
PingDataGovernance

PingDataGovernance | Contents | ii

Contents

PingDataGovernance...7

Release Notes.. 8
PingDataGovernance Server 8.2.0.8 release notes... 8
PingDataGovernance Server 8.2.0.7 release notes... 8
PingDataGovernance Server 8.2.0.6 release notes... 9
PingDataGovernance Server 8.2.0.5 release notes... 9
PingDataGovernance Server 8.2.0.3 - March 2021..10
PingDataGovernance Server 8.2.0.2 - February 2021... 10
PingDataGovernance Server 8.2.0.1 - January 2021...11
PingDataGovernance Server 8.2.0.0 - December 2020... 11
Critical fixes... 23
Known issues and limitations..25
Previous releases.. 25

PingDataGovernance Server 8.1.0.5 release notes...25
PingDataGovernance Server 8.1.0.3 Release Notes...27
PingDataGovernance Server 8.1.0.2 Release Notes...27
PingDataGovernance Server 8.1.0.1 Release Notes...29
PingDataGovernance Server 8.1.0.0 Release Notes...29
PingDataGovernance Server 8.0.0.5 release notes...41
PingDataGovernance Server 8.0.0.3 Release Notes...41
PingDataGovernance Server 8.0.0.2 Release Notes...42
PingDataGovernance Server 8.0.0.1 Release Notes...43
PingDataGovernance Server 8.0.0.0 Release Notes...46
PingDataGovernance Server 7.3.0.10 release notes...53
PingDataGovernance Server 7.3.0.9 Release Notes...53
PingDataGovernance Server 7.3.0.8 Release Notes...54
PingDataGovernance Server 7.3.0.7 Release Notes...55
PingDataGovernance Server 7.3.0.6 Release Notes...56
PingDataGovernance Server 7.3.0.5 Release Notes...56
PingDataGovernance Server 7.3.0.4 Release Notes...57
PingDataGovernance Server 7.3.0.3 Release Notes...57
PingDataGovernance Server 7.3.0.2 Release Notes...58
PingDataGovernance Server 7.3.0.1 Release Notes...59
PingDataGovernance Server 7.3.0.0 Release Notes...60

Introduction to PingDataGovernance.. 67

Getting started with PingDataGovernance (tutorials)............................ 68
Using the tutorials... 68
Tutorial: Importing default policies.. 71

Introduction to the Trust Framework and default policies.. 74
Tutorial: Configuring fine-grained action access control for an API..77

Configuring a reverse proxy for the Meme Game API...77
Testing the reverse proxy...79
For further consideration: The PingDataGovernance API security gateway, part 1............... 80

Copyright ©2022

PingDataGovernance | Contents | iii

Adding a policy for the Create Game endpoint..81
For further consideration: The PingDataGovernance API security gateway, part 2............... 82
Testing the policy from the Policy Administration GUI...85
Testing the policy by making an HTTP request...88
For further consideration: Decision Visualiser..89
Modifying the rule for the Create Game endpoint..90
For further consideration: Resolvers and value processors...94
Conclusion.. 94

Tutorial: Configuring attribute-based resource access control for an API...95
Configuring the API security gateway.. 95
Creating a policy based on user credentials..98
Creating a policy based on the API response... 103
Conclusion.. 109

Tutorial: Creating SCIM policies... 109
Tutorial: Creating the policy tree.. 111
Tutorial: Creating SCIM access token policies.. 112
Tutorial: Creating a policy for role-based access control... 124
Example files.. 127
Conclusion.. 127

Installing PingDataGovernance..127
Docker installation... 131

Before you install using Docker... 131
Installing the server and the Policy Administration GUI using Docker................................. 132

Manual installation...138
Before you install manually.. 138
Installing the server and the Policy Administration GUI manually..144

Upgrading PingDataGovernance..164
Upgrade considerations...164
Docker upgrades... 166

Upgrading PingDataGovernance Server using Docker..166
Upgrading the PingDataGovernance Policy Administration GUI using Docker.................... 167

Manual upgrades...168
Upgrading PingDataGovernance Server manually...168
Reverting an update... 169
Upgrading the PingDataGovernance Policy Administration GUI manually...........................169

Backing up policies... 170
Upgrading the Trust Framework and policies... 170

Uninstalling PingDataGovernance... 171

PingDataGovernance Server Administration Guide.............................172
Running PingDataGovernance..172

Starting PingDataGovernance Server.. 172
Running PingDataGovernance Server as a foreground process... 172
Starting PingDataGovernance Server at boot time (Unix/Linux).. 172
Starting PingDataGovernance Server at boot time (Windows).. 173
Starting PingDataGovernance Policy Administration GUI.. 175
Stopping PingDataGovernance Server...178
Stopping PingDataGovernance Policy Administration GUI.. 178
Restarting PingDataGovernance Server.. 178

Copyright ©2022

PingDataGovernance | Contents | iv

About the API security gateway..178
Request and response flow..179
Gateway configuration basics...180
API security gateway authentication.. 181
API security gateway policy requests...182
API security gateway HTTP 1.1 support..188
About error templates...189

About the Sideband API..191
API gateway integration..192
Sideband API configuration basics...194
Authenticating to the Sideband API... 195
Authenticating API server requests.. 196
Sideband API policy requests.. 197
Request context configuration.. 203
Access token validation..204
Error templates... 205

About the SCIM service.. 206
Request and response flow..206
SCIM configuration basics..208
SCIM endpoints.. 211
SCIM authentication... 212
SCIM policy requests..212
Lookthrough limit.. 222
Disabling the SCIM REST API...222

About the SCIM user store... 222
Defining the LDAP user store.. 224
Location management for load balancing.. 227
Automatic backend discovery...228
LDAP health checks... 232
Connecting non-LDAP data stores...235

About the PDP API... 236
Request and response flow..236

Policy Administration GUI configuration..246
Specifying custom configuration with an options file..246
Manage policy database credentials.. 254
Configuring SpEL Java classes for value processing.. 259
Setting the request list length for Decision Visualizer..260

Policy administration..261
About the Trust Framework..261
Create policies in a development environment.. 262
Use policies in a production environment.. 266
Policy database backups..269
Restore a policy database from a backup... 270
Use signed deployment packages... 271
Environment-specific Trust Framework attributes.. 274
Make a user's profile available in policies..279

Advice types.. 281
Add Filter.. 282
Combine SCIM Search Authorizations...283
Denied Reason... 283
Exclude Attributes...283
Filter Response...284
Include Attributes.. 285
Modify Attributes... 286
Modify Headers...286
Modify Query.. 286

Copyright ©2022

PingDataGovernance | Contents | v

Modify SCIM Patch...287
Regex Replace Attributes...289

Access token validators...290
About access token validator processing...290
Access token validator types..292
Token resource lookup methods..298

Server configuration.. 299
Administration accounts..300
About the dsconfig tool...300
PingDataGovernance Administrative Console..301
About the configuration audit log... 301
About the config-diff tool.. 302
Certificates.. 302
Configure the Policy Decision Service... 306
Configure a user store..307
Configure access token validation..307
Configure PingOne to use SSO for the PingData Administrative Console...........................308
Examples: Configuring PingDataGovernance Server.. 309

Server status... 311
Server availability.. 312

User Store Availability gauge... 313
Endpoint Average Response Time (Milliseconds) gauge...313
HTTP Processing (Percent) gauge.. 314
Example: auto-healing.. 315

Available gauges... 316
Common alarms.. 319
Managing monitoring... 321

Profiling server performance using the Stats Logger...321
Logging HTTP performance statistics using a Periodic Stats Logger.................................. 323
StatsD monitoring endpoint.. 323
Sending metrics to Splunk... 324

Managing HTTP correlation IDs..325
About HTTP correlation IDs... 325
Enabling or disabling correlation ID support.. 326
Configuring the correlation ID response header.. 326
How the server manages correlation IDs...326
Server SDK support... 327
Example: HTTP correlation ID... 327

Command-line tools...329
Available command-line tools...329
Saving options in a file...333
Sample dsconfig batch files... 336
Running task-based tools... 336

Capture debugging data..337
Exporting policy data.. 338
Enable detailed logging.. 338
Visualizing a policy decision response...340
Capture debugging data with the collect-support-data tool..342

About the layout of the PingDataGovernance Server folders... 342
About the layout of the PingDataGovernance Policy Administration GUI folders........................... 343

PingDataGovernance Policy Administration Guide............................. 344
Getting started... 344
Version control (Branch Manager).. 345

Creating a new top-level branch.. 345

Copyright ©2022

PingDataGovernance | Contents | vi

Creating a subbranch from a commit...346
Importing a branch... 346
Deleting a branch... 347
Merging branches... 347
Reverting changes..348
Committing changes... 348
Generating snapshots...349
Partial snapshot export and merging... 349
Creating a deployment package...350
Deleting a deployment package...351

Trust Framework... 351
Domains (PDP API only)..351
Services.. 351
Attributes... 356
Actions.. 365
Identity classifications and IdP support..365
Named conditions... 366
Value processing.. 366
Chained processors..370
Testing.. 370

Policy management... 371
Policy sets, policies, and rules...371
Policies and policy sets.. 372
Testing.. 381
Analysis of policies and policy sets..382

Repeating policies and attributes..382
Policy solutions..384

Use case: Using consent to determine access to a resource..384
Use case: Using consent to change a response... 400
Use case: Using a SCIM resource type or a policy request action to control behavior........ 408
Restricting the attributes that can be modified...425

Test Suite.. 427
Advice types.. 430

Add Filter.. 430
Combine SCIM Search Authorizations...430
Denied Reason... 430
Exclude Attributes...431
Filter Response...431
Include Attributes.. 432
Modify Attributes... 433
Modify Headers...433
Modify Query.. 433
Modify SCIM Patch...434
Regex Replace Attributes...436

REST API documentation... 437

Legal Information...437

Copyright ©2022

PingDataGovernance | PingDataGovernance | 7

PingDataGovernance

PingDataGovernance software provides fine-grained, attribute-based access control and dynamic
authorization management, enabling you to protect resources and filter data for databases, applications,
and APIs.

Release Notes

▪ Current
▪ Archive

Get Started with PingDataGovernance

▪ Introduction to PingDataGovernance on page 67
▪ Installing PingDataGovernance on page 127
▪ Uninstalling PingDataGovernance on page 171
▪ PingDataGovernance Tutorials

Use PingDataGovernance

▪ Use cases
▪ Server admin guide
▪ Policy admin guide
▪ Policy development and promotion

Troubleshoot PingDataGovernance

▪ Enable detailed logging on page 338
▪ Capture debugging data
▪ Monitor server availability
▪ Troubleshoot TLS-related issues
▪ Configure LDAP health checks
▪ Visualize a policy decision response

Learn More

▪ API reference guide
▪ PingDataGovernance Community
▪ Ping Identity Support Portal
▪ PingDataGovernance customer training (existing customers only)
▪ Partner Portal (partners)

Copyright ©2022

https://apidocs.pingidentity.com/pingauthorize/authorization-policy-decision/v1/api/guide/
https://support.pingidentity.com/s/topic/0TO1W000000dcxNWAQ/pingauthorize
https://support.pingidentity.com/s/
https://education.pingidentity.com/learn/course/1143/introduction-to-pingauthorize-90?generated_by=13429&hash=d85bf6092a769d1b6671371d7fc89fa5b55dfd3b
https://www.pingidentity.com/en/account/sign-on.html?retURL=/bin/pic/sso/community?retURL=/PartnerPortal/s/

PingDataGovernance | Release Notes | 8

Release Notes

PingDataGovernance Server 8.2.0.8 release notes

Critical Fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

Resolved Issues

The following issues have been resolved with this release of the PingDataGovernance Server.

Ticket ID Description

DS-45746 Updated to LDAP SDK for Java version 6.0.5 for
bug fixes and new functionality.

DS-45164 Updated Jetty Server to version 9.4.44.

DS-45863 Fixed an issue where SCIM POST requests that
violated a unique attribute constraint received an
error response with status 400 Bad Request
instead of 409 Conflict.

PingDataGovernance Server 8.2.0.7 release notes

Critical Fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

Resolved Issues

The following issues have been resolved with this release of the PingDataGovernance Server.

Ticket ID Description

DS-45305 Updated Log4j2 from 2.14.1 to 2.16.0 to address
CVE-2021-44228.

DS-44950 Fixed an issue that caused updates from
PingDataGovernance Server 7.x or 8.x to throw
an OutOfMemoryError and fail when too many
archived configuration files were present.

Copyright ©2022

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

PingDataGovernance | Release Notes | 9

Ticket ID Description

DS-45384 Removed the -XX:RefDiscoveryPolicy Java
argument to prevent a Java runtime error that was
causing the server to crash.

DS-45190 Added support for JDKs from BellSoft.

DS-45378, DS-45381 Changed Eclipse Foundation to Eclipse Adoptium
for AdoptOpenJDK to fix errors related to an
unrecognized vendor.

DS-45654 Fixed an issue where SCIM POST requests that
violated a unique attribute constraint received an
internal error instead of the expected SCIM error
response.

PingDataGovernance Server 8.2.0.6 release notes

Critical Fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

Resolved Issues

The following issues have been resolved with this release of the PingDataGovernance Server.

Ticket ID Description

DS-43632 Fixed an issue where the format field is omitted
from the list of operational attribute schemas in the
Directory REST API.

PingDataGovernance Server 8.2.0.5 release notes

Critical fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

Resolved issues

The following issues have been resolved with this release of the PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | Release Notes | 10

Ticket ID Description

DS-44025 Fixed an issue where the server was incorrectly
displaying an Unknown vendor warning when
using JDKs obtained on Red Hat and Ubuntu
systems.

PingDataGovernance Server 8.2.0.3 - March 2021

Upgrade considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0.
We encourage deployers to manage server configuration using server profiles, which support deployment
best practices such as automation and Infrastructure-as-Code (IaC). For more information about server
profiles, see the PingDataGovernance Server Administration Guide.

For more considerations, see Upgrade considerations on page 164.

Critical fixes

This release has no critical fixes.

PingDataGovernance Server 8.2.0.2 - February 2021

Upgrade considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0.
We encourage deployers to manage server configuration using server profiles, which support deployment
best practices such as automation and Infrastructure-as-Code (IaC). For more information about server
profiles, see the PingDataGovernance Server Administration Guide.

For more considerations, see Upgrade considerations on page 164.

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-43941 You can now specify that the Administrative Console use a custom truststore when evaluating
OIDC provider certificates by using the oidc-trust-store-file and oidc-trust-store-
type settings. Also, you can set the console to skip hostname and/or certification verification
through the oidc-strict-hostname-verification and oidc-trust-all configuration
settings.

DS-43224 Made a generic OpenID Connect ID token validator available. This change allows single sign-on
to the Administrative Console with OIDC providers other than just PingOne.

Copyright ©2022

PingDataGovernance | Release Notes | 11

PingDataGovernance Server 8.2.0.1 - January 2021

Upgrade considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0.
We encourage deployers to manage server configuration using server profiles, which support deployment
best practices such as automation and Infrastructure-as-Code (IaC). For more information about server
profiles, see the PingDataGovernance Server Administration Guide.

For more considerations, see Upgrade considerations on page 164.

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-43774 Cannot log into console without specifying port in Docker containers.

Various IDs Fixed upgrader bugs that prevented updates in some cases.

PingDataGovernance Server 8.2.0.0 - December 2020
The following enhancements and resolved issues are included in this release.

Enhancements

These are new features for this release of PingDataGovernance Server:

▪ The Policy Administration GUI now provides integrated testing capability where policy writers can define
tests, scenarios, and assertions to use to verify most Policy Manager and Trust Framework entities.
Using a test-driven development approach and regression test suites, policy writers can increase the
quality of their policies and decrease the risk of policy changes.

▪ The Policy Administration Guide now includes step-by-step solutions to common use cases. Use these
tutorials to learn common patterns of policy administration and to accelerate the development of new
use cases.

▪ Added new Value Processor types that simplify handling of collections in the Trust Framework. With
Collection Filters, you can extract a subset of a collection by defining a boolean expression that
determines which items to keep. With Collection Transforms, you can apply one or more processors to
each item, producing a new value for each item.

▪ The official Policy Administration GUI Docker image has been improved for easier configuration. New
environment variables have been added to enable Single-Sign On, periodic database backup, and
administrative roles and permissions.

▪ The Administrative Console now supports using OpenID Connect for admin SSO, allowing you to set up
the PingOne administration console to have one-click SSO access without typing a password.

▪ PingDataGovernance now periodically logs operational performance metrics for improved observability,
capacity planning, and elastic scaling. Per-resource transaction counts and latency are logged for the
Gateway API, Sideband API, and SCIM service.

▪ PingDataGovernance supports signed deployment packages. With this feature, a customer who has
multiple PingDataGovernance environments can ensure that the policies developed in the Policy
Administration GUI of one environment are only deployed to the PingDataGovernance runtime servers
of the same environment.

▪ PingDataGovernance now provides a better way to perform a sorted search on a large dataset using
SCIM 2.0. In this version of PingDataGovernance, SCIM searches with the proper search parameters
can be returned in pages if the backend server is a PingDirectory server.

Copyright ©2022

PingDataGovernance | Release Notes | 12

▪ PingDataGovernance now generates Swagger documentation for SCIM resource type configuration.
Developers can use the Swagger documentation and specifications to learn and develop SCIM-based
services more quickly.

Upgrade considerations

Upgrade considerations are no longer part of the release notes. That information is now in "Upgrading
PingDataGovernance Server" in Upgrade considerations on page 164.

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-5143,
DS-11035

Updated support for logging access and error log messages to a syslog server. While the server
previously supported logging these messages to a syslog server (through the "syslog-based
access log publisher" and "syslog-based error log publisher" logger implementations), these
loggers used an older version of the syslog protocol (described in RFC 3164) and only offered
support for communicating over UDP.

These loggers are still available for legacy backward compatibility, but we now also offer new
"syslog text access log publisher" and "syslog text error log publisher" implementations that
use a newer version of the syslog protocol (syslog version 1, described in RFC 5424) and
support communicating over UDP or the more reliable TCP. When using TCP, it is also possible
to encrypt communication with TLS, and it is possible to configure multiple servers for better
redundancy. These loggers use the same space-delimited text format as the former loggers.

We also offer new "syslog JSON access log publisher" and "syslog JSON error log publisher"
implementations that offer the same set of capabilities, but that format the message text as
JSON objects, which can be more easily parsed by third-party software.

DS-10320,
DS-12550,
DS-12551,
DS-12552,
DS-42116,
DS-42162,
DS-42179,
DS-42222,
DS-42223,
DS-42224,
DS-42225,
DS-42416,
DS-42437

Added a config/sample-dsconfig-batch-files directory with set of well-commented
dsconfig batch files to help you understand enabling or configuring a variety of features in the
server.

Copyright ©2022

PingDataGovernance | Release Notes | 13

Ticket ID Description

DS-11524,
DS-41860,
DS-42112

Added support for new administrative alert types:

▪ We have added a new admin alert account status notification handler, which can generate
administrative alerts whenever an applicable account status notification is generated within
the server. For example, this account status notification handler can be added to the root
password policy to generate an alert whenever a root user's password is updated or their
account is locked as a result of too many failed authentication attempts. A separate alert type
has been defined for each account status notification type.

▪ We have added a new "privilege-assigned" administrative alert that can be raised whenever
a new entry is added or an existing entry is updated to include one or more privileges.

▪ We have added a new "insecure-request-rejected" administrative alert that can be raised
whenever the server rejects a request as a result of the reject-insecure-requests
global configuration property.

DS-13853 Added support for the OAUTHBEARER SASL mechanism (as described in RFC 7628) to allow
LDAP clients to authenticate with OAuth 2.0 bearer tokens.

DS-15864 Replaced the ldappasswordmodify tool with a new version that offers more functionality,
including support for additional controls, support for multiple password change methods (the
password modify extended operation, a regular LDAP modify operation, or an Active Directory-
specific modify operation), and the ability to generate the new password on the client.

DS-17903 Updated setup to provide a --populateToolPropertiesFile argument that allows
it to populate the config/tools.properties file with default values for command-
line tool arguments. If requested, properties are provided for the server address, port, and
communication security, and might also include a default bind DN and optionally a bind
password. When running setup interactively, it now prompts to determine which properties (if
any) should be populated in the properties file.

DS-36088 Updated the crypto manager to make it possible to augment the set of enabled TLS cipher
suites with specific suites to add to or remove from the default set of enabled suites. To enable
one or more suites in addition to those in the default set, prefix the names of those suites with
the "+" symbol. To disable one or more suites in the default set of enabled suites, prefix the
names of those suites with the "-" symbol. This was already possible when configuring cipher
suites for the LDAP and HTTP connection handlers, but it was not an option for the crypto
manager.

DS-36845,
DS-42458

The SCIM 2 service now automatically generates a Swagger 2 specification document based
on the server's SCIM 2 configuration. View this documentation by visiting the URL https://<your-
server>/api-docs in a web browser.

DS-38110 Updated the System Information monitor with an isDocker attribute to identify if the server is
running in a Docker container.

Copyright ©2022

PingDataGovernance | Release Notes | 14

Ticket ID Description

DS-38118,
DS-42495

Made several updates related to the server's handling of data written to standard output and
standard error.

▪ You can now configure the server to rotate the logs/server.out file when it reaches
a given size and to retain a configurable number of those log files. By default, the server
rotates the file when it reaches 100 megabytes and keeps up to ten files.

▪ To better facilitate capturing log data in containerized environments, the server now supports
writing JSON-formatted access and error log messages to the JVM's original standard output
and error streams, which are separate from the server.out file when the server is started
with the --nodetach argument.

▪ You can now prevent the server from logging messages during startup in non-JSON format.
Also, you can prevent messages about administrative alerts from being written to standard
error, or to write those messages in JSON format. These options are especially useful when
using JSON-based logging to the console in no-detach mode because they can help ensure
that everything written to standard output and standard error is formatted as JSON objects.

DS-38868 Updated setup to create a second encryption settings definition if data encryption is enabled.
The tool continues to create a definition for 128-bit AES encryption for use as the preferred
definition to preserve backward compatibility with existing servers in the topology, but it now
also generates a definition for 256-bit AES encryption. The 256-bit AES definition might become
the preferred definition in a future release, but you can use it now by first ensuring that any
existing instances are updated to contain the new definition (with the encryption-settings
export and encryption-settings import commands) and then making it the preferred
definition (with encryption-settings set-preferred) in all instances.

DS-39376 The PingDataGovernance Policy Administration GUI start-server and stop-server tools
are now more consistent with other Ping Identity products. In addition, users can now pass the
--restart command-line option to stop-server to restart the server.

DS-39789 Updated the JVM memory usage monitor provider to fix an issue that could prevent the monitor
from reporting the total amount of memory held by all memory consumers. Also, fixed an issue
that could cause the memory-consumer attribute to use an incomplete message for consumers
without a defined maximum size and added an additional memory-consumer-json attribute
whose values are JSON objects with data that can be more easily extracted by automated
processes.

DS-40296 Fixed an issue in which mapping a path parameter in inbound-base-path to a query
parameter in outbound-base-path would cause the Gateway to encode the query delimiter
('?').

DS-40310,
DS-40311

PingDataGovernance Server now validates path parameters used in Gateway API Endpoints
and Sideband API Endpoints more strictly. The configuration properties service, resource-
path, and policy-request-attribute now cannot refer to path parameters unless they
are defined by the inbound-base-path property (for Gateway API Endpoints) or the base-
path property (for Sideband API Endpoints). In addition, the inbound-base-path and base-
path properties now cannot be defined with duplicate path parameters. For example, an
inbound-base-path property such as /Posts/{id}/Comments/{id} is not allowed.

DS-40650 Updated the collect-support-data tool so that you can specify how much data to capture
from the beginning and end of each log file to include in the support data archive. You can also
specify the capture size when invoking the tool through an administrative task, recurring task, or
extended operation.

Copyright ©2022

PingDataGovernance | Release Notes | 15

Ticket ID Description

DS-40828 Fixed an issue where some state associated with a JMX connection was not freed after the
connection was closed. This led to a slow memory leak in servers that were monitored by an
application that created a new JMX connection each polling interval.

DS-40903,
DS-41075,
DS-43083

Fixed an issue in which PingDataGovernance formatted the following policy
request attributes using a date/time format that the policy engine could not parse:
HttpRequest.AccessToken.expiration, HttpRequest.AccessToken.issued_at,
and HttpRequest.AccessToken.not_before. To support these changes, update the data
type of the above fields in your Trust Framework to "Zoned Date Time" using the 8.1.0.0-
to-8.2.0.0.SNAPSHOT file from the /resource/policies/upgrade-snapshots
directory. For detailed upgrade instructions, see Upgrading PingDataGovernance on page
164.

DS-40967 Eliminated a misleading error message that could be logged at startup if the server was
configured with one or more ACIs that only apply when using specific SASL mechanisms.

DS-41308 PingDataGovernance Server now provides more information about the current policy request
to custom advice implementations written using the Server SDK. The additional information
includes the service name, the token owner, and the access token claims.

DS-41350 Fixed an issue where disabling certain backends (such as 'alarms') caused an internal monitor
to log unnecessary error messages every few seconds, about not being able to gather data from
that backend.

Note that deliberately disabling the 'alarms' backend is not recommended in normal operation,
but might occur during backup/restore operations.

DS-41774 Users can now start the PingDataGovernance Policy Administration GUI in the foreground by
passing the --nodetach command-line option to the start-server script.

DS-41866 PingDataGovernance can now perform SCIM 2 paged searches on result sets greater than the
configured lookthrough limit. This feature is only available when using an LDAP Store Adapter
and requires configuring a VLV index on the backend PingDirectory Server first. For more
information, see Using paged SCIM searches on page 218.

DS-41870,
DS-42660,
DS-42677,
DS-42802

The Sideband API includes a number of improvements to ease API gateway integration and
troubleshooting.

▪ Preparsed access tokens provided through the access_token field are now processed
more leniently. In particular, you can now express both the scope and aud claims as either
a string or an array of strings.

▪ If an API gateway plugin provides a preparsed access token, but an External API Gateway
Access Token Validator has not been configured or is disabled, the server now records an
error message to the trace log.

▪ If an External API Gateway Access Token Validator cannot parse a preparsed access token
provided by an API gateway plugin, it now records an error message to the trace log.

▪ The Sideband API also fails fast if a request includes fields that require the request-
context-method configuration property to be set to state or request and it is not
correctly configured.

DS-41964 Fixed an issue with the manage-profile tool where files in a server profile's dsconfig/
directory without a .dsconfig extension could cause failures in manage-profile
replace-profile when validating updated dsconfig files.

Copyright ©2022

PingDataGovernance | Release Notes | 16

Ticket ID Description

DS-41989 Fixed an issue that could result in duplicate column headers being produced by the Periodic
Stats Logger, even when the header-prefix-per-column attribute was set to true.

DS-42045 Updated the Stats Collector Plugin with a new generate-collector-files configuration
property.

When using the plugin exclusively for providing metrics to one or more StatsD Monitoring
Endpoints, set this property to false to prevent unnecessary I/O.

DS-42059,
DS-42060

Updated setup to add options for improving communication security.

▪ Noninteractive setup now offers a --rejectInsecureRequests argument that
configures the server to reject any request received over a connection that is not encrypted
with SSL or StartTLS.

▪ Noninteractive setup now offers a --rejectUnauthenticatedRequests argument
that configures the server to reject any request received over a connection that is not
authenticated (or that is authenticated as the anonymous user).

▪ Interactive setup now allows you to configure the server with the LDAP connection handler
disabled (which was already an option when using noninteractive setup), or enabled but only
for communication encrypted with StartTLS.

You can use the --rejectInsecureRequests and --
rejectUnauthenticatedRequests arguments with manage-profile by including them in
the setup-arguments.txt file of the server profile.

DS-42061 Updated the interactive command-line tool framework to prefer establishing secure LDAP
connections over insecure connections. Previously, when prompting for the information needed
to establish a connection, the default option was to create an unencrypted LDAP connection.
Now, tools will default to creating an SSL-encrypted connection if the server supports it, or
to creating a StartTLS-encrypted connection if that is available but SSL is not. Tools will also
default to using streamlined settings when establishing secure connections. Previously, they
would always prompt about how to determine whether the server's certificate chain should be
trusted. When using the streamlined settings, the tools will only prompt about certificates that
cannot automatically be considered trusted using information in the JVM's default trust store, the
server's default trust store (config/truststore), or the server's topology registry.

DS-42062 Updated the root password policy so that LDAP bind responses for root users and topology
administrators are delayed by one second after five consecutive failed authentication attempts.

DS-42063 Updated the "delay bind response" failure lockout action to provide an option to delay the
response to bind requests initiated by non-LDAP clients (for example, when using HTTP basic
authentication). This option is disabled by default because delaying the bind response for
non-LDAP clients might require temporarily blocking the thread used to process the request,
which could increase the risk of a denial-of-service attack. To help mitigate this risk, if you
enable delayed bind responses for non-LDAP clients, we recommend that you also increase the
number of request handler threads for all enabled HTTP connection handlers.

DS-42115 Updated the server's command-line tool framework to make it easier and more convenient to
communicate with the server over a secure connection when no trust-related arguments are
provided. Most noninteractive tools now check the server's default trust store, the topology
registry, and the JVM's default trust store to see if the presented certificate chain can be
automatically trusted without the need to prompt the user. If the presented chain cannot be
automatically trusted, the user might be interactively prompted to determine whether it should
be trusted.

Copyright ©2022

PingDataGovernance | Release Notes | 17

Ticket ID Description

DS-42166 The advice type modify-scim-patch is now available. With this advice type, you can add
new operations to the end of a SCIM patch during a SCIM modify request.

DS-42199 Optimized some searches commonly used by the status tool. This should improve the
performance of the tool in more complex or large-scale environments.

DS-42276 Fixed an issue where using the encryption-settings tool to import definitions with the
set-preferred flag could result in none of the imported definitions being set as the preferred
definition.

DS-42279 Updated the server to require a minimum key size of 2048 bits when negotiating a TLS cipher
suite that uses ephemeral Diffie-Hellman key exchange.

DS-42298 Replaced the ldifsearch, ldifmodify, and ldif-diff command-line tools with more full-
featured and robust implementations.

DS-42331 Replaced the ldapcompare tool with a new version that offers more functionality, including
support for multiple compare assertions, following referrals, additional controls, and multiple
output formats (including tab-delimited text, CSV, and JSON).

DS-42347 Updated the server to use /dev/urandom (on non-Windows systems where that path exists
and is readable) instead of /dev/random as the primary source for secure random data.
Attempts to read from /dev/random can block if the underlying system does not have
sufficient entropy, which can have a severe adverse effect on performance. Reads from /dev/
urandom do not block, and the data that it provides is no less secure than data from /dev/
random in any way that matters for the server.

DS-42402 The Policy Administration GUI now uses the MAX_HEAP_SIZE environment variable to set its
minimum and maximum heap size. If there is no value available, the Policy Administration GUI
uses a default value of 2g.

DS-42456 Fixed an issue where POLICY REQUEST-SKIPPED messages were being logged when
response processing was not skipped by the Gateway, rather than when it was skipped.

DS-42461 The Policy Administration GUI command-line tools now produce execution logs in tool-specific
log files.

DS-42504 Updated manage-profile replace-profile to set encryption settings definitions defined
in the newer server profile as preferred in the encryption settings db.

DS-42518 The PingDataGovernance Policy Administration GUI setup tool now provides the --
excludeSensitiveValues command-line option. When you provide sensitive values as
environment variables, use this option to exclude those sensitive values from the generated
configuration.yml file.

DS-42521 The Policy Administration GUI now adds JAR files placed in the lib/extensions folder to the
server runtime classpath, for use during SpEL evaluation.

DS-42547 Fixed an issue where manage-profile generate-profile would print null as the
generated profile directory when writing to an existing directory.

Copyright ©2022

PingDataGovernance | Release Notes | 18

Ticket ID Description

DS-42605 Previously, when evaluating a policy rule with multiple conditions, the policy engine would
evaluate every condition in the group. The policy engine now stops evaluating conditions as
soon as the overall result can be deduced. For example, given a group condition of the form "X
AND Y", the policy engine will not evaluate Y if X is false.

This change is applicable to both embedded PDP mode and external PDP mode.

DS-42607 You can now configure the Policy Administration GUI to cryptographically sign deployment
packages. You can configure PingDataGovernance Server in turn to only accept deployment
packages signed by a trusted source. For information about configuring both the Policy
Administration GUI and PingDataGovernance Server to use signed deployment packages, see
Use signed deployment packages on page 271.

DS-42609 Fixed an issue in which the Directory REST API could fail to decode certain credentials when
using basic authentication.

DS-42632 Added support for creating or importing a key pair configuration object using an elliptic curve
(EC) key algorithm. You can use this to designate the encryption key pair for a JWT access
token validator that handles EC-encrypted access tokens.

DS-42634 The JWT Access Token Validator can now validate JWT access tokens signed using the elliptic
curve digital signature algorithms ES256, ES384, and ES512.

DS-42635 The JWT Access Token Validator can now validate JWT access tokens encrypted using elliptic
curve cryptographic algorithms. The following key encryption algorithms are now supported in
addition to RSA-OAEP: ECDH-ES, ECDH-ES+A128KW, ECDH-ES+A192KW, and ECDH-ES
+A256KW.

To support best practices for JWT security, you must now also configure the JWT Access
Token Validator with explicit allow lists for key encryption and content encryption algorithms. For
backward compatibility, the key encryption allow list defaults to RSA-OAEP, while the content
encryption allow list defaults to A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512. We
recommend setting both allow lists to the strict minimum set of algorithms needed by the Access
Token Validator.

DS-42651 Updated the manage-profile replace-profile subcommand to better
support updating the server's keystore and truststore files. When using the --
generateSelfSignedCertificate argument in a server profile's setup-arguments.txt
file, the server will maintain the original keystore and truststore files during replace-profile.
Otherwise, replace-profile will use the keystore and truststore specified in the profile's
setup-arguments.txt file.

DS-42661 Fixed an issue in which a request to /sideband/request with a "body" value of "" (an empty
string) would result in a response with a "body" value of "null". Now the Sideband API will
always omit null or empty values from responses.

DS-42667 Updated the server to set a unique cluster name when started for the first time.

DS-42669,
DS-42748

Updated the online dsconfig step of the manage-profile replace-profile
subcommand to support getting LDAP connection arguments from a tools.properties file
on the server being updated.

Fixed an issue where boolean LDAP connection arguments like --useSSL and --trustAll
would cause manage-profile replace-profile to fail when applying dsconfig online.

Copyright ©2022

PingDataGovernance | Release Notes | 19

Ticket ID Description

DS-42673 Updated the manage-profile setup subcommand to fail if the start-server command
has a non-zero exit code.

DS-42681,
DS-42684

The Periodic Stats Logger can now publish performance statistics generated by the Sideband
API. To enable this, use the included-http-servlet-stat property of the Periodic Stats
Logger.

DS-42682 The Periodic Stats Logger can now publish performance statistics that the SCIM 2 service
generates. To enable this, use the included-http-servlet-stat property of the Periodic
Stats Logger.

DS-42683 The Periodic Stats Logger can now publish performance statistics that the Gateway service
generates. To enable this, use the included-http-servlet-stat property of the Periodic
Stats Logger.

DS-42687 Upgraded to Jetty 9.4.30.

DS-42740 Fixed an issue where the dsconfig list subcommand would not display requested
properties.

DS-42749 To support best practices for JWT security, you must now configure the JWT Access Token
Validator with an explicit list of the JWT signing algorithms that it accepts. For backward
compatibility, this list defaults to the RSA signing algorithms RS256, RS384, and RS512, but we
recommend setting this list to the strict minimum set of signing algorithms needed by the Access
Token Validator.

DS-42751 Added new override-status-code and additional-response-contents attributes to
the Availability State HTTP Servlet Extension. These new attributes can be used to customize
the response code and JSON response body of the servlet.

DS-42794 The PingDataGovernance Policy Administration GUI now provides the Test Suite capability,
allowing policy writers to store and re-run test scenarios.

DS-42802,
DS-41870,
DS-42677,
DS-42660

The Sideband API includes a number of improvements to ease API gateway integration and
troubleshooting.

▪ Preparsed access tokens provided through the access_token field are now processed
more leniently. In particular, you can now express both the scope and aud claims as either
a string or an array of strings.

▪ If an API gateway plugin provides a preparsed access token, but an External API Gateway
Access Token Validator has not been configured or is disabled, the server now records an
error message to the trace log.

▪ If an External API Gateway Access Token Validator cannot parse a preparsed access token
provided by an API gateway plugin, it now records an error message to the trace log.

▪ The Sideband API also fails fast if a request includes fields that require the request-
context-method configuration property to be set to state or request and it is not
correctly configured.

DS-42819 Fixed an issue in which a Sideband API request with a "body" value of "" (an empty
string) could cause PingDataGovernance Server to generate a policy request with an
HttpRequest.RequestBody or HttpRequest.ResponseBody value of "null".

DS-42850 Fixed a typo in the password-expiring template that caused
password_expiration_time_of_day to be printed instead of the password expiration time.

Copyright ©2022

PingDataGovernance | Release Notes | 20

Ticket ID Description

DS-42861 Updated the manage-profile tool logs to include the duration of each step the tool takes. The
new --verbose argument can also be used to display timing information in the tool's console
output.

DS-42872 Added a JSON-formatted stats logger to the server's default configuration. The stats logger is
disabled by default.

DS-42886 Updated noninteractive setup (including manage-profile setup) to allow the password
for the initial root user to be provided in pre-encoded form using the PBKDF2, SSHA256,
SSHA384, or SSHA512 password storage scheme. This eliminates the need to have access to
the clear-text password when setting up the server.

DS-42926 Fixed an issue where PingDataGovernance Server was sometimes unable to automatically
restart following an unplanned reboot. This happened if it was configured to run as a Microsoft
Windows service and was due to a corrupted server status file.

DS-42939 The Administrative Console configuration settings have been updated to account for the new
SSO functionality.

DS-42943 Fixed an issue where the PingDataGovernance Gateway rejected requests with methods such
as GET or DELETE if a message body was included. The Gateway now allows these, unless
advanced setting strict-http-request-validation is set to true.

DS-42952 For Windows only, there can be a hang on start when global configuration property startup-
error-logger-output-location is set to values that contain standard-error. For
Windows only, standard-error values are silently mapped to equivalent standard-output
values.

DS-42963 Updated the manage-profile generate-profile subcommand to ignore files larger than
100 megabytes when generating a server profile. Fixed an issue where many large files in the
server root could cause the tool to run out of memory.

DS-43027 Added the --adminPasswordFile argument to the manage-topology add-server
command, to allow specifying the administrator password with a file rather than with the
command line.

DS-43065 Fixed an issue where the PingDataGovernance Gateway API used status code 500 Internal
Server Error when responding to gateway requests with invalid query syntax. The API now
responds with status code 400 Bad Request.

DS-43073,
DS-43198

Added support for ID Token Validators, which validate the integrity and content of ID tokens
issued by OpenID Connect providers. Use these validators with the OAuth Bearer SASL
Mechanism Handler to enable single sign-on (SSO) for the Administrative Console using an
OpenID Connect provider such as PingOne. Currently, only PingOne is supported for SSO.

DS-43074 Added three built-in identity mappers that you can use to look up administrative accounts stored
in the server configuration: Root DN Users, Topology Admin Users, and All Admin Users.

Copyright ©2022

PingDataGovernance | Release Notes | 21

Ticket ID Description

DS-43288 Updated setup and replace-certificate to improve the way we generate self-signed
certificates and certificate signing requests to make them more palatable to clients.

To reduce the frequency with which administrators had to replace self-signed certificates,
we previously used a very long lifetime for self-signed certificates generated by setup or
replace-certificate. However, some clients (especially web browsers and other HTTP
clients) have started more strenuously objecting to certificates to long lifetimes, so we now
generate self-signed certificates with a one-year validity period. The inter-server certificate
(which is used internally within the server and does not get exposed to normal clients) is still
created with a twenty-year lifetime.

Also, the replace-certificate tool's interactive mode has an improved process to obtain
information to include in the subject DN and subject alternative name extension for self-
signed certificates and certificate signing requests. The following changes have been made in
accordance with CA/Browser Forum guidelines:

▪ When selecting the subject DN for the certificate, we listed a number of common attributes
that can be used, including CN, OU, O, L, ST, and C. We previously indicated that
CN attribute was recommended. We now also indicate that the O and C attributes are
recommended.

▪ When obtaining the list of DNS names to include in the subject alternative name extension,
we previously suggested all names that we could find associated with interfaces on the local
system. In many cases, we now omit nonqualified names and names that are associated
with loopback interfaces. We will also warn about any attempts to add unqualified or invalid
names to the list.

▪ When obtaining the list of IP addresses to include in the subject alternative name extension,
we previously suggested all addresses associated with all network interfaces on the system.
We no longer suggest any IP addresses associated with loopback interfaces, and we
no longer suggest any IP addresses associated in IANA-reserved ranges (for example,
addresses reserved for private-use networks). The tool will now warn about attempts to add
these addresses for inclusion in the subject alternative name extension.

DS-43305 Increased the maximum number of RDN components that a DN can have from 50 to 100.

DS-43376 Updated log publisher logic to reduce the amount of CPU that the server consumes when it is
idle.

DS-43425 The Policy Administration GUI setup and start-server tools now use the
PING_EXTERNAL_BASE_URL environment variable, if it is present, to set the
hostname and port of the Policy Administration GUI's OpenID Connect redirect URI. The
PING_EXTERNAL_BASE_URL environment variable should contain the server's public
hostname and port in the form "hostname:port" or "hostname" (if using the default HTTPS port
of 443).

DS-43480 Updated the system information monitor provider to restrict the set of environment variables
that can be included. Previously, the monitor entry included information about all defined
environment variables, as that information can be useful for diagnostic purposes. However,
some deployments might include credentials, secret keys, or other sensitive information in
environment variables, and that should not be exposed in the monitor. The server will now only
include values from a predefined set of environment variables that are expected to be the most
useful for troubleshooting problems, and that are not expected to contain sensitive information.

DS-43517 Updated the jose4j library used for JWT signing and encryption to version 0.7.2.

Copyright ©2022

PingDataGovernance | Release Notes | 22

Ticket ID Description

No ID Added new Value Processor types that simplify handling of collections in the Trust Framework.
With Collection Filters, you can extract a subset of a collection by defining a boolean expression
that determines which items to keep. With Collection Transforms, you can apply one or more
processors to each item, producing a new value for each item.

No ID Policy rules can now use the new Is In and Is Not In comparisons. These are similar to the
existing Contains and Does Not Contain comparisons, but the comparison works in reverse.
Whereas Contains and Does Not Contain are used to determine whether a policy request
attribute contains or does not contain a value specified by the rule, Is In and Is Not In are used
to determine whether a set of values specified by the rule contains the value of a policy request
attribute.

No ID For use with collections, added repeatable policies and attributes to apply to each item in a
collection to provide more fine-grained decision making.

You can test repeatable attributes during policy development.

Added the Current Repetition Value resolver type to allow resolution against each collection
value in a collection attribute.

No ID You can now configure the Policy Administration GUI during setup to periodically back up its H2
database.

No ID Improved merge conflict and snapshot comparison handling.

No ID Improved audit logging of policy node deletion and cleanup of orphaned policy manager entities
in the Policy Administration GUI.

No ID Trust Framework LDAP Services now use UnboundID LDAP SDK.

No ID You can now configure the values that the Policy Administration GUI sets in its responses for
these HTTP security headers:

▪ X-Frame-Options
▪ Content-Security-Policy
▪ Access-Control-Allow-Origin

You configure these values in an options file. For an example, see the config/options.yml
file.

No ID The Policy Administration GUI includes numerous accessibility improvements, such as
enhanced screen reader support and better keyboard navigation.

No ID The Policy Administration GUI now automatically switches to a new branch upon creation.

No ID The Policy Administration GUI now supports the OAuth 2 state and OpenID Connect nonce
request parameters. These provide better protection against certain classes of security attacks.

No ID To improve UI performance, the Policy Administration GUI now shows only the last 100 new
deployment packages. You can still access older deployment packages using the REST API.

No ID To avoid potentially incorrect results or other unexpected behavior, the Contains operator now
uses stricter comparisons. It no longer supports implicit conversions on the right-hand side of
the comparison.

No ID The policy engine now converts Collection values to their native Java type when interpolated
within a SpEL expression.

No ID Fixed a policy engine issue in which decision responses would not be correctly constructed if
there was an unresolved attribute interpolation in a service's settings.

No ID Attribute values in test scenarios are no longer limited to 4000 characters.

Copyright ©2022

PingDataGovernance | Release Notes | 23

Ticket ID Description

No ID You can no longer generate deployment packages with invalid processing expressions.

No ID Fixed a reporting conflict for identical services when merging a snapshot.

No ID In the Policy Administration GUI, when you drag the last condition of a group outside of the
group, the condition is no longer duplicated.

No ID Fixed an issue in the Policy Administration GUI where you were not prompted to save changes
when navigating away from the new entity creation page with an unsaved entity.

No ID Fixed an issue that restricted the number of root entities in an exported snapshot.

Critical fixes
This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

▪ Addressed an issue that could lead to slow, off-heap memory growth. This only occurred on servers
whose cn=Version,cn=monitor entry was retrieved frequently.

▪ Fixed in: 8.1.0.0
▪ Introduced in: 5.2.0.0
▪ Support identifiers: DS-41301

▪ The following enhancements were made to the topology manager to make it easier to diagnose
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it has
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers but those peer servers
cannot establish connections back to the server within the configured grace period. The alarm is
cleared as soon as there is connection symmetry.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ When creating an encrypted backup of the alarms, alerts, configuration, encryption settings,
schema, tasks, or trust store backends, the password used to generate the encryption key (which
may have been obtained from an encryption settings definition) could have been inadvertently
written into the backup descriptor.

▪ When running certain command-line tools with an argument instructing the tool to read a password
from a file, the password contained in that file could have been written into the server's tool
invocation log instead of the path to that file. Affected tools include backup, create-initial-
config, ldappasswordmodify, manage-tasks, manage-topology, reload-http-
connection-handler-certificates, remove-defunct-server, restore, rotate-
log, and stop-server. Other tools are not affected. Also note that this only includes passwords

Copyright ©2022

PingDataGovernance | Release Notes | 24

contained in files that were provided as command-line arguments; passwords included in the
tools.properties file, or in a file referenced from tools.properties, would not have been
exposed.

In each of these cases, the files would have been written with permissions that make their contents
only accessible to the system account used to run the server. Further, while administrative
passwords might have been exposed in the tool invocation log, neither the passwords for regular
users, nor any other data from their entries, should have been affected. We have introduced new
automated tests to help ensure that such incidents do not occur in the future.

We recommend changing any administrative passwords you fear might have been compromised as
a result of this issue. If you are concerned that the passphrase for an encryption settings definition
might have been exposed, then we recommend creating a new encryption settings definition that
is preferred for all subsequent encryption operations. You also might want to re-encrypt or destroy
any existing backups, LDIF exports, or other data encrypted with a compromised key, and you
might want to sanitize or destroy any existing tool invocation log files that might contain clear-text
passwords.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

▪ The following enhancements were made to the topology manager to make it easier to diagnose
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it has
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.2.1.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers but those peer servers
cannot establish connections back to the server within the configured grace period. The alarm is
cleared as soon as there is connection symmetry.

▪ Fixed in: 7.2.1.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ When creating an encrypted backup of the alarms, alerts, configuration, encryption settings,
schema, tasks, or trust store backends, the password used to generate the encryption key (which
may have been obtained from an encryption settings definition) could have been inadvertently
written into the backup descriptor.

▪ When running certain command-line tools with an argument instructing the tool to read a password
from a file, the password contained in that file could have been written into the server's tool
invocation log instead of the path to that file. Affected tools include backup, create-initial-
config, ldappasswordmodify, manage-tasks, manage-topology, reload-http-
connection-handler-certificates, remove-defunct-server, restore, rotate-
log, and stop-server. Other tools are not affected. Also note that this only includes passwords
contained in files that were provided as command-line arguments; passwords included in the

Copyright ©2022

PingDataGovernance | Release Notes | 25

tools.properties file, or in a file referenced from tools.properties, would not have been
exposed.

In each of these cases, the files would have been written with permissions that make their contents
only accessible to the system account used to run the server. Further, while administrative
passwords might have been exposed in the tool invocation log, neither the passwords for regular
users, nor any other data from their entries, should have been affected. We have introduced new
automated tests to help ensure that such incidents do not occur in the future.

We recommend changing any administrative passwords you fear might have been compromised as
a result of this issue. If you are concerned that the passphrase for an encryption settings definition
might have been exposed, then we recommend creating a new encryption settings definition that
is preferred for all subsequent encryption operations. You also might want to re-encrypt or destroy
any existing backups, LDIF exports, or other data encrypted with a compromised key, and you
might want to sanitize or destroy any existing tool invocation log files that might contain clear-text
passwords.

▪ Fixed in: 7.0.1.3
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

Known issues and limitations
The following items are known issues in the current version of PingDataGovernance Server.

▪ Published throughput and latency stats for SCIM, Sideband, and Gateway requests for the Periodic
Stats Logger are not recorded until the requests are made and the logger is reset.

▪ The Policy Administration GUI produces an error when a user attempts to import an exported snapshot
that contains references to named value processors.

▪ Several known issues can occur when you use the Administrative Console with Tomcat 9.0.31. You can
resolve these issues by upgrading to Tomcat 9.0.33 or later.

▪ If you use the create-systemd-script tool to create a forking systemd service, the service is
stopped by the systemctl stop ping-data-governance.service command. At that time, you
can see the status using the systemctl status ping-data-governance.service command.
That status might contain an indication of failure: Active: failed (Result: exit-code). This
error has to do with the way the service exits. It is harmless.

Previous releases
Release Notes for earlier versions of PingDataGovernance Server are included for reference.

PingDataGovernance Server 8.1.0.5 release notes

Critical fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

Resolved issues

The following issues have been resolved with this release of the Data Governance Server.

Copyright ©2022

PingDataGovernance | Release Notes | 26

Ticket ID Description

DS-43288 Updated setup and the replace-certificate tool
to improve the way we generate self-signed
certificates and certificate signing requests to make
them more palatable to clients.

To reduce the frequency with which administrators
had to replace self-signed certificates, we
previously used a very long lifetime for self-signed
certificates generated by setup or the replace-
certificate tool. However, some clients (especially
web browsers and other HTTP clients) have
started more strenuously objecting to certificates
to long lifetimes, so we now generate self-signed
certificates with a one-year validity period. The
inter-server certificate (which is used internally
within the server and does not get exposed to
normal clients) is still created with a twenty-year
lifetime.

Also, the replace-certificate tool's interactive mode
has been updated to improve the process that it
uses to obtain information to include in the subject
DN and subject alternative name extension for
self-signed certificates and certificate signing
requests. The following changes have been made
in accordance with CA/Browser Forum guidelines:

* When selecting the subject DN for the certificate,
we listed a number of common attributes that
may be used, including CN, OU, O, L, ST, and
C. We previously indicated that CN attribute was
recommended. We now also indicate that the O and
C attributes are recommended as well.

* When obtaining the list of DNS names to include
in the subject alternative name extension, we
previously suggested all names that we could find
associated with interfaces on the local system. In
many cases, we now omit non-qualified names
and names that are associated with loopback
interfaces. We will also warn about any attempts to
add unqualified or invalid names to the list.

* When obtaining the list of IP addresses to include
in the subject alternative name extension, we
previously suggested all addresses associated
with all network interfaces on the system. We no
longer suggest any IP addresses associated with
loopback interfaces, and we no longer suggest any
IP addresses associated in IANA-reserved ranges
(for example, addresses reserved for private-use
networks). The tool will now warn about attempts
to add these addresses for inclusion in the subject
alternative name extension.

Copyright ©2022

PingDataGovernance | Release Notes | 27

Ticket ID Description

DS-44316 Reduced the JVM memory requirements for many
command line tools. This avoids memory pressure
when multiple tools, such as a scheduled collect-
support-data task, are run concurrently to the server
process. For most tools, the initial heap size has
been reduced to 128 MB, and for certain tools the
maximum heap size has capped at 512 MB. On
systems with larger amounts of memory, these
tools previously were allotted unnecessarily large
heaps. The maximum heap size has not been
reduced for any tool that especially benefits from
having more memory.

PingDataGovernance Server 8.1.0.3 Release Notes

Upgrade Considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0.
We encourage deployers to manage server configuration using server profiles, which support deployment
best practices such as automation and Infrastructure-as-Code (IaC). For more information about server
profiles, see the PingDataGovernance Server Administration Guide.

For more considerations, see PingDataGovernance Server 8.1.0.0 Release Notes on page 29.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40650 Updated the collect-support-data tool so you can specify how much data should be
captured from the beginning and end of each log file to include in the support data archive.
You can also specify the capture size when invoking the tool through an administrative task,
recurring task, or extended operation.

DS-42527 Fixed an issue that could cause an exception when creating a resource in SCIM 1.1 using
certain types of DNTemplate.

DS-42609 Fixed an issue in which the Directory REST API could fail to decode certain credentials when
using basic authentication.

PingDataGovernance Server 8.1.0.2 Release Notes

Critical Fixes

This release of the Data Governance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

▪ Addressed an issue that could lead to slow, off-heap memory growth. This only occurred on servers
whose cn=Version,cn=monitor entry was retrieved frequently.

▪ Fixed in: 8.1.0.0
▪ Introduced in: 5.2.0.0
▪ Support identifiers: DS-41301

Copyright ©2022

PingDataGovernance | Release Notes | 28

▪ The following enhancements were made to the topology manager to make it easier to diagnose the
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it has
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.2.1.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers, but those peer servers
cannot establish connections back to the server within the configured grace period. The alarm is
cleared when connection symmetry is achieved.

▪ Fixed in: 7.2.1.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ Fixed in: 7.0.1.3
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

Upgrade Considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0.
We encourage deployers to manage server configuration using server profiles, which support deployment
best practices such as automation and Infrastructure-as-Code (IaC). For more information about server
profiles, see the PingDataGovernance Server Administration Guide.

For more considerations, see PingDataGovernance Server 8.1.0.0 Release Notes on page 29.

Resolved Issues

The following issues have been resolved with this release of the Data Governance Server:

Ticket ID Description

DS-40828 Fixed an issue where some state associated with a
JMX connection was not freed after the connection
was closed. This led to a slow memory leak in
servers that were monitored by an application
that created a new JMX connection each polling
interval.

DS-41964 Fixed an issue with the manage-profile tool
where files in a server profile's dsconfig/
directory without a .dsconfig extension could
cause failures in manage-profile replace-
profile when validating updated dsconfig files.

Copyright ©2022

PingDataGovernance | Release Notes | 29

Ticket ID Description

DS-42456 Fixed an issue where POLICY REQUEST-
SKIPPED messages were being logged when
response processing was not skipped by the
Gateway, rather than when it was skipped.

DS-42687 Upgrade to Jetty 9.4.30.

PingDataGovernance Server 8.1.0.1 Release Notes

Upgrade Considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0.
We encourage deployers to manage server configuration using server profiles, which support deployment
best practices such as automation and Infrastructure-as-Code (IaC). For more information about server
profiles, see the PingDataGovernance Server Administration Guide.

For more considerations, see PingDataGovernance Server 8.1.0.0 Release Notes on page 29.

Critical Fixes

This release has no critical fixes.

PingDataGovernance Server 8.1.0.0 Release Notes

PingDataGovernance 8.1.0.0 Release Notes

Critical fixes

This release of the Data Governance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

▪ Addressed an issue that could lead to slow, off-heap memory growth. This only occurred on servers
whose cn=Version,cn=monitor entry was retrieved frequently.

▪ Fixed in: 8.1.0.0
▪ Introduced in: 5.2.0.0
▪ Support identifiers: DS-41301

▪ The following enhancements were made to the topology manager to make it easier to diagnose
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it has
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers but those peer servers

Copyright ©2022

PingDataGovernance | Release Notes | 30

cannot establish connections back to the server within the configured grace period. The alarm is
cleared as soon as there is connection symmetry.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ When creating an encrypted backup of the alarms, alerts, configuration, encryption settings,
schema, tasks, or trust store backends, the password used to generate the encryption key (which
may have been obtained from an encryption settings definition) could have been inadvertently
written into the backup descriptor.

▪ When running certain command-line tools with an argument instructing the tool to read a password
from a file, the password contained in that file could have been written into the server's tool
invocation log instead of the path to that file. Affected tools include backup, create-initial-
config, ldappasswordmodify, manage-tasks, manage-topology, reload-http-
connection-handler-certificates, remove-defunct-server, restore, rotate-
log, and stop-server. Other tools are not affected. Also note that this only includes passwords
contained in files that were provided as command-line arguments; passwords included in the
tools.properties file, or in a file referenced from tools.properties, would not have been
exposed.

In each of these cases, the files would have been written with permissions that make their contents
only accessible to the system account used to run the server. Further, while administrative
passwords might have been exposed in the tool invocation log, neither the passwords for regular
users, nor any other data from their entries, should have been affected. We have introduced new
automated tests to help ensure that such incidents do not occur in the future.

We recommend changing any administrative passwords you fear might have been compromised as
a result of this issue. If you are concerned that the passphrase for an encryption settings definition
might have been exposed, then we recommend creating a new encryption settings definition that
is preferred for all subsequent encryption operations. You also might want to re-encrypt or destroy
any existing backups, LDIF exports, or other data encrypted with a compromised key, and you
might want to sanitize or destroy any existing tool invocation log files that might contain clear-text
passwords.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

▪ The following enhancements were made to the topology manager to make it easier to diagnose
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it has
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.2.1.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers but those peer servers

Copyright ©2022

PingDataGovernance | Release Notes | 31

cannot establish connections back to the server within the configured grace period. The alarm is
cleared as soon as there is connection symmetry.

▪ Fixed in: 7.2.1.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ When creating an encrypted backup of the alarms, alerts, configuration, encryption settings,
schema, tasks, or trust store backends, the password used to generate the encryption key (which
may have been obtained from an encryption settings definition) could have been inadvertently
written into the backup descriptor.

▪ When running certain command-line tools with an argument instructing the tool to read a password
from a file, the password contained in that file could have been written into the server's tool
invocation log instead of the path to that file. Affected tools include backup, create-initial-
config, ldappasswordmodify, manage-tasks, manage-topology, reload-http-
connection-handler-certificates, remove-defunct-server, restore, rotate-
log, and stop-server. Other tools are not affected. Also note that this only includes passwords
contained in files that were provided as command-line arguments; passwords included in the
tools.properties file, or in a file referenced from tools.properties, would not have been
exposed.

In each of these cases, the files would have been written with permissions that make their contents
only accessible to the system account used to run the server. Further, while administrative
passwords might have been exposed in the tool invocation log, neither the passwords for regular
users, nor any other data from their entries, should have been affected. We have introduced new
automated tests to help ensure that such incidents do not occur in the future.

We recommend changing any administrative passwords you fear might have been compromised as
a result of this issue. If you are concerned that the passphrase for an encryption settings definition
might have been exposed, then we recommend creating a new encryption settings definition that
is preferred for all subsequent encryption operations. You also might want to re-encrypt or destroy
any existing backups, LDIF exports, or other data encrypted with a compromised key, and you
might want to sanitize or destroy any existing tool invocation log files that might contain clear-text
passwords.

▪ Fixed in: 7.0.1.3
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

Upgrade considerations

Keep in mind the following important considerations for upgrading to this version of PingDataGovernance
Server.

General

▪ PingDataGovernance 8.1.0.0 uses a new policy request format that requires changes to the
Trust Framework.

If you are using policies intended for a previous release, you can continue to use your existing
policies by setting the trust-framework-version property of the Policy Decision Service to
v1. If you upgrade your server using the update tool, this property is set for you automatically.

The v1 format is deprecated, however, and you are strongly encouraged to update your
Trust Framework as soon as possible. To do this, load your existing policies in the Policy
Administration GUI and apply the Trust Framework changes by going to Branch Manager#
Merge Snapshot and selecting the resource/policies/upgrade-snapshots/8.0.0.0-
to-8.1.0.0.SNAPSHOT file included with the server. Then, configure PingDataGovernance

Copyright ©2022

PingDataGovernance | Release Notes | 32

Server to issue policy requests using the new Trust Framework by setting the trust-
framework-version property of the Policy Decision Service to v2.

▪ If you are upgrading to PingDataGovernance 8.1.0.0, an updated version of the Policy
Administration GUI is required.

▪ The PingDataGovernance Policy Administration GUI no longer uses the UNIX
environment variable PING_HOSTNAME. Instead, server administrators should use
PING_EXTERNAL_BASE_URL to specify both the domain and the port. For more information,
see the PingDataGovernance Server Administration Guide.

Policy processing and advice

▪ The Allow Attributes advice and the Prohibit Attributes advice have been removed and can no
longer be used. Requests involving policies that refer to these advice types will fail.

▪ The HttpRequest.Headers policy request attribute is not available starting with Trust
Framework version v2. It has been replaced by the HttpRequest.RequestHeaders
and HttpRequest.ResponseHeaders policy request attributes. Update existing
policies or Trust Framework entities that refer to HttpRequest.Headers to refer to
HttpRequest.RequestHeaders.

▪ SCIM 2 requests now include the resource type in the service value during policy processing.
For example, for a SCIM 2 request that affects the "Users" resource type, the service value
will now be "SCIM2.Users" instead of "SCIM2". Existing policy rules or targets that rely on an
exact equality match for "SCIM2" must be updated. For example, a condition of "Service Equals
SCIM2" would need to be updated to "Service Matches SCIM2".

▪ For security, by default, the policy engine's SpEL processor now invokes Java classes only in
the allow-list presented in the PingDataGovernance Server Administration Guide. To use
other classes, add a key to the core section of the Policy Administration GUI's configuration
called AttributeProcessing.SpEL.AllowedClasses with a list of the classes to include.
If you are using embedded PDP mode, add a policy configuration key of the same name to the
PingDataGovernance Server configuration.

PDP API

▪ The XACML-JSON PDP API now requires a different request format. With this new format, you
can make multiple decisions using a single HTTP request. In addition, the response format is
now compliant with the XACML-JSON specification. The 8.0 PDP API request format is no longer
supported. For more information, see the PingDataGovernance Server Administration Guide.

Peer setup and clustered configuration

▪ Peer setup and clustered configuration are deprecated and will be removed in
PingDataGovernance 9.0. We encourage deployers to manage server configuration using server
profiles, which support deployment best practices such as automation and Infrastructure-as-
Code (IaC). For more information about server profiles, see the PingDataGovernance Server
Administration Guide.

▪ If you have upgraded a server that is in a cluster (that is, has a cluster name set in the Server
Instance configuration object) to version 8.1, you will not be able to make cluster configuration
changes until all servers with the same cluster name have been upgraded to version 8.1. If
needed, you could create temporary clusters based on server versions and modify each server's
cluster name appropriately to minimize the impact while you are upgrading.

What's new

These are new features for this release of PingDataGovernance Server:

▪ Updated the Policy Administration GUI for common tasks during policy development. Now the GUI
shows decision trace graphs for the most recent policy decisions, including their attributes. Also,

Copyright ©2022

PingDataGovernance | Release Notes | 33

administrators can reuse and chain together attribute processors as well as add attribute processing as
an additional step to attribute resolution. Combined, this greatly improves the capabilities of attribute
processing while removing any clutter of intermediate attributes in the Trust Framework.

▪ Added more actions for fine-grained enforcement on API and SCIM requests and responses. Using
the modify-headers advice, now policy can modify an API's request and response headers. Using
the regex-replace-attributes advice, now policy can search and replace known or potentially
sensitive values or value patterns within requests and responses.

▪ Updated the core attributes used in policy decisions for SCIM and API transactions to add use cases,
simplify policy testing, and improve performance. Added attributes for the raw OAuth2 Access Token
and the client's IP address. Also, you can mock all HttpRequest child attributes individually during
policy testing in the Policy Administration GUI. This avoids the complexity of testing with a large,
complex HttpRequest mock object.

▪ Improved support for highly automated or orchestrated environments that provide auto-healing and
auto-scaling. A new, simple HTTP status endpoint now reports overall instance health and availability to
a cluster orchestrator like Kubernetes or to a network load balancer like AWS Network Load Balancer.
You can determine overall instance health through the configuration of any combination of internal
monitoring gauges and thresholds.

▪ Updated the Policy Administration GUI to support single sign-on with other OpenID Connect Providers
besides PingFederate.

▪ Changed the Policy Decision Point API to support batches of requests and decision responses.
Previously, you could externalize business logic from non-API use cases, like legacy web applications,
using the PDP API, but only one decision at a time. For better performance, now an enforcement point
can submit a batch of requests and receive a batch of decision responses.

▪ Added TLS security options for REST and LDAP Trust Framework Services that give more flexibility
in preproduction environments and more security in production environments. Now administrators can
relax TLS certificate checks, configure specific certificate trust, and provide client certificates for full
mutual TLS security.

▪ Improved the Policy Administration GUI setup process to support automated deployments and
Docker containers. Now you can use the same deployment scripts or Docker image across different
preproduction and production environments by using environment variables to provide instance- and
environment-specific values. Also, it is now easier to move the policy database to a persistent volume,
thereby retaining policy history across Docker image updates.

▪ Simplified the Policy Administration GUI upgrade process. Now you can use the setup tool to update
an existing Policy Administration GUI. Doing so automatically updates the policy database, if necessary.

▪ Several improvements to collect-support-data to help troubleshoot PingDataGovernance servers
when running in containers. To build an archive of support data outside of the container, administrators
can schedule the collect-support-data tool to run as a recurring task and direct its output to a
volume mounted to a host directory. To get support data on-demand, administrators can use collect-
support-data on a client system, directing it to run the task remotely and download the results.

Known issues / workarounds

The following items are known issues in the current version of PingDataGovernance Server:

▪ The Policy Administration GUI produces an error when a user attempts to import an exported snapshot
that contains references to named value processors.

▪ Several known issues can occur when you use the Administrative Console with Tomcat 9.0.31. You can
resolve these issues by upgrading to Tomcat 9.0.33 or later.

▪ If you use the create-systemd-script tool to create a forking systemd service, the service is
stopped by the systemctl stop ping-data-governance.service command. At that time, you
can see the status using the systemctl status ping-data-governance.service command.
That status might contain an indication of failure: Active: failed (Result: exit-code). This
error has to do with the way the service exits. It is harmless.

Copyright ©2022

PingDataGovernance | Release Notes | 34

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-1046,
DS-1204,
DS-36547

Added support for remotely invoking the collect-support-data tool using an administrative
task and for invoking the tool on a regular basis as a recurring task. The tool has also been
updated to add an outputPath argument to allow specifying the path or name to use for the
output file.

DS-37829 The create-systemd-script tool now creates a "forking" service file because Ping services
are started by a process (the start-server script) that is different than the actual service
process.

DS-38122 Added support for an extended operation that can be used to invoke the collect-support-
data tool from a remote system and stream the output and resulting support data archive back
to the client. The collect-support-data command-line tool has been updated to support
this capability through the new --useRemoteServer argument.

DS-38535 Fixed an issue that could cause the server to generate an administrative alert about an
uncaught exception when trying to send data on a TLS-encrypted connection that is no longer
valid.

DS-39076 The Policy Decision Service's decision-response-view configuration property now accepts
more options to configure the level of detail of records in the policy decision log. For information
about the options, see the Configuration Reference Guide in the server's docs directory.

DS-39587 The payload formats of the include-attributes and exclude-attributes advices are more
permissive. If only one path is needed, you can enter a JSONPath directly; previously, you
had to enter an array of strings. For example, both the payload '$.secret' and the payload
'["$.secret"]' now remove the "secret" attribute from the response.

DS-39733 A new advice type, modify-headers, has been added which can modify both the request
headers before the request to the upstream server is made, and the response headers before
the response is returned to the client.

DS-39734 The advice type regex-replace-attributes is now available. With this advice type, you
can search for attribute values based on a regular expression and replace the values in place.

DS-39791 The "service" value used in policy requests for SCIM 2 operations now includes the SCIM
resource type, using the format "SCIM2.<resource type>". For example, if the current operation
targets the "Users" resource type, then the service value used in the corresponding policy
request will be "SCIM2.Users". This allows policy writers to easily match SCIM 2 requests by
resource type.

DS-39798 Fixed a bug in which SEMI_AGGRESSIVE and AGGRESSIVE JVM Tuning Parameters were
previously allowed to both be selected.

DS-40119 Fixed an issue where the SCIM attributes id, schemas, and meta could be removed using the
Exclude Attributes Advice.

DS-40356 Updated the manage-profile tool to prevent displaying warnings about offline config changes
when starting the server.

Copyright ©2022

PingDataGovernance | Release Notes | 35

Ticket ID Description

DS-40410 Previously, the HttpRequest policy request attribute used by DataGovernance to represent
an HTTP request or response to the policy engine was serialized as a single JSON object.
Each field of HttpRequest is now submitted to the policy engine as a distinct policy request
attribute. This can improve the policy engine's policy request parsing performance and should
also allow policy administrators to more effectively cache and test HttpRequest attributes.

DS-40551 Fixed an issue that could prevent some tools from running properly with an encrypted
tools.properties file.

DS-40567 A license is now always required when using the manage-profile replace-profile tool.

DS-40577 The PingDataGovernance Gateway no longer retains the changes that policy advice performs
on hop-by-hop, resource versioning, or other HTTP headers intended for proxy use.

DS-40649 The Sideband API now accepts prevalidated access token claims provided by an API gateway
plugin. This prevents PingDataGovernance Server from duplicating work already performed by
the API gateway, potentially improving overall performance in some scenarios. For information
about configuring this feature, see the PingDataGovernance Server Administration Guide.

DS-40746 Updated the logic that the server uses to select an appropriate default set of TLS cipher suites.

DS-40767,
DS-41229

Fixed an issue in which a PingDataGovernance Server could return an HTTP 500 error while
logging the policy decision response if using these items:

▪ External PDP mode
▪ The Policy Decision Service with a "decision-tree" decision response view
▪ A policy that uses a service with HTTP authentication

Also, the Policy Decision Logger now records external policy decisions to the policy decision log
as a single line for easier use with the Policy Administration GUI Decision Visualizer.

DS-40790 Server SDK extensions for PingDataGovernance Server no longer support the use of an internal
ScimInterface. This was previously available using the getInternalScimInterface()
method of the BrokerContext class.

DS-40806 Fixed an issue that could cause the shutdown process to stall if the server is configured to use
TCP to communicate with a StatsD endpoint that has become unresponsive.

DS-40823 The PingDataGovernance Policy Administration GUI setup tool now uses relative paths when
configuring the Advice JSON schema files.

DS-40889 Fixed an issue with recurring exec tasks where the working-directory attribute was ignored.

DS-40909 All policy files, including snapshots, deployment packages, and upgrade snapshots, are
now bundled with both PingDataGovernance Server and the PingDataGovernance Policy
Administration GUI in the resource/policies directory.

DS-40963 You can now specify a custom OpenID Connect client ID when setting up the Policy
Administration GUI.

DS-40980 PingDataGovernance Server no longer prevents a server with an expired license from
restarting.

Copyright ©2022

PingDataGovernance | Release Notes | 36

Ticket ID Description

DS-40984 The include-attributes, exclude-attributes, modify-attributes, and filter-
response advice now support request and response bodies that are JSON Arrays as well as
Objects.

DS-41054 Fixed an issue that stopped new extensions from being installed.

DS-41074 Fixed an issue with the way the server reports memory usage after completing an explicitly
requested garbage collection.

DS-41086 Updated the StatsD monitoring endpoint to replace any spaces, commas, or colons with
underscores, and remove and single quotes or double quotes in sent metric lines. This
simplifies parsing of the produced metrics.

DS-41087 The Policy Administration GUI now includes decision evaluation details in decision-
audit.log by default. With this change, policy writers can visualize decisions by copying and
pasting the JSON into the Decision Visualizer.

DS-41115 Setup no longer supports adding servers to a topology with mirrored configuration when run
interactively.

DS-41118 PingDataGovernance now provides a gauge called HTTP Processing (Percent) that measures
the capacity that the server has to process new incoming HTTP requests.

DS-41126 Updated the server to make the general monitor entry available to JMX clients.

DS-41131 The XACML-JSON PDP API now requires a different request format. With this new format,
you can make multiple decisions using a single HTTP request. In addition, the response
format is now compliant with the XACML-JSON specification. For more information, see the
PingDataGovernance Server Administration Guide.

DS-41142 Improved debugging support for Server SDK extensions. If debugging is enabled, the server
will now generate a debug message whenever it invokes an extension. For some extension
methods that return a value, the server will also generate a debug message with that return
value.

DS-41198 Updated the PingDataGovernance setup process to support joining an existing PingDirectory
topology in noninteractive mode.

To view the noninteractive arguments for joining a PingDirectory topology, in the output of
setup --help, look in the "Join an Existing Directory Server Topology Options" section.

Alternatively, after setup is complete, you can run the manage-topology add-server
command to join a PingDirectory topology.

DS-41201,
DS-41615,
DS-41693

You can now configure load-balancing algorithms to automatically detect PingDirectory Servers
that handle SCIM 2 API requests and token owner lookups made by SCIM Token Resource
Lookup Methods. For more information, see the PingDataGovernance Server Administration
Guide.

DS-41235 Updated the cn=Cluster subtree to prevent clustered configuration changes when servers
in the cluster have mixed versions. To make clustered configuration changes, either update
all servers in the cluster to the same version, or temporarily create separate clusters by server
version by changing the cluster-name property on the server instance configuration objects.

Copyright ©2022

PingDataGovernance | Release Notes | 37

Ticket ID Description

DS-41236 To avoid inconsistencies, changing a clustered configuration now requires all servers in the
cluster to be on the same product version. Servers will not pull any clustered configuration from
the master of the cluster if they are on a different product version.

DS-41244 The Policy Administration GUI setup now allows users to define policy configuration keys,
trust store details, and other settings in a YAML file using the --optionsFile command-line
option. For more information, see the PingDataGovernance Server Administration Guide.

DS-41261 Fixed an issue with manage-profile replace-profile where certain configuration
changes for recurring task chains were not being applied.

DS-41264 Fixed an issue where the SCIM Impacted Attributes Provider would return all the attributes of a
SCIM PUT request instead of only those that have been modified.

DS-41265 The embedded PDP now automatically loads new, updated, or deleted policy configuration
keys. Previously, any policy configuration key change required you to restart the embedded
PDP.

DS-41273 The PingDataGovernance Policy Administration GUI setup tool now stores certain
configuration values, including their default values, as environment variables. For example,
the configuration property server.applicationConnectors[0].port has the value
${PING_PORT:-443}. An administrator can override this value by setting a PING_PORT
environment variable before starting the Policy Administration GUI. If the environment variable
is not present, then the GUI uses the default value of 443.

DS-41289 Fixed an issue that prevented password changes for topology administrators unless their
password policy was configured to allow pre-encoded passwords.

DS-41294 Fixed an issue that could cause the PingDataGovernance license to be deleted when joining a
PingDirectory topology using manage-topology add-server.

DS-41301 Critical: Addressed an issue that could lead to slow, off-heap memory growth. This only
occurred on servers whose cn=Version,cn=monitor entry was retrieved frequently.

DS-41309 When setting up the Policy Administration GUI in noninteractive mode, you can now specify the
base URL of an OpenID Connect provider instead of a hostname and port. With this change,
you can use the Policy Administration GUI with OpenID Connect providers that include a
customer-specific ID in their URLs, such as PingOne.

DS-41313,
DS-41800,
DS-41839

PingDataGovernance Server now requires a Trust Framework version to be explicitly specified
in the Policy Decision Service configuration. The Trust Framework version configuration
determines the format used by the server to generate policy requests and must be compatible
with the actual Trust Framework used by your policies. For more information about Trust
Framework versions, see the PingDataGovernance Server Administration Guide.

PingDataGovernance Server will now also raise an alarm and mark the server as
UNAVAILABLE if the Policy Decision Service is not ready to evaluate policies and requires
further configuration. This will happen, for example, after installing the server for the first time.

Copyright ©2022

PingDataGovernance | Release Notes | 38

Ticket ID Description

DS-41329,
DS-41330

Services in the Trust Framework now support more flexible handling of TLS connection
security: A service can use a client certificate provided by a key store to handle mutual TLS
authentication with an external server; also, a service can use a custom trust store to determine
whether the certificate presented by an external server should be accepted. For embedded PDP
mode, you can configure the Policy Decision Service with any necessary key stores or trust
stores using the service-key-store and service-trust-store properties, respectively.

