers are available in the same
location, they will fall back to any defined failover locations.

You assign a server a location using the --1ocation option when you run setup.

You can manage configuration-level and server-level location settings after setup as explained in the

following table.

Task

Corresponding command example

Define a new location.

dsconfig create-location \
--location-name Minneapolis

Define a new location with a
failover location. The failover
location must already exist.

dsconfig create-location \
--location-name Louisville \
--set preferred-failover-location:Minneapolis

Add a failover location to an
existing location. The failover
location must already exist.

dsconfig set-location-prop \
--location-name Minneapolis \
--set preferred-failover-location:Louisville

Change PingAuthorize Server's
existing location by modifying the
global configuration.

dsconfig set-global-configuration-prop \
--set location:Minneapolis

Change a backend LDAP server's
location by modifying its LDAP
external server entry.

dsconfig set-external-server-prop \
-—-server-name DS1 \
--set location:Minneapolis

Configure a load-balancing
algorithm to ignore backend LDAP
servers' locations when deciding
how to route requests.

dsconfig set-load-balancing-algorithm-prop \
--algorithm-name "User Store LBA" \
--set use-location:false

Automatic backend LDAP server discovery

Instead of explicitly specifying all backend LDAP servers in the configuration as LDAP external servers,
you can configure PingAuthorize Server to automatically discover its backend servers.

Important:

This feature requires that all backend LDAP servers be PingDirectory Servers running version 8.0.0.0 or
later. Automatic backend discovery is not supported for PingDirectoryProxy Server or third-party LDAP

Servers.

To configure automatic backend discovery, you must complete these tasks:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 214

= Join the PingAuthorize Server to the same topology as the PingDirectory Servers.

= Configure the PingAuthorize Server's load-balancing algorithm with an LDAP external server template.
This template provides the connection and health check settings that PingAuthorize Server uses for alll
PingDirectory Servers.

= Configure the topology registry entry for each PingDirectory Server to indicate the name of the
PingAuthorize Server load-balancing algorithm.

Joining a PingAuthorize Server to an existing PingDirectory Server topology
To use automatic backend discovery, the PingAuthorize Server must be a member of the same topology of
each backend PingDirectory Server.

You can join a PingAuthorize Server to a PingDirectory Server topology at the time that you set it up or
after setup using the manage-topology command.

For information about these options, see:

= Joining a topology at setup on page 214
= Joining a topology with manage-topology on page 215

Joining a topology at setup

To join a new PingAuthorize Server to an existing PingDirectory Server topology during setup,
provide connection information for one of the PingDirectory Servers to the setup tool using its —-
existingDSTopology* options. This PingDirectory Server must be running when you execute the
setup tool.

The following table lists some common setup options for joining a PingDirectory Server topology. For a
complete list of options, run setup --help.

Option Description

--existingDSTopologyHostName The address of a PingDirectory Server instance in the topology
to be joined.

-—-existingDSTopologyPort The LDAP / LDAPS port for communication with the

PingDirectory Server to retrieve information about the topology.

-—existingDSTopologyUseSSL Indication that the communication with the PingDirectory
Server to retrieve information about the topology should be
encrypted with SSL.

--existingDSTopologyUseJavaTruststore The path to a JKS trust store that has the information needed
to trust the certificate presented by the PingDirectory Server
when using SSL or StartTLS.

--existingDSTopologyUsePkcsl2Truststore | The path to a PKCS #12 trust store that has the information
needed to trust the certificate presented by the PingDirectory
Server when using SSL or StartTLS.

--existingDSTopologyTrustStorePassword | The password needed to access the contents of the JKS or
PKCS #12 trust store. A password is typically required when
using a PKCS #12 trust store but is optional when using a JKS
trust store.

--existingDSTopologyBindDN The DN of the account to use to authenticate to the
PingDirectory Server, such as cn=Directory Manager.
This account must have full read and write access to the
configuration and to manage the topology.

--existingDSTopologyBindPassword The password for the account to use to authenticate to the
PingDirectory Server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 215

Joining a topology with manage-topology

To join an existing PingAuthorize Server to an existing PingDirectory Server topology, you can use
the manage-topology add-server command to provide connection information for one of the
PingDirectory Servers. This PingDirectory Server must be running when you execute the setup tool.

The following table lists the options that specify connection information for a PingDirectory Server. To see
this command's complete set of options, run manage-topology add-server --help.

Option Description

--remoteServerHostname The address of a PingDirectory Server in the
topology to be joined.

--remoteServerPort The LDAP / LDAPS port for communication
with the PingDirectory Server.

--remoteServerConnectionSecurity The type of security to use when
communicating with the remote server. This
value can be:

» useSSL

Indicates that the communication should
be encrypted with SSL

= useStartTLS

Indicates that the communication should
be encrypted with the StartTLS extended
operation

* noSecurity

Indicates that the communication should
not be encrypted

--remoteServerBindDN The DN of the account to use to authenticate
to the PingDirectory Server, such as
cn=Directory Manager. This account
must be able to modify the configuration of the
target server.

--remoteServerBindPassword The password for the account to use to
authenticate to the PingDirectory Server.

--remoteServerBindPasswordFile The path to a file containing the password
for the account to use to authenticate to the
PingDirectory Server.

--adminUID User ID of the topology-wide administrator.
This is typically the account used to enable
replication for the PingDirectory Servers.

--adminPassword The password of the topology-wide
administrator.

Configuring a load-balancing algorithm with an LDAP external template

When using automatic backend discovery, you configure a load-balancing algorithm with a single LDAP
external template instead of one or more LDAP external servers that refer to specific backend LDAP
servers.

An LDAP external server template provides a load-balancing algorithm with many of the settings that
it should use when communicating with a backend server that has been discovered from the topology
registry. An LDAP external server template configuration object has most of the same properties as an

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 216

LDAP external server configuration object but omits those related to information that it obtains from the
topology registry. The omitted properties include:

* server-host-name
» server-port
= location

» connection-security

In addition, the health-check-state property is also not available for LDAP external server templates
because it primarily applies to individual servers rather than all of the servers associated with a load-
balancing algorithm.

Because the only LDAP servers that can be in the topology registry are PingDirectory Servers, most
of the remaining properties in LDAP external server templates have the same default values as the
corresponding properties in the Ping Identity DS External Server type. However, there are some
exceptions, including the following:

= The authentication-method property has a default value of inter-server in LDAP external
server templates, while it has a default value of simp1le in Ping Identity DS external servers. The
inter-server authentication type indicates that the PingAuthorize Server should authenticate to the
PingDirectory Server with a proprietary authentication method that uses inter-server certificates stored
in the topology registry.

= The key-manager-provider property has a default value of Null in LDAP external server
templates, while it has no default value in Ping Identity DS external servers. When using the inter-
server authentication type, the topology registry is used to obtain the inter-server certificates, so no
additional key manager provider is required.

= The trust-manager-provider property has a default value of JvM-Default in LDAP external
server templates, while it has no default value in Ping Identity DS external servers. When using the
inter-server authentication type, the topology registry is used to obtain information about the listener
certificates that the servers are expected to present.

Note:

When using automatic backend discovery, it is not necessary to run prepare-external-store to
create a service account on each PingDirectory Server.

The following example shows how to create an LDAP external template and assign it to a new load-
balancing algorithm.

dsconfig create-ldap-external-server-template \
—-—template-name 'User Store'

dsconfig create-load-balancing-algorithm \
--algorithm-name 'User Store LBA' \
--type failover \
--set enabled:true \
--set 'ldap-external-server-template:User Store'

Configuring automatic backend LDAP server discovery

The following example shows how to configure a load-balancing algorithm to automatically discover
backend LDAP servers. Also, it shows how to connect the load-balancing algorithm to an existing LDAP
store adapter called UserStoreAdapter.

About this task

This example assumes that you have already created a topology of PingDirectory Servers and that the
servers are currently available.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 217

Steps

1. Create an LDAP external server template. This template configures how PingAuthorize Server
connects to each LDAP server that it discovers. Typically, the default settings are sufficient, so this
example only specifies the template name.

Example: For example:

dsconfig create-ldap-external-server-template \
-—-template-name 'User Store'

2. Create a failover load-balancing algorithm that uses the LDAP external server template.
Example: For example:

dsconfig create-load-balancing-algorithm \
--algorithm-name 'User Store LBA' \
--type failover \
-—-set enabled:true \
--set 'ldap-external-server-template:User Store'

3. Assign the load-balancing algorithm to an LDAP store adapter. This example command assumes that
the store adapter UserStoreAdapter already exists.

Example: For example:

dsconfig set-store-adapter-prop \
-—-adapter-name UserStoreAdapter \
--set 'load-balancing-algorithm:User Store LBA'

4. Run manage-topology add-server to connect the PingAuthorize Server to a running
PingDirectory Server.

Example: For example:

manage-topology add-server \
--remoteServerHostname dsl.example.com \
--remoteServerPort 636 \
--remoteServerConnectionSecurity useSSL \
-—-remoteServerBindDN "cn=Directory Manager" \
--remoteServerBindPassword password \
--adminUID admin \
-—adminPassword password

5. Configure each PingDirectory Server in the topology to use PingAuthorize Server's load-balancing
algorithm. You should be able to run this command from any server in the topology. The following
commands configure two PingDirectory Servers with the instance names ds1 and ds?2.

Example: For example:
dsconfig set-server-instance-prop \

-—instance-name dsl \
--set 'load-balancing-algorithm-name:User Store LBA'

dsconfig set-server-instance-prop \

--instance-name ds2 \
--set 'load-balancing-algorithm-name:User Store LBA'

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 218

LDAP health checks

LDAP health checks provide information about the health and availability of the LDAP directory servers,
which has a direct effect on services, such as the PingAuthorize Server System for Cross-domain Identity
Management (SCIM) 2 service and the SCIM Token Resource Lookup method.

Overview

The LDAP health check component provides information about the availability of LDAP external servers.
The health check result includes one of the following server states:

AVAILABLE
Completely accessible for use.
DEGRADED

The server is ready for use if necessary, but it has a condition that might make it less desirable than
other servers (for example, it is slow to respond or has fallen behind in replication).

UNAVAILABLE

Completely unsuitable for use (for example, the server is offline or is missing critical data)

Health check results also include a numeric score, which has a value between 1 and 10, that can help rank
servers with the same state. For example, if two servers are available, you can configure PingAuthorize
Server to prefer the server with the higher score.

PingAuthorize Server periodically invokes health checks to monitor each LDAP external server. It might
also initiate health checks in response to failed operations. It checks the health of the LDAP external
servers at intervals configured in the LDAP server's health-check-£frequency property.

The results of health checks performed by PingAuthorize Server are made available to the load-balancing
algorithms to take into account when determining where to send requests. PingAuthorize Server attempts
to use servers with a state of AVAILABLE before trying servers with a state of DEGRADED. It never
attempts to use servers with a state of UNAVAILABLE. Some load-balancing algorithms might also take
the health check score into account, such as the health-weighted load-balancing algorithm, which prefers
servers with higher scores over those with lower scores. You must configure the algorithms that work best
for your environment.

In some cases, an LDAP health check might define different sets of criteria for promoting and demoting
the state of a server. A DEGRADED server might need to meet more stringent requirements to meet the
criteria for AVAILABLE than it originally took to meet the criteria for DEGRADED. For example, if response
time is used to determine the health of a server, then PingAuthorize Server might have a faster response
time threshold for transitioning a server from DEGRADED back to AVAILABLE than the threshold used to
consider it DEGRADED in the first place. This threshold difference can help avoid cases in which a server
repeatedly transitions between the two states because it is operating near the threshold.

For information about how to configure health checks, see Configuring a health check using dsconfig on
page 219. To associate a health check with an LDAP external server and set the health check frequency,
you must configure the health-check and health-check-frequency properties of the LDAP external
server.

Note:

The default Consume Admin Alerts and Get Root DSE LDAP health checks apply to all LDAP external
servers, even if you did not explicitly configure and add them to an LDAP external server's health-check

property.

To disable this behavior, reset the use-for-all-servers property for each LDAP health check. For
example:

dsconfig set-ldap-health-check-prop \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 219

—--check-name 'Consume Admin Alerts' \
--reset use-for-all-servers

Available health checks

PingAuthorize Server provides the following LDAP health checks.