DS-41366 Updated the base monitor entry to include locationName and locationDN attributes if the
server is configured with a location.

DS-41396 Updated the Server SDK to add ClientContext and OperationContext methods for obtaining the
name and DN of the associated client connection policy.

DS-41400 Updated the file servlet HTTP servlet extension to add support for requiring authentication to
access the content. You can limit access to members of a specified set of groups.

DS-41482,
DS-41812

Added the HttpRequest.IPAddress and HttpRequest.AccessToken.access_token
attributes to the default Trust Framework. The HttpRequest.IPAddress attribute
contains the client IP address, while the HttpRequest.AccessToken.access_token
attribute contains the raw access token provided by the client. The latter can be useful when
authenticating to HTTP services from the Trust Framework. Please note that these attributes
are only available when using Trust Framework v2.

DS-41659 DataGovernance will now enter an UNAVAILABLE state when all of the LDAP external servers
backing the UserStoreAdapter are unavailable.

DS-41731 Fixed an issue that could prevent setup from generating a self-signed certificate for systems
with non-ASCII hostnames.

DS-41751,
DS-41752

The values of Trust Framework attributes marked as secret are now recorded to the policy
decision log in encrypted form when using embedded PDP mode.

In addition, the trace logger now supports two new options for the pdp-message-type
property, "info" and "warning". When these options are enabled, the trace log will record
additional details about embedded PDP processing, such as summary information about policy
information provider invocations.

DS-41760 The Policy Administration GUI setup tool now automatically upgrades the policy database if an
older version is detected.

DS-41761 The Policy Administration GUI now allows users to override additional configuration
values at runtime using UNIX environment variables for the policy database credentials
(PING_DB_APP_USERNAME, PING_DB_APP_PASSWORD) and the file location
(PING_H2_FILE). For more information, see the PingDataGovernance Server Administration
Guide.

DS-41762 Fixed an issue where mirrored subtree polling could produce config archive files that were
identical or ignored the configured insignificant attributes list.

DS-41818 Added the --zip argument to the manage-profile generate-profile subcommand,
which you can use to generate a zipped server profile.

DS-41820 Added an administrative task that you can use to generate a server profile. Also added a
corresponding recurring task that you can use to invoke the task on a regular basis.

Copyright ©2022

PingDataGovernance | Release Notes | 39

Ticket ID Description

DS-41821 Added an instance root file servlet to the default configuration. HTTPS requests to /instance-
root by authenticated users with the file-servlet-access privilege will be granted access
to files within the server instance root.

DS-41823 Fixed an issue where using the modify-query advice would cause special characters to be
percent-encoded twice.

DS-41850 Servers running on Linux will now log a warning about possible performance impacts if the
current memory control group has memory.swappiness set to a nonzero value.

DS-41869 Fixed an issue in which the Sideband API would respond with an HTTP 500 error if a request
to /sideband/response was missing required subfields of the request field.

DS-41908 Added a disable-response-processing property to SCIM Resource Types. Use this
property to prevent policy calls for "retrieve" after a "create", "modify", or "replace". Also use it to
prevent policy calls for "retrieve" or "search-results" after a "search".

DS-41909 Added a disable-response-processing property to Gateway API Endpoints. Use this
property to prevent outbound policy calls and advice processing for Gateway requests.

DS-41914 PingDataGovernance users no longer need to set the Decision Node when configuring Policy
External Servers if they are using policy snapshots provided by or created from those provided
with the distribution.

DS-42006 The server now warns the administrator at startup if there are multiple versions of the same jar
listed in the classpath and the first one in the classpath is not the newest one.

DS-42033 Addressed an issue where some tools would throw a NullPointerException if a server was
configured with a custom global result code map.

DS-42150,
DS-42163

Fixed an issue in which the HttpRequest.RequestURI attribute was malformed and the
HttpRequest.QueryParameters attribute was missing during the retrieve phase of policy
processing for SCIM 2 searches.

DS-42218 Fixed an issue in which the PingDataGovernance Gateway generated error responses that did
not include a correlation ID.

DS-42387 Updated the manage-profile generate-profile subcommand to exclude files in the
ldif/ and bak/ directories by default when generating a server profile. If necessary, you can
manually include those directories using the --includePath argument.

No ID In the Policy Decision Point, improved LDAP service executor thread safety and XML
interpolation. Also, added support in the HTTP service executor for MA-TLS.

No ID Fixed an issue in the Policy Decision Point in which services were called twice when an
Attribute is marked as secret and used in a Statement.

No ID In the PingDataGovernance Policy Administration GUI, you can now resolve branch merge
conflicts within Version Control. Also, branch merges no longer break when merging a source
branch with a deleted entity to a target branch where that entity still exists.

Copyright ©2022

PingDataGovernance | Release Notes | 40

Ticket ID Description

No ID In the Policy Administration GUI:

▪ The Library has been promoted to a separate subsection of the Policy Manager.
▪ The previous selected entity is now selected when switching back from tabs in Trust

Framework.
▪ The use of language in the UI has been cleaned up. Toolbox is now Components, and editor

screens are no longer postfixed with Editor.
▪ The GUI can now parse testing responses with failed value processing.

No ID Fixed an issue in the Policy Administration GUI in which changes were lost when you reordered
Saved Rules.

No ID Fixed an issue in the Policy Administration GUI in which creating a condition on a constant
Attribute Resolver would throw an error when selecting an Attribute comparand.

No ID The Policy Administration GUI now maintains a buffer of recent policy decision requests that
you can view in the Decision Visualizer. This view provides useful details about policy decision
requests and responses, attribute resolution, and service calls that would otherwise only be
available in the server's policy decision log.

No ID This release of the Policy Administration GUI includes various improvements to processors and
attribute resolvers:

▪ You can now give a custom name to attribute resolvers.
▪ You can now give a custom name to all processors, including processors defined within

another Trust Framework entity. For example, you can name a processor defined within an
attribute.

▪ Anywhere you can define a processor, you can also define a chain of processors.

No ID HTTP services you define in the Trust Framework no longer perform hostname validation if
server certificate validation is set to No Validation.

No ID When you define a new policy in the Policy Administration GUI, the default combining algorithm
for the new policy is now The first applicable will be the final decision. This algorithm stops
evaluating as soon as a decision other than NOT_APPLICABLE is reached. The previous
default combining algorithm was Unless One Decision is Deny, the Decision will be Permit.

No ID Fixed an issue in which the Policy Administration GUI login page could fail to behave correctly
when loaded directly from a URL or through the web browser history.

No ID Fixed an issue in the Policy Administration GUI in which importing a snapshot would fail with the
error message "Unable to decode object".

No ID Fixed various drag-and-drop issues in the Policy Administration GUI.

No ID Fixed a policy engine issue in which a validation exception could be thrown if an attribute
containing a processor with named attributes was interpolated in an advice payload.

No ID The following changes to data types have been made in the policy engine:

▪ The Date Time value type has been deprecated in place of four new types: Date, Time,
Date-Time, and Zoned Date-Time.

▪ The Time Period value type has been deprecated in place of two new types: Duration (an
amount of time using units such as seconds or milliseconds) and Period (an amount of time
expressed in calendar units, such as days or months).

Copyright ©2022

PingDataGovernance | Release Notes | 41

Ticket ID Description

No ID Fixed an issue in which multiple uses of the system "Current DateTime" attribute resolver in a
single decision request or batch of requests did not yield the same value.

No ID Fixed an issue in the policy engine in which Zoned Date Time values were not represented in
textual form using the correct ISO-8601 encoding.

No ID Fixed a policy engine issue in which converting the string "-1" to a boolean would yield a result
of False. This will now cause a type conversion error.

No ID Fixed a policy engine issue in which converting the number -1 to a boolean would yield a result
of False. This will now return True.

PingDataGovernance Server 8.0.0.5 release notes

Critical fixes

This release of the Data Governance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

No critical issues have been identified.

PingDataGovernance Server 8.0.0.3 Release Notes

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | Release Notes | 42

Ticket ID Description

DS-43288 Updated setup and the replace-certificate tool to improve the way we generate self-
signed certificates and certificate signing requests to make them more palatable to clients.

To reduce the frequency with which administrators had to replace self-signed certificates, we
previously used a very long lifetime for self-signed certificates generated by setup or the
replace-certificate tool. However, some clients (especially web browsers and other
HTTP clients) have started more strenuously objecting to certificates with long lifetimes, so we
now generate self-signed certificates with a one-year validity period. The inter-server certificate
(which is used internally within the server and does not get exposed to normal clients) is still
created with a twenty-year lifetime.

Also, the replace-certificate tool's interactive mode has been updated to improve the
process that it uses to obtain information to include in the subject DN and subject alternative
name extension for self-signed certificates and certificate signing requests. The following
changes have been made in accordance with CA/Browser Forum guidelines:

▪ When selecting the subject DN for the certificate, we listed a number of common attributes
that might be used, including CN, OU, O, L, ST, and C. We previously indicated that
CN attribute was recommended. We now also indicate that the O and C attributes are
recommended as well.

▪ When obtaining the list of DNS names to include in the subject alternative name extension,
we previously suggested all names that we could find associated with interfaces on the local
system. In many cases, we now omit non-qualified names and names that are associated
with loopback interfaces. We will also warn about any attempts to add unqualified or invalid
names to the list.

▪ When obtaining the list of IP addresses to include in the subject alternative name extension,
we previously suggested all addresses associated with all network interfaces on the system.
We no longer suggest any IP addresses associated with loopback interfaces, and we
no longer suggest any IP addresses associated in IANA-reserved ranges (for example,
addresses reserved for private-use networks). The tool now warns about attempts to add
these addresses for inclusion in the subject alternative name extension.

DS-43480 Updated the system information monitor provider to restrict the set of environment variables
that can be included. Previously, the monitor entry included information about all defined
environment variables, which can be useful for diagnostic purposes. However, some
deployments might include credentials, secret keys, or other sensitive information in
environment variables, and that should not be exposed in the monitor. The server now only
includes values from a predefined set of environment variables that are expected to be the most
useful for troubleshooting problems and are not expected to contain sensitive information.

DS-38535 Fixed an issue that could cause the server to generate an administrative alert about an
uncaught exception when trying to send data on a TLS-encrypted connection that is no longer
valid.

DS-43632 Fixed an issue where the "format" field is omitted from the list of operational attribute schemas
in the Directory REST API.

PingDataGovernance Server 8.0.0.2 Release Notes

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40551 Fixed an issue that could prevent some tools from running properly with an encrypted
tools.properties file.

Copyright ©2022

PingDataGovernance | Release Notes | 43

Ticket ID Description

DS-41332 The use of an internal ScimInterface for Server SDK extensions is now deprecated. Support
for this was removed from PingDataGovernance Server 8.1.0.0. This was previously available
using the getInternalScimInterface() method of the BrokerContext class.

DS-40828 Fixed an issue where some state associated with a JMX connection was not freed after the
connection was closed. This led to a slow memory leak in servers that were monitored by an
application that created a new JMX connection each polling interval.

DS-42609 Fixed an issue in which the Directory REST API could fail to decode certain credentials when
using basic authentication.

DS-41289 Fixed an issue that prevented password changes for topology administrators unless their
password policy was configured to allow pre-encoded passwords.

DS-41236 To avoid inconsistencies, changing clustered configuration now requires all servers in the
cluster to be on the same product version. Servers will not pull any clustered configuration from
the master of the cluster if they are on a different product version.

DS-41235 Updated the cn=Cluster subtree to prevent clustered configuration changes when servers
in the cluster have mixed versions. To make clustered configuration changes, either update
all servers in the cluster to the same version, or temporarily create separate clusters by server
version by changing the cluster-name property on the server instance configuration objects.

DS-41261 Fixed an issue with manage-profile replace-profile where certain configuration
changes for recurring task chains were not being applied.

DS-41126 Updated the server to make the general monitor entry available to JMX clients.

DS-41054 Fixed an issue that stopped new extensions from being installed.

DS-42812 Upgraded to jetty 9.4.30.

DS-41074 Fixed an issue with the way the server reports memory usage after completing an explicitly
requested garbage collection.

DS-42218,
DS-42232

Fixed an issue in which the PingDataGovernance Gateway generated error responses that did
not include a correlation ID.

DS-41234,
DS-41264

Fixed an issue where the SCIM Impacted Attributes Provider would return all the attributes of a
SCIM PUT request instead of only those that have been modified.

PingDataGovernance Server 8.0.0.1 Release Notes

Upgrade Consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 8.0.0.1, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Critical Fixes

This release of the Data Governance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

Copyright ©2022

PingDataGovernance | Release Notes | 44

▪ Addressed an issue that could lead to slow, off-heap memory growth. This only occurred on servers
whose cn=Version,cn=monitor entry was retrieved frequently.

▪ Fixed in: 8.1.0.0
▪ Introduced in: 5.2.0.0
▪ Support identifiers: DS-41301

▪ The following enhancements were made to the topology manager to make it easier to diagnose
connection errors:

▪ Added monitoring information for all the failed outbound connections (including the time since it ha
been failing and the last error message seen when the failure occurred) from a server to one of its
configured peers and the number of failed outbound connections.

▪ Added alarms/alerts for when a server fails to connect to a peer server within a configured grace
period.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38334 SF#00655578

▪ The topology manager now raises a mirrored-subtree-manager-connection-asymmetry
alarm when a server can establish outbound connections to its peer servers but those peer servers
cannot establish connections back to the server within the configured grace period. The alarm is
cleared as soon as there is connection symmetry.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38344 SF#00655578

▪ Fixed two issues in which the server could have exposed some clear-text passwords in files on the
server file system.

▪ When creating an encrypted backup of the alarms, alerts, configuration, encryption settings,
schema, tasks, or trust store backends, the password used to generate the encryption key (which
may have been obtained from an encryption settings definition) could have been inadvertently
written into the backup descriptor.

▪ When running certain command-line tools with an argument instructing the tool to read a password
from a file, the password contained in that file could have been written into the server's tool
invocation log instead of the path to that file. Affected tools include backup, create-initial-
config, ldappasswordmodify, manage-tasks, manage-topology, reload-http-
connection-handler-certificates, remove-defunct-server, restore, rotate-
log, and stop-server. Other tools are not affected. Also note that this only includes passwords
contained in files that were provided as command-line arguments; passwords included in the
tools.properties file, or in a file referenced from tools.properties, would not have been
exposed.

In each of these cases, the files would have been written with permissions that make their contents
only accessible to the system account used to run the server. Further, while administrative
passwords might have been exposed in the tool invocation log, neither the passwords for regular
users, nor any other data from their entries, should have been affected. We have introduced new
automated tests to help ensure that such incidents do not occur in the future.

We recommend changing any administrative passwords you fear might have been compromised as
a result of this issue. If you are concerned that the passphrase for an encryption settings definition
might have been exposed, then we recommend creating a new encryption settings definition that
is preferred for all subsequent encryption operations. You also might want to re-encrypt or destroy
any existing backups, LDIF exports, or other data encrypted with a compromised key, and you

Copyright ©2022

PingDataGovernance | Release Notes | 45

might want to sanitize or destroy any existing tool invocation log files that might contain clear-text
passwords.

▪ Fixed in: 7.3.0.0
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-38897 DS-38908

Known Issues/Workarounds

The following item is a known issue in the current version of PingDataGovernance Server:

▪ The internal SCIM interface in the BrokerContext class of the Server SDK has been deprecated. It will
be removed in a future version of the product. Extensions that need to interact with the SCIM service
should use an HTTP client SDK or other means.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance.

Ticket ID Description

DS-40532 Added a logging-error-behavior property
to the log publisher, periodic stats logger plugin,
and monitor history plugin configuration that you
can use to specify the behavior the server should
exhibit if an error occurs while attempting logging-
related processing. By default, the server preserves
its previous behavior of writing a message to
standard error; however, you can configure it to
enter lockdown mode on a logging error. In this
mode, the server reports itself as UNAVAILABLE
and only accepts requests from accounts with the
lockdown-mode privilege and only from clients
communicating over a loopback interface.

DS-40767, DS-41229 Fixed an issue in which a PingDataGovernance
Server could return an HTTP 500 error while
logging the policy decision response if using these
items:

▪ External PDP mode
▪ The Policy Decision Service with a "decision-

tree" decision response view
▪ A policy that uses a service with HTTP

authentication

Also, the Policy Decision Logger now records
external policy decisions to the policy decision
log as a single line for easier use with the Policy
Administration GUI Log Visualizer.

DS-40980 PingDataGovernance Server no longer prevents a
server with an expired license from restarting.

Copyright ©2022

PingDataGovernance | Release Notes | 46

Ticket ID Description

DS-41087 The Policy Administration GUI now includes
decision evaluation details in the decision-
audit.log by default. With this change, policy
writers can visualize decisions by copying and
pasting the JSON into the Log Visualizer.

DS-41301 Addressed an issue that could lead to slow, off-
heap memory growth. This only occurred on
servers whose cn=Version,cn=monitor entry
was retrieved frequently.

PingDataGovernance Server 8.0.0.0 Release Notes

PingDataGovernance 8.0.0.0 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of the PingDataGovernance Server:

▪ Changes have been made to the Trust Framework in the default policies shipped with
PingDataGovernance Server. See the PingDataGovernance Server Administration Guide for
instructions on updating existing policy deployments.

▪ Token Resource Lookup Methods, which are invoked after access token validation to obtain an access
token owner's attributes from an external identity store, have been updated so that they do not strictly
require SCIM. In this release, the existing SCIM-based method is provided, in addition to a new ability
to create custom Token Resource Lookup Methods using the Server SDK.

▪ Token Resource Lookup Methods which were configured in existing deployments will be automatically
migrated as SCIM Token Resource Lookup Methods during upgrade. Any existing dsconfig scripts that
create Token Resource Lookup Methods should be updated to specify the --type parameter with the
value "scim" before using these scripts with an upgraded server.

▪ An issue has also been fixed in which Token Resource Lookup Methods were not invoked after
validating an access token with an Access Token Validator which was created using the Server SDK.
The TokenValidationResult object returned by third-party Access Token Validators no longer includes
the tokenOwner field, and extensions that set this field must be updated.

▪ API Endpoints, which were introduced in 7.3.0.0, have been renamed to Gateway API endpoints as of
version 7.3.0.2.

WARNING: When performing an update, existing API Endpoint configuration objects are migrated
automatically. To reflect this change, manually update your dsconfig scripts and other automated
deployments or configurations.

▪ The Allow Attributes and Prohibit Attributes advices have been deprecated. If a deployment requires the
behavior that these advices provided, use the Server SDK to implement the appropriate behavior.

▪ Changes to the server configuration in this release of PingDataGovernance are incompatible with
previous releases. This entails special consideration when upgrading a topology of servers that were
set up using the setup tool's peer setup option. After a server has been upgraded to the new version, an
admin must manually apply configuration changes that could not be automatically applied by the update
tool. The update tool will print out the instructions on how to do this.

▪ Changes to the server configuration in this release of PingDataGovernance are incompatible with
previous releases. This entails special consideration when reverting a topology of servers to their
previous versions. All servers must be put into their own cluster before running revert-update using a
dsconfig command like the following:

dsconfig set-server-instance-prop --instance-name <server-instance-name> \

Copyright ©2022

PingDataGovernance | Release Notes | 47

--set cluster-name:<unique-cluster-name>

In the previous command, it is recommended that the cluster name be set to the server instance name,
which is guaranteed to be unique.

▪ If you are upgrading from PingDataGovernance 7.3.0.x to 8.0.0.0, an updated version of the Policy
Administration GUI is required

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 8.0.0.0, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

What's New

These are new features for this release of the PingDataGovernance Server:

▪ Use Server Profiles to reduce risk and improve consistency following the DevOps principle of
infrastructure-as-code. Administrators can export the configuration of a PingDataGovernance instance
to a directory of text files called a Server Profile, track changes to these files in version control like Git,
and install new instances of PingDataGovernance or update existing instances of PingDataGovernance
from a Server Profile. Server Profiles support variable substitution in order to remove the settings
unique to each pre-production or production environment from the Server Profile that is stored in
version control.

▪ Use PingDataGovernance with existing API Lifecycle Gateways. Previously, the PingDataGovernance
Server functioned only as a reverse proxy. A new Sideband API introduces an alternate deployment
mode in which PingDataGovernance Server uses a plugin to connect to an existing API Lifecycle
Gateway. In sideband deployment, the API Lifecycle Gateway handles requests between API clients
and backend API services. The integration plugin intercepts all data and passes it through the
PingDataGovernance Sideband API. PingDataGovernance continues to enforce policy, authorizing
requests and responses, and filtering or modifying request and response data.

▪ Improved handling of sensitive data through API Lifecycle Gateways. The Sideband API, which is
the integration method between API Lifecycle Gateways and PingDataGovernance (introduced in
7.3.0.2), now supports filtering and modifying of API responses, in addition to authorizing requests.
In this configuration, the integration plugin intercepts all response data, and passes it through the
PingDataGovernance server, which filters and modifies the response data based on policies.

▪ Use external authorization in non-API use cases. Organizations can now externalize the authorization
logic from other enforcement points, like legacy web applications, and manage these authorization
policies centrally in PingDataGovernance. With this licensing option, other authorization enforcement
points can call into the core policy engine of PingDataGovernance via a Policy Decision Point API (PDP
API) that complies with the XACML JSON Profile Request API.

▪ More API request and response modification capabilities. Policy administrators can take advantage of
new advice to replace JSON data values, even attributes that are deeply nested within API requests or
responses. Also, administrators can define policy to manipulate the query string of API requests, useful
for limiting upstream API calls based on the attributes of the caller or context.

▪ Additional HTTP request/response data is now provided to policies when an outbound response is
processed by either the API Security Gateway or the Sideband API. A policy request for an outbound
response may now include the following attributes, in addition to those already supported:

▪ HttpRequest.Response
▪ HttpRequest.RequestHeaders
▪ HttpRequest.RequestBody
▪ HttpRequest.ResponseHeaders
▪ HttpRequest.AccessToken
▪ TokenOwner

The existing HttpRequest.Headers policy request attribute is deprecated and will be removed in a
future release of PingDataGovernance.

Copyright ©2022

PingDataGovernance | Release Notes | 48

Known Issues/Workarounds

The following are known issues in the current version of the PingDataGovernance Server:

▪ When the PDP API receives a valid request, it first authorizes the client request itself before sending
the client's policy request to the policy engine. As currently implemented, the PDP API ignores any
advices in the decision, so the policy writer has no control over either the HTTP status code or the error
message.

▪ The following are suggested solutions for problems with slow DNS:

▪ Maintain a connection pool in the client app rather than opening new connections for each bind.
▪ Add appropriate records, including PTR records, to DNS.
▪ Add options timeout:1 or options single-request in the /etc/resolv.conf file.
▪ If IPv6 requests specifically are causing issues, add -Djava.net.preferIPv4Stack=true to the

start-server.java-args line in the PingDirectory config/java.properties file, run bin/
dsjavaproperties, and restart the server to stop the issuance of IPv6 PTR requests.

▪ Some server tools, such as collect-support-data and rebuild-index, will fail with errors if
they are run with an encrypted tools.properties file.

Workaround: Add the --noPropertiesFile argument to the server tools to prevent them from
pulling information from the encrypted file.

▪ The working directory value used by exec tasks is not implemented for recurring exec tasks.
▪ Deploying the Admin Console to an external container using JDK 11 requires downloading the following

dependencies and making them available at runtime (for example, by copying them to the WEB-INF/
lib directory of the exploded WAR file).

▪ groupId:jakarta.xml.bind, artifactId:jakarta.xml.bind-api, version:2.3.2
▪ groupId:org.glassfish.jaxb, artifactId:jaxb-runtime, version:2.3.2

Workaround: Deploy the Console in an external container using JDK 8.

Resolved Issues

The following issues have been resolved with this release of the PingDataGovernance Server:

Ticket ID Description

DS-17278 Added a cn=Server Status Timeline,cn=monitor monitor
entry to track a history of the local server's last 100 status changes and
their timestamps. Updated the LDAP external server monitor to include
attributes tracking health check state changes for external servers. The
new attributes include the number of times a health check transition
has occurred, timestamps of the most recent transitions, and messages
associated with the most recent transitions.

DS-37504, DS-38765,
DS-39011

Fixed an issue in the Passthrough SCIM resource type that could cause
an access token validator's token subject lookup to fail if the user store
was unavailable when PingDataGovernance Server was started. This
issue would typically manifest as a SCIM schema error in the debug
trace log, such as "Attribute uid in path uid is undefined."

DS-37565 A new advice type has been added, modify-attributes, which can
modify the values of attributes.

Copyright ©2022

PingDataGovernance | Release Notes | 49

Ticket ID Description

DS-37720 Added Token Resource Lookup Methods as a new type of Server SDK
extension. A Token Resource Lookup Method can be used to customize
the way that PingDataGovernance looks up access token owners to
populate the TokenOwner attribute used to make policy decisions.

For example, a developer could build a Token Resource Lookup Method
that maps an access token subject to an identity stored in an RDBMS or
an arbitrary REST API.

DS-37881 The PingFederate Access Token Validator will now refresh its cached
value of the PingFederate server's token introspection endpoint. A
new attribute, endpoint-cache-refresh, has been added to the
PingFederate Access Token Validator, which will determine how often
this refresh occurs.

DS-37955 To support multiple trace loggers, each trace logger now has its own
resource key, which is shown in the Resource column in the output of
status. This key allows multiple alarms, due to sensitive message types
for multiple trace loggers.

DS-38053 The JWT Access Token Validator no longer requires a restart after a
change to one of its signing certificates.

DS-38515 The requestURI, requestQueryParams, headers, and
correlationID attributes of the HTTP request have been made
available when constructing an Error Template.

DS-38560 Updated manage-profile replace-profile to apply configuration
changes directly, when possible. If the new server profile used by
replace-profile has changed only the dsconfig batch files from
the original profile, then only the dsconfig files are applied. If no
changes are detected between profiles, replace-profile takes no
action. If changes other than dsconfig are detected, the full replace-
profile process is followed.

DS-38597 The Policy Administration GUI setup has been redesigned, allowing
users to generate configuration through a command-line tool more
consistent with other Ping products.

DS-38777 Added support for updating the server version during manage-profile
replace-profile. The server must have been originally set up with a
server profile.

DS-38832 Fixed an issue that could cause the server to leak a small amount of
memory each time it failed to establish an LDAP connection to another
server.

DS-38832 A property has been added to Advice types that can limit their
application to PERMIT or DENY decisions.

DS-38863 Updated the manage-profile setup subcommand to set a server's
cluster name to match its instance name by default. This prevents
servers in the same replication topology from being in the same
cluster, reducing the risk of unintentionally overwriting parts of an
existing server's configuration in a DevOps environment. The --
useDefaultClusterName argument can be used to leave the cluster
name unchanged.

Copyright ©2022

PingDataGovernance | Release Notes | 50

Ticket ID Description

DS-38867 Updated the PBKDF2 password storage scheme to add support
for variants that use the 256-bit, 384-bit, and 512-bit SHA-2 digest
algorithms. At present, the SHA-1 variant remains the default to
preserve backward compatibility with older versions.

Also, in accordance with the recommendations in NIST SP 800-63B, we
have increased the default iteration count from 4096 to 10,000, and the
default salt length from 64 bits to 128 bits.

DS-38869 Updated the remove-defunct-server tool's --ignoreOnline
option. When using --ignoreOnline in a mixed-version environment,
all servers must support the option.

DS-38968 A new advice type, modify-query, has been added which can modify
the request query parameters before the request to the upstream server
is made.

DS-39037 The provided PingDataGovernance policies and deployment packages
now apply access token validation policies to inbound, SCIM, and
OpenBanking requests only. With this change, an access token is no
longer required to issue a Sideband API response request.

DS-39176, DS-39308 Updated the Groovy scripting language version to 2.5.7. For a list of
changes, go to groovy-lang.org and view the Groovy 2.5 release notes.

As of this release, only the core Groovy runtime and the groovy-json
module are bundled with the server. To deploy a Groovy-scripted
Server SDK extension that requires a Groovy module not bundled
with the server, such as groovy-xml or groovy-sql, download the
appropriate jar file from groovy-lang.org and place it in the server's lib/
extensions directory.

DS-39253 Added a replace-certificate tool, which can help an administrator
replace the listener or inter-server certificate for a server instance.

DS-39322 Added support for PingDataGovernance to the manage-profile tool
and its subcommands.

DS-39490, DS-39616 The API Endpoint configuration type has been renamed to Gateway API
Endpoint.

Any existing dsconfig scripts referencing an API Endpoint should
be updated. For example, a dsconfig command of create-api-
endpoint would need to be changed to create-gateway-api-
endpoint.

DS-39518 Fixed an issue in which escaped characters in schema extensions may
not be handled properly. If used in attribute type constraints (such as X-
VALUE-REGEX), this could cause unexpected or incorrect behavior.

DS-39564 Fixed an issue in which the Gateway would respond with a 404 for
requests handled by an API Endpoint with an inbound-base-path of "/".

DS-39592 HTTP External Servers have a new attribute, ssl-cert-nickname,
which defines the alias of a specific certificate within their keystore to be
used as a client certificate.

Copyright ©2022

http://groovy-lang.org
http://groovy-lang.org

PingDataGovernance | Release Notes | 51

Ticket ID Description

DS-39593 Fixed an issue where policy decision logs contained content that was
considered invalid by the Policy Administration GUI Log Visualizer.

DS-39603 Fixed an issue where Server SDK extensions could not be configured by
dsconfig batch files in the manage-profile tool.

DS-39626, DS-40357 The trace log publisher will now record an access token's scopes after
the token is successfully validated.

DS-39643 Fixed an issue where a PUT request that attempted to delete less
than 50 percent of the total items of a multivalued sub-attribute object
resulted in the deletion of all items for that object.

DS-39654 Added support for the --topologyFilePath argument to the
manage-topology add-server subcommand.

DS-39671 Updated the manage-topology add-server subcommand to require
being run from the older server in a mixed-version environment.

DS-39681 When PingDataGovernance receives a 401 Unauthorized response from
an external policy decision server, it will now convert the status to a 503
Service Unavailable for the upstream client.

DS-39715 Updated the Server SDK to add support for sending email messages.

DS-39735 The Server SDK's Advice API has been updated to provide the ability to
modify multiple attributes of an HTTP request/response rather than just
the body. Existing Advice extensions must be updated to use the new
API.

DS-39857 Added the StatsD monitoring endpoint. When the Stats Collector Plugin
is enabled, this endpoint sends metric data from the server in StatsD
format to the configured destination.

DS-39877 Fixed an issue in which using an empty Error Template would cause the
Sideband API to respond with a 500 Internal Server Error.

DS-39908 Added a new JVM-default trust manager provider that can be used to
automatically trust any certificate signed by an authority included in the
JVM's default set of trusted issuers. Also, updated other trust manager
providers to offer an option to use the JVM-default trust addition to the
trust that they normally provide.

DS-39913 Fixed a rare NullPointerException that could occur when recording
advice metadata to the policy decision log.

DS-40114 Added a new cn=Status Health Summary,cn=monitor monitor
entry that provides a summary of the server's current assessment of
its health. This simplifies monitoring with third party tools that support
retrieving monitoring data over JMX. The Periodic Stats Logger has also
been updated to allow some of this monitoring information to be logged.
No new information is logged by default.

DS-40234 The Open Banking account request endpoint no longer requires the
x-fapi-financial-id to be present. Instead, it now includes
the configured fapi-financial-id value in policy requests via
Gateway.FapiFinancialId attribute. A policy can choose to deny
account requests based on the presence and value of this attribute.

Copyright ©2022

PingDataGovernance | Release Notes | 52

Ticket ID Description

DS-40332 A check has been added to all DataGovernance policy requests which
will cause them to fail if the version of the configured external Ping
DataGovernance Policy Administration Point is not the same as the
DataGovernance server. This will prevent potential errors that may
otherwise arise from mismatched versions.

DS-40344 The API security gateway no longer forwards CORS-related request
headers to upstream API servers. Likewise, it no longer forwards CORS-
related response headers to clients. To use CORS with an API protected
by the API security gateway, assign an HTTP Servlet Cross Origin
Policy to the Gateway HTTP Servlet Extension.

DS-40354 Fixed a problem with config-diff when writing properties that span
multiple lines using the --prettyPrint argument.

DS-40360 A new gauge has been created, DataGovernance Servlet Average
Response Time (Milliseconds), which watches the average response
time from Ping DataGovernance servlets. This gauge can generate
alarms and affect the server's AVAILABLE or DEGRADED state.
You must configure the gauge for it to have any effect; see the
DataGovernance Server Administration Guide for details.

DS-40366 Fixed an issue where the server was attempting to connect by an IP
address rather than a hostname when DNS lookup was successful.

DS-40371, DS-40382,
DS-40427

SCIM 2 search responses can now be authorized and filtered with
an optimized authorization mode that uses a single policy request to
process the entire result set. This authorization mode is optional; by
default, the server will continue to create a policy request for each
member of a result set.

This authorization mode is enabled on a per-request basis. To
enable, a policy that targets the 'SCIM2' service and the search
action must provide an advice with the ID combine-scim-search-
authorizations but with no payload. The subsequent search
response is then authorized using a single policy request with the
'SCIM2' service and the search-results action. Any advices returned
in the policy results are applied iteratively to each SCIM resource in the
result set.

For more information, see the PingDataGovernance Server
Administration Guide.

DS-40372 Added a new PDP API endpoint servlet extension. The PDP API
endpoint accepts XACML-JSON requests and hands them off to the
policy engine. It then converts the resulting policy decision to a XACML-
JSON response for consumption by the client. To use this feature,
customers must configure their PingDataGovernance servers with PDP
API-enabled licenses.

DS-40377 Added support for logging to a JSON file in the Periodic Stats Logger
Plugin.

DS-40517 Added metrics for status summary, replication database, and LDAP
changelog to the Stats Collector Plugin.

Copyright ©2022

PingDataGovernance | Release Notes | 53

Ticket ID Description

DS-40542, DS-40554 Because the API Security Gateway may alter requests and responses
as a result of policy processing, it no longer forwards request and
response headers used for HTTP resource versioning and conditional
requests. This includes the following headers: If-None-Match, If-
Modified-Since, If-Unmodified-Since, ETag, and Last-
Modified.

DS-40543 Updated manage-profile replace-profile to copy the tool log
file to the server being updated.

DS-40556 Added support for specifying a working directory for exec tasks.

DS-40730 Updated the encrypt-file tool to prevent using the same path for
both the input file and the output file.

DS-40771 Added a --duration argument to collect-support-data. When used,
only the log files covering the specified duration before the current time
will be collected.

DS-40784 Access Token Validator extensions built with the Server SDK may now
provide the original access token value in addition to parsed claims
when building a TokenValidationResult object. This access token value
may be used by Token Resource Lookup Method extensions that do not
need the parsed token claims to perform a subject lookup.

PingDataGovernance Server 7.3.0.10 release notes

Critical fixes

This release of PingDataGovernance Server addresses critical issues from earlier versions. Update all
affected servers appropriately.

▪ Fixed an issue where mirrored subtree polling could produce config archive files that were identical or
ignored the configured insignificant attributes list.

▪ Fixed in: 7.3.0.10
▪ Introduced in: 7.0.0.0
▪ Support identifiers: DS-41762 SF#00675207 SF#00683777

Resolved issues

The following issues have been resolved with this release of the Data Governance Server.

Ticket ID Description

DS-41762 Fixed an issue where mirrored subtree polling could
produce config archive files that were identical or
ignored the configured insignificant attributes list.

PingDataGovernance Server 7.3.0.9 Release Notes

Upgrade Considerations

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0. If
you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server profiles to manage
server configuration. Introduced in PingDataGovernance 8.0, server profiles support deployment best

Copyright ©2022

PingDataGovernance | Release Notes | 54

practices such as automation and Infrastructure-asCode (IaC). For more information about server profiles,
see the PingDataGovernance Server Administration Guide for PingDataGovernance 8.0 or later

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-38535 Fixed an issue that could cause the server to
generate an administrative alert about an uncaught
exception when trying to send data on a TLS-
encrypted connection that is no longer valid.

DS-43480 Updated the system information monitor provider
to restrict the set of environment variables that can
be included. Previously, the monitor entry included
information about all defined environment variables,
as that information can be useful for diagnostic
purposes. However, some deployments might
include credentials, secret keys, or other sensitive
information in environment variables, and that
should not be exposed in the monitor. The server
now only includes values from a predefined set of
environment variables that are expected to be the
most useful for troubleshooting problems, and that
are not expected to contain sensitive information.

PingDataGovernance Server 7.3.0.8 Release Notes

Upgrade Considerations

This upgrade moves to Jetty 9.4. As a result, the HTTPS connection handler will no longer support
TLS_RSA ciphers by default. If you use any legacy HTTPS clients that still require TLS_RSA ciphers,
modify the ssl-cipher-suite property of the HTTPS Connection Handler to include them.

Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance 9.0. If
you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server profiles to manage
server configuration. Introduced in PingDataGovernance 8.0, server profiles support deployment best
practices such as automation and Infrastructure-asCode (IaC). For more information about server profiles,
see the PingDataGovernance Server Administration Guide for PingDataGovernance 8.0 or later

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40551 Fixed an issue that could prevent some tools from
running properly with an encrypted tools.properties
file.

DS-41126 Updated the server to make the general monitor
entry available to JMX clients.

Copyright ©2022

PingDataGovernance | Release Notes | 55

Ticket ID Description

DS-41235 Updated the cn=Cluster subtree to prevent
clustered configuration changes when servers in
the cluster have mixed versions. To make clustered
configuration changes, either update all servers
in the cluster to the same version, or temporarily
create separate clusters by server version by
changing the cluster-name property on the server
instance configuration objects.

DS-41236 To avoid inconsistencies, changing clustered
configuration will now require all servers in the
cluster to be on the same product version. Servers
will not pull any clustered configuration from the
master of the cluster if they are on a different
product version.

DS-41261 Fixed an issue with manage-profile replace-profile
where certain configuration changes for recurring
task chains were not being applied.

DS-41289 Fixed an issue that prevented password changes
for topology administrators unless their password
policy was configured to allow pre-encoded
passwords.

DS-42687 Upgrade to Jetty 9.4.30.

PingDataGovernance Server 7.3.0.7 Release Notes

Upgrade considerations

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. If you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server
profiles to manage server configuration. Introduced in PingDataGovernance 8.0, server profiles
support deployment best practices such as automation and Infrastructure-asCode (IaC). For more
information about server profiles, see the PingDataGovernance Server Administration Guide for
PingDataGovernance 8.0 or later

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.7, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Resolved issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

DS-37955 To support multiple trace loggers, each trace logger
now has its own resource key, which is shown in
the "Resource" column in the output of "status".
This key allows multiple alarms, due to sensitive
message types for multiple trace loggers.

Copyright ©2022

PingDataGovernance | Release Notes | 56

Ticket ID Description

DS-39799 Allows users who were migrated from the admin
backend to the topology to manage the topology.
Migrated users are granted the "manage-topology"
privilege if they do not already have it.

DS-40366 Fixed an issue where the server was attempting to
connect by an IP address rather than a hostname
when DNS lookup was successful.

DS-40771 Added a --duration argument to collect-
support-data. When used, only the log files
covering the specified duration before the current
time are collected.

DS-41054 Fixed an issue that stopped new extensions from
being installed.

PingDataGovernance Server 7.3.0.6 Release Notes

Upgrade considerations

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. If you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server
profiles to manage server configuration. Introduced in PingDataGovernance 8.0, server profiles
support deployment best practices such as automation and Infrastructure-asCode (IaC). For more
information about server profiles, see the PingDataGovernance Server Administration Guide for
PingDataGovernance 8.0 or later

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.6, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Critical fixes

This release has no critical fixes.

PingDataGovernance Server 7.3.0.5 Release Notes

Upgrade considerations

▪ Peer setup and clustered configuration are deprecated and will be removed in PingDataGovernance
9.0. If you plan to upgrade to PingDataGovernance 8.0 at some point, consider using server
profiles to manage server configuration. Introduced in PingDataGovernance 8.0, server profiles
support deployment best practices such as automation and Infrastructure-asCode (IaC). For more
information about server profiles, see the PingDataGovernance Server Administration Guide for
PingDataGovernance 8.0 or later

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.5, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Copyright ©2022

PingDataGovernance | Release Notes | 57

Critical fixes

This release has no critical fixes.

PingDataGovernance Server 7.3.0.4 Release Notes

Upgrade consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.4, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Resolved issue

The following issue has been resolved with this release of PingDataGovernance Server.

Ticket ID Description

DS-40828 Fixed an issue where some state associated with a JMX connection was not freed after the
connection was closed. This led to a slow memory leak in servers that were monitored by an
application that created a new JMX connection each polling interval.

PingDataGovernance Server 7.3.0.3 Release Notes

Upgrade Consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.3, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

PDSTAGING-840 Fixed an issue that could cause the server to leak
a small amount of memory each time it failed to
establish an LDAP connection to another server.

Copyright ©2022

PingDataGovernance | Release Notes | 58

Ticket ID Description

DS-40371, DS-40382, DS-40427 SCIM 2 search responses can now be authorized
and filtered with an optimized authorization mode
that uses a single policy request to process
an entire result set. This authorization mode is
optional. By default, the server creates a policy
request for each member of a result set.

This authorization mode is enabled on a per-
request basis. To enable, a policy that targets
the SCIM2 service and the search action must
provide an advice with the ID combine-scim-
search-authorizations but with no payload.
The subsequent search response is then authorized
by using a single policy request with the 'SCIM2'
service and the search-results action. If
advices are returned in the policy results, they are
applied iteratively to each SCIM resource in the
result set.

For more information, see the PingDataGovernance
Server Administration Guide.

PingDataGovernance Server 7.3.0.2 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of PingDataGovernance Server:

▪ If you are upgrading from PingDataGovernance 7.3.0.0 to 7.3.0.1 or 7.3.0.2, an updated version of the
Policy Administration GUI is required.

▪ The Allow Attributes and Prohibit Attributes advices have been deprecated. If a deployment requires the
behavior that these advices provided, use a Server SDK to implement the appropriate behavior.

▪ API Endpoints, which were introduced in 7.3.0.0, have been renamed to Gateway API endpoints.

i Warning: When performing an update, existing API Endpoint configuration objects are migrated
automatically. To reflect this change, manually update your dsconfig scripts and other automated
deployments or configurations.

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.2, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

What's New

As a gateway, PingDataGovernance Server functions as a reverse proxy while in deployment mode.
With 7.3.0.2, the Sideband API introduces an alternate deployment mode in which PingDataGovernance
Server uses a plugin to connect to an existing API Lifecycle Gateway. In sideband deployment, the API
Lifecycle Gateway handles requests between API clients and backend API services. The integration plugin
intercepts all request data and passes it through PingDataGovernance Server, which authorizes requests
and responses, and modifies request and response data.

Copyright ©2022

PingDataGovernance | Release Notes | 59

Resolved Issues

The following table identifies issues that have been resolved with this release of PingDataGovernance
Server.

Ticket ID Description

DS-38832 Added a property to Advice types that limits their
application to PERMIT or DENY decisions.

DS-39037 The provided PingDataGovernance policies and
deployment packages now apply access token
validation policies only to the following requests:

▪ Inbound
▪ SCIM
▪ OpenBanking

DS-39490, DS-39616 The API Endpoint configuration type has been
renamed to Gateway API Endpoint.

Update any existing dsconfig scripts that
reference an API Endpoint. For example, a
dsconfig command of create-api-endpoint
must be changed to create-gateway-api-
endpoint.

DS-39592 HTTP External Servers feature a new attribute,
certificate-alias, which defines the alias of a
specific certificate within the keystore to be used as
a client certificate.

DS-39681 When PingDataGovernance Server receives a
401 – Unauthorized response from an external
policy decision server, it converts the status to
503 – Service Unavailable for the upstream
client.

DS-40234 The Open Banking account request endpoint no
longer requires a value for x-fapi-financial-
id. Instead, it now includes the configured fapi-
financial-id value in policy requests through
the Gateway.FapiFinancialId attribute. A
policy can deny account requests based on the
presence and value of this attribute.

PingDataGovernance Server 7.3.0.1 Release Notes

Upgrade Consideration

Important consideration for upgrading to this version of PingDataGovernance Server:

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.1, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

Copyright ©2022

PingDataGovernance | Release Notes | 60

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

DS-17278 Added a cn=Server Status
Timeline,cn=monitor monitor entry to track a
history of the local server's last 100 status changes
and their timestamps.

Updated the LDAP external server monitor to
include attributes that track health-check state
changes for external servers. The new attributes
include the following information:

▪ Number of times a health-check transition has
occurred

▪ Timestamps of the most recent transitions
▪ Messages associated with the most recent

transitions

DS-37504, DS-38765, DS-39011 Fixed an issue in the Passthrough SCIM
resource type that could cause an access token
validator's token subject lookup to fail if the user
store was unavailable when PingDataGovernance
Server was started. This issue typically manifested
as a SCIM schema error in the debug trace log,
such as "Attribute uid in path uid is undefined."

DS-39176, DS-39308 Updated the Groovy scripting language version to
2.5.7. For a list of changes, go to groovy-lang.org
and view the Groovy 2.5 Release Notes.

As of this release, only the core Groovy runtime
and the groovy-json module are bundled with
the server. To deploy a Groovy-scripted Server
SDK extension that requires a Groovy module not
bundled with the server, such as groovy-xml or
groovy-sql, download the appropriate JAR file
from groovy-lang.org and place it in the server's
lib/extensions directory.

DS-39564 Fixed an issue in which the gateway responded
with a 404 for requests that were handled by a
Gateway API Endpoint with an inbound-base-
path of "/".

DS-39593 Fixed an issue in which policy decision logs
contained content that the Policy Administration
GUI Log Visualizer considered invalid.

PingDataGovernance Server 7.3.0.0 Release Notes

Upgrade Considerations

Important considerations for upgrading to this version of PingDataGovernance Server:

▪ WARNING: OAuth scope configurations for resource access control, including fine-grained access
control, and JEXL-based policies are no longer supported. Manual steps are necessary to migrate

Copyright ©2022

http://www.groovy-lang.org/
http://www.groovy-lang.org/

PingDataGovernance | Release Notes | 61

configuration and policies in order to restore the functionality of SCIM APIs. Please contact your
account executive to schedule time for migration assistance.

▪ If you are updating a multi-server topology from PingDataGovernance 7.0.x to 7.3.0.0, you must use the
--skipMirroredSubtreeUpdateTask option for the updater or the update fails. Alternatively, you
can uninstall all but one of the servers to retain the base configuration, update the standalone server,
install fresh servers on the new version, and add them back to the topology with the peer options.
However, using the --skipMirroredSubtreeUpdateTask option is the recommended path.

What's New

These are new features for this release of PingDataGovernance Server:

▪ New features for data encryption in transit and at rest: added support for TLS 1.3, ability to encrypt and
automatically decrypt sensitive files such as tools.properties and keystore pin files using the server data
encryption keys, and the ability to more easily and securely separate master keys from data encryption
keys by protecting the server encryption settings database using either Amazon Key Management
Service (AWS KMS) or HashiCorp Vault.

▪ Added support for Amazon Corretto JDK 8, Windows Server 2019, Red Hat Enterprise Linux 7.6,
CentOS 7.6, Amazon Linux 2, and Docker 18.09.0 on Ubuntu 18.04 LTS.

▪ Fine-grained data access control for JSON-based APIs. Configured as a reverse proxy to existing
customer API endpoints, PingDataGovernance enforces dynamic authorization policies to inbound API
calls or outbound API responses. For inbound calls, policies can inspect request attributes and request
bodies to allow or deny the HTTP call. For outbound responses, policies can whitelist or blacklist JSON
objects and specific attributes, thus sanitizing the HTTP response data per use case.

▪ New Policy Administration GUI. Data owners and other stakeholders can now collaborate with IT and
developers to build and test data access control policies. IT and developers configure services and
attributes that gather, extract, and transform data dynamically from REST APIs, RBDMS, LDAP, and
more. Data owners and other stakeholders build expressions to check and compare these attributes as
part of a hierarchy of policies and rules. The Policy Administration GUI supports testing with mock input
data, and it displays test results in a graphical tree to help policy writers understand and troubleshoot
policy logic.

Resolved Issues

The following issues have been resolved with this release of PingDataGovernance Server:

Ticket ID Description

PDSTAGING-570,DS-38334 The following enhancements were made to the
topology manager to make it easier to diagnose the
connection errors described in PDSTAGING-570:

- Added monitoring information for all the failed
outbound connections (including the time since it's
been failing and the last error message seen when
the failure occurred) from a server to one of its
configured peers and the number of failed outbound
connections.

- Added alarms/alerts for when a server fails to
connect to a peer server within a configured grace
period.

Copyright ©2022

PingDataGovernance | Release Notes | 62

Ticket ID Description

PDSTAGING-570,DS-38344 The topology manager will now raise a mirrored-
subtree-manager-connection-asymmetry alarm
when a server is able to establish outbound
connections to its peer servers, but those peer
servers are unable to establish connections back
to the server within the configured grace period.
The alarm is cleared as soon as there is connection
symmetry.

DS-15734 Added a cipher stream provider that can be
used to protect the contents of the encryption
settings database with a key from the Amazon Key
Management Service.

DS-18060 Added an HTTP servlet extension that can be
used to retrieve the server's current availability
state. It accepts any GET, POST, or HEAD request
sent to a specified endpoint and returns a minimal
response whose HTTP status code may be used to
determine whether the server considers itself to be
AVAILABLE, DEGRADED, or UNAVAILABLE. The
status code for each of these states is configurable,
and the response may optionally include a JSON
object with an "availability-state" field with the name
of the current state.

Two instances of this servlet extension are now
available in the default configuration. A request sent
to /available-state will return an HTTP status code
of 200 (OK) if the server has a state of AVAILABLE,
and 503 (Service Unavailable) if the server has
a state of DEGRADED or UNAVAILABLE. A
request sent to the /available-or-degraded-state will
return an HTTP status code of 200 for a state of
AVAILABLE or DEGRADED, and 503 for a state
of UNAVAILABLE. The former may be useful for
load balancers that you only want to have route
requests to servers that are fully available. The
latter might be useful for orchestration frameworks if
you want to destroy and replace any instance that is
completely unavailable.

DS-37617 HTTP Connection Handlers now accept client-
provided correlation IDs by default. To adjust the
set of HTTP request headers that may include a
correlation ID value, change the HTTP Connection
Handler's correlation-id-request-header property.

DS-37753 PingDataGovernance now contains Server SDK
support for Advices.

Copyright ©2022

PingDataGovernance | Release Notes | 63

Ticket ID Description

DS-37839 Make Fingerprint Certificate Mapper and Subject
DN to User Attribute Certificate Mapper disabled
by default on fresh installations. This will not affect
upgrades from installations where these mappers
are enabled.

DS-37959 Added support for insignificant configuration archive
attributes.

The configuration archive is a collection of the
configurations that have been used by the server
at some time. It is updated whenever a change
is made to data in the server configuration, and
it is very useful for auditing and troubleshooting.
However, because the entries that define root
users and topology administrators reside in the
configuration, changes to those entries will also
cause a new addition to the configuration archive.
This is true even for changes that affect metadata
for those entries, like updates to the password
policy state information for one of those users. For
example, if last login time tracking is enabled for
one of those users, especially with high-precision
timestamps, a new configuration may be generated
and added to the configuration archive every time
that user authenticates to the server. While it is
important for this information to be persisted, it
is not as important for it to be part of the server's
configuration history.

This update can help avoid the configuration
archive from storing information about updates
that only affect this kind of account metadata. If
a configuration change only modifies an existing
entry, and if the only changes to that entry affect
insignificant configuration archive attributes, then
that change may not be persisted in the server's
configuration archive.

By default, the following attributes are now
considered insignificant for the purpose of the
configuration archive:

* ds-auth-delivered-otp * ds-auth-password-
reset-token * ds-auth-single-use-token * ds-
auth-totp-last-password-used * ds-last-access-
time * ds-pwp-auth-failure * ds-pwp-last-login-
ip-address * ds-pwp-last-login-time * ds-pwp-
password-changed-by-required-time * ds-pwp-
reset-time * ds-pwp-retired-password * ds-pwp-
warned-time * modifiersName * modifyTimestamp
* pwdAccountLockedTime * pwdChangedTime *
pwdFailureTime * pwdGraceUseTime * pwdHistory
* pwdReset

Copyright ©2022

PingDataGovernance | Release Notes | 64

Ticket ID Description

DS-38050 Updated the server to support encrypting the
contents of the PIN files needed to unlock certificate
key and trust stores. If data encryption is enabled
during setup, then the default PIN files will
automatically be encrypted.

Also, updated the command-line tool framework
so that the tools.properties file (which can provide
default values for arguments not provided on the
command line), and passphrase files (for example,
used to hold the bind password) can be encrypted.

DS-38072 Updated the server to enable TLSv1.3 by default on
JVMs that support it (Java 11 and higher).

DS-38085 Fixed an issue in the installer where the
Administrative Console's trust store type would be
incorrectly set if it differed from the key store type.

DS-38089,DS-38705 The Open Banking Account Request servlet now
supports versions 1.1, 2.0, and 3.0 of the Open
Banking Read/Write Data API.

Error responses returned by the Account Request
servlet are now formatted as described in the Open
Banking Read/Write Data API specification, v3.0.

DS-38090,DS-38564,DS-38567 The response header used for correlation IDs
may now be set at the HTTP Servlet Extension
level using the correlation-id-response-header
configuration property. If set, this property overrides
the HTTP Connection Handler's correlation-id-
response-header property.

DS-38109 Added the --skipHostnameCheck command-line
option to the setup script, which bypasses validation
of the provided host name for the server.

DS-38403 Fixed an issue that could prevent certain types of
initialization failures from appearing in the server
error log by default.

DS-38512 Added a cipher stream provider that can be used
to protect the contents of the encryption settings
database with a secret passphrase obtained from a
HashiCorp Vault instance.

DS-38550 Fixed an issue in which backups of the encryption
settings database could be encrypted with a key
from the encryption settings database.

Copyright ©2022

PingDataGovernance | Release Notes | 65

Ticket ID Description

DS-38670 Fixed a bug where the startIndex value for
SCIM requests would be incorrect if the used
LDAPSearch element had more than one baseDN
defined in the scim-resources XML file.

DS-38737 Fixed an issue where inter-server bind requests
would fail if the cipher used reported a maximum
unencrypted block size of 0.

DS-38864 Changed the default value of the HTTP
Configuration property include-stack-traces-in-error-
pages from 'true' to 'false'. Disabling this property
prevents information about exceptions thrown by
servlet or web application extensions from being
revealed in HTTP error responses.

Copyright ©2022

PingDataGovernance | Release Notes | 66

Ticket ID Description

DS-38897,DS-38908 Fixed two issues in which the server could have
exposed some clear-text passwords in files on the
server file system.

* When creating an encrypted backup of the alarms,
alerts, configuration, encryption settings, schema,
tasks, or trust store backends, the password
used to generate the encryption key (which may
have been obtained from an encryption settings
definition) could have been inadvertently written into
the backup descriptor.

* When running certain command-line tools
with an argument instructing the tool to read a
password from a file, the password contained
in that file could have been written into the
server's tool invocation log instead of the path to
that file. Affected tools include backup, create-
initial-config, ldappasswordmodify, manage-
tasks, manage-topology, migrate-ldap-schema,
parallel-update, prepare-endpoint-server, prepare-
external-server, realtime-sync, rebuild-index, re-
encode-entries, reload-http-connection-handler-
certificates, reload-index, remove-defunct-server,
restore, rotate-log, and stop-server. Other tools
are not affected. Also note that this only includes
passwords contained in files that were provided as
command-line arguments; passwords included in
the tools.properties file, or in a file referenced from
tools.properties, would not have been exposed.

In each of these cases, the files would have been
written with permissions that make their contents
only accessible to the system account used to run
the server. Further, while administrative passwords
may have been exposed in the tool invocation log,
neither the passwords for regular users, nor any
other data from their entries, should have been
affected. We have introduced new automated tests
to help ensure that such incidents do not occur in
the future.

We recommend changing any administrative
passwords you fear may have been compromised
as a result of this issue. If you are concerned that
the passphrase for an encryption settings definition
may have been exposed, then we recommend
creating a new encryption settings definition
that is preferred for all subsequent encryption
operations. You also might want to re-encrypt or
destroy any existing backups, LDIF exports, or
other data encrypted with a compromised key, and
you might want to sanitize or destroy any existing
tool invocation log files that may contain clear-text
passwords.

Copyright ©2022

PingDataGovernance | Introduction to PingDataGovernance | 67

Ticket ID Description

DS-38913 Added a set of message types to Trace Log
Publishers that records events related to access
token validation.

DS-39086 Removed the version information page from the
docs/build-info.txt endpoint. This information is now
available in build-info.txt, which is located in the root
directory.

DS-39102 Updated the server SDK class
AccessTokenValidator's method
initializeTokenValidator's parameters. The method's
first parameter is now of type ServerContext instead
of BrokerContext. This change is incompatible with
earlier versions of the server SDK.

Introduction to PingDataGovernance

PingDataGovernance is a solution for centralized, attribute-based entitlement management with a focus on
fine-grained access control and data protection.

Organizations worldwide are seeking ways to introduce new use cases and partnerships to accelerate their
businesses. At the heart of any new use case or partnership is a question of entitlement. Can a given user
perform this action or see some information? Can a given partner access some data or all data?

As use cases become more sophisticated and sensitive data becomes more regulated, the rules that
answer these questions of entitlement have become more complex. For example, the user can only
perform the action after their account has been open for a month and they've completed on-boarding. Or,
the partner can only access user data for those users who have opted-in.

Traditionally, solving complex rules of entitlement requires coding logic into applications, services, and
APIs. However, coding entitlement logic creates challenges around visibility, flexibility, time-to-market,
duplicated effort, and more.

PingDataGovernance solves the challenge of entitlement for fine-grained access control and data
protection.

Key components

PingDataGovernance Policy Administration GUI

Powered by Symphonic, the PingDataGovernance Policy Administration GUI enables nontechnical
stakeholders to collaborate with IT to define and test the policies of entitlement. These policies are
strictly attribute-based business rules. PingDataGovernance does not store mappings of specific
users or groups to actions and resources. Rather, entitlement is determined dynamically at runtime
by the PingDataGovernance Server connecting to the attribute sources across the enterprise.

PingDataGovernance Server

The PingDataGovernance Server includes the runtime policy decision service and multiple policy
enforcement capabilities. The policy decision service determines whether fine-grained actions can
be taken or data can be accessed. Enforcement of these decisions can be handled in several ways:

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 68

▪ Policy Decision Point (PDP) API

Applications or services call into the policy decision service using the PDP API and enforce the
decision in their own application or service code.

▪ API Security Gateway and Sideband API

For fine-grained access control and data protection within application, platform, or microservice
APIs, customers can integrate the API Security Gateway or Sideband API into their API
architecture. In this configuration, the PingDataGovernance Server inspects API requests and
responses, and then enforces policy by blocking, filtering, obfuscating, or otherwise modifying
request and response data and attributes. This approach requires little or no code changes by
the API developer.

▪ SCIM Service

For fine-grained access control and data protection to data stored in structured data stores like
LDAP and RDBMS, customers can deploy the SCIM Service in front of their data stores. In this
configuration, the PingDataGovernance Server provides a SCIM-based microservice API though
which clients create, read, update, and delete (CRUD) data. The SCIM Service enforces policy
by blocking, filtering, obfuscating, or otherwise modifying data and attributes.

i Important:

The available enforcement features described above vary depending on your subscription. For more
information, check your PingDataGovernance license key or contact your Ping Identity account
representative.

Next steps

To quickly see PingDataGovernance in action, see Getting started with PingDataGovernance (tutorials) on
page 68.

Getting started with PingDataGovernance (tutorials)

This section provides tutorials for installing and configuring PingDataGovernance Server with different
policy options.

As you complete this section, you will quickly get up and running with PingDataGovernance Server and its
Policy Administration GUI. You will also learn how to implement data access policies for REST APIs and
System for Cross-domain Identity Management (SCIM).

Using the tutorials

Overview

These tutorials provide exercises to familiarize you with the capabilities of PingDataGovernance.

Before you begin

To complete these tutorials, you need:

▪ To have completed the instructions at https://devops.pingidentity.com/get-started/getStarted/
▪ Git
▪ To increase your Docker memory limit to at least 4GB. To change this setting, go to Docker

Dashboard# Settings# Resources# Advanced

Copyright ©2022

https://devops.pingidentity.com/get-started/getStarted/

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 69

The tutorials provide sample requests that use curl. However, you can use any program that can send
HTTP requests, such as wget or Postman.

Setting up your environment

To help you quickly get started with PingDataGovernance, we provide Docker containers that have
everything you need. You deploy these containers using Docker commands and then start using
PingDataGovernance.

Clone the GitHub repository that contains the supporting source files.

git clone --branch 8.2 https://github.com/pingidentity/pingauthorize-
tutorials && cd pingauthorize-tutorials

This command places the files in the pingauthorize-tutorials directory and changes to that
directory. This directory contains a docker-compose.yml file that defines the containers used in the
tutorial. You should not need to modify this file or understand its contents to follow the tutorial steps. You
might, however, need to change some configuration values that the docker-compose environment uses.
The env-template.txt file contains various configuration values, including the default port definitions
used by the docker-compose containers. Copy the template to a new file .env at the root of the cloned
repository and edit its contents using any text editor.

cp env-template.txt .env
vi .env

You might not need to modify any values if all the default ports are available. However, you must still have
a .env file in place for the environment to start.

Starting PingDataGovernance

To start the docker-compose environment:

1. Go to the pingauthorize-tutorials directory you cloned in Setting up your environment on page
69.

2. Run the following command.

docker-compose up --detach

Verifying proper startup

To verify that both PingDataGovernance Server and Policy Administration GUI started properly and are
running, run the following command.

docker container ls --format '{{ .Names }}: {{ .Status }}'

The command shows the status of the containers started by the docker-compose command. Each of the
four containers should initially have a status of "starting". Eventually, possibly up to 15 minutes, all four
containers should reach an equilibrium state of "healthy".

If you encounter any issues, check the log files using the docker-compose logs command.

Accessing the GUIs

PingDataGovernance has two GUIs.

i Note: If you have problems connecting because of self-signed certificates, try a different browser.

Administrative Console

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 70

Use this console to make configuration changes to PingDataGovernance Server.

URL https://localhost:5443/console/login

Details to enter at login Server: pingdatagovernance:<port>

Username: administrator

Password: 2FederateM0re

i Note:

If submitting the form results in a "Server unavailable"
error, wait longer for the containers to reach an equilibrium
"healthy" state, as described in Verifying proper startup on
page 69.

Policy Administration GUI

Use this GUI to make and test policy changes. Also, this GUI calculates decision responses when
you configure PingDataGovernance to use the GUI as an external policy decision point.

URL https://localhost:8443

Details to enter at login user id: admin

password: password123

Stopping PingDataGovernance

If you have completed the tutorials and no longer need the containers, run the following commands to stop
and remove the containers.

i Warning:

To simplify the prerequisites for using Docker with this tutorial, all of the changes you make are lost when
you destroy your Docker Compose environment. For customer installations, persistent volumes are used to
maintain data across container deployments.

1. Go to the pingauthorize-tutorials directory you cloned in Setting up your environment on page
69.

2. Run the following command.

docker-compose down

About the tutorial configuration

The provided Docker containers are preconfigured so that you can begin developing policies immediately.

The following Docker containers are provided through the docker-compose environment.

Container Description

pingdatagovernance PingDataGovernance Server

The server enforces the policies you define.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 71

Container Description

pingdatagovernancepap PingDataGovernance Policy Administration GUI

Use this GUI to define the policies that determine access control
and data protection.

pingdirectory PingDirectory

A directory of user information.

i Note:

PingDataGovernance does not require PingDirectory.

However, some of the tutorials do use PingDirectory as an
attribute provider. You can reference the attributes in your
policies.

pingdataconsole Administrative Console

Use this GUI to configure PingDataGovernance.

Tutorial: Importing default policies
This tutorial describes how to use the PingDataGovernance Policy Administration GUI to import default
policies for use. Also, it introduces the Trust Framework and describes the default policies.

About this task

Before you can begin writing policies, you must import the default policies from a snapshot file. This file
contains a minimal set of policies and the default Trust Framework. The Trust Framework defines the
foundational elements that you use to build policies, such as API services, HTTP methods, and HTTP
requests.

The default policies and Trust Framework are stored in a snapshot file named
defaultPolicies.SNAPSHOT, which is bundled with both PingDataGovernance Server and the Policy
Administration GUI. You must base all policies that you create for use with PingDataGovernance on the
policies and Trust Framework entities defined in this file.

To use the default policies that are distributed with PingDataGovernance Server, perform the following
steps.

Steps

1. Copy defaultPolicies.SNAPSHOT from the PingDataGovernance Policy Administration GUI
container to the current directory on your computer. To do this, run the following command. Be sure to
include the trailing . character.

docker cp pingdatagovernancepap:/opt/out/instance/resource/policies/
defaultPolicies.SNAPSHOT .

2. Sign on to the Policy Administration GUI using the URL and credentials from Accessing the GUIs on
page 69.

3. Under Import a Branch from a Snapshot, click where it says Click here to select a snapshot file.
Choose the file that you just copied to your computer.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 72

4. Name the branch file PDG Tutorials.

5. Click Import.

The Policy Administration GUI displays the Version Control page. From this page, you can manage
policy changes similar to how you would in a software source control system.

6. Click PDG Tutorials to select the policy branch that you just created.

A Commits table appears. This table provides a log of all changes made to a policy branch.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 73

7. Click the disclosure (triangle) widget at the left of the top line for Uncommitted Changes.

This reveals a list of all changes to the policy branch that are yet to be committed. In this case, the list
includes all of the contents of the snapshot that you just imported.

8. Click Commit New Changes.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 74

9. Enter the commit message Initial commit and click Commit.

As you work with your own policies, you can use the Policy Administration GUI's version control feature
to manage your changes. As you develop policies, a good practice is to set a checkpoint every time you
achieve a satisfactory working state by committing your changes.

Introduction to the Trust Framework and default policies
You can now use the Policy Administration GUI with PingDataGovernance Server. First though, explore
the interface, paying particular attention to the Trust Framework and Policies sections in the left pane.

Trust Framework

In the Trust Framework section, shown below, you define the foundational elements that you use to build
policies and make access control decisions.

The Trust Framework provides several types of entities. The following table describes the ones you will use
most.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 75

Entity Description

Services Services perform two functions. Most often, they represent a specific
API service or API resource type to be protected by your policies. They
can also define policy information points, external data sources (such as
APIs or LDAP directory servers) that PingDataGovernance can use to
make policy decisions.

Attributes Attributes provide the context that informs fine-grained policy decisions.
Attributes often correspond to elements of an HTTP request, such as
an access token subject. However, you can obtain their values from a
variety of sources.

Actions Actions label the type of a request and generally correspond to HTTP
methods (GET, POST, and so on) or CRUD actions (create, delete, and
so on).

Look at the Trust Framework's default attributes and consider how you could use them in your own
policies. Some important Trust Framework attributes include those in the following table.

Attribute Description

HttpRequest.AccessToken This is the introspected or deserialized access token
from the HTTP request.

HttpRequest.RequestBody This is the HTTP request body, typically present for
POST, PUT, and PATCH operations.

HttpRequest.ResponseBody This is the upstream API server's HTTP response
body.

SCIM.resource For SCIM operations, this is the SCIM resource being
retrieved or modified.

TokenOwner For requests authorized using an access token, this is
the user who granted the access token.

Policies

In the Policies section, shown below, you define your organization's access control policies.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 76

You define your policies as a hierarchical tree of policies. This tree consists of two types of items.

Policy Set

A container for one or more policies.

Policy

A policy, which defines a set of rules that yield a policy decision when evaluated.

When the policy engine receives a policy request from PingDataGovernance Server in response to an API
call, it starts at the Global Decision Point and walks down the policy tree, first checking if each policy set or
policy is applicable to the current policy request, and then evaluating the rules defined by each policy. Each
rule returns a policy decision, typically PERMIT or DENY. Likewise, each policy might return a different
policy decision. The policy engine evaluates an overall decision using combining algorithms.

The default policy tree contains the following policy sets and policies:

Global Decision Point

This is the root of the policy tree. Place all other policy sets or policies under this point. This node's
combining algorithm is set to A single deny will override any permit. This algorithm requires no
denies and at least one policy to permit the API call.

Token Validation

For most cases, this is the only default policy. It checks for a valid access token. In
combination with the Global Decision Point combining algorithm, this is rather permissive. Any
API caller can succeed with a valid access token.

PDP API Endpoint Policies

The PingDataGovernance Server PDP API uses these policies. They are not discussed
further in this tutorial.

You will use the following items in the UI in a tutorial.

Library

The default policy library contains example advice and rules.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 77

Decision Visualiser

You will use this tool to examine policy decisions in detail.

Tutorial: Configuring fine-grained action access control for an API
This tutorial demonstrates how to use PingDataGovernance to easily configure fine-grained access control
for a JSON API.

API access control is often categorized in terms of granularity.

Access control granularity
type

Description

Coarse-grained Typically describes scenarios in which users or clients are entitled to all
or none of particular applications or APIs.

Medium-grained Typically applies to URL-based scenarios in which users or clients are
entitled to some pages or resources within applications or APIs.

Fine-grained When applied to the actions a user or client can take on an application
page or an API resource, typically implies that action-specific
conditions dictate whether the user or client is entitled to take the
action. For example, a request to transfer bank funds might be denied
if the amount exceeds the average of recent transfers by 20% or more.

Scenario

For this tutorial, you are the producer of an online game in which players compete with friends to create the
funniest meme. When starting a new game, the first player optionally invites other players by their email
addresses. To prevent email spam, you must create a policy that blocks a user from starting a new game
with other players if the user's email address comes from a generic mail domain.

Game activities are represented using an example Meme Game API.

Tasks

This tutorial teaches you how to configure two fine-grained API access control rules by walking you through
the following tasks.

1. Configure a reverse proxy for the Meme Game API.
2. Test the reverse proxy.
3. Add a policy for the Meme Game API's Create Game endpoint.
4. Test the policy from the Policy Administration GUI.
5. Test the reverse proxy by making an HTTP request.
6. Modify the rule for the Meme Game API's Create Game endpoint.

The following sections provide the details for completing these tasks.

Configuring a reverse proxy for the Meme Game API
Configure a reverse proxy by configuring an API External Server and a Gateway API Endpoint. The API
reverse proxy acts as an intermediary between your HTTP client and the HTTP API, providing fine-grained
access control for the API.

About this task

Copyright ©2022

https://github.com/babbtx/meme-game

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 78

Steps

1. Configure an API External Server for the Meme Game API. An API External Server controls how
PingDataGovernance Server handles connections to an HTTPS API server, including configuration
related to TLS. In this case, we simply need to provide a base URL.

a. Sign on to the Administrative Console using the URL and credentials from Accessing the GUIs on
page 69.

b. Click External Servers.
c. Click New External Server and choose API External Server.
d. For Name, specify Meme Game API.
e. For Base URL, specify https://meme-game.com.

The following image shows this configuration.

f. Click Save.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 79

2. Configure a Gateway API Endpoint. A Gateway API Endpoint controls how PingDataGovernance
Server proxies incoming HTTP client requests to an upstream API server.

a. In the Administrative Console, click Configuration and then Gateway API Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify Meme Game - Games.
d. For Inbound Base Path, specify /meme-game/api/v1/games.

The inbound base path defines the base request path for requests to be received by
PingDataGovernance Server.

e. For Outbound Base Path, specify /api/v1/games.

The outbound base path defines the base request path for requests that PingDataGovernance
Server forwards to an API server.

f. For API Server, specify Meme Game API. This is the API External Server you defined previously.

g. Save your changes.

Testing the reverse proxy
PingDataGovernance Server is now configured to accept HTTP requests beginning with the path /
meme-games/api/v1/games and forward them to the Meme Game API. Before proceeding, we
will confirm that this configuration is working by making a request to the Meme Game API through the
PingDataGovernance Server.

About this task

These tutorials use curl to make HTTP requests.

The Meme Game API provides an API to create a new game, which looks like this:

POST /api/v1/games
{
 "data": {

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 80

 "type": "game",
 "attributes": {
 "invitees": ["friend@example.com"]
 }
 }
}

We configured a Gateway API Endpoint to forward any requests to /meme-game/api/v1/games to the
Meme Game API endpoint.

Steps

▪ Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/v1/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@example.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": [
 "user.99@example.com"
]
 }
 }
}'

This example uses Bearer token authorization with a mock access token. For an explanation of this
authorization, see For further consideration: The PingDataGovernance API security gateway, part 1 on
page 80.

If the PingDataGovernance Server is configured correctly, then the response status should be 201
Created with a response body like the following.

{
 "data": {
 "id": "130",
 "type": "games"
 },
 "meta": {}
}

For further consideration: The PingDataGovernance API security gateway, part 1
Additional concepts to consider include request routing and Bearer token authorization.

Request routing

You configure request routing by defining a Gateway API Endpoint in the PingDataGovernance
Server configuration. Each Gateway API Endpoint determines which incoming HTTP requests are
proxied to an API server and how PingDataGovernance Server translates the HTTP request into a
policy decision request.

Bearer token authorization

The testing in Testing the reverse proxy on page 79 uses this authorization. The token itself is a
mock access token, which is a special kind of Bearer token that a PingDataGovernance Server in
test environments can accept. A mock Bearer token is formatted as a single line of JSON, with the
same fields used in standard JWT access tokens, plus a boolean "active" field, which indicates
whether the token should be considered valid. When you use mock access tokens, you do not need
to obtain an access token from an actual OAuth 2 auth server, which saves you time during testing.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 81

Adding a policy for the Create Game endpoint
Now that we have confirmed that PingDataGovernance Server is correctly configured to act as a reverse
proxy to the Meme Game API, we can define a policy to try out its access control capabilities. This policy
will accept or deny a request to create a game based on the identity making the request.

About this task

First, we define a service in the Trust Framework. Services have various uses, but at their most basic level,
you use them to define a specific API that can be governed by your policies. By defining different services
in your Trust Framework, you can target each policy specifically to their applicable APIs.

Then, we define a policy. This policy will reject any requests to start a new meme game if the user's
identifier ends with @example.com. We will identify users using the subject of the request's access token.

Steps

1. Define the service.

a. Sign on to the Policy Administration GUI using the URL and credentials from Accessing the GUIs on
page 69.

b. Go to Trust Framework and click Services.
c. From the + menu, select Add new Service.
d. For the name, replace Untitled with Meme Game - Games.

The service name must match the endpoint name. To understand why, see For further
consideration: The PingDataGovernance API security gateway, part 2 on page 82.

e. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of Parent field.

f. Click Save changes.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 82

2. Define the policy.

a. In the Policy Administration GUI, go to Policies in the left pane and then click Policies along the
top.

b. Select Global Decision Point.
c. From the + menu, select Add Policy.
d. For the name, replace Untitled with Users starting a new game.
e. Click + next to Applies to.
f. In the upper-right corner of the left pane, click Components. This reveals a tree of items to target

the policy and restrict the types of requests to which the policy applies.
g. From the Actions list, drag inbound-POST to the Add definitions and targets, or drag from

Components box.
h. From the Services list, drag Meme Games - Games to the Add definitions and targets, or drag

from Components box.

Using these components restricts the policy to incoming POST requests and the Meme Games -
Games service.

i. Set the Combining Algorithm to Unless one decision is deny, the decision will be permit.
j. Click + Add Rule. This reveals an interface to define a condition. Define the rule as follows.

1. For the name, replace Untitled with Deny if token subject ends with @example.com.
2. For Effect, select Deny.
3. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute field, select HttpRequest.AccessToken.subject.
c. In the second field, select Ends With.
d. In the third field, type @example.com.

The following screen shows the rule.

k. Click Save changes.

For more information about API security gateway processing, see For further consideration: The
PingDataGovernance API security gateway, part 2 on page 82.

For further consideration: The PingDataGovernance API security gateway, part 2
Additional concepts to consider include the phases of API security gateway processing and the need for
the service name to match the Gateway API Endpoint name.