Health check

Description

Measure the response time for
searches and examine the entry

contents

The health check might retrieve a monitoring entry from a server
and base the health check result on whether the entry was
returned, how long it took to be returned, and whether the value
of the returned entry matches what was expected.

Monitor the replication backlog

If a server falls too far behind in replication, then a PingAuthorize
Server can stop sending requests to it. A server is classified as
DEGRADED or UNAVAILABLE if the threshold is reached for
the number of missing changes, the age of the oldest missing
change, or both.

Consume PingAuthorize Server

administrative alerts

If a PingDirectory Server indicates there is a problem, it flags itself
as DEGRADED or UNAVAILABLE. When a PingAuthorize Server
detects this, it stops sending requests to the server.

You can configure a PingAuthorize Server to detect administrative
alerts as soon as they are issued by maintaining an LDAP
persistent search for changes within the cn=alerts branch of

a PingDirectory Server. When PingAuthorize Server is notified

by the PingDirectory Server of a new alert, it can immediately
retrieve the base cn=monitor entry of the PingDirectory Server.

When cn=monitor entry has | PingAuthorize Server should
value for this attribute: consider PingDirectory
Server to be:

unavailable-alert-type |UNAVAILABLE

degraded-alert-type DEGRADED

Monitor the busyness of the server

If a server becomes too busy, the health check might mark it
as DEGRADED or UNAVAILABLE so that less heavily loaded
servers are preferred.

Configuring a health check using dsconfig
Create any health check according to the following instructions.

Steps

Copyright ©2024

1. Use the dsconfig tool to configure the LDAP external server locations.

2.

Example:

$ bin/dsconfig

Type the host name or IP address for your PingAuthorize Server, or press Enter to accept the default,

localhost.
Example:

PingAuthorize Server host name or IP address [localhost]:

PingAuthorize | PingAuthorize Server Administration Guide | 220

3. Type the number corresponding to how you want to connect to PingAuthorize, or press Enter to
accept the default, LDAP.

Example:

How do you want to connect?
1) LDAP
2) LDAP with SSL
3) LDAP with StartTLS

4. Type the port number for your PingAuthorize Server, or press Enter to accept the default, 389.
Example:

PingAuthorize Server port number [389]:

5. Type the administrator's bind distinguished name (DN) or press Enter to accept the default
(cn=Directory Manager), and then type the password.

Example:

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':
6. Enter the number corresponding to LDAP health checks.

a. Enter the number to create a new LDAP health check, then press n to create a new health check
from scratch.

7. Select the type of health check you want to create.
Example:

This example demonstrates the creation of a new search LDAP health check.

>>> Select the type of LDAP Health Check that you want to create:

1) Admin Alert LDAP Health Check
2) Custom LDAP Health Check
3) Groovy Scripted LDAP Health Check
4) Replication Backlog LDAP Health Check
5) Search LDAP Health Check
6) Third Party LDAP Health Check
7) Work Queue Busyness LDAP Health Check
?) help
c) cancel
g) quit
Enter choice [c]: 5

8. Specify a name for the new health check.
Example:

In this example, the health check is named Get example.comn.

>>>> Enter a name for the search LDAP Health Check that you want to create:
Get example.com

9. Enable the new health check.
Example:

>>>> Configuring the 'enabled' property

Indicates whether this LDAP health check is enabled for use in the
server.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 221

Select a value for the 'enabled' property:

1) true
2) false
?) help
c) cancel
gq) quit
Enter choice [c]: 1

10. Configure the properties of the health check.

You might need to modify the base-dn property, as well as one or more response time thresholds for
non-local external servers, accommodating WAN latency.

Example:

The following example is a search LDAP health check for the single entry dc=example, dc=com,
which considers non-local responses of up to two seconds healthy.

>>>> Configure the properties of the Search LDAP Health Check

Property Value (s)
1) description =
2) enabled true
3) use-for-all-servers false
4) base-dn "dc=example, dc=com"
5) scope base-object
6) filter (objectClass=*)
7) maximum-local-available-response-time 1l s
8) maximum-nonlocal-available-response-time 2 s
9) minimum-local-degraded-response-time 500 ms
10) minimum-nonlocal-degraded-response-time 1 s
11) maximum-local-degraded-response-time 10 s
12) maximum-nonlocal-degraded-response-time 10 s
13) minimum-local-unavailable-response-time 5 s
14) minimum-nonlocal-unavailable-response-time 5 s
15) allow-no-entries-returned true
16) allow-multiple-entries-returned true
17) available-filter —
18) degraded-filter =
19) unavailable-filter =

?) help

f) finish - create the new Search LDAP Health Check

d) display the equivalent dsconfig arguments to create this object
b) back

) quit

Connecting non-LDAP data stores

The PingAuthorize Server SCIM subsystem supports non-LDAP data stores using custom store adapter
extensions. For more information, see the Server SDK.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 222

About the Authorization Policy Decision APIs

The PingAuthorize Server provides Authorization Policy Decision APIs to support non-API use cases
needing attribute-based access control.

Important:

The Authorization Policy Decision APls feature requires PingAuthorize Premier. For more information,
contact your Ping Identity account representative.

The PingAuthorize Server's main functionality is to enforce fine-grained policies for data accessed through
APIs. However, organizations might need to use the core Policy Decision Service for non-API use cases.
For example, an application server might use it to request policy decisions when generating dynamic web
content. In this configuration, PingAuthorize Server becomes the PDP, and the application server becomes
the policy enforcement point (PEP).

The Authorization Policy Decision APIs consist of the following policy decision point (PDP) APIs:
= XACML-JSON PDP API
This API provides a standards-based interface.

Standards-based enforcement points request policy decisions based on a subset of the XACML-JSON
standard. For more information, see XACML 3.0 JSON Profile 1.1.
= JSON PDP API

This API provides a simpler interface.

Note:

The Authorization Policy Decision APIs can indicate when a request or response triggers advice, but the
application server must implement the advice.

To make a PDP API available, you must:

= Configure the PingAuthorize Server with a feature-enabled license during setup.

= Configure the Policy Decision Point Service. For more information, see Use policies in a production
environment.

= For the XACML-JSON PDP API, configure an Access Token Validator. For more information, see
Access Token Validators.

JSON PDP API request and response flow
The JSON policy decision point (PDP) API provides an HTTP REST API for attribute-based access control
based on policies configured in the PingAuthorize Server Policy Decision Service.

The JSON PDP API is implemented with both an individual decision request endpoint and a batch request
endpoint that consuming application servers can access using POST requests to the /governance-
engine Or /governance-engine/batch paths, respectively.

The HTTP requests must include the appropriate Content-Type and Accept headers, and request
bodies must be valid JSON in the expected request format.

The endpoint paths and headers are listed in the following table.

JSON PDP API Action Content-Type/Accept Request data
Endpoint path

/governance-engine |POST application/json JSON

Copyright ©2024

http://docs.oasis-open.org/xacml/xacml-json-http/v1.1/csprd01/xacml-json-http-v1.1-csprd01.html

PingAuthorize | PingAuthorize Server Administration Guide | 223

JSON PDP API Action Content-Type/Accept Request data
Endpoint path

/governance- POST application/json JSON
engine/batch

A successful JISON PDP API request goes through the following flow:

1. The client makes the JSON request, which is received by the JSON PDP API. The API forwards the
request to the PDP.

2. When the PDP returns a response, the API sends the response to the client.

Note:

The Policy Enforcement Point (PEP) must apply any obligations or advice. See the JSON PDP API
Reference for more information about making API requests.

JSON PDP API request format

Individual requests

A valid JSON PDP API request is a simple JSON object that can be forwarded to the Policy Decision
Service. Policies can match a decision request by Service, Domain, Action, or other attributes.

The following table describes the values contained in a valid JISON PDP API request.

Field Type Required PingAuthorize Example value
Trust Framework
type
domain string no Domain Sales.Asia
Pacific
action string no Action Retrieve
service string no Service Mobile.Landing
page
identityProvidelstring no Identity Provider Social
Networks.
Spacebook
attributes map<string, string> | yes Other Attributes {"Prospect
name": "B.
voll }

Tip:

While the attributes value is required, you can leave it empty.

The following example shows the correct format of a JSON individual decision request.

{
"domain": "Sales.Asia Pacific",
"action": "Retrieve",

Copyright ©2024

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/#json-pdp-api-reference
https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/#json-pdp-api-reference

PingAuthorize | PingAuthorize Server Administration Guide | 224

"service": "Mobile.Landing page",
"identityProvider": "Social Networks.Spacebook",
"attributes": {

"Prospect name": "B. Vo"

}
}

The following image shows how Prospect name is defined in the Policy Administration GUI. In this
example, the Prospect name attribute has a Request resolver and a Value Settings type of string.

Attributes

O: Trust Framework Dietails

Prospect name

Parent

= Resolvers (1 total)

+ Value Processors (0 total)

= Walue Settings
Default value]

Type String - | Secret O

= Caching

I Cache Strategy Mo Caching

Note:

The Trust Framework attribute name must match with the key of the attributes map.

For example, if you have an attribute named "UserID", an example value for the "attributes" object
would be{"UserID":13848}.

Batch requests

Batch requests consist of an array named "requests" of JSON objects, each of which is a standard
JSON PDP API single decision request.

The following example shows the correct format of a JSON batch decision request.

{
"requests": [
{
"domain": "Sales.Asia Pacific",
"action": "Retrieve",
"service": "Mobile.Landing page",
"identityProvider": "Social Networks.Spacebook",

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 225

"attributes": {

"Prospect name": "B. Vo"
}
by
{
"domain": "Sales.EMEA",
"action": "Search",
"service": "Mobile.Users search",
"identityProvider": "Social Networks.Chirper",
"attributes": {
"Prospect name": "A. Mann"

JSON PDP API response format

After the Policy Decision Service determines a decision response, it hands the response back to the JSON
PDP API to provide to the client. JSON PDP API responses include decisions, such as Permit or Deny,
and any obligations or advice that matched during policy processing.

Individual response
The following example shows the correct JSON individual response format.

{
"id": "12345678-90ab-cdef-1234-567890abcdef",

"deploymentPackageId": "12345678-90ab-cdef-1234-567890abcdef",
"timestamp": "2021-06-11T03:12:19.7204852",
"elapsedTime": 184024,
"decision": "PERMIT",
"authorized": true,
"statements": [
{
"id": "12345678-90ab-cdef-1234-567890abcdef",
"name": "Advice Name",
"code": "advice-code",
"payload": "{\"data\": \"some data\"}",

"obligatory": true,
"fulfilled": false,
"attributes": { }
}
1,

"status": {
"code": "OKAY",
"messages": [],
"errors": [],

Note:

The decision and authorized values identify whether the policies authorize the request, and the
"statements" array contains advice to be applied by the Policy Enforcement Point.

Batch response

Batch decision responses consist of an array, named "responses™, of JSON objects, each of which is a
standard JSON PDP API single decision response. The decision responses are guaranteed to be returned

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 226

in the same order as the received responses. For example, the first response in the batch responses
corresponds to a decision on the first request in the batch requests.

The following example shows the correct JSON batch decision response format.

Copyright ©2024

{
{

"responses": [

"id": "12345678-90ab-cdef-1234-567890abcdef",

"deploymentPackageId": "12345678-90ab-cdef-1234-567890abcdef",
"timestamp": "2021-06-11T04:18:32.820482z2",

"elapsedTime": 830492,

"decision": "PERMIT",

"authorized": true,

"statements": [

"id": "12345678-90ab-cdef-1234-567890abcdef",

"name": "Advice Name",
"code": "advice-code",
"payload": "{\"data\": \"some data\"}",

"obligatory": true,
"fulfilled": false,
"attributes": {}
}
1y
"status": {
"code": "OKAY",
"messages": [1,
"errors": [1,
}
b

{
"id": "fedcba09-8765-4321-fedcbal098765",

"deploymentPackageId": "fedcba09-8765-4321-fedcbal98765",
"timestamp": "2021-06-11T04:18:33.650974z",
"elapsedTime": 492048,

"decision": "PERMIT",
"authorized": true,
"statements": [

"id": "fedcba09-8765-4321-fedcbal098765",

"name": "Different Advice",
"code": "advice-code",
"payload": "{\"data\": \"other data\"}",

"obligatory": false,
"fulfilled": false,
"attributes": { }
}
1y

"status": {
"code": "OKAY",
"messages": [1,
"errors": [1,

}

}

PingAuthorize | PingAuthorize Server Administration Guide | 227

Authenticating to the JSON PDP API
The JSON PDP API can require a client to authenticate to it by using a shared secret.

To define shared secrets, use JSON PDP API Shared Secret configuration objects. To manage shared
secrets, use the JSON PDP API HTTP Servlet Extension.

Creating a shared secret
Define the authentication credentials that the JSON PDP API might require a client to present.

Steps

1. To create a shared secret, run the following example dsconfig command, substituting values of your
choosing.

Example:

PingAuthorize/bin/dsconfig create-authorization-policy-decision-shared-
secret \

--secret-name "Shared Secret A" \

--set "shared-secret:secretl23"

Note:

= The shared-secret property sets the value that the JSON PDP API requires the client to
present. After you set this value, it is no longer visible.

= The secret-name property is a label that allows an administrator to distinguish one JSON PDP
API Shared Secret from another.

2. To update the shared-secrets property, run the following example dsconfig command.
Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
--extension-name "JSON PDP API"™ \
—-—add "shared-secrets:Shared Secret A"

A new JSON PDP API Shared Secret is not used until the shared-secrets property of the JSON
PDP API HTTP Servlet Extension is updated.

Deleting a shared secret
You can remove a shared secret from use or delete it entirely.

Steps
= Toremove a JSON PDP API Shared Secret from use, run the following example dsconfig
command, substituting values of your choosing.
Example:

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
-—extension-name "JSON PDP API" \
—--remove "shared-secrets:Shared Secret A"
= To delete a JSON PDP API Shared Secret, run the following example dsconfig command.

Example:

PingAuthorize/bin/dsconfig delete-authorization-policy-decision-shared-
secret \
--secret-name "Shared Secret A"

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 228

Rotating shared secrets
To avoid service interruptions, the JISON PDP API allows multiple, distinct shared secrets to be accepted
at the same time.

About this task

You can configure a new shared secret that the JSON PDP API accepts alongside an existing shared
secret. This allows time to update the client to use the new shared secret.

Steps

1. Create a new JSON PDP API Shared Secret and assign it to the JSON PDP APl HTTP Servlet
Extension. For more information, see Creating a shared secret on page 227.

2. Update the client to use the new shared secret.

3. Remove the previous JSON PDP API Shared Secret. For more information, see Deleting a shared
secret on page 227.

Customizing the shared secret header
By default, the JSON PDP API accepts a shared secret from a client through the CLIENT-TOKEN header.

Steps
= To customize a shared secret header, change the value of the JSON PDP APl HTTP Servlet
Extension's shared-secret-header property.
Example:

The following command changes the shared secret header to x-shared-secret.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
-—extension-name "JSON PDP API"™ \
—--set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value.

PingAuthorize/bin/dsconfig set-http-servlet-extension-prop \
--extension-name "JSON PDP API"™ \
-—-reset shared-secret-header-name

XACML-JSON PDP API request and response flow

The XACML-JSON policy decision point (PDP) API provides a standards-based HTTP API for decisions
determined based on the policies configured within the PingAuthorize Server Policy Decision Service.

The XACML-JSON PDP API is implemented as a single endpoint, which consuming application servers
can access using POST requests to the /pdp path. The HTTP requests must include the appropriate
Content-Type and Accept headers, and request bodies must adhere to the XACML-JSON standard.
For more information, see Requests on page 229.

XACML-JSON PDP API |Action Content-Type/Accept Request data
Endpoint path

/pdp POST application/xacml+json | XACML-JSON

The XACML-JSON PDP API supports the MultiRequests JSON object, which allows a client to make
multiple decision requests in a single HTTP request.

Note:

Copyright ©2024

http://docs.oasis-open.org/xacml/xacml-json-http/v1.1/csprd01/xacml-json-http-v1.1-csprd01.html#_Toc525043922

PingAuthorize | PingAuthorize Server Administration Guide | 229

Because this object also supports single decision requests, it is the only supported XACML-JSON request
format. See the XACML-JSON PDP API Reference for more information about making API requests.

A successful XACML-JSON PDP API request goes through the following two-phase flow:

1. The client makes the XACML-JSON request, which is received by the XACML-JSON PDP API. The
API converts the request to a PingAuthorize Server batch decision request and attempts to authorize
the client.

2. On authorize success, the request is handed off to the Policy Decision Service to process decisions
in batch for the XACML-JSON PDP API. The API then converts the batch decision responses to a
XACML-JSON response and writes the response to the client.

The following sections describe these stages in more detail.

Requests

The XACML-JSON PDP API first converts the XACML-JSON request to a batch decision request for the
policy decision point to be consumed by the Policy Decision Service. Policies can match a decision request
by Service, Domain, Action, or other attributes.

The following example XACML-JSON request body illustrates the conversion to a batch decision request.
For an example with more than one decision request, see Example on page 233.

{
"Request": {
"MultiRequests": {
"RequestReference": [{
"ReferenceId": [
"dom",
"act",
"srv",
"idp",
"att"
]
H]
L
"AccessSubject": [{
"Id": "dom",
"Attribute": [{
"AttributeId": "domain",
"Value": "Sales.Asia Pacific"
H]
1y
"Action": [{
"Id": "act",
"Attribute": [{
"AttributeId": "action",
"Value": "Retrieve"
H]
1y
"Resource": [{
"Id": "srv",
"Attribute": [{
"AttributeId": "service",
"Value": "Mobile.Landing page"
H]
1
"Environment": [{
"Id": "idp",
"Attribute": [{
"AttributeId": "symphonic-idp",
"Value": "Social networks.Spacebook"

}]

Copyright ©2024

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/#xacml-json-pdp-api-reference

PingAuthorize | PingAuthorize Server Administration Guide | 230

51,
"Category": [{
"Id": "att",
"Attribute": [{
"AttributeId": "attribute:Prospect name",
"Value": "B. Vo"

The previous example shows a single decision request with the following attributes:

A domain of Sales.Asia Pacific

An action of Retrieve

A service of Mobile.Landing page

An identity provider of Social networks.Spacebook

A single attribute named Prospect name, with a value of B. Vo

The following table shows how these values map from the Trust Framework entities to the XACML-JSON
request.

Parent (JSON

Field (JSON Path)

PingAuthorize Trust

Example value

"attribute:Prospect name")].Value

(Prospect name in
this case)

Path) Framework type
$S.AccessSubject[*] .Attribute[? Domain Sales.Asia
(@.AttributelId == "domain")].Value Pacific
$.Action[*] .Attribute[? (QR.Attributeld == Action Retrieve
"action")].Value
$.Resource[*] .Attribute[? (Q@.AttributelId == Service Mobile.

$.Request "service")].Value Landing page
$.Environment[*] .Attribute[? (QR.AttributelId Identity Provider Social
== "gymphonic-idp")].Value Networks.

Spacebook
$.Category[*] .Attribute[? (Q@.AttributeId == Other Attribute B. Vo

To illustrate how you can match rules against the Prospect name Trust Framework attribute, the
following image shows how Prospect name is defined in the Policy Editor. In this example, the
Prospect name attribute has a Request resolver and a Value Settings Type of String.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 231

Attributes

*: Trust Framework Dietails

Prospect name

Parent

= Resolvers (1 total)

+ Value Processors [0 total)

= Walue Settings
Default value]

Type String - Secret |:|

= Caching

I Cache Strategy

Note:

The Trust Framework attribute name must be a case-sensitive match with the decision request
Attributeld afterthe attribute: prefix is removed.

Authorization
Before calculating a decision, the XACML-JSON PDP API attempts to authorize the client making the
XACML-JSON PDP API request by invoking the Policy Decision Service.

A PDP authorization request can be targeted in policy as having service PDP with action authorize. The

default policies included with PingAuthorize Server perform this authorization by only permitting requests
with active access tokens that contain the urn:pingauthorize:pdp scope. You can see this policy in
Global Decision Point # PDP API Endpoint Policies # Token Authorization.

Note:

The parent of the Token Authorization policy, PDP APl Endpoint Policies, constrains the Token
Authorization policy to apply to the PDP service only.

For example, under the default policies, the following request would result in an authorized client when the
PDP is configured with a mock access token validator.

curl --insecure -X POST \
-H 'Authorization: Bearer {"active":true,"scope":"urn:pingauthorize:pdp", "sub":"<valid-subject>"}"' \
-H 'Content-Type: application/xacml+json' \
-d "{"Request":{}}' "https://<your-pingauthorize-host>:<your-pingauthorize-port>/pdp"

The default policies are intended to provide a foundation. You can modify these policies if additional
authorization logic is required.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 232

Decision processing
On successful client authorization, the XACML-JSON PDP API invokes the Policy Decision Service with
the batch decision requests converted from the XACML-JSON request.

When writing policy for the XACML-JSON PDP API endpoint, you should note the mapping between
the XACML-JSON schema and the PingAuthorize Server decision request. For more information, see
Requests on page 229. After the Policy Decision Service determines a decision response, it hands the
response back to the XACML-JSON PDP API to provide to the client.

Responses
The XACML-JSON PDP API converts batch decision responses to a XACML-JSON response.

XACML-JSON responses include decisions, such as Permit or Deny, and any obligations or advice that
matched during policy processing.

Note:

The Policy Enforcement Point (PEP) must apply any obligations or advice.

The following table shows the mapping from a decision response to a XACML-JSON response.

Parent (JSON Path) Field (JSON Path) PingAuthorize Trust
Framework type

$.Response[*] $.Decision Decision

Advice (obligatory)

$.Response[*]. $.1d Advice code

Obligations|[*] i i i .
$.AttributeAssigments[? (@.Attributeld == Advice payload
"payload")] .Value

Advice (non-obligatory)

$.Response[*]. $.1d Advice code

AssociatedAdvice[*] - - i -
$.AttributeAssigments[? (@.AttributeId == Advice payload
"payload")] .Value

The following example is an appropriate response based on the request in Requests on page 229.

{
"Response": [{
"Decision": "Permit",
"Obligations": [{
"Id": "obligation-id",
"AttributeAssignments": [{
"AttributeId": "payload",
"Value": "payload-value"
H]
b1
"AssociatedAdvice": [{
"Id": "advice-id",
"AttributeAssignments": [{
"AttributeId": "payload",
"Value": "payload-value"

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 233

In this example, it is up to the application server to handle the obligations and advice in the response.

Example
This example shows how to use the XACML-JSON PDP API in the context of a peer recognition program.

The example company, AnyCompany, has an internal peer recognition program. The peer recognition
program allows employees to recognize each other by awarding each other points. The points can be
spent in different categories. Each category requires a minimum number of points for the category to
become available. When an employee spends enough points in a category, a related product becomes
unlocked in an online catalog that the employee can purchase. AnyCompany has implemented a web
application where employees spend their points, view their available catalog, and purchase products.

In this example, the web application that implements the online catalog can make the following XACML-
JSON request when an employee spends their points. The request includes three decision requests.