API security gateway processing occurs in two phases

The inbound phase

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 83

When the API security gateway receives an HTTP request, it generates a policy request with an
action label including the phase and the HTTP method, such as inbound-POST or inbound-GET.
Based on the result returned by the policy engine, the request might be rejected immediately or it
might be forwarded to the API server, potentially with modifications.

The following diagram illustrates the inbound request processing.

The outbound phase

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 84

When the API server returns an HTTP response to the API security gateway, another policy request
is generated, again with an action label including the phase and HTTP method, such as outbound-
POST or outbound-GET. Based on the result returned by the policy engine, the response might be
modified, and then it is forwarded back to the HTTP client.

The following diagram illustrates the outbound request processing.

Service name must match Gateway API Endpoint name

In Adding a policy for the Create Game endpoint on page 81, we named the service to match the
name of the Gateway API Endpoint in the PingDataGovernance configuration. This is important. When

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 85

PingDataGovernance receives an HTTP request, it generates a policy request that represents the HTTP
request and sends it to its policy engine for processing. The policy request will include a service field,
and its name will be the name of the Gateway API Endpoint that handled the HTTP request.

Testing the policy from the Policy Administration GUI
We can now test the policy and make sure that it works as we intend. First, we test the policy directly from
the Policy Administration GUI's test interface.

Steps

1. In the Policy Administration GUI, click the Test tab at the top of the main pane to display the test
interface.

2. Fill out the Request section. The test uses this information to simulate the policy request that
PingDataGovernance Server makes when it receives an HTTP request.

Service Meme Games - Games

Action inbound-POST

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 86

Attributes HttpRequest.AccessToken

{ "active": true, "sub":
"user.99@example.com" }

The following image shows the test.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 87

3. Click Execute.
The policy test result displays. If the policy worked as expected, the leftmost result is red, indicating a
DENY result.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 88

4. (Optional.) Experiment with testing.

Click the Testing Scenario tab and try different inputs to see how they policy result changes. For
example, change the HttpRequest.AccessToken attribute value to { "active": true, "sub":
"user.99@my-company.com" }. The policy result is now PERMIT, as shown in the following image.

Testing the policy by making an HTTP request
Having tested the policy from the Policy Administration GUI to prove the policy works as intended,
we can confirm that policy enforcement from end-to-end by sending an HTTP request through the
PingDataGovernance Server reverse proxy.

About this task

Steps

1. Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/v1/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@example.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": [
 "user.99@example.com"
]
 }
 }

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 89

}'

You should receive an error response with a response status of 403 Forbidden.

The request has an access token value of { "active": true, "sub":
"user.99@example.com" }. The sub field of the access token corresponds to the
HttpRequest.AccessToken.subject Trust Framework attribute that your policy uses to make its
decision.

2. As an experiment, edit the access token value in curl to change the sub value to an email address for
a different domain. What should happen with this new request?

Send a request using curl.

curl --insecure --location --request POST 'https://localhost:7443/meme-game/api/v1/games' \
--header 'Authorization: Bearer { "active": true, "sub": "user.99@my-company.com" }' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": [
 "user.99@example.com"
]
 }
 }
}'

The HTTP response status should now be 201 Created.

To better understand how policy decisions work, see For further consideration: Decision Visualiser on
page 89.

For further consideration: Decision Visualiser
Returning to the Policy Administration GUI, we can view a log of how the policy engine handled the HTTP
request.

Steps

1. In the Policy Administration GUI, go to Policies and click Decision Visualiser.

2. Click the Recent Decisions tab. The two most recent items listed correspond to your last HTTP
request and response. The first item should correspond to the HTTP response, while the second item
should correspond to the HTTP request.

3. Click the second decision. Its visualization appears.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 90

4. Click the Request tab. This displays a JSON representation of the policy request that
PingDataGovernance generated to represent your HTTP request.

Here is a request example.

5. Click the Response tab. This displays a JSON representation of the policy response that the policy
engine returned after evaluating your policy.

Here is a response example.

Both the policy request and the policy response might be hard to understand at the moment, but as
you become familiar with PingDataGovernance and its policy engine, you will find that the Decision
Visualiser is indispensable for troubleshooting and understanding your policies.

Modifying the rule for the Create Game endpoint
Now that we have defined a policy that permits or denies the ability to create a game based on the email
address of the person creating the game, we will modify the rule so that any user can create a game, but
only those with real email addresses can create games with invitees. This section demonstrates how a
policy can take an action based on data in the request body.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 91

About this task

To review, the Meme Game API offers a game creation endpoint that looks like this:

POST /api/v1/games
{
 "data": {
 "type": "game",
 "attributes": {
 "invitees": ["friend@example.com"]
 }
 }
}

The requester specifies one or more invitees using the data.attributes.invitees field. We will
update our policy with a second rule that disallows a new game if anybody else is invited to it.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 92

Steps

1. Define a Trust Framework attribute to represent the data.attributes.invitees field.

a. In the Policy Administration GUI, go to Trust Framework and click Attributes.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with Meme Game invitees.
d. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of Parent field.
e. Click the + next to Resolvers and click + Add Resolver.
f. Set Resolver type to Attribute.
g. Select the attribute HttpRequest.RequestBody.
h. Click the + next to Value Processors and click + Add Processor.
i. Set Processor to JSON Path.
j. Set the value to $.data.attributes.invitees.
k. Set Value type to Collection.
l. For Value Settings, select Default value and specify square brackets ([]) to indicate an empty

collection.
m. Set Type to Collection.
n. Click Save changes.

The following image shows the new attribute.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 93

This Trust Framework attribute introduces resolvers and value processors, which are two important
components. To better understand these components, see For further consideration: Resolvers and
value processors on page 94.

2. Modify a rule to use the Meme Game invitees attribute we just created.

a. In the Policy Administration GUI, go to Policies.
b. Select the Users starting a new game policy.
c. Rename the Deny if token subject ends with @example.com rule to Deny if token subject

ends with @example.com AND request contains invitees.
d. Expand the rule by clicking its + icon.
e. For Effect, select Deny.
f. Specify a second comparison.

1. Click + Comparison.
2. From the Select an Attribute field, select Meme Game invitees.
3. In the second field, select Does Not Equal.
4. In the third field, type [].

g. Click Save changes.

The following image shows the rule.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 94

3. Test the policy.

As before, you can test your policy from the Policy Administration GUI using its test interface, and you
can test the policy by sending an HTTP request. Try testing using the following combinations of inputs:

▪ An access token with the subject user.0@example.com and with invitees.

This should be denied.
▪ An access token with the subject user.0@my-company.com and with invitees.

This should be permitted.
▪ An access token with the subject user.0@example.com and no invitee list.

This should be permitted.
▪ An access token with the subject user.0@my-company.com and no invitee list.

This should be permitted.

For further consideration: Resolvers and value processors
Resolvers and value processors are key components in defining policies.

Modifying the rule for the Create Game endpoint on page 90 introduces their use. Here is more about
how you use them in your policies.

▪ Resolvers

A resolver defines the source of an attribute's value. In this case, the source is the
HttpRequest.RequestBody policy request attribute, which is set automatically by
PingDataGovernance Server. Many other types of sources are available; for example, a resolver might
define an attribute value using a constant, or a resolver might call out to an external API to obtain the
attribute value.

▪ Value Processors

Value processors extract and transform values from the source value provided by the resolver. In this
case, a value processor uses a JSON Path expression to extract the value of a specific field from the
HTTP request body provided by the resolver.

Conclusion
In this tutorial about fine-grained action access control, you added anti-spam protections to the Meme
Game API by blocking requests using certain email addresses. In doing so, you learned how to configure
PingDataGovernance Server to act as a reverse proxy to a JSON API. You then learned how to use the
PingDataGovernance Policy Administration GUI to create a fine-grained access control policy with rules
that take effect based on the access token and body of an HTTP request. You also learned how to test
policies and inspect policy requests using the Policy Administration GUI.

You also learned:

▪ Gateway API Endpoint names in the PingDataGovernance Server configuration must match Trust
Framework Service names in the Policy Administration GUI.

▪ Policies can pinpoint different API services and HTTP verbs.
▪ Policies can PERMIT or DENY transactions based on any combination of attributes.
▪ Mock access tokens make testing very easy.
▪ Trust Framework attributes obtain their values using resolvers and transform their values using

processors.
▪ PingDataGovernance Server supplies Attributes for HTTP metadata, request data, and OAuth 2 access

token attributes.
▪ You can test policies directly from the Policy Administration GUI.
▪ The Policy Administration GUI's Decision Visualiser gives you a detailed view of recent policy decisions.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 95

Tutorial: Configuring attribute-based resource access control for an API
This tutorial describes how to build and test policies that restrict access to a resource based on attributes
of both the resource and the caller.

Scenario

In some data use cases, it is necessary to know both the resource being requested and the requesting
user. For example, a counselor can only view the records of students in their department. In the scenario of
the meme game, users are allowed to invite their friends or family to like or critique their memes. Because
some memes are inappropriate for younger audiences, the city of Youngstown, Ohio passes an ordinance
that does not allow you to serve its citizens memes rated for age 13 and older. You must create a policy to
enforce this by checking the city of the user's profile and the age rating of the shared meme.

i Note:

Obviously, not all Youngstown residents are young. In a more realistic scenario, we might compare the age
of the requesting user to the age rating of the meme. However, computing the user's age from their date of
birth adds unnecessary complexity.

Tasks

This tutorial teaches you how to configure attribute-based API access control rules by walking you through
the following tasks.

1. Configure a proxy for the Meme Game API.
2. Create a policy blocking all users from viewing shared memes.
3. Add policy condition logic to allow users not from Youngstown to view shared memes.
4. Add policy condition logic to allow users from Youngstown to view shared memes rated under 13.
5. Add advice to set the API error response when policy blocks access.

The following sections provide the details for completing these tasks.

Configuring the API security gateway
This tutorial describes how to use the API security gateway to allow requests to a parameterized endpoint.

You will configure https://localhost:7443/meme-game/api/v1/users/{user}/answers
to proxy to https://meme-game.com/api/v1/users/{user}/answers, where user can be any
username.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 96

Creating the gateway API endpoint
Configure a reverse proxy by configuring an API External Server and a Gateway API Endpoint.

Steps

1. (Optional.) Configure an API External Server for the Meme Game API. An API External Server controls
how PingDataGovernance Server handles connections to an HTTPS API server, including configuration
related to TLS. In this case, we simply need to provide a base URL.

i Note: This step is optional because if you completed Tutorial: Configuring fine-grained action
access control for an API on page 77, then you already set up this API External Server.

a. Sign on to the Administrative Console using the URL and credentials from Accessing the GUIs on
page 69.

b. Click External Servers.
c. Click New External Server and choose API External Server.
d. For Name, specify Meme Game API.
e. For Base URL, specify https://meme-game.com.

The following image shows this configuration.

f. Click Save.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 97

2. Configure a Gateway API Endpoint. A Gateway API Endpoint controls how PingDataGovernance
Server proxies incoming HTTP client requests to an upstream API server.

a. In the Administrative Console, click Configuration and then Gateway API Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify Meme Game - Shared Answers.
d. For Inbound Base Path, specify /meme-game/api/v1/users/{user}/answers.

The inbound base path defines the base request path for requests to be received by
PingDataGovernance Server.

By surrounding a value in curly braces, you can add a parameter to a gateway API endpoint's
inbound-base-path, and use it to fill in a parameter of the same name in the outbound path, as well
as to inform other elements of the policy request, such as the service.

e. For Outbound Base Path, specify /api/v1/users/{user}/answers.

The outbound base path defines the base request path for requests that PingDataGovernance
Server forwards to an API server.

f. For API Server, specify Meme Game API. This is the API External Server you defined in another
tutorial, in Configuring a reverse proxy for the Meme Game API on page 77.

Your screen should look like the following one.

g. Save your changes.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 98

Testing the gateway
You can test the newly created Gateway API Endpoint with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

You should get a 200 OK response with a JSON response body that contains a series of answers in an
array titled data.

Creating a policy based on user credentials
This tutorial describes how to create a policy that acts on information about the user.

Creating a service for the Shared Answers endpoint
Create a service in the Trust Framework to ensure that our policy only affects requests to our new
endpoint.

About this task

This task passes the name of the Gateway API Endpoint configured in PingDataGovernance Server as the
service to the PingDataGovernance policy decision point (PDP).

Steps

1. From the PingDataGovernance Policy Administration GUI, go to Trust Framework and click Services.

2. From the + menu, select Add new service.

3. For the name, replace Untitled with Meme Game - Shared Answers.

4. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of the Parent field.

Your service should like the one below.

5. Click Save changes.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 99

Creating a policy for the Shared Answers endpoint
Create a policy to prevent users from accessing the Shared Answers endpoint.

Steps

1. In the PingDataGovernance Policy Administration GUI, go to the Policies tab.

2. Select Global Decision Point.

3. From the + menu, select Add Policy.

4. For the name, replace Untitled with Users viewing shared memes.

5. Click + next to Applies to.

6. In the upper-right corner of the left pane, click Components.

7. From the Actions list, drag outbound-GET to the Add definitions and targets, or drag from
Components box.

8. From the Services list, drag Meme Game - Shared Answers to the Add definitions and targets, or
drag from Components box.

9. For the combining algorithm, select Unless one decision is permit, the decision will be deny.

10.Click Save changes.

Your policy should look like the one shown below.

Testing the policy
You can test the new policy with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 100

 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

You should get a 403 Forbidden response with the following body.

{
 "errorMessage": "Access Denied",
 "status": 403
}

Creating an attribute from user data
Create an attribute to represent the city the user lives in.

Steps

1. In the PingDataGovernance Policy Administration GUI, go to Trust Framework and click Attributes.

2. From the + menu, select Add new Attribute.

3. For the name, replace Untitled with city.

4. For Parent, select TokenOwner.

5. Click the + next to Resolvers and click + Add Resolver.

6. For Resolver type, select Attribute and specify a value of TokenOwner.

7. Click the + next to Value Processors and click + Add Processor.

8. For Processor, select JSON Path and specify a value of $.l[0]. (The LDAP attribute l is short for
locality.)

9. For the processor's Value type, select String.

10.For Value Settings, set the Type to String.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 101

11.Click Save changes.
You have an attribute for the user's city, as shown in the following image.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 102

Adding logic to allow non-Youngstown users
Add a rule to the Users viewing shared memes API policy to allow users who are not from Youngstown
to view answers.

Steps

1. From the PingDataGovernance Policy Administration GUI, go to the Policies tab.

2. Select Users viewing shared memes.

3. Click + Add Rule.

4. For the name, replace Untitled with Allow people outside of Youngstown.

5. For Effect, select Permit.

6. To specify a Condition, perform the following steps:

a. Click + Comparison.
b. From the Select an Attribute field, select TokenOwner.city.
c. In the second field, select Does Not Equal.
d. In the third field, type Youngstown.

7. Click Save changes.
You have a rule that allows users from outside Youngstown.

Testing that the policy blocks Youngstown users
You can test the new rule with cURL or Postman.

About this task

Steps

1. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

A 200 OK response with the following body.

{
 "data": {
 "id": "1",
 "type": "answers",

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 103

 "attributes": {
 "url": "https://i.imgflip.com/2fm6x.jpg",
 "captions": [
 "Still waiting for the bus to Jennie’s"
],
 "rating": null,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

2. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

The user is from Youngstown, so the result is a 403 Forbidden response with the following body.

{
 "errorMessage": "Access Denied",
 "status": 403
}

Creating a policy based on the API response
This tutorial describes how to create a policy that acts on information about the response received from the
API server.

Creating an attribute from response data
Create an attribute to represent the age rating of the meme being requested.

About this task

Steps

1. From the PingDataGovernance Policy Administration GUI, go to Trust Framework and click
Attributes.

2. From the + menu, select Add new Attribute.

3. For the name, replace Untitled with Meme game answer rating.

4. Verify that in the Parent field, no parent is selected.

To remove a parent, click the trash can icon to the right of the Parent field.

5. Click the + next to Resolvers and click + Add Resolver.

6. For Resolver type, select Attribute and specify a value of HttpRequest.ResponseBody.

7. Click the + next to Value Processors and click + Add Processor.

8. For Processor, select JSON Path and specify a value of $.data.attributes.rating.

9. For the processor's Value type, select Number.

10.For Value Settings, set the Type to Number.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 104

11.Click Save changes.
You have a new attribute for the answer's age rating.

Adding logic to allow family-friendly memes
Add a rule to the Users viewing shared memes API policy to allow users to view answers that are rated
for ages under 13.

Steps

1. From the PingDataGovernance Policy Administration GUI, go to the Policies tab.

2. Select Users viewing shared memes.

3. Click + Add Rule.

4. For the name, replace Untitled with Anyone can view family-friendly answers.

5. For Effect, select Permit.

6. Specify a Condition.

a. Click + Comparison.
b. From the Select an Attribute field, select Meme game answer rating.
c. In the second field, select Less Than.
d. In the third field, type 13.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 105

7. 7. Click Save changes.
You have a rule to allow family-friendly memes that looks like the following image.

Testing that the policy blocks Youngstown users from viewing age 13+ memes
You can test the newly created rule with cURL or Postman.

About this task

Steps

1. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/2 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/2 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

When requesting answer 2 as user.0, expect a 200 OK response with the following body.

{
 "data": {
 "id": "2",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/23ls.jpg",
 "captions": [
 "There was a spider",
 "it's gone now"
],
 "rating": 13,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

2. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/2 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

When requesting answer 2, which is rated age 13, as user.660, who is from Youngstown, OH, expect
a 403 Forbidden response with the following body.

{

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 106

 "errorMessage": "Access Denied",
 "status": 403
}

3. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.0. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.0"}'

When requesting answer 1 as user.0, expect a 200 OK response with the following body.

{
 "data": {
 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/2fm6x.jpg",
 "captions": [
 "Still waiting for the bus to Jennie’s"
],
 "rating": null,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

4. Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/2 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

When requesting answer 1, which is unrated, as user.660, who is from Youngstown, OH, expect
a 403 Forbidden response with the following body. Be aware that this is not the correct behavior;
however, to resolve it, we would need to change our attribute definitions.

{
 "errorMessage": "Access Denied",
 "status": 403
}

Allowing unrated memes
Answer 1 is not being served to user.660, even though it has not been rated as 13+. In this scenario,
an unrated answer should be considered friendly to all users. Consider why an unrated meme is being
blocked for this user. To resolve this, you can add a default value to the age rating.

About this task

Steps

1. In the PingDataGovernance Policy Administration GUI, go to Trust Framework and click Attributes.

2. Select Meme game answer rating.

3. For Value Settings, check the Default Value box, and specify a value of 0.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 107

4. Click Save changes.

Your attribute for answer age ratings has a default value of 0, as shown below.

Testing the default value
You can test that the policy now works correctly with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/1 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/1 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

You should get a 200 OK response with the following body.

{
 "data": {

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 108

 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https://i.imgflip.com/2fm6x.jpg",
 "captions": [
 "Still waiting for the bus to Jennie’s"
],
 "rating": null,
 "created_at": "2020-05-06T22:25:06+00:00"
 }
 },
 "meta": {}
}

Creating an advice to provide a more useful error message
Add a command, known as an advice, that instructs PingDataGovernance to set the HTTP response code
and provide a more useful error message when rejecting the outbound response.

About this task

Because this problem is due to an attribute of a user (namely their location), use a 4xx response code to
indicate a user issue. The 451 response code has been suggested for use in cases where content cannot
be displayed for legal reasons.

Steps

1. From the PingDataGovernance Policy Administration GUI, go to the Policies tab.

2. Select Users viewing shared memes.

3. Click + Advice and Obligations.

4. Click + Add Advice and select Denied Reason.

5. For the name, replace Untitled with Send "not permitted" error.

6. From the Applies to drop-down list, select Deny.

7. For a Payload value, enter {"status": 451, "message": "Restricted", "detail": "Not
permitted per regulation"}.

8. Click Save changes.
You have a new advice, which looks something like the following image.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 109

Testing the advice
You can test that the advice works correctly with cURL or Postman.

Steps

▪ Issue a GET request to https://localhost:7443/meme-game/api/v1/users/user.0/
answers/2 as user.660. The following cURL command makes such a request.

curl --insecure -X GET \
 https://localhost:7443/meme-game/api/v1/users/user.0/answers/2 \
 -H 'Authorization: Bearer {"active": true, "sub": "user.660"}'

Expect a 451 Unavailable For Legal Reasons response with the following body.

{
 "errorMessage": "Restricted: Not permitted per regulation",
 "status": 451
}

Conclusion
In this tutorial, you allowed users to access the meme game's shared answers functionality through
PingDataGovernance. Following a request from government authorities, you blocked users from the town
of Youngstown, Ohio from viewing memes intended for audiences aged 13 or older. In doing so, you
learned about the PingDataGovernance ability to control access to resources based on attributes of both
the requesting user and the resource being requested. You also learned how to use advice to modify
response bodies.

You also learned:

▪ Policies can apply "outbound"--upstream server API responses before they are sent to the API client.
▪ HttpRequest.ResponseBody is the upstream server API response body before it is sent to the client.
▪ Attributes that cannot be resolved because of any reason including processing errors might impact

policy outcomes.
▪ PingDataGovernance supplies the user profile of access token subject as the Trust Framework attribute

TokenOwner.
▪ You must populate the child attributes of the TokenOwner that you want to use in policy.
▪ Many attributes in LDAP are multivalued.
▪ Advice are the mechanism to modify the API response in some way.
▪ In this case, denied-reason was used to set the HTTP status code and message body.

Tutorial: Creating SCIM policies
This tutorial describes how to develop a set of access-control policies for the PingDataGovernance
Server's built-in System for Cross-domain Identity Management (SCIM) REST API.

In the previous section, you used PingDataGovernance Server to filter data that an external REST API
returned.

While PingDataGovernance Server's API security gateway protects existing REST APIs,
PingDataGovernance Server's built-in SCIM service provides a REST API for accessing and protecting
identity data that might be contained in datastores like LDAP and relational databases.

PingDataGovernance Server uses SCIM in the following ways:

▪ Internally, user identities are represented as SCIM identities by way of one or more SCIM resource
types and schemas. This approach includes access token subjects, which are always mapped to a
SCIM identity.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 110

▪ A SCIM REST API service provides access to user identities through HTTP.

You will now design a set of policies to control access to the SCIM REST API by using OAuth 2 access
token rules.

Before proceeding, make a test request to generate a SCIM REST API response to a request when only
the default policies are in place. As in the previous section, a mock access token is used.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub": "user.1", "scope": "nonexistent.scope",
 "client_id": "nonexistent.client"}'

Although the precise attribute values might vary, the response returns the SCIM resource that corresponds
to user.1.

{"mail":["user.1@example.com"],"initials":["RJV"],"homePhone":["+1 091 438
 1890"],
"pager":["+1 472 824 8704"],"givenName":
["Romina"],"employeeNumber":"1","telephoneNumber":["+1 319 624 9982"],
"mobile":["+1 650 622 7719"],"sn":["Valerio"],"cn":["Romina Valerio"],
"description":["This is the description for Romina Valerio."],"street":
["84095 Maple Street"],
"st":["NE"],"postalAddress":["Romina Valerio$84095 Maple Street$Alexandria,
 NE 39160"],
"uid":["user.1"],"l":["Alexandria"],"postalCode":
["39160"],"entryUUID":"355a133d-58ea-3827-8e8d-b39cf74ddb3e",
"objectClass":["top","person","organizationalPerson","inetOrgPerson"],
"entryDN":"uid=user.1,ou=people,o=yeah",
"meta":{"resourceType":"Users",
"location":"https://localhost:7443/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},
"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"]}

This response is a success response, although it is preferred that it not be one, because it shows that any
active access token referencing a valid user can be used to access any data.

Scenario

In this tutorial, you use OIDC-like scopes email and profile to limit data access of the requestor to
specific attributes of the profile that granted the access token.

Also, you create a scope scimAdmin that has full access to SCIM-based User resources.

Tasks

This tutorial walks you through these tasks.

1. Create a basic policy structure for scope-based access to SCIM resources.
2. Create a policy for the email scope that only allows access to the subject's mail attributes.
3. Create a policy for the profile scope that only allows access to a few other profile attributes.
4. Create a policy for the scimAdmin scope that allows access to all attributes.

The following sections provide the details for completing these tasks.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 111

Tutorial: Creating the policy tree
This tutorial describes how to create a tree structure and ensure that your policies apply only to System for
Cross-domain Identity Management (SCIM) requests.

About this task

The default policies include the policy named Token Validation. In the PingDataGovernance Policy
Administration GUI, you can find this policy under Global Decision Point. This policy denies any request
by using an access token if its active flag is set to false. This policy is augmented with a set of scope-
based access control policies.

Steps

1. To create the tree structure, perform the following steps:

a. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

b. Click Policies.
c. Highlight Global Decision Point.
d. From the + menu, select Add Policy Set.
e. For the name, replace Untitled with SCIM Policy Set.
f. In the Policies section, set the Combining algorithm to A single deny will override any permit

decisions.

A combining algorithm determines the manner in which the policy set resolves potentially contending
decisions from child policies.

g. Click + Applies to.
h. Click Components.
i. From the Services list, drag SCIM2 to the Add definitions and targets, or drag from

Components box.

This step ensures that policies in the SCIM policy set apply only to SCIM requests.
j. Click Save changes.

You should have a screen like the following.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 112

2. To add a branch under the SCIM policy set to hold SCIM-specific access token policies, go from
Components to Policies and perform the following steps:

a. Highlight SCIM Policy Set.
b. From the + menu, select Add Policy Set.
c. For the name, replace Untitled with Token Policies.
d. In the Policies section, set the Combining algorithm to A single deny will override any permit

decisions.
e. Click Save changes.

3. To add another branch that holds a policy specific to access token scopes, perform the following steps:

a. Highlight Token Policies.
b. From the + menu, select Add Policy Set.
c. For the name, replace Untitled with Scope Policies.
d. In the Policies section, set the Combining algorithm to Unless one decision is permit, the

decision will be deny.
e. Click Save changes.

After creating the new branches, they should look like the following.

Tutorial: Creating SCIM access token policies
This tutorial describes how to define access token policies after you define a structure.

In this section, you will define three policies that use a requester's access token to limit its access to data.

Creating a policy for permitted access token scopes
The first policy defines the access token scopes that PingDataGovernance Server accepts for System for
Cross-domain Identity Management (SCIM) requests.

About this task

The following table defines these scopes.

Scope Allowed actions Applies to

scimAdmin search, retrieve, create/modify,
delete

Any data

email retrieve Requester's email attributes

profile retrieve Requester's profile attributes

To create the policy and add rules to define the scopes, perform the following steps:

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 113

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, and Token Policies.

4. Highlight Scope Policies.

5. Next to Advice and Obligations, click +.

6. Click Components.

7. From the Advice list, drag Insufficient Scope to the area immediately following Advice and
Obligations. A box appears for you to drop the item into.

8. Click Save Changes.

9. Click Policies to the left of Components.

10.Highlight Scope Policies.

11.From the + menu, select Add Policy.

12.For the name, replace Untitled with Permitted Scopes.

13.Change the combining algorithm to A single deny will override any permit decisions.

14.Click Save Changes.

Testing the policy with cURL
Test the newly created policy with cURL.

About this task

If you attempt the same HTTP request that you issued previously, it is now denied.

Steps

▪ Run the HTTP request to perform the test.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "nonexistent.scope", "client_id": "nonexistent.client"}'

{"schemas":["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403",
"scimType":"insufficient_scope","detail":"Requested operation not allowed
 by the granted OAuth scopes."}

Defining the email scope
Define a permitted access token scope to retrieve email attributes.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, Token Policies, and Scope Policies.

4. Highlight Permitted Scopes.

a. Click Components.

5. From the Rules list, drag Permitted SCIM scope for user to the Rules section.

6. To the right of the copied rule, click the three-line menu.

7. Click Replace with clone.

8. Change the name to Scope: email.

9. To expand the rule, click +.

10.Change the description to Rule that permits a SCIM user to access its own mail
attribute if the access token contains the email scope.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 114

11.In the HttpRequest.AccessToken.scope row of the Condition section, type email in the
CHANGEME field.

12.Within the rule, click Show "Applies to".

13.From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

i Note:

This task uses different actions from the previous gateway example.

14.Within the rule, click Show Advice and Obligations.

15.Click + next to Advice and Obligations.

16.From the Advice section, drag Include email attributes to the Advice and Obligations section.

i Note:

This predefined advice includes a payload. If the condition for this rule is satisfied, the response
includes the mail attribute.

17.Click Save changes.

Results

After completing the configuration, you will have a new email scope, which should look like the following.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 115

Testing the email scope with cURL
You can test a newly created email scope with cURL.

About this task

If you make the same request as earlier, a 403 is returned because the provided scope is not allowed.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub": "user.1", "scope": "nonexistent.scope",
 "client_id": "nonexistent.client"}'

Steps

▪ Adjust the request to use the email scope.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

The request succeeds, and only the mail attribute is returned.

Defining the profile scope
Define a permitted access token scope to retrieve profile attributes.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

2. Click Policies.

3. Expand Global Decision Point, SCIM Policy Set, Token Policies, and Scope Policies.

4. Highlight Permitted Scopes.

5. Click Components.

6. From the Rules list, drag Permitted SCIM scope for user to the Rules section.

7. To the right of the copied rule, click the three-line menu.

8. Click Replace with clone.

9. Change the name to Scope: profile.

10.To expand the rule, click +.

11.Change the description to Rule that permits a SCIM user to access a subset of its
own profile attributes if the access token contains the profile scope.

12.In the HttpRequest.AccessToken.scope row of the Condition section, type profile in the
CHANGEME field.

13.Within the rule, click Show "Applies to".

14.From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

15.Within the rule, click Show Advice and Obligations.

16.Next to Advice and Obligations, click +.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 116

17.From the Advice section, drag Include profile attributes to the Advice and Obligations section.

i Note:

This predefined advice includes a payload. If the condition for this rule is satisfied, the response
includes the uid, sn, givenName, and description attributes.

18.Click Save changes.

Results

After completing the configuration, you will have a new profile scope, which should look like the following.

Testing the profile scope with cURL
Test your new profile scope with cURL.

Steps

▪ Make the same request as earlier, but change the email scope that the access token uses to
profile.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "profile", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"givenName":["Romina"],"description":["This is the description
 for Romina Valerio."],"sn":["Valerio"]}

The attributes defined by the new rule's advice are returned.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 117

▪ Because an access token might contain multiple scopes, confirm that an access token with the email
and profile scopes returns the union of the attributes that both scopes grant.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope": "email
 profile", "client_id": "nonexistent.client"}'

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.1"],"mail":["user.1@example.com"],"givenName":
["Romina"],"description":["This is the description for Romina
 Valerio."],"sn":["Valerio"]}

Defining the scimAdmin scope
For the scimAdmin scope, you will define different behaviors that depend on the action of the request.

As a result, the scope definition will be split into multiple rules.

Adding the scimAdmin retrieve rule
Add the scimAdmin retrieve rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (retrieve).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, select HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10.From the Actions section, drag retrieve to the Add definitions and targets, or drag from
Components box.

11.Within the rule, click Show Advice and Obligations.

12.Click + next to Advice and Obligations.

13.From the Advice section, drag Include all attributes to the Advice and Obligations section.

14.Click Save Changes.

Results
After completing the configuration, you will have a new scope for the scimAdmin retrieve rule, that should
look like the following.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 118

Adding the scimAdmin create/modify rule
Add the scimAdmin create/modify rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (create/modify).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, select HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10.From the Actions section, drag create to the Add definitions and targets, or drag from
Components box.

11.From the Actions sections, drag modify to the Add definitions and targets, or drag from
Components box.

12.Click Save Changes.

Adding the scimAdmin search rule
Add the scimAdmin search rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 119

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (search).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, select HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10.From the Actions section, drag search to the Add definitions and targets, or drag from
Components box.

11.Click Save Changes.

Adding the scimAdmin delete rule
Add the scimAdmin delete rule to the Permitted Scopes policy.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI using the URL and credentials from
Accessing the GUIs on page 69.

2. Click Policies.

3. Highlight Permitted Scopes.

4. Click + Add Rule.

5. For the name, replace Untitled with Scope: scimAdmin (delete).

6. From the Effect list, select Permit.

7. In the Condition section, perform the following steps:

a. Click + Comparison.
b. In the first field, type HttpRequest.AccessToken.scope.
c. From the comparator list, select Contains.
d. In the final field, type scimAdmin.

8. Within the rule, click Show "Applies to".

9. Click Components.

10.From the Actions section, drag delete to the Add definitions and targets, or drag from
Components box.

11.Click Save Changes.

Creating a policy for permitted OAuth2 clients
This tutorial describes how to configure a policy to allow specific OAuth2 clients for a REST service. A
REST service typically allows only requests from a whitelist of OAuth2 clients.

About this task

In the PingDataGovernance Policy Administration GUI, define a policy in which each rule specifies an
allowed client.

Steps

1. Go to Policies# Policies.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 120

2. Expand Global Decision Point and SCIM Policy Set.

3. Highlight Token Policies and click + and then Add Policy.

4. For the name, replace Untitled with Permitted Clients.

5. From the Combining Algorithm list, select Unless one decision is permit, the decision will be
deny.

6. Click + Add Rule.

7. For the name, replace Untitled with Client: client1.

8. From the Effect list, select Permit.

9. In the Condition section:

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.client_id.
c. From the middle, comparison-type list, select Equals.
d. In the final field, type client1.

10.Click + Add Rule.

11.For the name, replace Untitled with Client: client2.

12.From the Effect list, select Permit.

13.In the Condition section:

a. Click + Comparison.
b. In the A field, from the Select an Attribute list, select HttpRequest.AccessToken.client_id.
c. From the Contains list, select Equals.
d. In the C field, enter client2.

14.Expand + Advice and Obligations.

i Note:

Do not click Show Advice and Obligations within the client1 or client2 rules.

15.Click Components.

16.From Advice, drag Unauthorized Client to the Advice and Obligations box.

17.Click Save changes.

Results
The completed configuration should resemble the following image.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 121

Testing the client policy with cURL
To confirm that you successfully completed the tasks from the previous section, test the client policy with
cURL.

About this task

After completing the tasks in the previous sections, test the responses you receive for access tokens for
any client other than client1 or client2.

Steps

▪ To test that an access token for any client other than client1 or client2 is rejected, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "nonexistent.client"}'

Successful completion of the tasks in the previous sections will result in the following response.

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"401","scimType":"The
 client is not authorized to request this
 resource.","detail":"unauthorized_client"}

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 122

▪ To test that an access token for client1 is accepted, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'

Successful completion of the tasks in the previous sections will result in the following response.

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/355a133d-58ea-3827-8e8d-b39cf74ddb3e"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Creating a policy for permitted audiences
This tutorial describes how to create a policy for a REST service to control access based on an acceptable
audience value.

About this task

An authorization server like PingFederate might set an audience field on the access tokens that it issues,
naming one or more services that are allowed to accept the access token. A REST service can use the
audience field to ensure that it does not accept access tokens that are intended for use with a different
service.

As with the Permitted Clients policy, each rule in the Permitted Audiences policy defines an acceptable
audience value.

Steps

1. Go to Policies# Policies.

2. Expand Global Decision Point and SCIM Policy Set.

3. Highlight Token Policies and click +.

4. Click Add Policy.

5. For the name, replace Untitled with Permitted Audiences.

6. From the Combining Algorithm list, select Unless one decision is permit, the decision will be
deny.

7. Click + Add Rule.

8. For the name, replace Untitled with Audience: https://example.com.

9. From the Effect list, select Permit.

10.In the Condition section:

a. Click + Comparison.
b. From the Select an Attribute list, select HttpRequest.AccessToken.audience.
c. From the middle, comparison-type list, select Equals.
d. In the C field, enter https://example.com.

11.Expand + Advice and Obligations.

12.Click the Components tab, expand Advice, and drag Unauthorized Audience to the Advice and
Obligations box.

i Note:

Do not click Show Advice and Obligations within the "Audience: https://example.com" rule.

13.Click Save changes.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 123

Results
The final configuration should resemble the following image.

Testing the audience policy with cURL
Test the audience policy with cURL.

Steps

1. To test that an access token without a specific audience value is rejected, run the following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1"}'

Successful creation of the audience policy will result in the following.

{"schemas":
["urn:ietf:params:scim:api:messages:2.0:Error"],"status":"403","scimType":
"invalid_token","detail":"The access token was issued for a different
 audience."}

2. To test that an access token with an audience value of https://example.com is accepted, run the
following.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H
 'Authorization: Bearer {"active": true, "sub": "user.1", "scope":
 "email", "client_id": "client1", "aud": "https://example.com"}'

Successful creation of the audience policy will result in the following.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 124

{"id":"355a133d-58ea-3827-8e8d-b39cf74ddb3e","meta":
{"resourceType":"Users",
"location":"https://localhost:7443/scim/v2/Users/355a133d-58ea-3827-8e8d-
b39cf74ddb3e"},
"schemas":["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"mail":
["user.1@example.com"]}

Tutorial: Creating a policy for role-based access control
This tutorial describes how to create the final policy, which is an access-control rule that can base its
authorization decision on an attribute of the requesting identity, rather than on an access token claim.

About this task

When PingDataGovernance Server authorizes a request, an access token validator resolves the subject of
the access token to a System for Cross-domain Identity Management (SCIM) user and populates a policy
request attribute called TokenOwner with the SCIM user's attributes. In this scenario, build a policy around
the employeeType attribute, which must be defined in the Trust Framework.

Steps

1. Go to Trust Framework and click the Attributes tab. Click TokenOwner.

2. Click +.

3. Click Add new Attribute.

4. For the name, replace Untitled with employeeType.

5. From the Parent list, select TokenOwner.

6. In the Resolvers section:

a. Click + Add Resolver.
b. From the Resolver type list, select Attribute and in the Select an Attribute list, specify a value

of TokenOwner.

7. Click + next to Value Processors and then + Add Processor.

8. From the Processor list, select JSON Path and enter the value employeeType.

9. Set the Value type to Collection.

10.In the Value Settings section:

a. Select the Default Value check box and in the Enter a default value field, enter the value [].

i Note:

An empty array is specified as the default value because not all users have an employeeType
attribute. A default value of [] ensures that policies can safely use this attribute to define conditions.

b. From the Type list, select Collection.

11.Click Save changes.

Results
The final policy configuration should resemble the following image.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 125

Next steps

Add a policy that uses the employeeType attribute.

1. Go to Policies, highlight SCIM Policy Set and click +.
2. Click Add Policy.
3. For the name, replace Untitled with Restrict Intern Access.
4. From the Combining Algorithm list, select Unless one decision is deny, the decision will be

permit.
5. Click + Add Rule.
6. For the name, replace Untitled with Restrict access for interns.
7. From the Effect list, select Permit.
8. In the Condition section:

a. Click + Comparison.
b. In the Select an Attribute field, select TokenOwner.employeeType.
c. From the middle, comparison-type list, select Contains.
d. In the Type in constant value field, enter intern.

9. Within the rule, click Show Advice and Obligations and then click the + next to Advice and
Obligations.

10.Click + Add Advice# Custom Advice.
11.For the name, replace Untitled with Restrict attributes visible to interns.
12.Select the Obligatory check box.
13.In the Code field, enter exclude-attributes.

Copyright ©2022

PingDataGovernance | Getting started with PingDataGovernance (tutorials) | 126

14.From the Applies To list, select Permit.
15.In the Payload field, enter ["description"].
16.Click Save Changes.

Testing the policy with cURL
Test the policy for role-based access control using cURL.

About this task

The PingDataGovernance sample user data allows an employeeType attribute but does not populate it
with values for any users.

Confirm that user.2 cannot read the description attribute, even though the profile scope allows it
by running the following command.

curl --insecure -X GET https://localhost:7443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub": "user.2", "scope": "profile", "client_id":
 "client1", "aud": "https://example.com"}'

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 127

The response should be similar to the following response.

{"id":"c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09","meta":
{"resourceType":"Users","location":"https://localhost:7443/
scim/v2/Users/c9cbfb8c-d915-3de3-8a2c-a01c0ccc6d09"},"schemas":
["urn:pingidentity:schemas:store:2.0:UserStoreAdapter"],"uid":
["user.2"],"givenName":["Billy"],"sn":["Zaleski"]}

Example files

The compressed PingDataGovernance Server file at PingDataGovernance/resource/policies
includes a policy snapshot and deployment package that contains an example Trust Framework as well as
example policies.

Conclusion
In this tutorial, you set scope-based access to SCIM resources.

You also learned:

▪ Like exclude-attributes used in this tutorial, include-attributes filters which attributes can
be returned to the caller. include-attributes works more like opt-in, while exclude-attributes
works more like opt-out.

▪ Multiple attributes can apply from multiple rules or even policies. They are combined by
PingDataGovernance to include before exclude.

Installing PingDataGovernance

As you plan your PingDataGovernance deployment, review the components to install as well as the
potential deployment methods, architectures, and environments.

Seeing PingDataGovernance in action

To quickly see PingDataGovernance in action, see Getting started with PingDataGovernance (tutorials) on
page 68.

Components

Policy Administration GUI

Powered by Symphonic®, the PingDataGovernance Policy Administration GUI gives policy
administrators the ability to develop and test data-access policies.

PingDataGovernance Server

Enforces policies to control fine-grained access to data. REST APIs access data through
PingDataGovernance Server, which applies the data-access policies to allow, block, filter, or modify
data resources and data attributes.

Deployment methods

To deploy PingDataGovernance, your options include the following methods.

Deployment method Recommended for

Docker Server administrators familiar with Docker and want to use orchestration to
manage their environments.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 128

Deployment method Recommended for

Manual Server administrators familiar with their operating systems and want to
tweak and maintain their environments themselves

Deployment architectures

PingDataGovernance Server supports the following options of deployment architectures for enforcing fine-
grained access to data:

▪ System for Cross-domain Identity Management (SCIM) API to datastores
▪ API Security Gateway as reverse proxy
▪ API Security Gateway in Sideband configuration

The following sections describe these deployment architectures in more detail.

SCIM API to datastores

PingDataGovernance Server SCIM service provides a REST API for data that is stored in one or more
external datastores, based on the SCIM 2.0 standard. The policy is enforced by the SCIM service.

API Security Gateway as reverse proxy

PingDataGovernance Server's API security gateway can be deployed as a reverse proxy to an existing
JSON-based REST API. In this configuration, PingDataGovernance Server acts as an intermediary
between clients and existing API services. The policy is enforced by the API security gateway.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 129

API Security Gateway in Sideband configuration

PingDataGovernance Server's API security gateway can be deployed as an extension to an existing
API Lifecycle Management Gateway, which is commonly known as a sideband configuration. In this
configuration, the API Lifecycle Management Gateway functions as the intermediary between clients and
existing API services. However, API request and response data still flows through PingDataGovernance
Server to enforce policy.

Deployment environments

PingDataGovernance Server can be deployed in either of the following environments:

Development environment

PingDataGovernance Server and the Policy Administration GUI are used together during the
development of policies.

Other pre-production and production environments

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 130

After policies are developed, they are tested in other pre-production environments and eventually
put into production.

The following sections describe these deployment environments in more detail.

Development environment

To allow teams to test data-access policies during their development, PingDataGovernance Server is
configured to obtain policy decisions from the Policy Administration GUI. The development environment
supports all deployment architectures. In this configuration, the Policy Decision Service is set to External
mode.

The following image shows PingDataGovernance Server configured in the Reverse Proxy architecture.

As test API requests are proxied through PingDataGovernance Server's API security gateway, policy
decisions are obtained from the Policy Administration GUI and are enforced by the API security gateway.

Other pre-production and production environments

The Policy Administration GUI is not a part of so-called "higher" environments. Instead, the policy is
exported from the Policy Administration GUI and is imported into PingDataGovernance Server.

In the following configuration, the Policy Decision Service is set to Embedded mode.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 131

Docker installation
Using Docker containers simplifies installations and standardizes your deployments.

For information about deployment methods and architectures, see Installing PingDataGovernance on page
127.

Before you install using Docker
To install PingDataGovernance using Docker, you must have a supported Docker platform and the Docker
images.

Docker
This section provides the supported Docker version and links to the PingDataGovernance Docker images.

Docker is available from the Docker Hub repository.

▪ Version supported: Docker 19.03.5
▪ Base image operating system: Alpine Linux 3.11

i Note: Increase your Docker memory limit to at least 4GB. To change this setting, go to Docker
Dashboard# Settings# Resources# Advanced

To start, see https://devops.pingidentity.com/get-started/getStarted/.

For license information, see https://devops.pingidentity.com/get-started/prodLicense/.

Docker images for Ping Identity's on-premises server products are available from the Docker Hub
repository at the following URL: https://hub.docker.com/u/pingidentity/.

The following Docker containers are available.

Container Description Image

pingdataconsole Administrative Console

Use this GUI to configure
PingDataGovernance.

DockerHub:
PingDataConsole

Copyright ©2022

https://devops.pingidentity.com/get-started/getStarted/
https://devops.pingidentity.com/get-started/prodLicense/
https://hub.docker.com/u/pingidentity/
https://hub.docker.com/r/pingidentity/pingdataconsole
https://hub.docker.com/r/pingidentity/pingdataconsole

PingDataGovernance | Installing PingDataGovernance | 132

Container Description Image

pingdatagovernance PingDataGovernance Server

The server enforces the policies you define.

DockerHub:
PingDataGovernance

pingdatagovernancepap PingDataGovernance Policy Administration
GUI

Use this GUI to define the policies that
determine access control and data protection.

DockerHub:
PingDataGovernancePAP

pingdirectory PingDirectory

A directory of user information.

i Note:

PingDataGovernance does not require
PingDirectory.

DockerHub: PingDirectory

Visit the PingIdentity DevOps documentation for more information. Only the PingDataConsole,
PingDataGovernance, PingDataGovernancePAP, and PingDirectory software is licensed under Ping
Identity’s end user license agreement, and any other software components contained within the image are
licensed solely under the terms of the applicable open source/third party license.

i Note: Ping Identity accepts no responsibility for the performance of any specific virtualization software
and in no way guarantees the performance or interoperability of any virtualization software with its
products.

Browsers
The PingDataGovernance Administrative Console is compatible with several different web browsers.

Administrative Console

▪ Chrome
▪ Firefox
▪ Internet Explorer 11 and later

Installing the server and the Policy Administration GUI using Docker

About this task

After you obtain the Docker images, start the setup process.

Steps

1. Run the PingDataGovernance Server container, pingdatagovernance.

2. Run the PingDataGovernance Policy Administration GUI container, pingdatagovernancepap.

3. Optional. To configure PingDataGovernance with a GUI, run the PingDataGovernance Administrative
Console container, pingdataconsole.

Copyright ©2022

https://hub.docker.com/r/pingidentity/pingdatagovernance
https://hub.docker.com/r/pingidentity/pingdatagovernance
https://hub.docker.com/r/pingidentity/pingdatagovernancepap
https://hub.docker.com/r/pingidentity/pingdatagovernancepap
https://hub.docker.com/r/pingidentity/pingdirectory
https://devops.pingidentity.com/

PingDataGovernance | Installing PingDataGovernance | 133

4. Optional. If you need user-level control of the data, set up a user store.

If you use PingDirectory, run the pingdirectory container.

i Note: For an example that deploys all these containers, see https://github.com/pingidentity/
pingidentity-devops-getting-started/tree/2102/11-docker-compose/07-pingdatagovernance.

5. Perform additional configuration steps.

The following sections describe these setup and configuration steps.

Installing the server using Docker
Install PingDataGovernance Server by running its Docker container.

About this task
The following command uses the ~/.pingidentity/devops environment file to configure common
environment variables. See https://devops.pingidentity.com/get-started/getStarted/.

Steps

▪ Run this command.

i Note: For proper communication between containers, create a Docker network using a command
such as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

docker run --network=<network_name> \
 --env-file ~/.pingidentity/devops \
 --name pingdatagovernance \
 --publish 1389:389 \
 --publish 8443:443 \
 --detach \
 --env SERVER_PROFILE_URL=https://github.com/pingidentity/pingidentity-server-profiles.git \
 --env SERVER_PROFILE_PATH=getting-started/pingdatagovernance \
 --tmpfs /run/secrets \
 pingidentity/pingdatagovernance:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdatagovernance).

Signing on to the Administrative Console (Docker installation)
After you install the server, access the Administrative Console to verify the configuration and to manage
the server

About this task
When using Docker containers, the containers must be on the same Docker network to communicate
properly.

Steps

1. Start the PingDataConsole.

The following command uses the ~/.pingidentity/devops environment file to configure common
environment variables. See https://devops.pingidentity.com/get-started/getStarted/.

docker run \
 --env-file ~/.pingidentity/devops \
 --name pingdataconsole \
 --detach \
 --publish 5443:8443 \
 --tmpfs /run/secrets \

Copyright ©2022

https://github.com/pingidentity/pingidentity-devops-getting-started/tree/2102/11-docker-compose/07-pingdatagovernance
https://github.com/pingidentity/pingidentity-devops-getting-started/tree/2102/11-docker-compose/07-pingdatagovernance
https://devops.pingidentity.com/get-started/getStarted/
https://hub.docker.com/r/pingidentity/pingdatagovernance
https://devops.pingidentity.com/get-started/getStarted/

PingDataGovernance | Installing PingDataGovernance | 134

 pingidentity/pingdataconsole:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdataconsole).

2. Sign on using the information in the following table.

URL https://localhost:${HTTPS_PORT}/console/login

Details to enter at login Server: pingdatagovernance:<port>

Username: administrator

Password: 2FederateM0re

i Note:

If submitting the form results in a "Server unavailable" error,
wait longer for the containers to reach an equilibrium "healthy"
state, as described in Verifying proper startup on page 69.

Installing PingDataGovernance Policy Administration GUI using Docker
Install the PingDataGovernance Policy Administration GUI by running its Docker container. When running
the Policy Administration GUI within a Docker container, you can take advantage of the automated policy
database update feature by using mounted volumes.

About this task

For example, when running the Ping Identity DevOps pingdatagovernancepap Docker container,
you could use the following command to ensure that the policy database is on the mounted volume in
preparation for future versions of the image. The command:

▪ Runs a pingdatagovernancepap Docker container named pap on host port 8443.
▪ Uses the ~/.pingidentity/devops environment file to configure common environment variables.

See https://devops.pingidentity.com/get-started/getStarted/.
▪ Bind mounts a customized options.yml file named custom-options.yml to the server root using

the server profile capability. The host system server-profile folder must contain instance/
custom-options.yml for this example to work correctly. See https://devops.pingidentity.com/
reference/config/.

▪ Sets the PING_OPTIONS_FILE environment variable to tell setup to use custom-options.yml.
▪ Bind mounts a volume that maps a policy database to /opt/db/Symphonic.mv.db.
▪ Sets the PING_H2_FILE environment variable to tell setup to use /opt/db/Symphonic.mv.db for

the policy database. The environment variable must exclude the .mv.db extension.

i Note:

The Ping Identity DevOps Docker image documentation is frequently updated as new features
are released. For the most recent instructions about running the Docker images, see https://
devops.pingidentity.com/.

Copyright ©2022

https://hub.docker.com/r/pingidentity/pingdataconsole
https://devops.pingidentity.com/get-started/getStarted/
https://devops.pingidentity.com/reference/config/
https://devops.pingidentity.com/reference/config/
https://devops.pingidentity.com/
https://devops.pingidentity.com/

PingDataGovernance | Installing PingDataGovernance | 135

Steps

▪ Run this command.

i Note: For proper communication between containers, create a Docker network using a command
such as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

$ docker run --network=<network_name> --name pap -p 8443:443 \
 --env-file ~/.pingidentity/devops \
 --volume /home/developer/pap/server-profile:/opt/in/ \
 --env PING_OPTIONS_FILE=custom-options.yml \
 --volume /home/developer/pap/Symphonic.mv.db:/opt/db/Symphonic.mv.db \
 --env PING_H2_FILE=/opt/db/Symphonic \
 pingidentity/pingdatagovernancepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdatagovernancepap).

Post-setup steps (Docker installation)
After you successfully set up the PingDataGovernance Policy Administration GUI, you must start the server
and then configure PingDataGovernance Server to use the Policy Administration GUI as its policy decision
point (PDP).

i Note:

The containers must be on the same Docker network to communicate properly.

Sign on to the Policy Administration GUI. For more information, see Signing on to the
PingDataGovernance Policy Administration GUI on page 135 and import a policy snapshot. You can find
a set of default policies in the resource/policies/defaultPolicies.SNAPSHOT file.

To configure PingDataGovernance Server to use the Policy Administration GUI, use dsconfig or the
Administrative Console to create a Policy External Server to represent the Policy Administration GUI,
then assign the Policy External Server to the Policy Decision Service and configure it to use external PDP
mode. Also, set the Trust Framework Version to the current version, v2.

Consider the following example. Assume a container named pingdatagovernance and that no files are
needed from the file system. The following commands run dsconfig from within the container.

docker exec pingdatagovernance /opt/out/instance/bin/dsconfig create-external-server \
 --server-name "Policy Administration GUI" \
 --type policy \
 --set "base-url:https://<pap-hostname>:<pap-port>" \
 --set "shared-secret:2FederateM0re" \
 --set "branch:Default Policies"

docker exec pingdatagovernance /opt/out/instance/bin/dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:Policy Administration GUI" \
 --set trust-framework-version:v2

In the example, the base URL consists of the host name and port chosen for the Policy Administration GUI
during setup. The shared secret value is 2FederateM0re by default. The branch name corresponds to
the branch name that you chose when importing your policy snapshot.

Signing on to the PingDataGovernance Policy Administration GUI
You can sign on to the PingDataGovernance Policy Administration GUI by entering your username and
password credentials in the appropriate web browser URL.

About this task

Copyright ©2022

https://hub.docker.com/r/pingidentity/pingdatagovernancepap

PingDataGovernance | Installing PingDataGovernance | 136

Steps

1. After completing setup for demo mode, sign on to the PingDataGovernance Policy Administration GUI
by going to the following URL in a web browser: https://<host>:<port>

Substitute the host name and port that you specified during setup.

2. Use the following demo credentials to sign on to the PingDataGovernance Policy Administration GUI:

▪ User name: admin
▪ Password: password123

3. Optional: If you set up the PingDataGovernance Policy Administration GUI to use OpenID Connect
(OIDC) mode, you must also configure an OIDC provider. For more information, see Configuring an
Authentication Server for OpenID Connect single sign-on on page 136.

Then, when you sign on using the URL mentioned previously, the GUI prompts you to proceed to the
OIDC provider to sign on. After OIDC authentication is complete, the GUI redirects you back to the
PingDataGovernance Policy Administration GUI.

Configuring an Authentication Server for OpenID Connect single sign-on
You can configure an Open ID Connect (OIDC) provider to accept sign-on requests in
PingDataGovernance.

About this task

If you chose OIDC mode when setting up the PingDataGovernance Policy Administration GUI, you need
to configure an OIDC provider, such as PingFederate or PingOne, to accept sign-on requests from the
PingDataGovernance Policy Administration GUI.

For information about using See

PingFederate Configuring PingFederate as an OIDC provider for PingDataGovernance
policy administration

PingOne Configuring PingOne as an OIDC provider for PingDataGovernance
policy administration

Steps

1. Use the following configuration to create an OAuth 2 client that represents the PingDataGovernance
Policy Administration GUI.

OAuth 2 client configuration Configuration value

Client ID pingdatagovernance-pap

Redirect URI https://<host>:<port>/idp-callback

Grant type Implicit

Response type token id_token

Scopes ▪ openid
▪ email
▪ profile

a. Configure the access tokens and ID tokens issued for this client with the following claims:

▪ sub
▪ name
▪ email

Copyright ©2022

https://docs.pingidentity.com/bundle/solution-guides/page/rkp1576258521368.html
https://docs.pingidentity.com/bundle/solution-guides/page/rkp1576258521368.html
https://docs.pingidentity.com/bundle/solution-guides/page/fcn1588969688906.html
https://docs.pingidentity.com/bundle/solution-guides/page/fcn1588969688906.html

PingDataGovernance | Installing PingDataGovernance | 137

2. Configure the OIDC provider to accept a cross-origin resource sharing (CORS) origin that matches the
PingDataGovernance Policy Administration GUI's scheme, public host, and port, such as https://
<host>:<port>.

3. Configure the OIDC provider to issue tokens to the PingDataGovernance Policy Administration GUI
only when the authenticated user is authorized to administer policies according to your organization's
access rules.

i Note: Sign the tokens with a signing algorithm of RSA using SHA256.

For PingFederate, this level of authorization is controlled by using issuance criteria. For more
information, see the PingFederate documentation.

i Note:

To run a PingDataGovernance Policy Administration GUI Docker container in OIDC mode, use the
PING_OIDC_CONFIGURATION_ENDPOINT and PING_CLIENT_ID environment variables in your
docker run command, as shown in the following example.

For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network_type> <network_name>, and then connect to
that network with the --network=<network_name> option.

docker run --network=<network_name> -p 8443:443 -d \
--env-file ~/.pingidentity/devops \
--env PING_EXTERNAL_BASE_URL=localhost:8443 \
--env PING_CLIENT_ID=c2f081c0-6a2e-4249-b07d-d60234bb5b21 \
--env PING_OIDC_CONFIGURATION_ENDPOINT=https://auth.pingone.com/3e665735-23da-40a9-
a2bb-7ccddc171aaa/as/.well-known/openid-configuration \
pingidentity/pingdatagovernancepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdatagovernancepap).

Next steps
After installed, complete some configuration steps and then start developing policies to enforce fine-
grained access to data.

Consider performing the following next steps.

▪ Configure access token validation.

For more information, see Configure access token validation on page 307.
▪ Configure a user store.

For more information, see Configure a user store on page 307
▪ Sign on to the Administrative Console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 178.
▪ Sign on to the Administrative Console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 206.
▪ Sign on to the PingDataGovernance Policy Administration GUI to create policies.

For more information, see the PingDataGovernance Policy Administration Guide.

Copyright ©2022

https://hub.docker.com/r/pingidentity/pingdatagovernancepap

PingDataGovernance | Installing PingDataGovernance | 138

Manual installation
Instead of using Docker containers, you can install PingDataGovernance manually using .zip files.

For information about deployment methods and architectures, see Installing PingDataGovernance on page
127.

Before you install manually
You must install certain components before you can install PingDataGovernance manually.

The following components are required to install PingDataGovernance:

▪ Supported Linux or Windows platform
▪ Valid license key
▪ Java

The following sections describe these prerequisites in more detail.

System requirements
Ensure that your system meets the minimum requirements for PingDataGovernance.

Ping Identity has qualified the configurations in this section and has certified that they are compatible with
the product. PingDataGovernance supports differences in operating system versions, service packs, and
other platform variations until the platform or other required software is suspected of causing issues.

Platforms
You can run PingDataGovernance on a variety of different platforms and operating systems.

▪ Windows Server 2019
▪ Windows Server 2016
▪ Red Hat Enterprise Linux ES 8.1
▪ Red Hat Enterprise Linux ES 7.7
▪ CentOS 8.1
▪ CentOS 7.7
▪ SUSE Linux Enterprise 15 SP1
▪ SUSE Linux Enterprise 12 SP5
▪ Ubuntu 18.04 LTS
▪ Ubuntu 16.04 LTS
▪ Amazon Linux 2

i Note:

This product was tested with the default configurations of all operating system components. Customized
implementations or third-party plugins might affect the deployment of this product.

Java Runtime Environment
Make sure your Java Runtime Environment (JRE) meets the system requirements for
PingDataGovernance.

▪ Amazon Corretto 8
▪ OpenJDK 11, obtained from AdoptOpenJDK (https://adoptopenjdk.net/)
▪ OpenJDK 8, obtained from AdoptOpenJDK (https://adoptopenjdk.net/)
▪ Oracle Java SE Development Kit 11 LTS
▪ Oracle Java SE Development Kit 8

i Note:

Copyright ©2022

https://adoptopenjdk.net/
https://adoptopenjdk.net/

PingDataGovernance | Installing PingDataGovernance | 139

The Ping Identity Java Support Policy applies to your JRE.

Browsers
The PingDataGovernance Administrative Console is compatible with several different web browsers.

Administrative Console

▪ Chrome
▪ Firefox
▪ Internet Explorer 11 and later

About license keys
License keys are required to install, update, and renew all Ping products.

How to obtain a license

To obtain a license key, contact your account representative or use the Ping Identity licensing portal.

When do you need a license

A license is required for setting up a new single server instance and can be used site-wide for all servers
in an environment. Additionally, you must obtain a new license when updating a server to a new major
version, such as when upgrading from 7.3 to 8.0. When cloning a server instance with a valid license, you
do not need a new license.

i Note:

The update process displays a prompt for a new license.

How to specify a license

▪ Specify a license at setup

You have these options:

▪ Use the --licenseKeyFile <path-to-license> option with setup.
▪ Copy the license file to the PingDataGovernance Server root directory and then run the setup tool.

The tool discovers the license file.
▪ Specify a license after setup

Use the Administrative Console or dsconfig (in the Topology section, select License).

i Note: Placing the new license file in the PingDataGovernance Server root directory does not work
in this case.

For information about how to specify the license with the Policy Administration GUI, see Installing the
PingDataGovernance Policy Administration GUI noninteractively on page 150.

How to view the license status

To view the details of a license, including its expiration, you have these options:

▪ The server's status tool
▪ The Administrative Console's Status page (On the Monitors tab, search for License.)

License expiration

The server provides a notification as the expiration date approaches.

Copyright ©2022

https://support.pingidentity.com/s/article/PingIdentity-Java-Support-Policy
https://www.pingidentity.com/en/account/request-license-key.html

PingDataGovernance | Installing PingDataGovernance | 140

Before a license expires, obtain a new one and install it by using dsconfig or the Administrative Console.

i Note:

An expiring license causes alerts and alarms but does not affect the functionality of PingDataGovernance
Server.

However, PingDataGovernance Policy Administration GUI fails to start if the license has expired.

Installing a Java dedicated to PingDataGovernance
Create a Java installation for PingDataGovernance Server using the Java Development Kit (JDK).

About this task

PingDataGovernance Server requires Java for 64-bit architectures. Even if Java is already installed
on your system, you should create a separate Java installation for PingDataGovernance Server.
This setup ensures that updates to the system-wide Java installation do not inadvertently impact
PingDataGovernance Server.

i Note:

This setup requires that you install the JDK, rather than the Java Runtime Environment (JRE).

Steps

1. Download and install a JDK.

2. Set the JAVA_HOME environment variable to the Java installation directory path.

3. Add the bin directory to the PATH environment variable.

Preparing a Linux environment
Preparing a Linux environment in PingDataGovernance Server requires you to complete a series of tasks,
as described in this section

About this task

Complete the following tasks before you install PingDataGovernance Server in a Linux environment:

Steps

1. Set the file descriptor limit

2. Set the maximum user processes

3. Disable file system swapping

4. Manage system entropy

5. Enable the server to listen on privileged ports

Setting the file descriptor limit
PingDataGovernance Server allows for an unlimited number of connections. The following steps describe
how to manually increase the file descriptor limit on the operating system.

About this task

i Note:

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 141

If the operating system relies on systemd, see the Linux operating system documentation for instructions
on setting the file descriptor limit.

Steps

1. Display the current fs.file-max limit of the system.

sysctl fs.file-max

The fs.file-max limit is the maximum server-wide file limit you can set without tuning the kernel
parameters in the proc file system.

2. Edit the /etc/sysctl.conf file.

If there is a line that sets the value of the fs.file-max property, make sure that its value is set to
at least 1.5 times the per-process limit. If there is no line that sets a value for this property, add the
following to the end of the file (100000 is just an example here; specify a value of at least 1.5 times the
per-process limit).

fs.file-max = 100000

3. Display the current hard limit of the system.

ulimit -aH

The open files (-n) value is the maximum number of open files per process limit.

Verify that its value is set to at least 65535.

4. Edit the /etc/security/limits.conf file.

If the file contains lines that set the soft and hard limits for the number of file descriptors, verify that the
values are set to 65535. If the properties are absent, add the following lines to the end of the file, before
#End of file, inserting a tab between the columns.

* soft nofile 65535
* hard nofile 65535

i Note:

The number of open file descriptors is limited by the physical memory available to the host. You can
determine this limit with the following command.

cat /proc/sys/fs/file-max

If the file-max value is significantly higher than the 65535 limit, consider increasing the file descriptor
limit to between 10% and 15% of the system-wide file descriptor limit. For example, if the file-max
value is 810752, you could set the file descriptor limit to 100000. If the file-max value is lower than
65535, the host is likely not sized appropriately.

5. Reboot the server.

6. Verify that the file descriptor limit is set to 65535.

ulimit -n

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 142

7. For RedHat 7 or later, modify the /etc/security/limits.d/20-nproc.conf file to set limits for
the open files and max user processes.

Add or edit the following lines if they do not already exist.

* soft nproc 65536
* soft nofile 65536
* hard nproc 65536
* hard nofile 65536
root soft nproc unlimited

Next steps

After the operating system limit is set, use one of the following methods to configure the number of file
descriptors that the server uses:

▪ Use a NUM_FILE_DESCRIPTORS environment variable.
▪ Create a config/num-file-descriptors file with a single line, such as

NUM_FILE_DESCRIPTORS=12345.

If these values are not set, the default value of 65535 is used.

i Note:

This optional step ensures that the server shuts down safely before it reaches the file descriptor limit.

Setting the maximum user processes
Set the maximum user processes higher than the default to improve memory when running multiple
servers on a machine.

About this task

On some Linux distributions, such as RedHat Enterprise Linux (RHEL) Server/CentOS 6.0 or later, the
default maximum number of user processes is set to 1024, which is considerably lower than the same
parameter on earlier distributions, such as RHEL/CentOS 5.x. The default value of 1024 leads to some
Java virtual machine (JVM) memory errors when running multiple servers on a machine, due to each Linux
thread being counted as a user process.

At startup, PingDataGovernance Server attempts to raise this limit to 16383 if the value reported by
ulimit is less than that number. If the value cannot be set, an error message is displayed. In such a
scenario, you must explicitly set the limit in /etc/security/limit.conf, as the following example
shows.

* soft nproc 100000
* hard nproc 100000

Steps

▪ Set the 1683 value in the NUM_USER_PROCESSES environment variable.
▪ Set the 1683 value in config/num-user-processes.

Disabling file system swapping
To disable the file system swapping in PingDataGovernance, use vm.swappiness.

About this task

Disable all performance-tuning services, like tuned. If performance tuning is required, perform the
following steps to set vm.swappiness.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 143

Steps

1. Clone the existing performance profile.

2. Add vm.swappiness = 0 to the new profile's tuned.conf file in /usr/lib/tuned/
profilename/tuned.conf.

3. Select the updated profile by running tuned-adm profile customized_profile.

Managing system entropy
Entropy is used to calculate random data that the system uses in cryptographic operations.

About this task
Some environments with low entropy might experience intermittent performance issues with SSL-based
communication, such as certificate generation. This scenario is more typical on virtual machines but can
also occur in physical instances. For best results, monitor the value of kernel.random.entropy_avail
in the configuration file /etc/sysctl.conf.

i Note:

To increase system entropy on a Windows system, move the mouse pointer in circles or type characters
randomly into an empty text document.

Steps

▪ On a UNIX or Linux system, ensure that rng-tools is installed and run the following command.

sudo rngd -r /dev/urandom -o /dev/random

▪ To check the level of a system entropy on a UNIX or Linux system, run the following command.

cat /proc/sys/kernel/random/entropy_avail

i Note:

Values smaller than 3200 are considered too low to generate a certificate and might cause the system
to hang indefinitely.

Enabling the server to listen on privileged ports
To enable PingDataGovernance Server to listen on privileged ports as a non-root user, grant capabilities to
specific commands.

About this task

Linux systems provide capabilities that grant specific commands the ability to complete tasks that are
normally permitted only by a root account. Instead of granting an ability to a specific user, capabilities are
granted to a specific command. For convenience, you might enable the server to listen on privileged ports
while running as a non-root user.

Steps

▪ To assign capabilities to an application, run the setcap command.

For example, the cap_net_bind_service capability enables a service to bind a socket to privileged
ports, which are defined as ports with numbers less than 1024. If Java is installed in /ds/java, and if

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 144

the Java command to run the server is /ds/java/bin/java, then you can grant the Java binary the
cap_net_bind_service capability by running the following command.

$ sudo setcap cap_net_bind_service=+eip /ds/java/bin/java

The Java binary requires an additional shared library, libjli.so, as part of the Java installation.

Because additional limitations are imposed on where the operating system looks for shared libraries
to load for commands with assigned capabilities, you must create the file /etc/ld.so.conf.d/
libjli.conf with the path to the directory that contains the libjli.so file.

For example, if the Java installation is located in /ds/java, the contents must be as shown in this
example.

/ds/java/lib/amd64/jli

Run the following command for the change to take effect.

$ sudo ldconfig -v

Obtaining the installation packages
To begin the installation process for PingDataGovernance, obtain the server component's .zip installation
packages.

About this task

The PingDataGovernance distribution consists of two compressed files, one for each of the following
server components:

▪ PingDataGovernance Server
▪ PingDataGovernance Policy Administration GUI

To start the installation process, complete the following steps.

Steps

1. Obtain the latest compressed release bundles from Ping Identity.

2. Expand the release bundles into the folders of your choice.

Installing the server and the Policy Administration GUI manually
Manually install the PingDataGovernance Server and the PingDataGovernance Policy Administration GUI.

About this task

After you obtain the installation files, start the setup process.

Steps

1. Install PingDataGovernance Server.

2. Install PingDataGovernance Policy Administration GUI.

3. Perform additional configuration steps.

The following sections describe these installation and configuration steps.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 145

Installing the server manually
Determine your installation mode and then install PingDataGovernance Server.

Steps

1. Read About the server installation modes on page 145 and decide which mode you want to use.

2. Complete the steps for your chosen mode, interactive or noninteractive.

About the server installation modes
There are several different installation modes for PingDataGovernance Server.

PingDataGovernance Server provides the following tools to help install and configure the system:

▪ The setup tool performs the initial tasks needed to start PingDataGovernance Server, including
configuring Java virtual machine (JVM) runtime settings and assigning listener ports for the
PingDataGovernance Server's HTTP services.

▪ The create-initial-config tool configures connectivity between a System for Cross-domain
Identity Management (SCIM) 2 user store and PingDataGovernance Server. During the process, the
prepare-external-store tool prepares each PingDirectory Server to serve as a user store by
PingDataGovernance Server. Configuration can be written to a file to use for additional installations.

i Note:

Using create-initial-config is optional. However, if you do not use it, you do not get the user's
profile (the requester's attributes). For more information, see Make a user's profile available in policies
on page 279.

▪ After the initial setup is finished, you can use the dsconfig tool and the Administrative Console to
perform additional configuration.

To install a server instance, run the setup tool in one of the following modes:

Interactive command-line mode

Prompts for information during the installation process. To run the installation in this mode, use the
setup --cli command.

Noninteractive command-line mode

Designed for setup scripts to automate installations or for command-line usage. To run the
installation in this mode, setup must be run with the --no-prompt option as well as the other
arguments required to define the appropriate initial configuration

You can perform all installation and configuration steps while signed on to the system as the user or the
role under which PingDataGovernance Server will run.

Installing the server interactively
Run the setup tool, which prompts you interactively for the information that it needs to install
PingDataGovernance Server.

Before you begin

Be prepared to provide the following information:

▪ The location of a valid license file
▪ The name and password for an administrative account, which is also called the root user distinguished

name (DN)
▪ An available port for PingDataGovernance Server to accept HTTPS requests
▪ An available LDAPS port for PingDataGovernance Server to accept administrative requests
▪ Information related to the server's connection security, including the location of a keystore that contains

the server certificate, the nickname of that server certificate, and the location of a truststore

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 146

▪ The amount of memory to reserve for usage by the Java virtual machine (JVM)
▪ A unique instance name for the server

Steps

1. Run the setup command.

$./setup

2. To start and stop PingDataGovernance Server, use the start-server and stop-server
commands, respectively.

For additional options, see Starting PingDataGovernance Server on page 172.

Installing the server noninteractively
For an automated installation, run the setup tool in noninteractive, command-line mode.

Before you begin
Be prepared to provide the following settings using command-line arguments:

▪ The location of a valid license file
▪ The name and password for an administrative account, which is also called the root user distinguished

name (DN).
▪ An available port for PingDataGovernance Server to accept HTTPS requests
▪ An available LDAPS port for PingDataGovernance Server to accept administrative requests
▪ Information related to the server's connection security, including the location of a keystore that contains

the server certificate, the nickname of that server certificate, and the location of a truststore
▪ The amount of memory to reserve for usage by the Java virtual machine (JVM)
▪ A unique instance name for the server

Steps

▪ Run the setup tool to install the server noninteractively.
▪ For more information about the available setup options, run setup with the --help argument, which

displays a complete list of setup options, along with examples.

$./setup --help

Example

The following example sets up PingDataGovernance with these settings:

▪ LDAP port 8389
▪ LDAPS port 8636
▪ HTTPS port 8443
▪ An automatically generated self-signed server certificate
▪ 1 GB of memory reserved for the server’s JVM
▪ A unique server instance name of dg1
▪ A server location of Austin

$./setup \
 --cli --no-prompt --acceptLicense \
 --licenseKeyFile <path-to-license> \
 --rootUserDN "cn=directory manager" \
 --rootUserPassword <your-password> \
 --ldapPort 8389 --ldapsPort 8636 \
 --httpsPort 8443 \

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 147

 --generateSelfSignedCertificate \
 --maxHeapSize 1g \
 --instanceName dg1 \
 --location Austin

Signing on to the Administrative Console (manual installation)
After you install the server, access the Administrative Console to verify the configuration and to manage
the server

Steps

1. To access the Administrative Console, go to https://<host>:<port>/console/login.

The default port is 8443.

2. To sign on to the Administrative Console, use the initial root user distinguished name (DN) and root
user password specified during setup.

The default DN is cn=Directory Manager.

Installing PingDataGovernance Policy Administration GUI manually
Determine your installation mode and then install PingDataGovernance Policy Administration GUI.

Steps

1. Decide whether you want to do an interactive or noninteractive installation.

2. Complete the steps for your chosen installation method..

Installing the PingDataGovernance Policy Administration GUI interactively
You can run the PingDataGovernance Policy Administration GUI’s setup command interactively in
command-line mode.

About this task

i Note:

You cannot configure some setup options when installing the PingDataGovernance Policy Administration
GUI interactively. See Installing the PingDataGovernance Policy Administration GUI noninteractively on
page 150.

The setup tool prompts you interactively for the information that it needs. Be prepared to provide the
following information:

▪ The location of a valid license file
▪ An available port for the PingDataGovernance Policy Administration GUI to accept HTTPS requests

Steps

1. Choose one of the two following authentication modes for the PingDataGovernance Policy
Administration GUI:

▪ Demo mode

Configures the PingDataGovernance Policy Administration GUI to use form-based authentication
with a fixed set of credentials. Unlike OpenID Connect (OIDC) mode, this mode does not require

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 148

an external authentication server. However, it is inherently insecure and is recommended only for
demonstration purposes.

▪ OIDC mode

Configures the PingDataGovernance Policy Administration GUI to delegate authentication and sign-
on services to a PingFederate OIDC provider.

To use PingDataGovernance Policy Administration GUI with other OIDC providers, such as
PingOne, see Installing the PingDataGovernance Policy Administration GUI noninteractively on page
150.

2. If you choose OIDC mode, be prepared to provide the following additional information:

▪ The host name and port of an OIDC provider
▪ Information related to the server's connection security, including the location of a keystore that

contains the server certificate, the nickname of that server certificate, and the location of a trust
store.

3. Run the setup command.

i Note:

If you do not want to use the default database credentials, see Setting database credentials at initial
setup on page 255.

4. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingDataGovernance, under External Servers# Policy External
Server# Shared Secret.

5. To start the Policy Administration GUI, or policy administration point (PAP), run bin/start-server.

The Policy Administration GUI runs in the background, so you can close the terminal window in which it
was started without interrupting it.

6. Complete the steps in Post-setup steps (manual installation) on page 153.

7. Consider additional configuration options in Specifying custom configuration with an options file on page
246.

Example: Installing and configuring the PingDataGovernance Policy Administration GUI
This tutorial describes how to install an instance of the PingDataGovernance Policy Administration GUI.

About this task

i Note:

These installation instructions are for tutorial purposes. They will only provide a limited install.