{

"Request": {
"MultiRequests": {
"RequestReference": [

{

"ReferenceId": [
"domain-1",
"action-1",
"service-1",
"idp-l",
"attributes-1"

"ReferencelId": [
"domain-1",
"action-2",
"service-2",
"idp_l",
"attributes-2"

"ReferenceId": [
"domain-1",
"action-1",
"service-3",
"idp-l",
"attributes-1"

]
b
"AccessSubject": [
{
"Id":"domain-1",
"Attribute": [
{
"AttributeId":"domain",
"Value":"AnyCompany.Management"

}
I,
"Action": [
{
"Id":"action-1",
"Attribute": [

Copyright ©2024

}
I

PingAuthorize | PingAuthorize Server Administration Guide | 234

"AttributeId":"action",
"Value" :"Update"

"Id":"action-2",
"Attribute": [
{
"AttributeId":"action",
"Value" :"Retrieve"

"Resource": [

{

"Id":"service-1",

"Attribute": [
{
"AttributeId":"service",
"Value":"Peer Recognition.Point allocation"

"Id":"service-2",

"Attribute": [
{
"AttributeId":"service",
"Value":"Peer Recognition.Points unspent”

"Id":"service-3",

"Attribute": [
{
"AttributeId":"service",
"Value":"Peer Recognition.Products"
}
]
}
I
"Category": [

{

Copyright ©2024

"Id":"attributes-1",
"Attribute": [
{
"AttributeId":"attribute:User
"Value":"self"

input.User Id",
},
{

"AttributeId":"attribute:User
"Value":8

input.Entertainment",

"AttributeId":"attribute:User
"Value":5

input.Travel",

"AttributeId":"attribute:User
"Value":6

input.Academics",

PingAuthorize | PingAuthorize Server Administration Guide | 235

"AttributeId":"attribute:User input.Electronics",
"Value":5

"AttributeId":"attribute:User input.Sports",
"Value":5

"AttributeId":"attribute:User input.Food",
"Value":7

"AttributeId":"attribute:User input.Music",
"Value":4

"Id":"attributes-2",
"Attribute": [

{
"AttributeId":"attribute:User input.User Id",
"Value" :"self"

}
1,

"Environment": [
{
"Id" : "idp_ll"
"Attribute": [

{
"AttributeId":"symphonic-idp",
"Value":"AnyCompany SSO"

}

The three decision requests are summarized in the RequestReference JSON array. Each JSON
object in the array contains a single field, ReferenceId. Each ReferenceId field contains an array of
1d references that represent the content of the decision request. The following tables highlight the key
components of each decision request.

Note:

For brevity, only one Trust Framework attribute is listed in each decision request.

First decision request

Parent (JSON Path) [Field (JSON Path) PingAuthorize Trust [Example value
Framework type

$.Request. $.Attribute[? (@.Attributeld == Domain AnyCompany.

AccessSubject [*] "domain")] .Value Management

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 236

Parent (JSON Path)

Field (JSON Path)

PingAuthorize Trust
Framework type

Example value

$.Request. $.Attribute[? (@.Attributeld == Action Update

Action[*] "action")] .Value

$.Request. $.Attribute[? (Q.Attributeld == Service Peer

Resource [*] "service")] .Value Recognition.Point
allocation

$.Request.
Environment [*]

$.Attribute[? (Q@.Attributeld ==
"symphonic-idp")].Value

Identity Provider

AnyCompany SSO

$.Request.
Category[*]

$.Attribute[? (Q.AttributeId
== "attribute:User
input.Entertainment")]

Attribute

Second decision request

Parent (JSON Path)

Field (JSON Path)

PingAuthorize Trust
Framework type

Example value

Resource [*]

"service")] .Value

$.Request. $.Attribute[? (€.Attributeld == Domain AnyCompany .
AccessSubject [*] "domain")] .Value Management
$.Request. $.Attribute[? (R.Attributeld == Action Retrieve
Action[*] "action")].Value

$.Request. $.Attribute[? (R.Attributeld == Service Peer

Recognition.Points
unspent

$.Request.
Environment [*]

S.Attribute[? (QR.Attributeld ==
"symphonic-idp")] .Value

Identity Provider

AnyCompany SSO

$.Request.
Category[*]

S.Attribute[? (@.Attributeld
== "attribute:User input.User
Id"™)]

Attribute

self

Third decision request

Parent (JSON Path)

Field (JSON Path)

PingAuthorize Trust
Framework type

Example value

Resource[*]

"service")] .Value

$.Request. S.Attribute[? (@.AttributelId == Domain AnyCompany.
AccessSubject[*] |"domain")].Value Management
$.Request. S.Attribute[? (Q@.Attributeld == Action Retrieve
Action[*] "action")] .Value

$.Request. $.Attribute[? (@.Attributeld == Service Peer

Recognition.Product

$.Request.
Environment [*]

$.Attribute[? (@.Attributeld ==
"symphonic-idp")] .Value

Identity Provider

AnyCompany SSO

$.Request.
Category[*]

$.Attribute[? (Q.Attributeld ==
"attribute:User input.Travel")]

Attribute

The following is an example response to the previous example request.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 237

The XACML-JSON response contains the decision responses for each of the three decision requests.

The order of the decision responses corresponds to the order of the decision requests. In the first decision
response, the system policy does not detect any problems and permits the employee to change her

point allocation. In the second decision response, the system policy allows the employee to view her own
unspent points and indicates that the value is now 0. In the third decision response, the system permits the
retrieval of the employee's own product catalog and indicates which of the products should be unlocked for
purchase.

Given the response, the web application can now render the content for the three decision requests. It
renders the 0 unspent points and all catalog products, with purchase buttons disabled where appropriate.

{

"Response": [
{
"Decision": "Permit",
"Obligations": [],
"AssociatedAdvice": []
boo A
"Decision": "Permit",
"Obligations": [],
"AssocliatedAdvice": [{
"Id": "remaining-points",
"AttributeAssignments": [{
"AttributeId": "payload",
"Value": "0O"
]
]
oo Ao
"Decision": "Permit",
"Obligations": [],
"AssociatedAdvice": [{
"Id": "catalog",
"AttributeAssignments": [{
"AttributeId": "attribute:Derived.Product availability.Trip to
exotic country",
"Value": "false"
bro A
"AttributeId": "attribute:Derived.Product availability.Super Bowl
tickets",
"Value": "false"
oo A
"AttributeId": "attribute:Derived.Product availability.Movie
theater gift card",
"Value": "true"
oo Ao
"AttributeId": "attribute:Derived.Product
availability.Encyclopedia subscription",
"Value": "false"
bro A
"AttributeId": "attribute:Derived.Product availability.Dinner at
5-star restaurant",
"Value": "true"
oo A
"AttributeId": "attribute:Derived.Product availability.Expensive
laptop",
"Value": "false"
oo Ao
"AttributeId": "payload",

"Value": "2020-03-17T16:21:20.175132-05:00"

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 238

Policy Editor configuration

You can configure the PingAuthorize Policy Editor in several ways.

With an options file, for example, you can define policy configuration keys, a key store, or a trust store.

Also, you can set:

Database credentials at setup or later

SpEL Java classes to use for value processing

The number of requests that appear in the Decision Visualizer
HTTP caching status

Specifying custom configuration with an options file
You can configure the Policy Editor by editing and implementing the options file.

About this task

You must run setup in non-interactive command-line mode instead of interactive mode if you need to do
any of the following:

Configure the Policy Editor with a policy configuration key. A policy configuration key is an arbitrary
key-value pair that can be referenced by name in the policy Trust Framework. This allows the policy
trust store to be defined without hard-coding environment-specific data, such as host names and
credentials in the trust store.

Configure a key store for a policy information provider. This defines a client certificate that the policy
engine can use for MTLS connections to a policy information provider.

Configure a trust store for a policy information provider. This defines the set of certificates or root
certificates that the policy engine uses to determine whether it trusts the server certificate presented by
a policy information provider.

Customize the Policy Editor’s logging behavior.

Configure private JSON Web Token (JWT) claims. This allows an organization to convey specific
claims about an identity.

Note:

If the server detects existing configuration files when running the setup tool, the setup process terminates.
To re-configure the server, you must either:

To reconfigure the server while preserving the values in configuration.yml or any certificate key
stores, back up the configuration.yml and key stores before re-running setup.

Delete the existing configuration files and run setup again.

Use the --ignoreWarnings option with the setup tool to overwrite the existing
configuration.yml file, delete the administrator key store, and, if you also use the --
generateSelfSignedCertificate option, overwrite the server certificate file.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 239

Steps

1. Make a copy of the default options file provided at config/options.yml and customize the copy to
suit your needs.

The setup tool supports configuring these options through the use of a YAML options file.

Note:

When you customize your options file, do not remove or alter the logging section. For guidance about
customizing logging behavior, contact Ping Identity Support.

2. Configure the Policy Editor with an options file:
a. Stop the Policy Editor:

$ bin/stop-server

b. Run the setup tool.
c. Provide the options file using the --optionsFile argument.

For example, the following setup command configures a Policy Editor in demo mode using an
options file named my-options.yml:

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

3. Start the Policy Editor:

$ bin/start-server

Example: Configure policy configuration keys
You can define one or more policy configuration keys under the options file's core section.

These are arbitrary key/value pairs that are typically used to define environment-specific details such as
host names and credentials. After you define a policy configuration key, you can reference it by name in
the PingAuthorize Policy Editor Trust Framework. By using a reference, you do not need to hard-code the
values in the Trust Framework.

Example

Consider an organization that has two development environments, US-East and US-West. The
organization’s policies call out to a PingDirectory Consent API policy information provider (PIP), and

the Consent API’'s host name differs depending on the development environment being used. If the
Consent API host name was hard-coded in the Trust Framework, then a different Trust Framework would
need to be used for each development environment. Instead, you can declare the host name as a policy
configuration key in the Policy Editor's configuration.

To set up this policy configuration key, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

Copyright ©2024

https://support.pingidentity.com/s/

PingAuthorize | PingAuthorize Server Administration Guide | 240

2. Edit the new options file to define a policy configuration key in the core section called
ConsentHostname.

core:
ConsentHostname: consent-us-east.example.com
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \
-—-decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.
$ bin/start-server
After you define the Consent API service in the Trust Framework, you can refer to the policy configuration

key that you defined in the Policy Editor configuration. To do this, you must first create an attribute in the
Trust Framework to hold the policy configuration key value. Add an attribute with the following settings.

Property Value

Name ConsentHostname
Resolver Type Configuration Key
Resolver Value ConsentHostname

Now when you create a service in the Trust Framework, you can refer to this attribute using the

{ {AttributeName} } notation. For example, where the URL https://consent-us-east.example.com/
consent/vl/consents is otherwise used, you would use the URL https://{{ConsentHosthame}}/consent/v1/
consents, as shown in the following image.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 241

- Service Settings

Service Type HTTP -
HTTP Settings

URL https://{{ConsentHostname}}/consent/v1/consents

HTTP Method GET ~ | Content Type application/json -
Body

Authentication OAuth2 .
Token HttpRequest.... a

Key store configuration for policy information providers
The policy engine supports the use of policy information providers (PIPs) to dynamically retrieve data from
external services at runtime. You can configure a key store for a PIP in PingAuthorize.

Some policy information providers might use MTLS, in which a client presents a client certificate to
establish TLS communications with a server. In such cases, the policy engine can use a client certificate
contained in a Java KeyStore (JKS) or PKCS12 key store. The key store details are then configured in
an options file in the keystores section. A JKS key store file should use the extension . jks, while a
PKCS12 key store file should use the extension .p12.

Example

Given a JKS key store named my-client-cert-keystore. jks with the password password123 and
a client certificate with the alias my-cert, create an options file with details about the key store.

To set up this key store, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define the key store details by adding an item under the keystores
section.

keystores:
- name: MyClientCertKeystore
resource: /path/to/my-client-cert-keystore.jks
password: passwordl23
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \
-—-decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 242

-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.
$ bin/start-server

After you define the policy information provider in the Trust Framework, you can refer to the key store that
you configured using the name MyClientCertKeystore.

Certificate Validation

Server (TLS) Default -

Client (M-TLS) (A

Keystore name MyClientCertKeystore

Alias my-cert Alias password password123

Example: Configure a trust store for a policy information provider
The policy engine supports the use of policy information providers (PIPs) to dynamically retrieve data from
external services at runtime. You can configure a trust store for a PIP in PingAuthorize.

By default, the policy engine determines whether it should accept a PIP's server certificate using the Java
Runtime Environment's (JRE's) default trust store, which contains public root certificates for common
certificate authorities. If your PIP uses a server certificate issued by some other certificate authority,

such as a private certificate authority operated by your organization, then you can provide a custom Java
KeyStore (JKS) or PKCS12 trust store. Configure details about the trust store in an options file in the
truststores section. A JKS trust store file should use the extension . jks, while a PKCS12 trust store
file should use the extension .p12.

Example

Given a JKS trust store named my-ca-truststore. jks with the password password123 and a trusted
root certificate with the alias my-ca, create an options file with details about the trust store.

To set up this trust store, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file to define the key store details by adding an item under the truststores
section.

truststores:
- name: MyCATruststore
resource: /path/to/my-ca-truststore.jks
password: passwordl23
Other options omitted for brevity...

3. Run setup using the --optionsFile argument. Customize all other options as needed.

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 243

--hostname <pap-hostname> \

--port <pap-port> \

-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

After you define the policy information provider in the Trust Framework, you can see the trust store that you
configured using the name MyCATruststore.

Certificate Validation

Server (TLS) Custom -

Truststore name MyCATruststore

Alias my-ca Alias password password123
Client (M-TLS) [l

Policy Editor configuration with runtime environment variables
You do not have to hard-code values for policy configuration keys in an options file in the Policy Editor
configuration. You can specify values for policy configuration keys at runtime using environment variables.

To use environment variables, specify a policy configuration key value in the options file using the
${variableName} notation, and then define the environment variable before starting the Policy Editor.

Example: Set policy information provider host name using an environment variable

This example takes the scenario in Example: Configure policy configuration keys on page 239 and
modifies it to specify the Consent API host name at runtime using an environment variable.

To specify the host name using an environment variable:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define a policy configuration key in the core section called
ConsentHostname. Instead of hard-coding its value, specify a variable called CONSENT HOSTNAME.

core:
ConsentHostname: ${CONSENT_HOSTNAME}
Other options omitted for brevity...

3. Stop the GUI server.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
-—-port <pap-port> \
-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 244

--optionsFile my-options.yml

5. Set the value of the CONSENT HOSTNAME environment variable and then start the server.
$ export CONSENT HOSTNAME=consent-us-east.example.com; bin/start-server

After you define the Consent API service in the Trust Framework, you can refer to the policy configuration
key that you defined in the Policy Editor configuration (ConsentHostName), which will use the environment
variable that you also defined. You must first create an attribute in the Trust Framework to hold the policy
configuration key value. To do so, add an attribute with the following settings.

Property Value

Name ConsentHostname
Resolver Type Configuration Key
Resolver Value ConsentHostname

The following image shows the attribute in the Policy Editor.

\> ConsentHostname

Parent -

= Resolvers (1 total)

I eee

Raca s trihiife s]
Resolve attribute using

Resalver type Configuration Key - ConsentHostname

When you create a service in the Trust Framework, you can refer to this attribute using the

{ {AttributeName} } notation. For example, where the URL https://consent-us-east.example.com/
consent/vl/consents would otherwise be used, use the URL https://{{ConsentHostname}}/consent/v1/
consents. The following image shows service settings using the { {AttributeName} } notation.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 245

- Service Settings

Service Type HTTP -
HTTP Settings

URL https://{{ConsentHostname}}/consent/v1/consents

HTTP Method GET ~ | Content Type application/json -
Body

Authentication OAuth2 .
Token HttpRequest.... a

To set a different host name, redefine the CONSENT_HOSTNAME environment variable and restart the
server.

$ bin/stop-server
$ export CONSENT HOSTNAME=consent-us-west.example.com; bin/start-server

Example: Set trust store details using an environment variable

This example takes the scenario in Example: Configure a trust store for a policy information provider on
page 242 and modifies it to specify the trust store password at runtime using an environment variable.

Given a Java KeyStore (JKS) trust store named my-ca-truststore. jks with the password
passwordl23 and a trusted root certificate with the alias my-ca, create an options file with details about
the trust store. Instead of hard-coding the trust store password, specify it as an environment variable.

To specify the password as an environment variable:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. To edit the new options file and define the key store details, add an item in the truststores section.
Specify the password value using the $ {ENVIRONMENT VARIABLE} notation. Also, assign the
password to a policy configuration key so it can be used in the Trust Framework.

core:
TrustStorePassword: S{TRUST STORE PASSWORD}
truststores:
- name: MyCATrustStore

resource: /path/to/my-ca-truststore.jks

TRUST STORE PASSWORD is an environment variable

password: S{TRUST STORE PASSWORD}
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the -—-optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
-—adminUsername admin \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 246

--generateSelfSignedCertificate \
--decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \

-—-port <pap-port> \

-—adminPort <admin-port> \

-—-licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Set the value of the TRUST _STORE_PASSWORD environment variable and start the server.
$ export TRUST STORE PASSWORD=passwordl23; bin/start-server

The policy configuration key that you defined can be used in the Trust Framework. You must first create an
attribute to hold the policy configuration key value. Add an attribute with the following settings.

Property Value

Name TrustStorePassword
Resolver Type Configuration Key
Resolver Value TrustStorePassword

The following image shows the attribute in the Policy Editor.

T TrustStorePassword

Parent -

= Resolvers (1 total)

.
.
.

=

Resolve attribute using

Resolver type Configuration Key - TrustStorePassword

After you define the policy information provider in the Trust Framework, you can refer to the trust store
password using the TrustStorePassword attribute.

Certificate Validation

Server (TLS) Custom -

Truststore name MyCATruststore

Alias my-ca Alias password {{TrustStorePassword}}
Client (M-TLS) L]

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 247

If you later use a trust store with a different password, you can redefine the TRUST STORE_PASSWORD
environment variable and restart the server.

$ bin/stop-server
$ export TRUST STORE PASSWORD=new-password; bin/start-server

Example: Configure JWT claims
You can configure private JSON Web Token (JWT) claims for your organization under the option file's
core section.

The JWT specification defines registered claims and also allows for public and private claims to be
included in the token. The seven optional, registered claims are:

= iss
= sub
* aud
" exp
= nbf
= iat
= jti

Note:

When you configure private claims for your organization, make sure you avoid name collisions because
private claim names are not registered.

Example

When a user signs on with OpenlD Connect (OIDC), the Policy Editor uses the JWT sub claim in the user
profile as the default OIDC user ID. Changes committed by policy editors are recorded under this user ID.
If your organization wants to record changes under the email address instead, you can define a different
claim, such as email, for the OIDC user ID.

To define this claim:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Inthe core section of the new options file, uncomment the example
Authentication.oidcUserIdField field that uses the email claim.

core:
Use a JWT claim other than "sub" for the OIDC User ID.
#

Authentication.oidcUserIdField: jwt claim

#

Authentication.oidcUserIdField: "email"

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the —-optionsFile argument and customize all other options as appropriate for
your needs.

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 248

-—-decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \

—--port <pap-port> \

-—adminPort <admin-port> \

--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.

S bin/start-server

6. To verify that your claim is used, commit a policy change in the Policy Editor at Branch Manager #
Version Control and ensure that your claim appears in the Creator column.

Configuring the Policy Editor to publish policies to a deployment package store
Use an options file to configure the Policy Editor.

About this task

To use the Deployment Manager feature, you must configure the Policy Editor to publish policies to a
deployment package store in the options file's deploymentPackageStores section.

For more information, see Using the Deployment Manager on page 267.

Steps

1. Make a copy of the default options file.
S cp config/options.yml my-options.yml

2. To define a deployment package store or stores for the Policy Editor to publish policies to, edit the
deploymentPackageStores section of the new options file.

The file contains commented out examples of different deployment package store types.

a. Duplicate the desired deployment package store type, uncomment, and modify its values
according to your deployment.

Important:

= The use of indentation in the options.yml file is important. When removing comment hashes,
ensure that you retain valid YAML file indentation structure.

= For an Azure deployment package store, record the prefix you define for the deployment package
store. You will need the prefix for PingAuthorize Server configuration.

deploymentPackageStores:
Define deployment package store publishing targets here.

- name: Filesystem store
description: File system directory store
type: filesystem
path: /path/to/deployment-package-store/
- name: Signed filesystem store
description: Signed file system directory store
type: filesystem
path: /path/to/signed-deployment-package-store/
securitylLevel: signed
keystore:
resource: /path/to/deployment-package-signing-keystore.jks
password: keystore-password
signingKey:

S e e o o e e SR o o SR SR o o

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 249

alias: signing-cert-alias
password: private-key-password
- name: S3 bucket store
description: AWS S3 bucket store
type: s3bucket
securitylevel: unsigned-or-signed
config:
bucket: store-bucket-name
prefix: store-prefix
endpoint: https://s3-bucket-endpoint.aws-region.amazonaws.com
region: aws-s3-bucket-region
accessKey: aws-access-key
secretKey: aws-secret-key
Other deployment package store types omitted for brevity...

R T

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument.

$ bin/setup demo \
-—adminUsername admin \
--generateSelfSignedCertificate \
-—-decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

6. To verify that your deployment package store or stores are available in the Policy Editor, go to Branch
Manager # Deployment Manager.

Configuring Policy Editor security headers
Use an options file to configure the Policy Editor.
About this task

You can configure the Policy Editor to add certain security headers to responses for calls to the Ul
resources in the options file’s securityHeaders section. Supported headers include X-Frame-Options,
Content-Security-Policy, and Access-Control-Allow-Origin. By default, X-Frame-Options will be set to deny
and the other headers will remain unset.

Steps

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 250

2. To configure Policy Editor security headers, edit the securityHeaders section of the new options
file.

The file contains commented out examples of different security headers.

a. Duplicate the desired security header, uncomment, and modify its value according to your
deployment.

Note:

The use of indentation in the options. yml file is important. When removing comment hashes,
ensure that you retain valid YAML file indentation structure.

The following example illustrates the X-Frame-Options header duplicated and modified.

securityHeaders:
Configure the values that the Policy Editor will set in its
responses for the X-Frame-Options, Content-Security-Policy, and/or
Access-Control-Allow-Origin HTTP security headers here.
#
X-Frame-Options: "deny"
Content-Security-Policy: "default-src https:"
Access-Control-Allow-Origin: "*"
X-Frame-Options: "sameorigin"

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument.

$ bin/setup demo \
--adminUsername admin \
--generateSelfSignedCertificate \
-—-decisionPointSharedSecret pingauthorize \
--hostname <pap-hostname> \
--port <pap-port> \
-—adminPort <admin-port> \
--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.

$ bin/start-server

Manage policy database credentials

By default, the PingAuthorize Policy Editor stores policies in an H2 database file on the server. You can set
the initial credentials and change them later.

Note:

These instructions don't apply if you are using a managed RDBMS, such as PostgreSQL, instead of the
default H2 database.

This embedded H2 file, stored in the server root by default, contains two user accounts:

= An admin user: Setup uses the admin user to perform database upgrades.
= An application user: The server uses the application user to access the database at runtime.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 251

Each user has its own credentials.

Warning:

If you change either of the default policy database credentials, you must pass the new credentials to
setup when upgrading the server. Otherwise, the setup tool either cannot upgrade the policy database
and fails (if neither default credentials work) or resets the changed credentials back to their defaults (if one
of the credential pairs works).

For more information about upgrades, see Upgrading PingAuthorize on page 126.

Setting database credentials at initial setup
The setup tool applies credentials to the policy database. Also, this tool generates the
configuration.yml file that configures the PingAuthorize Policy Editor.

About this task

Using setup or environment variables, you can set credentials for both the admin user and the application
user.

Because this setup is an initial setup, the Policy Editor is not running.

Steps

= Set credentials for both the admin user and the application user.
Choose from:

= Setting credentials with the setup tool.
Include the following options and the credential values with setup:

= --dbAdminUsername
* --dbAdminPassword
= --dbAppUsername
= --dbAppPassword

For example, the following command sets the policy database admin credentials to adminuser /
Passw0Ord and the policy database application credentials to appuser / S3cret.

bin/setup --dbAdminUsername adminuser \
--dbAdminPassword PasswOrd \
--dbAppUsername appuser \
--dbAppPassword S3cret \
--interactive

= Setting credentials with environment variables.

Using environment variables, you can avoid credentials showing up in process lists and
command-line history.

The following example sets the policy database admin credentials to adminuser / PasswOrd and
the application user credentials to app / S3cret.

env PING DB ADMIN USERNAME=adminuser \
PING DB _ADMIN PASSWORD=PasswOrd \
PING DB _APP_USERNAME=app \
PING DB APP_PASSWORD=S3cret \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 252

bin/setup

Using environment variables at initial setup generates the configuration. yml file with the
adminuser / PasswOrd credentials and the app / S3cret credentials instead of the default
credentials.

For more information about these and other UNIX environment variables you can use to override
configuration settings, see Starting PingAuthorize Policy Editor on page 162.

Changing database credentials
To change the policy database credentials after the initial setup, run the setup tool again.

About this task

Note:

Running the setup tool regenerates the configuration. yml file and regenerates any self-signed
certificate keystore.