Steps

1. Extract the contents of the compressed PingDataGovernance-PAP distribution file.

2. Change the directory to PingDataGovernance-PAP.

3. To configure the application, run the ./bin/setup script.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 149

4. Answer the on-screen questions.

For the following questions, use the recommended answers provided.

Question Answer

How would you like to configure the Policy
Administration GUI?

Use Quickstart to set up a demo server with
credentials admin/password123 and to use a
self-signed certificate for SSL

On which port should the Policy
Administration GUI listen for HTTPS
communications?

You can use any unused port here, but most
of the examples in this guide assume that port
9443 is used for the PingDataGovernance Policy
Administration GUI.

Enter the fully qualified host name or IP
address that users’ browsers will use to
connect to this GUI?

Unless you are testing on localhost, ensure
that the provided API URL uses the public
DNS name of the PingDataGovernance Policy
Administration GUI server as shown in the
following example.

pap.example.com

5. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingDataGovernance, under External Servers# Policy External
Server# Shared Secret.

6. To start the Policy Administration GUI, or policy administration point (PAP), run bin/start-server.

The Policy Administration GUI runs in the background, so you can close the terminal window in which it
was started without interrupting it.

Results
Your demo configuration should resemble the following example.

[/opt/PingDataGovernance-PAP]$ bin/setup

Please enter the location of a valid PingDataGovernance with Symphonic license file
[/opt/PingDataGovernance-PAP/PingDataGovernance.lic]: /opt/PingDataGovernance/
PingDataGovernance.lic

PingDataGovernance Policy Administration GUI
==

How would you like to configure the Policy Administration GUI?

 1) Quickstart (DEMO PURPOSES ONLY): This option configures the server with a form
 based authentication and generates a self-signed server certificate
 2) OpenID Connect: This option configures the server to use an OpenID Connect
 provider such as PingFederate
 3) Cancel the setup

Enter option [1]: 1

On which port should the Policy Administration GUI listen for application HTTPS communications?
 [9443]: 9443

Enter the fully qualified host name or IP address that users' browsers will use to
connect to this GUI [centos.localdomain]: pap.examplecom

On which port should the Policy Administration GUI listen for administrative HTTPS
 communications? [9444]: 9444

Would you like to enable periodic policy database backups? (yes / no) [yes]: yes

Enter the backup schedule as a cron expression (defaults to daily at midnight): [0 0 0 * * ?]: 0
 0 0 * * ?

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 150

Setup Summary
==
Host Name: pap.example.com
Server Port: 9443
Secure Access: Self-signed certificate
Admin Port: 9444
Periodic Backups: Enabled
Backup Schedule: 0 0 0 * * ?

Command-line arguments that would set up this server non-interactively:
 setup demo --hostname pap.example.com --adminPort 9444 --port 9443 --certNickname server-
cert \
 --licenseKeyFile /opt/PingDataGovernance/PingDataGovernance.lic \
 --backupSchedule '0 0 0 * * ?' --pkcs12KeyStorePath config/keystore.p12 \
 --generateSelfSignedCertificate

What would you like to do?

 1) Set up the server with the parameters above
 2) Provide the setup parameters again
 3) Cancel the setup

Enter option [1]:

Setup completed successfully

Please configure the following values
==
PingDataGovernance Server - Policy External Server
 Base URL: https://pap.example.com:9443
 Shared Secret: 7ed6f52d6e71411ca9e58f9567c7de2e
 Trust Manager Provider: Blind Trust

Please start the server by running bin/start-server

In this example, the PingDataGovernance Policy Administration GUI is now running and listening on port
9443.

Next steps
To sign on to the interface, go to https://<host>:9443. The default credentials are admin and
password123.

i Note:

Use the default user name and password sign on credentials for demo and testing purposes only, such as
this initial walk-through. To configure the PingDataGovernance Policy Administration GUI for PingFederate
OpenID Connect (OIDC) single sign-on (SSO), see Configuring an Authentication Server for OpenID
Connect single sign-on on page 136.

Installing the PingDataGovernance Policy Administration GUI noninteractively
For an automated installation, run the PingDataGovernance Policy Administration GUI’s setup command
in noninteractive, command-line mode.

About this task

i Note:

You must run setup in noninteractive, command-line mode instead of interactive mode if you need to do
any of the following:

▪ Configure the Policy Administration GUI with a policy configuration key.
▪ Configure a key store for a policy information provider.
▪ Configure a trust store for a policy information provider.
▪ Customize the Policy Administration GUI’s logging behavior.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 151

For more information, see Specifying custom configuration with an options file on page 246.

Steps

1. Before you run setup, you must choose one of the two following authentication modes for the
PingDataGovernance Policy Administration GUI:

▪ Demo mode

Configures the PingDataGovernance Policy Administration GUI to use form-based authentication
with a fixed set of credentials. Unlike OIDC mode, this mode does not require an external
authentication server. However, it is inherently insecure and is recommended only for demonstration
purposes.

▪ OpenID Connect (OIDC) mode

Configures the PingDataGovernance Policy Administration GUI to delegate authentication and sign-
on services to an OpenID Connect provider, such as PingFederate.

2. Optional: If you choose OIDC mode, be prepared to provide the following additional information:

▪ The host name and port of an OpenID Connect provider or its base URL
▪ The location of a trust store for the OpenID Connect provider, if the OpenID Connect provider uses a

server certificate not issued by a certificate authority not trusted by the JRE

3. Optional: If you do not use the setup tool to generate a self-signed certificate, you must also provide
the following:

▪ Information related to the PingDataGovernance Policy Administration GUI’s connection security,
including the location of a keystore that contains the server certificate and the nickname of that
server certificate.

i Note:

The setup tool’s --help option displays the options available for a noninteractive installation.

4. Run the correct command based on your needs:

i Note:

If you do not want to use the default database credentials, see Setting database credentials at initial
setup on page 255.

▪ To see the general options for running setup:

$ bin/setup --help

▪ To see the options for running setup in demo mode:

$ bin/setup demo --help

▪ To see the options for running setup in OIDC mode:

$ bin/setup oidc --help

5. Copy and record any generated values needed to configure external servers.

The Shared Secret is used in PingDataGovernance, under External Servers# Policy External
Server# Shared Secret.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 152

6. To start the Policy Administration GUI, or policy administration point (PAP), run bin/start-server.

The Policy Administration GUI runs in the background, so you can close the terminal window in which it
was started without interrupting it.

7. After you complete setup, see Post-setup steps (manual installation) on page 153.

8. Consider additional configuration options in Specifying custom configuration with an options file on page
246.

Example: Set up the PingDataGovernance Policy Administration GUI in demo mode
This example sets up the PingDataGovernance Policy Administration GUI in demo mode with an
automatically generated self-signed server certificate.

After completing setup, the Policy Administration GUI will accept sign-ons using the username admin and
the password password123.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

The decision point shared secret is a credential that the PingDataGovernance Server uses to authenticate
to the Policy Administration GUI when it uses the Policy Administration GUI as an external policy decision
point (PDP). For information about how to configure PingDataGovernance Server to use the decision point
shared secret, see Post-setup steps (manual installation) on page 153.

Example: Set up the PingDataGovernance Policy Administration GUI in OIDC mode (PingFederate)
Use this example as a reference to set up the PingDataGovernance Policy Administration GUI to handle
sign-ons using a PingFederate OpenID Connect (OIDC) provider.

$ bin/setup oidc \
 --oidcHostname <ping-federate-hostname> \
 --oidcPort <ping-federate-port> \
 --clientId pingdatagovernance-pap \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

The Policy Administration GUI uses the provided OIDC host name and OIDC to query the PingFederate
server’s autodiscovery endpoint for the information it needs to make OIDC requests. The provided client
ID represents the Policy Administration GUI and must be configured in PingFederate. For more information
about configuring PingFederate, see Configuring an Authentication Server for OpenID Connect single sign-
on on page 136.

Example: Set up the PingDataGovernance Policy Administration GUI in OIDC mode (generic OpenID
Connect provider)
This example sets up the PingDataGovernance Policy Administration GUI to handle sign-ons using an
arbitrary OpenID Connect (OIDC) provider.

This example departs from the previous example by specifying the OIDC provider’s base URL, rather than
a host name and port. This can be useful if the OIDC provider’s autodiscovery and authorization endpoints
include an arbitrary prefix, such as a customer-specific environment identifier.

$ bin/setup oidc \
 --oidcBaseUrl https://auth.example.com/9595f417-a117-3f24-a255-5736ab01f543/auth/ \
 --clientId 7cb9f2c9-c366-57e0-9560-db2132b2d813 \

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 153

 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license>

The Policy Administration GUI uses the provided OIDC base URL to query the OIDC provider’s
autodiscovery endpoint for the information it needs to make OIDC requests. The provided client ID
represents the Policy Administration GUI and must be configured in the OIDC provider as well. For more
information about configuring an OIDC provider, see Configuring an Authentication Server for OpenID
Connect single sign-on on page 136.

Post-setup steps (manual installation)
After you successfully set up the PingDataGovernance Policy Administration GUI, you must start the server
and then configure PingDataGovernance Server to use the Policy Administration GUI as its policy decision
point (PDP).

To start the Policy Administration GUI, run the following command.

$ bin/start-server

Then, sign on to the Policy Administration GUI. For more information, see Signing on to the
PingDataGovernance Policy Administration GUI on page 135 and import a policy snapshot. You can find
a set of default policies in the resource/policies/defaultPolicies.SNAPSHOT file.

To configure PingDataGovernance Server to use the Policy Administration GUI, use dsconfig or the
Administrative Console to create a Policy External Server to represent the Policy Administration GUI,
then assign the Policy External Server to the Policy Decision Service and configure it to use external PDP
mode. Also, set the Trust Framework Version to the current version, v2. Consider the following example.

dsconfig create-external-server \
 --server-name "Policy Administration GUI" \
 --type policy \
 --set "base-url:https://<pap-hostname>:<pap-port>" \
 --set "shared-secret:datagovernance" \
 --set "branch:Default Policies" \

dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:Policy Administration GUI"
 --set trust-framework-version:v2

In the example, the base URL consists of the host name and port chosen for the Policy Administration GUI
during setup. Similarly, the shared secret value was chosen during setup. The branch name corresponds
to the branch name that you chose when importing your policy snapshot. The decision node is the ID of the
root node in your policy tree. If you are using the default policies, then use the ID shown in the example.

Signing on to the PingDataGovernance Policy Administration GUI
You can sign on to the PingDataGovernance Policy Administration GUI by entering your username and
password credentials in the appropriate web browser URL.

About this task

Steps

1. After completing setup for demo mode, sign on to the PingDataGovernance Policy Administration GUI
by going to the following URL in a web browser: https://<host>:<port>

Substitute the host name and port that you specified during setup.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 154

2. Use the following demo credentials to sign on to the PingDataGovernance Policy Administration GUI:

▪ User name: admin
▪ Password: password123

3. Optional: If you set up the PingDataGovernance Policy Administration GUI to use OpenID Connect
(OIDC) mode, you must also configure an OIDC provider. For more information, see Configuring an
Authentication Server for OpenID Connect single sign-on on page 136.

Then, when you sign on using the URL mentioned previously, the GUI prompts you to proceed to the
OIDC provider to sign on. After OIDC authentication is complete, the GUI redirects you back to the
PingDataGovernance Policy Administration GUI.

Changing the Policy Administration GUI authentication mode
You can change the authentication mode after the initial setup.

About this task

To change the authentication mode that the PingDataGovernance Policy Administration GUI uses,
re-run the setup tool and choose a different authentication mode. This action overwrites the
PingDataGovernance Policy Administration GUI's existing configuration.

Steps

1. Stop the Policy Administration GUI.

$ bin/stop-server

2. Run the setup command and select a different authentication mode.

The modes are:

▪ Demo mode

Configures the PingDataGovernance Policy Administration GUI to use form-based authentication
with a fixed set of credentials. Unlike OIDC mode, this mode does not require an external
authentication server. However, it is inherently insecure and is recommended only for demonstration
purposes.

▪ OpenID Connect (OIDC) mode

Configures the PingDataGovernance Policy Administration GUI to delegate authentication and sign-
on services to an OpenID Connect provider, such as PingFederate.

$ bin/setup

3. Start the Policy Administration GUI.

$ bin/start-server

Configuring an Authentication Server for OpenID Connect single sign-on
You can configure an Open ID Connect (OIDC) provider to accept sign-on requests in
PingDataGovernance.

About this task

If you chose OIDC mode when setting up the PingDataGovernance Policy Administration GUI, you need
to configure an OIDC provider, such as PingFederate or PingOne, to accept sign-on requests from the
PingDataGovernance Policy Administration GUI.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 155

For information about using See

PingFederate Configuring PingFederate as an OIDC provider for PingDataGovernance
policy administration

PingOne Configuring PingOne as an OIDC provider for PingDataGovernance
policy administration

Steps

1. Use the following configuration to create an OAuth 2 client that represents the PingDataGovernance
Policy Administration GUI.

OAuth 2 client configuration Configuration value

Client ID pingdatagovernance-pap

Redirect URI https://<host>:<port>/idp-callback

Grant type Implicit

Response type token id_token

Scopes ▪ openid
▪ email
▪ profile

a. Configure the access tokens and ID tokens issued for this client with the following claims:

▪ sub
▪ name
▪ email

2. Configure the OIDC provider to accept a cross-origin resource sharing (CORS) origin that matches the
PingDataGovernance Policy Administration GUI's scheme, public host, and port, such as https://
<host>:<port>.

3. Configure the OIDC provider to issue tokens to the PingDataGovernance Policy Administration GUI
only when the authenticated user is authorized to administer policies according to your organization's
access rules.

i Note: Sign the tokens with a signing algorithm of RSA using SHA256.

For PingFederate, this level of authorization is controlled by using issuance criteria. For more
information, see the PingFederate documentation.

i Note:

To run a PingDataGovernance Policy Administration GUI Docker container in OIDC mode, use the
PING_OIDC_CONFIGURATION_ENDPOINT and PING_CLIENT_ID environment variables in your
docker run command, as shown in the following example.

For proper communication between containers, create a Docker network using a command such as
docker network create --driver <network_type> <network_name>, and then connect to
that network with the --network=<network_name> option.

docker run --network=<network_name> -p 8443:443 -d \
--env-file ~/.pingidentity/devops \
--env PING_EXTERNAL_BASE_URL=localhost:8443 \
--env PING_CLIENT_ID=c2f081c0-6a2e-4249-b07d-d60234bb5b21 \
--env PING_OIDC_CONFIGURATION_ENDPOINT=https://auth.pingone.com/3e665735-23da-40a9-
a2bb-7ccddc171aaa/as/.well-known/openid-configuration \

Copyright ©2022

https://docs.pingidentity.com/bundle/solution-guides/page/rkp1576258521368.html
https://docs.pingidentity.com/bundle/solution-guides/page/rkp1576258521368.html
https://docs.pingidentity.com/bundle/solution-guides/page/fcn1588969688906.html
https://docs.pingidentity.com/bundle/solution-guides/page/fcn1588969688906.html

PingDataGovernance | Installing PingDataGovernance | 156

pingidentity/pingdatagovernancepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdatagovernancepap).

(Optional) Configuring PingDataGovernance using server profiles
Administrators can export the configuration of a PingDataGovernance Server instance to a directory of
mostly text files, called a server profile. An administrator can then use that server profile to configure
another deployment.

Organizations are adopting DevOps practices to reduce risk while providing quicker time-to-value for
the services that they provide to their business and customers. Examples of such practices that are
central to DevOps include automation and Infrastructure-as-Code (IaC). Organizations that combine these
principles can manage the following infrastructure and service operations in the same manner as preparing
application code for general release:

▪ Appropriate versioning
▪ Continuous integration
▪ Quality control
▪ Release cycles

Server profiles enable organizations to adopt these DevOps practices more easily.

Administrators can also track changes to server profile text files in a version-control system, like Git, and
can install new instances of PingDataGovernance Server, or update existing instances from a server
profile.

The scripts and other files in the server-profile directory are declarative of the desired state of the
environment. Consequently, the definitions in the server-profile directory directly influence the
servers. No one needs to identify a server's current configuration and compute the differences that must be
applied to attain the appropriate end state.

The primary goal of a server profile is to simplify the deployment of PingDataGovernance Server by using
deployment automation frameworks. By using server profiles, the amount of scripting that is required
across automation frameworks, such as Docker, Kubernetes, and Ansible, is reduced considerably.

As a declarative form of a full server configuration, a server profile provides the following advantages:

▪ Provides a more complete and easily comparable method of defining the configuration of an individual
server. Changes between different servers are easier to review and understand, and incremental
changes to a server's configuration are easier to track.

▪ Ensures that each server instance is configured identically to its peers.
▪ Applies to installing new instances as well as to updating the configuration of previously installed

instances.
▪ Shares a common configuration across a deployment environment of development, test, and production

without unnecessary duplication and error-prone, environment-specific modifications. For more
information about substituting variables that differ by environment, see Variable substitution on page
157.

▪ Reduces the number of additional configuration steps that are required to place a server into
production.

▪ Makes the execution of various configuration changes more consistent and repeatable. The strategy of
using a server profile to represent the final state of a server is less error-prone than recording a step-by-
step process to attain that state.

▪ Can be managed easily in a version-control system.
▪ Simplifies the management of servers outside deployment-automation frameworks.

Copyright ©2022

https://hub.docker.com/r/pingidentity/pingdatagovernancepap

PingDataGovernance | Installing PingDataGovernance | 157

Variable substitution
You can use the manage-profile tool to substitute different variables in server profiles.

The manage-profile tool uses the format ${VARIABLE} to support the substitution of variables in
profiles. To escape this format, use another $. For example, after substitution, $${VARIABLE} becomes
${VARIABLE}.

Variable values can be read from a profile variables file or from environment variable values. If both options
are used, the values in the file overwrite any environment variables.

The following lines provide an example of how you can set user-defined variables by using a variables file
in the server profile.

HOSTNAME=testserver.example.com
PORT=389

The following table describes built-in variables that you can also reference in the server profile. Use these
variables in the format previously described.

Built-in variable Description

PING_SERVER_ROOT Evaluates to the absolute path of the server's root
directory

PING_PROFILE_ROOT Evaluates to the individual profile's root directory

i Note:

Use PING_PROFILE_ROOT only with files that are
not needed after initial setup, such as password
files in setup-arguments.txt. Do not use the
PING_PROFILE_ROOT variable for files needed
while the server is running. The manage-profile
tool creates a temporary copy of the server profile
that is deleted after the tool completes, so files
are not accessible under PING_PROFILE_ROOT
when the server is running. For files you need
while the server is running, such as keystore and
truststore files, copy the files into the server root
using the profile's server-root/pre-setup
directory, and then refer to the files using with the
PING_SERVER_ROOT variable.

For more information about the tool's usage, run the command bin/manage-profile --help.

Layout of a server profile
When you create a server profile, you can review the typical server profile hierarchy structure.

Use either of the following methods to create a server profile:

▪ Extract the template named server-profile-template-dg.zip, which is located in the resource
directory.

▪ Run the manage-profile generate-profile subcommand. The manage-profile tool
references the file system directory structure.

You can add files to each directory as needed.

The following hierarchy represents the file structure of a basic server profile.

-server-profile/

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 158

 |-- dsconfig/
 |-- misc-files/
 |-- server-root/
 | |-- post-setup/
 | |-- pre-setup/
 |-- server-sdk-extensions/
 |-- setup-arguments.txt
 |-- variables-ignore.txt

setup-arguments.txt
When you create a new profile, you must add arguments to the setup-arguments.txt file.

When manage-profile setup is run, these arguments are passed to the server’s setup tool. To view the
arguments that are available in this file, run the server's setup --help command.

To provide the equivalent, non-interactive CLI arguments after any prompts have been completed, run
setup interactively. The setup-arguments.txt file in the profile template contains an example set of
arguments that you can change.

setup-arguments.txt is the only required file in the profile.

dsconfig/
You can use dsconfig batch files to apply dsconfig commands to PingDataGovernance Server.

You can add dsconfig batch files to the dsconfig directory. These files, each of which must include a
.dsconfig extension, contain dsconfig commands to apply to server.

Because the dsconfig batch files are ordered lexicographically, 00-base.dsconfig runs before 01-
second.dsconfig, and so on.

To produce a dsconfig batch file that reproduces the current configuration, run bin/config-diff.

server-root/
You can add a variety of server root files to the server-root directory.

Any server root files can be added to the server-root directory, including schema files, email template
files, custom password dictionaries, and other files that must be present on the final server root. Add these
files to the server-root/pre-setup or server-root/post-setup directory, depending on when
they need to be copied to the server root. Most server root files are added to the server-root/pre-
setup directory.

server-sdk-extensions/
Add server SDK extension .zip files to the server-sdk-extensions directory.

Include any configuration that is necessary for the extensions in the profile's dsconfig batch files.

variables-ignore.txt
You can use the variables-ignore.txt file to indicate the relative paths of any files whose variables
you do not want to have substituted.

The variables-ignore.txt file is an optional component of the server profile. It is useful when adding
bash scripts to the server root because such files often contain expressions that the manage-profile
tool normally interprets as variables.

Add variables-ignore.txt to a profile's root directory to indicate the relative paths of any files that are
not to have their variables substituted.

The following example shows the contents of a typical variables-ignore.txt file.

server-root/pre-setup/script-to-ignore.sh
server-root/post-setup/another-file-to-ignore.txt

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 159

server-root/permissions.properties
You can use server-root/permissions.properties to specify permissions you want to apply to
files copied to the server root.

The permissions.properties file, located in the server-root directory, is an optional file that
specifies the permissions to apply to files that are copied to the server root. These permissions are
represented in octal notation. By default, server root files maintain their permissions when copied.

The following example shows the contents of a typical permissions.properties file.

default=700
file-with-special-permissions.txt=600
new-subdirectory/file-with-special-permissions.txt=644
bin/example-script.sh=760

misc-files/
You can find additional miscellaneous documentation and other files in the misc-files directory.

The manage-profile tool does not use the misc-files directory. Use the variable
PING_PROFILE_ROOT to refer to files in this directory from other locations, such as setup-
arguments.txt.

i Note:

Use PING_PROFILE_ROOT only with files that are not needed after initial setup, such as password files
in setup-arguments.txt. Do not use the PING_PROFILE_ROOT variable for files needed while the
server is running. The manage-profile tool creates a temporary copy of the server profile that is deleted
after the tool completes, so files are not accessible under PING_PROFILE_ROOT when the server is
running. For files you need while the server is running, such as keystore and truststore files, copy the files
into the server root using the profile's server-root/pre-setup directory, and then refer to the files
using with the PING_SERVER_ROOT variable.

For example, a password file named password.txt in the misc-files directory could be referenced
with ${PING_PROFILE_ROOT}/misc-files/password.txt in setup-arguments.txt. Use a
reference like this example to supply the file for the --rootUserPasswordFile argument in setup-
arguments.txt.

Workflows
You can use the manage-profile tool to complete a variety of workflows in PingDataGovernance.

This section describes how to use the manage-profile tool to accomplish typical server-management
tasks, like the following examples:

▪ Creating a server profile on page 159
▪ Installing a new environment on page 161
▪ Scaling up your environment on page 161
▪ Rolling out an update on page 162

The following sections describe these tasks in more detail. For more information about the manage-
profile tool, run manage-profile --help. For more information about each individual subcommand
and its options, run manage-profile <subcommand> --help.

Creating a server profile
You can create a server profile from a configured server in PingDataGovernance Server.

About this task

To create a server profile from a configured server, use the generate-profile subcommand.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 160

Steps

1. Create a profile directory.

$ mkdir -p /opt/server-profiles/dg

2. Run generate-profile.

$ bin/manage-profile generate-profile --profileRoot /opt/server-profiles/
dg

3. Customize the resulting profile to suit your needs and to remove deployment environment-specific
values.

▪ Specify a consistent location for the license key file:

a. Copy the license key file to the server profile's misc-files directory.

$ cp PingDataGovernance.lic /opt/server-profiles/dg/misc-files/

b. Open the setup-arguments.txt file in a standard text editor.
c. Locate the --licenseKeyFile argument.
d. Change the value of --licenseKeyFile to the following value.

i Note:

Use PING_PROFILE_ROOT only with files that are not needed after initial setup, such as
password files in setup-arguments.txt. Do not use the PING_PROFILE_ROOT variable
for files needed while the server is running. The manage-profile tool creates a temporary
copy of the server profile that is deleted after the tool completes, so files are not accessible
under PING_PROFILE_ROOT when the server is running. For files you need while the server
is running, such as keystore and truststore files, copy the files into the server root using
the profile's server-root/pre-setup directory, and then refer to the files using with the
PING_SERVER_ROOT variable.

${PING_PROFILE_ROOT}/misc-files/PingDataGovernance.lic

e. Save your changes.
▪ Remove deployment environment-specific values and replace them with variables. For example,

to refer to a different PingFederate server in your development environments versus your test
environments, perform the following steps:

a. Open the /opt/server-profiles/dg/dsconfig/00-config.dsconfig file in a standard
text editor.

b. Locate the value specified for base-url for the external server that identifies your PingFederate
server.

c. Replace the value with a variable, like ${PF_BASE_URL}.
d. Save your changes.
e. Create or update a server profile variables file for your development environment.
f. Add a row like the following example to the variables file.

PF_BASE_URL=https://sso.dev.example.com:9031

g. Save your changes.
h. Continue replacing deployment environment-specific values with variables until the server profile

contains no more deployment environment-specific values.

At this point, you can check the server profile in to a version-control system, like Git, share with
your team, and integrate into your deployment automation.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 161

Installing a new environment
You can use manage-profile setup to set up a new server instance and deployment environment in
PingDataGovernance Server.

Before you begin
The steps in this section make the following assumptions:

▪ A server profile has already been created at the path ~/git/server-profiles/dg.
▪ Your development environment's variables file is saved at the path ~/dg-variables-dev.env.

About this task

After you create and customize a server profile, use the manage-profile setup subcommand to set up
new server instances and additional deployment environments.

The setup subcommand completes the following tasks:

▪ Copies the server root files
▪ Runs the setup tool
▪ Runs the dsconfig batch files
▪ Installs the server SDK extensions
▪ Sets the server's cluster name to a unique value

i Note:

Cluster-wide configuration is automatically mirrored across all servers in the topology with the same
cluster name. In a DevOps deployment with immutable servers, configuration mirroring introduces
risk. Therefore, in most cases, cluster names should be unique for each server to avoid configuration
mirroring.

Steps

1. Extract the contents of the compressed archive to a directory of your choice.

$ mkdir /opt/dg
$ cd /opt/dg
$ unzip PingDataGovernance-<version>.zip

2. Change directories.

$ cd PingDataGovernance

3. Run setup.

$ bin/manage-profile setup \
 --profile ~/git/server-profiles/dg \
 --profileVariablesFile ~/dg-variables-dev.env

Scaling up your environment
You can scale up the environment in your PingDataGovernance Server instance.

About this task

The automation for this task is identical to the previous task of installing a new server in a new
environment. Because each instance of PingDataGovernance Server requires a unique instance name and
host name, each instance must also be set up from a unique server profile variables file.

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 162

Rolling out an update
When you roll out a PingDataGovernance Server update, run manage-profile replace-profile to
use a server profile that you have set up.

Before you begin
The steps in this section make the following assumptions:

▪ A server profile has been created at the path ~/git/server-profiles/dg.
▪ The server's server profile variables file is saved at the path /opt/dg/dg-variables.env.
▪ The existing server with the earlier configuration is installed at /opt/dg/PingDataGovernance.

About this task

Run the replace-profile subcommand on a server that was originally set up with a server profile to
replace its configuration with a new profile. The replace-profile subcommand applies a specified
server profile to an existing server while also preserving its configuration.

While manage-profile replace-profile is running, the existing server is stopped and moved to a
temporary directory that the --tempServerDirectory argument specifies. A fresh, new server is subsequently
installed and set up with the new profile. If the final server was running before the command was started, it
is left running. If the final server was stopped, it remains stopped.

If files have been added or modified in the server root since you ran the most recent manage-profile
setup or manage-profile replace-profile subcommand, they are included in the final server with
the replaced profile. Otherwise, files added specifically from the server-root directory of the previous
server profile are absent from the final server with the replaced profile.

If errors occur while running the subcommand, such as the new profile having an invalid setup-
arguments.txt file, the existing server returns to its original state from before you ran manage-
profile replace-profile.

Steps

1. Extract the distribution package for the same or a new version of PingDataGovernance Server to a
location outside the existing server's installation.

$ mkdir ~/stage
$ cd ~/stage
$ unzip PingDataGovernance-<version>.zip

2. Change directories.

You must run the replace-profile subcommand from the location of the distribution package, not
from the existing server.

$ cd PingDataGovernance

3. Run replace-profile.

$ bin/manage-profile replace-profile \
 --serverRoot /opt/dg/PingDataGovernance \
 --profile ~/git/server-profiles/dg \
 --profileVariablesFile ~/dg-variables-dev.env

Copyright ©2022

PingDataGovernance | Installing PingDataGovernance | 163

Clustering and scaling
PingDataGovernance Servers are stateless. They do not require intra-cluster communication to scale.
Instead, similarly configured independent server instances can be added behind the same network load
balancer to achieve higher throughput while maintaining low latency.

Automated environments

To maintain identically configured PingDataGovernance Server instances behind your load balancer, use
DevOps principles of Infrastructure-as-Code (IaC) and Automation. For more information about using
server profiles to scale upward by installing a new, identically configured instance of PingDataGovernance
Server, see (Optional) Configuring PingDataGovernance using server profiles on page 156.

Non-automated environments

For customers without infrastructure and configuration automation, PingDataGovernance supports intra-
cluster communication to maintain consistent configuration more easily among PingDataGovernance
Server instances behind your network load balancer. You enable intra-cluster communication by running
setup using peer setup options such as --peerHostName and --peerPort.

i Warning:

The clustering model is deprecated and will be removed in a future release. For more information, contact
Ping Professional Services.

In this model, the server instances are joined into a topology configuration that automatically enables the
grouping of servers as well as the mirroring of configuration changes. To mirror shared data across a
topology, this model uses a primary/secondary architecture. All writes and updates are forwarded to the
primary server, which forwards them to all other servers.

▪ Changes to clustered configurations are not allowed in mixed-version clusters. This applies to
configuration in the cn=Cluster,cn=config subtree and only applies to servers with matching
cluster names. Consider this when updating multiple servers in a cluster.

▪ To make clustered configuration changes in a mixed-version cluster, choose one of the following
options:

▪ Update each server to the same version.
▪ Temporarily split up the cluster by changing the cluster-name property on the server instance

configuration objects.
▪ After you have updated all the servers to the same version, you can again make clustered configuration

changes and those changes will mirror across the topology.

Next steps
After installed, complete some configuration steps and then start developing policies to enforce fine-
grained access to data.

Consider performing the following next steps.

▪ Configure access token validation.

For more information, see Configure access token validation on page 307.
▪ Configure a user store.

For more information, see Configure a user store on page 307
▪ Sign on to the Administrative Console to configure endpoints for existing JSON APIs.

For more information, see About the API security gateway on page 178.
▪ Sign on to the Administrative Console to define SCIM APIs for data in databases

For more information, see About the SCIM service on page 206.

Copyright ©2022

PingDataGovernance | Upgrading PingDataGovernance | 164

▪ Sign on to the PingDataGovernance Policy Administration GUI to create policies.

For more information, see the PingDataGovernance Policy Administration Guide.

Upgrading PingDataGovernance

PingDataGovernance includes two server applications you must upgrade in tandem—the main
PingDataGovernance Server and the Policy Administration GUI.

Ping Identity issues software release builds periodically with new features, enhancements, and fixes for
improved server performance.

i Note:

PingDataGovernance Server used in external PDP mode requires a Policy Administration GUI with
the same version. When upgrading PingDataGovernance Server, you must also upgrade the Policy
Administration GUI.

Upgrade considerations
When upgrading PingDataGovernance, you must consider factors such as the scope of the update, the
PingDataGovernance version from which you are upgrading, and if you are not using Docker, your installed
version of Java.

General considerations

For Docker installations, the upgrade process involves downloading and deploying the latest containers.

For manual installations, the upgrade process involves downloading and extracting a new version of
the PingDataGovernance Server .zip file on the server and running the update utility with the --
serverRoot or -R option value from the new root server pointing to the installation.

Consider the following when upgrading:

▪ The update affects only the server being upgraded. The process does not alter the configuration of
other servers, so you must update those servers separately.

▪ The update tool verifies that the installed version of Java meets the new server requirements. To
simplify the process, install the version of Java that is supported by the new server before running the
tool.

▪ Upgrades for PingDataGovernance Server are only supported from versions 7.0.0.0 or later. If
upgrading from a version of PingDataGovernance prior to 7.3.0.0, configuration loss will occur. The
update tool has a warning message about this.

i Tip: For additional considerations, see Planning your upgrade.

i Note: For information about important fixes made over several releases, see Critical fixes on page
23.

Considerations when upgrading to 8.2.0.0

Keep in mind the following important considerations for upgrading to this version of PingDataGovernance
Server.

General

Copyright ©2022

https://docs.pingidentity.com/bundle/solution-guides/page/piw1575669702172.html

PingDataGovernance | Upgrading PingDataGovernance | 165

▪ If you are upgrading to PingDataGovernance 8.2.0.0, you must also upgrade to Policy
Administration GUI 8.2.0.0.

▪ Changes to SpEL expressions using collection projection might cause policy errors with the
following form.

EL1004E: Method call: Method <Symphonic Value method>() cannot be
 found on type <native Java type>

If your policies rely on SpEL collection projection and methods like intValue(), stringValue(),
jsonRepresentation(), or pojoRepresentation(), you must update these expressions. It is
recommended that you update the policies to use collection transforms instead of SpEL
collection projection. For information about collection transforms, see the PingDataGovernance
Policy Administration Guide.

▪ This upgrade moves to Jetty 9.4. As a result, the HTTPS connection handler will no longer
support TLS_RSA ciphers by default. If you use any legacy HTTPS clients that still require
TLS_RSA ciphers, modify the ssl-cipher-suite property of the HTTPS Connection Handler
to include them.

Gateway API Endpoint and Sideband API Endpoint configurations

▪ PingDataGovernance now strictly validates path parameters used in Gateway API Endpoint
and Sideband API Endpoint configurations. The inbound-base-path value (for Gateway API
Endpoints) and the base-path value (for Sideband API Endpoints) no longer allow duplicate
path parameters. For example, "/Users/{userId}/Manager/{userId}" defines the "userId" path
parameter twice and is invalid. In addition, other configuration properties cannot refer to a path
parameter that is not defined by inbound-base-path or base-path.

Previously, the server would allow such invalid configuration changes to be saved, but now the
server rejects them. Upgrades or server profile deployments including invalid configuration of this
kind will now fail. If this happens, correct the invalid configuration values.

Considerations when upgrading to 8.1.0.0

General

▪ PingDataGovernance 8.1.0.0 uses a new policy request format that requires changes to the
Trust Framework.

If you are using policies intended for a previous release, you can continue to use your existing
policies by setting the trust-framework-version property of the Policy Decision Service to
v1. If you upgrade your server using the update tool, this property is set for you automatically.

The v1 format is deprecated, however, and you are strongly encouraged to update your
Trust Framework as soon as possible. To do this, load your existing policies in the Policy
Administration GUI and apply the Trust Framework changes by going to Branch Manager#
Merge Snapshot and selecting the resource/policies/upgrade-snapshots/8.0.0.0-
to-8.1.0.0.SNAPSHOT file included with the server. Then, configure PingDataGovernance
Server to issue policy requests using the new Trust Framework by setting the trust-
framework-version property of the Policy Decision Service to v2.

▪ If you are upgrading to PingDataGovernance 8.1.0.0, an updated version of the Policy
Administration GUI is required.

▪ The PingDataGovernance Policy Administration GUI no longer uses the UNIX
environment variable PING_HOSTNAME. Instead, server administrators should use
PING_EXTERNAL_BASE_URL to specify both the domain and the port. For more information,
see the PingDataGovernance Server Administration Guide.

Copyright ©2022

PingDataGovernance | Upgrading PingDataGovernance | 166

Policy processing and advice

▪ The Allow Attributes advice and the Prohibit Attributes advice have been removed and can no
longer be used. Requests involving policies that refer to these advice types will fail.

▪ The HttpRequest.Headers policy request attribute is not available starting with Trust
Framework version v2. It has been replaced by the HttpRequest.RequestHeaders
and HttpRequest.ResponseHeaders policy request attributes. Update existing
policies or Trust Framework entities that refer to HttpRequest.Headers to refer to
HttpRequest.RequestHeaders.

▪ SCIM 2 requests now include the resource type in the service value during policy processing.
For example, for a SCIM 2 request that affects the "Users" resource type, the service value
will now be "SCIM2.Users" instead of "SCIM2". Existing policy rules or targets that rely on an
exact equality match for "SCIM2" must be updated. For example, a condition of "Service Equals
SCIM2" would need to be updated to "Service Matches SCIM2".

▪ For security, by default, the policy engine's SpEL processor now invokes Java classes only in
the allow-list presented in the PingDataGovernance Server Administration Guide. To use
other classes, add a key to the core section of the Policy Administration GUI's configuration
called AttributeProcessing.SpEL.AllowedClasses with a list of the classes to include.
If you are using embedded PDP mode, add a policy configuration key of the same name to the
PingDataGovernance Server configuration.

PDP API

▪ The XACML-JSON PDP API now requires a different request format. With this new format, you
can make multiple decisions using a single HTTP request. In addition, the response format is
now compliant with the XACML-JSON specification. The 8.0 PDP API request format is no longer
supported. For more information, see the PingDataGovernance Server Administration Guide.

Peer setup and clustered configuration

▪ Peer setup and clustered configuration are deprecated and will be removed in
PingDataGovernance 9.0. We encourage deployers to manage server configuration using server
profiles, which support deployment best practices such as automation and Infrastructure-as-
Code (IaC). For more information about server profiles, see the PingDataGovernance Server
Administration Guide.

▪ If you have upgraded a server that is in a cluster (that is, has a cluster name set in the Server
Instance configuration object) to version 8.1, you will not be able to make cluster configuration
changes until all servers with the same cluster name have been upgraded to version 8.1. If
needed, you could create temporary clusters based on server versions and modify each server's
cluster name appropriately to minimize the impact while you are upgrading.

Docker upgrades

Upgrading PingDataGovernance Server using Docker
When using Docker, instead of upgrading PingDataGovernance Server, you deploy a container with the
new PingDataGovernance version and use the same server profile.

About this task
If you deployed a container using a server profile, when you want to deploy a newer PingDataGovernance
Server version, you deploy a container with that version using the same server profile.

Copyright ©2022

PingDataGovernance | Upgrading PingDataGovernance | 167

Steps

▪ For more information, see https://devops.pingidentity.com/reference/config/.

(The server profiles for Docker deployments differ from those discussed in (Optional) Configuring
PingDataGovernance using server profiles on page 156.)

Upgrading the PingDataGovernance Policy Administration GUI using Docker
If you originally installed the GUI with Docker per Installing PingDataGovernance Policy Administration
GUI using Docker on page 134, use this procedure to upgrade the PingDataGovernance Policy
Administration GUI when a new version is released.

Steps

1. In your current Policy Administration GUI, complete the steps in Backing up policies on page 170.

2. Stop the old Docker container and start the new one.

When a new Docker image for the PingDataGovernance Policy Administration GUI is available, you
stop the existing Docker container and start the new container from the new image while mounting the
same volumes. The Ping Identity DevOps Docker images use the PingDataGovernance setup tool to
update the policy database on the mounted volume, as described in Example: Override the configured
policy database location on page 177.

i Warning:

If you use a shared volume, you should always stop the Docker container running the older version of
the Policy Administration GUI before you start the new container.

For example, the following commands stop the running container and run a new image named
<pap_new>. This image uses the volumes from <pap_old> to house the policy database. Also, the
command uses the same PING_H2_FILE value from Example: Override the configured policy database
location on page 177 to indicate that the PingDataGovernance setup tool should use that location.

i Note: For proper communication between containers, create a Docker network using a command
such as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

$ docker container stop <pap_old>
$ docker run --network=<network_name> --name <pap_new> \
 -p 443:443 -d --env-file ~/.pingidentity/devops \
 --volumes-from <pap_old> \
 --env PING_H2_FILE=/opt/shared/Symphonic \
 pingidentity/pingdatagovernancepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdatagovernancepap).

i Warning:

The setup tool uses the default credentials to upgrade the policy database. If the credentials
no longer match the default values, the server administrator should pass the correct credentials

Copyright ©2022

https://devops.pingidentity.com/reference/config/
https://hub.docker.com/r/pingidentity/pingdatagovernancepap

PingDataGovernance | Upgrading PingDataGovernance | 168

to the setup tool using the PING_DB_ADMIN_USERNAME, PING_DB_ADMIN_PASSWORD,
PING_DB_APP_USERNAME, and PING_DB_APP_PASSWORD UNIX environment variables.

For example, if the old policy database admin credentials have been previously set to admin/Passw0rd,
and the application credentials have been set to app/S3cret, the docker run command should include
those environment variables as shown in this example.

 $ docker container stop <pap_old>
 $ docker run --network=<network_name> --name <pap_new> \
 -p 443:443 -d --env-file ~/.pingidentity/devops \
 --env PING_H2_FILE=/opt/shared/Symphonic \
 --env PING_DB_ADMIN_USERNAME=admin \
 --env PING_DB_ADMIN_PASSWORD=Passw0rd \
 --env PING_DB_APP_USERNAME=app \
 --env PING_DB_APP_PASSWORD=S3cret \
 pingidentity/pingdatagovernancepap:<TAG>

The Docker image <TAG> used in the example is only a placeholder. For actual tag values, see Docker
Hub (https://hub.docker.com/r/pingidentity/pingdatagovernancepap).

This command ensures that the setup tool has the correct credentials to access the policy database,
and that it does not reset credentials to their defaults.

3. In the new GUI, complete the steps in Upgrading the Trust Framework and policies on page 170.

Manual upgrades

Upgrading PingDataGovernance Server manually
Perform the following steps to upgrade a PingDataGovernance server.

Steps

1. Download and unzip the new version of PingDataGovernance Server in a location outside the existing
server's installation.

For these steps, assume the existing server installation is in /opt/dg/PingDataGovernance and the
new server version is extracted into /home/stage/PingDataGovernance.

2. Provide a copy of the PingDataGovernance license file for the version to which you are upgrading in
the /home/stage/PingDataGovernance directory, or give the location of the license file to the tool
using the --licenseKeyFile option.

3. Run the update tool provided with the new server package to update the existing
PingDataGovernance Server.

The update tool might prompt for confirmation on server configuration changes if it detects
customization.

/home/stage/PingDataGovernance/update --serverRoot /opt/dg/
PingDataGovernance

Copyright ©2022

https://hub.docker.com/r/pingidentity/pingdatagovernancepap

PingDataGovernance | Upgrading PingDataGovernance | 169

Reverting an update
After you've updated PingDataGovernance Server, you can revert to the previous version (one level back)
using the revert-update tool.

About this task

The revert-update tool accesses a log of file actions taken by the updater to put the file system back to
its previous state. If you have run multiple updates, you can run the revert-update tool multiple times
to sequentially revert to each prior update. You can only revert back one level at a time with the revert-
update tool. For example, if you had to run the update twice since first installing PingDataGovernance
Server, you can run the revert-update tool to revert to its previous state, then run the revert-update
tool again to return to its original state.

When starting the server for the first time after running a revert, the server displays warnings about "offline
configuration changes," but these are not critical and will not appear during subsequent start-ups.

Steps

▪ Run revert-update in the server root directory to revert back to the most recent previous version of
the server, as shown in the following example.

/opt/dg/PingDataGovernance/revert-update

Upgrading the PingDataGovernance Policy Administration GUI manually
If you originally installed the PingDataGovernance Policy Administration GUI using .zip files, use this
procedure to upgrade the GUI when a new version is released.

Steps

1. In your current Policy Administration GUI, complete the steps in Backing up policies on page 170.

2. Stop the Policy Administration GUI.

$ bin/stop-server

3. Obtain and unzip the new version of the PingDataGovernance Policy Administration GUI in a location
outside the existing GUI's installation.

4. Copy the existing database.

The new server installation might require changes to the policy database structure. The server setup
tool performs these upgrades and generates a new configuration.xml file.

This example assumes the old installation is in /opt/dg/PingDataGovernance-PAP-previous,
and the new installation is in /opt/dg/PingDataGovernance-PAP.

To upgrade
a database
from

Run this command

8.1
$ cp /opt/dg/PingDataGovernance-PAP-previous/Symphonic.mv.db /
opt/dg/PingDataGovernance-PAP

8.0
$ cp /opt/dg/PingDataGovernance-PAP-previous/admin-point-
application/db/Symphonic.mv.db /opt/dg/PingDataGovernance-PAP

Copyright ©2022

PingDataGovernance | Upgrading PingDataGovernance | 170

5. Run setup.

i Note:

Updating PingDataGovernance Server uses an update tool. PingDataGovernance GUI does not have
this tool though. Instead of updating the GUI in-place, you install the new GUI.

i Warning:

The setup tool uses the default credentials to upgrade the policy database. If the credentials no
longer match the default values, the server administrator should pass the correct credentials to the
setup tool using the --dbAdminUsername, --dbAdminPassword, --dbAppUsername, and --
dbAppPassword command-line options. Otherwise, setup fails when it cannot access the policy
database, or it might reset credentials to their default values. For more information, see Manage policy
database credentials on page 254.

Follow the instructions in one of the following topics:

▪ Installing the PingDataGovernance Policy Administration GUI interactively on page 147
▪ Installing the PingDataGovernance Policy Administration GUI noninteractively on page 150

6. Start the new GUI.

Follow the instructions in Post-setup steps (manual installation) on page 153.

7. In the new GUI, complete the steps in Upgrading the Trust Framework and policies on page 170.

Backing up policies
Back up existing policies before upgrading the Policy Administration GUI. Do this by exporting policy
snapshots.

About this task
Back up policies manually as described below or rely on the automatic backups covered in Policy database
backups on page 269.

Steps

1. Sign on to the Policy Administration GUI and choose any existing branch to go to the main landing
page.

2. To display your current branches, select Branch Manager# Version Control.

3. From the Branches list, click a branch that you want to export.
You should see a list of the commits for that branch, and the most recent version of the branch is
named Uncommitted Changes.

4. Identify the commit that represents the snapshot that you want to export and click the three-line icon in
the Options column.

5. Choose Export Snapshot.
Your browser downloads the file.

6. Repeat for any additional branches that you want to back up.

Upgrading the Trust Framework and policies
PingDataGovernance ships with a default Trust Framework and policy snapshot that policy writers should
use as a starting point when developing their policies. Occasionally, a server upgrade results in changes

Copyright ©2022

PingDataGovernance | Uninstalling PingDataGovernance | 171

to the default Trust Framework and policies, and policy writers must upgrade any policies based on
defaultPolicies.SNAPSHOT.

Steps

1. Sign on to the Policy Administration GUI and choose any branch to go to the main landing page.

2. Select Branch Manager from the navigation bar on the left, and open the Merge Snapshot tab.

3. Click the file selection option, and go to the resource/policies/upgrade-snapshots folder of
the new Policy Administration GUI deployment.

4. Select the correct SNAPSHOT file based on the version you are upgrading from and the version to which
you are upgrading.

i Important: If you are upgrading from 7.3.0.x, use the 7.3.0.x-to-8.0.0.0-SNAPSHOT and
merge that (per the next step) before you select and merge 8.0.0.0-to-8.1.0.0.SNAPSHOT.

When upgrading from version 8.0.0.0 to version 8.1.0.0, use resource/policies/upgrade-
snapshots/8.0.0.0-to-8.1.0.0.SNAPSHOT.

5. Merge the partial snapshot.

i Note:

Merge conflicts might occur where objects have been updated. If you have not modified the objects in
conflict, you can safely select Keep Snapshots.

6. Return to your PingDataGovernance Server installation.

7. Run the following dsconfig command to configure PingDataGovernance Server to use the latest Trust
Framework version.

dsconfig set-policy-decision-service-prop \
 --set trust-framework-version:v2

Uninstalling PingDataGovernance

For manual installations, PingDataGovernance Server provides an uninstall tool to remove its
components from the system.

Steps

1. Go to the PingDataGovernance Server root directory.

2. Run the uninstall command.

$./uninstall

3. Select the option to remove all components or select the components you want to remove.

To remove selected components, enter yes when prompted.

Remove Server Libraries and Administrative Tools? (yes / no) [yes]: yes
Remove Log Files? (yes / no) [yes]: no
Remove Configuration and Schema Files? (yes / no) [yes]: yes
Remove Backup Files Contained in bak Directory? (yes / no) [yes]: no
Remove LDIF Export Files Contained in ldif Directory? (yes / no) [yes]: no
The files will be permanently deleted, are you sure you want to continue?
 (yes / no) [yes]:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 172

4. Manually delete any remaining files or directories.

Next steps
To remove PingDataGovernance Policy Administration GUI, run stop-server and remove its installation
directory.

PingDataGovernance Server Administration Guide

PingDataGovernance Server includes the runtime policy decision service and multiple integration
capabilities:

▪ Authorization policy decision APIs
▪ API security gateway and sideband API
▪ SCIM service

Running PingDataGovernance
Run PingDataGovernance Server and the PingDataGovernance Policy Administration GUI using Docker or
from your Unix/Linux or Windows terminal.

Starting PingDataGovernance Server
To start PingDataGovernance Server in a Unix/Linux environment, use the bin/start-server
command. On Windows, use the bat/start-server.bat command.

Steps

1. In a terminal window, enter go to the directory where you have installed PingDataGovernance Server.

2. Run the command for your operating system.

Operating System Command

Unix/Linux bin/start-server

Windows bat/start-server.bat

Running PingDataGovernance Server as a foreground process
Run or stop PingDataGovernance Server as a foreground process in Unix/Linux environments.

Steps

▪ To launch PingDataGovernance Server as a foreground process, run $ bin/start-server --
nodetach.

▪ To stop a running PingDataGovernance Server, do one of the following:

▪ In the terminal window running the server, press and hold CTRL+C.
▪ In a new terminal window, run bin/stop-server.

Starting PingDataGovernance Server at boot time (Unix/Linux)
Create a script to run PingDataGovernance Server when the system boots.

About this task

PingDataGovernance Server does not start automatically when the system is booted. By default, you must
use the bin/start-server command to start it manually.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 173

Steps

▪ To configure PingDataGovernance Server to start automatically when the system boots, complete one
of the following tasks:

▪ Use the create-systemd-script utility to create a script.

1. Create the service unit configuration file in a temporary location, as in the following example.

 $ bin/create-systemd-script \
 --outputFile /tmp/ping-data-governance.service \
 --userName dg

In this example, dg represents the username assigned to PingDataGovernance Server.
2. Switch to root user. The command for doing this will vary depending on your distribution.
3. As a root user, copy the ping-data-governance.service configuration file to the /etc/

systemd/ system directory as shown.

cp ping-data-governance.service /etc/systemd/

4. Reload systemd to read the new configuration file as shown.

$ systemctl daemon-reload

5. To start PingDataGovernance Server, use the start command.

$ systemctl start ping-data-governance.service

6. To configure PingDataGovernance Server to start automatically when the system boots, use the
enable command, as in the following example.

$ systemctl enable ping-data-governance.service

7. Sign off from the system as the root user.
▪ Create a Run Control (RC) script manually.

1. Run bin/create-rc-script to create the startup script.
2. Move the script to the /etc/init.d directory.
3. Create symlinks to the script from the /etc/rc3.d directory.

To ensure that the server is started, begin the symlinks with an S.
4. Create symlinks to the script from the /etc/rc0.d directory.

To ensure that the server is stopped, begin the symlinks with a K.

Starting PingDataGovernance Server at boot time (Windows)
On Windows Server systems you can register PingDataGovernance Server as a service to start it up when
booting.

About this task

PingDataGovernance Server can run as a service on Windows Server operating systems. This approach
allows the server to start at boot time, and allows the administrator to log off from the system without
stopping the server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 174

Registering PingDataGovernance Server as a Windows service
Registering PingDataGovernance Server as a service allows you to automate startup when booting.

About this task

i Note:

The following options are not supported when PingDataGovernance Server is registered to run as a
Windows service:

▪ Command-line arguments for the start-server.bat and stop-server.bat scripts
▪ Using a task to stop the server

Steps

1. Run bin/stop-server to stop PingDataGovernance Server.

i Note: You cannot register a server while it is running.

2. From a Windows command prompt, run bat/register-windows-service.bat to register the
server as a service.

3. Use one of the following methods to start PingDataGovernance Server:

▪ The Windows Services Control Panel
▪ The bat/ start-server.bat command

Running multiple service instances
You can run multiple instances of PingDataGovernance Server as Windows services by altering the
wrapper-product.conf file.

About this task

Only one instance of a particular service can run at a time. Services are distinguished by the
wrapper.name property in the <server-root>/config/wrapper-product.conf file.

To run additional service instances, change the wrapper.name property on each additional instance. You
can also add or change service descriptions in the wrapper-product.conf file.

Steps

1. Open the <server-root>/config/wrapper-product.conf file.

2. Change the wrapper.name property to a unique string, such as pingdatagovernance1.

3. Save the wrapper-product.conf file.

4. Register PingDataGovernance Server as a service. For more information, see Registering
PingDataGovernance Server as a Windows service on page 174.

5. Repeat these steps for each service instance you want to create.

Deregistering and uninstalling services
When a server is registered as a service, it cannot run as a non-service process or be uninstalled.

About this task

Steps

1. To remove the service from the Windows registry, run the bat/deregister-windows-
service.bat script.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 175

2. To uninstall PingDataGovernance Server, run the PingDataGovernance/uninstall.bat script.
For more information, see Uninstalling PingDataGovernance on page 171.

Log files for services
You can configure the log files generated by PingDataGovernance Server running as a Windows service.

Log files are stored in <server-root>/logs, and file names begin with windows-service-wrapper.

You can edit the log file configurations in the <server-root>/config/wrapper.conf file.

Log files are configured to rotate each time the wrapper starts due to file size. You can edit the allowed file
size using the wrapper.logfile.maxsize parameter. The default size is 50 Mb.

By default, only the two most recent log files are retained. You can change how many log files to retain by
editing the wrapper.logfile.maxfiles parameter.

Starting PingDataGovernance Policy Administration GUI
Use the start-server command to start the Policy Administration GUI. Also, you can use environment
variables to override configuration variables at startup.

To start PingDataGovernance Policy Administration GUI, use the bin/start-server command.

$ bin/start-server

i Note:

You can run bin/start-server manually from the command line or within a script.

Overriding the configuration at startup

You can override a number of Policy Administration GUI settings by defining specific environment variables
before starting the server. By overriding some of the configuration, you can redefine certain aspects of the
configuration without re-running the setup tool.

To override the configuration, stop the Policy Administration GUI, define one or more of the environment
variables, and restart the Policy Administration GUI.

Environment variables you can use to override configuration variables

The following table lists the environment variables that you can define, sorted based on expected
frequency of use with related variables grouped together.

Environment variable Example value Description

PING_EXTERNAL_BASE_URL pap.example.com:9443 The Policy Administration GUI hostname and
port.

PingDataGovernance uses this value to
construct AJAX requests.

The port value must match the value of
PING_PORT for web browsers to pass CORS
checks.

PING_PORT 443 The Policy Administration GUI HTTPS port.

The server binds to this listen port.

PING_KEYSTORE_TYPE JKS The Policy Administration GUI’s key store type.
Valid values include JKS and PKCS12.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 176

Environment variable Example value Description

PING_KEYSTORE_PATH /path/to/keystore.jks The path to the Policy Administration GUI’s key
store.

PING_KEYSTORE_PASSWORDpassword1234 The Policy Administration GUI’s key store
password.

PING_CERT_ALIAS server-cert The alias for the Policy Administration GUI’s
server certificate.

PING_SHARED_SECRET DataGovernance The Policy Administration GUI’s shared
secret, which PingDataGovernance Server
needs to make policy requests to the Policy
Administration GUI.

PING_OIDC_
CONFIGURATION_ENDPOINT

https://oidc.example.com:9031/.well-
known/openid-configuration

The OpenID Connect (OIDC) provider’s
discovery URL. Used when the Policy
Administration GUI is set up in OIDC mode.

PING_CLIENT_ID 8cb9f2c9-c366-47e0-9560-
db2132b2d813

The Policy Administration GUI’s client ID with
the OpenID Connect provider. Used when the
Policy Administration GUI is set up in OIDC
mode.

PING_USERNAMES admin, user1, user2 Used in demo mode. A comma-separated
list of usernames accepted by the Policy
Administration GUI for sign on.

PING_H2_FILE ./Symphonic The path to the policy database H2 file.

Leave off the .mv.db extension.

PING_DB_APP_USERNAME db_user The username the application uses to access
the server database.

PING_DB_APP_PASSWORD Pa$$w0rd!23 The password the application uses to access
the server database.

PING_DB_ADMIN_USERNAMEdb_admin The username the setup tool uses when
upgrading the policy database.

PING_DB_ADMIN_PASSWORD$3cr3T The password the setup tool uses when
upgrading the policy database.

PING_OPTIONS_FILE /path/to/options.yml The path to an options.yml file to use with
the Policy Administration GUI's setup tool.

PING_ADMIN_PORT 9444 The admin port where the H2 database backup
endpoint is available.

The policy administration point, or PAP, uses
this endpoint to back up the H2 database,
which stores your Trust Framework, policies,
commit history, and other data.

Related environment variables:
PING_BACKUP_SCHEDULE,
PING_H2_BACKUP_DIR

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 177

Environment variable Example value Description

PING_BACKUP_SCHEDULE 0 0 0 * * ? The periodic database backup schedule for the
Policy Administration GUI (also known as the
PAP) in the form of a cron expression.

i Note:

The PAP evaluates the expression
against the system timezone. For the
PingDataGovernance Docker images, the
default timezone is UTC.

The default is 0 0 0 * * ?, which is
midnight every day.

For more information, see Quartz 2.3.0 cron
format.

Related environment variables:
PING_ADMIN_PORT,
PING_H2_BACKUP_DIR

PING_H2_BACKUP_DIR /opt/out/backup The directory in which to place the H2
database backup files.

The default is SERVER_ROOT/policy-
backup.

Related environment variables:
PING_ADMIN_PORT,
PING_BACKUP_SCHEDULE

Example: Override the configured HTTPS port

In this example, the Policy Administration GUI is started using an HTTPS port that differs from the
value configured during installation. The override requires two environment variables: PING_PORT and
PING_EXTERNAL_BASE_URL.

$ bin/stop-server
$ export PING_PORT=9443 PING_EXTERNAL_BASE_URL=pap.example.com:9443; bin/
start-server

Example: Override the configured policy database location

This example changes the policy database location. The new value must be a policy server Java Database
Connectivity (JDBC) connection string for an H2 embedded database. To use a file located at /opt/
shared/Symphonic.mv.db, use the following commands.

$ bin/stop-server
$ export PING_H2_FILE=/opt/shared/Symphonic
$ bin/setup demo {ADDITIONAL_ARGUMENTS} && bin/start-server

i Note:

Even though the actual filename of the policy database includes the extension .mv.db, the JDBC
connection string excludes the extension.

Copyright ©2022

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format

PingDataGovernance | PingDataGovernance Server Administration Guide | 178

If /opt/shared/Symphonic.mv.db does not exist, setup creates a new one. If the file does exist and
is from an older PingDataGovernance server, setup updates the file to the latest version.

Troubleshooting startup errors

The bin/start-server command prints an error message if it detects that an error has occurred during
startup. For more information about the error, see the logs/datagovernance-pap.log and logs/
start-server.log files.

Stopping PingDataGovernance Server
PingDataGovernance Server provides a simple shutdown script to stop the server.

Steps

▪ To stop the PingDataGovernance Server, run the $ bin/stop-server command.

i Note:

You can run bin/stop-server manually from the command line or within a script.

Stopping PingDataGovernance Policy Administration GUI
PingDataGovernance Policy Administration GUI provides a simple shutdown script to stop the system.

Steps

▪ To stop the PingDataGovernance Policy Administration GUI, run the bin/stop-server command.

i Note:

You can run bin/stop-server manually from the command line or within a script.

Restarting PingDataGovernance Server
You can stop and restart PingDataGovernance Server with a single command.

About this task

Running this command is equivalent to shutting down PingDataGovernance Server, exiting the Java virtual
machine (JVM) session, and starting the server again.

Steps

1. Go to the PingDataGovernance Server root directory.

2. Run bin/stop-server with the --restart or -R option.

$ bin/stop-server --restart

About the API security gateway
PingDataGovernance Server and its API security gateway act as an intermediary between a client and an
API server.

See the following topics for specific details about the functionality of the API security gateway.

▪ Request and response flow on page 179

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 179

▪ Gateway configuration basics on page 180
▪ API security gateway authentication on page 181
▪ API security gateway policy requests on page 182
▪ API security gateway HTTP 1.1 support on page 188
▪ About error templates on page 189

Request and response flow
The API gateway processes JSON requests and responses in two distinct phases according to a defined
sequence.

The gateway handles proxied requests in the following phases:

▪ Inbound phase – When a client submits an API request to PingDataGovernance Server, the gateway
forms a policy request based on the API request and submits it to the policy decision point (PDP) for
evaluation. If the policy result allows it, PingDataGovernance Server forwards the request to the API
server.

▪ Outbound phase – After PingDataGovernance Server receives the upstream API server's response, the
gateway again forms a policy request, this time based on the API server response, and submits it to the
PDP. If the policy result is positive, PingDataGovernance Server forwards the response to the client.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 180

The API gateway supports only JSON requests and responses.

Gateway configuration basics
You can configure the API security gateway by creating and modifying its components.

The API security gateway consists of the following components:

▪ One or more gateway HTTP servlet extensions
▪ One or more Gateway API Endpoints
▪ One or more API external servers

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 181

An API external server represents the upstream API server and contains the configuration for the
server's protocol scheme, host name, port, and connection security. You can create the server in the
PingDataGovernance Administrative Console, or with the following example command.

PingDataGovernance/bin/dsconfig create-external-server \
 --server-name "API Server" \
 --type api \
 --set base-url:https://api-service.example.com:1443

A Gateway API Endpoint represents a public path prefix that PingDataGovernance Server accepts for
handling proxied requests. A Gateway API Endpoint configuration defines the base path for receiving
requests (inbound-base-path) as well as the base path for forwarding the request to the API server
(outbound-base-path). It also defines the associated API external server and other properties that
relate to policy processing, such as service, which targets the policy requests generated for the Gateway
API Endpoint to specific policies.

The following example commands use the API external server from the previous example to create a pair
of Gateway API Endpoints.

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set inbound-base-path:/c/definitions \
 --set outbound-base-path:/consent/v1/definitions \
 --set "api-server:API Server" \
 --set service:Consent

PingDataGovernance/bin/dsconfig create-gateway-api-endpoint \
 --endpoint-name "Consent Records" \
 --set inbound-base-path:/c/consents \
 --set outbound-base-path:/consent/v1/consents \
 --set "api-server:API Server" \
 --set service:Consent

The gateway HTTP servlet extension is the server component that represents the API security gateway
itself. In most cases, you do not need to configure this component.

Changes to these components do not typically require a server restart to take effect. For more information
about configuration options, see the Configuration Reference, located in the server's docs/config-
guide directory.

API security gateway authentication
The API security gateway authenticates requests through bearer tokens by default, and you can configure
it to handle authentication according to your preferences.

Although the gateway does not strictly require the authentication of requests, the default policy set requires
bearer token authentication.

To support this approach, the gateway uses the configured access token validators to evaluate bearer
tokens that are included in incoming requests. The result of that validation is supplied to the policy request
in the HttpRequest.AccessToken attribute, and the user identity associated with the token is provided
in the TokenOwner attribute.

Policies use this authentication information to affect the processing of requests and responses. For
example, a policy in the default policy set requires that all requests are made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 182

 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

Gateway API Endpoints include the following configuration properties to specify the manner in which they
handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Gateway API Endpoint
evaluates bearer tokens, and if so, whether the
bearer token is forwarded to the API server.

access-token-validator Sets the access token validators that the Gateway
API Endpoint uses. By default, this property has
no value, and the Gateway API Endpoint can
evaluate every bearer token by using each access
token validator that is configured on the server. To
constrain the set of access token validators that a
Gateway API Endpoint uses, set this property to
use one or more specific values.

If http-auth-evaluation-behavior is set to
do-not-evaluate, this setting is ignored.

API security gateway policy requests
The API security gateway creates policy requests for incoming requests and API responses, and you can
observe how it creates them.

Before accepting an incoming request and forwarding it to the API server, the gateway creates a policy
request based on the incoming request and sends it to the policy decision point (PDP) for authorization.
Before accepting an API server response and forwarding it back to the client, the gateway creates a
policy request based on the incoming request and response and sends it to the PDP for authorization. An
understanding of the manner in which the gateway formulates policy requests can help you create and
troubleshoot policies more effectively.

You can selectively disable response policy processing on a per-API-Endpoint basis. This ability is useful
if the Gateway authorizes requests but does not filter responses. Disabling this processing can improve
performance for frequent requests or requests that return very large responses. To disable processing, set
the Gateway API Endpoint's disable-response-processing property to true.

To better understand how the gateway formulates policy requests, enable detailed decision logging and
viewing all policy request attributes in action, particularly when first developing API security gateway
policies. For more information, see Policy Decision logger on page 338.

Policy request attributes
There are many policy request attributes generated by the security gateway, including attributes nested
within the attributes, HttpRequest.AccessToken, HttpRequest.ClientCertificate, and
Gateway fields.

The following table identifies the attributes of a policy request that the gateway generates.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 183

Policy request attributes Description Type

action Identifies the gateway request
processing phase and the HTTP
method, such as GET or POST.

The value is formatted as
<phase>-<method>.

Example values include
inbound-GET, inbound-POST,
outbound-GET, and outbound-
POST.

String

attributes Identifies additional attributes
that do not correspond to
a specific entity type in the
PingDataGovernance Trust
Framework. For more information
about these attributes, see the
following table.

Object

domain Unused. String

identityProvider Identifies the access token
validator that evaluates the
bearer token used in an incoming
request.

String

service Identifies the API service. By
default, this attribute is set
to the name of the Gateway
API Endpoint, which can be
overridden by setting the Gateway
API Endpoint's service property.
Multiple Gateway API Endpoints
can use the same service value.

String

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

Gateway Provides additional gateway-specific
information about the request not provided
by the following attributes.

Object

HttpRequest.AccessToken Parsed access token. For more information,
see the following table.

Object

HttpRequest.ClientCertificate Properties of the client certificate, if one was
used.

Object

HttpRequest.CorrelationId A unique value that identifies the request
and response, if available.

String

HttpRequest.IPAddress The client IP address. String

HttpRequest.QueryParameters Request URI query parameters. Object

HttpRequest.RequestBody The request body, if available. Object

HttpRequest.RequestHeaders The HTTP request headers. Object

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 184

Attribute Description Type

HttpRequest.RequestURI The request URI. String

HttpRequest.ResourcePath Portion of the request URI path following the
inbound base path that the Gateway API
Endpoint defines.

String

HttpRequest.ResponseBody The response body, if available. This
attribute is provided only for outbound policy
requests.

Object

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if
available.

Number

TokenOwner The access token subject as a SCIM
resource, as obtained by the access token
validator.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

access_token The actual access token from the
client request.

String

active Indicates whether this access
token is currently active, as
determined by the access token
validator.

Boolean

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization
server sets this field to indicate
the resource servers that might
accept the token.

Array

client_id The client ID of the application
that was granted the access
token.

String

expiration Date and time at which the
access token expires.

DateTime

issued_at Date and time at which the
access token was issued.

DateTime

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

scope Identifies the list of scopes
granted to this token.

Collection

Copyright ©2022

https://tools.ietf.org/html/rfc7662

PingDataGovernance | PingDataGovernance Server Administration Guide | 185

Attribute Description Type

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a client.

Boolean

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

subject DN of the certificate subject. String

subjectRegex Regular expression that must
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the Gateway attribute contains.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 186

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Gateway API
Endpoint's inbound-base-path
value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters used in a Gateway
API Endpoint's inbound-base-
path configuration property are
included as fields of the Gateway
attribute.

String

custom attribute The Gateway attribute might
contain multiple arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Gateway API Endpoint
configuration.

String

Gateway API Endpoint configuration properties that affect policy requests
The following table identifies Gateway API Endpoint properties that might force the inclusion of additional
attributes in a policy request.

Gateway API Endpoint property Description

inbound-base-path Defines the URI path prefix that the gateway uses
to determine whether the Gateway API Endpoint
handles a request.

The inbound-base-path property value can
include parameters. If parameters are found and
matched, they are included as attributes to policy
requests.

The following configuration properties reference
parameters that the inbound-base-path
introduces:

▪ outbound-base-path
▪ service
▪ resource-path
▪ policy-request-attribute

service Identifies the API service to the PDP.

The service value appears in the policy request as
the service attribute.

If undefined, the service value defaults to the name
of the Gateway API Endpoint.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 187

Gateway API Endpoint property Description

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute.

If undefined, the resource path value defaults to
the portion of the request that follows the base path
defined by inbound-base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, key-value pairs are always added
as attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute
Gateway.foo is added to the policy request with a
value of bar.

Path parameters
The inbound-base-path property value can include parameters. If parameters are found and matched,
they are included in policy requests as fields of the Gateway policy request attribute.

Gateway API Endpoint configuration properties that affect policy requests on page 186 identifies
additional configuration properties that can use these parameters.

You must introduce parameters by the inbound-base-path property. Other configuration properties
cannot introduce new parameters.

Basic example
The following example configuration demonstrates how request URIs are mapped to the outbound path to
alter policy requests.

Gateway API Endpoint property Example value

inbound-base-path /accounts/{accountId}/transactions

outbound-base-path /api/v1/accounts/{accountId}/
transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/accounts/XYZ/transactions/1234.

The following properties are added to the policy request:

▪ HttpRequest.ResourcePath : 1234
▪ Gateway.accountId : XYZ
▪ Gateway.foo : bar

Advanced example
Request URIs are mapped to the outbound path to alter policy requests.

Consider the following example configuration.

Gateway API Endpoint property Example value

inbound-base-path /health/{tenant}/{resourceType}

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 188

Gateway API Endpoint property Example value

outbound-base-path /api/v1/health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the inbound base path and
is mapped to the outbound path /api/v1/health/OmniCorp/patients/1234.

The following properties are added to the policy request:

▪ service : HealthAPI.patients
▪ HttpRequest.ResourcePath : patients/1234
▪ Gateway.tenant : OmniCorp
▪ Gateway.resourceType : patients

API security gateway HTTP 1.1 support
In its capacity as a reverse proxy, the API security gateway must modify HTTP requests and responses in
addition to the changes required by policy processing.

Forwarded HTTP request headers

HTTP requests often pass through a chain of intermediaries before reaching a destination server. The
HTTP 1.1 specifications define two categories of headers that are pertinent to this context.

End-to-end headers

Headers requiring transmission to all recipients on the chain, such as Content-Type.

Hop-by-hop headers

Headers that are only relevant to the next recipient on the chain, such as Connection and Keep-
Alive.

The API security gateway never forwards hop-by-hop headers. It generally forwards all end-to-end
headers, with the following exceptions:

▪ Headers related to HTTP resource versioning and conditional requests, such as If-None-Match and
If-Modified-Since, are never forwarded.

▪ Headers related to CORS, such as Origin or Access-Control-Request-Method, are never
forwarded.

▪ Headers that you exclude by using the allowed-headers configuration property of an API External
Server to define a whitelist of forwarded headers.

▪ Headers that you remove by using a custom advice extension.

The API security gateway always adds the Host, Accept-Encoding, Via, X-Forwarded-For, X-
Forwarded-Host, X-Forwarded-Port, and X-Forwarded-Proto headers to forwarded requests.
If the HTTP Connection Handler is configured to use or generate correlation IDs, then a correlation ID
header is also added to the forwarded request.

You can use the http-auth-evaluation-behavior property of a Gateway API Endpoint to alter the
Authorization header of a forwarded request.

Forwarded HTTP response headers

The API security gateway forwards most HTTP response headers, with the following exceptions:

▪ The Date header is replaced with a value generated by the API security gateway.
▪ The Content-Length header is replaced with a value generated by the API security gateway.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 189

▪ The Location header is replaced with a value generated by the API security gateway.
▪ If the HTTP Connection Handler is configured to use or generate correlation IDs, then a correlation ID

header is added to the response.
▪ Headers related to HTTP resource versioning and conditional requests, such as ETag and Last-

Modified, are never forwarded.
▪ Headers related to CORS, such as Access-Control-Allow-Origin or Access-Control-Allow-

Headers, are never forwarded.

Unsupported HTTP request header

The API security gateway does not support the Upgrade header.

Unsupported advice changes

The API security gateway does not support using advice to add, modify, or delete the following headers:

▪ Hop-by-hop headers that the gateway always removes, such as Connection and Keep-Alive
▪ Conditional request headers that the gateway always removes, such as If-None-Match and ETag
▪ Proxy-specific headers that the gateway always adds, such as Via and X-Forwarded-For

The gateway overrides any changes to these headers.

About error templates
REST API clients are often written with the expectation that the API produces a custom error format. Some
clients might fail unexpectedly if they encounter an error response that uses an unexpected format.

When a REST API is proxied by PingDataGovernance Server, errors that the REST API returns are
forwarded to the client as is, unless a policy dictates a modification of the response. In the following
scenarios, PingDataGovernance Server returns a gateway-generated error:

▪ When the policy evaluation results in a deny response. This scenario typically results in a 403 error.
▪ When an internal error occurs in the gateway, or when the gateway cannot contact the REST API

service. This scenario typically results in a 500, 502, or 504 error.

By default, these responses use a simple error format, as in the following example.

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes this default error format.

Field Type Description

errorMessage String Error message

status Number HTTP status code

Because some REST API clients expect a specific error response format, PingDataGovernance Server
provides a facility for responding with custom errors, called error templates. An error template is written
in Velocity Template Language and defines the manner in which a Gateway API Endpoint produces error
responses.

Error templates feature the following context parameters.

Parameter Type Description

status Integer HTTP status

message String Exception message

Copyright ©2022

http://velocity.apache.org/engine/1.7/user-guide.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 190

Parameter Type Description

requestURI String Original Request URI

requestQueryParams Object Query parameters as JSON
object

headers Object Request headers as JSON object

correlationID String Request correlation ID

For more information, see Error templates on page 205.

Configuring error templates example
The example in this section demonstrates the configuration of a custom error template for a Gateway API
Endpoint named Test API.

About this task

Error responses that use this error template feature the following fields:

▪ code
▪ message

Steps

1. Create a file named error-template.vtl with the following contents.

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration, as follows.

dsconfig create-error-template \
 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Gateway API Endpoint, as follows.

dsconfig set-gateway-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

i Note:

The error template is used whenever the gateway generates an error in response to a request.

A policy deny results in a response like the following example.

HTTP/1.1 403 Forbidden
Content-Length: 57
Content-Type: application/json;charset=utf-8
Correlation-Id: e7c8fb82-f43e-4678-b7ff-ae8252411513
Date: Wed, 27 Feb 2019 05:54:50 GMT
Request-Id: 56

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 191

{
 "code": "ACCESS_FAILED",
 "message": "Access Denied"
}

About the Sideband API
The Sideband API authorizes requests and responses and returns them in a potentially modified form,
which the API gateway forwards to the backend REST API or the client.

As a gateway, PingDataGovernance Server functions as a reverse proxy that performs the following steps:

▪ Intercepts client traffic to a backend REST API service
▪ Authorizes the traffic to a policy decision point (PDP) that operates either within the

PingDataGovernance process, called Embedded PDP mode, or outside the PingDataGovernance
process, called External PDP mode

Using the Sideband API, you can configure the PingDataGovernance Server instead as a plugin to an
external API gateway. In Sideband mode, an API gateway integration point intercepts client traffic to a
backend REST API service and passes intercepted traffic to the PingDataGovernance Sideband API.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 192

API gateway integration
By using an API gateway plugin that acts as a client to the Sideband API, you can use
PingDataGovernance Server with an external API gateway.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 193

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 194

Processing steps

1. After the API gateway receives a request from an API gateway plugin, it makes a call to the Sideband
API to process the request.

2. The Sideband API returns a response that contains a modified version of the HTTP client's request,
which the API gateway forwards to the REST API.