Steps
1. Stop the Policy Editor.

bin/stop-server

2. Run setup with the options desired from the following set and specify the new credentials. To change
from the default credentials, run setup one time. To change from nondefault credentials, run setup
combined by double ampersands (& &) with a second setup; in the first command, specify the current
credentials for the admin user and the new credentials for the application user, and then in the second
command, specify the new credentials for the admin user and the now-current credentials for the
application user. See the examples.

= --dbAdminUsername
= --dbAdminPassword
» --dbAppUsername
= --dbAppPassword

The first example changes the credentials for the admin and application accounts from their defaults to
admin / PasswOrd and app / S3cret, respectively.

setup --dbAdminUsername admin \
--dbAdminPassword PasswOrd \
--dbAppUsername app \
--dbAppPassword S3cret \
--interactive

With the credentials no longer the defaults, to change the credentials, you need two setup
commands. The first command uses the current admin credentials (admin / Passw0Ord) and sets new
application credentials (app and FOcu5). The second command then uses the newly set application
credentials (app and FOcub5) to set new admin credentials (admin and S3cure).

setup --dbAdminUsername admin \
--dbAdminPassword PasswOrd \
--dbAppUsername app \
--dbAppPassword FOcub5 \
--interactive \
&& setup --dbAdminUsername admin \
-—dbAdminPassword S3cure \
--dbAppUsername app \
--dbAppPassword FOcub5 \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 253

-—interactive

3. Start the Policy Editor.

bin/start-server

Specifying database credentials when you start the GUI

You can override database credentials for the admin account and application account in

the configuration.yml file when you start the GUI by using the UNIX environment
variables PING_DB_ADMIN USER, PING_DB_ADMIN PASSWORD, PING DB_APP USER, and
PING DB _APP_ PASSWORD.

About this task

For more information about these and other UNIX environment variables you can use to override
configuration settings, see Starting PingAuthorize Policy Editor on page 162.

Steps
1. Stop the Policy Editor.

bin/stop-server

2. Set the environment variables and start the Policy Editor.

Example

The following example starts the server with the overridden policy database admin credentials adminuser
/ PasswOrd and the overridden policy database application credentials app / S3cret. These environment
variables override any values in configuration.yml.

env PING DB ADMIN USERNAME=adminuser \
PING DB _ADMIN PASSWORD=PasswOrd \
PING DB APP USER=app \
PING DB APP PASSWORD=S3cret \
bin/start-server

Docker: Setting the initial database credentials
When using a Docker image, set the database credentials using UNIX environment variables. Specify the
environment variables as command-line options in the docker run command.

Steps

= Inthe docker run command, specify the desired following environment variables using the --env
command-line option:

= --dbAdminUsername
» --dbAdminPassword
= --dbAppUsername
= --dbAppPassword

Example
This example initializes the policy database with the admin credentials admin / Passw0Ord and the
application credentials app / S3cret. Also, it uses the Ping DevOps image.

Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 254

Specify a separate volume to store the policy database to perform future upgrades. See Deploying
PingAuthorize Policy Editor using Docker on page 86.

Note:

For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network type> <network name>, and then connect to that
network with the --network=<network name> option.

$ docker run --network=<network name> \
-—env PING DB ADMIN USERNAME=admin \
-—env PING DB ADMIN PASSWORD=PasswOrd \
-—env PING DB APP USERNAME=app \
--env PING DB APP PASSWORD=S3cret \
pingidentity/pingauthorizepap

Docker: Changing database credentials
When your Docker container uses /opt to store the policy database on a separate volume, you can
change the database credentials.

About this task
Given that you are changing the credentials, you already have a Docker container running with a mounted
volume.

Steps

1. Stop the Docker container.

2. Start the Docker container. In the docker run command, specify the desired following environment
variables using the ——env command-line option:

» --dbAdminUsername
= --dbAdminPassword
= --dbAppUsername
= —--dbAppPassword

Also specify -p, -d, -—env-file, --volumes-from, and --env PING H2 FILE

Example

For example, if you have a container named pap with a mounted volume as shown in the example in
Deploying PingAuthorize Policy Editor using Docker on page 86, the following command changes the
credentials for the admin and application accounts from their default values to admin / PasswOrd and app
| S3cret, respectively.

Note:

For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network type> <network name>, and then connect to that
network with the --network=<network name> option.

docker run --network=<network name> -p 443:1443 -d \
--env-file ~/.pingidentity/config \
--volumes—-from pap \
-—env PING DB ADMIN USERNAME=admin \
-—env PING DB ADMIN PASSWORD=PasswOrd \
-—env PING DB APP USERNAME=app \
-—env PING DB APP PASSWORD=S3cret \
--env PING H2 FILE=/opt/out/Symphonic \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 255

pingidentity/pingauthorizepap: <TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingauthorize).

Configuring SpEL Java classes for value processing
When you develop policies, you can use value processing to manipulate data that comes from attributes
and services. One value processing option is to use the Spring Expression Language (SpEL). Because
SpEL is so powerful, you might want to configure the Java classes available through SpEL to limit what
users can do with it.

About this task

Use the optional AttributeProcessing.SpEL.AllowedClasses parameter in the core section of
the options file to limit the Java classes available through SpEL.

Note:

These instructions are for configuring SpEL Java classes for use in the Policy Editor. When using
embedded PDP mode, you must add Java classes to the SpEL Allowed Class list to use them in
deployment packages. See Adding SpEL Java classes to the allowed list.

Steps

1. Make a copy of the default options file.
Example:

$ cp config/options.yml my-options.yml

2. Edit the new options file and define AttributeProcessing.SpEL.AllowedClasses inthe core
section.

By default, the AttributeProcessing.SpEL.AllowedClasses parameter is not in the options
file.

If AttributeProcessing.SpEL.AllowedClasses is not in the options file, all classes except
those in the fixed deny-11ist are available. The deny-11ist consists of classes in these packages:

java.lang.*
org.springframework.expression.spel.*

Note:

The java.lang. * classes in deny-1ist exclude those in the allow-11ist defined next.

If AttributeProcessing.SpEL.AllowedClasses is in the options file without a value, only
classes in the fixed allow-1ist are available. The allow-11ist consists of these classes:

java.lang.String
java.util.Date
java.util.UUID
java.lang.Integer
java.lang.Long
java.lang.Double
java.lang.Byte
java.lang.Math
java.lang.Boolean
java.time.LocalDate

Copyright ©2024

https://hub.docker.com/r/pingidentity/pingauthorize

PingAuthorize | PingAuthorize Server Administration Guide | 256

java.time.LocalTime

java.time.LocalDateTime
java.time.ZonedDateTime

java.time.DayOfWeek

java.time.Instant
java.time.temporal.ChronoUnit
java.text.SimpleDateFormat
java.util.Collections
com.symphonicsoft.spelfunctions.RequestUtilsKt

If AttributeProcessing.SpEL.AllowedClasses is in the options file with a value, all classes in
allow-1list and in the value are available. Consider the following example.

core:
AttributeProcessing.SpEL.AllowedClasses:
"java.time.format.DateTimeFormatter, java.net.URLEncoder"

That setting makes the classes in allow-11ist available in addition to making the
DataTimeFormatter and URLEncoder classes available.

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

Example:

$ bin/setup demo \

-—adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret <shared-secret> \
--hostname <pap-hostname> \

--port <pap-port> \

-—adminPort <admin-port> \

--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.
Example:

$ bin/start-server

Setting the request list length for Decision Visualizer

In the PingAuthorize Policy Editor, you can select Policies, Decision Visualizer, and then Recent
Decisions to view graphs of recent decisions, the times the requests were made, and the decision
outcomes. The requests do not include test requests.

About this task

The RecentRequest.buffer.size parameter in the configuration file determines the number of recent
decisions to choose from. To configure the Policy Editor to use a different value for this parameter, re-run
the setup tool using an options file to generate a new configuration, as shown in the following steps.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 257

Steps
1. Make a copy of the default options file.
Example:
$ cp config/options.yml my-options.yml
2. Edit the new options file and define RecentRequest.buffer.size in the core section.

By default, the number of recent decisions is 20.

Warning:
Setting a buffer size greater than 20 can cause serious performance degradation.

To disable the feature, set the value to 0.

Example:

core:
RecentRequest.buffer.size: 10
Other options omitted for brevity...

3. Stop the Policy Editor.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

Example:

$ bin/setup demo \

-—adminUsername admin \
-—generateSelfSignedCertificate \
-—-decisionPointSharedSecret <shared-secret> \
--hostname <pap-hostname> \

-—-port <pap-port> \

-—adminPort <admin-port> \

--licenseKeyFile <path-to-license> \
--optionsFile my-options.yml

5. Start the Policy Editor.
Example:

$ bin/start-server

HTTP caching
The Policy Editor transfers data through HTTP APIs.

To improve page loading speeds, the Policy Editor uses HTTP headers to cache the API responses for the
following URLs:

» /app/trust-framework/*
= /app/policy-manager/*
= /app/test-suite/*

HTTP caching is enabled by default.

Note:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 258

When hosting the Policy Editor using a self-signed SSL certificate, browsers like Google Chrome and
Microsoft Edge don't include the caching HTTP headers. Customers with such deployments can use a
different browser, such as Mozilla Firefox, to observe the performance benefits.

You can disable HTTP caching persistently by providing the -—disableApiHttpCache option when
running setup. Caching remains disabled for future server starts and stops. The following example
illustrates this option:

bin/setup demo \

--disableApiHttpCache \

-—adminUsername admin \
--generateSelfSignedCertificate \
--decisionPointSharedSecret 2FederateMOre \
-—-hostname example.com \

—-—port 9443 \

—-—adminPort 9444

To disable HTTP caching for a single server start, provide the PING_ENABLE_API_HTTP_CACHE=false
environment variable when running start-server, as illustrated in the following example:

env PING ENABLE API HTTP CACHE=false bin/start-server

Note:

To temporarily re-enable HTTP caching after using the --disableApiHttpCacheoption, provide the
PING_ENABLE API_HTTP_CACHE=true environment variable when running start-server.

To persistently re-enable HTTP caching after using the --disableApiHttpCacheoption, delete the
setup output (the configuration.yml file and key stores generated during setup). Then, reconfigure
the server by running setup.

Policy administration

You define policies for access-control using the PingAuthorize Policy Editor.

This section covers strategies for policy development and techniques to create environment-specific Trust
Framework attributes to use in your policies.

About the Trust Framework

The Trust Framework defines all the entities that your organization can use to build policies. These entities
include, for example, the HTTP request attributes that describe API requests protected by PingAuthorize
Server and the services that identify the REST APIs themselves.

To understand how PingAuthorize Server uses the Trust Framework, you must understand how
PingAuthorize Server interacts with its policy engine, also called the policy decision point (PDP). In
general, the flow is:

1. PingAuthorize Server receives a SCIM 2.0 or API request and translates it to a policy request.
2. PingAuthorize Server submits the policy request to the PDP for evaluation.

3. The PDP applies any matching policies to the policy request and then issues a policy decision.
4

PingAuthorize Server uses the policy decision to determine how to proceed with the request,
depending on the decision result (typically PERMIT or DENY) and any advices included with the
decision.

Consider these simple examples.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 259

= A policy decision with a DENY result could cause PingAuthorize Server to reject a request because it
originates from an untrusted IP address.

= A policy decision with the Exclude Attributes advice could cause PingAuthorize Server to remove
specific attributes from an API response because the requesting user lacks a necessary entitliement.

Each policy request that PingAuthorize Server generates includes a specific set of attributes. These
attributes vary based on the service being used. For more information, see the following topics:

= API security gateway policy requests on page 169
= Sideband API policy requests on page 183
= SCIM policy requests on page 197

Policy request structure is tightly coupled to the Trust Framework. If the Trust Framework entity definitions
do not match the policy requests generated by PingAuthorize Server, then PingAuthorize Server

does not function as expected. For this reason, your Trust Framework should always be based on

the default policies included with the server installation package in the file resource/policies/
defaultPolicies.SNAPSHOT

For information about working with the Trust Framework to customize your organization's policies, see
Trust Framework on page 411.