3. If the Sideband API returns a response that indicates the request is unauthorized or not to be
forwarded, the response includes the response to be returned to the client. The API gateway returns the
response to the client without forwarding the request to the REST API.

4. When the API gateway receives a response from the REST API, it makes a call to the Sideband API to
process the response.

5. The Sideband API returns a response that contains a modified version of the REST API's response,
which the API gateway forwards to the client.

Sideband API configuration basics
The Sideband API consists of the following components.

Sideband API Shared Secrets

Defines the authentication credentials that the Sideband API might require an API gateway plugin to
present. For more information, see Authenticating to the Sideband API on page 195.

Sideband API HTTP Servlet Extension

Represents the Sideband API itself. If you require shared secrets, you might need to configure this
component. For more information, see Authenticating to the Sideband API on page 195.

Sideband API Endpoints

Represents a public path prefix that the Sideband API accepts for handling proxied requests. A
Sideband API Endpoint configuration defines the following items:

▪ The base path (base-path) for requests that the Sideband API accepts
▪ Properties that relate to policy processing, such as service, which targets the policy requests

that are generated for the Sideband API Endpoint to specific policies

PingDataGovernance Server's default configuration includes a Default Sideband API Endpoint that accepts
all API requests and generates policy requests for the service Default. To customize policy requests
further, an administrator can create additional Sideband API Endpoints. For more information about using
the Sideband API Endpoint configuration to customize policy requests, see Sideband API policy requests
on page 197.

i Note:

Changes to these components do not typically require a server restart to take effect. For more information,
see the Configuration Reference, located in the server's docs/config-guide directory.

Example

The following example commands create a pair of Sideband API Endpoints that target
specific requests to a consent service.

PingDataGovernance/bin/dsconfig create-sideband-api-endpoint \
 --endpoint-name "Consent Definitions" \
 --set base-path:/c/definitions \
 --set service:Consent

PingDataGovernance/bin/dsconfig create-sideband-api-endpoint \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 195

 --endpoint-name "Consent Records" \
 --set base-path:/c/consents \
 --set service:Consent

Authenticating to the Sideband API
The Sideband API can require an API gateway plugin to authenticate to it by using a shared secret.

To define shared secrets, use Sideband API Shared Secret configuration objects. To manage shared
secrets, use the Sideband API HTTP Servlet Extension.

Creating a shared secret
Define the authentication credentials that the Sideband API might require an API gateway plugin to
present.

Steps

1. To create a shared secret, run the following example dsconfig command, substituting values of your
choosing.

PingDataGovernance/bin/dsconfig create-sideband-api-shared-secret \
 --secret-name "Shared Secret A" \
 --set "shared-secret:secret123"

i Note:

▪ The shared-secret property sets the value that the Sideband API requires the API gateway
plugin to present. After you set this value, it is no longer visible.

▪ The secret-name property is a label that allows an administrator to distinguish one Sideband API
Shared Secret from another.

2. To update the shared-secrets property, run the following example dsconfig command.

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --add "shared-secrets:Shared Secret A"

A new Sideband API Shared Secret is not used until the shared-secrets property of the Sideband
API HTTP Servlet Extension is updated.

Deleting a shared secret
You can remove a shared secret from use or delete it entirely.

Steps

▪ To remove a Sideband API Shared Secret from use, run the following example dsconfig command,
substituting values of your choosing.

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --remove "shared-secrets:Shared Secret A"

▪ To delete a Sideband API Shared Secret, run the following example dsconfig command.

PingDataGovernance/bin/dsconfig delete-sideband-api-shared-secret \
 --secret-name "Shared Secret A"

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 196

Rotating shared secrets
To avoid service interruptions, the Sideband API allows multiple, distinct shared secrets to be accepted at
the same time.

About this task

You can configure a new shared secret that the Sideband API accepts alongside an existing shared secret.
This allows time to update the API gateway plugin to use the new shared secret.

Steps

1. Create a new Sideband API Shared Secret and assign it to the Sideband API HTTP Servlet Extension.
For more information, see Creating a shared secret on page 195.

2. Update the API gateway plugin to use the new shared secret.

3. Remove the previous Sideband API Shared Secret. For more information, see Deleting a shared secret
on page 195.

Customizing the shared secret header
By default, the Sideband API accepts a shared secret from an API gateway plugin through the PDG-
TOKEN header.

Steps

▪ To customize a shared secret header, change the value of the Sideband API HTTP Servlet Extension's
shared-secret-header property.

The following command changes the shared secret header to x-shared-secret.

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set shared-secret-header-name:x-shared-secret

The following command resets the shared secret header to its default value.

PingDataGovernance/bin/dsconfig set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --reset shared-secret-header-name

Authenticating API server requests
As with the PingDataGovernance API Security Gateway mode, API server requests that the Sideband
API authorizes do not strictly require authentication. However, the default policy set requires bearer token
authentication.

About this task

The Sideband API uses configured Access Token Validators to evaluate bearer tokens that are included in
incoming requests. The HttpRequest.AccessToken attribute supplies the validation result to the policy
request, and the TokenOwner attribute provides the user identity that is associated with the token.

Policies use this authentication information to affect the processing requests and responses. For example,
the following policy in the default policy set requires all requests to be made with an active access token.

Rule: Deny if HttpRequest.AccessToken.active Equals false

Advice:
 Code: denied-reason
 Applies To: Deny

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 197

 Payload: {"status":401, "message": "invalid_token", "detail":"Access token
 is expired or otherwise invalid"}

The following table identifies the configuration properties that determine the manner in which Sideband API
Endpoints handle authentication.

Property Description

http-auth-evaluation-behavior Determines whether the Sideband API Endpoint
evaluates bearer tokens, and if so, whether the
Sideband API Endpoint forwards them to the API
server by way of the API gateway.

access-token-validator Sets the Access Token Validators that the
Sideband API Endpoint uses. As this property
contains no value by default, the Sideband API
Endpoint can potentially use each Access Token
Validator that is configured on the server to
evaluate every bearer token.

To constrain the set of Access Token Validators
that a Sideband API Endpoint uses, set this
property to use one or more specific values.

This setting is ignored if http-auth-
evaluation-behavior is set to do-not-
evaluate.

Sideband API policy requests
Understanding how the Sideband API formulates policy requests can help you create and troubleshoot
policies more effectively.

To authorize an incoming request, the Sideband API performs the following steps:

▪ Creates a policy request that is based on the incoming request
▪ Sends the policy request to the Policy Decision Point (PDP) for evaluation

Policy request attributes
The following tables provide an overview of policy request attributes.

The following table identifies the attributes that are associated with a policy request that the Sideband API
generates.

Attribute Description Type

action Identifies the request-processing
phase and the HTTP method,
such as GET or POST.

The value is formatted as
<phase>-<method>. Example
values include inbound-GET,
inbound-POST, outbound-
GET, and outbound-POST.

String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 198

Attribute Description Type

attributes Additional attributes that do not
correspond to a specific entity
type in the Trust Framework.

For more information, see the
next table.

Object

domain Unused. String

identityProvider Name of the Access Token
Validator that evaluates the
bearer token in an incoming
request.

String

service Identifies the API service. By
default, this value is set to the
name of the Sideband API
Endpoint.

To override the default value,
set the Sideband API Endpoint's
service property.

Multiple Sideband API Endpoints
can use the same service value.

String

The following table identifies the additional attributes that are included in attributes.

Attribute Description Type

Gateway Additional gateway-specific information
about the request not provided by the
following attributes.

Object

HttpRequest.AccessToken Parsed access token.

For more information, see the following
table.

Object

HttpRequest.ClientCertificate Properties of the client certificate, if one was
used.

Object

HttpRequest.CorrelationId A unique value that identifies the request
and response, if available.

String

HttpRequest.IPAddress The client IP address. String

HttpRequest.QueryParameters Request URI query parameters. Object

HttpRequest.RequestBody The request body, if available. Object

HttpRequest.RequestHeaders The HTTP request headers. Object

HttpRequest.RequestURI The request URI. String

HttpRequest.ResourcePath Portion of the request URI path that follows
the inbound base path that the Sideband
API Endpoint defines.

String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 199

Attribute Description Type

HttpRequest.ResponseBody The response body, if available. This
attribute is provided only for outbound policy
requests.

Object

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if
available.

Number

TokenOwner The access token subject as a SCIM
resource, as obtained by the access token
validator.

Object

i Note:

When handling an outbound response, HTTP request data is only available if specifically provided by the
API gateway plugin.

The following table identifies the fields that are associated with the HttpRequest.AccessToken
attribute, which is populated by the access token validator.

i Note:

These fields correspond approximately to the fields that are defined by the IETF Token Introspection
specification, RFC 7662.

Attribute Description Type

access_token The actual access token from the
client request.

String

active Indicates whether this access
token is currently active, as
determined by the access token
validator.

Boolean

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization server
sets this field to identify the
resource servers that can accept
the token.

Array

client_id Client ID of the application that
was granted the access token.

String

expiration Date and time at which the
access token expired.

DateTime

issued_at Date and time at which the
access token was issued.

DateTime

issuer Token issuer. Typically, this
value is a URI that identifies the
authorization server.

String

Copyright ©2022

https://tools.ietf.org/html/rfc7662

PingDataGovernance | PingDataGovernance Server Administration Guide | 200

Attribute Description Type

not_before Date and time before which a
resource server does not accept
an access token.

DateTime

scope Identifies the list of scopes
granted to this token.

Collection

subject Token subject. This value
represents a user identifier that
the authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This value is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

token_type Token type, as set by the
authorization server. Typically,
this value is bearer.

String

user_token Flag that the access token
validator sets to indicate the
token was originally issued to a
subject. If the flag is false, the
token contains no subject and
was issued directly to a client.

Boolean

username Subject's user name. This value
represents a user identifier that
the authorization server sets.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute can
contain.

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

subject DN of the certificate subject. String

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 201

Attribute Description Type

subjectRegex Regular expression that must
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

String

valid Indicates whether the SSL client
certificate is valid.

Boolean

The following table identifies the fields that the Gateway attribute can contain.

Attribute Description Type

_BasePath Portion of the HTTP request URI
that matches the Sideband API
Endpoint's base-path value.

String

_TrailingPath Portion of the HTTP request URI
that follows the _BasePath.

String

base path parameters Parameters in a Sideband
API Endpoint's base-path
configuration property are
included as fields of the Gateway
attribute.

String

base path parameters The Gateway attribute can
contain multiple, arbitrary custom
attributes that are defined by the
policy-request-attribute
of the Sideband API Endpoint
configuration.

String

Sideband API Endpoint configuration properties
The following table identifies Sideband API Endpoint properties that might force the inclusion of additional
attributes with the policy request.

Property Description

base-path Defines the URI path prefix that the Sideband
API uses to determine whether the Sideband API
Endpoint handles a request.

The base-path property value can include
parameters. If parameters are found and matched,
they are included as attributes to policy requests.

The following configuration properties can
reference parameters that base-path introduces:

▪ service
▪ resource-path
▪ policy-request-attribute

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 202

Property Description

service Identifies the API service to the PDP. A policy can
use this value to target requests.

The service value appears in the policy request
as the service attribute. If undefined, the
service value defaults to the name of the
Sideband API Endpoint.

resource-path Identifies the REST resource to the PDP.

The resource path value appears in the policy
request as the HttpRequest.ResourcePath
attribute. If undefined, the resource-path value
defaults to the portion of the request that follows the
base path, as defined by base-path.

policy-request-attribute Defines zero or more static, arbitrary key-value
pairs. If specified, the pairs are always added as
attributes to policy requests.

These custom attributes appear in the policy
request as fields of the Gateway attribute. For
example, if a value of policy-request-
attribute is foo=bar, the attribute
Gateway.foo is added to the policy request with
the value bar.

Path parameters
If parameters are found and matched for the base-path property, they are included in policy requests as
fields of the Gateway policy request attribute.

Other configuration properties can use these parameters. For more information, see Sideband API
Endpoint configuration properties on page 201.

The base-path property must introduce parameters. Other configuration properties cannot introduce new
parameters.

Path parameters: Basic example
The following table demonstrates a basic configuration of path parameters.

API Endpoint property Example value

base-path /accounts/{accountId}/transactions

policy-request-attribute foo=bar

A request URI with the path /accounts/XYZ/transactions/1234 matches the example base-path
value.

The following properties are added to the policy request:

▪ HttpRequest.ResourcePath : 1234
▪ Gateway.accountId : XYZ
▪ Gateway.foo : bar

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 203

Path parameters: Advanced example
The following table demonstrates an advanced configuration of path parameters.

API Endpoint property Example value

base-path /health/{tenant}/{resourceType}

service HealthAPI.{resourceType}

resource-path {resourceType}/{_TrailingPath}

A request URI with the path /health/OmniCorp/patients/1234 matches the example base-path
value.

The following properties are added to the policy request:

▪ service : HealthAPI.patients
▪ HttpRequest.ResourcePath : patients/1234
▪ Gateway.tenant : OmniCorp
▪ Gateway.resourceType : patients

Request context configuration
The API gateway plugin provides data and metadata to the Sideband API about HTTP requests received
from a client and HTTP responses received from an API server.

When the Sideband API handles an API server's HTTP response, you can enable the API gateway plugin
to also provide data and metadata for the original HTTP request, which can be used to make policy
decisions. For example, data about access token claims and the token owner are request data, but they
might be useful when authorizing an HTTP response.

The Sideband API provides two methods to supply HTTP request data during HTTP response processing.
Select a method according to the API gateway plugin's capabilities. By default, both methods are disabled.
You can enable them by configuring the request-context-method property of the Sideband API HTTP
Servlet Extension.

Request context using the state field

When enabled, the Sideband API adds a state field to its responses for inbound HTTP requests.
This field contains an encoded form of the request data, including preprocessed authentication
data, such as access token claims and token owner attributes. The API gateway plugin is expected
to provide this state data when it next makes a request corresponding to the outbound HTTP
response. The Sideband API can then pass this data about the HTTP request in its policy request.

As the state data includes preprocessed authentication information, this information can be made
available for policy processing without the overhead of re-invoking an access token validator.
However, the size of the state data is proportional to the size of the original HTTP request.

To enable this option, use the following command.

PingDataGovernance/bin/dsconfig \
 set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set request-context-method:state

Request context using the request field

When enabled, an API gateway plugin making a request to handle an outbound HTTP response
provides all data about the original HTTP request in the request field. If this data includes an
Authorization header with a bearer token, the Sideband API invokes its access token validators
to produce a set of access token claims and token owner attributes, which are then made available
in the policy request.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 204

To enable this option, use the following command.

PingDataGovernance/bin/dsconfig \
 set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --set request-context-method:request

Disabling request context handling

The request context feature is disabled by default. If you have enabled it, you can disable it with the
following command.

PingDataGovernance/bin/dsconfig \
 set-http-servlet-extension-prop \
 --extension-name "Sideband API" \
 --reset request-context-method

Access token validation
HTTP requests often include an access token with an Authorization header using the bearer token
scheme, as described by RFC 6750.

By default, if a Sideband API request contains an Authorization header, the Sideband API processes
the access token as follows:

▪ An access token validator parses and validates the access token, and the Sideband API adds the
access token parsed claims to the policy request’s HttpRequest.AccessToken field.

▪ If the access token has a subject, a token resource lookup method retrieves the subject’s attributes, and
the Sideband API adds them to the policy request’s TokenOwner field.

In some cases, the parsing and validation performed by the access token validator might duplicate
processing already performed by the API gateway itself. To eliminate redundant processing, you can
configure a Sideband API endpoint to use an external API gateway access token validator, which is a
unique access token validator that performs no parsing or validation of its own. The API gateway plugin
might then pass the parsed access token claims directly to the Sideband API, which would ignore the
Authorization header and accept the parsed access token claims as-is.

Example configuration

The following example shows how to configure an external API gateway access token validator with a
token resource lookup method, and then assign it to an existing Sideband API endpoint.

dsconfig create-access-token-validator \
 --validator-name "API Gateway Access Token Validator" \
 --type external-api-gateway \
 --set enabled:true \
 --set evaluation-order-index:0
dsconfig create-token-resource-lookup-method \
 --validator-name "API Gateway Access Token Validator" \
 --method-name "Users by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:0
dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "My API" \
 --set "access-token-validator:API Gateway-Provided Access Token Validator"

Copyright ©2022

https://tools.ietf.org/html/rfc6750

PingDataGovernance | PingDataGovernance Server Administration Guide | 205

Error templates
REST API clients often expect a custom error format that the API produces. Some clients might fail
unexpectedly if they encounter an error response that uses an unexpected format.

When PingDataGovernance Server proxies a REST API, it forwards errors that the API returns to the
client as they are, unless a policy dictates modifications to the response. In the following scenarios,
PingDataGovernance Server returns an error that the Sideband API generates:

▪ The policy evaluation results in a deny response. This typically results in a 403 error.
▪ An internal error occurs in the Sideband API. This typically results in a 500 error.

By default, these responses use a simple error format, as shown in the following example.

{
 "errorMessage": "Access Denied",
 "status": 403
}

The following table describes the default error format.

Field Type Description

errorMessage String Error message

status Number HTTP status code

Because some REST API clients expect a specific error-response format, PingDataGovernance Server
provides error templates to respond with custom errors. Error templates, which are written in Velocity
Template Language, define the manner in which a Sideband API Endpoint produces error responses.

The following table identifies the context parameters that are provided with error templates.

Parameter Type Description

status Integer HTTP status

message String Exception message

Example: Configure error templates
This example demonstrates the configuration of a custom error template for a Sideband API Endpoint
called Test API.

The following fields are associated with the error responses that use this error template:

▪ code
▪ message

To create the error template, perform the following steps:

1. Create a file named error-template.vtl with the following contents:

#set ($code = "UNEXPECTED_ERROR")
#if($status == 403)
 #set ($code = "ACCESS_FAILED")
#end
{
 "code":"$code",
 "message":"$message"
}

2. Add the error template to the configuration.

dsconfig create-error-template \

Copyright ©2022

http://velocity.apache.org/engine/1.7/user-guide.html
http://velocity.apache.org/engine/1.7/user-guide.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 206

 --template-name "Custom Error Template" \
 --set "velocity-template<error-template.vtl"

3. Assign the error template to the Sideband API Endpoint.

dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "Test API" \
 --set "error-template:Custom Error Template"

The error template is used whenever the Sideband API generates an error in response to a request.

About the SCIM service
PingDataGovernance Server's built-in System for Cross-domain Identity Management (SCIM) service
provides a REST API for data that is stored in one or more external datastores, based on the SCIM 2.0
standard.

For information about the SCIM service, see the following topics:

▪ Request and response flow on page 206
▪ SCIM configuration basics on page 208
▪ SCIM endpoints on page 211
▪ SCIM authentication on page 212
▪ SCIM policy requests on page 212
▪ Lookthrough limit on page 222
▪ Disabling the SCIM REST API on page 222

Request and response flow
The System for Cross-domain Identity Management (SCIM) REST API provides an HTTP API for data
contained in a user store.

Although user stores typically consist of a single datastore, such as PingDirectory Server, they can also
consist of multiple datastores.

When a SCIM request is received, it is translated into one or more requests to the user store, and the
resulting user store response is translated into a SCIM response. The SCIM response is authorized by
sending a policy request to the policy decision point (PDP). Depending on the policy result, including the
advices that are returned in the result, the SCIM response might be filtered or rejected.

Copyright ©2022

https://tools.ietf.org/html/rfc7644
https://tools.ietf.org/html/rfc7644

PingDataGovernance | PingDataGovernance Server Administration Guide | 207

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 208

SCIM configuration basics
PingDataGovernance Server's System for Cross-domain Identity Management (SCIM) subsystem consists
of the following components.

SCIM resource types

SCIM resource types define a class of resources, such as users or devices. Every SCIM resource
type features at least one SCIM schema, which defines the attributes and subattributes that are
available to each resource, and at least one store adapter, which handles datastore interactions.

The following SCIM resource types differ according to the definitions of the SCIM schema:

▪ Mapping SCIM resource type – Requires an explicitly defined SCIM schema, with explicitly
defined mappings of SCIM attributes to store adapter attributes. Use a mapping SCIM resource
type to exercise detailed control over the SCIM schema, its attributes, and its mappings.

▪ Pass-through SCIM resource type – Does not use an explicitly defined SCIM schema. Instead,
an implicit schema is generated dynamically, based on the schema that is reported by the store
adapter. Use a pass-through SCIM resource type when you need to get started quickly.

SCIM schemas

SCIM schemas define a collection of SCIM attributes, grouped under an identifier called a schema
URN. Each SCIM resource type possesses a single core schema and can feature schema
extensions, which act as secondary attribute groupings that the schema URN namespaces. SCIM
schemas are defined independently of SCIM resource types, and multiple SCIM resource types can
use a single SCIM schema as a core schema or schema extension.

i Note:

A SCIM attribute defines an attribute that is available under a SCIM schema. The configuration for
a SCIM attribute defines its data type, regardless of whether it is required, single-valued, or multi-
valued. Because it consists of SCIM subattributes, a SCIM attribute can be defined as a complex
attribute.

Store adapters

Store adapters act as a bridge between PingDataGovernance Server's SCIM system and an
external datastore. PingDataGovernance Server provides a built-in LDAP store adapter to support
LDAP datastores, including PingDirectory Server and PingDirectoryProxy Server. The LDAP store
adapter uses a configurable load-balancing algorithm to spread the load among multiple directory
servers. Use the Server SDK to create store adapters for arbitrary datastore types.

Each SCIM resource type features a primary store adapter and can also define multiple secondary
store adapters. Secondary store adapters allow a single SCIM resource to consist of attributes
retrieved from multiple datastores.

Store adapter mappings define the manner in which a SCIM resource type maps the attributes in its
SCIM schemas to native attributes of the datastore.

About the create-initial-config tool
The create-initial-config tool helps to quickly configure PingDataGovernance Server for the
System for Cross-domain Identity Management (SCIM).

Run this tool after completing setup to configure a SCIM resource type named Users, along with a related
configuration.

For an example of using create-initial-config to create a pass-through SCIM resource type, see
Configuring the PingDataGovernance user store on page 309.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 209

Example: Mapped SCIM resource type for devices
This example demonstrates the addition of a simple mapped SCIM resource type, backed by the standard
device object class of a PingDirectory Server.

To add data to PingDirectory Server, create a file named devices.ldif with the following contents.

dn: ou=Devices,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Devices

dn: cn=device.0,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device
cn: device.0
description: Description for device.0

dn: cn=device.1,ou=Devices,dc=example,dc=com
objectClass: top
objectClass: device
cn: device.1
description: Description for device.1

Use the ldapmodify tool to load the data file.

PingDirectory/bin/ldapmodify --defaultAdd --filename devices.ldif

Start configuring PingDataGovernance Server by adding a store adapter.

dsconfig create-store-adapter \
 --adapter-name DeviceStoreAdapter \
 --type ldap \
 --set enabled:true \
 --set "load-balancing-algorithm:User Store LBA" \
 --set structural-ldap-objectclass:device \
 --set include-base-dn:ou=devices,dc=example,dc=com \
 --set include-operational-attribute:createTimestamp \
 --set include-operational-attribute:modifyTimestamp \
 --set create-dn-pattern:entryUUID=server-
generated,ou=devices,dc=example,dc=com

The previous command creates a store adapter that handles LDAP entries found under the base DN
ou=devices,dc=example,dc=com with the object class device. This example uses the user store
load-balancing algorithm that is created when you use the create-initial-config tool to set up a
users SCIM resource type.

The following command creates a SCIM schema for devices with the schema URN
urn:pingidentity:schemas:Device:1.0.

dsconfig create-scim-schema \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --set display-name:Device

Under this schema, add the string attributes name and description.

dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \
 --attribute-name name \
 --set required:true
dsconfig create-scim-attribute \
 --schema-name urn:pingidentity:schemas:Device:1.0 \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 210

 --attribute-name description

After you create a store adapter and schema, create the SCIM resource type.

dsconfig create-scim-resource-type \
 --type-name Devices \
 --type mapping \
 --set enabled:true \
 --set endpoint:Devices \
 --set primary-store-adapter:DeviceStoreAdapter \
 --set lookthrough-limit:500 \
 --set core-schema:urn:pingidentity:schemas:Device:1.0

Map the two SCIM attributes to the corresponding LDAP attributes. The following commands map the
SCIM name attribute to the LDAP cn attribute, and map the SCIM description attribute to the LDAP
description attribute.

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name name \
 --set scim-resource-type-attribute:name \
 --set store-adapter-attribute:cn \
 --set searchable:true

dsconfig create-store-adapter-mapping \
 --type-name Devices \
 --mapping-name description \
 --set scim-resource-type-attribute:description \
 --set store-adapter-attribute:description

To confirm that the new resource type has been added, send the following request to the SCIM resource
types endpoint.

curl -k https://localhost:8443/scim/v2/ResourceTypes/Devices

The response is:

{"schemas":
["urn:ietf:params:scim:schemas:core:2.0:ResourceType"],"id":"Devices","name":
"Devices","endpoint":"Devices","schema":"urn:pingidentity:schemas:Device:1.0",
"meta":{"resourceType":"ResourceType","location":"https://localhost:8443/
scim/v2/ResourceTypes/Devices"}}

For a more advanced example of a mapped SCIM resource type, see the example User schema in
PingDataGovernance/resource/starter-schemas.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 211

SCIM endpoints
The following table identifies the endpoints that the System for Cross-domain Identity Management (SCIM)
2.0 REST API provides.

Endpoint Description Supported HTTP methods

/ServiceProviderConfig Provides metadata that indicates
the PingDataGovernance Server
authentication scheme, which
is always OAuth 2.0, and its
support for features that the SCIM
standard considers optional.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/Schemas Lists the SCIM schemas that
are configured for use on
PingDataGovernance Server and
that define the various attributes
available to resource types.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/Schemas/<schema> Retrieves a specific SCIM
schema, as specified by its ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes Lists all of the SCIM resource
types that are configured for use
on PingDataGovernance Server.
Clients can use this information
to determine the endpoint, core
schema, and extension schemas
of any resource types that the
server supports.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/ResourceTypes/
<resourceType>

Retrieves a specific SCIM
resource type, as specified by its
ID.

This endpoint is a metadata
endpoint and is not subject to
policy processing.

GET

/<resourceType> Creates a new resource (POST),
or lists and filters resources
(GET).

GET, POST

/<resourceType>/.search Lists and filters resources. POST

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 212

Endpoint Description Supported HTTP methods

/<resourceType>/
<resourceId>

Retrieves a single resource
(GET), modifies a single resource
(PUT, PATCH), or deletes a
single resource (DELETE).

GET, PUT, PATCH, DELETE

/Me Alias for the resource that the
subject of the access token
identifies.

Retrieves the resource (GET),
modifies the resource (PUT,
PATCH), or deletes the
(DELETE).

GET, PUT, PATCH, DELETE

SCIM authentication
You must authenticate all System for Cross-domain Identity Management (SCIM) requests using OAuth
2.0 bearer token authentication.

Bearer tokens are evaluated using access token validators. The HttpRequest.AccessToken attribute
supplies the validation result to the policy request, and the TokenOwner attribute provides the user identity
associated with the token. Policies use this authentication information to affect the processing of requests
and responses.

SCIM policy requests
For every System for Cross-domain Identity Management (SCIM) request or response, one or more policy
requests are sent to the policy decision point (PDP) for authorization.

Policies can use a policy request's action value to determine the processing phase and to act
accordingly. Understanding how the SCIM service formulates policy requests will help you to create and
troubleshoot policies more effectively.

Most SCIM operations are authorized in the following phases:

1. The operation itself is authorized.
2. The outgoing response is authorized with the retrieve action.

In most cases, you can reuse policies that target the retrieve action to specify read-access control rules.
You can disable this retrieve action for a SCIM Resource Type if policies are only used for authorization
before the operation. To do so, set the SCIM Resource Type's disable-response-processing
property to true. The resource is then returned as-is after the operation completes. This property also
affects SCIM searches.

Operation Actions

POST /scim/v2/<resourceType> create, retrieve

GET /scim/v2/<resourceType>/
<resourceId>

retrieve

PUT /scim/v2/<resourceType>/
<resourceId>

PATCH /scim/v2/<resourceType>/
<resourceId>

modify, retrieve

DELETE /scim/v2/<resourceType>/
<resourceId>

delete

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 213

Operation Actions

GET /scim/v2/<resourceType>

POST /scim/v2/<resourceType>/.search

search, retrieve

-OR-

search, search-results

For more information about authorizing searches,
see About SCIM searches on page 216.

Enable detailed decision logging and view all policy request attributes in action, particularly when learning
how to develop SCIM policies. For more information, see Policy Decision logger on page 338.

Policy request attributes
The following tables describe policy request attributes and their functions.

The following table identifies the attributes associated with a policy request that the System for Cross-
domain Identity Management (SCIM) service generates.

Policy request attribute Description Type

action Identifies the SCIM request as
one of the following types:

▪ create
▪ modify
▪ retrieve
▪ delete
▪ search
▪ search-request

String

attributes Additional attributes that do not
correspond to a specific entity
type in the PingDataGovernance
Trust Framework. For more
information, see the following
table.

Object

domain Unused. String

identityProvider Name of the access token
validator that evaluates the
bearer token used in an incoming
request.

String

service Identifies the SCIM service and
resource type using a value of the
form SCIM2.<resource type>.

For example, for a request
using the "Users" resource
type, the service value would be
SCIM2.Users.

String

The following table identifies the additional attributes that are included in attributes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 214

Attribute Description Type

HttpRequest.AccessToken Parsed access token. For more information,
see the following table.

Object

HttpRequest.ClientCertificate Properties of the client certificate, if one is
used.

Object

HttpRequest.CorrelationId A unique value that identifies the request
and response, if available.

String

HttpRequest.IPAddress The client IP address. String

HttpRequest.QueryParameters Request URI query parameters. Object

HttpRequest.RequestBody The request body, if available. This attribute
is available for POST, PUT, and PATCH
requests.

Object

HttpRequest.RequestHeaders The HTTP request headers. Object

HttpRequest.RequestURI The request URI. String

HttpRequest.ResourcePath Uniquely identifies the SCIM resource that is
being requested, in the format <Resource
Type>/<SCIM ID>, as the following
example shows:

Users/0450b8db-
f055-35d8-8e2f-0f203a291cd1

String

HttpRequest.ResponseBody The response body, if available. This
attribute is provided only for outbound policy
requests.

Object

HttpRequest.ResponseHeaders The HTTP response headers, if available. Object

HttpRequest.ResponseStatus The HTTP response status code, if
available.

Number

impactedAttributes Provides the set of attributes that the
request modifies.

Collection

SCIM2 Provides additional, SCIM2-specific
information about the request.

Object

TokenOwner Access token subject as a SCIM resource,
as obtained by the access token validator.

Object

The access token validator populates the HttpRequest.AccessToken attribute, which contains the
fields in the following table. These fields correspond approximately to the fields that the IETF Token
Introspection specification (RFC 7662) defines.

Attribute Description Type

access_token The actual access token from the
client request.

String

active Indicates whether this access
token is currently active, as
determined by the access token
validator.

Boolean

Copyright ©2022

https://tools.ietf.org/html/rfc7662

PingDataGovernance | PingDataGovernance Server Administration Guide | 215

Attribute Description Type

audience Identifies the recipients for whom
the access token is intended.
Typically, the authorization
server sets this field to indicate
the resource servers that might
accept the token.

Array

client_id The client ID of the application
that was granted the access
token.

String

expiration Date and time at which the
access token expires.

DateTime

issued_at Date and time at which the
access token was issued.

DateTime

issuer Token issuer. This attribute is
usually a URI that identifies the
authorization server.

String

not_before Date and time before which a
resource server does not accept
the access token.

DateTime

scope Identifies the list of scopes
granted to this token.

Collection

subject Token subject. This attribute
is a user identifier that the
authorization server sets.

String

token_owner User identifier that was resolved
by the access token validator's
token resource lookup method.
This attribute is always a SCIM ID
of the form <resource type>/
<resource ID>.

String

token_type The token type, as set by the
authorization server. This value is
typically set to bearer.

String

user_token Flag that the access token
validator sets to indicate that the
token was issued originally to a
subject. If this flag is false, the
token does not have a subject
and was issued directly to a client.

Boolean

username Subject's user name. This
attribute is a user identifier that
the authorization server sets.

String

The following table identifies the fields that the HttpRequest.ClientCertificate attribute contains.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 216

Attribute Description Type

algorithm Name of the certificate
signature algorithm, such as
SHA256withRSA.

String

algorithmOID Signature algorithm OID. String

issuer Distinguished name (DN) of the
certificate issuer.

String

notAfter Expiration date and time of the
certificate.

DateTime

notBefore Earliest date on which the
certificate is considered valid.

DateTime

subject DN of the certificate subject. String

subjectRegex Regular expression that must
be matched by the subject field
of the certificate to ensure that
the certificate belongs to the
requesting client.

String

valid Indicates whether the certificate is
valid.

Boolean

The following table identifies the fields that the SCIM2 attribute contains.

Attribute Description Type

modifications Contains a normalized SCIM
2 PATCH request object that
represents all of the changes to
apply. This attribute is available
for PUT and PATCH requests.

Object

resource Complete SCIM resource that the
request targets. This attribute is
available for GET, PUT, PATCH,
and DELETE requests.

The resource attribute is
also available in the policy
requests that are performed for
each matching SCIM resource
in a search result. For more
information, see About SCIM
searches on page 216.

Object

About SCIM searches
Search requests are used to return System for Cross-domain Identity Management (SCIM) resources. You
can constrain search requests using filters.

A request that potentially causes the return of multiple SCIM resources is considered a search request.
Perform such requests in one of the following manners:

▪ Make a GET request to /scim/v2/<resourceType>.
▪ Make a POST request to /scim/v2/<resourceType>/.search.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 217

To constrain the search results, clients should supply a search filter through the filter parameter. For
example, a GET request to /scim/v2/Users?filter=st+eq+"TX" returns all SCIM resources of the
Users resource type in which the st attribute possesses a value of "TX". Additionally, the Add Filter
policy can add a filter automatically to search requests.

SCIM search policy processing
System for Cross-domain Identity Management (SCIM) policy processing involves denying or modifying a
search request and then filtering the results.

Policy processing for SCIM searches occurs in the following phases:

1. Policies deny or modify a search request. For more information, see Search request authorization on
page 217.

2. Policies filter the search result set. For more information, see Search response authorization on page
217.

Search request authorization
In the first phase, a policy request is issued for the search itself, using the search action. If the policy
result is deny, the search is not performed. Otherwise, advices in the policy result are applied to the
search filter, giving advices a chance to alter the filter.

i Note:

You can only use advice types that are written specifically for the search action. For example, you can
use the Add Filter advice type to constrain the scope of a search.

You can also use the Combine SCIM Search Authorizations advice type at this point. If you use this advice,
search results are authorized by using a special mode, described in Search response authorization on
page 217.

Search response authorization
After a search is performed, the resulting search response is authorized in one of three ways: default
authorization, optimized search response authorization, and no authorization.

Default authorization

The default authorization mode simplifies policy design but can generate a large number of policy requests.
For every System for Cross-domain Identity Management (SCIM) resource that the search returns, a policy
request is issued by using the retrieve action. If the policy result is deny, the SCIM resource is removed
from the search response. Otherwise, advices in the policy result are applied to the SCIM resource, which
gives advices a chance to alter the resource. Because the retrieve action is used, policies that are
already written for single-resource GET operations are reused and applied to the search response.

Optimized search response authorization

If the search request policy result includes the Combine SCIM Search Authorizations advice type, an
optimized authorization mode is used instead. This mode reduces the number of overall policy requests but
might require a careful policy design. Instead of generating a policy request for each SCIM resource that
the search returns, a single policy request is generated for the entire result set. To distinguish the policy
requests that this authorization mode generates, the action search-results is used.

Write policies that target these policy requests to accept an object that contains a Resources array with all
matching results. Advices that the policy result returns are applied iteratively to each member of the result
set. The input object that is provided to advices also contains a Resources array, but it contains only the
single result currently under consideration.

The following JSON provides an example input object.

{
 "Resources": [{

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 218

 "name": "Henry Flowers",
 "id": "40424a7d-901e-45ef-a95a-7dd31e4474b0",
 "meta": {
 "location": "https://example.com/scim/v2/Users/40424a7d-901e-45ef-
a95a-7dd31e4474b0",
 "resourceType": "Users"
 },
 "schemas": [
 "urn:pingidentity:schemas:store:2.0:UserStoreAdapter"
]
 }
]
}

The optimized search response authorization mode checks policies efficiently and is typically faster than
the default authorization mode. However, the optimized search response authorization mode might be less
memory-efficient because the entire result set, as returned by the datastore, is loaded into memory and
processed by the policy decision point (PDP).

No authorization

If you do not need policy processing for the search results on a SCIM Resource Type, such as if policies
are only used for authorization before the search and not filtering the results, set that SCIM Resource
Type's disable-response-processing property to true. The search results will be returned as they
were received from the external server. This behavior can improve performance for requests that return
large numbers of search results. This property also affects other SCIM operations.

Using paged SCIM searches
When searching large data sets, the results can be numerous and produce errors about a request
matching too many results relative to the lookthrough limit. Paged searches avoid these errors and also
reduce memory utilization.

Before you begin

The paged SCIM searches feature is not available for entry-balanced data sets.

To use paged SCIM searches, your SCIM service's backend servers must be LDAP directory servers and
you must use the LDAP store adapter.

Complete the following one-time operations. For either command, you only need to run the command one
time per backend server. If you are not sure whether you have run the command, you can run it again
safely.

▪ Set the service account’s permissions by running the prepare-external-store command on the
PingDataGovernance server for each backend server.

i Note:

If you have run this command with PingDataGovernance 8.1.0.0 or earlier, run it again using the
command from a PingDataGovernance 8.2.0.0 or later release.

For example:

$ prepare-external-store --hostname server.example.com --port 1389 \
--bindDN "cn=Directory Manager" --bindPassword <password1> \
--governanceBindDN "cn=Governance User,cn=Root DNs,cn=config" \
--governanceBindPassword <password2> \
--userStoreBaseDN ou=people,dc=example,dc=com

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 219

▪ If your LDAP store adapter points to a PingDirectoryProxy server, run the following command on that
server.

$ dsconfig set-request-processor-prop \
--processor-name <proxying-request-processor> \
--set supported-control-oid:2.16.840.1.113730.3.4.9 \
--set supported-control-oid:1.2.840.113556.1.4.473

where <proxying-request-processor> is the request processor handling the entries targeted by
the search.

About this task

PingDataGovernance does SCIM searches using LDAP requests. After you complete the steps below,
PingDataGovernance creates LDAP requests that include request controls that ask the backend servers
to sort and page the search results before returning the results. These request controls are marked
noncritical, meaning that if the backend server cannot page the results, the backend server still returns the
results. In this case, PingDataGovernance handles the sorting and paging itself.

If your SCIM searches result in an error because the request matched too many results, as discussed in
Lookthrough limit on page 222, you can avoid the error by using paged searches.

Complete the following steps for each search.

Steps

1. Decide your SCIM search.

i Note: To get paged results, your search must include at least one of these parameters: startIndex,
count, or sortBy.

For example, your search might look like the following search.

https://<dg-hostname>:<dg-port>/scim/v2/Users/?filter=st eq
 "TX"&sortBy=sn&sortOrder=ascending

Here is the corresponding encoded version.

https://<dg-hostname>:<dg-port>/scim/v2/Users/?filter=st%20eq%20%22TX
%22&sortBy=sn&sortOrder=ascending

On your PingDataGovernance Server, collect some information to use later.

a. Given a SCIM resource type that you want to search for, find the primary LDAP store adapter that
the SCIM resource type uses by looking at its primary-store-adapter property.

b. Find the corresponding adapter by running the following command.

$ dsconfig list-store-adapters

c. Find the structural-ldap-objectclass, include-base-dn, and include-filter values
for the adapter by running this command.

$ dsconfig get-store-adapter-prop --adapter-name <name-of-store-adapter> \
--property structural-ldap-objectclass \
--property include-base-dn \
--property include-filter

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 220

2. On each backend server, complete the following steps.

a. Create a Virtual List View (VLV) index for your search.

Each SCIM search that you want to produce paged results must have its own VLV index.

Create this index using dsconfig create-local-db-vlv-index with the following options.

Option Description

--index-name Names the index.

--backend-name Specifies the name of the local database backend in which to
place the index.

The default database backend for PingDirectory is userRoot.

--set base-dn Specifies the desired base dn. This value must match the
value of the include-base-dn property that you found in the
previous step.

--set scope Is always whole-subtree.

--set filter Specifies the filter.

Specify

"(objectclass=<name-of-store-adapter-
objectclass>)"

where <name-of-store-adapter-objectclass> is the
name of the objectclass used by the adapter, which you found
in the previous step.

If the primary LDAP store adapter has the include-
filter property set, also specify that property value in the
filter. For example, if the filter for the adapter objectclass
is (objectclass=inetorgperson) and the include-
filter value is (st=CA), specify the --set filter
argument as "(&(objectclass=inetorgperson)
(st=CA))".

Specify the LDAP attributes for all the components of your
SCIM search filter.

For example, if a mapping SCIM resource type maps the
LDAP attribute st to the SCIM attribute address.region
and the SCIM search filter requires that address.region
eq TX, then this filter must include (st = TX) instead of
(address.region = TX).

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 221

Option Description

--set sort-order Specifies whether to sort ascending (+) or descending (-) and
the LDAP attribute to sort by.

If the SCIM search does not specify the sortBy parameter,
specify the sort order as +entryUUID.

Recall the original, decoded SCIM search, shown here.

https://<dg-hostname>:<dg-port>/scim/v2/Users/?filter=st eq
 "TX"&sortBy=sn&sortOrder=ascending

For example, to create a VLV index for that search, run the following command.

$ dsconfig create-local-db-vlv-index --index-name sn \
--backend-name userRoot --set base-dn:ou=people,dc=example,dc=com \
--set scope:whole-subtree \
--set filter:"(&(objectclass=inetorgperson)(st=TX))" --set sort-order:
+sn

b. Stop the server. Rebuild the index. Start the server. Run the rebuild-index command specifying
the baseDN and the name of the index.

$ rebuild-index --baseDN <baseDN-value> --index <name-of-index>

For example, run these commands.

$ stop-server
$ rebuild-index --baseDN dc=example,dc=com --index vlv.sn
$ start-server

3. Run your SCIM search filter.

i Note:

The search can include only the filter you specified with --set filter in the earlier step without the
"(objectclass=<name-of-store-adapter-objectclass>)" portion.

In addition to the Virtual List View request control, PingDataGovernance adds a Server Side request
control to the LDAP request. These request controls require certain parameters be set. To satisfy this
requirement, PingDataGovernance uses the following parameters. If the client does not provide values
for one of the parameters, the search uses the corresponding default value shown in the following table.

Parameter Default

startIndex 1

count The value of the lookthrough-limit property of the SCIM resource
type being searched. That default is 500.

sortBy entryUUID

With this default, the results appear unsorted.

sortOrder ascending

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 222

Lookthrough limit
Because a policy evaluates every System for Cross-domain Identity Management (SCIM) resource in a
search result, some searches might exhaust server resources. To avoid this scenario, cap the total number
of resources that a search matches.

The configuration for each SCIM resource type contains a lookthrough-limit property that defines this
limit, with a default value of 500. If a search request exceeds the lookthrough limit, the client receives a
400 response with an error message that resembles the following example.

{
 "detail": "The search request matched too many results",
 "schemas": [
 "urn:ietf:params:scim:api:messages:2.0:Error"
],
 "scimType": "tooMany",
 "status": "400"
}

To avoid this error, you have these options:

▪ The client must refine its search filter to return fewer matches.
▪ Configure paged searches as explained in Using paged SCIM searches on page 218.

Disabling the SCIM REST API
Disable the System for Cross-domain Identity Management (SCIM) REST API.

About this task

If you have no need to expose data through the SCIM REST API, disable it by removing the SCIM2 HTTP
servlet extension from the HTTPS connection handler, or from any other HTTP connection handler, and
restart the handler.

Steps

▪ Use the following command to remove the extension from the HTTP connection handler and restart it.

dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --remove http-servlet-extension:SCIM2 \
 --set enabled:false
dsconfig set-connection-handler-prop \
 --handler-name "HTTPS Connection Handler" \
 --set enabled:true

i Note:

When the SCIM REST API is disabled, access token validators still use PingDataGovernance Server's
SCIM system to look up token owners.

About the SCIM user store
This topic focuses on the relationship between the PingDataGovernance Server SCIM subsystem and its
backend data stores, particularly LDAP directory servers.

For general information about SCIM configuration, see SCIM configuration basics on page 208.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 223

The PingDataGovernance Server SCIM 2.0 REST API and SCIM token resource lookup methods rely
on external data stores, collectively called a user store, to locate user records. Typically, a user store is
composed of a set of PingDirectory Servers, optionally fronted by a set of PingDirectoryProxy Servers. The
SCIM subsystem manages communication with the user store through a store adapter, which translates
SCIM requests into requests native to the data stores. The following diagram shows an example setup.

PingDataGovernance Server includes a store adapter type for use with LDAP data stores, the LDAP store
adapter. The LDAP store adapter manages communications to a pool of LDAP servers using a load-
balancing algorithm. PingDataGovernance Server supports two types of load-balancing algorithms.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 224

Load-balancing algorithm type Description

Failover load-balancing algorithm Attempts to always send requests to the same backend LDAP
server. If the preferred server is not available, then it fails over to
alternate servers.

Fewest operations load-balancing
algorithm

Forwards requests to the backend LDAP server with the fewest
operations currently in progress.

You should only use this load-balancing algorithm when all backend
servers are Directory Proxy Servers.

Typically, you connect a load-balancing algorithm to its backend LDAP servers by defining LDAP external
servers in the configuration and attaching them to the load-balancing algorithm configuration. An LDAP
external server configuration manages the actual LDAP connections to a backend LDAP server, such as
PingDirectory Server.

i Note:

Alternatively, if all backend LDAP servers are PingDirectory Servers (version 8.0.0.0 and later), you
can configure a load-balancing algorithm to automatically discover the backend servers. See Automatic
backend discovery on page 228.

LDAP external servers monitor and report the availability of backend LDAP servers using LDAP health
checks. See LDAP health checks on page 232.

Defining the LDAP user store
You can define your user store with the external data servers using create-initial-config. If you
need more flexibility though, you can define the LDAP store manually.

For information about these options, see:

▪ Defining the LDAP user store with create-initial-config on page 224
▪ Defining the LDAP user store manually on page 225

Defining the LDAP user store with create-initial-config
The create-initial-config tool provides limited support for configuring SCIM and the user store
configuration needed to connect the SCIM subsystem to a set of LDAP directory servers.

This tool creates the following configuration:

▪ An LDAP store adapter named UserStoreAdapter
▪ A load-balancing algorithm named User Store LBA
▪ One or more LDAP external servers
▪ (Optional) A SCIM resource type named Users
▪ (Optional) SCIM schema, attributes, and attribute mappings for the Users resource type

If run interactively, create-initial-config walks you through the configuration process. You should
be prepared to provide connection information for your directory servers.

You can also run create-initial-config noninteractively, which is useful when performing a scripted
deployment. For an example, see Configuring the PingDataGovernance user store on page 309.

The following table describes a key subset of the tool's command-line options.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 225

Option Description

--governanceBindDN The bind DN for a user account that PingDataGovernance Server
will use to access backend LDAP servers. Create this account
using the prepare-external-store tool.

--governanceBindPassword The password for the above account.

--userStore The host, LDAP / LDAPS port, and optional location of a backend
LDAP server. You can specify this option once per each backend
server.

--userStoreBaseDN The base DN under which entries are stored.

--userObjectClass The structural LDAP object class of entries for the SCIM
subsystem to handle if --initialSchema has the none or
pass-through value.

--initialSchema The SCIM schema and resource type configuration to use.
Supports the following values:

▪ pass-through

Creates a pass-through SCIM resource type called Users for
the LDAP object class specified by the --userObjectClass
option.

▪ user

Creates a mapping SCIM resource type called Users with an
example schema. For more information about this schema,
see <server-root>/resource/starter-schemas/
README.txt.

▪ none

Does not create a SCIM resource type.

For more information about running create-initial-config, see its help by running the following
command.

create-initial-config --help

When using create-initial-config noninteractively, you should also run prepare-external-
store for each backend LDAP server. This tool creates a privileged user account on the LDAP server
for use by PingDataGovernance Server and configures a set of global access control instructions (ACIs)
needed by this account.

Defining the LDAP user store manually
If you require more flexibility than create-initial-config provides, you can manually configure the
SCIM subsystem and its connectivity to the LDAP user store. However, if you have not done this before,
first use create-initial-config to generate an example configuration and then customize that
configuration.

About this task

This task shows how to define two backend LDAP servers and a failover load-balancing algorithm.
Also, it shows how to connect the load-balancing algorithm to an existing LDAP store adapter named
UserStoreAdapter.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 226

i Note: The example is simplified and does not discuss SSL connection management. When using SSL
to connect to an LDAP external server, you must configure PingDataGovernance Server to trust the server
certificate presented by the LDAP external server using a trust manager provider.

Steps

1. Run prepare-external-store for each backend LDAP server. This tool creates a service account
with the access rights needed by PingDataGovernance Server.
For example:

prepare-external-store \
 --hostname ds1.example.com \
 --port 636 \
 --useSSL \
 --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword password \
 --governanceBindDN 'cn=Governance User,cn=Root DNs,cn=config' \
 --governanceBindPassword password \
 --userStoreBaseDN 'ou=People,dc=example,dc=com'

2. Create an LDAP external server entry for each backend LDAP server. This configures how
PingDataGovernance Server connects to each LDAP server.
For example:

dsconfig create-external-server \
 --server-name DS1 \
 --type ping-identity-ds \
 --set server-host-name:ds1.example.com \
 --set server-port:636 \
 --set location:Minneapolis \
 --set 'bind-dn:cn=Governance User, cn=Root DNs,cn=config' \
 --set password:password \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

dsconfig create-external-server \
 --server-name DS2 \
 --type ping-identity-ds \
 --set server-host-name:ds2.example.com \
 --set server-port:636 \
 --set location:Minneapolis \
 --set 'bind-dn:cn=Governance User, cn=Root DNs,cn=config' \
 --set password:password \
 --set connection-security:ssl \
 --set key-manager-provider:Null \
 --set trust-manager-provider:JKS

3. Create a failover load-balancing algorithm that uses the two LDAP external servers.
For example:

dsconfig create-load-balancing-algorithm \
 --algorithm-name 'User Store LBA' \
 --type failover \
 --set enabled:true \
 --set backend-server:DS1 \
 --set backend-server:DS2

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 227

4. Assign the load-balancing algorithm to an LDAP store adapter. This example assumes that the store
adapter UserStoreAdapter already exists.
For example:

dsconfig set-store-adapter-prop \
 --adapter-name UserStoreAdapter \
 --set 'load-balancing-algorithm:User Store LBA'

Location management for load balancing
All PingDirectory and PingDataGovernance servers have a location, which is a label that defines a group of
servers with similar response time characteristics. Each location consists of a name and an optional list of
preferred failover locations.

The failover and fewest operations load-balancing algorithms, discussed in About the SCIM user store on
page 222, take server location into account when routing requests. By default, they always prefer LDAP
backend servers in the same location as the PingDataGovernance Server. If no servers are available in the
same location, they will fall back to any defined failover locations.

You assign a server a location using the --location option when you run setup.

You can manage configuration-level and server-level location settings after setup as explained in the
following table.

Task Corresponding command example

Define a new location.
dsconfig create-location \
 --location-name Minneapolis

Define a new location with a
failover location. The failover
location must already exist.

dsconfig create-location \
 --location-name Louisville \
 --set preferred-failover-location:Minneapolis

Add a failover location to an
existing location. The failover
location must already exist.

dsconfig set-location-prop \
 --location-name Minneapolis \
 --set preferred-failover-location:Louisville

Change PingDataGovernance
Server's existing location by
modifying the global configuration.

dsconfig set-global-configuration-prop \
 --set location:Minneapolis

Change a backend LDAP server's
location by modifying its LDAP
external server entry.

dsconfig set-external-server-prop \
 --server-name DS1 \
 --set location:Minneapolis

Configure a load-balancing
algorithm to ignore backend LDAP
servers' locations when deciding
how to route requests.

dsconfig set-load-balancing-algorithm-prop \
 --algorithm-name "User Store LBA" \
 --set use-location:false

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 228

Automatic backend discovery
Instead of explicitly specifying all backend LDAP servers in the configuration as LDAP external servers,
you can configure PingDataGovernance Server to automatically discover its backend servers.

i Important: This feature requires that all backend LDAP servers be PingDirectory Servers running
version 8.0.0.0 or later. Automatic backend discovery is not supported for PingDirectoryProxy Server or
third-party LDAP servers.

To configure automatic backend discovery, you must complete these tasks:

▪ Join the PingDataGovernance Server to the same topology as the PingDirectory Servers.
▪ Configure the PingDataGovernance Server's load-balancing algorithm with an LDAP external server

template. This template provides the connection and health check settings that PingDataGovernance
Server uses for all PingDirectory Servers.

▪ Configure the topology registry entry for each PingDirectory Server to indicate the name of the
PingDataGovernance Server load-balancing algorithm.

Joining a PingDataGovernance Server to an existing PingDirectory Server topology
To use automatic backend discovery, the PingDataGovernance Server must be a member of the same
topology of each backend PingDirectory Server.

You can join a PingDataGovernance Server to a PingDirectory Server topology at the time that you set it
up or after setup using the manage-topology command.

For information about these options, see:

▪ Joining a topology at setup on page 228
▪ Joining a topology with manage-topology on page 229

Joining a topology at setup
To join a new PingDataGovernance Server to an existing PingDirectory Server topology during setup,
provide connection information for one of the PingDirectory Servers to the setup tool using its --
existingDSTopology* options. This PingDirectory Server must be running when you execute the
setup tool.

The following table lists some common setup options for joining a PingDirectory Server topology. For a
complete list of options, run setup --help.

Option Description

--existingDSTopologyHostName The address of a PingDirectory Server instance in the topology
to be joined.

--existingDSTopologyPort The LDAP / LDAPS port for communication with the
PingDirectory Server to retrieve information about the topology.

--existingDSTopologyUseSSL Indication that the communication with the PingDirectory Server
to retrieve information about the topology should be encrypted
with SSL.

--existingDSTopologyUseJavaTruststore The path to a JKS trust store that has the information needed
to trust the certificate presented by the PingDirectory Server
when using SSL or StartTLS.

--existingDSTopologyUsePkcs12Truststore The path to a PKCS #12 trust store that has the information
needed to trust the certificate presented by the PingDirectory
Server when using SSL or StartTLS.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 229

Option Description

--existingDSTopologyTrustStorePassword The password needed to access the contents of the JKS or
PKCS #12 trust store. A password is typically required when
using a PKCS #12 trust store but is optional when using a JKS
trust store.

--existingDSTopologyBindDN The DN of the account to use to authenticate to the
PingDirectory Server, such as cn=Directory Manager.
This account must have full read and write access to the
configuration and to manage the topology.

--existingDSTopologyBindPassword The password for the account to use to authenticate to the
PingDirectory Server.

Joining a topology with manage-topology
To join an existing PingDataGovernance Server to an existing PingDirectory Server topology, you can
use the manage-topology add-server command to provide connection information for one of the
PingDirectory Servers. This PingDirectory Server must be running when you execute the setup tool.

The following table lists the options that specify connection information for a PingDirectory Server. To see
this command's complete set of options, run manage-topology add-server --help.

Option Description

--remoteServerHostname The address of a PingDirectory Server in the
topology to be joined.

--remoteServerPort The LDAP / LDAPS port for communication
with the PingDirectory Server.

--remoteServerConnectionSecurity The type of security to use when
communicating with the remote server. This
value can be:

▪ useSSL

Indicates that the communication should be
encrypted with SSL

▪ useStartTLS

Indicates that the communication should
be encrypted with the StartTLS extended
operation

▪ noSecurity

Indicates that the communication should
not be encrypted

--remoteServerBindDN The DN of the account to use to authenticate
to the PingDirectory Server, such as
cn=Directory Manager. This account
must be able to modify the configuration of the
target server.

--remoteServerBindPassword The password for the account to use to
authenticate to the PingDirectory Server.

--remoteServerBindPasswordFile The path to a file containing the password
for the account to use to authenticate to the
PingDirectory Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 230

Option Description

--adminUID User ID of the topology-wide administrator.
This is typically the account used to enable
replication for the PingDirectory Servers.

--adminPassword The password of the topology-wide
administrator.

Configuring a load-balancing algorithm with an LDAP external template
When using automatic backend discovery, you configure a load-balancing algorithm with a single LDAP
external template instead of one or more LDAP external servers that refer to specific backend LDAP
servers.

An LDAP external server template provides a load-balancing algorithm with many of the settings that
it should use when communicating with a backend server that has been discovered from the topology
registry. An LDAP external server template configuration object has most of the same properties as an
LDAP external server configuration object but omits those related to information that it obtains from the
topology registry. The omitted properties include:

▪ server-host-name
▪ server-port
▪ location
▪ connection-security

In addition, the health-check-state property is also not available for LDAP external server templates
because it primarily applies to individual servers rather than all of the servers associated with a load-
balancing algorithm.

Because the only LDAP servers that can be in the topology registry are PingDirectory Servers, most
of the remaining properties in LDAP external server templates have the same default values as the
corresponding properties in the Ping Identity DS External Server type. However, there are some
exceptions, including the following:

▪ The authentication-method property has a default value of inter-server in LDAP external
server templates, while it has a default value of simple in Ping Identity DS external servers. The
inter-server authentication type indicates that the PingDataGovernance Server should authenticate
to the PingDirectory Server with a proprietary authentication method that uses inter-server certificates
stored in the topology registry.

▪ The key-manager-provider property has a default value of Null in LDAP external server
templates, while it has no default value in Ping Identity DS external servers. When using the inter-server
authentication type, the topology registry is used to obtain the inter-server certificates, so no additional
key manager provider is required.

▪ The trust-manager-provider property has a default value of JVM-Default in LDAP external
server templates, while it has no default value in Ping Identity DS external servers. When using the
inter-server authentication type, the topology registry is used to obtain information about the listener
certificates that the servers are expected to present.

i Note:

When using automatic backend discovery, it is not necessary to run prepare-external-store to
create a service account on each PingDirectory Server.

The following example shows how to create an LDAP external template and assign it to a new load-
balancing algorithm.

dsconfig create-ldap-external-server-template \
 --template-name 'User Store'

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 231

dsconfig create-load-balancing-algorithm \
 --algorithm-name 'User Store LBA' \
 --type failover \
 --set enabled:true \
 --set 'ldap-external-server-template:User Store'

Configuring automatic backend discovery
The following example shows how to configure a load-balancing algorithm to automatically discover
backend LDAP servers. Also, it shows how to connect the load-balancing algorithm to an existing LDAP
store adapter called UserStoreAdapter.

About this task

This example assumes that you have already created a topology of PingDirectory Servers and that the
servers are currently available.

Steps

1. Create an LDAP external server template. This template configures how PingDataGovernance Server
connects to each LDAP server that it discovers. Typically, the default settings are sufficient, so this
example only specifies the template name.
For example:

dsconfig create-ldap-external-server-template \
 --template-name 'User Store'

2. Create a failover load-balancing algorithm that uses the LDAP external server template.
For example:

dsconfig create-load-balancing-algorithm \
 --algorithm-name 'User Store LBA' \
 --type failover \
 --set enabled:true \
 --set 'ldap-external-server-template:User Store'

3. Assign the load-balancing algorithm to an LDAP store adapter. This example command assumes that
the store adapter UserStoreAdapter already exists.
For example:

dsconfig set-store-adapter-prop \
 --adapter-name UserStoreAdapter \
 --set 'load-balancing-algorithm:User Store LBA'

4. Run manage-topology add-server to connect the PingDataGovernance Server to a running
PingDirectory Server.
For example:

manage-topology add-server \
 --remoteServerHostname ds1.example.com \
 --remoteServerPort 636 \
 --remoteServerConnectionSecurity useSSL \
 --remoteServerBindDN "cn=Directory Manager" \
 --remoteServerBindPassword password \
 --adminUID admin \
 --adminPassword password

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 232

5. Configure each PingDirectory Server in the topology to use PingDataGovernance Server's load-
balancing algorithm. You should be able to run this command from any server in the topology. The
following commands configure two PingDirectory Servers with the instance names ds1 and ds2.
For example:

dsconfig set-server-instance-prop \
 --instance-name ds1 \
 --set 'load-balancing-algorithm-name:User Store LBA'

dsconfig set-server-instance-prop \
 --instance-name ds2 \
 --set 'load-balancing-algorithm-name:User Store LBA'

LDAP health checks
LDAP health checks provide information about the health and availability of the LDAP directory servers,
which has a direct effect on services, such as the PingDataGovernance Server System for Cross-domain
Identity Management (SCIM) 2 service and the SCIM Token Resource Lookup method.

Overview

The LDAP health check component provides information about the availability of LDAP external servers.
The health check result includes one of the following server states:

AVAILABLE

Completely accessible for use.

DEGRADED

The server is ready for use if necessary, but it has a condition that might make it less desirable than
other servers (for example, it is slow to respond or has fallen behind in replication).

UNAVAILABLE

Completely unsuitable for use (for example, the server is offline or is missing critical data)

Health check results also include a numeric score, which has a value between 1 and 10, that can
help rank servers with the same state. For example, if two servers are available, you can configure
PingDataGovernance Server to prefer the server with the higher score.

PingDataGovernance Server periodically invokes health checks to monitor each LDAP external server. It
might also initiate health checks in response to failed operations. It checks the health of the LDAP external
servers at intervals configured in the LDAP server’s health-check-frequency property.

The results of health checks performed by PingDataGovernance Server are made available to the load-
balancing algorithms to take into account when determining where to send requests. PingDataGovernance
Server attempts to use servers with a state of AVAILABLE before trying servers with a state of
DEGRADED. It never attempts to use servers with a state of UNAVAILABLE. Some load-balancing
algorithms might also take the health check score into account, such as the health-weighted load-balancing
algorithm, which prefers servers with higher scores over those with lower scores. You must configure the
algorithms that work best for your environment.

In some cases, an LDAP health check might define different sets of criteria for promoting and demoting
the state of a server. A DEGRADED server might need to meet more stringent requirements to meet the
criteria for AVAILABLE than it originally took to meet the criteria for DEGRADED. For example, if response
time is used to determine the health of a server, then PingDataGovernance Server might have a faster
response time threshold for transitioning a server from DEGRADED back to AVAILABLE than the threshold
used to consider it DEGRADED in the first place. This threshold difference can help avoid cases in which a
server repeatedly transitions between the two states because it is operating near the threshold.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 233

For information about how to configure health checks, see Configuring a health check using dsconfig on
page 234. To associate a health check with an LDAP external server and set the health check frequency,
you must configure the health-check and health-check-frequency properties of the LDAP external server.

i Note:

The default Consume Admin Alerts and Get Root DSE LDAP health checks apply to all LDAP external
servers, even if you did not explicitly configure and add them to an LDAP external server's health-check
property.

To disable this behavior, reset the use-for-all-servers property for each LDAP health check. For
example:

dsconfig set-ldap-health-check-prop \
 --check-name 'Consume Admin Alerts' \
 --reset use-for-all-servers

Available health checks

PingDataGovernance Server provides the following LDAP health checks.

Health check Description

Measure the response time for
searches and examine the entry
contents

The health check might retrieve a monitoring entry from a server
and base the health check result on whether the entry was
returned, how long it took to be returned, and whether the value
of the returned entry matches what was expected.

Monitor the replication backlog If a server falls too far behind in replication, then a
PingDataGovernance Server can stop sending requests to it.
A server is classified as DEGRADED or UNAVAILABLE if the
threshold is reached for the number of missing changes, the age
of the oldest missing change, or both.

Consume PingDataGovernance
Server administrative alerts

If a PingDirectory Server indicates there is a problem, it flags itself
as DEGRADED or UNAVAILABLE. When a PingDataGovernance
Server detects this, it stops sending requests to the server.

You can configure a PingDataGovernance Server to detect
administrative alerts as soon as they are issued by maintaining
an LDAP persistent search for changes within the cn=alerts
branch of a PingDirectory Server. When PingDataGovernance
Server is notified by the PingDirectory Server of a new alert,
it can immediately retrieve the base cn=monitor entry of the
PingDirectory Server.

When cn=monitor entry has
value for this attribute:

PingDataGovernance
Server should consider
PingDirectory Server to be:

unavailable-alert-type UNAVAILABLE

degraded-alert-type DEGRADED

Monitor the busyness of the server If a server becomes too busy, the health check might mark it
as DEGRADED or UNAVAILABLE so that less heavily loaded
servers are preferred.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 234

Configuring a health check using dsconfig
Create any health check according to the following instructions.

Steps

1. Use the dsconfig tool to configure the LDAP external server locations.

$ bin/dsconfig

2. Type the host name or IP address for your PingDataGovernance Server, or press Enter to accept the
default, localhost.

Data Governance Server host name or IP address [localhost]:

3. Type the number corresponding to how you want to connect to PingDataGovernance, or press Enter to
accept the default, LDAP.

How do you want to connect?
 1) LDAP
 2) LDAP with SSL
 3) LDAP with StartTLS

4. Type the port number for your PingDataGovernance Server, or press Enter to accept the default, 389.

Data Governance Server port number [389]:

5. Type the administrator's bind distinguished name (DN) or press Enter to accept the default
(cn=Directory Manager), and then type the password.

Administrator user bind DN [cn=Directory Manager]:
Password for user 'cn=Directory Manager':

6. Enter the number corresponding to LDAP health checks.

a. Enter the number to create a new LDAP health check, then press n to create a new health check
from scratch.

7. Select the type of health check you want to create.

This example demonstrates the creation of a new search LDAP health check.

>>> Select the type of LDAP Health Check that you want to create:

 1) Admin Alert LDAP Health Check
 2) Custom LDAP Health Check
 3) Groovy Scripted LDAP Health Check
 4) Replication Backlog LDAP Health Check
 5) Search LDAP Health Check
 6) Third Party LDAP Health Check
 7) Work Queue Busyness LDAP Health Check

 ?) help
 c) cancel
 q) quit

Enter choice [c]: 5

8. Specify a name for the new health check.

In this example, the health check is named Get example.com.

>>>> Enter a name for the search LDAP Health Check that you want to create:
 Get example.com

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 235

9. Enable the new health check.

>>>> Configuring the 'enabled' property

Indicates whether this LDAP health check is enabled for use in the
 server.

Select a value for the 'enabled' property:

 1) true
 2) false

 ?) help
 c) cancel
 q) quit

Enter choice [c]: 1

10.Configure the properties of the health check.

You might need to modify the base-dn property, as well as one or more response time thresholds for
non-local external servers, accommodating WAN latency.

The following example is a search LDAP health check for the single entry dc=example,dc=com, which
considers non-local responses of up to two seconds healthy.

>>>> Configure the properties of the Search LDAP Health Check

 Property Value(s)

 1) description -
 2) enabled true
 3) use-for-all-servers false
 4) base-dn "dc=example,dc=com"
 5) scope base-object
 6) filter (objectClass=*)
 7) maximum-local-available-response-time 1 s
 8) maximum-nonlocal-available-response-time 2 s
 9) minimum-local-degraded-response-time 500 ms
 10) minimum-nonlocal-degraded-response-time 1 s
 11) maximum-local-degraded-response-time 10 s
 12) maximum-nonlocal-degraded-response-time 10 s
 13) minimum-local-unavailable-response-time 5 s
 14) minimum-nonlocal-unavailable-response-time 5 s
 15) allow-no-entries-returned true
 16) allow-multiple-entries-returned true
 17) available-filter -
 18) degraded-filter -
 19) unavailable-filter -

 ?) help
 f) finish - create the new Search LDAP Health Check
 d) display the equivalent dsconfig arguments to create this object
 b) back
 q) quit

Connecting non-LDAP data stores
The PingDataGovernance Server SCIM subsystem supports non-LDAP data stores using custom store
adapter extensions. For more information, see the Server SDK.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 236

About the PDP API
The PingDataGovernance Server policy decision point (PDP) API provides an endpoint to support non-API
use cases.

i Important:

The PDP API feature requires PingDataGovernance Premier. For more information, contact your Ping
Identity account representative.

The PingDataGovernance Server's main functionality is to enforce fine-grained policies for data accessed
through APIs. However, organizations might need to use the core Policy Decision Service for non-API
use cases. For example, an application server might use it to request policy decisions when generating
dynamic web content. In this configuration, PingDataGovernance Server becomes the PDP, and the
application server becomes the policy enforcement point (PEP).

Enforcement points request policy decisions based on a subset of the XACML-JSON standard. For more
information, see XACML 3.0 JSON Profile 1.1.

i Note:

The PDP API can indicate when a request or response triggers advice, but the application server must
implement the advice.

To make the PDP API client available, you must:

▪ Configure the PingDataGovernance Server with a feature-enabled license during setup.
▪ Configure an Access Token Validator. For more information, see Access Token Validators.
▪ Configure the Policy Decision Point Service. For more information, see Use policies in a production

environment.

The PDP API supports the MultiRequests JSON object, which allows a client to make multiple decision
requests in a single HTTP request.

i Note:

Because this object also supports single decision requests, it is the only supported XACML-JSON request
format.

Request and response flow
The policy decision point (PDP) API provides an HTTP API for decisions determined based on the policies
configured within the PingDataGovernance Server Policy Decision Service.

The PDP API is implemented as a single endpoint, which consuming application servers can access using
POST requests to the /pdp path. The HTTP requests must include the appropriate Content-Type and
Accept headers, and request bodies must adhere to the XACML-JSON standard. For more information,
see Requests on page 237.

PDP API Endpoint path Action Content-Type/Accept Request data

/pdp POST application/xacml+json XACML-JSON

A successful PDP API request goes through the following two-phase flow:

Copyright ©2022

http://docs.oasis-open.org/xacml/xacml-json-http/v1.1/csprd01/xacml-json-http-v1.1-csprd01.html
http://docs.oasis-open.org/xacml/xacml-json-http/v1.1/csprd01/xacml-json-http-v1.1-csprd01.html#_Toc525043922

PingDataGovernance | PingDataGovernance Server Administration Guide | 237

1. First, the client makes the XACML-JSON request, which is received by the PDP API. The PDP API
converts the request to a PingDataGovernance Server batch decision request and attempts to authorize
the client.

2. On authorize success, the request is handed off to the Policy Decision Service to process decisions in
batch for the PDP API. The PDP API then converts the batch decision responses to a XACML-JSON
response and writes the response to the client.

The following sections describe these stages in more detail.

Requests
The PDP API first converts the XACML-JSON request to a batch decision request for the policy decision
point to be consumed by the Policy Decision Service. Policies can match a decision request by Service,
Domain, Action, or other attributes.

The following example XACML-JSON request body illustrates the conversion to a batch decision request.
For an example with more than one decision request, see Example on page 241.

{
 "Request": {
 "MultiRequests": {
 "RequestReference": [{
 "ReferenceId": [
 "dom",
 "act",
 "srv",
 "idp",
 "att"
]
 }]
 },
 "AccessSubject": [{
 "Id": "dom",
 "Attribute": [{
 "AttributeId": "domain",
 "Value": "Sales.Asia Pacific"
 }]
 }],
 "Action": [{
 "Id": "act",
 "Attribute": [{
 "AttributeId": "action",
 "Value": "Retrieve"
 }]
 }],
 "Resource": [{
 "Id": "srv",
 "Attribute": [{
 "AttributeId": "service",
 "Value": "Mobile.Landing page"
 }]
 }],
 "Environment": [{
 "Id": "idp",
 "Attribute": [{
 "AttributeId": "symphonic-idp",
 "Value": "Social networks.Spacebook"
 }]
 }],
 "Category": [{
 "Id": "att",
 "Attribute": [{
 "AttributeId": "attribute:Prospect name",

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 238

 "Value": "B. Vo"
 }]
 }]
 }
}

The previous example shows a single decision request with the following attributes:

▪ A domain of Sales.Asia Pacific
▪ An action of Retrieve
▪ A service of Mobile.Landing page
▪ An identity provider of Social networks.Spacebook
▪ A single attribute named Prospect name, with a value of B. Vo

The following table shows how these values map from the Trust Framework entities to the XACML-JSON
request.

Parent (JSON
Path)

Field (JSON Path) PingDataGovernance
Trust Framework
type

Example value

$.AccessSubject[*].Attribute[?
(@.AttributeId == "domain")].Value

Domain Sales.Asia
Pacific

$.Action[*].Attribute[?(@.AttributeId ==
"action")].Value

Action Retrieve

$.Resource[*].Attribute[?(@.AttributeId ==
"service")].Value

Service Mobile.
Landing page

$.Environment[*].Attribute[?(@.AttributeId
== "symphonic-idp")].Value

Identity Provider Social
Networks.
Spacebook

$.Request

$.Category[*].Attribute[?(@.AttributeId ==
"attribute:Prospect name")].Value

Other Attribute
(Prospect name in
this case)

B. Vo

To illustrate how you can match rules against the Prospect name Trust Framework attribute, the
following image shows how Prospect name is defined in the Policy Administration GUI. In this example,
the Prospect name attribute has a Request resolver and a Value Settings Type of String.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 239

i Note:

The Trust Framework attribute name must be a case-sensitive match with the decision request
AttributeId after the attribute: prefix is removed.

Authorization
Before calculating a decision, the PDP API attempts to authorize the client making the PDP API request by
invoking the Policy Decision Service.

A PDP authorization request can be targeted in policy as having service PDP with action authorize. The
default policies included with PingDataGovernance Server perform this authorization by only permitting
requests with active access tokens that contain the urn:pingdatagovernance:pdp scope. You can
see this policy in Global Decision Point# PDP API Endpoint Policies# Token Authorization.

i Note:

The parent of the Token Authorization policy, PDP API Endpoint Policies, constrains the Token
Authorization policy to apply to the PDP service only.

For example, under the default policies, the following request would result in an authorized client when the
PDP is configured with a mock access token validator.

curl --insecure -X POST \
 -H 'Authorization: Bearer {"active":true,"scope":"urn:pingdatagovernance:pdp", "sub":"<valid-subject>"}' \
 -H 'Content-Type: application/xacml+json' \
 -d '{"Request":{}}' "https://<your-dg-host>:<your-dg-port>/pdp"

The default policies are intended to provide a foundation. You can modify these policies if additional
authorization logic is required.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 240

Decision processing
On successful client authorization, the PDP API invokes the Policy Decision Service with the batch
decision requests converted from the XACML-JSON request.

When writing policy for the PDP API endpoint, you should note the mapping between the XACML-JSON
schema and the PingDataGovernance Server decision request. For more information, see Requests on
page 237. After the Policy Decision Service determines a decision response, it hands the response back
to the PDP API to provide to the client.

Responses
The PDP API converts batch decision responses to a XACML-JSON response.

XACML-JSON responses include decisions, such as Permit or Deny, and any obligations or advice that
matched during policy processing.

i Note:

The Policy Enforcement Point (PEP) must apply any obligations or advice.

The following table shows the mapping from a decision response to a XACML-JSON response.

Parent (JSON Path) Field (JSON Path) PingDataGovernance
Trust Framework type

$.Response[*] $.Decision Decision

Advice (obligatory)

$.Id Advice code$.Response[*].
Obligations[*]

$.AttributeAssigments[?(@.AttributeId ==
"payload")].Value

Advice payload

Advice (non-obligatory)

$.Id Advice code$.Response[*].
AssociatedAdvice[*]

$.AttributeAssigments[?(@.AttributeId ==
"payload")].Value

Advice payload

The following example is an appropriate response based on the request in Requests on page 237.

{
 "Response": [{
 "Decision": "Permit",
 "Obligations": [{
 "Id": "obligation-id",
 "AttributeAssignments": [{
 "AttributeId": "payload",
 "Value": "payload-value"
 }]
 }],
 "AssociatedAdvice": [{
 "Id": "advice-id",
 "AttributeAssignments": [{
 "AttributeId": "payload",
 "Value": "payload-value"
 }]
 }]
 }]
}

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 241

In this example, it is up to the application server to handle the obligations and advice in the response.

Example
This example shows how to use the PDP API in the context of a peer recognition program.