Trust Framework versions

The policy request structure used by PingAuthorize Server is versioned so that it can evolve across
releases of the server. You configure the version in the Policy Decision Service using the trust-
framework-version property. PingAuthorize Server always supports a minimum of two Trust
Framework versions, the current (and preferred) Trust Framework version and the previous Trust
Framework version.

When an instance of PingAuthorize Server is first installed, the Trust Framework version is undefined. The
server raises an alarm to indicate this condition and to provide instructions about how to set the preferred
version.

You should explicitly set the version to the preferred version. For example, the following dsconfig
command configures the Policy Decision Service to form policy requests using Trust Framework version
V2.

dsconfig set-policy-decision-service-prop \
--set trust-framework-version:v2

Tip:
When the Trust Framework version is set, add the configuration to the server profile that you use to deploy
new server instances.

New releases of PingAuthorize Server might introduce changes to the way that the server generates policy
requests, potentially in ways that are not backward-compatible with the Trust Framework and policies used
in a previous release. In these cases, PingAuthorize Server will prefer the new Trust Framework version
and raises an alarm with instructions to move to the new Trust Framework version. Existing policies will
continue to work with the older Trust Framework version. However, the older Trust Framework version will
be deprecated, so transitioning to the new Trust Framework version is imperative.

For more information about upgrading the Trust Framework version, see Upgrading the Trust Framework
and policies on page 136.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 260

Create policies in a development environment

During policy development, configure PingAuthorize Server in external PDP mode where PingAuthorize
Server forwards all policy requests to the Policy Editor, which acts as PingAuthorize Server’s policy
decision point (PDP).

Any policy changes made while using external PDP mode immediately take effect, allowing for rapid
development and troubleshooting.

Develop policies in the PingAuthorize Policy Editor. To get started, see Getting started with PingAuthorize
(tutorials) on page 17 or Loading a policy snapshot on page 264.

Note:

PingAuthorize Server does not function as expected without many of the Trust Framework entities defined
by the defaultPolicies.SNAPSHOT file bundled with PingAuthorize Server. When developing new
policies, begin by importing this snapshot and using it as the basis for your own customizations.

Configuring external PDP mode

To configure PingAuthorize Server to use external PDP mode, use the administrative console or
dsconfig to create a Policy External Server to represent the Policy Editor, then assign the Policy External
Server to the Policy Decision Service and set the PDP mode.

Before you begin
You need the following values to configure PingAuthorizeServer to use external PDP mode:

= The shared secret, which is chosen or generated when you install the Policy Editor.

= The branch name, which corresponds to the policy branch you want to evaluate requests against in
the Policy Editor.

= The decision node, which is the ID of a node in the policy tree that will be considered first during policy
processing. To find the decision node value:
1. Inthe Policy Editor, go to Policies.
2. Select the node that you want to use as the root node.

This is typically the top-level node of your policy tree.
3. Click the hamburger menu and select Copy ID to clipboard.

Policies

Paolicies Details

E_ﬂ Global Decision Point isabled []

@l_] Global Decision Paint ﬁ Copy ID to clipboard

Token Validation CD Get link to here
PDP API Endpoint Policies

4 Expand top level containers

Token Authorization + Appliesto = Collapse top level containers

= Policies (2) % View Dependents

Configuring external PDP mode using the administrative console

Steps

1. In the PingAuthorize administrative console, go to Configuration # Data Sources # External
Servers.

2. Click New External Server and select Policy External Server from the drop-down menu.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 261

3. Inthe New Policy External Server window, specify the following information:

= Name

= Base URL

= Shared Secret
= Decision Node
= Branch

New Policy External Server

Paolicy External Servers are used to specify connections to external policy decision point servers and to select the policies that will be used to authorize
requests.

View APl commands [EEENE Cancel

C) Policy Editor

Description

C) hitps.//<pap-hostname=:<pap-port=

Hostname Verification Method strict X -
Key Manager Provider The Java Runtime Environment's default key manar ra -+
Trust Manager Provider The Java Runtime Environment's default trust marr CaRi.

SSL Cert Nickname

Connect Timeout 30 s
Response Timeout 30s
UserID * admin

Set Value

Decision Node e51688ff-1dc9-4b6c-bb36-8af64d02e9d1

Default Policies

UIU

arameter is no

Snapshot If no value is defin

4. Click Save.
5. Go to Authorization and Policies # Policy Decision Service.
6. Inthe PDP Mode list, select external.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 262

7. Inthe Policy Server list, select the name you gave to the policy external server in step 3.

Edit Policy Decision Service

The Policy Decision Service contains the properties that affect the overall operation of the PingAuthorize Server policy service

View APl commands [EEVCRERRUE TR T CY Cancel

General Configuration

PDP Mode external X -

Palicy Editor X~ 7+

8. Click Save To PingAuthorize Server Cluster.

Configuring external PDP mode using dsconfig

Steps

= Use the dsconfig commands in the following code block to configure external PDP mode:

dsconfig create-external-server \
-—-server-name "Policy Editor" \
-—-type policy \
-—-set "base-url:https://<pap-hostname>:<pap-port>" \
--set "shared-secret:pingauthorize" \
--set "branch:Default Policies™ \
--set "decision-node:<your decision node ID value>"

dsconfig set-policy-decision-service-prop \
--set pdp-mode:external \
--set "policy-server:Policy Editor"

Changing the active policy branch

The PingAuthorize Policy Editor can manage multiple sets of Trust Framework attributes and policies by
storing data sets in different branches.

About this task

In a development environment, you might need to quickly reconfigure PingAuthorize Server between policy

branches.

Steps

1. To set up branch changes, you must first define a Policy External Server configuration for each
branch.

2. Change the Policy Decision Service's policy-server property as needed.
Example:

Assume that you have two policy branches in the Policy Editor: Stable Policies and
Experimental Policies. Each branch is represented in the PingAuthorize Server configuration
as a Policy External Server. During testing, you can switch back and forth between branches by
updating the Policy Decision Service's policy-server property. To change to the Experimental
Policies branch, run this command:

dsconfig set-policy-decision-service-prop \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 263

--set "policy-server:Experimental Policies"

To change back to the Stable Policies branch, run this command:

dsconfig set-policy-decision-service-prop \
--set "policy-server:Stable Policies"

Default and example policies

A policy snapshot is a file that contains a complete Trust Framework and policy set.

A policy snapshot is also the data import format for a PingAuthorize Policy Editor. PingAuthorize includes a
number of default and example policy snapshot files in the resource/policies directory. The following

table describes the available snapshot files.

Snapshot filename

Description

defaultPolicies.SNAPSHOT

The default Trust Framework for PingAuthorize Server and a
minimal set of policies.

Always use this snapshot as the starting point for policy
development.

gatewayPolicyExample.SNAPSHOT

An example policy set that demonstrates how to apply policies
to an external REST API using PingAuthorize Server as an API
security gateway.

Based on Getting started with PingAuthorize (tutorials) on page
17.

scimPolicyExample.SNAPSHOT

An example policy set that demonstrates how to implement
access token-based access control using the SCIM 2 REST
API.

Based on Getting started with PingAuthorize (tutorials) on page
17.

Importing and exporting policies

PingAuthorize supports two import and export file formats for Trust Framework and policy data.

About this task

The following table describes the snapshot and deployment package formats.

Format Description
Snapshot Contains all Trust Framework and policy data for a policy branch in the Policy
Editor.

A snapshot is used to load data into the Policy Editor for development when
using external PDP mode.

Deployment package An optimized data format that contains all policies under a specified root policy
node and all Trust Framework entities used by those policies.

A deployment package is used to load data into the PingAuthorize Server when
using embedded PDP mode.

The following sections describe how to import and export these files from the Policy Editor.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 264

Loading a policy snapshot
To import a policy snapshot into the Policy Editor for policy development, complete the following steps.

About this task
To create a new policy branch with the Trust Framework and policies of the provided snapshot:

Steps

1. Go to the Branch Manager section.

2. Click the Version Control tab.

3. Inthe + menu, select Import Snapshot.

P Create new root branch
== Import Snapshot

4. Select a snapshot file and provide a name for your policy branch.

Import Snapshot
Snapshot = defaultPolicies.SNAPSHOT N
Name My Policies Import

5. Optional: Click Commit New Changes to commit the initial state of the policy branch.

Exporting a policy snapshot

About this task

To import a policy snapshot into a different Policy Editor or use it as the basis to create a deployment
package to be loaded in the PingAuthorize Server:

Steps
1. Go to the Branch Manager section.

2. Select the Version Control tab.

3. Choose the commit message corresponding to the version of the branch that you want to export and
click the icon in the Options column to the left of the commit message.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 265

4. Select Export Snapshot.

P My Policies
Commits Set branch as Merge Source
Options Commit Message Commited on Creator
= Uncommitted Changes N/A N/A
= Initial commit 3/24/2020, 2:32:27 AM admin
(3 Copy ID to Clipboard 3/17/2020, 2:03:54 PM SYSTEM

ERPUM [*) Export Snapshot

%, Select source commit to compare
9 Select target commit to compare
P Create new branch from commit

@ Approve Snapshot

5. Provide a snapshot filename and click Export.

Result

The snapshot file is downloaded to your computer.

Publishing a deployment package to a deployment package store

Set branch as Merge Target

Approvals

A0

To use the Deployment Manager feature, create a deployment package and publish it to a deployment

package store.

Before you begin

You must configure the Policy Editor to publish policies to your deployment package store using an options

file.

For more information, see Configuring the Policy Editor to publish policies to a deployment package store

on page 248.

About this task

To publish deployment packages to a deployment package store:

Steps
1. Export a snapshot.

For more information, see Exporting a policy snapshot on page 264.
Go to Branch Manager # Deployment Packages.

Click the + icon.

Enter a meaningful name for your deployment package.

In the Branch list, select a policy branch.

In the Commit list, select a commit.

o0k wbN

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 266

7. Inthe Policy Node list, select a policy node.
Example:
Ping PingAuthorize’
Identity:
Deployment Packages
I >¢ Branch Manager Packages Details
|+ @ NamedDeploymentPac
Branch PingAuthoriz
Commit initial commi
Policy Node Global Decisi
8. Click Create Package.
9. Click the Deployment Manager tab.
10. Inthe Deployments pane, select the deployment package store you want to publish the policies to.
11. Inthe Available Packages list, select the deployment package you want to publish to the deployment
package store.
12. Click Deploy.
Next steps

Add the deployment package store to the PingAuthorize Server for read access. Based on your
deployment package store configuration, add one of the following:

= Add a filesystem deployment package store.
= Add an Amazon S3 deployment package store.
= Add an Azure deployment package store.

Exporting a deployment package
When you have completed development and testing of your policies, you can export your Trust Framework
and policies to a deployment package for use in embedded PDP mode.

Steps

1.

No o~ DN

Copyright ©2024

Export a snapshot.

See Exporting a policy snapshot on page 264.

Go to the Branch Manager section.

Click the Deployment Packages tab.

Click the + icon.

Enter a meaningful name for your deployment package.
In the Branch list, select a policy branch.

In the Commit list, select a commit.

PingAuthorize | PingAuthorize Server Administration Guide | 267

8. Inthe Policy Node list, select a policy node.
Example:

ing PingAuthorize

Deployment Packages

I >¢ Branch Manager Packages Details
@ NamedDeploymentPac
Branch PingAuthoriz
Commit initial comm

Policy Node Global Decisi

9. Click Create Package.
10. Click Export Package.

Result

The deployment package is downloaded to your computer.

Using the Deployment Manager

The Deployment Manager simplifies policy updates by enabling policy writers to deploy new policies to a
central deployment package store to be read by the PingAuthorize server running in embedded mode.

About this task
This process is two-fold:

= Policy writers use the Policy Editor to publish policies in a deployment package to a deployment
package store.

= Updated deployment packages are picked up by the PingAuthorize Policy Decision Service from the
deployment package store.

Note:

You configure the interval that the server checks for updates in the store during setup.

This allows a policy writer to deploy new policies without the manual process of exporting a deployment
package that is then uploaded into the server through the administrative console.

The Deployment Manager can use deployment package stores that are based on:

= Adirectory in the filesystem
= An Amazon Simple Storage Service (Amazon S3) bucket
= Azure Blob storage

Package stores hold deployment packages in a central location that the Policy Editor publishes to and the
PingAuthorize server reads from.