The example company, AnyCompany, has an internal peer recognition program. The peer recognition
program allows employees to recognize each other by awarding each other points. The points can be
spent in different categories. Each category requires a minimum number of points for the category to
become available. When an employee spends enough points in a category, a related product becomes
unlocked in an online catalog that the employee can purchase. AnyCompany has implemented a web
application where employees spend their points, view their available catalog, and purchase products.

In this example, the web application that implements the online catalog can make the following XACML-
JSON request when an employee spends their points. The request includes three decision requests.

{
 "Request":{
 "MultiRequests":{
 "RequestReference":[
 {
 "ReferenceId":[
 "domain-1",
 "action-1",
 "service-1",
 "idp-1",
 "attributes-1"
]
 },
 {
 "ReferenceId":[
 "domain-1",
 "action-2",
 "service-2",
 "idp-1",
 "attributes-2"
]
 },
 {
 "ReferenceId":[
 "domain-1",
 "action-1",
 "service-3",
 "idp-1",
 "attributes-1"
]
 }
]
 },
 "AccessSubject":[
 {
 "Id":"domain-1",
 "Attribute":[
 {
 "AttributeId":"domain",
 "Value":"AnyCompany.Management"
 }
]
 }
],
 "Action":[
 {
 "Id":"action-1",
 "Attribute":[

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 242

 {
 "AttributeId":"action",
 "Value":"Update"
 }
]
 },
 {
 "Id":"action-2",
 "Attribute":[
 {
 "AttributeId":"action",
 "Value":"Retrieve"
 }
]
 }
],
 "Resource":[
 {
 "Id":"service-1",
 "Attribute":[
 {
 "AttributeId":"service",
 "Value":"Peer Recognition.Point allocation"
 }
]
 },
 {
 "Id":"service-2",
 "Attribute":[
 {
 "AttributeId":"service",
 "Value":"Peer Recognition.Points unspent"
 }
]
 },
 {
 "Id":"service-3",
 "Attribute":[
 {
 "AttributeId":"service",
 "Value":"Peer Recognition.Products"
 }
]
 }
],
 "Category":[
 {
 "Id":"attributes-1",
 "Attribute":[
 {
 "AttributeId":"attribute:User input.User Id",
 "Value":"self"
 },
 {
 "AttributeId":"attribute:User input.Entertainment",
 "Value":8
 },
 {
 "AttributeId":"attribute:User input.Travel",
 "Value":5
 },
 {
 "AttributeId":"attribute:User input.Academics",
 "Value":6

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 243

 },
 {
 "AttributeId":"attribute:User input.Electronics",
 "Value":5
 },
 {
 "AttributeId":"attribute:User input.Sports",
 "Value":5
 },
 {
 "AttributeId":"attribute:User input.Food",
 "Value":7
 },
 {
 "AttributeId":"attribute:User input.Music",
 "Value":4
 }
]
 },
 {
 "Id":"attributes-2",
 "Attribute":[
 {
 "AttributeId":"attribute:User input.User Id",
 "Value":"self"
 }
]
 }
],
 "Environment":[
 {
 "Id":"idp-1",
 "Attribute":[
 {
 "AttributeId":"symphonic-idp",
 "Value":"AnyCompany SSO"
 }
]
 }
]
 }
}

The three decision requests are summarized in the RequestReference JSON array. Each JSON
object in the array contains a single field, ReferenceId. Each ReferenceId field contains an array of
Id references that represent the content of the decision request. The following tables highlight the key
components of each decision request.

i Note:

For brevity, only one Trust Framework attribute is listed in each decision request.

First decision request

Parent (JSON Path) Field (JSON Path) PingDataGovernance
Trust Framework
type

Example value

$.Request.
AccessSubject[*]

$.Attribute[?(@.AttributeId ==
"domain")].Value

Domain AnyCompany.
Management

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 244

Parent (JSON Path) Field (JSON Path) PingDataGovernance
Trust Framework
type

Example value

$.Request.
Action[*]

$.Attribute[?(@.AttributeId ==
"action")].Value

Action Update

$.Request.
Resource[*]

$.Attribute[?(@.AttributeId ==
"service")].Value

Service Peer
Recognition.Point
allocation

$.Request.
Environment[*]

$.Attribute[?(@.AttributeId ==
"symphonic-idp")].Value

Identity Provider AnyCompany SSO

$.Request.
Category[*]

$.Attribute[?(@.AttributeId
== "attribute:User
input.Entertainment")]

Attribute 8

Second decision request

Parent (JSON Path) Field (JSON Path) PingDataGovernance
Trust Framework
type

Example value

$.Request.
AccessSubject[*]

$.Attribute[?(@.AttributeId ==
"domain")].Value

Domain AnyCompany.
Management

$.Request.
Action[*]

$.Attribute[?(@.AttributeId ==
"action")].Value

Action Retrieve

$.Request.
Resource[*]

$.Attribute[?(@.AttributeId ==
"service")].Value

Service Peer
Recognition.Points
unspent

$.Request.
Environment[*]

$.Attribute[?(@.AttributeId ==
"symphonic-idp")].Value

Identity Provider AnyCompany SSO

$.Request.
Category[*]

$.Attribute[?(@.AttributeId ==
"attribute:User input.User Id")]

Attribute self

Third decision request

Parent (JSON Path) Field (JSON Path) PingDataGovernance
Trust Framework
type

Example value

$.Request.
AccessSubject[*]

$.Attribute[?(@.AttributeId ==
"domain")].Value

Domain AnyCompany.
Management

$.Request.
Action[*]

$.Attribute[?(@.AttributeId ==
"action")].Value

Action Retrieve

$.Request.
Resource[*]

$.Attribute[?(@.AttributeId ==
"service")].Value

Service Peer
Recognition.Products

$.Request.
Environment[*]

$.Attribute[?(@.AttributeId ==
"symphonic-idp")].Value

Identity Provider AnyCompany SSO

$.Request.
Category[*]

$.Attribute[?(@.AttributeId ==
"attribute:User input.Travel")]

Attribute 5

The following is an example response to the previous example request.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 245

The XACML-JSON response contains the decision responses for each of the three decision requests.
The order of the decision responses corresponds to the order of the decision requests. In the first decision
response, the system policy does not detect any problems and permits the employee to change her
point allocation. In the second decision response, the system policy allows the employee to view her own
unspent points and indicates that the value is now 0. In the third decision response, the system permits the
retrieval of the employee's own product catalog and indicates which of the products should be unlocked for
purchase.

Given the response, the web application can now render the content for the three decision requests. It
renders the 0 unspent points and all catalog products, with purchase buttons disabled where appropriate.

{
 "Response": [
 {
 "Decision": "Permit",
 "Obligations": [],
 "AssociatedAdvice": []
 }, {
 "Decision": "Permit",
 "Obligations": [],
 "AssociatedAdvice": [{
 "Id": "remaining-points",
 "AttributeAssignments": [{
 "AttributeId": "payload",
 "Value": "0"
 }]
 }]
 }, {
 "Decision": "Permit",
 "Obligations": [],
 "AssociatedAdvice": [{
 "Id": "catalog",
 "AttributeAssignments": [{
 "AttributeId": "attribute:Derived.Product availability.Trip to
 exotic country",
 "Value": "false"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Super Bowl
 tickets",
 "Value": "false"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Movie
 theater gift card",
 "Value": "true"
 }, {
 "AttributeId": "attribute:Derived.Product
 availability.Encyclopedia subscription",
 "Value": "false"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Dinner at
 5-star restaurant",
 "Value": "true"
 }, {
 "AttributeId": "attribute:Derived.Product availability.Expensive
 laptop",
 "Value": "false"
 }, {
 "AttributeId": "payload",
 "Value": "2020-03-17T16:21:20.175132-05:00"
 }]
 }]
 }]

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 246

}

Policy Administration GUI configuration
You can configure the PingDataGovernance Administration GUI in several ways.

With an options file, for example, you can define policy configuration keys, a key store, or a trust store.

Also, you can set:

▪ Database credentials at setup or later
▪ SpEL Java classes to use for value processing
▪ The number of requests that appear in the Decision Visualizer

Specifying custom configuration with an options file
You can configure the Policy Administration GUI by editing and implementing the options file.

About this task

You must run setup in non-interactive command-line mode instead of interactive mode if you need to do
any of the following:

▪ Configure the Policy Administration GUI with a policy configuration key. A policy configuration key is an
arbitrary key/value pair that can be referenced by name in the policy Trust Framework. This allows the
policy trust store to be defined without hard-coding environment-specific data such as host names and
credentials in the trust store.

▪ Configure a key store for a policy information provider. This defines a client certificate that the policy
engine can use for MTLS connections to a policy information provider.

▪ Configure a trust store for a policy information provider. This defines the set of certificates or root
certificates that the policy engine uses to determine whether it trusts the server certificate presented by
a policy information provider.

▪ Customize the Policy Administration GUI’s logging behavior.

Steps

1. Make a copy of the default options file provided at config/options.yml and then customize the
copy to suit your needs.

The setup tool supports configuring these options through the use of a YAML options file

i Note:

When you customize your options file, do not remove or alter the logging section. For guidance about
customizing logging behavior, contact Ping support.

2. Configure the Policy Administration GUI with an options file.

a. Stop the Policy Administration GUI.

$ bin/stop-server

b. Run setup normally.
c. Provide the options file using the --optionsFile argument.

For example, the following setup command configures a Policy Administration GUI in demo mode
using an options file named my-options.yml.

$ bin/setup demo \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 247

 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

a. Start the Policy Administration GUI.

$ bin/start-server

Example: Configure policy configuration keys
You can define one or more policy configuration keys under the options file’s core section.

These are arbitrary key/value pairs that are typically used to define environment-specific details such as
host names and credentials. After you define a policy configuration key, you can reference it by name in
the PingDataGovernance Policy Administration GUI Trust Framework. By using a reference, you do not
need to hard-code the values in the Trust Framework.

Example

Consider an organization that has two development environments, US-East and US-West. The
organization’s policies call out to a PingDirectory Consent API policy information provider (PIP), and
the Consent API’s host name differs depending on the development environment being used. If the
Consent API host name was hard-coded in the Trust Framework, then a different Trust Framework would
need to be used for each development environment. Instead, you can declare the host name as a policy
configuration key in the Policy Administration GUI’s configuration.

To set up this policy configuration key, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file to define a policy configuration key in the core section called
ConsentHostname.

core:
 ConsentHostname: consent-us-east.example.com
Other options omitted for brevity...

3. Stop the Policy Administration GUI.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 248

5. Start the Policy Administration GUI.

$ bin/start-server

After you define the Consent API service in the Trust Framework, you can refer to the policy configuration
key that you defined in the Policy Administration GUI configuration. To do this, you must first create an
attribute in the Trust Framework to hold the policy configuration key value. Add an attribute with the
following settings.

Property Value

Name ConsentHostname

Resolver Type Configuration Key

Resolver Value ConsentHostname

Now when you create a service in the Trust Framework, you can refer to this attribute using the
{{AttributeName}} notation. For example, where the URL https://consent-us-east.example.com/
consent/v1/consents is otherwise used, you would use the URL https://{{ConsentHostname}}/consent/v1/
consents, as shown in the following image.

Example: Configure a key store for a policy information provider
The policy engine supports the use of policy information providers (PIPs) to dynamically retrieve data from
external services at runtime. You can configure a key store for a PIP in PingDataGovernance.

Some policy information providers might use MTLS, in which a client presents a client certificate to
establish TLS communications with a server. In such cases, the policy engine can use a client certificate
contained in a Java KeyStore (JKS) or PKCS12 key store. The key store details are then configured in
an options file in the keystores section. A JKS key store file should use the extension .jks, while a
PKCS12 key store file should use the extension .p12.

Example

Given a JKS key store named my-client-cert-keystore.jks with the password password123 and
a client certificate with the alias my-cert, create an options file with details about the key store.

To set up this key store, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 249

2. Edit the new options file and define the key store details by adding an item under the keystores
section.

keystores:
 - name: MyClientCertKeystore
 resource: /path/to/my-client-cert-keystore.jks
 password: password123
Other options omitted for brevity...

3. Stop the Policy Administration GUI.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Administration GUI.

$ bin/start-server

After you define the policy information provider in the Trust Framework, you can refer to the key store that
you configured using the name MyClientCertKeystore.

Example: Configure a trust store for a policy information provider
The policy engine supports the use of policy information providers (PIPs) to dynamically retrieve data from
external services at runtime. You can configure a trust store for a PIP in PingDataGovernance.

By default, the policy engine determines whether it should accept a PIP's server certificate using the Java
Runtime Environment's (JRE's) default trust store, which contains public root certificates for common
certificate authorities. If your PIP uses a server certificate issued by some other certificate authority,
such as a private certificate authority operated by your organization, then you can provide a custom Java
KeyStore (JKS) or PKCS12 trust store. Configure details about the trust store in an options file in the
truststores section. A JKS trust store file should use the extension .jks, while a PKCS12 trust store
file should use the extension .p12.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 250

Example

Given a JKS trust store named my-ca-truststore.jks with the password password123 and a trusted
root certificate with the alias my-ca, create an options file with details about the trust store.

To set up this trust store, complete the following steps.

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file to define the key store details by adding an item under the truststores
section.

truststores:
 - name: MyCATruststore
 resource: /path/to/my-ca-truststore.jks
 password: password123
Other options omitted for brevity...

3. Run setup using the --optionsFile argument. Customize all other options as needed.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

After you define the policy information provider in the Trust Framework, you can see the trust store that you
configured using the name MyCATruststore.

Example: Use environment variables
You do not have to hard-code values for policy configuration keys in an options file in the Policy
Administration GUI configuration. You can specify values for policy configuration keys at runtime using
environment variables.

To use environment variables, specify a policy configuration key value in the options file using the
${variableName} notation, and then define the environment variable before starting the Policy
Administration GUI.

Example: Set policy information provider host name using an environment variable

This example takes the scenario in Example: Configure policy configuration keys on page 247 and
modifies it to specify the Consent API host name at runtime using an environment variable.

To specify the host name using an environment variable:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 251

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define a policy configuration key in the core section called
ConsentHostname. Instead of hard-coding its value, specify a variable called CONSENT_HOSTNAME.

core:
 ConsentHostname: ${CONSENT_HOSTNAME}
Other options omitted for brevity...

3. Stop the GUI server.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Set the value of the CONSENT_HOSTNAME environment variable and then start the server.

$ export CONSENT_HOSTNAME=consent-us-east.example.com; bin/start-server

After you define the Consent API service in the Trust Framework, you can refer to the policy configuration
key that you defined in the Policy Administration GUI configuration (ConsentHostName), which will use the
environment variable that you also defined. You must first create an attribute in the Trust Framework to
hold the policy configuration key value. To do so, add an attribute with the following settings.

Property Value

Name ConsentHostname

Resolver Type Configuration Key

Resolver Value ConsentHostname

The following image shows the attribute in the Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 252

When you create a service in the Trust Framework, you can refer to this attribute using the
{{AttributeName}} notation. For example, where the URL https://consent-us-east.example.com/
consent/v1/consents would otherwise be used, use the URL https://{{ConsentHostname}}/consent/v1/
consents. The following image shows service settings using the {{AttributeName}} notation.

To set a different host name, redefine the CONSENT_HOSTNAME environment variable and restart the
server.

$ bin/stop-server
$ export CONSENT_HOSTNAME=consent-us-west.example.com; bin/start-server

Example: Set trust store details using an environment variable

This example takes the scenario in Example: Configure a trust store for a policy information provider on
page 249 and modifies it to specify the trust store password at runtime using an environment variable.

Given a Java KeyStore (JKS) trust store named my-ca-truststore.jks with the password
password123 and a trusted root certificate with the alias my-ca, create an options file with details about
the trust store. Instead of hard-coding the trust store password, specify it as an environment variable.

To specify the password as an environment variable:

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 253

2. To edit the new options file and define the key store details, add an item in the truststores section.
Specify the password value using the ${ENVIRONMENT_VARIABLE} notation. Also, assign the
password to a policy configuration key so it can be used in the Trust Framework.

core:
 TrustStorePassword: ${TRUST_STORE_PASSWORD}
truststores:
 - name: MyCATrustStore
 resource: /path/to/my-ca-truststore.jks
 # TRUST_STORE_PASSWORD is an environment variable
 password: ${TRUST_STORE_PASSWORD}
Other options omitted for brevity...

3. Stop the Policy Administration GUI.

$ bin/stop-server

4. Run setup using the --optionsFile argument. Customize all other options as appropriate for your
needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Set the value of the TRUST_STORE_PASSWORD environment variable and start the server.

$ export TRUST_STORE_PASSWORD=password123; bin/start-server

The policy configuration key that you defined can be used in the Trust Framework. You must first create an
attribute to hold the policy configuration key value. Add an attribute with the following settings.

Property Value

Name TrustStorePassword

Resolver Type Configuration Key

Resolver Value TrustStorePassword

The following image shows the attribute in the Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 254

After you define the policy information provider in the Trust Framework, you can refer to the trust store
password using the TrustStorePassword attribute.

If you later use a trust store with a different password, you can redefine the TRUST_STORE_PASSWORD
environment variable and restart the server.

$ bin/stop-server
$ export TRUST_STORE_PASSWORD=new-password; bin/start-server

Manage policy database credentials
The PingDataGovernance Policy Administration GUI stores policies within an H2 database file on the
server. You can set the initial credentials and change them later.

This embedded H2 file, stored in the server root by default, contains two user accounts:

▪ An admin user

Setup uses the admin user to perform database upgrades.
▪ An application user

The server uses the application user to access the database at runtime.

Each user has its own credentials.

i Warning:

If you change either of the default policy database credentials, you must pass the new credentials to
setup when upgrading the server. Otherwise, the setup tool either cannot upgrade the policy database
and fails (if neither default credentials work) or resets the changed credentials back to their defaults (if one

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 255

of the credential pairs works). For more information about upgrades, see Upgrading PingDataGovernance
on page 164.

Setting database credentials at initial setup
The setup tool applies credentials to the policy database. Also, this tool generates the
configuration.yml file that configures the PingDataGovernance Policy Administration GUI.

About this task

Using setup or environment variables, you can set credentials for both the admin user and the application
user.

Because this setup is an initial setup, the Policy Admin GUI is not running.

Steps

▪ Set credentials for both the admin user and the application user.

▪ Setting credentials with the setup tool.

Include the following options and the credential values with setup:

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

For example, the following command sets the policy database admin credentials to adminuser /
Passw0rd and the policy database application credentials to appuser / S3cret.

bin/setup --dbAdminUsername adminuser \
 --dbAdminPassword Passw0rd \
 --dbAppUsername appuser \
 --dbAppPassword S3cret \
 --interactive

▪ Setting credentials with environment variables.

Using environment variables, you can avoid credentials showing up in process lists and command-
line history.

The following example sets the policy database admin credentials to adminuser / Passw0rd and
the application user credentials to app / S3cret.

env PING_DB_ADMIN_USERNAME=adminuser \
 PING_DB_ADMIN_PASSWORD=Passw0rd \
 PING_DB_APP_USERNAME=app \
 PING_DB_APP_PASSWORD=S3cret \
 bin/setup

Using environment variables at initial setup generates the configuration.yml file with the
adminuser / Passw0rd credentials and the app / S3cret credentials instead of the default
credentials.

For more information about these and other UNIX environment variables you can use to override
configuration settings, see Starting PingDataGovernance Policy Administration GUI on page 175.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 256

Changing database credentials
To change the policy database credentials after the initial setup, run the setup tool again.

About this task

i Note: Running the setup tool regenerates the configuration.yml file and regenerates any self-
signed certificate keystore.

Steps

1. Stop the Policy Administration GUI.

bin/stop-server

2. Run setup with the options desired from the following set and specify the new credentials. To change
from the default credentials, run setup one time. To change from nondefault credentials, run setup
combined by double ampersands (&&) with a second setup; in the first command, specify the current
credentials for the admin user and the new credentials for the application user, and then in the second
command, specify the new credentials for the admin user and the now-current credentials for the
application user. See the examples.

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

The first example changes the credentials for the admin and application accounts from their defaults to
admin / Passw0rd and app / S3cret, respectively.

setup --dbAdminUsername admin \
 --dbAdminPassword Passw0rd \
 --dbAppUsername app \
 --dbAppPassword S3cret \
 --interactive

With the credentials no longer the defaults, to change the credentials, you need two setup commands.
The first command uses the current admin credentials (admin / Passw0rd) and sets new application
credentials (app and F0cu5). The second command then uses the newly set application credentials
(app and F0cu5) to set new admin credentials (admin and S3cure).

setup --dbAdminUsername admin \
 --dbAdminPassword Passw0rd \
 --dbAppUsername app \
 --dbAppPassword F0cu5 \
 --interactive \
 && setup --dbAdminUsername admin \
 --dbAdminPassword S3cure \
 --dbAppUsername app \
 --dbAppPassword F0cu5 \
 --interactive

3. Start the Policy Administration GUI.

bin/start-server

Specifying database credentials when you start the GUI
You can override database credentials for the admin account and application account in the
configuration.yml file when you start the GUI by using the UNIX environment variables

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 257

PING_DB_ADMIN_USER, PING_DB_ADMIN_PASSWORD, PING_DB_APP_USER, and
PING_DB_APP_PASSWORD.

About this task

For more information about these and other UNIX environment variables you can use to override
configuration settings, see Starting PingDataGovernance Policy Administration GUI on page 175.

Steps

1. Stop the Policy Administration GUI.

bin/stop-server

2. Set the environment variables and start the Policy Administration GUI.

Example

The following example starts the server with the overridden policy database admin credentials adminuser
/ Passw0rd and the overridden policy database application credentials app / S3cret. These environment
variables override any values in configuration.yml.

env PING_DB_ADMIN_USERNAME=adminuser \
 PING_DB_ADMIN_PASSWORD=Passw0rd \
 PING_DB_APP_USER=app \
 PING_DB_APP_PASSWORD=S3cret \
 bin/start-server

Docker: Setting the initial database credentials
When using a Docker image, set the database credentials using UNIX environment variables. Specify the
environment variables as command-line options in the docker run command.

Steps

▪ In the docker run command, specify the desired following environment variables using the --env
command-line option:

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

Example

This example initializes the policy database with the admin credentials admin / Passw0rd and the
application credentials app / S3cret. Also, it uses the Ping DevOps image.

i Note:

Specify a separate volume to store the policy database to perform future upgrades. See Docker and
PingDataGovernance Policy Administration GUI installation.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 258

i Note: For proper communication between containers, create a Docker network using a command
such as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

$ docker run --network=<network_name> \
 --env PING_DB_ADMIN_USERNAME=admin \
 --env PING_DB_ADMIN_PASSWORD=Passw0rd \
 --env PING_DB_APP_USERNAME=app \
 --env PING_DB_APP_PASSWORD=S3cret \
 pingidentity/pingdatagovernancepap

Docker: Changing database credentials
When your Docker container users /opt to store the policy database on a separate volume, you can
change the database credentials.

About this task
Given that you are changing the credentials, you already have a Docker container running with a mounted
volume.

Steps

1. Stop the Docker container.

2. Start the Docker container. In the docker run command, specify the desired following environment
variables using the --env command-line option:

▪ --dbAdminUsername
▪ --dbAdminPassword
▪ --dbAppUsername
▪ --dbAppPassword

Also specify -p, -d, --env-file, --volumes-from, and --env PING_H2_FILE.

Example

For example, if you have a container named pap81 with a mounted volume as shown in the example in
Docker and PingDataGovernance Policy Administration GUI installation, the following command changes
the credentials for the admin and application accounts from their default values to admin / Passw0rd and
app / S3cret, respectively.

i Note: For proper communication between containers, create a Docker network using a command
such as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

docker run --network=<network_name> -p 443:443 -d \
 --env-file ~/.pingidentity/devops \
 --volumes-from pap81 \
 --env PING_DB_ADMIN_USERNAME=admin \
 --env PING_DB_ADMIN_PASSWORD=Passw0rd \
 --env PING_DB_APP_USERNAME=app \
 --env PING_DB_APP_PASSWORD=S3cret \
 --env PING_H2_FILE=/opt/shared/Symphonic \
 pingidentity/pingdatagovernancepap

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 259

Configuring SpEL Java classes for value processing
When you develop policies, you can use value processing to manipulate data that comes from attributes
and services. One value processing option is to use the Spring Expression Language (SpEL). Because
SpEL is so powerful, you might want to configure the Java classes available through SpEL to limit what
users can do with it.

About this task

Use the optional AttributeProcessing.SpEL.AllowedClasses parameter in the core section of
the options file to limit the Java classes available through SpEL.

Steps

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define AttributeProcessing.SpEL.AllowedClasses in the core
section.

By default, the AttributeProcessing.SpEL.AllowedClasses parameter is not in the options file.

If AttributeProcessing.SpEL.AllowedClasses is not in the options file, all classes except those
in the fixed deny-list are available. The deny-list consists of these classes:

"java.lang.*"
"org.springframework.expression.spel.*"

i Note: The java.lang.* classes in deny-list exclude those in the allow-list defined next.

If AttributeProcessing.SpEL.AllowedClasses is in the options file without a value, only
classes in the fixed allow-list are available. The allow-list consists of these classes:

java.lang.String,
java.util.Date,
java.util.UUID,
java.lang.Integer,
java.lang.Long,
java.lang.Double,
java.lang.Byte,
java.lang.Math,
java.lang.Boolean,
java.time.LocalDate,
java.time.LocalTime,
java.time.LocalDateTime,
java.time.ZonedDateTime,
java.time.DayOfWeek,
java.time.Instant,
java.time.temporal.ChronoUnit,
java.text.SimpleDateFormat,
java.util.Collections,
com.symphonicsoft.spelfunctions.RequestUtilsKt

If AttributeProcessing.SpEL.AllowedClasses is in the options file with a value, all classes in
allow-list and in the value are available. Consider the following example.

...
core:
 AttributeProcessing.SpEL.AllowedClasses:
 "java.time.format.DateTimeFormatter,java.net.URLEncoder"

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 260

...

That setting makes the classes in allow-list available in addition to making the
DataTimeFormatter and URLEncoder classes available.

3. Stop the Policy Administration GUI.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret <shared-secret> \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Administration GUI.

$ bin/start-server

Setting the request list length for Decision Visualizer
In the PingDataGovernance Policy Administration GUI, you can select Policies, Decision Visualizer, and
then Recent Decisions to view graphs of recent decisions, the times the requests were made, and the
decision outcomes. The requests do not include test requests.

About this task

The RecentRequest.buffer.size parameter in the configuration file determines the number of recent
decisions to choose from. To configure the Policy Administration GUI to use a different value for this
parameter, re-run the setup tool using an options file to generate a new configuration, as shown in the
following steps.

Steps

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define RecentRequest.buffer.size in the core section.

By default, the number of recent decisions is 20.

i Warning: Setting a buffer size greater than 20 can cause serious performance degradation.

To disable the feature, set the value to 0.

core:
 RecentRequest.buffer.size: 10
Other options omitted for brevity...

3. Stop the Policy Administration GUI.

$ bin/stop-server

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 261

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret <shared-secret> \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Administration GUI.

$ bin/start-server

Policy administration
You define policies for access-control using the PingDataGovernance Policy Administration GUI, which is
powered by Symphonic®.

This section covers strategies for policy development and techniques to create environment-specific Trust
Framework attributes to use in your policies.

About the Trust Framework
The Trust Framework defines all the entities that your organization can use to build policies. These
entities include, for example, the HTTP request attributes that describe API requests protected by
PingDataGovernance Server and the services that identify the REST APIs themselves.

To understand how PingDataGovernance Server uses the Trust Framework, you must understand how
PingDataGovernance Server interacts with its policy engine, also called the policy decision point (PDP). In
general, the flow is:

1. PingDataGovernance Server receives a SCIM 2.0 or API request and translates it to a policy request.
2. PingDataGovernance Server submits the policy request to the PDP for evaluation.
3. The PDP applies any matching policies to the policy request and then issues a policy decision.
4. PingDataGovernance Server uses the policy decision to determine how to proceed with the request,

depending on the decision result (typically PERMIT or DENY) and any advices included with the
decision.

Consider these simple examples.

▪ A policy decision with a DENY result could cause PingDataGovernance Server to reject a request
because it originates from an untrusted IP address.

▪ A policy decision with the Exclude Attributes advice could cause PingDataGovernance Server to
remove specific attributes from an API response because the requesting user lacks a necessary
entitlement.

Each policy request that PingDataGovernance Server generates includes a specific set of attributes. These
attributes vary based on the service being used. For more information, see the following topics:

▪ API security gateway policy requests on page 182
▪ Sideband API policy requests on page 197
▪ SCIM policy requests on page 212

Policy request structure is tightly coupled to the Trust Framework. If the Trust Framework entity definitions
do not match the policy requests generated by PingDataGovernance Server, then PingDataGovernance
Server does not function as expected. For this reason, your Trust Framework should always be based

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 262

on the default policies included with the server installation package in the file resource/policies/
defaultPolicies.SNAPSHOT.

For information about working with the Trust Framework to customize your organization's policies, see
Trust Framework on page 351.

Trust Framework versions

The policy request structure used by PingDataGovernance Server is versioned so that it can evolve
across releases of the server. You configure the version in the Policy Decision Service using the trust-
framework-version property. PingDataGovernance Server always supports a minimum of two
Trust Framework versions, the current (and preferred) Trust Framework version and the previous Trust
Framework version.

When an instance of PingDataGovernance Server is first installed, the Trust Framework version is
undefined. The server raises an alarm to indicate this condition and to provide instructions about how to set
the preferred version.

You should explicitly set the version to the preferred version. For example, the following dsconfig
command configures the Policy Decision Service to form policy requests using Trust Framework version
v2.

dsconfig set-policy-decision-service-prop \
 --set trust-framework-version:v2

i Tip: When the Trust Framework version is set, add the configuration to the server profile that you use
to deploy new server instances.

New releases of PingDataGovernance Server might introduce changes to the way that the server
generates policy requests, potentially in ways that are not backward-compatible with the Trust Framework
and policies used in a previous release. In these cases, PingDataGovernance Server will prefer the new
Trust Framework version and raises an alarm with instructions to move to the new Trust Framework
version. Existing policies will continue to work with the older Trust Framework version. However, the
older Trust Framework version will be deprecated, so transitioning to the new Trust Framework version is
imperative.

For more information about upgrading the Trust Framework version, see Upgrading the Trust Framework
and policies on page 170.

Create policies in a development environment
During policy development, configure PingDataGovernance Server in external PDP mode where
PingDataGovernance Server forwards all policy requests to the Policy Administration GUI, which acts as
PingDataGovernance Server’s policy decision point, or PDP.

Any policy changes made while using external PDP mode immediately take effect, allowing for rapid
development and troubleshooting.

Develop policies in the PingDataGovernance Policy Administration GUI. To get started, see Getting started
with PingDataGovernance (tutorials) on page 68 or Loading a policy snapshot on page 265.

i Note:

When developing new policies, begin by importing the defaultPolicies.SNAPSHOT file bundled with
PingDataGovernance Server and using it as the basis for your own customizations. PingDataGovernance
Server does not function as expected without many of the Trust Framework entities defined by this
snapshot.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 263

Example: Configure external PDP mode
To configure PingDataGovernance Server to use external PDP mode, use dsconfig or the Administrative
Console to create a Policy External Server to represent the Policy Administration GUI, then assign the
Policy External Server to the Policy Decision Service and set the PDP mode.

dsconfig create-external-server \
 --server-name "Policy Administration GUI" \
 --type policy \
 --set "base-url:https://<pap-hostname>:<pap-port>" \
 --set "shared-secret:datagovernance" \
 --set "branch:Default Policies" \

dsconfig set-policy-decision-service-prop \
 --set pdp-mode:external \
 --set "policy-server:Policy Administration GUI"

In this example, the shared-secret value corresponds to the decision point shared secret value chosen or
generated while installing the Policy Administration GUI. The branch is the name of a policy branch in the
Policy Administration GUI, and the decision-node value is the ID of a node in the policy tree that will be
considered first during policy processing.

To find a decision node:

1. In the Policy Administration GUI, go to Policies.
2. Select the node that you want to use as the root node.

This is typically the top-level node of your policy tree.
3. Click the three-line icon and select Copy ID to clipboard.

Example: Change the active policy branch
The PingDataGovernance Policy Administration GUI can manage multiple sets of Trust Framework
attributes and policies by storing data sets in different branches.

In a development environment, you might need to quickly reconfigure PingDataGovernance Server
between policy branches.

To set up branch changes, you must first define a Policy External Server configuration for each branch.
Then, you change a branch by changing the Policy Decision Service’s policy-server property as
needed.

Example

Assume that you have two policy branches in the Policy Administration GUI: Stable Policies and
Experimental Policies. Each branch is represented in the PingDataGovernance Server configuration
as a Policy External Server. During testing, you can switch back and forth between branches by updating
the Policy Decision Service’s policy-server property.

To change to the Experimental Policies branch, run this command.

dsconfig set-policy-decision-service-prop \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 264

 --set "policy-server:Experimental Policies"

To change back to the Stable Policies branch, run this command.

dsconfig set-policy-decision-service-prop \
 --set "policy-server:Stable Policies"

Default and example policies
A policy snapshot is a file that contains a complete Trust Framework and policy set.

A policy snapshot is also the data import format for a PingDataGovernance Policy Administration GUI.
PingDataGovernance includes a number of default and example policy snapshot files, which are found in
the folder resource/policies. The following table describes the available snapshot files.

Snapshot filename Description

defaultPolicies.SNAPSHOT The default Trust Framework for PingDataGovernance Server
and a minimal set of policies.

Always use this snapshot as the starting point for policy
development.

gatewayPolicyExample.SNAPSHOT An example policy set that demonstrates how to apply policies
to an external REST API using PingDataGovernance Server as
an API security gateway.

Based on Getting started with PingDataGovernance (tutorials)
on page 68.

scimPolicyExample.SNAPSHOT An example policy set that demonstrates how to implement
access token-based access control using the SCIM 2 REST
API.

Based on Getting started with PingDataGovernance (tutorials)
on page 68.

Importing and exporting policies
PingDataGovernance supports two import and export file formats for Trust Framework and policy data.

The following table describes the snapshot and deployment package formats.

Format Description

snapshot Contains all Trust Framework and policy data for a policy branch in the Policy
Administration GUI.

A snapshot is used to load data into the Policy Administration GUI for
development when using external PDP mode.

deployment package An optimized data format that contains all policies under a specified root policy
node and all Trust Framework entities used by those policies.

A deployment package is used to load data into the PingDataGovernance
Server when using embedded PDP mode.

The following sections describe how to import and export these files from the Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 265

Loading a policy snapshot
To import a policy snapshot into the Policy Administration GUI for policy development, complete the
following steps.

About this task

These steps create a new policy branch with the Trust Framework and policies of the provided snapshot.

Steps

1. Go to the Branch Manager section.

2. Select the Version Control tab.

3. From the + menu, select Import Snapshot.

4. Select a snapshot file and provide a name for your policy branch.

5. Optionally, click Commit New Changes to commit the initial state of the policy branch.

Exporting a policy snapshot
You can export a policy snapshot from the Policy Administration GUI.

About this task

You can then import it into a different Policy Administration GUI or use it as the basis to create a
deployment package to be loaded in the PingDataGovernance Server.

Steps

1. Go to the Branch Manager section.

2. Select the Version Control tab.

3. Choose the commit message corresponding to the version of the branch that you want to export and
click the menu icon to the left of the commit message.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 266

4. Select Export Snapshot.

5. Provide a snapshot filename and click Export.

Results

The snapshot file is downloaded to your computer.

Exporting a deployment package
When you have completed development and testing of your policies, you can export your Trust Framework
and policies to a deployment package for use in embedded PDP mode.

Steps

1. Export a snapshot. See Exporting a policy snapshot on page 265.

2. Go to the Branch Manager section.

3. Select the Deployment Packages tab.

4. Click the + icon.

5. Replace Untitled with a name for your deployment package.

6. Select a policy branch.

7. Select a commit.

8. Select a policy node.

9. Click Create Package.

10.Click Export Package

Results

The deployment package is downloaded to your computer.

Use policies in a production environment
You can configure PingDataGovernance Server in embedded policy decision point (PDP) mode in
preproduction and production environments

When configured to use embedded PDP mode, a policy file, called a deployment package, is exported
from the Policy Administration GUI and loaded into PingDataGovernance Server’s internal policy engine,
which then handles all policy requests.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 267

Because embedded PDP mode does not require PingDataGovernance Server to call out to an external
server, it is considerably more performant than external PDP mode. However, any policy changes require
a new deployment package to be exported and loaded, so embedded PDP mode is generally unsuited for
rapid policy development.

Configure embedded PDP mode

To configure PingDataGovernance Server to use embedded PDP mode, assign a deployment package to
the Policy Decision Service and set the PDP mode.

dsconfig set-policy-decision-service-prop \
 --set pdp-mode:embedded \
 --set "deployment-package</path/to/my-deployment-package.SDP"

In this example, the deployment-package value is the full path to a deployment package file.

To create a deployment package, see Exporting a deployment package on page 266.

Example: Define policy configuration keys
A policy configuration key is an arbitrary key/value pair that you can reference by name in the policy Trust
Framework.

When using embedded PDP mode, policy configuration keys are stored in the PingDataGovernance
Server configuration, and the server provides the policy configuration key values to the policy engine at
runtime. This allows the Trust Framework to refer to data such as hostnames and credentials without
needing those values to be hard-coded in the Trust Framework.

i Note:

Policy configuration key values are stored in encrypted form in the PingDataGovernance Server
configuration, so they are suitable for storing sensitive values such as server credentials.

Use dsconfig or the Administrative Console to define policy configuration keys. If using the
Administrative Console, you can find policy configuration keys in the Policy Decision Service configuration.

The following example shows how to create a policy configuration key named ConsentServiceBaseUri
with the value https://example.com/consent/v1.

dsconfig create-policy-configuration-key \
 --key-name ConsentServiceBaseUri \
 --set policy-configuration-value:https://example.com/consent/v1

To learn how to use a policy configuration key in the Trust Framework, see Environment-specific Trust
Framework attributes on page 274.

Example: Define a policy information provider key store for MTLS
The policy engine supports the use of PIPs to dynamically retrieve data from external services at runtime.
In these cases, the policy engine can use a client certificate contained in a Java KeyStore (JKS) or
PKCS12 key store.

When using embedded PDP mode, the key store containing the client certificate is represented in the
PingDataGovernance Server configuration as a Key Manager Provider, which is then assigned to the
Policy Decision Service.

The following example creates a Key Manager Provider named MyClientCertKeystore and makes it
available to the policy engine.

dsconfig create-key-manager-provider \
 --provider-name MyClientCertKeystore \
 --type file-based \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 268

 --set enabled:true \
 --set key-store-file:<full path to a key store> \
 --set key-store-type:JKS \
 --set key-store-pin:<key store password>
dsconfig set-policy-decision-service-prop \
 --set service-key-store:MyClientCertKeystore

When you define the PIP in the Trust Framework, you can refer to the key store that you configured, using
the name MyClientCertKeystore.

Example: Define a policy information provider trust store
For a policy information provider (PIP), you can use the Java Runtime Environment (JRE)'s default trust
store or you can provide a custom Java KeyStore (JKS) or PKCS12 trust store.

The policy engine supports the use of PIPs to dynamically retrieve data from external services at runtime.
By default, the policy engine determines whether it should accept a PIP's server certificate using the
Java Runtime Environment (JRE)'s default trust store, which contains public root certificates for common
certificate authorities. However, if your PIP uses a server certificate issued by some other certificate
authority, for example, a private certificate authority operated by your organization, then you can provide a
custom Java KeyStore (JKS) or PKCS12 trust store.

When using embedded PDP mode, the trust store containing the client certificate is represented in the
PingDataGovernance Server configuration as a Trust Manager Provider, which is then assigned to the
Policy Decision Service.

The following example creates a Trust Manager Provider named MyCATruststore and makes it available
to the policy engine.

dsconfig create-trust-manager-provider \
 --provider-name MyCATruststore \
 --type file-based \
 --set enabled:true \
 --set trust-store-file:<full path to a trust store> \
 --set trust-store-type:JKS
dsconfig set-policy-decision-service-prop \
 --set service-trust-store:MyCATruststore

When you define the policy information provider in the Trust Framework, you can refer to the trust store
that you configured using the name MyCATruststore.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 269

Policy database backups
The PingDataGovernance Policy Administration GUI uses a policy database to store its Trust Framework,
policies, commit history, and other data needed for proper operation. By default, the Policy Administration
GUI backs up the policy database to a compressed file once a day by making an HTTP request to an
admin connector. You can configure the admin port, backup schedule, and output location.

Configure or disable backup

To change the backup configuration, you have these options:

▪ Set the relevant environment variables and restart the Policy Administration GUI.
▪ Run the Policy Administration GUI setup tool with the relevant command-line options.

The following table describes the relevant environment variables and command-line options.

For more information about using the environment variables, see Starting PingDataGovernance Policy
Administration GUI on page 175.

Environment variable Command-line option Description

PING_ADMIN_PORT --adminPort <port> Specifies the admin port, where
administrative task endpoints like
periodic policy database backups
are handled.

PING_BACKUP_SCHEDULE --backupSchedule <cron-
expression>

Specifies a cron expression
to indicate when to perform
backups.

The default is 0 0 0 * * ?,
which is midnight every day.

For more information, see Quartz
2.3.0 cron format.

i Note:

The PAP evaluates the
expression against the
system timezone. For the
PingDataGovernance Docker
images, the default timezone is
UTC.

Copyright ©2022

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html#format

PingDataGovernance | PingDataGovernance Server Administration Guide | 270

Environment variable Command-line option Description

PING_H2_BACKUP_DIR N / A Specifies the directory in which
to place the policy H2 database
backup files.

The default is SERVER_ROOT/
policy-backup.

i Note: If you are using a
Docker image, set this value to
a directory on a volume that you
mount when you start the Docker
container.

N / A --disablePeriodicBackups Turns off the periodic policy
database backups.

For information about how to use a backup, see Restore a policy database from a backup on page 270.

Restore a policy database from a backup
The policy database stores PingDataGovernance Policy Administration GUI items such as the Trust
Framework, policies, and commit history. If someone accidentally deletes or changes those items or the
database gets corrupted, restore the database from a backup.

For information about how to configure backups, see Policy database backups on page 269.

Restore a database when not using Docker

To restore a policy database when not in a Docker environment, the steps are as follows.

1. Ensure the Policy Administration GUI server is no longer running by either using bin/stop-server or
killing the process.

2. Locate the backup .zip file that you want to restore.

The default location is SERVER_ROOT/policy-backup. However, the location might have been
changed using the PING_H2_BACKUP_DIR environment variable.

3. Extract the .zip file to the configured database location overwriting the previous policy database file if
present.

By default, this location is the root of the Policy Administration GUI server installation directory. If not
there, check the location specified by the PING_H2_FILE environment variable.

4. Start the Policy Administration GUI server.

$ bin/start-server

Restore a database when using Docker

To restore a policy database in a Docker environment, the steps are as follows.

1. Locate the backup .zip file that you want to restore.

The location should be a directory specified using the PING_H2_BACKUP_DIR environment variable,
as mentioned in Policy database backups on page 269.

2. Extract the .zip file to the database location that you will specify using the PING_H2_FILE
environment variable when you start the Docker container.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 271

3. Start the Policy Administration GUI Docker container with a mounted volume that has the extracted
backup file and use PING_H2_FILE to specify that backup file in the container file system.

For example, the following command assumes the uncompressed database file is named
Symphonic.mv.db in the host file system. The PING_H2_FILE environment variable specifies the file
name without the .mv.db extension.

i Note: For proper communication between containers, create a Docker network using a command
such as docker network create --driver <network_type> <network_name>, and then
connect to that network with the --network=<network_name> option.

$ docker run --network=<network_name> --env-file ~/.pingidentity/devops \
 --env PING_H2_FILE=/opt/db/Symphonic \
 --volume <HOST_BACKUP_DIR>:/opt/db pingidentity/
pingdatagovernancepap:<TAG>

Use signed deployment packages
Signed deployment packages ensure a PingDataGovernance Server uses only deployment packages
from a certain PingDataGovernance Policy Administration GUI, allowing you to avoid the use of packages
intended for a different context or to use packages from only a designated source.

Use case: Distinct PingDataGovernance deployments

Consider an organization with two distinct PingDataGovernance deployments: healthcare and banking.
Each deployment has a unique set of policies. Using the healthcare policies for the banking deployment, or
vice versa, would make the deployment ineffective. Signed deployment packages avoid this issue. To set
up signed deployment packages for these two deployments, the steps are outlined next.

1. Set up the healthcare configuration.

a. Create a signing key pair with a private key and a public key for healthcare.
b. Set up a Policy Administration GUI to create all healthcare policies. Configure that GUI to sign its

deployment packages with the healthcare private key.
c. Configure the healthcare PingDataGovernance Server to use the healthcare public key to verify

deployment packages. Now the healthcare deployment only accepts healthcare policies and does
not accept banking policies.

2. Set up the banking configuration.

a. Create a signing key pair with a private key and a public key for banking.
b. Set up a Policy Administration GUI to create all banking policies. Configure that GUI to sign its

deployment packages with the banking private key.
c. Configure the banking PingDataGovernance Server to use the banking public key to verify

deployment packages. Now the banking deployment only accepts banking policies and does not
accept healthcare policies.

Use case: Designated source for deployment packages

An organization has several people who write policies. Each policy writer has their own Policy
Administration GUI to develop and test policies. However, to ensure the organization fully verifies each
deployment package before it goes into preproduction or production, only one Policy Administration GUI
can actually sign deployment packages with the key accepted by the PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 272

Example: Configure signed deployment packages for healthcare
In this example, you configure a PingDataGovernance Policy Administration GUI to sign its deployment
packages for a PingDataGovernance Server dedicated to healthcare policies.

i Note: This example uses the manage-certificates tool that comes with PingDataGovernance.
The tool provides many of the same features as the Java keytool utility but can be easier to use. If
you prefer to use keytool, use manage-certificates --display-keytool-command to show a
command you can use to obtain a similar result with keytool.

1. Generate a signing key pair for the Policy Administration GUI.

Create a key pair consisting of a private key and the corresponding public key. Put the key pair in a key
store so that the Policy Administration GUI can use it. The following command accomplishes both of
these goals by generating a key store with a self-signed certificate.

$ manage-certificates generate-self-signed-certificate \
 --keystore "healthcare-pap-signing.jks" \
 --keystore-type jks \
 --keystore-password "<keystore-password>" \
 --private-key-password "<private-key-password>" \
 --alias "healthcare-pap" \
 --subject-dn "cn=Healthcare PAP,dc=example,dc=com" \
 --days-valid 90

▪ This command creates a key store with the filename healthcare-pap-signing.jks. The Policy
Administration GUI uses this to sign deployment packages.

▪ The key store contains the Policy Administration GUI's private signing key and the corresponding
public key.

▪ The key store itself has the password <keystore-password>.
▪ The private key itself also has a password, <private-key-password>.
▪ The signing key pair has the nickname/alias healthcare-pap.
▪ The subject DN is arbitrary.
▪ The keys are valid for 90 days.
▪ This key store is a sensitive asset that you should carefully protect.

2. Export a public certificate from the Policy Administration GUI's key store.

$ manage-certificates export-certificate \
 --keystore "healthcare-pap-signing.jks" \
 --keystore-password "<keystore-password>" \
 --alias "healthcare-pap" \
 --export-certificate-chain \
 --output-format pem \
 --output-file "healthcare-pap.pem"

▪ This command creates a public certificate file with the filename healthcare-pap.pem.
▪ The public certificate file is an input during the next step. It is not used directly by either the Policy

Administration GUI or PingDataGovernance Server.
▪ This public certificate represents the public key created in the previous step. Note that the alias is

used to specify the key.
▪ This public certificate is not a sensitive asset.

3. Create a trust store for PingDataGovernance Server for the public certificate from the previous step.

$ manage-certificates import-certificate \
 --keystore "healthcare-pap-verification.jks" \
 --keystore-password "<keystore-password>" \
 --keystore-type jks \
 --alias "healthcare-pap" \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 273

 --certificate-file "healthcare-pap.pem" \
 --no-prompt

▪ This command creates a trust store with the filename healthcare-pap-verification.jks.
PingDataGovernance Server uses this to verify that deployment packages created by the Policy
Administration GUI were actually created by that GUI.

▪ The trust store contains the Policy Administration GUI's public certificate.
▪ The trust store itself has the password <truststore-password>.
▪ This trust store is not a sensitive asset.

4. Configure the Policy Administration GUI to use the key store to sign the deployment packages it
creates.

a. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

b. Edit the new options file to include a configuration block like the following one, substituting your
passwords and other values. Place this new block at the top level, parallel to the core block, either
before or after it.

deploymentPackageData:
 keystore:
 resource: /path/to/healthcare-pap-signing.jks
 password: keystore-password
 securityLevel: signed
 signingKey:
 alias: healthcare-pap
 password: private-key-password

c. Stop the Policy Administration GUI.

$ bin/stop-server

d. Run setup using the --optionsFile my-options.yml argument. Customize all other options
as appropriate for your needs.

e. Start the Policy Administration GUI.

$ bin/start-server

5. Configure the PingDataGovernance Server to use the trust store for verification so that it accepts only
deployment packages created by this Policy Administration GUI.

a. Create a trust manager provider, which is how the PingDataGovernance Server configuration refers
to a trust store file. Include the path to the trust store file and the trust store's password.

$ dsconfig create-trust-manager-provider \
 --provider-name "Healthcare PAP Verification Store" \
 --type file-based \
 --set enabled:true \
 --set "trust-store-file:/path/to/healthcare-pap-verification.jks" \
 --set trust-store-type:JKS \
 --set "trust-store-pin:<truststore-password>"

b. Configure the policy decision service.

$ dsconfig set-policy-decision-service-prop \
 --set pdp-mode:embedded \
 --set "deployment-package</path/to/deployment-package.SDP" \
 --set deployment-package-security-level:signed \
 --set "deployment-package-trust-store:Healthcare PAP Verification Store" \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 274

 --set "deployment-package-verification-key-nickname:healthcare-pap"

Deployment packages are only for the embedded PDP mode, so this command sets the pdp-mode
property accordingly. The other properties are described in the following table.

Property Description

deployment-
package-security-
level

Determines whether PingDataGovernance Server require a deployment
package to be signed.

Valid values are:

▪ unsigned (the default)

PingDataGovernance Server does not check a deployment package
for a trusted signature.

▪ signed

PingDataGovernance Server checks a deployment package for a
trusted signature and rejects a deployment package that fails that
check.

Whenever a deployment package fails a check, PingDataGovernance
Server continues to use the last accepted deployment package.

deployment-
package-trust-
store

Specifies a trust manager provider, which specifies in turn a trust store
containing a Policy Administration GUI's public certificate.

This property is required if deployment-package-security-level is
signed.

deployment-
package-
verification-key-
nickname

Specifies the nickname or alias of the Policy Administration GUI's public
certificate.

This property is required if deployment-package-security-level is
signed.

For more information about the properties, see the Configuration Reference located in the server's
docs/config-guide directory.

Environment-specific Trust Framework attributes
With dynamic authorization, policies must be able to retrieve attributes frequently from policy information
providers (PIPs) at runtime.

The services and datastores from which additional policy information is retrieved range from development
and testing environments to preproduction and production environments.

For example, you might use a Trust Framework service to retrieve a user's consent from the PingDirectory
Consent API. This service depends on the URL of the Consent API, the username and password that are
used for authentication, and other items that vary between development, preproduction, and production
environments.

About policy configuration keys

To avoid hard-coding values such as URLs, usernames, or passwords, Trust Framework attributes can
refer to policy configuration keys, which are key/value pairs defined outside of the Trust Framework and
provided to the policy engine at runtime.

To define a Trust Framework attribute that uses a policy configuration key, configure the attribute with a
Configuration Key resolver and the name of the policy configuration key.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 275

For example, in the following image, an attribute called ConsentServiceBaseUri is configured to use a
policy configuration key called ConsentBaseUri.

The means by which policy configuration keys are provided to the policy engine differ based on whether
the PingDataGovernance Server is configured to use external PDP mode or embedded PDP mode, as
shown in the following table.

Mode Where to define policy configuration keys

External PDP mode An options file and run the Policy Administration GUI’s setup tool.

See Example: Configure policy configuration keys on page 247.

Embedded PDP mode The PingDataGovernance Server configuration.

See Example: Define policy configuration keys on page 267.

Example
In this example, you define a policy information provider (PIP) in the Trust Framework so that various
properties needed to connect to the PIP can be changed from those needed for a development
environment to those needed for a preproduction environment.

You can complete the PIP definition without needing to update the Trust Framework.

Define a policy information provider for the PingDirectory Consent API that uses the following policy
configuration keys:

Policy configuration key Description

ConsentBaseUri The base URL to use when making requests to the Consent API.

ConsentUsername The username for a privileged Consent API account.

ConsentPassword The password for a privileged Consent API account.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 276

Define the policy information provider in the Trust Framework
Complete the following steps to define the policy information provider (PIP).

Steps

1. Define an attribute in the Trust Framework for the Consent API’s base HTTPS URL.

a. Go to Trust Framework and then click Attributes.
b. Add a new attribute.

1. Name the attribute ConsentServiceBaseUri.
2. Add a resolver.
3. Set the Resolver type to Configuration Key.
4. Set the Resolver value to ConsentBaseUri.
5. Save the attribute.

The following image shows the attribute configuration.

2. Repeat the previous steps for ConsentUsername and ConsentPassword.

When complete, you should have defined the following attributes.

Attribute name Policy configuration key name

ConsentServiceBaseUri ConsentBaseUri

ConsentServiceUsername ConsentUsername

ConsentServicePassword ConsentPassword

i Note:

Both the attribute names and the policy configuration key names that you use are arbitrary, and you can
use any names that you like. For the sake of this example, attribute names do not match configuration
key names, but they do not need to differ.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 277

3. Define the policy information provider using the attributes that you just defined.

a. Go to Trust Framework and then Services.
b. Add a new service.

1. Name the service Consent API.
2. Leave the Parent value blank. If a value is already present, clear it.
3. Set Service Type to HTTP.
4. Set the URL to {{ConsentServiceBaseUri}}/consents?

subject={{HttpRequest.AccessToken.subject}}.
5. Set Authentication to Basic.
6. For Username, select the attribute ConsentServiceUsername.
7. For Password, select the attribute ConsentServicePassword.

c. Save the new service.

The following image shows the attributes being used.

You can use the new Consent API policy information provider to build policies.

Define policy configuration keys in a development environment
Before you can use any policies that you developed with the Consent API policy information provider (PIP),
you must configure the Policy Administration GUI to provide values for the PIP’s base URL, username, and
password.

About this task

To configure the Policy Administration GUI to provide these values, re-run the setup tool using an options
file to generate a new configuration, as shown in the following steps.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 278

Steps

1. Make a copy of the default options file.

$ cp config/options.yml my-options.yml

2. Edit the new options file and define the policy configuration keys in the core section.

core:
 ConsentBaseUri: https://consent-us-east.example.com/consent/v1
 ConsentUsername: cn=consent admin
 ConsentPassword: Passw0rd123
Other options omitted for brevity...

3. Stop the Policy Administration GUI.

$ bin/stop-server

4. Run setup using the --optionsFile argument, and then customize all other options as appropriate
for your needs.

$ bin/setup demo \
 --adminUsername admin \
 --generateSelfSignedCertificate \
 --decisionPointSharedSecret datagovernance \
 --hostname <pap-hostname> \
 --port <pap-port> \
 --adminPort <admin-port> \
 --licenseKeyFile <path-to-license> \
 --optionsFile my-options.yml

5. Start the Policy Administration GUI.

$ bin/start-server

Define policy configuration keys in a preproduction environment
Do not use the Policy Administration GUI in a pre-production or production environment. Define policy
configuration keys in the PingDataGovernance Server configuration.

About this task

To define policy configuration keys, use either dsconfig or the Administrative Console, as shown in the
following steps.

Steps

1. In the Administrative Console, under Authorization and Policies, click Policy Decision Service.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 279

2. Click New Policy Configuration Key.

a. For Name, enter ConsentBaseUri.
b. For Policy Configuration Value, type the base URI. For example, https://consent-us-

east.example.com/consent/v1.

The following image shows the window.

3. Save the policy configuration key.

4. Repeat the previous steps for the policy configuration keys ConsentUsername and
ConsentPassword.

Make a user's profile available in policies
In a policy, you might need to make a decision based on something about the requesting identity, meaning
the access token subject or token owner. PingDataGovernance can automatically look up the token
owner's attributes and provide them in the policy request using a token resource lookup method.

Configuring a token resource lookup method

PingDataGovernance provides built-in support for retrieving token owner data using SCIM token resource
lookup methods on page 298. Using a SCIM token resource lookup method requires a SCIM resource
type to be configured, along with its prerequisite configuration objects. For information about SCIM
configuration, such as SCIM resource types, store adapters, load-balancing algorithms, and LDAP external
servers, see SCIM configuration basics on page 208.

For examples that show how to set up a token resource lookup method, see:

▪ Configuring the PingDataGovernance OAuth subject search on page 310
▪ Access token validation on page 204
▪ SCIM token resource lookup methods on page 298

Using user profile data in policies

When processing an incoming HTTP request, PingDataGovernance Server invokes any applicable access
token validators to parse the request's access token. If an access token validator successfully validates
the access token, it then invokes any related token resource lookup methods. If a token resource lookup
method succeeds in retrieving the attributes for the token owner, then PingDataGovernance Server
includes a TokenOwner attribute with the policy request. The contents of the TokenOwner attribute are a
JSON object containing the user profile.

The exact structure of the TokenOwner attribute varies from deployment to deployment. When using a
SCIM token resource lookup method, the contents of the TokenOwner attribute are a SCIM resource
using the schema of the SCIM resource type configured for the token resource lookup method, exactly as
if the resource had been retrieved via an HTTP GET without policy restrictions. For example, for a pass-

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 280

through SCIM resource type for the LDAP inetOrgPerson object class, a TokenOwner value might look
like the following.

{
 "cn": [
 "Mark E. Smith"
],
 "employeeNumber": "1",
 "entryDN": "uid=mark.e.smith,ou=people,dc=example,dc=com",
 "entryUUID": "8ac3d8b5-4f17-33fa-a4b4-854599ed9a89",
 "givenName": [
 "Mark"
],
 "id": "8ac3d8b5-4f17-33fa-a4b4-854599ed9a89",
 "initials": [
 "MES"
],
 "l": [
 "Manchester"
],
 "mail": [
 "mark.e.smith@example.com"
],
 "meta": {
 "location": "https://example.com/scim/v2/Users/8ac3d8b5-4f17-33fa-
a4b4-854599ed9a89",
"resourceType": "Users"
 },
 "mobile": [
 "+44 161 872 37676"
],
 "modifyTimestamp": "2020-06-03T03:56:54.168Z",
 "objectClass": [
 "top",
 "person",
 "organizationalPerson",
 "inetOrgPerson"
],
 "schemas": [
 "urn:pingidentity:schemas:store:2.0:UserStoreAdapter"
],
 "sn": [
 "Smith"
],
 "uid": [
 "mark.e.smith"
]
}

The default Trust Framework includes a TokenOwner attribute as an empty JSON object. If you need
to use a user profile attribute from a policy, add the attribute as a child of TokenOwner in the Trust
Framework.

For example, the SCIM user profile shown above uses the mail attribute to store a user's email
addresses. To make policy decisions involving the token owner's email address, you can add an Emails
attribute under TokenOwner in the PingDataGovernance Policy Administration GUI, as shown in the
following Trust Framework image.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 281

Advice types
When a policy is applied to a request or response, the policy result might include one or more advices.
An advice is a directive that instructs the policy enforcement point to perform additional processing in
conjunction with an authorization decision.

In this example, PingDataGovernance Server functions as the policy enforcement type.

Advices allow PingDataGovernance Server to do more than allow or deny access to an API resource. For
example, an advice might cause the removal of a specific set of fields from a response.

You can add an advice directly to a single policy or rule, or add an advice in Components for use with
multiple policies or rules. Advices possess the following significant properties.

Advice properties and descriptions

Advice property Description

Name Friendly name for the advice.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 282

Advice property Description

Obligatory If true, the advice must be fulfilled as a condition
of authorizing the request. If PingDataGovernance
cannot fulfill an obligatory advice, it fails the
operation and returns an error to the client
application. If a non-obligatory advice cannot
be fulfilled, an error is logged, but the client's
requested operation continues.

Code Identifies the advice type. This value corresponds
to an advice ID that the PingDataGovernance
configuration defines.

Applies To Specifies the policy decisions, such as Permit or
Deny, that include the advice with the policy result.

Payload Set of parameters governing the actions that the
advice performs when it is applied. The appropriate
payload value depends on the advice type.

PingDataGovernance supports the following advice types:

▪ Add Filter
▪ Combine SCIM Search Authorizations
▪ Denied Reason
▪ Exclude Attributes
▪ Filter Response
▪ Include Attributes
▪ Modify Attributes
▪ Modify Headers
▪ Modify Query
▪ Modify SCIM Patch
▪ Regex Replace Attributes

The following sections describe these advice types in more detail. To develop custom advice types, use
the Server SDK.

i Note:

Many advice types let you use the JSONPath expression language to specify JSON field paths. To
experiment with JSONPath, use the Jayway JSONPath Evaluator tool.

Add Filter
Use add-filter to add administrator-required filters to System for Cross-domain Identity Management
(SCIM) search queries.

Applicable to SCIM.

Copyright ©2022

https://goessner.net/articles/JsonPath/
https://jsonpath.herokuapp.com/

PingDataGovernance | PingDataGovernance Server Administration Guide | 283

Additional
information

The Add Filter advice places restrictions on the resources returned to an application that can
otherwise use SCIM search requests. The filters that the advice specifies are ANDed with any filter
that the SCIM request includes.

The payload for this advice is a string that represents a valid SCIM filter, which can contain multiple
clauses separated by AND or OR. If the policy result returns multiple instances of Add Filter advice,
they are ANDed together to form a single filter that passes with the SCIM request. If the original SCIM
request body included a filter, it is ANDed with the policy-generated filter to form the final filter value.

Combine SCIM Search Authorizations
Use combine-scim-search-authorizations to optimize policy processing for System for Cross-
domain Identity Management (SCIM) search responses.

Applicable to SCIM.

Additional
information

By default, SCIM search responses are authorized by generating multiple policy decision
requests with the retrieve action, one for each member of the result set. The default mode
enables policy reuse but might result in greater overall policy processing time.

When you use this advice type, the current SCIM search result set is processed using an
alternative authorization mode in which all search results are authorized by a single policy
request that uses the search-results action. The policy request includes an object with
a single Resources field, which is an array that consists of each matching SCIM resource.
Advices that the policy result returns are applied iteratively against each matching SCIM
resource, allowing for the modification or removal of individual search results.

This advice type does not use a payload.

For more information about SCIM search handling, see About SCIM searches on page 216.

Denied Reason
Use denied-reason to allow a policy writer to provide an error message that contains the reason for
denying a request.

Applicable to DENY decisions.

Additional
information

The payload for Denied Reason advice is a JSON object string with the following fields:

▪ status – Contains the HTTP status code returned to the client. If this field is absent, the
default status is 403 Forbidden.

▪ message – Contains a short error message returned to the client.
▪ detail (optional) – Contains additional, more detailed error information.

The following example shows a possible response for a request made with insufficient scope

{"status":403, "message":"insufficient_scope", "detail":"Requested
operation not allowed by the granted OAuth scopes."}

Exclude Attributes
Use exclude-attributes to specify the attributes to exclude from a JSON response.

Applicable to PERMIT decisions, although you cannot apply Exclude Attributes advice directly to a System for
Cross-domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 287 advice type.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 284

Additional
information

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath
into the response body of the request being authorized. Each JSONPath can select multiple
attributes in the object. The portions of the response that a JSONPath selects are removed
before sending the response to the client.

The following example instructs PingDataGovernance Server to remove the attributes secret
and data.private.

["secret","data.private"]

For more information about the processing of SCIM searches, see Filter Response on page
284.

Filter Response
Use filter-response to direct PingDataGovernance Server to invoke policy iteratively over each item
of a JSON array contained within an API response.

Applicable to PERMIT decisions from Gateway, although you cannot apply Filter Response advice directly to
a System for Cross-domain Identity Management (SCIM) search. However, the SCIM service
performs similar processing automatically when it handles a search result. For every candidate
resource in a search result, the SCIM service makes a policy request for the resource with an
Action value of retrieve.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 285

Additional
information

When presented with a request to permit or deny a multivalued response body, Filter Response
advice allows policies to require that a separate policy request be made to determine whether
the client can access each individual resource that a JSON array returns.

The following table identifies the fields of the JSON object that represents the payload for this
advice.

Field Required Description

Path Yes JSONPath to an array within the API's response body. The
advice implementation iterates over the nodes in this array and
makes a policy request for each node.

Action No Value to pass as the action parameter on subsequent policy
requests. If no value is specified, the action from the parent
policy request is used.

Service No Value to pass as the service parameter on subsequent policy
requests. If no value is specified, the service value from the
parent policy request is used.

ResourceType No Type of object contained by each JSON node in the array,
selected by the Path field. On each subsequent policy request,
the contents of a single array element pass to the policy
decision point as an attribute with the name that this field
specifies. If no value is specified, the resource type of the
parent policy request is used.

On each policy request, if policy returns a deny decision, the relevant array node is removed
from the response. If the policy request returns a permit decision with additional advice, the
advice is fulfilled within the context of the request. For example, this advice allows policy to
decide whether to exclude or obfuscate particular attributes for each array item.

For a response object that contains complex data, including arrays of arrays, this advice type
can descend through the JSON content of the response.

i Note:

Performance might degrade as the total number of policy requests increases.

Include Attributes
Use include-attributes to limit the attributes that a JSON response can return.

Applicable to PERMIT decisions, although you cannot apply Include Attributes advice directly to a System for
Cross-domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 287 advice type.

Additional
information

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath
into the response body of the request being authorized. The response includes only the portions
that one of the JSONPaths selects. When a single JSONPath represents multiple attributes, the
response includes all of them. If the policy result returns multiple instances of Include Attributes
advice, the response includes the union of all selected attributes.

For more information about the processing of SCIM searches, see Filter Response on page
284.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 286

Modify Attributes
Use modify-attributes to modify the values of attributes in the JSON request or response.

Applicable to All, although you cannot apply the Modify Attributes advice directly to a System for Cross-
domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 287 advice type.

Additional
information

The payload for this advice is a JSON object. Each key-value pair is interpreted as an attribute
modification on the request or response body of the request being authorized. For each pair, the
key is a JSONPath that selects the attribute to modify, and the value is the new value to use for
the selected attribute. The value can be any valid JSON value, including a complex value like an
object or array.

Modify Headers
Use modify-headers to modify the values of request headers before PingDataGovernance sends them
to the upstream server or to modify the values of response headers before PingDataGovernance returns
them to the client.

Applicable to All, although you cannot apply the Modify Headers advice directly to a System for Cross-domain
Identity Management (SCIM) search.

Additional
information

The payload for this advice is a JSON object. The keys are the names of the headers to set, and the
values are the new values of the headers.

A value can be:

▪ Null, which removes the header
▪ A string, which sets the header to that value
▪ An array of strings, which sets the header to all of the string values

If the header already exists, PingDataGovernance overwrites it.

If the header does not exist, PingDataGovernance adds it (unless the value is null).

If a payload value is an array of strings:

▪ Given a header that supports multiple values, such as Accept, PingDataGovernance repeats the
header for each string in the array.

▪ Given a header that does not support multiple values, such as Content-Type,
PingDataGovernance sends the last string in the array.

Modify Query
Use modify-query to modify the query string of the request sent to the API server.

Applicable to All.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 287

Additional
information

The payload for this advice is a JSON object. The keys are the names of the query parameters
that must be modified, and the values are the new values of the parameters. A value can be one
of the following options:

▪ null – Query parameter is removed from the request.
▪ String – Parameter is set to that specific value.
▪ Array of strings – Parameter is set to all of the values in the array.

If the query parameter already exists on the request, it is overwritten. If the query parameter
does not already exist, it is added. For example, if a request is made to a proxied API with
a request URL of https://example.com/users?limit=1000, you can set a policy to
limit certain groups of users to request only 20 users at a time. A payload of {"limit": 20}
causes the URL to be rewritten as https://example.com/users?limit=20.

Modify SCIM Patch
Use modify-scim-patch to add operations to a SCIM patch in a modify request before it is submitted to
the store adapter.

Applicable to SCIM requests with an action of modify.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 288

Additional
information

The payload for this advice is either a JSON array or a JSON object.

If the payload is an array, PingDataGovernance treats it as a list of operations in the SCIM
patch format to add to the end of the operations in the patch. For example, assume the modify
has the following patch.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John Doe"}
]
}

Also, assume the advice payload is as follows.

[
 {"op": "add", "path": "name.first", "value": "John"},
 {"op": "remove": "path": "name.last"}
]

Then the resulting request to the store adapter looks like this.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John
 Doe"},
 {"op": "add", "path": "name.first", "value": "John"},
 {"op": "remove", "path": "name.last"}
]
}

If the payload is an object, PingDataGovernance interprets it as a set of new replace operations
to add to the end of the operations in the patch. In these replace operations, the keys from the
object become the paths to modify, and the values from the object become the values for those
paths. For example, assume the modify has the following patch.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John Doe"}
]
}

Also, assume the advice payload is as follows.

{"name.first": "John", "name.last": "Doe"}

Then the resulting request to the store adapter looks like this.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John
 Doe"},
 {"op": "replace", "path": "name.first", "value": "John"},
 {"op": "replace", "path": "name.last", "value": "Doe"}
]
}

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 289

Regex Replace Attributes
Use regex-replace-attributes to specify a regex to search for attributes in a request or response
body and replace their values with a regex replacement string.

Applicable to All, although you cannot apply the Regex Replace Attributes advice directly to a System for Cross-
domain Identity Management (SCIM) search.

Additional
information

The payload for this advice is either a JSON object or an array of JSON objects. Each object
represents a single replacement operation and has up to four keys.

Key Description

"regex" Required.

Represents the regular expression to use to find the attribute values to replace.

"replace" Required.

Represents the regex replacement string to use to replace the attribute values with a
new value.

"path" Optional.

Is a JSONPath expression that represents the nodes to start searching under.

"flags" Optional.

Is a string that contains the regex flags to use.

Recognized flags are:

▪ "i"

Performs case-insensitive matching.
▪ "l"

Treats the "regex" value as a literal string.
▪ "c"

Performs "canonical equivalence" matching.

You can combine flags. For example: "il"

PingDataGovernance replaces any portion of the attribute value that matches the regular expression
in the "regex" value in accordance with the "replace" replacement string. If multiple substrings
within the attribute value match the regular expression, PingDataGovernance replaces all
occurrences.

The regular expression and replacement string must be valid as described in the API documentation
for the java.util.regex.Pattern class, including support for capture groups.

For example, consider the following body.

{
 "id":5,
 "username":"jsmith",
 "description":"Has a registered ID number of '123-45-6789'.",
 "secrets":{
 "description":"Has an SSN of '987-65-4321."
 }

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 290

}

Also, consider the following payload.

{
 "path":"$.secrets",
 "regex":"(\\\\d{3}-\\\\d{2})-\\\\d{4}",
 "replace":"$1-XXXX"
}

Applying the advice produces the following body with a changed
"secrets.description" value.

{
 "id":5,
 "username":"jsmith",
 "description":"Has a registered ID number of '123-45-6789'.",
 "secrets":{
 "description":"Has an SSN of '987-65-XXXX."
 }
}

Access token validators
Access token validators verify the tokens that client applications submit when they request access to
protected resources.

Specifically, access token validators translate an access token into a data structure that constitutes part of
the input for policy processing.

To authenticate to PingDataGovernance Server's HTTP services, clients use OAuth 2 bearer token
authentication to present an access token in the HTTP Authorization Request header. To process the
incoming access tokens, PingDataGovernance Server uses access token validators, which determine
whether to accept an access token and translate it into a set of properties, called claims.

Most access tokens identify a user, also called the token owner, as its subject. Access token validators can
retrieve the token owner's attributes from the user store using a related component called a token resource
lookup method. The user data obtained by a token resource lookup method is sent to the policy decision
point (PDP) so that policies can determine whether to authorize the request.

About access token validator processing
You can configure any number of access token validators for PingDataGovernance Server.

Each access token validator possesses an evaluation order index, an integer that determines its
processing priority. Lower values are processed before higher values.

The following image shows the validation process when using an access token validator with the SCIM
token resource lookup method.

Copyright ©2022

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

PingDataGovernance | PingDataGovernance Server Administration Guide | 291

1. If an incoming HTTP request contains an access token, the token is sent to the access token validator
with the lowest evaluation order index.

2. The access token validator validates the access token.

Validation logic varies by access token validator type, but the validator generally verifies the following
information:

▪ A trusted source issued the token.
▪ The token is not expired.

If the token is valid, its active flag is set to true. The flag and other access token claims are added to
the HttpRequest.AccessToken attribute of the policy request.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 292

3. If the access token contains a subject, the access token validator sets the user_token flag to true,
and uses a token resource lookup method to fetch the token owner through the System for Cross-
domain Identity Management (SCIM).

A token resource lookup defines a SCIM filter that locates the token owner. If the lookup succeeds, the
resulting SCIM object is added to the policy request as the TokenOwner attribute.

i Note:

For deployments that do not use SCIM, token owner attributes can be retrieved from other user store
types by writing a token resource lookup method extension with the Server SDK. For more information,
see Make a user's profile available in policies on page 279.

4. If the access token validator is unable to validate the access token, it passes the token to the access
token validator with the next lowest evaluation order index, and the previous two steps are repeated.

5. HTTP request processing continues, and the policy request is sent to the policy decision point (PDP).
6. Policies inspect the HttpRequest.AccessToken and TokenOwner attributes to make access control

decisions.

Access tokens issued using the OAuth 2 client credentials grant type are issued directly
to a client and do not contain a subject. An access token validator always sets the
HttpRequest.AccessToken.user_token flag to false for such tokens, which are called application
tokens, in contrast to tokens with subjects, which are called user tokens. Because authorization policies
often grant a broad level of access for application tokens, you should configure such policies to always
check the HttpRequest.AccessToken.user_token flag.

Access token validators determine whether PingDataGovernance Server accepts an access token and
uses it to provide key information for access-control decisions, but they are neither the sole, nor the
primary, means of managing access. The responsibility for request authorization falls upon the PDP and its
policies. This approach allows an organization to tailor access-control logic to its specific needs.

Access token validator types

PingDataGovernance Server works with a variety of access token validators.

PingFederate access token validator
To verify the access tokens that a PingFederate authorization server issues, the PingFederate access
token validator uses HTTP to submit the tokens to PingFederate Server's token introspection endpoint.

This step allows the authorization server to determine whether a token is valid.

i Note:

If you are using PingFederate 10.0 or earlier, ensure that PingFederate is configured to respond to
OAuth and OpenID Connect (OIDC) requests by selecting the Enable OAuth 2.0 Authorization Server
(AS) role and OpenID Connect check boxes as explained in Enabling the OAuth AS role. Starting with
PingFederate 10.1, these items are always enabled.

Because this step requires an outgoing HTTP request to the authorization server, the PingFederate
access token validator might perform slower than other access token validator types. The validation result
is guaranteed to be current, which is an important consideration if the authorization server permits the
revocation of access tokens.

Before attempting to use a PingFederate access token validator, create a client that represents the access
token validator in the PingFederate configuration. This client must use the Access Token Validation grant
type.

Copyright ©2022

https://docs.pingidentity.com/bundle/pingfederate-100/page/tch1564002990742.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 293

Example configuration

In PingFederate, create a client with the following properties:

▪ Client ID: PingDataGovernance
▪ Client authentication: Client Secret
▪ Allowed grant types: Access Token Validation

Take note of the client secret that is generated for the client, and use PingDataGovernance Server's
dsconfig command to create an access token validator, as shown.

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031
Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "PingFederate Access Token Validator" \
 --type ping-federate \
 --set enabled:true \
 --set "authorization-server:PingFederate External Server" \
 --set client-id:PingDataGovernance \
 --set "client-secret:<client secret>"
 --set evaluation-order-index:2000
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "PingFederate Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Replace <client secret> with the client secret value generated by the PingFederate client.

JWT access token validator
The JWT access token validator verifies access tokens that are encoded in JSON Web Token (JWT)
format, which can be signed in JSON web signature (JWS) format or signed and encrypted in JSON web
encryption (JWE) format.