To use the Deployment Manager:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 268

Steps

1. Define a deployment package store.

Note:
= For a filesystem store, you must have a directory on the filesystem that the Policy Editor has read-
write access to.
= Amazon S3 buckets must be configured with a secret key and an access key for use.

= For Azure storage, you must set up an Azure storage account and a container. For later use,
record the Connection string value found in your account's Access key settings.

2. Use an options file to configure the Policy Editor to publish policies to a store.
3. Create and deploy deployment packages to the deployment package store.
4. Add the deployment package store for read access to the PingAuthorize Server:
a. Add a filesystem deployment package store.
b. Add an Amazon S3 deployment package store.
c. Add an Azure deployment package store,
5. Configure the Policy Decision Service to read from your deployment package store.

Adding a filesystem deployment package store
To use the Deployment Manager, add a deployment package store for read access to the PingAuthorize
server.

About this task
Use the administrative console or dsconfig to add the deployment package store.

Adding a new filesystem deployment package store using the administrative console

Steps

1. Inthe administrative console, go to Configuration # Authorization and Policies # Deployment
Package Stores.

2. Click New Deployment Package Store.

3. Inthe New Deployment Package Store list, select Filesystem Deployment Package Store.

4. Complete the General Configuration fields:

a. Inthe Name field, enter a name for the deployment package store.
b. Inthe Poll Interval field, enter a value in seconds for how often the directory should be polled for
changes.

Note:

A value of 0 only updates on start-up.

c. Inthe Poll Directory field, enter the directory where the deployment package is stored locally.
5. Optional: Complete the Policy Security fields.

Note:

If you select signed in the Deployment Package Security Level field, you must complete the
Deployment Package Trust Store field.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 269

6. Click Save To PingAuthorize Server Cluster.
Result:

Your filesystem deployment package store is displayed on the Deployment Package Stores page.

Next steps
Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding a new filesystem deployment package store using dsconfig

Steps

= Run dsconfig with the create-deployment-package-store option:
Choose from:

= Create a store with an unsigned deployment package.

dsconfig create-deployment-package-store \
--store-name "<store-name>" \
--type filesystem \
-—-set "poll-interval:<poll-interval>" \
--set "poll-directory:<filesystem-directory>"

= Create a store with deployment-package-security-level setto signed.

dsconfig create-deployment-package-store \
--store-name "<store-name>" \
--type filesystem \
-—-set "poll-interval:<poll-interval>" \
--set deployment-package-security-level:signed \
-—-set "deployment-package-trust-store:<trust-store-provider-name>" \
--set "deployment-package-verification-key-nickname:<key-nickname>"
\

--set "poll-directory:<filesystem-directory>"

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Amazon S3 deployment package store
To use the Deployment Manager, add a deployment package store for read access to the PingAuthorize
server.

About this task
Use the administrative console or dsconfig to add the deployment package store.

Adding an Amazon S3 deployment package store using the administrative console

Before you begin
You must set up an access key and accompanying secret key with your Amazon S3 bucket.

For information on setting up an access key and secret key, see your Amazon Web Services (AWS)
documentation.

Steps

1. Inthe administrative console, go to Configuration # Authorization and Policies # Deployment
Package Stores.

2. Click New Deployment Package Store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 270

3. Inthe New Deployment Package Store menu, select S3 Deployment Package Store.
4. Complete the General Configuration fields:

a. Inthe Name field, enter a name for the deployment package store.
b. Inthe Poll Interval field, enter a value in seconds for how often the Amazon S3 bucket should be
polled for changes.

Note:

A value of 0 only updates on restart.

c. Inthe S3 Bucket Name field, enter the name of your Amazon S3 bucket as shown on your AWS
services page.

In the S3 Bucket Prefix field, enter your Amazon S3 bucket prefix.

In the S3 Server Endpoint field, enter your Amazon S3 bucket AWS endpoint.

In the S3 Region Name field, enter the AWS region for your S3 bucket.

Next to the S3 Access Key ID field, click Set Value and enter the S3 Access Key ID for your S3
bucket.

h. Enter the S3 Access Key ID value again to confirm and click OK.

Note:

Your access key value is not displayed after you enter it. The page still displays Set Value.

Q@ -0 Q

Next to the S3 Secret Key field, click Set Value and enter the S3 Secret Key for your S3 bucket.
j- Enter the value again to confirm and click OK.

Note:

Your secret key value is not displayed after you enter it. The page still displays Set Value.

5. Optional: Complete the Policy Security fields.

Note:

If you select signed in the Deployment Package Security Level field, you must complete the
Deployment Package Trust Store field.

6. Click Save To PingAuthorize Server Cluster.
Result:

Your Amazon S3 deployment package store is displayed on the Deployment Package Stores page.

Next steps
Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Amazon S3 deployment package store using dsconfig

Steps

* Run dsconfig with the create-deployment-package-store option:
Choose from:

= Create a store with an unsigned deployment package.

dsconfig create-deployment-package-store \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 271

--store-name "<store-name>" \

--type s3 \

--set "poll-interval: <poll-interval>" \

-—-set "s3-bucket-name:<bucket-name>" \

--set "s3-bucket-prefix:<bucket-prefix>" \
-—-set "s3-server-endpoint:<server-endpoint>" \
--set "s3-region-name:<region-name>" \

-—-set "s3-access-key-id:<access-key-id>" \

--set "s3-secret-key:<secret-key>"

= Create a store with deployment-package-security-level setto signed.

dsconfig create-deployment-package-store \
--store-name "<store-name>" \
--type s3 \
-—-set "poll-interval: <poll-interval>" \
--set deployment-package-security-level:signed \
--set "deployment-package-trust-store:<trust-store-provider-name>"

\
--set "deployment-package-verification-key-nickname:<key-nickname>"
\
--set "s3-bucket-name:<bucket-name>" \
-—-set "s3-bucket-prefix:<bucket-prefix>" \
-—-set "s3-server-endpoint:<server-endpoint>" \
--set "s3-region-name:<region-name>" \
-—-set "s3-access-key-id:<access-key-id>" \
--set "s3-secret-key:<secret-key>"
Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Azure deployment package store
To use the Deployment Manager, add a deployment package store for read access to the PingAuthorize
server.

About this task
Use the administrative console or dsconfig to add the deployment package store.

Adding an Azure deployment package store using the administrative console

Before you begin
Set up your Azure storage account:

= If you don't already have an Azure storage account, create one.
= Add a container to your storage account.
= Record the Connection string value found in your account's Access key settings.

For information on setting up an Azure storage account, see your Azure Blob Storage documentation.

Steps

1. In the administrative console, go to Configuration # Authorization and Policies # Deployment
Package Stores.
2. Click New Deployment Package Store.

3. Inthe New Deployment Package Store menu, select Azure Deployment Package Store.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 272

4. Complete the General Configuration fields.
a. Inthe Name field, enter a name for the deployment package store.

b. Inthe Poll Interval field, enter a value in seconds for how often the Azure store should be polled
for changes.

Note:

A value of 0 only updates on restart.

c. Inthe Azure Blob Connection String field, enter the connection string shown in your Azure
storage account's Access key settings.

Note:

Your connection string value is not displayed after you enter it. The page still displays Set Value.

d. Inthe Azure Blob Container field, enter the name of your container.
e. Inthe Azure Blob Prefix field, enter the prefix you defined for the deployment package store.

5. Optional: Complete the Policy Security fields.

Note:

If you select signed in the Deployment Package Security Level field, you must complete the
Deployment Package Trust Store field.

6. Click Save To PingAuthorize Server Cluster.
Result:

Your Azure deployment package store is displayed on the Deployment Package Stores page.

Next steps
Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Adding an Azure deployment package store using dsconfig

Steps

= Run dsconfig with the create-deployment-package-store option:
Choose from:

= Create a store with an unsigned deployment package.

dsconfig create-deployment-package-store \
--store-name "<store-name>" \
--type azure \
-—-set "poll-interval:<poll-interval>" \
-—-set "azure-blob-connection-string:<blob-connection-string>" \
-—-set "azure-blob-container:<blob-container>" \
--set "azure-blob-prefix:<blob-prefix>"

= Create a store with deployment-package-security-level setto signed.

dsconfig create-deployment-package-store \
--store-name "<store-name>" \
--type azure \
--set "poll-interval:<poll-interval>" \
-—-set "azure-blob-connection-string:<blob-connection-string>" \
--set "azure-blob-container:<blob-container>" \

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 273

--set "azure-blob-prefix:<blob-prefix>"
--set deployment-package-security-level:signed \
--set "deployment-package-trust-store:<trust-store-provider-name>"

--set "deployment-package-verification-key-nickname:<key-nickname>"

Next steps

Configure the PingAuthorize server to use embedded PDP mode with your deployment package store.

Use policies in a production environment

You can configure PingAuthorize Server in embedded policy decision point (PDP) mode in preproduction
and production environments.

When configured to use embedded PDP mode, a policy file called a deployment package is used in
PingAuthorize Server’s internal policy engine, which then handles all policy requests. The deployment
package can be loaded into the server in two ways:

= The deployment package is deployed to a deployment package store, which is read by the internal
policy engine for updates at a configurable interval.

= The deployment package is exported from the Policy Editor and loaded into the internal policy engine
by an administrator.

Because embedded PDP mode does not require PingAuthorize Server to call out to an external server, it is
considerably more performant than external PDP mode. To facilitate rapid policy development, you should
use the Deployment Manager functionality that uses a deployment package store instead of the exported
deployment package method.

Configure embedded PDP mode

To configure PingAuthorize Server to use embedded PDP mode, set the PDP mode and assign to the
Policy Decision Service either:

= A deployment package store using the Deployment Manager functionality

Note:

For more information on the deployment package store option and the requirements for the
Deployment Manager feature, see Using the Deployment Manager on page 267.

An exported deployment package

Note:

For more information, see Exporting a deployment package on page 266.

Configuring embedded PDP mode with a deployment package store

About this task

To assign a deployment package store to the Policy Decision Service and set the policy decision point
(PDP) mode to embedded:

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 274

Steps

= Use dsconfig or the administrative console:
Choose from:

= Run dsconfig with the set-policy-decision-service-prop option.

dsconfig set-policy-decision-service-prop \

--set pdp-mode:embedded \

--set deployment-package-source-type:store \

--set deployment-package-store:<name of the store>

« Use the administrative console.

1. Inthe administrative console, go to Configuration # Authorization and Policies # Policy
Decision Service .

2. On the Edit Policy Decision Service page, complete the General Configurationfields.

3. Inthe Deployment Package Store Configuration section, in the Deployment Package
Store field, select your deployment package store.

4. Inthe Policy Request Configuration section, select a Trust Framework Version.

5. Click Save To PingAuthorize Server Cluster.

Configuring embedded PDP mode with an exported deployment package

About this task

To assign an exported deployment package to the Policy Decision Service and set the PDP mode:

Steps
= Run dsconfig with the set-policy-decision-service-prop option.
Example:

In this example, the deployment-package value is the full path to a deployment package file. To
create a deployment package for export, see Exporting a deployment package on page 266.

dsconfig set-policy-decision-service-prop \

--set pdp-mode:embedded \

--set "deployment-package</path/to/my-deployment-—
package.deploymentpackage"

Example: Define policy configuration keys
A policy configuration key is an arbitrary key/value pair that you can reference by name in the policy Trust
Framework.

When using embedded PDP mode, policy configuration keys are stored in the PingAuthorize Server
configuration, and the server provides the policy configuration key values to the policy engine at runtime.
This allows the Trust Framework to refer to data such as hostnames and credentials without needing those
values to be hard-coded in the Trust Framework.

Note:

Policy configuration key values are stored in encrypted form in the PingAuthorize Server configuration, so
they are suitable for storing sensitive values such as server credentials.

Use dsconfig or the administrative console to define policy configuration keys. If using the administrative
console, you can find policy configuration keys in the Policy Decision Service configuration.

Copyright ©2024

PingAuthorize | PingAuthorize Server Administration Guide | 275

The following example shows how to create a policy configuration key named ConsentServiceBaseUri
with the value https://example.com/consent/vl.

dsconfig create-policy-configuration-key \
--key-name ConsentServiceBaseUri \
--set policy-configuration-value:ht