The JWT access token validator inspects the JWT token without presenting it to an authorization server
for validation. Because the JWT access token validator does not make a token introspection request for
every access token that it processes, it performs faster than the PingFederate access token validator. The
access token is self-validated however, so the JWT access token validator cannot determine whether the
token has been revoked.

Supported JWS/JWE features

For signed tokens, the JWT access token validator supports the following JWT web algorithm (JWA) types:

▪ RS256
▪ RS384
▪ RS512
▪ ES256
▪ ES384
▪ ES512

For encrypted tokens, the JWT access token validator supports the following key-encryption algorithms:

▪ RSA-OAEP

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 294

▪ ECDH-ES
▪ ECDH-ES+A128KW
▪ ECDH-ES+A192KW
▪ ECDH-ES+A256KW

For encrypted tokens, the JWT access token validator supports the following content-encryption
algorithms:

▪ A128CBC-HS256
▪ A192CBC-HS384
▪ A256CBC-HS512

The JWT access token validator configuration defines three allow lists for the JWS/JWE signing and
encryption algorithms that it will accept. You should customize these allow lists to reflect only the signing
and encryption algorithms used by your access token issuer and no others. Doing so minimizes the access
token validator's security threat surface.

Configure these allow lists using the following configuration properties:

▪ allowed-signing-algorithm

Specifies the signing algorithms that the access token validator accepts.
▪ allowed-key-encryption-algorithm

Specifies the key-encryption algorithms that the access token validator accepts.
▪ allowed-content-encryption-algorithm

Specifies the content-encryption algorithms that the access token validator accepts.

Handling signed tokens
All access tokens the JWT access token validator handles must be cryptographically signed by the token
issuer. The JWT access token validator validates a token's signature using a public signing key provided
by the issuer.

Steps

▪ Configure the JWT access token validator with the issuer's public signing key in one of two ways:

▪ Store the public key as a trusted certificate in PingDataGovernance Server's local configuration
using the trusted-certificate property.

▪ Provide the issuer's JWKS (JSON Web Key Set) endpoint using the jwks-endpoint-path
property. The JWT access token validator then retrieves the issuer's public keys when it initializes.
This method ensures that the JWT access token validator uses updated copies of the issuer's public
keys.

Example: Use a locally configured trusted certificate
The following example configures a JWT access token validator to use a locally stored public signing
certificate to validate access token signatures. The signing certificate is assumed to have been obtained
out of band and must be a PEM-encoded X.509v3 certificate.

Add the public signing certificate to the server configuration
dsconfig create-trusted-certificate \
 --certificate-name "JWT Signing Certificate" \
 --set "certificate</path/to/signing-certificate.pem"

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set allowed-signing-algorithm:RS256 \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 295

 --set "trusted-certificate:JWT Signing Certificate"

Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Example: Use the issuer's JWKS endpoint
The following example configures a JWT access token validator to retrieve public keys from a
PingFederate authorization server's JWKS endpoint.

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set allowed-signing-algorithm:RS256 \
 --set "authorization-server:PingFederate External Server" \
 --set jwks-endpoint-path:/ext/oauth/jwks

Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Handling encrypted tokens
Optionally, you can configure the JWT access token validator to accept encrypted access tokens. To do
this, you must configure the access token validator with a private/public key pair and provide the public key
to the token issuer.

Steps

1. Create an encryption key pair.

2. Create the JWT access token validator.

3. Export the public encryption key from PingDataGovernance Server and provide it to your token issuer.

Without this public encryption key, the issuer cannot encrypt tokens that can be decrypted by the JWT
access token validator.

You can run dsconfig to copy the public key to a file, or you can copy the value of the key pair's
certificate-chain property in the Administrative Console.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 296

Example

The following example configures a JWT access token validator to handle access tokens signed and
encrypted using elliptic curve algorithms. For RSA signing and encryption algorithms, the configuration
is very similar, but you would choose different values for the allowed-signing-algorithm and
allowed-encryption-algorithm properties.

1. Create an encryption key pair.

Create an encryption key pair
dsconfig create-key-pair \
 --pair-name "JWT Elliptic Curve Encryption Key Pair" \
 --set key-algorithm:EC_256

2. Create the JWT access token validator.

Change the host name and port below, as needed
dsconfig create-external-server \
 --server-name "PingFederate External Server" \
 --type http \
 --set base-url:https://example.com:9031

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "JWT Access Token Validator" \
 --type jwt \
 --set enabled:true \
 --set evaluation-order-index:1000 \
 --set allowed-signing-algorithm:ES256 \
 --set "authorization-server:PingFederate External Server" \
 --set jwks-endpoint-path:/ext/oauth/jwks \
 --set "encryption-key-pair:JWT Elliptic Curve Encryption Key Pair" \
 --set allowed-key-encryption-algorithm:ECDH_ES

Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

3. Export the public encryption key from PingDataGovernance Server and provide it to your token issuer.

The following command copies the key to a file.

dsconfig get-key-pair-prop \
 --pair-name "JWT Elliptic Curve Encryption Key Pair" \
 --property certificate-chain \
 --no-prompt \
 --script-friendly > jwt-public-encryption-key.pem

Mock access token validator
A mock access token validator is a special access token validator type used for development or testing
purposes.

A mock access token validator accepts arbitrary tokens without validating whether a trusted source issued
them. This approach allows a developer or tester to make bearer token-authenticated requests without first
setting up an authorization server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 297

Mock access tokens are formatted as plain-text JSON objects using standard JSON web token (JWT)
claims.

Always provide the boolean active claim when creating a mock token. If this value is true, the token is
accepted. If this value is false, the token is rejected.

If the sub claim is provided, a token owner lookup populates the TokenOwner policy request attribute, as
with the other access token validator types.

The following example cURL command provides a mock access token in an HTTP request.

curl -k -X GET https://localhost:8443/scim/v2/Me -H 'Authorization:
 Bearer {"active": true, "sub":"user.3", "scope":"email profile",
 "client":"client1"}'

i Important:

Never use mock access token validators in a production environment because they do not verify whether a
trusted source issued an access token.

Example configuration

The configuration for a mock access token validator resembles the configuration for a JWT access token
validator. However, the JSON web signature (JWS) signatures require no configuration because mock
tokens are not authenticated.

Create the Access Token Validator
dsconfig create-access-token-validator \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true \
 --set evaluation-order-index:9999
Match the token's subject (sub) claim to the uid attribute
of a SCIM resource
dsconfig create-token-resource-lookup-method \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:1000

Third-party access token validator

To create custom access token validators, use the Server SDK.

External API gateway access token validator
An external API gateway access token validator is a special access token validator that the Sideband API
can use when the API gateway itself can validate and parse access tokens.

An external API gateway access token validator accepts a set of parsed access token claims from a
trusted gateway and performs no further parsing or validation of its own. For information about how the
tokens are processed, see Access token validation on page 204.

i Note:

External API gateway access token validators are exclusively for use by Sideband API endpoints. If you
assign an external API gateway access token validator to any other server component, either explicitly or
implicitly, it is ignored.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 298

Example configuration

The following example shows how to configure an external API gateway access token validator with a
token resource lookup method, and then assign it to an existing Sideband API endpoint.

dsconfig create-access-token-validator \
 --validator-name "API Gateway Access Token Validator" \
 --type external-api-gateway \
 --set enabled:true \
 --set evaluation-order-index:0
dsconfig create-token-resource-lookup-method \
 --validator-name "API Gateway Access Token Validator" \
 --method-name "Users by uid" \
 --type scim \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"' \
 --set evaluation-order-index:0
dsconfig set-sideband-api-endpoint-prop \
 --endpoint-name "My API" \
 --set "access-token-validator:API Gateway-Provided Access Token Validator"

Token resource lookup methods
Most access tokens include a subject, which identifies the user who granted access to the application
using the token. Access token validators can use token resource lookup methods to retrieve the access
token subject's attributes from an external data store such as a PingDirectory Server. These attributes are
then included in the policy request's TokenOwner attribute, allowing policies to make decisions based on
some aspect of the user.

Token resource lookup methods work by taking the access token subject, which is usually a string identifier
such as a GUID or username, and using that subject value to perform a search in a data store or API
providing user data. For this reason, the data store or API must be accessible to PingDataGovernance
Server; and in most cases, it should be the same data store or API used by the authorization server that
issues the access tokens.

i Note:

Using a token resource lookup method is optional. If your policies do not need user profile information, you
do not need to configure token resource lookup methods.

PingDataGovernance Server provides the following types of token resource lookup methods:

▪ SCIM token resource lookup methods on page 298
▪ Third-party token resource lookup methods on page 299

SCIM token resource lookup methods

SCIM token resource lookup methods use PingDataGovernance Server's SCIM subsystem to retrieve a
token subject's attributes.

i Note:

Before you create a SCIM token resource lookup method, you must configure SCIM. See SCIM
configuration basics on page 208.

To configure a SCIM token resource lookup method, you need to know the name of the access token claim
that the authorization server uses for the subject identifier (typically, sub). You also need to know which
user attribute is used as the subject identifier by the authorization server when it issues access token. If

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 299

you have configured a mapping SCIM resource type, then the attribute name used by the authorization
server and the attribute name in your SCIM schema might differ.

A SCIM token resource lookup method retrieves the token subject's attributes using the combination of the
scim-resource-type and match-filter configuration properties.

Property Description

scim-resource-type The SCIM resource type that represents users that can
be access token subjects.

match-filter A SCIM 2 filter expression that matches a SCIM
resource based on one or more access token claims.

The match-filter value must be a valid SCIM 2 filter expression that uniquely matches a single
resource. The filter expression can include one or more variables that refer to claims found in the access
token. These variables are indicated by enclosing a token claim name in percent (%) characters. When
the token resource lookup method is invoked, the variable is filled in with the actual value from the access
token claim.

For example, if a match filter has the value id eq "%sub%" and an access token contains a sub claim
with the value 8ac3d8b5-4f17-33fa-a4b4-854599ed9a89, then the token resource lookup method
will perform a SCIM search using the filter id eq "8ac3d8b5-4f17-33fa-a4b4-854599ed9a89".

The following example shows how to create a SCIM token resource lookup method using
dsconfig. It assumes that a SCIM resource type called Users and an access token
validator called JWT Access Token Validator already exist.

dsconfig create-token-resource-lookup-method
 --validator-name "JWT Access Token Validator" \
 --method-name "User by uid" \
 --type scim \
 --set evaluation-order-index:10 \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%sub%"'

Third-party token resource lookup methods

A third-party token resource lookup method is a custom implementation of a token resource lookup
method that you write using the Server SDK. A third-party token resource lookup method can be useful for
PingDataGovernance Server deployments where SCIM is not otherwise needed. For example, you could
use a third-party token resource lookup method to connect a PingDataGovernance Server to a system that
stores user data in a cloud directory.

For more information about writing custom server extensions, see the Server SDK documentation.

Server configuration
For a detailed look at configuration, see the Ping Identity PingDataGovernance Server Configuration
Reference, located in the server's docs/config-guide directory.

This section covers basic server configuration.

PingDataGovernance Server is built upon the same foundation as PingDirectory Server. Both servers use
a common configuration system, and their configurations use the same tools and APIs.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 300

The configuration system is fundamentally LDAP-based, and configuration entries are stored in a special
LDAP backend, called cn=config. The structure is a tree structure, and configuration entries are
organized in a shallow hierarchy under cn=config.

Administration accounts
Administration accounts, called root distinguished names (DNs), are stored in a branch of the configuration
backend: cn=Root DNs,cn=config.

When setup is run, the process creates a superuser account that is typically named cn=Directory
Manager. Although PingDataGovernance Server is not an LDAP directory server, it follows this convention
by default. As a result, its superuser account is also typically named cn=Directory Manager.

To create additional administration accounts, use dsconfig or, to add root DN users, use the
PingDataGovernance Administrative Console.

About the dsconfig tool
The dsconfig tool provides a command-line interface to configure the underlying server configuration.

Use the dsconfig tool whenever you administer the server from a shell. When run without arguments,
dsconfig enters an interactive mode that lets you browse and update the configuration from a menu-
based interface. Use this interface to list, update, create, and delete configuration objects.

When viewing any configuration object in dsconfig, use the d command to display the command line that
is necessary to recreate a configuration object. You can use a command line in this form directly from a
shell or placed in a dsconfig batch file, along with other commands.

Batch files are a powerful feature that enable scripted deployments. By convention, these scripts use a
file extension of dsconfig. Batch files support comments by using the # character, and they support line
continuation by using the \, or backslash, character.

This example dsconfig script configures the PingDataGovernance Server policy service.

Define an external PingDataGovernance PAP
dsconfig create-external-server \
 --server-name "PingDataGovernance Policy Administration GUI" \
 --type policy \
 --set base-url:http://localhost:4200 \
 --set user-id:admin \
 --set "branch:Default Policies"
Configure the policy service
dsconfig set-policy-decision-service-prop \
 --type scim \
 --set pdp-mode:external \
 --set "policy-server:PingDataGovernance PAP" \
 --set "decision-response-view:request" \
 --set "decision-response-view:decision-tree"

To load a dsconfig batch file, run dsconfig with the --batch-file argument.

$ PingDataGovernance/bin/dsconfig -n --batch-file
 example.dsconfig

Batch file 'example.dsconfig' contains 2 commands.

Pre-validating with the local server Done

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 301

Executing: create-external-server -n --server-name
 "PingDataGovernance PAP" --type policy --set base-url:http://
localhost:4200 --set "branch:Default Policies"

Arguments from tool properties file: --useSSL --hostname
 localhost --port 8636 --bindDN cn=root --bindPassword ***** --
trustAll

The Policy External Server was created successfully.

Executing: set-policy-decision-service-prop -n --set pdp-
mode:external --set "policy-server:PingDataGovernance PAP" --set
decision-response-view:request --set decision-response-
view:decision-tree

The Policy Decision Service was modified successfully.

PingDataGovernance Administrative Console
The PingDataGovernance Administrative Console is a web-based application that provides a graphical
configuration and administration interface. It is available by default from the /console path.

Setting the console session timeout

The session timeout for the console is 24 hours by default. When this duration is exceeded, all inactive
users are logged off automatically.

To set a different timeout value, configure the server.sessionTimeout application parameter, which
specifies the timeout duration in seconds. You can set the value as an init parameter either in the console
or on the command line.

▪ Console

In the PingDataGovernance Administrative Console, go to Web Application Extensions# Console.
Specify the timeout value in the Init Parameter field.

▪ Command line

Use the dsconfig tool. The following example uses a value of 1800 seconds (30 minutes).

dsconfig set-web-application-extension-prop --no-prompt \
--extension-name Console \
--add init-parameter:server.sessionTimeout=1800

For the changes to take effect, restart the HTTP(S) Connection Handler, or the server itself.

About the configuration audit log
The configuration audit log records the configuration commands that represent configuration changes, as
well as the configuration commands that undo the changes.

All successful configuration changes are recorded to the file logs/config-audit.log.

$ tail -n 8 PingDataGovernance/logs/config-audit.log
[23/Feb/2019:23:16:24.667 -0600] conn=4 op=12 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
Undo command: dsconfig delete-external-server --server-name
 "PingDataGovernance PAP"
dsconfig create-external-server --server-name
 "PingDataGovernance PAP" --type policy --set base-url:http://
localhost:4200 --set "branch:Default Policies"

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 302

[23/Feb/2019:23:16:24.946 -0600] conn=5 op=22 dn='cn=Directory
 Manager,cn=Root DNs,cn=config' authtype=[Simple] from=127.0.0.1
 to=127.0.0.1
This change was made to mirrored configuration data, which is
 automatically kept in sync across all servers.
Undo command: dsconfig set-policy-decision-service-prop --set
 "policy-server:PingDataGovernance (Gateway Policy Example)"
dsconfig set-policy-decision-service-prop --set "policy-
server:PingDataGovernance PAP"

About the config-diff tool
The config-diff tool compares server configurations and produces a dsconfig batch file that lists the
differences.

When run without arguments, the config-diff tool produces a list of changes to the configuration,
as compared to the server’s baseline or out-of-the-box configuration. Because this list captures the
customizations of your server configuration, it is useful when you transition from a development
environment to a staging or production environment.

$ PingDataGovernance/bin/config-diff
No comparison arguments provided, so using "--sourceLocal
 --sourceTag postSetup --targetLocal" to compare the local
 configuration with the post-setup configuration.
Run "config-diff --help" to get a full list of options and
 example usages.

Configuration changes to bring source (config-postSetup.gz) to
 target (config.ldif)
Comparison options:
Ignore differences on shared host
Ignore differences by instance
Ignore differences in configuration that is part of the
 topology registry

dsconfig create-external-server --server-name "DS API Server" --
type api
--set base-url:https://localhost:1443 --set hostname-
verification-method:allow-all --set "trust-manager-
provider:Blind Trust" --set user-name:cn=root --set
 "password:AADaK6dtmjJQ7W+urtx9RGhSvKX9qCS8q5Q="

dsconfig create-external-server --server-name "FHIR Sandbox" --
type api
--set base-url:https://fhir-open.sandboxcerner.com
...

Certificates
The server presents a server certificate when a client uses a protocol like LDAPS or HTTPS to initiate a
secure connection. A client must trust the server's certificate to obtain a secure connection to it.

PingDataGovernance Server uses server certificates.

During setup, administrators have the option of using self-signed certificates or certificate authority (CA)-
signed certificates for the server certificate. Use CA-signed certificates wherever possible. Use self-signed
certificates for demonstration and proof-of-concept environments only.

Copyright ©2022

https://fhir-open.sandboxcerner.com

PingDataGovernance | PingDataGovernance Server Administration Guide | 303

If you specify the option --generateSelfSignedCertificate during setup, the server certificate
generates automatically with the alias server-cert. The key pair consists of the private key and the
self-signed certificate, and is stored in a file named keystore, which resides in the server's /config
directory. The certificates for all the servers that the server trusts are stored in the truststore file, which
is also located under the server’s /config directory.

To override the server certificate alias and the files that store the key pair and certificates, use the following
arguments during setup:

▪ --certNickname
▪ --use*Keystore
▪ --use*Truststore

For more information about these arguments, see the setup tool’s Help and the Installation Guide.

Replacing the server certificate
Whether the server was set up with self-signed or certificate authority (CA)-signed certificates, the steps to
replace the server certificate are nearly identical.

About this task

This task makes the following assumptions:

▪ You are replacing the self-signed server certificate.
▪ The certificate alias is server-cert.
▪ The private key is stored in keystore.
▪ The trusted certificates are stored in truststore.
▪ The keystore and truststore use the Java KeyStore (JKS) format.

If a PKCS#12 keystore format was used for the keystore and truststore files during setup, change
the --keystore-type argument in the manage-certificate commands to PKCS12 in the relevant
steps.

While the certificate is being replaced, existing secure connections continue to work. If you restart the
server, or if a topology change requires a reset of peer connections, the server continues authenticating
with its peers, all of whom trust the new certificate.

To replace the server certificate with no downtime, perform the following steps:

Steps

1. Prepare a new keystore with the replacement key pair.

2. Import the earlier trusted certificates into the new truststore file.

3. Update the server configuration to use the new certificate by adding it to the server’s list of listener
certificates in the topology registry.
Other servers will trust the certificate.

4. Replace the server’s keystore and truststore files with the new ones.

5. Retire the previous certificate by removing it from the topology registry.

Next steps
The following sections describe these tasks in more detail.
Preparing a new keystore with the replacement key pair

You can replace the self-signed certificate with an existing key pair. As an alternative, you can use the
certificate that is associated with the original key pair.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 304

Using an existing key pair
To use an existing key pair, use the manage-certificates tool that is located in the server's bin or
bat directory, depending on your operating system.

About this task
If a private key and certificate already exist in PEM-encoded format, they can replace both the original
private key and the self-signed certificate in keystore, instead of replacing the self-signed certificate
associated with the original server-generated private key.

Steps

▪ Import the existing certificates using the manage-certificates import-certificate.

Order the certificates that use the --certificate-file option so that each subsequent certificate
functions as the issuer for the previous one.

List the server certificate first, then any intermediate certificates, and then list the root certificate
authority (CA) certificate. Because some deployments do not feature an intermediate issuer, you might
need to import only the server certificate and a single issuer.

For example, the following command imports the existing certificates into a new keystore file named
keystore.new.

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file existing.key \
 --certificate-file existing.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Replacing the certificate associated with the original key pair
Replace the certificate associated with the original server-generated private key (server-cert) if it has
expired or must be replaced with a certificate from a different certificate authority (CA).

About this task

Perform the following steps to replace the certificate associated with the original key pair:

Steps

1. Create a CSR file for the server-cert.

manage-certificates generate-certificate-signing-request \
 --keystore keystore \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --use-existing-key-pair \
 --subject-dn "CN=ldap.example.com,O=Example Corporation,C=US" \
 --output-file server-cert.csr

2. Submit server-cert.csr to a CA for signing.

3. Export the server’s private key into server-cert.key.

manage-certificates export-private-key \
 --keystore keystore \
 --keystore-password-file keystore.pin \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 305

 --alias server-cert \
 --output-file server-cert.key

4. Import the certificates obtained from the CA, including the CA-signed server certificate, the root CA
certificate, and any intermediate certificates, into keystore.new.

manage-certificates import-certificate \
 --keystore keystore.new \
 --keystore-type JKS \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --private-key-file server-cert.key \
 --certificate-file server-cert.crt \
 --certificate-file intermediate.crt \
 --certificate-file root-ca.crt

Importing earlier trusted certificates into the new keystore
You must import the trusted certificates of other servers in the topology into the new truststore file.

About this task

To export trusted certificates from truststore and import them into truststore.new, perform the
following steps for each trusted certificate:

Steps

1. Locate the currently trusted certificates.

manage-certificates list-certificates \
 --keystore truststore

2. For each alias other than server-cert, or whose fingerprint does not match server-cert, perform
the following steps:

a. Export the trusted certificate from truststore.

manage-certificates export-certificate \
 --keystore truststore \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --export-certificate-chain \
 --output-file trusted-cert-alias.crt

b. Import the trusted certificate into truststore.new.

manage-certificates import-certificate \
 --keystore truststore.new \
 --keystore-type JKS \
 --keystore-password-file truststore.pin \
 --alias <trusted-cert-alias> \
 --certificate-file trusted-cert-alias.crt

Updating the server configuration to use the new certificate
Before updating the server to use the appropriate key pair, update the listener-certificate property
for the server instance's LDAP listener in the topology registry.

About this task

To support the transition from an existing certificate to a new one, earlier and newer certificates might
appear within their own beginning and ending headers in the listener-certificate property.

To update the server configuration to use the new certificate, perform the following steps:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 306

Steps

1. Export the server’s previous server-cert into old-server-cert.crt.

manage-certificates export-certificate \
 --keystore keystore \
 --keystore-password-file keystore.pin \
 --alias server-cert \
 --output-file old-server-cert.crt

2. Concatenate the previous and new certificate into one file.

On Windows, use a text editor like Notepad. On Unix, use the following command.

cat old-server-cert.crt new-server-cert.crt > old-new-server-cert.crt

3. Use dsconfig to update the listener-certificate property for the server instance's LDAP
listener in the topology registry.

$ bin/dsconfig -n set-server-instance-listener-prop \
 --instance-name instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<old-new-server-cert.crt"

Replacing the key store and trust store files with the new ones
Replace the key store and trust store files in the server's config directory to make the new server
certificates take effect.

About this task
Because the server still uses the previous server-cert, you must replace the earlier keystore and
truststore files with the new ones in the server’s config directory when you want the new server-
cert to take effect.

Steps

▪ Replace the keystore and truststore as shown in the following example.

$ mv keystore.new keystore
 mv truststore.new truststore

Retiring the previous certificate
Retire the previous certificate by removing it from the topology registry after it expires.

Steps

▪ Remove the previous certificate from the topology registry, as shown in the following example.

$ dsconfig -n set-server-instance-listener-prop \
 --instance-name <instance-name> \
 --listener-name ldap-listener-mirrored-config \
 --set "listener-certificate<new-server-cert.crt"

Configure the Policy Decision Service
Configure the Policy Decision Service before policies are enforced on data access.

For development environments in which policy administrators will be building and testing policies, configure
the Policy Decision Service to External mode. For other pre-production and production environments in
which policies will be tested and deployed, configure the Policy Decision Service for Embedded mode.

For information about configuring the Policy Decision Service, see Policy administration on page 261.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 307

Configure a user store
If you want to control data access at the user level, configure PingDataGovernance Server to use a user
store so you can obtain attributes about the user who is invoking APIs, or the user about whom a service is
invoking APIs, to evaluate the attributes as part of policy.

Although PingDataGovernance Server assumes that PingDirectory Server is the default user store, other
LDAPv3-compliant directories are also supported.

You can configure a user store using the prepare-external-store and create-initial-config
commands.

prepare-external-store

When using PingDirectory Server as the user store, first prepare the server by running prepare-
external-store. This tool completes the following tasks:

▪ Creates the PingDataGovernance Server user account on your instance of PingDirectory Server
▪ Sets the correct password
▪ Configures the account with the required privileges
▪ Installs the schema that PingDataGovernance Server requires

create-initial-config

The create-initial-config command configures connectivity between PingDataGovernance Server
and the user store. It also creates a System for Cross-domain Identity Management (SCIM) resource type
through which PingDataGovernance Server obtains the user attributes.

The optional create-initial-config command is recommended for first-time installers. If you do not
use create-initial-config, you can configure the following objects:

▪ Store adapter
▪ SCIM resource type
▪ SCIM schema (optional)

i Note:

If you do not configure these objects, you do not get the user's profile (the requester's attributes). For more
information, see Make a user's profile available in policies on page 279.

For more information about configuring SCIM, see About the SCIM service on page 206.

Example

For an example, see Configuring the PingDataGovernance user store on page 309.

Configure access token validation
You can configure access token validators to translate an access token for policy processing.

Clients authenticate themselves to HTTP APIs and the System for Cross-domain Identity Management
(SCIM) service by using OAuth2 bearer token authentication. PingDataGovernance Server uses Access
Token Validators to translate and decode a bearer token to a set of attributes that it represents.

For user-authorized bearer tokens, Access Token Validators are required to map the subject of the access
token to the user in the user store, to evaluate the user's attributes as part of policy.

For more information about configuring Access Token Validation, see Access token validators on page
290.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 308

Configure PingOne to use SSO for the PingData Administrative Console
The steps below explain how to configure PingOne so that you can use SSO in PingOne to access the
PingOne administration console.

Before you begin
You should have already set up the PingData server that will be administered. This server will host the the
PingOne administration console console that is being configured for SSO.

Steps

1. In the PingOne administration console, add a link to the PingOne solutions home page. You can
do this by adding a PingDirectory Server or PingDataGovernance Server service to one of the
existing environments or by adding a custom environment solely for a PingDirectory Server or
PingDataGovernance Server service.

a. When prompted, select the It's already been deployed option.
b. Provide "https://<hostname>:<port>/console/login" as the value for the Admin URL, filling in the

bracketed values with the PingData server's hostname and HTTP port.

2. Configure the matching administrator accounts for PingOne and the PingData server. Go to the
PingOne dashboard for the environment that will be used with the PingData server. Repeat the
following steps for each PingOne user for which you wish to enable SSO.

a. Locate the desired user under the Identities tab. For the example purposes, we will assume the
desired PingOne user has the following properties.

Given Name Jane

Family Name Smith

Username jsmith

b. Run the following dsconfig command against the PingData server, filling in the bracketed field with
the previously located PingOne user's Username value.

dsconfig create-root-dn-user --user-name jsmith \
 --set first-name:Jane \
 --set last-name:Smith

3. Register the Administrative Console with PingOne. Go to Add an application - Web application and
follow the instructions in the "Add an OIDC application" subsection. The application properties should
be as shown in the following table.

Property Value

Application Name PingData Administrative Console

Description Application for the PingData Administrative
Console

Redirect URLs https://<hostname>:<port>/console/oidc/cb

Attribute Mapping 'Username' = 'sub'

i Note:

Fill in the bracketed values in redirect URLs with the PingData server's hostname and HTTP port,
similar to Step 2.

Copyright ©2022

https://docs.pingidentity.com/bundle/p14c/page/lyd1583255784891.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 309

4. Edit the listed properties for the newly created application so that the properties have the values
show in the following table, following the instructions in Edit an application - OIDC in the PingOne
Administration Guide.

Property Value

Response Type Code

Grant Type Authorization Code

Token Endpoint Authentication Method Client Secret Basic

5. Note the values for the following application properties to use in later steps:

▪ Issuer
▪ Client ID
▪ Client Secret

6. Locate the enable-pingone-admin-console-sso.dsconfig file in the PingDirectory/
config/sample-dsconfig-batch-files/ directory. Make a copy of it, and edit the copy rather
than the source file.

7. Replace all the bracketed values in the batch file with the corresponding values from step 5. Then run
the file using the following command.

dsconfig --batch-file \
 enable-pingone-admin-console-sso-copy.dsconfig \
 --no-prompt

8. Click the link to the PingData server from the PingOne solutions home page. A PingOne login page
should appear. After you provide credentials, you should see the Administrative Console index page.

Examples: Configuring PingDataGovernance Server
These examples show how to configure PingDataGovernance Server using dsconfig.

The examples cover the following topics.

▪ Configuring the PingDataGovernance user store on page 309
▪ Configuring the PingDataGovernance OAuth subject search on page 310
▪ Configuring PingDataGovernance logging on page 311

Configuring the PingDataGovernance user store
Configure PingDataGovernance Server to use PingDirectory Server as its user store.

Steps

1. To make a set of changes to PingDirectory Server that PingDataGovernance Server needs, including
the creation of a service account, run the prepare-external-store command.

PingDataGovernance/bin/prepare-external-store \
 --hostname <your-ds-host> --port 1636 --useSSL --trustAll \
 --governanceTrustStorePath PingDataGovernance/config/truststore \
 --governanceTrustStorePasswordFile \
PingDataGovernance/config/truststore.pin \
 --bindDN "cn=directory manager" \
 --bindPassword <your-ds-password> \
 --governanceBindDN "cn=Governance User,cn=Root DNs,cn=config" \
 --governanceBindPassword <your-dg-service-account-password> \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --no-prompt

Copyright ©2022

https://docs.pingidentity.com/bundle/pingone/page/jez1625773795534.html#qxp1584551500267

PingDataGovernance | PingDataGovernance Server Administration Guide | 310

2. To configure PingDataGovernance Server with a store adapter that allows it to communicate with
PingDirectory Server to retrieve identity attributes, run the create-initial-config command.

i Note:

Using create-initial-config is optional. However, if you do not use it, you do not get the user's
profile (the requester's attributes). For more information, see Make a user's profile available in policies
on page 279.

PingDataGovernance/bin/create-initial-config \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --governanceBindPassword <your-dg-service-account-password> \
 --externalServerConnectionSecurity useSSL \
 --governanceTrustStorePath PingDataGovernance/config/truststore \
 --governanceTrustStorePasswordFile \
PingDataGovernance/config/truststore.pin \
 --userStoreBaseDN "ou=people,dc=example,dc=com" \
 --userStore "<your-ds-host>:1636:Austin" \
 --userObjectClass "inetOrgPerson" \
 --initialSchema pass-through

This command also sets up a System for Cross-domain Identity Management (SCIM) resource
type that defines a Users type with a SCIM schema that is automatically mapped to an LDAP type,
inetOrgPerson, on PingDirectory Server.

Configuring the PingDataGovernance OAuth subject search
Configure PingDataGovernance Server to search the user store for OAuth token subjects.

Steps

▪ To configure the PingDataGovernance Server to mock OAuth access token validation, run the
dsconfig create-access-token-validator command.

PingDataGovernance/bin/dsconfig create-access-token-validator \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --validator-name "Mock Access Token Validator" \
 --type mock --set enabled:true --set subject-claim-name:sub

The Mock Access Token Validator accepts tokens without authenticating them and is used only for
demonstration and testing purposes. To use an authorization server like PingFederate, see Access
token validators on page 290.

▪ To configure PingDataGovernance Server to search the user store and retrieve the identity attributes
of the OAuth token subject so the attributes can be evaluated in a policy, run the dsconfig create-
token-resource-lookup-method command.

PingDataGovernance/bin/dsconfig create-token-resource-lookup-method \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --validator-name "Mock Access Token Validator" \
 --method-name "User by uid" \
 --type 'scim' \
 --set scim-resource-type:Users \
 --set 'match-filter:uid eq "%_subject_claim_name%"' \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 311

 --set evaluation-order-index:100

A token resource lookup method defines the expression that is used to search System for Cross-
domain Identity Management (SCIM) resources by the access token subject or additional claims. In this
example, the value of the access token subject claim is used to search the uid attribute value of the
SCIM user resource.

Configuring PingDataGovernance logging
Increase the default logging value to include details that will aid in debugging.

Steps

▪ To enable more detailed logging to understand how policy decisions are being made, including the
comparison values and results of the various expressions that comprise a policy decision tree, run the
dsconfig set-policy-decision-service-prop command.

PingDataGovernance/bin/dsconfig set-policy-decision-service-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request \
 --add decision-response-view:evaluated-entities

i Note:

decision-response-view:request causes the Policy Decision Logger to record potentially
sensitive data in API requests and responses.

▪ To enable Trace (detailed) logging, including complete HTTP requests and responses, run the
dsconfig set-log-publisher-prop command .

PingDataGovernance/bin/dsconfig set-log-publisher-prop \
 --no-prompt --port 8636 --useSSL --trustAll \
 --bindDN "cn=directory manager" \
 --bindPassword <your-dg-password> \
 --publisher-name "Debug Trace Logger" \
 --set enabled:true

i Note:

Complete HTTP requests and responses might contain sensitive data.

For information about enabling detailed debug logging for troubleshooting purposes, see Enable
detailed logging on page 338.

Server status
You can check server status using the PingDataGovernance Server Administrative Console, the status
command, or the availability servlet.

Administrative Console

You can access status information in the console, in the Status tab.

For information about how to access the console, see PingDataGovernance Administrative Console on
page 301.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 312

status command

The PingDataGovernance distribution includes the bin/status command that you can use to see various
information about the server, including its status and the status of its LDAP external servers.

Availability servlet

PingDataGovernance provides an HTTP servlet extension that you can use to retrieve the server's current
availability state. The servlet accepts any GET, POST, or HEAD request sent to a specified endpoint and
returns a minimal response whose HTTP status code can help you determine whether the server considers
itself to be AVAILABLE, DEGRADED, or UNAVAILABLE.

The status code for each of these states is configurable, and the response can optionally include a JSON
object with an availability-state field with the name of the current state.

The servlet has these endpoints:

▪ /available-state

This endpoint can prove useful for load balancers that should only route requests to servers that are
fully available.

The following table shows the responses for this endpoint.

Endpoint responses and server status

Response Server state

200 (OK) AVAILABLE

503 (Service Unavailable) DEGRADED or UNAVAILABLE

▪ /available-or-degraded-state

This endpoint can prove useful for orchestration frameworks if you want to destroy and replace any
instance that is completely unavailable.

The following table shows the responses for this endpoint.

Endpoint responses and server status

Response Server state

200 (OK) AVAILABLE or DEGRADED

503 (Service Unavailable) UNAVAILABLE

Server availability
You can monitor the availability of PingDataGovernance Server and set up load balancing or auto-healing
for it.

Use the following gauges to monitor PingDataGovernance Server availability:

▪ User Store Availability gauge
▪ Endpoint Average Response Time (Milliseconds) gauge
▪ HTTP Processing (Percent) gauge

With monitoring, you can set up load balancing or auto-healing.

For auto-healing, configure your container orchestrator to base a health check on the availability servlet
mentioned in Server status on page 311. If the availability is not as desired, fail the health check. The
orchestrator should then start a replacement server for the unhealthy server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 313

User Store Availability gauge
The User Store Availability gauge monitors the directory servers that provide user data to
PingDataGovernance.

If PingDataGovernance cannot reach these directory servers, it cannot:

▪ Retrieve token owner information using a SCIM Token Resource Lookup Method
▪ Handle SCIM 2 API requests

In this case, this gauge marks the status of PingDataGovernance itself as UNAVAILABLE.

The status appears in the following locations:

▪ The Administrative Console on the Status tab, in the Operational Status entry.
▪ The Operational Status line in the bin/status output.
▪ The Availability servlet. See Server status on page 311.

When PingDataGovernance has a status of UNAVAILABLE, a load balancer can try to route traffic to
a different PingDataGovernance server or take some other action. See Example: auto-healing on page
315.

If you followed the standard setup and configuration given in Getting started with PingDataGovernance
(tutorials) on page 68, the User Store Availability gauge should automatically work.

i Important:

The gauge assumes the PingDataGovernance LDAP Store Adapter name is UserStoreAdapter. If your
PingDataGovernance SCIM configuration uses a different name, you must edit the gauge's data source
to reflect the custom store adapter name. Use the following dsconfig command to make this change,
replacing <CustomStoreAdapter> in the last line with the actual name.

dsconfig set-gauge-data-source-prop \
 --source-name "User Store Availability" \
 --set "include-filter:(store-adapter-name=<CustomStoreAdapter>)"

If your PingDataGovernance deployment does not use SCIM or SCIM Token Resource Lookup Methods,
you can disable the gauge with the following command.

dsconfig set-gauge-prop \
 --gauge-name "User Store Availability" \
 --set enabled:false

Endpoint Average Response Time (Milliseconds) gauge
The Endpoint Average Response Time (Milliseconds) gauge monitors the average time that
PingDataGovernance takes to respond to queries on various endpoints.

The gauge monitors the following types of endpoints:

▪ Gateway endpoints
▪ Sideband endpoints
▪ System for Cross-domain Identity Management (SCIM) 2 endpoints
▪ OpenBanking endpoints

The gauge can raise alarms or generate a DEGRADED or UNAVAILABLE status that you can use to
configure load balancing or auto-healing.

This gauge does not count the time spent waiting for an upstream server response.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 314

By default, this gauge does nothing. To begin using it, set the levels at which the gauge activates to
reasonable values for your environment using dsconfig.

The following table explains the values you set for this gauge.

Value Description

minor-value This value, in milliseconds, represents a warning condition. An
alarm is raised, but the server continues to operate as normal.

major-value This value, in milliseconds, represents the point at which the
server is considered DEGRADED.

critical-value This value, in milliseconds, represents the point at which the
server is considered UNAVAILABLE.

You can find the server's availability state by using an option discussed in Server status on page 311.

The following example shows how to activate the gauge.

i Note:

You might need to experiment to find values that work for your environment.

dsconfig set-gauge-prop
 --gauge-name "Endpoint Average Response Time (Milliseconds)"
 --set minor-value:200
 --set major-value:500
 --set critical-value:2000

HTTP Processing (Percent) gauge
The HTTP Processing (Percent) gauge monitors usage of available HTTP worker threads.

The gauge can raise alarms or generate a DEGRADED or UNAVAILABLE status that you can use to
configure load balancing or auto-healing.

By default, this gauge raises an alarm at 70% usage, and it raises an alert at 90% usage. Also by default,
the gauge does not mark the server as DEGRADED or UNAVAILABLE.

The following table explains the values and descriptions you set for this gauge.

HTTP processing gauge values and descriptions

Value Description

warning-value This percentage value represents a warning condition. An alarm
is raised, but the server continues to operate as normal.

It defaults to 70%.

major-value This percentage value represents a severe condition. An alarm
is raised, and the server enters a DEGRADED state.

It is not set by default. To enable the DEGRADED state, you
must set server-degraded-severity-level.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 315

Value Description

critical-value This percentage value represents a critical condition. An alarm
is raised, an alert is generated, and the server is put into an
UNAVAILABLE state.

It defaults to 90%. To enable the UNAVAILABLE state, you
must set server-unavailable-severity-level.

server-degraded-severity-
level

The alarm level at which the server enters a DEGRADED state.

By default, this gauge does not mark the server as
DEGRADED.

To enable the DEGRADED state, set to major.

server-unavailable-severity-
level

The alarm level at which the server enters an UNAVAILABLE
state.

By default, this gauge does not mark the server as
UNAVAILABLE.

To enable the UNAVAILABLE state, set to critical.

You can find the server's availability state by using an option discussed in Server status on page 311.

The following example shows how to activate the gauge.

i Note:

You might need to experiment to find values that work for your environment.

dsconfig set-gauge-prop
 --gauge-name "HTTP Processing (Percent)"
 --set major-value:85
 --set server-degraded-severity-level:major
 --set server-unavailable-severity-level:critical

Example: auto-healing
Using gauges, set up auto-healing in a container deployment to address an unavailable server.

Steps

1. Configure one or more of the gauges described in Server availability on page 312.

2. Configure the gauges to trigger the UNAVAILABLE status.

By default, the gauges do not trigger the UNAVAILABLE status.

As discussed in Endpoint Average Response Time (Milliseconds) gauge on page 313 and HTTP
Processing (Percent) gauge on page 314, use the dsconfig command to adjust the following values
for your environment. Each system is different so you might need to adjust the values several times to
determine your ideal configuration.

a. For the Endpoint Average Response Time (Milliseconds) gauge, set critical-value.
b. For the HTTP Processing (Percent) gauge, set both critical-value and server-

unavailable-severity-level.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 316

3. Configure the container orchestrator to use the available-or-degraded-state endpoint to detect
whether the server is alive.

For information about the endpoint, see Availability servlet on page 312.

Available gauges
PingDataGovernance makes the following gauges available. You can manage these gauges using the
Administrative Console or the dsconfig tool.

Gauge name Enabled by
default

Description

Available File Descriptors true Monitors the number of file descriptors available
to the server process. The server allows for an
unlimited number of connections by default but
is restricted by the file descriptor limit on the
operating system.

You can configure the number of file descriptors
that the server uses by either setting the
NUM_FILE_DESCRIPTORS environment
variable or by creating a config/num-file-
descriptors file with a single line such as,
NUM_FILE_DESCRIPTORS=12345. If you do not
use either of these options, the server uses the
default of 65535.

Running out of available file descriptors can lead
to unpredictable behavior and severe system
instability.

Certificate Expiration (Days) true Monitors the expiration dates of key server
certificates.

A server certificate expiring can cause server
unavailability, degradation, or loss of key server
functionality.

Replace certificates nearing the end of their
validity as soon as possible.

For more information about server certificates and
how they are managed, see the status tool or
Status in the Administrative Console.

CPU Usage (Percent) true Monitors server CPU use and provides an
averaged percentage for the interval defined.

The monitored resource is the host system's
CPU, which does not include a resource identifier.
If CPU use is high, check the server's current
workload and other processes on the system and
make any needed adjustments. Reducing the load
on the system will lead to better response times.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 317

Gauge name Enabled by
default

Description

Disk Busy (Percent) true Monitors the percentage of disk use time
averaged over the specified update interval.

This gauge requires that you enable the Host
System Monitor Provider and that you register
any monitored disks by using the disk-devices
property of that configuration object.

The resource identifier for this gauge is the disk
device name. Use the iostat command or a
similar system utility to see a list of disk device
names. A separate gauge monitor entry is created
for each monitored disk.

Endpoint Average Response
Time (Milliseconds)

false Monitors the average response time across all
endpoints since the server was started. This
number does not include requests to the upstream
server.

There is no resource identifier associated with this
gauge.

The monitored resource is overall response time
of all requests to DataGovernance servlets since
the server was started.

High response times might be indicative of a
number of factors including a disk-bound server,
network latency, or misconfiguration. Enabling the
Stats Logger plugin can help isolate problems.

For more information, see Endpoint Average
Response Time (Milliseconds) gauge on page
313.

HTTP Processing (Percent) true Monitors the percentage of time that request
handler threads spend processing HTTP requests.
This percentage represents the inverse of the
server's ability to handle new requests without
queueing.

For more information, see HTTP Processing
(Percent) gauge on page 314.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 318

Gauge name Enabled by
default

Description

JVM Memory Usage (Percent) true Monitors the percentage of Java Virtual Machine
memory that is in use. This value naturally
fluctuates due to garbage collection, so the
minimum value within an interval is reported
because it is a better indication of overall memory
growth.

When the memory usage exceeds 90%, contact
Ping Customer Support because the server is
either misconfigured or has a memory leak.

As memory usage approaches 100%, the
server is more and more likely to experience
garbage collection pauses, which leave the server
unresponsive for a long time. Restarting the
server is likely the only remedy for this situation.
Before you restart the server, run collect-
support-data and capture the output of jmap
-histo <server-pid> to provide to customer
support. The PID of the server is in <server-
root>/logs/server.pid.

License Expiration (Days) true Monitors the expiration date of the product
license. An expired license causes warnings to
appear in the server's logs and in the status tool
output.

Request a license key through the Ping Identity
licensing website https://www.pingidentity.com/
en/account/request-license-key.html or contact
sales@pingidentity.com.

Use the dsconfig tool to update the License
configuration's license key property.

Memory Usage (Percent) false Monitors the percentage of memory use averaged
over the update interval defined. The monitored
resource is the host system's memory use, which
does not have a resource identifier.

Some operating systems, including Linux, use the
majority of memory for file system cache, which
is freed as applications need it. If memory use is
high, check the applications that are running on
the server.

Copyright ©2022

https://www.pingidentity.com/en/account/request-license-key.html
https://www.pingidentity.com/en/account/request-license-key.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 319

Gauge name Enabled by
default

Description

Strong Encryption Not Available true Indicates the JVM does not appear to support
strong encryption algorithms, like 256-bit
AES. The server will fall back to using weaker
algorithms, like 128-bit AES.

To enable support for strong encryption, update
your JVM to a newer version that supports it
by default; alternatively, install or enable the
unlimited encryption strength jurisdiction policy
files in your Java installation.

User Store Availability true Monitors availability of the SCIM user store.

If the LDAP directory servers are unavailable,
the "UserStoreAdapter" cannot forward requests.
Also, the server cannot process SCIM requests or
perform token owner lookups.

Ensure that LDAP directory servers are available.

For more information, see User Store Availability
gauge on page 313.

Common alarms
The server uses alarms and alerts to notify administrators of situations that might require intervention.

Policy Decision Service unavailable

PingDataGovernance Server raises this alarm if it cannot process policy decisions because the Policy
Decision Service requires further configuration. When this alarm is present, PingDataGovernance Server
cannot handle requests for the following services:

▪ API Security Gateway
▪ Sideband API
▪ SCIM 2
▪ PDP API

The alarm message typically indicates the cause for the Policy Decision Service's UNAVAILABLE state.
The administrator should check the Policy Decision Service configuration's pdp-mode and trust-
framework-version properties to ensure that they are set correctly.

Trust framework update needed

The server raises this alarm if the Policy Decision Service is configured with a deprecated trust-
framework-version value. When this alarm is present, PingDataGovernance does continue to accept
requests. However, the administrator is strongly encouraged to take the following actions:

1. Update policies to use a new Trust Framework version. See Upgrading the Trust Framework and
policies on page 170.

2. Export a new deployment package (if using embedded PDP mode).
3. Load the updated policies and set trust-framework-version in the Policy Decision Service to the

current version.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 320

The following example uses dsconfig to set trust-framework-version to v2.

dsconfig set-policy-decision-service-prop \
 --set trust-framework-version:v2

LDAP External Server Health Reclassified from AVAILABLE to UNAVAILABLE

The server raises this alarm if an LDAP health check determines that an LDAP external server used by
the SCIM subsystem is unavailable. This can occur for a number of reasons; the most typical cause is a
network or SSL connectivity problem.

External server initialization failed

You see this alarm at server startup if an LDAP health check determines that an LDAP external server
used by the SCIM subsystem is unavailable. This can occur for a number of reasons; the most typical
cause is a network or SSL connectivity problem.

User Store Availability

The server raises this alarm if the SCIM subsystem's UserStoreAdapter is unavailable. When this alarm is
present, PingDataGovernance Server cannot process SCIM API requests or SCIM token resource lookup
method operations. This alarm generally occurs if the underlying data stores are unavailable. To resolve
this alarm, determine why the data stores are unavailable and resolve the problem.

If your PingDataGovernance deployment does not require SCIM, you can disable this alarm by disabling
the User Store Availability gauge using the following command.

dsconfig set-gauge-prop \
 --gauge-name "User Store Availability" \
 --set enabled:false

No Enabled Alert Handlers

By default, an administrator can check for server alerts through the error log, the status tool, and the
Administrative Console. This alarm warns the administrator that they should also configure an alert handler
to ensure that the server can actively notify them of current or impending problems. The server provides
alert handlers for this purpose. The handlers can deliver alerts by email or through a monitoring application
using JMX or SNMP.

The following example shows how to configure an alert handler to send alert emails through the SMTP
server <smtp.example.com>.

dsconfig create-external-server \
 --server-name "SMTP Server" \
 --type smtp \
 --set server-host-name:<smtp.example.com>

dsconfig set-global-configuration-prop \
 --add "smtp-server:SMTP Server"

dsconfig create-alert-handler \
 --handler-name "SMTP Alert Handler" \
 --type smtp \
 --set enabled:true \
 --set 'sender-address:joey@example.com' \
 --set 'recipient-address:deedee@example.com'

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 321

If you are running a nonproduction environment, you can disable this alarm by running the following
dsconfig command.

dsconfig set-alarm-manager-prop \
 --set suppressed-alarm:no-enabled-alert-handlers

Insecure access token validator enabled

This alarm warns the administrator that a mock access token validator is enabled. Mock access token
validators can be very useful in test environments because they allow PingDataGovernance Server to
accept HTTP API requests without the overhead of setting up an OAuth 2 authorization server. However,
because they do not actually authenticate access tokens, they are insecure and should never be used in a
production environment.

The following example shows how to disable an access token validator called "Mock Token Validator."

dsconfig set-access-token-validator-prop \
 --validator-name "Mock Token Validator" \
 --set enabled: false

Sensitive data may be logged

This alarm warns the administrator that a trace log publisher has been configured to record debug
messages. Debug log messages are not guaranteed to exclude potentially sensitive data, so their use is
strongly discouraged in a production environment. You should not use them with anything but test data.

To disable a trace log publisher called "Debug Trace Logger," run this command.

dsconfig set-log-publisher-prop \
 --publisher-name "Debug Trace Logger" \
 --set enabled:false

Managing monitoring
PingDataGovernance provides several monitoring options.

The following sections describe the options.

▪ Profiling server performance using the Stats Logger on page 321
▪ Logging HTTP performance statistics using a Periodic Stats Logger on page 323
▪ StatsD monitoring endpoint on page 323
▪ Sending metrics to Splunk on page 324

Profiling server performance using the Stats Logger
PingDataGovernance provides a Stats Logger plugin you can use to profile server performance for a given
configuration.

At a specified interval, the Stats Logger can write server statistics to a JSON file or to a log file in a comma-
separated value (.csv) format.

The logger has a negligible impact on server performance unless the log-interval property is set to a
very small value (less than 1 second). You can customize the statistics logged and their verbosity.

You can also use the Stats Logger to view historical information about server statistics including LDAP
operations, host information, and gauges. Your options include:

▪ Update the configuration of the existing Stats Logger Plugin to set the advanced gauge-info property
to basic/extended to include this information.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 322

▪ Create a dedicated Periodic Stats Logger for information about statistics of interest.

Enabling the Stats Logger
By default, the Stats Logger plugin is disabled. Enable it using the dsconfig tool (and its Advanced
Objects menu and Plugin option) or the Administrative Console (and its Advanced Configuration menu and
Plugin Root option).

About this task
The steps below show how to use dsconfig to enable the plugin.

Steps

1. Run dsconfig in interactive mode. Enter the LDAP or LDAPS connection parameters when prompted.

$ bin/dsconfig

2. Enter o to change to the Advanced Objects menu.

3. On the main menu, enter the number for the Plugin menu.

4. On the Plugin menu, enter the number corresponding to view and edit an existing plugin.

5. On the Plugin selection list, enter the number corresponding to the Stats Logger.

6. On the Stats Logger Plugin menu, enter the number to set the enabled property to TRUE.

If the server is idle, nothing is logged. You can log data even when idle by setting the suppress-if-
idle property to FALSE (suppress-if-idle=false).

i Note: On this menu, you can also change the format from csv to json.

7. When done changing properties, enter f to save and apply the configuration.

The default logger logs information about the server every second to <server-root>/logs/
dsstats.csv. You can open the file in a spreadsheet.

Configuring multiple Periodic Stats Loggers
Create multiple, Periodic Stats Loggers to log different statistics or to view historical information about
gauges. Also, you might create multiple loggers to create a log at different intervals (such as logging
cumulative operations statistics every hour). To create a new log, use the existing Stats Logger as a
template to get reasonable settings, including rotation and retention policy.

Steps

1. Run dsconfig in interactive mode. Enter the LDAP or LDAPS connection parameters when prompted.

$ bin/dsconfig

2. Enter o to change to the Advanced Objects menu.

3. On the main menu, enter the number for the Plugin menu.

4. From the Plugin management menu, enter the number to create a new plugin.

5. Enter t to use an existing plugin as a template.

6. Enter the number corresponding to the existing stats logger as a template.

7. Enter a descriptive name for the new stats logger.

8. Enter the log file path to the file.

For example, type logs/dsstats2.csv.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 323

9. On the menu, make any desired changes to the properties for the logger.

For information about the included-http-servlet-stat property, see Logging HTTP performance statistics
using a Periodic Stats Logger on page 323.

i Note: On this menu, you can also change the format from csv to json.

10.Enter f to save and apply the configuration.

Logging HTTP performance statistics using a Periodic Stats Logger
To log HTTP performance statistics, set the Periodic Stats Logger property included-http-servlet-stat.

These statistics can be for any combination of the following servlet extensions:

▪ gateway
▪ scim2
▪ sideband-api

The provided statistics come in pairs.

▪ One statistic represents the average latency introduced by PingDataGovernance during the current log
interval in microseconds. The calculation is total time to respond to a request less the time spent waiting
for the upstream server.

▪ The other statistic represents the number of requests made during the current log interval.

These pairs exist for every (service, action) combination for the SCIM2 and Sideband API servlet
extensions and for every (service, HTTP method) combination for the Gateway servlet extension.

To log these statistics, complete these steps.

1. Enable the Periodic Stats Logger as explained in Enabling the Stats Logger on page 322.
2. Set the included-http-servlet-stat property as explained in Configuring multiple Periodic Stats Loggers

on page 322.

StatsD monitoring endpoint

The Monitoring Endpoint configuration type provides the StatsD Endpoint type that you can use to transfer
metrics data in the StatsD format.

Examples of metrics you can send are:

▪ Busy worker thread count
▪ Garbage collection statistics
▪ Host system metrics such as CPU and memory

For a list of available metrics, use the interactive dsconfig menu for the Stats Collector plugin, or in the
Administrative Console, edit the Stats Collector plugin as explained in the second example.

You configure the monitoring endpoint using the dsconfig command. When you configure the monitoring
endpoint, you include:

▪ The endpoint's hostname
▪ The endpoint's port
▪ A toggle to use TCP or UDP
▪ A toggle to use SSL if you use TCP

The following example shows how to configure a new StatsD monitoring endpoint to send UDP data to
localhost port 8125 using dsconfig.

dsconfig create-monitoring-endpoint \
 --type statsd \
 --endpoint-name StatsDEndpoint \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 324

 --set enabled:true \
 --set hostname:localhost \
 --set server-port:8125 \
 --set connection-type:unencrypted-udp

If you are using the Administrative Console, perform the following steps.

1. Click Show Advanced Configuration.
2. In the Logging, Monitoring, and Notifications section, click Monitoring Endpoints.
3. Click New Monitoring Endpoint.

You can send data to any number of monitoring endpoints.

The Stats Collector plugin controls the metrics used by the StatsD monitoring endpoint. To send metrics
with the StatsD monitoring endpoint, you must enable the Stats Collector plugin. Also, you must configure
the Stats Collector plugin to indicate the metrics to send.

To enable the Stats Collector plugin or to configure the type of data sent, use the dsconfig command
or the Administrative Console. This example shows how to enable the Stats Collector plugin to send host
CPU metric, memory metrics, and server status metrics using dsconfig.

dsconfig set-plugin-prop \
 --plugin-name "Stats Collector" \
 --set enabled:true \
 --set host-info:cpu \
 --set host-info:disk \
 --set status-summary-info:basic

If you are not using Data Metrics Server to monitor your server, you can disable the generation of some
metrics files that are not necessary for the StatsD Monitoring Endpoint. To do this, set the generate-
collector-files property on the Stats Collector Plugin to false.

If you are using the Administrative Console, perform the following steps.

1. Click Show Advanced Configuration.
2. In the LDAP (Administration and Monitoring) section, click Plugin Root
3. Edit the Stats Collector plugin.

After you enable the Stats Collector and create the StatsD monitoring endpoint, you can:

▪ Use the data with Splunk as explained in Sending metrics to Splunk on page 324.
▪ Configure other tools that support StatsD, such as CloudWatch or a Prometheus StatsD exporter, to

use the data. For more information about this configuration, see your tool's StatsD documentation.
Configure the PingDataGovernance StatsD monitoring endpoint to use the correct host and port. The
dsconfig create-monitoring-endpoint example above uses a host of localhost and a port of
8125. You can also set these values in the Administrative Console.

Sending metrics to Splunk
Use a Splunk Universal Forwarder to securely send UDP (or TCP) data to Splunk.

About this task

With the StatsD Endpoint type, you can send metric data to a Splunk installation. In Splunk, you can use
SSL to secure ports that are open for StatsD.

i Note:

StatsD metrics are typically sent over UDP. By using UDP, the client sending metrics does not have to
block as it would if using TCP. However, using TCP guarantees order and ensures no metrics are lost.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 325

You can configure open UDP (or TCP) ports in Splunk to accept only connections from a certain hostname
or IP address.

Steps

1. Send the data to a Splunk Universal Forwarder.

2. Have the forwarder communicate with the Splunk Indexer over SSL.

Managing HTTP correlation IDs
An HTTP correlation ID is a unique ID that you can use to track requests as they make their way through
the system.

The following sections explain how to configure and use these IDs.

About HTTP correlation IDs
HTTP correlation IDs let you trace requests.

A typical request to a software system is handled by multiple subsystems, which might be distinct servers
on distinct hosts across different locations. Tracing the request flow on such distributed systems can be
challenging because log messages are scattered across various systems and intermingled with messages
for other requests.

To solve this problem, a system can assign a correlation ID to a request that it adds to every associated
operation as the request flows through the larger system. With the correlation ID, you can easily locate and
group related log messages.

PingDataGovernance, PingDirectory, and their related products support correlation IDs for all HTTP
requests received through the HTTP(S) Connection Handler. For more information about HTTP connection
handlers in PingDirectory, see HTTP connection handlers.

How PingDataGovernance handles correlation IDs

▪ When any HTTP request is received, PingDataGovernance automatically assigns the request a
correlation ID.

▪ All related activity appears in the trace logs with this correlation ID.
▪ The PingDataGovernance gateway adds the correlation ID header to requests it forwards.
▪ The LDAP Store Adapter used by the SCIM 2 service uses the correlation ID as the client

request ID value in Intermediate Client Request Controls that it sends to the downstream Ping
LDAP server.

You can find this value in the via key of records logged by the LDAP server's access log.

If the LDAP server is a PingDirectory Proxy Server, the Intermediate Client Request Control is
forwarded in turn to the downstream LDAP server.

How other Ping products handle correlation IDs

▪ When any HTTP request is received, it is automatically assigned a correlation ID.
▪ You can use this correlation ID to correlate HTTP responses with messages recorded to the

HTTP Detailed Operation log and the trace log.
▪ For specific web APIs, the correlation ID might also be passed to the LDAP subsystem.
▪ For the SCIM 1, SCIM 2, Delegated Admin, Consent, and Directory REST APIs, the correlation

ID appears with associated requests in LDAP logs in the correlationID key.

Copyright ©2022

https://docs.pingidentity.com/bundle/pingdirectory-80/page/ppo1564011495630.html

PingDataGovernance | PingDataGovernance Server Administration Guide | 326

Enabling or disabling correlation ID support
Correlation ID support is enabled by default for each HTTP connection handler, but you can optionally
disable it.

Steps

▪ To disable correlation ID support for the HTTPS connection handler, run the following command.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" --set use-correlation-id-header:false

▪ To enable correlation ID support for the HTTPS connection handler, run the following command.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" --set use-correlation-id-header:true

Configuring the correlation ID response header
You can optionally change the correlation ID response header that PingDataGovernance Server sends
with HTTP requests.

About this task

Correlation-IdBy default, PingDataGovernance Server generates a correlation ID for every HTTP
request and response header.

To customize this response header name:

Steps

▪ Run the By default, PingDataGovernance Server generates a correlation ID for every HTTP request
and sends it in the response with the dsconfig command.
The following example changes the correlation ID response header to X-Request-Id.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" --set correlation-id-response-header:X-Request-Id

How the server manages correlation IDs
By default, the server looks for a correlation ID header on the request and uses the value if found. This
behavior integrates the server into a larger system of other servers using correlation IDs.

If a correlation ID header is not found, the server generates a new, unique correlation ID for each HTTP
request.

The connection handler uses the correlation-id-request-header property to determine which
request headers are correlation ID headers, as shown in the following configuration. The actual default
configuration might differ.

dsconfig set-connection-handler-prop --handler-name "HTTPS Connection
 Handler" \
 --set correlation-id-request-header:X-Request-Id \
 --set correlation-id-request-header:X-Correlation-Id \
 --set correlation-id-request-header:Correlation-Id \
 --set correlation-id-request-header:X-Amzn-Trace-Id

If a request contains more than one of the previous correlation ID headers, the server checks the
configured header names in order, and then uses the first one found.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 327

Server SDK support
For Server SDK extensions that have access to the current HttpServletRequest, the extension
can retrieve the current correlation ID as a String through the HttpServletRequest's
com.pingidentity.pingdata.correlation_id attribute.

Consider this example.

(String) request.getAttribute("com.pingidentity.pingdata.correlation_id");

Example: HTTP correlation ID
This example shows a SCIM 2 request with a correlation ID assigned in the response. Then the example
uses that ID to locate entries in the debug trace log and the policy decision log.

First, make a SCIM 2 GET request.

The response includes a Correlation-Id header with the value c52af735-788d-4798-
be3b-8d1f3c8f9d64. The ellipsis (...) in the response indicates lines removed to keep the example
brief. Because the request does not include a correlation ID, the server generates the header and value.

GET https://localhost:8443/scim/v2/Me HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Bearer ...
Connection: keep-alive
Host: localhost:1443
User-Agent: HTTPie/0.9.9

HTTP/1.1 200 OK
Content-Length: 903
Content-Type: application/scim+json
Correlation-Id: c52af735-788d-4798-be3b-8d1f3c8f9d64
Date: Thu, 30 Jul 2020 15:23:06 GMT
Request-Id: 371

{
 "mail": [
 "user.0@example.com"
],
 "initials": [
 "AOR"
],
 "homePhone": [
 "+1 295 940 2750"
],
 "pager": [
 "+1 604 109 3407"
],
 "givenName": [
 "Anett"
],
 ...
}

Use the correlation ID to search the HTTP debug trace log for matching log records.

$ grep 'correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"'
 PingDataGovernance/logs/debug-trace
[30/Jul/2020:10:23:06.641 -0500] HTTP REQUEST requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" product="Ping
 Identity Data Governance Server" instanceName="dg1" startupID="XyBwfQ=="

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 328

 threadID=27543 from=[0:0:0:0:0:0:0:1]:53978 method=GET
 url="https://0:0:0:0:0:0:0:1:8443/scim/v2/Me"
[30/Jul/2020:10:23:06.642 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 accessTokenValidator="Mock Access Token Validator" msg="Validating access
 token"
[30/Jul/2020:10:23:06.642 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 accessTokenValidator="Mock Access Token Validator" msg="Looking up token
 resource owner"
[30/Jul/2020:10:23:06.642 -0500] SCIM INTERNAL-REQUEST requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" scimOpID="6"
 op="search" opPath="Users" filter="uid eq 'user.0'"
[30/Jul/2020:10:23:06.643 -0500] DEBUG STORE-ADAPTER-MAPPING requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" scimOpID="6" msg="
[30/Jul/2020:10:23:06.643 -0500] DEBUG STORE-ADAPTER-MAPPING requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" scimOpID="6" msg="
[30/Jul/2020:10:23:06.650 -0500] DEBUG LDAP-EXTERNAL-SERVER-REQUEST
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 scimOpID="6" targetAddress="localhost" targetPort="1636"
 operation="SEARCH" base="ou=People,dc=example,dc=com" scope="wholeSubtree"
 filter="(&(uid=user.0)(objectClass=inetOrgPerson))" sizeLimit="501"
 attrs="entryUUID,*,createTimestamp,modifyTimestamp" entriesReturned="1"
 resultCode="0" msg="
[30/Jul/2020:10:23:06.651 -0500] DEBUG STORE-ADAPTER-MAPPING requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" scimOpID="6" msg="
[30/Jul/2020:10:23:06.651 -0500] DEBUG STORE-ADAPTER-MAPPING requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" scimOpID="6" msg="
[30/Jul/2020:10:23:06.652 -0500] DEBUG STORE-ADAPTER-PROCESSING
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 scimOpID="6" adapter="UserStoreAdapter" op="search" filter="uid eq
 'user.0'"
[30/Jul/2020:10:23:06.652 -0500] SCIM INTERNAL-RESULT requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" scimOpID="6"
 op="search" opPath="Users" status="2XX" numResults="1"
[30/Jul/2020:10:23:06.652 -0500] ACCESSTOKENVALIDATOR SUBJECT-LOOKUP
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 accessTokenValidator="Mock Access Token Validator" lookupMethod="User
 by uid" status="success" tokenOwner="Users/ad55a34a-763f-358f-93f9-
da86f9ecd9e4"
[30/Jul/2020:10:23:06.652 -0500] DEBUG ACCESS-TOKEN-VALIDATOR-PROCESSING
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 accessTokenId="" accessTokenValidator="Mock Access Token Validator"
 msg="Access token validated"
[30/Jul/2020:10:23:06.652 -0500] ACCESSTOKENVALIDATOR VALIDATION
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 accessTokenId="" accessTokenValidator="Mock Access Token
 Validator" status="success" subject="user.0" tokenOwner="Users/
ad55a34a-763f-358f-93f9-da86f9ecd9e4" clientId="" scopes=""
 expirationTime="none" notBefore="none"
[30/Jul/2020:10:23:06.653 -0500] SCIM REQUEST requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" accessTokenId=""
 scimOpID="7" op="retrieve" opPath="Users/ad55a34a-763f-358f-93f9-
da86f9ecd9e4"
[30/Jul/2020:10:23:06.656 -0500] POLICY REQUEST requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" accessTokenId=""
 scimOpID="7" trustFrameworkVersion="V2" domain="" service="SCIM2.Users"
 identityProvider="Mock Access Token Validator" action="retrieve"
 attributeKeys="HttpRequest.CorrelationId,TokenOwner,HttpRequest.RequestURI,HttpRequest.IPAddress,HttpRequest.ResourcePath,HttpRequest.RequestHeaders,HttpRequest.ResponseHeaders,HttpRequest.AccessToken,SCIM2"
[30/Jul/2020:10:23:06.931 -0500] DEBUG POLICY-REQUEST-AND-RESPONSE
 requestID=120 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"
 accessTokenId="" scimOpID="7" method=POST url="https://
localhost:9443/api/governance-engine?decision-node=e51688ff-1dc9-4b6c-

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 329

bb36-8af64d02e9d1&branch=Default+Policies" statusCode=200
 responseContentLength=288 msg="
[30/Jul/2020:10:23:06.931 -0500] POLICY RESULT requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" accessTokenId=""
 scimOpID="7" decisionId="db47a098-197d-45a4-8bdb-0fe9db4ece75"
 authorized="true" decision="PERMIT"
[30/Jul/2020:10:23:06.932 -0500] SCIM RESULT requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" accessTokenId=""
 scimOpID="7" op="retrieve" opPath="Users/ad55a34a-763f-358f-93f9-
da86f9ecd9e4" status="2XX"
[30/Jul/2020:10:23:06.933 -0500] HTTP RESPONSE requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" accessTokenId=""
 product="Ping Identity Data Governance Server" instanceName="dg1"
 startupID="XyBwfQ==" threadID=27543 statusCode=200 etime=291.298
 responseContentLength=903
[30/Jul/2020:10:23:06.933 -0500] DEBUG HTTP-FULL-REQUEST-
AND-RESPONSE requestID=120 correlationID="c52af735-788d-4798-
be3b-8d1f3c8f9d64" accessTokenId="" product="Ping Identity Data
 Governance Server" instanceName="dg1" startupID="XyBwfQ==" threadID=27543
 from=[0:0:0:0:0:0:0:1]:53978 method=GET url="https://0:0:0:0:0:0:0:1:8443/
scim/v2/Me" statusCode=200 etime=291.298 responseContentLength=903 msg="

Also, use the correlation ID to search the policy decision log for matching log records.

$ grep 'correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64"'
 PingDataGovernance/logs/policy-decision
[30/Jul/2020:10:23:06.931 -0500] DECISION requestID=120
 correlationID="c52af735-788d-4798-be3b-8d1f3c8f9d64" product="Ping Identity
 Data Governance Server" instanceName="dg1" clusterName="Data Governance
 Server" startupID="XyBwfQ==" threadID=27543 from=[0:0:0:0:0:0:0:1]:53978
 method=GET url="https://0:0:0:0:0:0:0:1:8443/scim/v2/Me" clientId=""
 tokenOwner="Users/ad55a34a-763f-358f-93f9-da86f9ecd9e4" action="retrieve"
 service="SCIM2.Users" domain="" identityProvider="Mock Access
 Token Validator" resourcePath="Users/ad55a34a-763f-358f-93f9-
da86f9ecd9e4" deploymentPackageId="9a84b1a0-a972-42e5-8d2d-4827f74bda1d"
 decisionId="db47a098-197d-45a4-8bdb-0fe9db4ece75" authorized="true"
 decision="PERMIT" decisionStatusCode="OKAY" adviceIds="" adviceNames=""

Command-line tools

PingDataGovernance Server provides a full suite of command-line tools to administer the server. Most
of these tools are in the bin directory for Linux systems and the bat directory for Microsoft Windows
systems; however, some of the tools are in the root directory of the distribution.

Available command-line tools
PingDataGovernance Server provides the following command-line tools. You can run these tools in
interactive, noninteractive, or script mode.

Tools help

For Use this option Example

Information about arguments and
subcommands

Usage examples

--help dsconfig --help

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 330

For Use this option Example

A list of subcommands --help-subcommands dsconfig --help-
subcommands

More information about a
subcommand

--help with the subcommand dsconfig list-log-
publishers --help

For more information and examples, see the PingDataGovernance Command-Line Tool Reference at
docs/cli/index.html.

Command-line tools

Tool Description

backup Run full or incremental backups on one or more
PingDataGovernance Server backends.

This tools supports the use of a properties file to
pass command-line arguments. See Saving options
in a file on page 333.

base64 Encode raw data using the base64 algorithm or
decode base64-encoded data back to its raw
representation.

collect-support-data Collect and package system information useful
in troubleshooting problems. The information is
packaged as a zip archive that you can send to a
technical support representative.

config-diff Compare PingDataGovernance Server
configurations and produce the dsconfig batch file
needed to bring the source inline with the target.

create-initial-config Create an initial PingDataGovernance Server
configuration.

create-rc-script Create a Run Control (RC) script to start, stop, and
restart the PingDataGovernance Server on UNIX-
based systems.

create-systemd-script Create a systemd script to start and stop the
PingDataGovernance Server on Linux-based
systems.

dsconfig View and edit the PingDataGovernance Server
configuration.

dsjavaproperties Configure the JVM options used to run
PingDataGovernance Server and its associated
tools.

Before launching the command, edit the properties
file located in config/java.properties to
specify the desired JVM options and JAVA_HOME
environment variable.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 331

Tool Description

encrypt-file Encrypt or decrypt data using a key generated
from a user-supplied passphrase, a key generated
from an encryption settings definition, or a key
shared among servers in the topology. The data to
be processed can be read from a file or standard
input, and the resulting data can be written to a file
or standard output. You can use this command to
encrypt and subsequently decrypt arbitrary data, or
to decrypt encrypted backups, LDIF exports, and
log files generated by the server.

encryption-settings Manage the server encryption settings database.

ldap-diff Compare the contents of two LDAP servers.

ldap-result-code Display and query LDAP result codes.

ldapcompare Perform LDAP compare operations in the
PingDataGovernance Server.

ldapdelete Delete one or more entries from an LDAP directory
server. You can provide the DNs of the entries
to delete using named arguments, as trailing
arguments, from a file, or from standard input.
Alternatively, you can identify entries to delete using
a search base DN and filter.

ldapmodify Apply a set of add, delete, modify, and/or modify
DN operations to a directory server. Supply the
changes to apply in LDIF format, either from
standard input or from a file specified with the
ldifFile argument. Change records must be
separated by at least one blank line.

ldappasswordmodify Perform LDAP password modify operations in
PingDataGovernance Server.

ldapsearch Process one or more searches in an LDAP
directory server.

list-backends List the backends and base DNs configured in
PingDataGovernance Server.

manage-certificates Manage certificates and private keys in a JKS or
PKCS #12 key store.

manage-extension Install or update PingDataGovernance Server
extension bundles.

manage-profile Generate, compare, install, and replace server
profiles.

manage-tasks Access information about pending, running,
and completed tasks scheduled in the
PingDataGovernance Server.

manage-topology Manage the topology registry.

prepare-external-store Prepare a PingDataGovernance Server and an
external server for communication.

reload-http-connection-handler-certificates Reload HTTPS Connection Handler certificates.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 332

Tool Description

remove-backup Safely remove a backup and optionally all
of its dependent backups from the specified
PingDataGovernance Server backend.

remove-defunct-server Remove a server from this server's topology.

replace-certificate Replace the listener certificate for this
PingDataGovernance Server server instance.

restore Restore a backup of a PingDataGovernance Server
backend.

revert-update Revert this server package's most recent update.

review-license Review and/or indicate your acceptance of
the license agreement defined in legal/
LICENSE.txt.

rotate-log Trigger the rotation of one or more log files.

sanitize-log Sanitize the contents of a server log file to
remove potentially sensitive information while still
attempting to retain enough information to make it
useful for diagnosing problems or understanding
load patterns. The sanitization process operates
on fields that consist of name-value pairs. The field
name is always preserved, but field values might be
tokenized or redacted if they might include sensitive
information. Supported log file types include the file-
based access, error, sync, and resync logs, as well
as the operation timing access log and the detailed
HTTP operation log.

schedule-exec-task Schedule an exec task to run a specified command
in the server. To run an exec task, a number of
conditions must be satisfied: the server's global
configuration must have been updated to include
'com.unboundid.directory.server.tasks.ExecTask' in
the set of allowed-task values, the requester must
have the exec-task privilege, and the command
to execute must be listed in the exec-command-
whitelist.txt file in the server's config
directory. The absolute path (on the server system)
of the command to execute must be specified as
the first unnamed trailing argument to this program,
and the arguments to provide to that command
(if any) should be specified as the remaining
trailing arguments. The server root is used as the
command's working directory, so any arguments
that represent relative paths are interpreted as
relative to that directory.

search-logs Search across log files to extract lines matching
the provided patterns, like the grep command-line
tool. The benefits of using this tool over grep are
its ability to handle multiline log messages, extract
log messages within a given time range, and the
inclusion of rotated log files.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 333

Tool Description

server-state View information about the current state of the
PingDataGovernance Server process.

setup Perform the initial setup for a server instance.

start-server Start the PingDataGovernance Server.

status Display basic server information.

stop-server Stop or restart the server.

sum-file-sizes Calculate the sum of the sizes for a set of files.

uninstall Uninstall PingDataGovernance Server.

update Update the PingDataGovernance Server to a newer
version by downloading and unzipping the new
server install package on the same host as the
server you wish to update. Then, use the update
tool from the new server package to update the
older version of the server. Before upgrading a
server, you should ensure that it is capable of
starting without severe or fatal errors. During the
update process, the server is stopped if running,
then the update is performed, and a check is made
to determine if the newly updated server starts
without major errors. If it cannot start cleanly, the
update will be backed out and the server returned
to its prior state. See the revert-update tool for
information on reverting an update.

validate-file-signature Validate file signatures. For best results, file
signatures should be validated by the same
instance used to generate the file. However, it might
be possible to validate signatures generated on
other instances in a replicated topology.

Saving options in a file
PingDataGovernance Server supports the use of a tools properties file (config/tools.properties by
default) to simplify command-line invocations by reading in a set of options for each tool from a text file.

Properties files are convenient when quickly testing PingDataGovernance Server in multiple environments.

Each property takes the form of a name-value pair that defines predetermined values for a tool's options.

PingDataGovernance Server supports the following types of properties:

▪ Default properties that apply to all command-line tools
▪ Tool-specific properties

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 334

Creating a tools properties file
You can set properties that apply to all tools or are tool-specific. These properties serve as defaults for the
command-line options they represent.

Steps

1. Use a text editor to open the default tools properties file (config/tools.properties) or a different
properties file.

i Note:

If you use a file other than config/tools.properties, invoke the tool with the --
propertiesFilePath option to specify the path to your properties file.

2. Set or change properties that apply to all tools.

Use the standard Java properties file format (name=value) to set properties. For example, the following
properties define a set of LDAP connection parameters.

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret
baseDN=dc=example,dc=com

i Note:

Properties files do not allow quotation marks of any kind around values.

Escape spaces and special characters.

Whenever you specify a path, do not use ~ to refer to the home directory. The server does not expand
the ~ value when read from a properties file.

3. Set or change properties that apply to specific tools.

Tool-specific properties start with the name of the tool followed by a period. These properties
take precedence over properties that apply to all tools. The following example sets two ports:
one that applies to all tools (port=1389) and a tool-specific one that ldapsearch uses instead
(ldapsearch.port=2389).

hostname=server1.example.com
port=1389
ldapsearch.port=2389
bindDN=cn=Directory\ Manager

4. Save your changes and close the file.

Evaluation of command-line options and file options
You can specify options for a command-line tool on the command line, in a properties file, or both.

Options you specify on a tool’s command line take priority over options in a properties file.

Consider the following scenarios.

Command-line options PingDataGovernance Server uses ...

No command-line options The options in the default <server-root>/config/tools.properties file

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 335

Command-line options PingDataGovernance Server uses ...

Command-line options other than
the --propertiesFilePath
<my-properties-file> option

The command-line options, which take priority if the options are also in the
<server-root>/config/tools.properties file

The file options for options that are only in the default <server-root>/
config/tools.properties file

Only the --propertiesFilePath
<my-properties-file> option

The options in <my-properties-file>

The --propertiesFilePath
<my-properties-file> option
and other command-line options

The command-line options, which take priority if the options are also in <my-
properties-file>

The file options for options that are only in <my-properties-file>

The --noPropertiesFile option
and other command-line options

Only the options you specify on the command line, ignoring the default
properties file

Example

Consider this example properties file that is saved as <server-root>/bin/tools.properties:

hostname=server1.example.com
port=1389
bindDN=cn=Directory\ Manager
bindPassword=secret

PingDataGovernance Server checks command-line options and file options to determine the options to
use, as explained below.

▪ All options presented with the tool on the command line take precedence over any options in a
properties file.

In the following example, the command runs with the options specified on the command line (--
port and --baseDN). With the port value both on the command line and in the properties file, the
command-line value takes priority. The command uses the bindDN and bindPassword values
specified in the properties file.

$ bin/ldapsearch --port 2389 --baseDN ou=People,dc=example,dc=com \
 --propertiesFilePath bin/tools.properties “(objectclass=*)”

▪ If you specify the properties file using the --propertiesFilePath option and no other command-line
options, PingDataGovernance Server uses only the options in the specified properties file:

$ bin/ldapsearch --propertiesFilePath bin/tools.properties \
 “(objectclass=*)”

▪ If do not specify any command-line options, PingDataGovernance Server attempts to locate the default
properties file in the following location:

<server-root>/config/tools.properties

By moving your tools.properties file from <server-root>/bin to <server-root>/config,
you do not have to specify the --propertiesFilePath option. That change shortens the previous
command to the following command.

$ bin/ldapsearch "(objectclass=*)"

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 336

Sample dsconfig batch files
PingDataGovernance provides sample dsconfig batch files that you can use to easily make a number of
common or recommended changes to the server configuration.

The config/sample-dsconfig-batch-files directory contains dsconfig batch files that you can
use to configure various aspects of the server. For example, these files can enable additional security
capabilities or take advantage of features that might require customization from one environment to
another.

Each file includes comments that describe the purpose and benefit of its configuration change. You can
choose which of the changes you want to apply.

You need to customize some of the batch files to provide values that might vary from one environment to
another. To apply a batch file that requires changes, copy it to another directory and edit the copy. Leave
the files in the config/sample-dsconfig-batch-files directory unchanged so that they can be
updated when you upgrade the server. To specify the path to the file that contains the changes to apply,
use the dsconfig tool (bin/dsconfig on UNIX-based systems or bat\dsconfig.bat on Windows)
with the --batch-file argument.

You should also provide the arguments needed to connect and authenticate to the server. The --no-
prompt argument ensures that the tool does not block while waiting for input if any necessary arguments
are missing. Consider this example.

bin/dsconfig --hostname localhost \
 --port 636 --useSSL --trustStorePath config/truststore \
 --bindDN "uid=admin,dc=example,dc=com" \
 --bindPasswordFile admin-password.txt \
 --batch-file config/hardening-dsconfig-batch-files/reject-insecure-request.dsconfig \
 --no-prompt

Running task-based tools
PingDataGovernance Server has a Tasks subsystem that allows you to schedule basic operations, such
as backup, restore, rotate-log, schedule-exec-task, and stop-server. All task-based tools
require the --task option that explicitly indicates the tool is to run as a task rather than in offline mode.

The following table shows the options you can use for task-based operations.

Options for task-based operations

Option Description

--task Indicates that the tool is invoked as a task. The --task option is
required. If you invoke a tool as a task without this --task option,
then a warning message is displayed stating that it must be used.
If the --task option is provided but the tool was not given the
appropriate set of authentication arguments to the server, then an
error message is displayed and the tool exits with an error.

--start <startTime> Indicates the date and time, expressed in the format
'YYYYMMDDhhmmss', when the operation is to start.

A value of '0' causes the task to be scheduled for immediate
execution.

After the scheduled run, the tool exits immediately.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 337

Option Description

--dependency <taskID> Specifies the ID of a task upon which this task depends.

A task does not start execution until all its dependencies have
completed execution.

You can use this option multiple times in a single command.

--failedDependencyAction
<action>

Specifies the action this task takes if one of its dependent tasks fail.

Valid action values are:

▪ CANCEL (the default)

Cancels the task.
▪ DISABLE

Disables the task so that it is not eligible to run until you manually
enable it again.

▪ PROCESS

Runs the task.

--startAlert Generates an administrative alert when the task starts running.

--errorAlert Generates an administrative alert when the task fails to complete
successfully.

--successAlert Generates an administrative alert when the task completes
successfully.

--startNotify
<emailAddress>

Specifies an email address to notify when the task starts running.

You can use this option multiple times in a single command.

--completionNotify
<emailAddress>

Specifies an email address to notify when the task completes,
regardless of whether it succeeded or failed.

You can use this option multiple times in a single command.

--errorNotify
<emailAddress>

Specifies an email address to notify if an error occurs when this task
executes.

You can use this option multiple times in a single command.

--successNotify
<emailAddress>

Specifies an email address to notify when this task completes
successfully.

You can use this option multiple times in a single command.

Capture debugging data
For problems with PingDataGovernance Server or a supporting component, such as the Java Virtual
Machine (JVM), the operating system, or the hardware, you can capture diagnostic data.

With this data, you can troubleshoot the problem quickly to determine the underlying cause and the best
course of action to resolve it.

For specific details, see the following topics:

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 338

▪ Exporting policy data on page 338
▪ Enable detailed logging on page 338
▪ Visualizing a policy decision response on page 340
▪ Capture debugging data with the collect-support-data tool on page 342

Exporting policy data
Export all Trust Framework and policy data from the PingDataGovernance Policy Administration GUI,
which is powered by Symphonic, to a snapshot that captures all of the policy data contained within a
branch of the PingDataGovernance Policy Administration GUI.

About this task

Snapshots provide a convenient way to load policy data into a separate PingDataGovernance Policy
Administration GUI instance.

To export policy data:

Steps

1. Go to Branch Manager.

2. Select the Version Control tab.

3. Click the name of the branch to export.

4. Click the branch's Options icon and select Export Snapshot.
A snapshot file downloads to your computer.

Enable detailed logging
Enable detailed debug logging for troubleshooting.

i Note:

This level of logging captures request and response data that contains potentially sensitive information. Do
not use this level of logging when working with actual customer data.

Policy Decision logger
Enabled by default, the Policy Decision logger records decision responses that are received from the policy
decision point (PDP).

Regardless of whether PingDataGovernance Server is configured to evaluate a policy in Embedded
or External mode, a policy-decision file logs every policy decision per request. This file is located at
PingDataGovernance/logs/policy-decision and contains the following information:

Policy-decision response

Each client request triggers a policy-decision response that specifies the inbound actions to perform,
and another policy-decision response that specifies the outbound actions to perform. If you think of
a policy-decision response as a set or decision tree of policies, all inbound and outbound requests
are read from that set or tree.

Policy rules determine whether a request is denied, permitted, or indeterminate.

Most recent policy decision

To debug the most recent inbound request, open the policy-decision log file and locate the highest
DECISION requestID in the section near the bottom of the file. In the following example, [08/

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 339

May/2019:15:35:04.791 -0500] "DECISION requestID=46" represents the most recent
request, and action equals "inbound-GET".

[08/May/2019:15:35:04.791 -0500] DECISION requestID=46
 correlationID="0349a205-6aeb-4bd6-923b-c777bcef2241"
product="Ping Identity Data Governance Server" instanceName="dgl"
 startupID="XNM9Hw==" threadID=140
from=[0:0:0:0:0:0:0:l]:49882 method=GET
 url="https://0:0:0:0:0:0:0:1:8443/jokes/random" clientId=""
action="inbound-GET" service="Random Joke API" domain=""
 identityProvider="Mock
Access Token Validator" resourcePath="" deploymentPackageId="95c5864c-
b7ab-4588-a3d6-99d99d09fafc"
decisionId="734fc520-ffle-4f80-970a-12100cdd7646" authorized="true"
 decision="PERMIT" decisionStatusCode="OKAY" adviceIds=""
adviceNames=""

{
 "id" : "734fc520-ffle-4f80-970a-12100cdd7646",
 "deploymentPackageId" : "95c5864c-b7ab-4588-a3d6-99d99d09fafc",
 "elapsedTime" : 1036,
 "request" : {

Alternatively, you can use the most recent request timestamp to locate the most recent request.

Policy advice

If the policy contains advice, it is logged after the policy-decision response JSON. Advice features
the same corresponding requestID as the most recent policy decision, as the following example
shows.

[08/May/2019:15:35:05.377 -0500] ADVICE requestID=46
 correlationID="0349a205-6aeb-4bd6-923b-c777bcef2241" product="Ping
 Identity
Data Governance Server" instanceName="dgl" startupID="XNRLuQ=="
 threadID=139 from=[0:0:0:0:0:0:0:l]:56475 method=GET url="https:
0:0:0:0:0:0:0:l:8443/jokes/random" clientId="" action="outbound-GET"
 service="Random Joke API" resourcePath=""
deploymentPackageId="026ab83d-5ed5-41f1-ada7-a50af5d02133"
 decisionId="0331232d-cd9e-43fc-8804-c2f8b0c23674" authorized="false"
decision="DENY" decisionStatusCode="OKAY" advicelmplId="denied-reason"
 adviceImplName="Denied Reason Advice" obligatory="false"
resourceModified="true"

To increase the level of detail that is returned in PDP decision responses, configure the Policy Decision
Service as follows.

dsconfig set-policy-decision-service-prop \
 --add decision-response-view:decision-tree \
 --add decision-response-view:request \
 --add decision-response-view:evaluated-entities \
 --add decision-response-view:evaluation-log-with-attribute-values

Debug Trace logger
The Debug Trace logger records detailed information about the processing of HTTP requests and
responses.

The following example enables the log.

dsconfig set-log-publisher-prop \
 --publisher-name "Debug Trace Logger" \

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 340

 --set enabled:true

By default, the corresponding log file is located at PingDataGovernance/logs/debug-trace.

Debug logger
The Debug logger records debugging information that a developer might find useful.

The following example enables the log.

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name com.unboundid.directory.broker.http.gateway \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.config.GatewayConfigManager \
 --set debug-level:verbose

dsconfig create-debug-target \
 --publisher-name "File-Based Debug Logger" \
 --target-name \
 com.unboundid.directory.broker.core.policy.PolicyEnforcementPoint \
 --set debug-level:verbose

dsconfig set-log-publisher-prop \
 --publisher-name "File-Based Debug Logger" \
 --set enabled:true

By default, the corresponding log file is located at PingDataGovernance/logs/debug.

Visualizing a policy decision response
Visualize a decision by selecting a recent decision or by copying and pasting a decision from a log.

Steps

1. Sign on to the PingDataGovernance Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 341

2. Choose a method for visualizing a decision.

▪ Select a recent decision

a. In the Policy Administration GUI, go to Policies.
b. Click the Decision Visualiser tab.
c. Click Recent Decisions and select a decision.
d. Click Visualise.

i Note:

You can control the number of recent decisions that appear in the list as explained in Setting the
request list length for Decision Visualizer on page 260.

▪ Copy and paste a decision from a log

i Note:

Before attempting to troubleshoot or trace a policy-decision response, ensure that the Policy
Decision logger is enabled. For more information, see Configuring PingDataGovernance logging on
page 311.

Each policy-decision response is presented in JSON format. To view the details of a policy-decision
response:

a. From within the policy-decision file, copy the policy-decision response JSON.
b. In the Policy Administration GUI, go to Policies.
c. Click the Decision Visualiser tab.
d. Click Paste Logs.
e. In the field beneath Paste Logs, paste the policy-decision response JSON.
f. Click Visualise.

Results
An interactive decision tree of your policies is displayed.

This image depicts the final decision sent to the client. The node to the far left, Global Decision Point,
represents the root node, and the child nodes contain the subset of policies and rules.

The following color-coded icons convey important information:

▪ A green check mark indicates that the request permit on the policy or rule.
▪ A red X indicates that the request deny on the policy or rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 342

▪ A gray N/A indicates that the request is not applicable to the policy or rule.

In the previous example, the client received a final decision of deny. The Token Validation policy permitted
the request initially but was overridden after the Random Jokes API policy was applied.

Capture debugging data with the collect-support-data tool
Run the collect-support-data tool to capture the PingDataGovernance Server’s configuration, server
state, environment, and other information to use for troubleshooting issues.

When you run PingDataGovernance/bin/collect-support-data, the tool generates a
compressed file that can be attached to a message or report.

By default, the tool excludes log files that might contain sensitive customer information, including the
debugging logs that are described in Enable detailed logging on page 338. When you use test data, send
the following log files alongside collect-support-data’s compressed output file:

▪ PingDataGovernance/logs/policy-decision
▪ PingDataGovernance/logs/debug-trace
▪ PingDataGovernance/logs/debug

About the layout of the PingDataGovernance Server folders
The following table describes the contents of the PingDataGovernance Server distribution file. In addition,
the table describes items created as you use PingDataGovernance Server.

PingDataGovernance Server directories, files, and tools

Directories, files, and tools Description

README README file that describes the steps to set up and
start PingDataGovernance Server.

bak Stores the physical backup files used with the
backup command-line tool.

bat Stores Windows-based command-line tools for
PingDataGovernance Server.

bin Stores UNIX/Linux-based command-line tools for
PingDataGovernance Server.

build-info.txt Contains build and version information for
PingDataGovernance Server.

collector Used by the server to make monitored statistics
available to PingDataMetrics Server.

config Stores the configuration files for the backends
(admin, config) as well as the directories for
messages, schema, tools, and updates.

docs Provides the product documentation.

extensions Stores Server SDK extensions.

ldif Serves as the default location for LDIF exports and
imports.

legal Stores any legal notices for dependent software
used with PingDataGovernance Server.

Copyright ©2022

PingDataGovernance | PingDataGovernance Server Administration Guide | 343

Directories, files, and tools Description

lib Stores any scripts, jar, and library files needed for
the server and its extensions.

locks Stores any lock files in the backends.

logs Stores log files for PingDataGovernance Server.

metrics Stores the metrics that can be gathered for this
server and surfaced in PingDataMetrics Server.

resource Stores supporting files such as default policies, a
sample server profile template, and MIB files for
SNMP.

revert-update The revert-update tool for UNIX/Linux systems.

revert-update.bat The revert-update tool for Windows systems.

setup The setup tool for UNIX/Linux systems.

setup.bat The setup tool for Windows systems.

tmp Stores temporary files and directories used by the
server, including extracted WAR files and compiled
JSP files used by Web Application Extensions.

uninstall The uninstall tool for UNIX/Linux systems.

uninstall.bat The uninstall tool for Windows systems.

update The update tool for UNIX/Linux systems.

update.bat The update tool for Windows systems.

velocity Stores any customized Velocity templates and
other artifacts (CSS, Javascript, images), or
Velocity applications hosted by the server.

webapps Stores web application files such as the
Administrative Console.

About the layout of the PingDataGovernance Policy Administration GUI
folders

The following table describes the contents of the PingDataGovernance Policy Administration GUI
distribution file.

PingDataGovernance Policy Administration GUI directories, files, and tools

Directories, files, and tools Description

admin-point-application Stores any .jar and library files needed for the
server.

bin Stores UNIX/Linux-based command-line tools for
the PingDataGovernance Policy Administration
GUI.

build-info.txt Contains build and version information for the
PingDataGovernance Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 344

Directories, files, and tools Description

config Stores the configuration, including the keystore for
the web server HTTPS certificate.

lib Stores any .jar and library files needed by the
command-line tools.

logs Stores log files for the PingDataGovernance Policy
Administration GUI.

resource Stores supporting files such as policy snapshots.

PingDataGovernance Policy Administration Guide

PingDataGovernance Policy Editor includes policy development and testing capabilities:

▪ Policy administration and delegation
▪ Attribute resolution and orchestration

Getting started
This guide introduces the features of the PingDataGovernance Policy Administration GUI (Policy Admin
GUI), which is powered by Symphonic®. It provides information about creating access control policies that
reflect your business requirements. It also provides a tour of the various concepts involved in modeling
policies in the Policy Admin GUI.

About this task

To get started with the Policy Admin GUI, complete the following tasks:

Steps

1. Sign on to the Policy Admin GUI.

In demo environments, you can use the default credentials:

▪ User name: admin
▪ Password: password123

2. Create a branch.

This branch stores your policies and other entities.

3. Define the Trust Framework.

This allows you to define the elements that will form the building blocks of your policies – the WHO,
WHAT, WHERE, WHY, and WHEN.

4. Define your policies and policy sets.

Build your policies to reflect your business needs.

5. Test polices and policy sets.

Verify that your policies correctly implement your business rules.

6. Commit changes.

This creates a commit, which is an immutable representation of the Trust Framework and Policies at a
point in time.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 345

7. Create a deployment package.

This creates a file that can you deploy to PingDataGovernance Server instances across multiple
environments.

Next steps

After you sign on to the Policy Admin GUI, the system prompts you to set the branch on which to work. You
can create a new (empty) branch, select an existing branch, or import a branch from a snapshot file.

The PingDataGovernance Policy Administration GUI embraces similar principles to general software
source control. As such, it begins with the creation of a branch. When you first deploy the Policy Admin
GUI, the Branches repository is empty, and the system prompts you to create or import a branch. You
must complete one of these actions to continue using the product.

Version control (Branch Manager)
Use the Branch Manager to manage your branches, commits, snapshots, and deployment packages.

Creating a new top-level branch
The PingDataGovernance Policy Administration GUI (Policy Admin GUI) allows you to create a new branch
in two ways: using the startup window or the Branch Manager.

About this task

i Note:

Branch names must be unique. No two branches in the Policy Admin GUI can share the same name.

Steps

1. Sign on to the Policy Admin GUI.

2. Choose how to create the branch per the following table.

To create a new top-level branch from Do this

The startup window Specify a Branch name and click Create new
branch.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 346

To create a new top-level branch from Do this

Branch Manager From Branch Manager# Version Control, you
can create a new root, or top-level, branch:

a. From the + menu, select Create new root
branch.

b. For the name, replace Untitled with a name
for your new branch.

c. Click Save Branch.

Creating a subbranch from a commit
Create a branch from a commit. For more information, see Committing changes on page 348.

About this task

This subbranch is a child of the branch from which the commit was selected. The subbranch shares the
history and contents of the parent branch up to that commit.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the commit from which to branch.

To branch from the latest uncommitted changes, make certain to commit before proceeding.

4. Click the three-line menu and select Create new branch from commit.

5. Specify a name for the branch.

6. Click Save Branch.

Results

The system creates a new subbranch with the selected commit as the branch-point.

Importing a branch
Import branches from previously-exported snapshot files to share and restore Trust Framework definitions
and policies across users and environments.

About this task

i Note: A snapshot file contains all the entities and policies from an existing branch. You can share the
file like any other file. For more information about creating snapshots, see Generating snapshots on page
349.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Click + and select Import Snapshot.

4. Select the appropriate snapshot file.

5. Specify a name for the branch.

6. Click Import.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 347

Deleting a branch
Delete a branch to remove the branch, its history, and any commits created on it from the system.

About this task

You cannot delete a branch if a deployment package has been created from that branch.

i CAUTION:

This operation is irreversible.

To recover data from a deleted branch, load a snapshot exported from the branch if one exists. If no such
snapshot is available, contact your system administrator, who might be able to recover the deleted branch
from a database backup.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the branch to delete.

4. Click Delete Branch.

Merging branches
Merge branches to apply all of the changes made in the source branch to the target branch.

About this task
You can only merge committed branches.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the source branch.

You can select top-level branches and subbranches.

4. Click Set branch as Merge Source.

5. Go to the target branch and click Set branch as Merge Target.

With the source and target branches selected, the Merge Branches button should appear.

6. Click Merge Branches.

The PingDataGovernance Policy Administration GUI, which is powered by Symphonic®, checks for
merge conflicts.

If no conflicts are found, the changes are merged from the source branch into the target branch. Your
merge is complete, and you can skip the remaining step.

If conflicts are found, complete the following step to resolve the conflicts.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 348

7. Resolve conflicts.

If an entity has changed in both the incoming and existing branches, the Policy Administration GUI
flags a conflict. You must resolve the conflict for the merge to continue. Conflicts appear in the Merge
Conflicts table.

a. If you need all or almost all of the sections from one branch, click either the Take All Incoming
button or the Keep All Existing button.

b. To examine conflicts one at a time, click Resolve Individual Conflicts.

On the resulting screen, select the Show diff check box to highlight differences.

Decide which change to keep and click either Keep Existing or Take Incoming.
c. After you resolve all conflicts, close the entity difference box.

The Apply Merge button becomes available.
d. Click Apply Merge.

Reverting changes
To undo changes since the last commit, use the Revert button.

About this task

Each branch has a list of previous commits and Uncommitted Changes. To show the changes since the
last commit, click the arrow to the left of the three-line icon in the Uncommitted Changes section.

i Note:

Reverting a change reverts all changes that have been made since that change as well. Make sure that
you understand all the changes that will be reverted before reverting.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the branch with the uncommitted changes to revert.

4. Expand the Uncommitted Changes section by clicking the arrow to the left of the three-line icon to
show all the changes that have happened since the last commit.

To the right of each change is a Revert button.

5. Click the Revert button and confirm the revert.

Committing changes
To save your policy and Trust Framework changes, commit your changes.

About this task

After you finish building, testing, and analyzing your policies, commit the changes. Committed changes
cannot be reverted.

With changes committed, you can create a deployment package from the commit. See Creating a
deployment package on page 350.

Steps

1. Click Branch Manager.

2. Click Version Control.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 349

3. Select the branch in which to put the commit.

4. Click Commit New Changes.

Generating snapshots
A snapshot contains all the details from a commit or from the Uncommitted Changes head. You can
export a snapshot to import later.

Steps

1. Click Branch Manager.

2. Click Version Control.

3. Select the three-line icon for item to snapshot.

4. Click Export Snapshot.

5. Specify a name for the snapshot.

6. Click Export.

Partial snapshot export and merging

With the partial snapshot export feature, you can package a subset (partial) of the policies or Trust
Framework entities for export. Then you can import the partial snapshot, either as an imported new branch
or merged into an existing branch.

Creating a partial export
Create a partial export to build an export snapshot of specifically selected entities from a combination of
the Trust Framework, Policy Sets, and the Library set.

Steps

1. Click Branch Manager.

2. Click Export Partial Snapshot.

3. Select the desired items from the list on the left.

4. Click Add selection to Snapshot at the top of the pane on the left.

This step adds the entity to the Selected entities list. The exported snapshot automatically includes all
dependencies so you do not need to explicitly select each individual dependency.

5. Click Export.

Merging a partial snapshot
Merge a snapshot to add or update all of the entities into the current branch.

Steps

1. Click Branch Manager.

2. Click Merge Snapshot.

3. Select the appropriate snapshot file from your system.

4. Click Merge.

Results

The system displays a Summary page that details the result of the merge.

Next steps

In some cases, the merge function detects conflicts that arise when the current branch version differs
from the snapshot version of the same entity. For example, this situation might occur if you update one of

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 350

the merged entities in your current branch and then try to re-merge the snapshot. In such a scenario, the
system displays the following Merge Conflict Resolution page.

For each conflict detected, you can choose whether to keep your local changes or to overwrite them with
the changes from the merged snapshot.

After you resolve the conflicts, click Merge.

Creating a deployment package
Create a deployment package from committed changes.

About this task

A deployment package is a compiled version of the policy tree and is the key element that is deployed to
PingDataGovernance Server.

Steps

1. Click Branch Manager.

2. Click Deployment Packages.

3. Click +.

4. Replace Untitled with a name for the deployment package.

5. Select a Branch, Commit, and Policy Node from which to generate the package.

6. Click Create Package.

The package can be exported any number of times and will remain the same even if further changes
are made to the branch.

To export the deployment package, select the package and click Export Package.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 351

Deleting a deployment package
Delete a deployment package to remove it from the Packages list.

Steps

1. Click Branch Manager.

2. Click Deployment Packages.

3. Select the package.

4. Click Delete Package.

Trust Framework
The Trust Framework tool lets you define all the entities within your organizations about which you want to
build policies at a later time.

You must define anything you want to express in your policies in the Trust Framework. As a result, your
policies are tightly coupled to the definitions in your Trust Framework, with strict restrictions on intermixing
of values with differing data types.

Domains (PDP API only)
You need to define the organizational structure of any other organizations with which you intend to interact
and, consequently, on which you want to specify authorization policies.

Define these organizations under Trust Framework, using the Domains section, which is available only
on PDP API-enabled servers . Start with a relatively clean and simple domain ontology. You can extend it
later if you need more granular levels.

You can import these values from your existing organizational directory, such as Active Directory. Make
certain that you do not import redundant and unnecessary entities.

Services

The Services section enables the definition of the following types of services:

▪ The resources to which you want to control access (what your policies will protect)
▪ The policy information providers that are used as a source of data for the attributes that comprise policy

decisions

Resources

For a resource, define only the top-level fields, such as Name, Parent, and Description. Unless you plan
to also use the service as a policy information provider, leave the Service Type as None.

Policy information providers
Setting up services as policy information providers makes use of various service connectors.

When you make a selection from the Service Type list, settings specific to the service appear. Settings
that apply to all service endpoints also appear.

When a service returns a value to resolve an attribute, you can:

▪ Map the response to a type.
▪ Apply a processor to the response to transform that response or to extract a specific part of it.

Use a processor when a service returns more information than is required or returns information that
you must convert to a different format.

For information about processors and how to combine multiple processors, see Value processing on
page 366.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 352

Common settings
The settings in this section apply to all service types.

Request Timeout

The number of milliseconds that PingDataGovernance Server waits for the request to complete. If this
time elapses before receiving a successful response, the server cancels request. If the server has retries
configured, the server attempts the request again. If all requests fail to complete in time, the service result
is an error that represents the timeout.

Number of Retries

If the initial request fails or times out, this value indicates the number of times PingDataGovernance Server
attempts the request again. To try the request only once, set this value to zero.

Retry Strategy

Options are:

Fixed Interval (default)

PingDataGovernance Server waits for the retry delay between each attempt to perform a service
request.

Exponential Backoff

PingDataGovernance Server waits for an exponentially increasing amount of time between
attempts.

Retry Delay

For a fixed interval strategy, this value represents the number of milliseconds that PingDataGovernance
Server waits between request attempts.

For Exponential Backoff, PingDataGovernance Server multiplies this value by 2^n, where n represents
the number of retries already made. For example, if the retry delay is 1000 and you have Exponential
Backoff selected, PingDataGovernance Server makes the initial request, then waits 1000ms before making
a second attempt, 2000ms before the third attempt, 4000ms before the fourth attempt, and so on.

Delay Jitter

This setting is a percentage value that indicates the amount of variability to apply to the retry delay on each
attempt. For example, if this value is set to 10%, the delays in the previous example are 1000±100ms,
2000±100ms, 4000±100ms, and so on.

Value Processors

Specify an optional processor to transform the resolved value. See Value processing on page 366.

Value Settings

These are required settings that are applied and describe the resolved value after any preprocessing. Set
the Type field to String for plain text, or JSON or XML for those types, and so forth.

Secret

Select the Secret check box to mark a service’s response as secret and ensure this data is never leaked to
log files.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 353

HTTP services
The policy decision point (PDP) can perform requests to HTTP services. These requests can send and
receive Text, JSON, and XML content.

HTTP authentication is supported by using a simple user name and password, or by using an OAuth2
token.

You can send custom headers with any request, which you can make dynamically in various ways by
interpolating attribute values into various parameters. See Attribute interpolation on page 364.

Core settings

▪ URL

URL for the REST endpoint that the PDP accesses. The Policy Manager can interpolate attributes
anywhere in the URL. Because no escaping of attribute values takes place, make certain that this
action is completed in the attribute definition, if necessary.

▪ HTTP Method

Method to send in the HTTP request.
▪ Content Type

Content-Type header to send, which relates to the body of the request.
▪ Body

Body to send with the request. The Policy Manager can interpolate attributes anywhere in the body with
no escaping.

Authentication

The Authentication drop-down lists the following HTTP authentication types, which correspond to an
authorization header sent with the request:

▪ None

Default value that indicates the PDP sends no authorization header.
▪ Basic

Reveals the choices for attributes whose values function as the user name and password of an HTTP
request with basic authentication.

▪ OAuth2

Reveals a token selector. The PDP sends the selected attribute as the authorization token in an HTTP
request with bearer authentication.

Headers

You can add any number of custom headers to the request. The header names are fixed strings, but their
values can be constants or attribute values. To switch between constant and attribute, toggle C / A, which
is next to a header value.

Certificate validation

With certificate validation, you can define TLS and Mutual-TLS (M-TLS) certificates and keys when
connecting to the TLS (or SSL) based service.

When using external PDP mode, you can declare local file-based trust stores and key stores by providing
an options file during setup. See Specifying custom configuration with an options file on page 246.

When using embedded PDP mode, you do this by assigning Trust Manager Providers and Key Manager
Providers to the Policy Decision Service. See Use policies in a production environment on page 266.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 354

Server (TLS)

Server (TLS) settings apply when validating the certificate or certificate chain sent from the server.
You have three options when validating a server certificate.

▪ No Validation

Skips validating the server certificates and initiates connection without any restriction.
▪ Default

This option is the default for Server (TLS).

Uses the default trust store provided by the runtime environment.

Use this if you are trying to connect to a service that has a certificate issued from a valid
certificate authority.

▪ Custom

Allows the user to define a custom certificate or certificate chain that is stored in a trust store.

Custom trust store settings:

▪ Source

Trust store source. Currently, it only supports file-based trust stores.
▪ Trust store name

The name given to the trust store in configuration.yml.
▪ Alias

Certificates in the trust stores are mapped by alias. You must set the alias in the trust store to
specify which certificate to use for validation.

Attributes can be interpolated anywhere in the value.
▪ Alias password

If the certificate is password-protected, it might need to provide the password.

Attributes can be interpolated anywhere in the value.

Client (M-TLS)

Some services might require the client to provide a client certificate when initializing the connection.
To provide a client certificate, enable this setting and provide a custom key store to be sent to the
service.

Custom key store settings:

▪ Source

Key store source. Currently, it only supports file-based key stores.
▪ Key store name

The name given to the key store in configuration.yml.
▪ Alias

Key-value pairs and the certificate entry in the key stores are mapped by alias. You must set the
alias in the key store to specify which entry to use for validation.

Attributes can be interpolated anywhere in the value.
▪ Alias password

If the entry is password-protected, it might need to provide the password.

Attributes can be interpolated anywhere in the value.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 355

LDAP services
The policy decision point (PDP) can make LDAP queries to retrieve information.

You can make requests dynamic by interpolating attribute values into different parameters. See Attribute
interpolation on page 364.

Configuration

Specify the following settings to configure an LDAP service. A publicly available LDAP service is used as
an example.

Host and Port

The host name and port number of the LDAP server. For example:

Host: ldap.forumsys.com
Port: 389

Username / Bind DN and Password

The user or bind credentials for the LDAP server. For example:

Bind DN: cn=read-only-admin,dc=example,dc=com
Password: password

Use SSL

If the LDAP server is secured using SSL, enable this setting.

Enabling this setting populates the Certificate Validation section, which is useful when configuring TLS and
M-TLS certificates. For more information, see Certificate validation on page 353.

Search Base DN / LDAP filter

These settings define the LDAP query. For example:

Search Base DN: dc=example,dc=com
LDAP Filter: ou=mathematicians

Results

Because the server converts the result of an LDAP query to an XML document, you must set the service
value type to XML. The previous example query results in the following document.

<searchResponse>
 <searchResultEntry dn="OU=MATHEMATICIANS,DC=EXAMPLE,DC=COM">
 <attr name="ou">mathematicians</attr>
 <attr name="objectClass">groupOfUniqueNames</attr>
 <attr name="objectClass">top</attr>
 <attr name="uniqueMember">uid=euclid,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=riemann,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=euler,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=gauss,dc=example,dc=com</attr>
 <attr name="uniqueMember">uid=test,dc=example,dc=com</attr>
 <attr name="cn">Mathematicians</attr>
 </searchResultEntry>
</searchResponse>

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 356

You can extract Individual parts or collections of the data from the resulting XML document by using XPath
processors.

Camel services
In addition to retrieving information from HTTP and LDAP policy information providers, you can retrieve
information from any endpoint that the Apache Camel enterprise integration platform supports. To view the
full list of supported systems, go to the list of Camel components on the Apache Camel website.

Overview

Configure Camel components by using a combination of URI, Headers, Body, and Configuration settings.
The appropriate values to provide for each setting depend on the component that is used. See the
documentation on the Camel website for the particular component that you want to use.

You can make requests dynamic by interpolating attribute values into different parameters. See Attribute
interpolation on page 364.

URI

URIs identify Camel endpoints. As well as identifying the system, URIs can specify configuration options
for components. For information about configuring a URI for the component to which you want to connect,
go to the Apache Camel website. The system can interpolate attribute values anywhere in the field.

Headers

You can send additional information to the external policy information provider by using Camel headers. If
the component to which you will connect uses headers, you can read more about them in the instructions
for your component on the Apache Camel website. The system can interpolate attribute values anywhere
in the field.

Body

Some Camel components operate on a message body, which you can provide by using this setting. If
the component to which you will connect requires a message body, you can read more about it in the
instructions for your component on the Apache Camel website. The system can interpolate attribute values
anywhere in the field.

Configuration

Some Camel components require you to configure helper components for them to work. Specify these
components by using the Groovy scripting language to write a Spring Bean configuration block. For
information about writing such a configuration, go to Class GroovyBeanDefinitionReader.

i Warning:

The system cannot interpolate attribute values into the configuration.

i Note:

The Camel JDBC component makes use of the Headers and Body settings, and requires a JDBC data
source to be set up in the Camel Configuration setting.

Attributes
Attributes provide the context that enables fine-grained policies.

Attribute values come from a multitude of sources. You can use the original values or modify the values.
You can then use the final values in other attributes, Named conditions on page 366, or rules.

Copyright ©2022

https://camel.apache.org/
https://camel.apache.org/components/latest/
http://www.groovy-lang.org/
https://docs.spring.io/spring-framework/docs/4.3.13.RELEASE/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html

PingDataGovernance | PingDataGovernance Policy Administration Guide | 357

The system resolves an attribute only when its value is required as part of the decision request evaluation.
For example, if a rule checks whether a customer’s device "Risk Score" is high, then the system only
attempts to resolve the attribute corresponding to "Risk Score" if that rule is required.

Creating an attribute
Create attributes using the business terms that business users and policy writers already understand.

About this task

Consider the manner in which you will structure the attributes and the naming conventions that you
will use. You want policy writers to be able to build and manage policies without developing a deep
understanding of the often-complex underlying data endpoints or data manipulation.

Steps

1. Click Trust Framework.

2. Click Attributes.

3. Click +.

4. Select Add new Attribute.

5. Update the attribute to include resolvers, value processing, and other changes, as discussed in the
subsections after this one.

6. Click Save changes.

After you create an attribute, you can modify it to be a repeating attribute. For more information, see
Repeating policies and attributes on page 382.

Attribute name, description, and location
You can give attributes any name that is unique and does not contain a period (.).

To ensure that the system can interpolate the attribute, avoid the following characters:

▪ {
▪ }
▪ |

You can give the attribute a description to help policy editors understand the attribute's purpose. This
description is only displayed when a user navigates to the attribute.

You can change the location of an attribute in the attribute tree using the Parent field.

Resolvers
Use resolvers to define where the initial data for an attribute comes from.

An attribute can have multiple resolvers, and the resolvers can be conditional. In addition, you can add a
processor to a resolver to modify the resolver's value before the attribute uses it.

You can reorder collapsed resolvers by dragging the handles on the left. To reorder using the keyboard,
press Tab to go to the resolver, press Enter to select the resolver, press the Up Arrow or Down Arrow to go
to the desired location, press Enter to drop the resolver in the new location.

For more information, see:

▪ Resolver types on page 357
▪ Conditional resolvers on page 359
▪ Value processing for a resolver on page 359

Resolver types
Each attribute can have one or more resolver types.

The resolvers apply in the order listed. You can reorder the resolver types by dragging and dropping them
to the appropriate position.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 358

The following table describe the various resolver types.

Resolver type Description

Request This resolver type looks inside the authorization request itself to determine
whether the attribute has been provided by the caller. Specify the full name
of the attribute, including any parents, in the request.

Constant This resolver setting takes a constant value defined on the resolver itself.
The type and value of the constant are required.

i Note:

As with all other resolved values, constants undergo any value processing
defined on the attribute. To define a constant that does not undergo value
processing, consider using a Default value on page 364.

Service This resolver setting uses a Trust Framework# Services endpoint to
invoke the service at runtime to resolve the attribute. The service might
rely on other attributes being supplied to invoke the service.

The PDP handles this process automatically.

Attribute PingDataGovernance Server can also resolve attributes from other
attributes. This ability is useful when you have attributes that contain
multiple pieces of information and you want to create nested or child
attributes as subset extracts from them.

For example, the Customer.Name attribute might return the following
JSON representation.

{ "firstname": "Joe", "middlename": "Bod", "surname":
 "Bloggs" }

In this example, you could create the Customer.Name.Surname attribute
to resolve against the Customer.Name attribute and could use a JSON
parser to extract only the Surname property of the JSON.

System The PingDataGovernance Policy Administration GUI provides many
of out-of-the-box System attributes that you can use without additional
configuration. For example, the CurrentDateTime returns the current
system datetime according to the Type defined for the attribute..

Configuration Key The policy engine can resolve attribute values using policy configuration
keys.

When using external PDP mode, you can declare local file-based trust
stores and key stores by providing an options file during setup. See
Specifying custom configuration with an options file on page 246.

When using embedded PDP mode, you do this by creating Policy
Configuration Keys in the Policy Decision Service. See Use policies in a
production environment on page 266.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 359

Conditional resolvers
All resolver types support the ability to add conditional logic so that the system invokes the resolver only
under certain defined conditions.

To add a conditional logic to a resolver, from the three-line icon beside the appropriate resolver, select Add
Condition. You can then add a comparison or named condition.

In the following example, the service resolver Callsign.ApprovalResult applies only when the
attribute PrimaryAccountHolder has a value of Confirmed.

You can combine multiple conditions for a resolver using ALL, ANY, or NONE. To allow more
permutations, create subgroups by clicking + Group.

Value processing for a resolver
Use value processing for a resolver to modify data before using that data as the attribute's final value.

To add or remove a processor to a resolver, within the resolver definition, click the three-line icon in the
upper-right corner and choose Add Processing or Remove Processing.

For information about how to define a processor, see Value processing on page 366.

The following examples show how you might use these resolvers.

If you expect responses from different resolved sources to vary, you can add a processor
to the resolvers to normalize the output. In this example, the attribute's value can come
from one of the following resolvers:

▪ A service named GET User Profile

With this resolver, if the Cache is Valid attribute is false, the resolver calls the GET
User Profile service and uses a JSON Path processor to extract the key from the
profile JSON.

▪ An attribute named Key

In the second resolver, the attribute value comes from the Key attribute, and the value
requires no processing.

The following image shows the resolvers. The resolvers apply in the order shown.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 360

This example uses a condition and a processor together to resolve an attribute that might
have a prefix. The attribute has two resolvers:

▪ The first resolver has a condition to check whether the Client ID attribute has a
prefix of 002. If so, the value processor removes the prefix.

▪ The second resolver has no condition and passes the Client ID attribute value
through with no processing.

The following image shows the resolvers. The resolvers apply in the order shown.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 361

Attribute caching
The policy decision point (PDP) and the PingDataGovernance Policy Administration GUI support caching
for attributes. The ability to cache resolved attributes can deliver significant performance gains for the PDP.

Carefully consider this concept to ensure optimum configuration.

This section focuses on the individual cache options that you can set at the attribute level.

Attribute caching can be indefinite or time-limited, with or without the scope of another attribute value.

With time-limited caching, you set the duration for which the cache lives (Time to Live) before it expires.

With Scope set to an attribute, if the value of that attribute changes, the system invalidates the cache
for the attribute you are defining. In the example below, as long as the sessionId value remains the
same, the value of the attribute you are defining is cached. When the sessionId changes, the system
invalidates the cache and uses normal resolution.

If the attribute does not exist in the cache, the PDP resolves the attribute automatically by using the
appropriate attribute resolvers and then adds it to the cache. All subsequent attribute usages use the
cached value until it expires from the cache, which results in another attribute resolution.

i Note:

The cache key for a Trust Framework attribute value includes a hash of the values required for it to
resolve. If one of these values changes, the cache key automatically becomes invalid. You can think of
this arrangement as an aggregation of Scope parameters that guard against inconsistencies between your
cached values.

Value processing for an attribute

See Value Processors on page 352 in Services on page 351.

Value settings
Every attribute has a defined data type that constrains the set of allowable values and provides a
predictable behavior model for value processing and other data transformations.

Catching type inconsistencies early aids building and testing the Trust Framework. The primary types for
accepting data into the system and for producing output data are JSON, XML, and UTF-8 text (known as
String). The remaining types are used within a Trust Framework for more fine-grained data processing. All
data types have conversions to and from a canonical String representation. Conversion of other formats,
such as alternative date or time representations, requires the use of user-defined value processing. See
Value processing for an attribute on page 361.

Examples of type conversions when data enters the policy decision point (PDP) include:

▪ Attribute default values you define in the user interface are textual. The system converts these to the
type defined by the attribute before use.

▪ Attributes might take their values from fields in the decision request, which are again textual. The
system converts the value to the type defined by the attribute before use.

▪ The PDP might invoke external services to retrieve data. Typical response formats are JSON, XML and
String. JSON Path or XPath value processing can extract components of a response, typically as text,
which the system then converts to the types defined by an attribute before use.

Examples of type conversions when exporting data from the PDP include:

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 362

▪ Building a request for a service invocation. Attributes might be request parameters directly or might be
used in Attribute interpolation on page 364. In both cases, the system uses the canonical conversion
to a String format.

▪ Adding attribute data to Obligations or Advice, either directly or through Attribute Interpolation. Again,
the system uses the canonical conversion to String format.

▪ In all logging and response data that includes attribute values, the system renders those values using
their canonical String representations.

The following table lists the data types.

Data type Description

Boolean A simple true or false.

True can be represented in textual form, such as in default values
or decision request parameters, as true, yes or 1. False can be
represented by false, no or 0.

Case is insignificant.

In value processing contexts such as SpEL expressions, the value is a
java.lang.Boolean instance.

Number A numeric value.

Decimal integers and reals are supported, including scientific notation.

In value processing contexts, the value is a java.math.BigDecimal
instance.

Date A date, such as "23 April 2020".

The textual representation is ISO-8601; for example, 2020-04-23.

In value processing contexts, the value is a java.time.LocalDate.

Date values can be converted to the following types:

▪ Date Time (the time component becomes 00:00:00)
▪ Zoned Date Time (the time zone is assumed to be UTC)

Time A time of day, such as "4:15pm and 30 seconds".

The textual representation is ISO-8601.

The maximum resolution is microsecond. For example, 16:15:30,
16:15:30.783, and 16:15:30.783239 are all valid.

In value processing contexts, the value is a java.time.LocalTime.

Time values cannot be converted to other types.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 363

Data type Description

Date Time A date and time of day, such as "4:15pm and 30 seconds on 23 April
2020".

The textual representation is ISO-8601.

The maximum resolution is microseconds. For example,
2020-04-23T16:15:30 or 2020-04-23T16:15:30.783239.

In value processing contexts, the value is a
java.time.LocalDateTime.

Date Time values can be converted to the following types:

▪ Date and Time (dropping the appropriate information in each case)
▪ Zoned Date Time (the time zone is assumed to be UTC)

Zoned Date Time A date and time of day with a time zone expressed as an offset from
UTC.

The textual representation is ISO-8601; for example,
2020-04-23T16:15:30.783+01:00.

In value processing contexts, the value is a
java.time.ZonedDateTime.

Zoned Date Time values can be converted to the following types,
dropping information in each case:

▪ Date Time
▪ Date
▪ Time

Duration A time duration expressible in seconds or a fraction thereof.

The textual representation is ISO-8601; for example:

▪ PT3H for 3 hours
▪ PT2M45.836S for 2 minutes and 45.836 seconds

In value processing contexts, the value is a java.time.Duration.

Duration values cannot be converted to other types.

Period A time period expressible in calendric units such as a number of days or
months.

The textual representation is ISO-8601; for example:

▪ P9Y for 9 years
▪ P3M2D for 3 months and 2 days

In value processing contexts, the value is a java.time.Period.

Period values cannot be converted to other types.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 364

Data type Description

JSON A JSON document.

This type is most useful for bringing data into and out of the PDP. It is
the only type that is subject to JSON Path value processors.

The textual representation is JSON.

In value processing contexts, the value is a java.util.Map or
java.util.Collection.

XML An XML document.

This type is most useful for bringing data into and out of the PDP. It is
the only type that is subject to XPath value processors.

The textual representation is XML.

In value processing contexts, the value is a org.w3c.Document.

Collection An ordered collection of other value types.

Only valid value types as described here can be members of
collections. JSON-formatted arrays are valid textual representations of
collections.

In value processing contexts, a collection is a
java.util.Collection; however, the objects contained are of an
internal type.

Use only the get() method to retrieve items by zero-based integer
index.

String All other data is interpreted as UTF-8 text, stored internally as UTF-16.

In value processing contexts, these values are java.lang.String.

The legacy Date Time and Time Period types are ambiguous unions of the types described above. They
are retained for backward compatibility only. For new Trust Frameworks, use the more specific types.

Default value

You can give attributes an optional default value in the event that the attribute cannot be resolved.

In addition, you can use a default value to encode constant attributes within the Trust Framework by not
setting any resolvers and thus always resolving to the default value.

Attribute interpolation
With attribute interpolation, you reference an attribute in a field. The system resolves the value of the
referenced attribute, replacing the reference with the value itself.

About this task

You can use attribute interpolation in any field that has the label icon, shown below.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 365

Steps

1. To reference an attribute in one of these fields, type two open curly brackets ({{) to open the attribute
tree menu. Continue typing the full path to the attribute or select each level of the attribute in the
attribute tree menu.

2. Complete the reference by typing two close curly brackets (}}) or by selecting the }} complete
expression item from the attribute tree menu.

Actions
Actions represent arbitrary values that a typical authorization request might ask to perform on a specific
resource, such as view or update.

Common actions you might want to configure in the PingDataGovernance Policy Administration GUI are:

▪ inbound-GET
▪ inbound-PATCH
▪ inbound-POST
▪ inbound-PUT
▪ outbound-GET
▪ outbound-PATCH
▪ outbound-POST
▪ outbound-PUT
▪ create
▪ delete
▪ modify
▪ retrieve
▪ search
▪ search-results

Identity classifications and IdP support
The PingDataGovernance Policy Administration GUI provides the ability to generate smart identity
classifications.

The purpose of these classifications is to abstract the underlying identity providers (IdPs) from their
presumed level of trust. The outcome is that you will be able to build policies that target levels of trust
instead of specific IdPs.

Defining trust levels has the following distinct parts:

▪ Identity properties – Arbitrary properties that can relate to specific IdPs

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 366

▪ Identity providers
▪ Identity classifications – Levels of classifications

Identity properties

Use the Identity Properties window to define objects and elements to attach to specific identity providers
(IdPs).

You use these properties later to map IdPs to specific identity classification levels.

Identity providers

Use the Identity Providers window to define different identity providers (IdPs) and to attach identity
properties to them.

This task might appear irrelevant when your enterprise expects to use only one or two IdPs, but it provides
significant abstraction for more complicated ecosystems in which tens or hundreds of IdPs participate.

Identity classifications

Use the Identity Classes window to create different levels of classification.

For each classification level, attach the properties that an identity provider (IdP) must have to be in that
level.

Named conditions
Named conditions provide the ability to create reusable conditional logic that helps abstract some of the
logical complexity from the people who write the policies.

Named conditions also provide an effective way to minimize repetition throughout policies. Policy builders
remain able to create their own conditions, which can coexist with the named conditions.

You can also use named conditions to replace entire conditions and to function as components of more
complicated condition expressions. To add a named condition within the condition builder, click + Named
Condition.

Value processing
Use value processing on responses returned from attributes or services to transform the resolved value.

Add a value processor when you create or edit an attribute or service. Alternatively, you can define a value
processor to reference by name by going to Trust Framework# Processors.

The PingDataGovernance Policy Administration GUI, which is powered by Symphonic®, supports these
value processors:

▪ Collection filter
▪ Collection transform
▪ JSON Path
▪ X Path
▪ Spring Expression Language (SpEL)
▪ Named

You can combine these processors to form a chain of processors.

All processors have a type that indicates what the output data type should be after applying the expression.

You can reorder collapsed value processors by dragging the handles on the left. To reorder using the
keyboard, press Tab to go to the processor, press Enter to select the processor, press the Up Arrow or
Down Arrow to go to the desired location, press Enter to drop the processor in the new location.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 367

Collection filter

When the data being processed is a collection, you can set a filter to examine each item in the collection
and keep only the items that satisfy some condition. A collection filter uses a value processor to yield a true
or false for each item in the collection. When true, the original item goes in the resulting collection; when
false, it is omitted.

Each item in the collection can optionally be preprocessed by one or more value processors before
applying the condition. For example, suppose we received a JSON collection from a service invocation and
we want to filter the items by the score field. The input data might look like the following lines.

[
 { "name": "Alice", "role": "Sender", "score": 72 },
 { "name": "Bob", "role": "Receiver", "score": 36 },
 { "name": "Carol", "role": "Observer", "score": 47 },
 { "name": "Dave", "role": "Attacker", "score": 99 }
]

A collection filter processor could achieve this by using a JSON Path preprocessor to extract the score.

$.score

The following SpEL condition yields a true or false decision for each item.

#this > 50

Each list item is in turn passed through the preprocessing and the condition. The first item has score 72,
which is greater than 50 so the condition yields true and the item is retained for the result collection. The
second and third items have scores less than 50, so the condition yields false and these items are omitted.
The final item also has a score higher than 50 and is retained. The result of the collection filter is:

[
 { "name": "Alice", "role": "Sender", "score": 72 },
 { "name": "Dave", "role": "Attacker", "score": 99 }
]

The values produced by the preprocessing and condition are only used to determine inclusion. The
final result of a collection filter consists of those original collection items that satisfied the predicate after
preprocessing. Here is the collection filter in the GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 368

If the condition or preprocessing produces an error for any item in the input collection (for example, if a
score field is missing or not a number in the source data), the whole collection filter is considered to have
failed.

Collection transform

When the data being processed is a collection, you can set a transform to apply a processor or a sequence
of processors to each item in the collection.

Assume we have the following input collection.

[
 { "name": "Alice", "role": "Sender", "score": 72 },
 { "name": "Bob", "role": "Receiver", "score": 36 },
 { "name": "Carol", "role": "Observer", "score": 47 },
 { "name": "Dave", "role": "Attacker", "score": 99 }
]

The following JSON Path processor extracts the name field for each item.

$.name

This SpEL processor converts each name to upper case.

#this.toUpperCase()

Then the resulting collection consists of just the extracted names converted to upper case, preserving the
order of the original collection.

["ALICE", "BOB", "CAROL", "DAVE"]

Here is the collection transform in the GUI.

If the item processor produces an error for any item, the overall collection transform processor produces an
error.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 369

JSON Path

With JSON Path, you can extract data from JSON objects. For example, assume we have a service that
resolves to the following JSON.

{
 "name": "Joe Bloggs",
 "requestedItems": [
 {
 "id": "b5f963fa-111e-49ff-994b-b89a20a2c1d5",
 "price": 125.00
 },
 {
 "id": "84e204dd-44f5-4a84-8e58-972c2a9c80b4",
 "price": 299.99
 }
]
}

To extract the price fields of all requested items, we set the Value Processor to JSON Path with the
expression $.requestedItems[*].price.

For more information about JSON Path expressions, see https://goessner.net/articles/JsonPath/.

X Path

XPath is the XML-equivalent for JSON Path and follows a very similar syntax. For more information about
XPath expressions, see the XPath tutorial on w3schools.com.

i Note:

The Policy Administration GUI only supports the use of XPath 1.0. Functions added in later versions are
not available.

SpEL (Spring Expression Language)

With the Spring Expression Language, you can perform more complicated data processing. Expressions
are applied directly to the resolved value. For example, assume you want to search for a substring that
matches the following regular expression.

\[[0-9]*\.[0-9]\]

You then set the processor to SpEL and set the expression to this following text.

matches(\[[0-9]*\.[0-9]\])

Attribute values can be interpolated into the SpEL expression directly using curly brackets, which can be
useful if you want to combine multiple attribute values into a single value (see Attribute interpolation on
page 364):

{{Customer.Age}} - {{State.Drinking Age}} >= 0

For information about the Spring Expression language, see the official Spring Framework docs.

For information about the Java classes available for SpEL processing, see Configuring SpEL Java classes
for value processing on page 259.

Named

Use named value processors to create reusable value processing logic.

Extracting this logic into reusable components helps abstract some of the complexity when you define an
attribute or a service. Also, it reduces repetition.

Copyright ©2022

https://goessner.net/articles/JsonPath/
https://www.w3schools.com/xml/xpath_intro.asp
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions-language-ref

PingDataGovernance | PingDataGovernance Policy Administration Guide | 370

You can still create inline value processors that co-exist with named value processors.

To define a named value processor that you can reference, go to Trust Framework# Processors.

Chained processors
You can chain processors together to combine data preprocessing steps.

For example, you can extract data using JSONPath and then apply a SpEL processor to the extracted
data. Assume you have a service that resolves to the following JSON response.

{
 "name": "Joe Bloggs",
 "city": "London",
 "country": "UK"
}

You have a requirement to extract the country and transform the value to United Kingdom whenever
the current value is UK. You would add a JSONPath processor to select the country followed by a SpEL
expression to transform the selection, as shown in the following figure.

Reusing chained processors

You can make a chained processor reusable by creating it as a named value processor. Then you can
construct more complex processor chains made up of those named value processors.

Testing
The PingDataGovernance Policy Administration GUI provides testing capabilities for applicable definition
types.

To prepare a test request, select a definition of type Attribute or Service and go to the Test tab.

To form a request, select the following main elements:

▪ Domain
▪ Service
▪ IdP
▪ Action
▪ Attributes

If the information endpoints that your attribute resolvers require are running, click Execute. If your
endpoints are not running or are otherwise unavailable, as is often the case in development, use the
Overrides section to provide stubbed values for attributes and services that might be required during the
evaluation process. This step overrides the attribute and service resolution and uses the specified values
instead.

After the system evaluates the request , you will see the following set of result tabs:

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 371

Request

Shows the actual JSON request sent to the decision engine

Response

Contains the complete (high verbosity) response for the decision

Output

Provides a summary of the decision

Attributes

Contains an expandable list of all attributes executed as part of the test

Services

Contains an expandable list of all services executed as part of the test

Testing repeating attributes

Repeating attributes are resolved from values in a specified collection. A repeating attribute requires a
repetition source that points to a collection. Also, to get its values from each repetition of the collection, the
repeating attribute’s resolver must be set to Current Repetition Value. When you properly configure a
repeating attribute, you can test it the same way you test regular, nonrepeating attributes.

The Output tab in the test results will show results for each matching value from the collection. The results
are ordered with indices that reflect the order of resolution.

For more information about these variables, see Repeating policies and attributes on page 382.

Policy management
The Policy Manager provides the tools to implement fine-grained and dynamic, access-control policies,
allowing you to govern the use of your organization's services and data.

Use the Policy Manager to create policies that answer the question, "Should this resource-access request
be permitted or denied"? In a traditional role-based access control (RBAC) system, this question might
instead be, "Who is the user making the access request, and have they been assigned a role that is
permitted access to the resource?" Although you can model such a policy, the PingDataGovernance Policy
Administration GUI functions essentially as an attribute-based access-control (ABAC) system. In such a
system, the question can be rephrased as, "Given the facts that I know about the user, the resource being
accessed, what the user wants to do with the resource, how sure I am the user is who they say they are,
and any other pertinent facts about the world at this point in time, should the user's access request be
permitted, and must anything else be done in addition to permitting or denying access?"

The length of that question speaks to the inherent power of the Policy Administration GUI. Fortunately, the
Policy Manager makes harnessing this power straightforward.

Policy sets, policies, and rules
The PingDataGovernance Policy Administration GUI reflects the structure of grouping rules for access
control with three types of entities and the relationship between them. The entities are policy sets, policies,
and rules.

A typical enterprise-level organization might impose hundreds or thousands of conditions and constraints
around access control. Such constraints comprise the business rules that define the circumstances under
which users access certain resources.

You can group these rules together naturally, so you can understand them without focusing on all of them
at the same time. For example, a set of policies around authentication might require a user to authenticate
to a certain level before they can access a certain resource. Another set of policies might gather together

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 372

all of the business rules around accessing the resources of a particular business unit. Yet another set
of policies might define the audit processes triggered with each attempt to access a set of restricted
resources.

This structure is inherent in the problem domain of resource-access control. This section examines the
different entity types, discusses how they are work together, and provides an overview of their properties.

Policies and policy sets

To view the Policy Manager, click Policies.

The Policy Manager organizes policy nodes in a tree structure within the navigation panel on the left side
of the page. Add a root policy set to contain all other policy sets. This tactic is useful when you build a
deployment package from the entire policy tree.

Creating policies and policy sets
Create policies and policy sets to define the circumstances under which users access certain resources.

Steps

1. Click Policies.

2. Click +.

3. Select Add Policy Set or Add Policy, as appropriate.

You can name policies and policy sets anything you like. However, we recommend that you use
relevant and contextual names, especially as the policy tree grows larger and more complex. When
naming policies, consider the business rule that they are trying to model and verify that the names
adequately represent the operational policies of the organization.

4. Update the policy to include targets, advice, and other changes, as discussed in the subsections after
this one.

5. Click Save changes.

After you create a policy, you can modify it to be a repeating policy. For more information, see
Repeating policies and attributes on page 382.

Example

In the following example, the policy name is My Basic Policy. The red dot in the upper-right corner
signifies that, because the name has been changed, the policy contains unsaved changes. If you try to
leave the page, a popup window prompts you to save your changes.

Adding targets to a policy
Add targets to identify the requests to which the policy applies. If no targets are attached to a policy,
the policy applies to all requests. To make a policy only apply for all requests to a certain database, for
example, add the database domain as a target.

Steps

1. Go to the policy where you want to add targets.

2. Click the + next to Applies to.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 373

3. In the left pane, click Components.

The list of components includes the items you created in the Trust Framework. Drag the appropriate
domains, services, identity classes, and actions from the components to the Applies to target section
on the policy.

For example, to target Mobile Banking requests, drag that domain in. To target all banking groups,
add the Banking Channels domain, which is the parent of the Online Banking domain as well as the
Mobile Banking domain. Because the top level is also a target, this step adds a total of three targets.

4. Click Save changes.

Example

The following example features three domains because the Banking Channels definition is the parent
of the other definitions. Logically, applying an OR operation within the definition type selects one of the
channels.

The following graph shows how the server evaluates the group of targets.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 374

Conditional targets (applies when)
You can use conditional targets to extend the capability of the "Applies to" concept.

Conditional targets extend the capability of the "Applies to" concept because they:

▪ Permit the interweaving of targets with other conditional logic.
▪ Allow standalone logic to determine if and when a policy or rule applies.

To enable this functionality, click Applies to and then When.

You can include the following types of conditions in a logical expression:

▪ Attribute comparison – Allows the comparison of an attribute with another attribute or with a constant.
▪ Request comparison – Allows the matching of incoming requests by answering questions like, "Is the

requested service equal to Banking.Payment?"
▪ Named condition – Click + Named Condition to show a Named Condition drop-down list that displays

named conditions.

The following image provides an example.

You can navigate conditions using the Up Arrow and the Down Arrow to move between members of a
group or using the Left Arrow and Right Arrow to move in and out of nested groups.

You can reorder conditions by dragging the handles on the left. To reorder using the keyboard, press Tab
to go to the condition, press Enter to select the condition, press the Up Arrow or Down Arrow to go to the
desired location, press Enter to drop the condition in the new location.

To switch between Attribute Comparison mode and Request Comparison mode, click A and R,
respectively, to the left of the comparator.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 375

Advice
An advice is additional information you can attach to a decision response.

An advice returns to the governance engine so that, depending on the evaluation response from the
policy, PingDataGovernance can take the appropriate action. If you have a policy set up to verify the
authentication level of a user, and if the policy evaluates that a user does not possess the required access
privileges, then PingDataGovernance can send details about the reason for denying access.

To indicate that the final decision applies only if an advice can be fulfilled, mark the advice as Obligatory.
Typically, the service that calls PingDataGovernance Server handles this responsibility.

Each advice contains the following mandatory fields:

▪ Name – Human-readable label for reference in the Policy Manager
▪ Code – Identifier that distinguishes between different types of advice
▪ Applies To – Type of decision to which the advice is attached

If an advice applies, PingDataGovernance uses it in the final response if its origin decision contributes to
the final result. The decision agrees with every decision between its origin and the top-level policy or policy
set.

Advice carries additional data in the form of payloads and attributes, as follows:

▪ The optional field Payload can consist of static or interpolated data.
▪ The Attributes field lets you return a key-value mapping of attributes that might be relevant to the

advice.

You can reorder collapsed advices by dragging the handles on the left. To reorder using the keyboard,
press Tab to go to the advice, press Enter to select the advice, press the Up Arrow or Down Arrow to go to
the desired location, press Enter to drop the advice in the new location.

The following table identifies significant advice properties.

Property Description

Name Friendly name for the advice.

Obligatory If true, the advice must be fulfilled as a condition of authorizing the request.

If PingDataGovernance cannot fulfill an obligatory advice, it fails the operation and
returns an error to the client application.

If PingDataGovernance cannot fulfill a non-obligatory advice, the server logs an
error, but the client's requested operation continues.

Code Identifies the advice type. This value corresponds to an advice ID that the
PingDataGovernance configuration defines.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 376

Property Description

Applies To Specifies the policy decisions, such as permit or deny, that include the advice
with the policy result.

Payload Set of parameters governing the actions that the advice performs when
PingDataGovernance applies the advice. The appropriate payload value depends
on the advice type.

PingDataGovernance Server supports the following advice types:

▪ Add Filter on page 282
▪ Combine SCIM Search Authorizations on page 283
▪ Denied Reason on page 283
▪ Exclude Attributes on page 283
▪ Filter Response on page 284
▪ Include Attributes on page 285
▪ Modify Attributes on page 286
▪ Modify Headers on page 286
▪ Modify Query on page 286
▪ Modify SCIM Patch on page 287
▪ Regex Replace Attributes on page 289

To develop custom advice types, use the Server SDK.

i Note:

Many advice types let you use the JSONPath expression language to specify JSON field paths. To
experiment with JSONPath, use the Jayway JSONPath Evaluator

.

Provided advice
The PingDataGovernance Policy Administration GUI comes with preconfigured advice types that are also
in PingDataGovernance Server.

Policy writers can use this advice out of the box, and PingDataGovernance Server fulfills the advice as
documented. To view the full set of provided advice types, click + Add Advice.

Copyright ©2022

https://jsonpath.herokuapp.com/

PingDataGovernance | PingDataGovernance Policy Administration Guide | 377

You can see the documentation for the provided advice types from within the Policy Admin GUI. After you
click + Add Advice, hover over an advice type to view its description.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 378

Selecting an advice type prepopulates the Description and Code fields and provides an example Payload
value. Most users replace the example Payload value with one that is appropriate for their policy.

For more information, see Advice types.

Custom advice
In addition to the advice types that are available out of the box in the PingDataGovernance Policy
Administration GUI, policy writers can use a custom advice that leverages the PingDataGovernance Server
SDK.

For information about the implementation and configuration of such advice, see the PingDataGovernance
Server Administration Guide.

After configuring the advice properly, you can use it in a policy by selecting Custom Advice from the
Create new Advice drop-down list.

Properties

Use properties to add metadata to a policy in the format of a key-value pair.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 379

Rules and combining algorithms
Each policy can include multiple rules to produce a Permit, Deny, Indeterminate, or Not Applicable
decision.

To evaluate the overall decision of a policy, the policy decision point (PDP) applies a combining algorithm.
The default algorithm that is set on a new policy is The first applicable will be the final decision. This
algorithm stops evaluating as soon as it reaches a decision that is not Not Applicable.

The following table identifies the available combining algorithms and describes their effects.

Combining algorithm descriptions

Combining algorithm Summary Details

PermitUnlessDeny Unless one decision is deny, the
decision is permit.

The policy defaults to Permit unless any of
its children produce the decision Deny. The
evaluation of rules stops as soon as a Deny is
produced.

DenyUnlessPermit Unless one decision is permit,
the decision is deny.

The policy defaults to Deny unless any of its
children produce the decision Permit. The
evaluation of rules stops as soon as a Permit is
produced.

PermitOverrides A single permit overrides any
deny decisions.

If any children produce the decision Permit, the
policy returns Permit and stops evaluating rules.
If no Permit is generated, all rules are evaluated;
also, the policy returns Indeterminate if a child
produces Indeterminate. Otherwise, the policy
returns Deny if a child produces Deny. If none of
the previous situations occur, the policy returns Not
Applicable.

DenyOverrides A single deny overrides any
permit decisions.

If any children produce the decision Deny, the
policy returns Deny and stops evaluating rules. If
no Deny is generated, all rules are evaluated; also,
the policy returns Indeterminate if a child produced
Indeterminate. Otherwise, the policy returns Permit
if a child produces Permit. If none of the previous
situations occur, the policy returns Not Applicable.

FirstApplicable The first applicable decision is
the final decision.

Evaluates the children in turn until one produces
an applicable value of Permit, Deny, or
Indeterminate. If the evaluation produces no
applicable decisions, the policy returns Not
Applicable.

OnlyOneApplicable Only one child can produce a
decision. If more than one child
produces a decision, the result
is indeterminate.

Evaluates the children in turn. If at any point
two children produce a decision other than Not
Applicable, the policy returns Indeterminate.
Otherwise, if precisely one child produces an
applicable decision, the policy uses it. If evaluation
produces no applicable decisions, the policy
returns Not Applicable.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 380

Combining algorithm Summary Details

DenyUnlessThreshold Permit if the weighted average
of applicable child decisions
meets the threshold; otherwise
deny.

Assigns the policy's children weights between 0
and 100. If a child returns Permit, the weight is
added to a running total. If a child returns Deny,
the weight is subtracted from the running total.
After evaluating all children, the PDP divides the
total by the number of children and compares that
average against the threshold. If the average is
greater than or equal to the threshold, the policy
returns Permit. Otherwise, the policy returns Deny.

Rule structure
Rules contain logical conditions that evaluate to true or false.

You can give each rule an effect of permit or deny. The effect is what the rule evaluates to when its child
condition or group of conditions evaluates to true. You can set a rule so that, if a condition evaluates to true
and the effect is set to deny, the rule evaluates to deny.

i Important:

A condition that returns false causes the rule to be Not Applicable. It does not create the opposite effect.
You must create a separate and opposite rule to generate the opposite effect. The most consistent way to
create such a pair of rules is to use Named conditions on page 366, with both rules referencing the same
named condition but with the expected outcome being opposite.

Rules can include targets, which work in the same way as on policies and policy sets. However, you
cannot associate conditions with these targets. You can apply targets to achieve a more fine-grained
approach.

If the condition in this example evaluates to true, the effect is Permit. If it evaluates to false, the effect is
Not Applicable.

You can reorder collapsed rules by dragging the handles on the left. To reorder using the keyboard, press
Tab to go to the rule, press Enter to select the rule, press the Up Arrow or Down Arrow to go to the desired
location, press Enter to drop the rule in the new location.

i Tip:

When a logical condition involves comparing two attributes, try to ensure the attributes have the same
data type. Comparing different data types requires an implicit conversion that might not always yield the
intended result.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 381

Testing
The PingDataGovernance Policy Administration GUI provides testing capabilities to evaluate test
authorization requests against any or all policy nodes.

To specify the nodes to test policies against, select the root node from the tree on the left side of the page.

In the following example, the evaluation runs against all policies because the root policy set is selected.

Select the following main elements to form a request:

▪ Domain
▪ Service
▪ IdP
▪ Action

If the information endpoints that your attribute resolvers require are running, click Execute. If your
endpoints are not running or are otherwise unavailable, as is often the case in development, use the
Overrides section to provide stubbed values for the attributes and services that might be required during
evaluation. This step overrides the attribute resolution and uses these values instead.

After a request is evaluated, you will see the following set of result tabs:

▪ Request – Shows the actual JSON request sent to the policy engine.
▪ Response – Contains the complete, high-verbosity response for the decision.
▪ Attributes – Contains an expandable list of the attributes executed as part of the test.
▪ Services – Contains an expandable list of the services executed as part of the test.
▪ Visualization – Contains a visual representation of the decision tree.
▪ Output – Provides a summary of the decision.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 382

Analysis of policies and policy sets
The PingDataGovernance Policy Administration GUI provides an analysis capability for policies and policy
sets. This capability is limited to small trees.

The options available for analysis are:

Conflicts

Highlights real policy conflicts, such as the conflict that arises when a policy permits access to a
resource while another policy denies access under the same conditions.

Redundancy

Highlights policies that are redundant, based on one or more policies, and whose presence makes
no difference to the response.

Shadows

Highlights policies that another policy can potentially replace.

Global Redundancy

Similar to Redundancy but applies to library policies that are used in multiple locations.

Failure Impact

Highlights policy information providers whose failure might alter the decision.

Repeating policies and attributes
Use repeating policies and attributes to evaluate a policy multiple times, once for each item in a collection.

For example, assume the Accounts attribute contains a list of accounts associated with a customer. You
want to filter access to the accounts based on the account type. With repeating policies, a decision is made
for each item in the Accounts attribute, returning advice for each account that is permitted.

Repeating policies

To make a policy repeat, from the three-line menu, select Add repetition settings.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 383

i Note:

You can only add repetition settings to an existing policy. The three-line menu to add these settings does
not appear when you are creating a new policy.

The policy repetition settings are described below.

▪ Apply this policy to each item of

The collection attribute to repeat over.

This item is referred to as the repetition source.
▪ Filtering by

The decision and any attached advice to filter by.

The following example uses the Accounts attribute and Permit decision. In this case, the policy applies
to every item in the Accounts collection attribute. The policy keeps each result that returns Permit.

When you define rules and advice for a repeating policy, you can use:

▪ Attributes with no repetition source
▪ Attributes with the same repetition source as the policy

Repeating attributes

To make an attribute repeat, from the three-line menu, select Add repetition settings.

i Note:

You can only add repetition settings to an existing attribute. The three-line menu to add these settings does
not appear when you are creating a new attribute.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 384

The policy repetition settings are described below.

▪ Repeat for each item of

i Note:

If you set this field, you can only use the attribute in repeating policies. However, the attribute can then
resolve against attributes repeating against the same collection. The attribute can still resolve against
attributes that do not have this field set.

The attribute to repeat over.

This item is referred to as the repetition source.
▪ Resolvers, Value Processors, Caching

For a resolver, if Resolver type is Current Repetition Value, resolution is against individual items in
the collection itself.

For information about these items, see Resolvers on page 357, Value processing for an attribute on
page 361, and Attribute caching on page 361.

You can use repeating attributes in named conditions and value processors. If an attribute uses a named
condition or value processor, any repeating attributes referenced in the condition or value processor must
have the same repetition source as the attribute itself. If a policy uses a named condition, any repeating
attributes referenced in the condition must have the same repetition source as the policy itself.

Policy solutions
This section recommends how to implement commonly needed business rules in policy.

▪ Use case: Using consent to determine access to a resource on page 384
▪ Use case: Using consent to change a response on page 400
▪ Use case: Using a SCIM resource type or a policy request action to control behavior on page 408
▪ Restricting the attributes that can be modified on page 425

Use case: Using consent to determine access to a resource
PingDataGovernance can control access to a specific resource based on the resource owner's consent to
share.

Examples of resources include:

▪ Health care records shared with a spouse (an individual)
▪ Banking records shared with a known third party, such as an asset-monitoring tool
▪ Purchase history shared with an anonymous third party, possibly for improved promotional offers

In this scenario, we continue using the meme games API used in Getting started with
PingDataGovernance (tutorials) on page 68. Assume my friend has crafted several funny memes

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 385

that she wants to share with me. When my browser or app requests her memes, PingDataGovernance
enforces access based on her consent to share.

We first set up some Trust Framework attributes and services and then create a policy that uses those
items to check consent and then permit or deny access. The following topics cover these tasks.

1. Getting a path component from the request URL on page 385
2. Getting the requestor identifier from the access token on page 390
3. Searching for consent by resource owner to requestor on page 391
4. Getting consent status from the consent record on page 396
5. Creating a policy to check consent and then permit or deny access on page 397

Getting a path component from the request URL
For this use case, the resource owner is given in the URL for the meme game API. To get the owner
requires pulling the corresponding path component from the request URL.

Before you begin
This procedure assumes you have created a meme game API server named meme-game, similar to
the one shown in the "Configure an API External Server for the Meme Game API" step in Configuring a
reverse proxy for the Meme Game API on page 77.

About this task

In general, you can configure PingDataGovernance to control access based on the path component that
best suits your needs. For example, consider the /purchases/1234 path. The purchases component is a
class of resources, while 1234 is a specific resource for a given purchase.

The meme game API has URLs of the form meme-game/api/v1/users/user.0/answers. The user.0 path
component is a specific resource owner. The following steps explain how to get the specific resource
owner from a request URL.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 386

Steps

1. In the PingDataGovernance Administrative Console, create a new gateway API endpoint.

A Gateway API Endpoint controls how PingDataGovernance Server proxies incoming HTTP client
requests to an upstream API server.

a. In the Administrative Console, click Configuration and then Gateway API Endpoints.
b. Click New Gateway API Endpoint.
c. For Name, specify meme-game user_answers.
d. For Inbound Base Path, specify /meme-game/api/v1/users/{UserFromUrl}/answers.

The inbound base path defines the base request path for requests to be received by
PingDataGovernance Server.

Using the curly braces ({ and }) around a string creates an item with the name given by the string
so that we can refer to it later. That notation also preserves the item to pass along in the next step.

e. For Outbound Base Path, specify /api/v1/users/{UserFromUrl}/answers.

The outbound base path defines the base request path for requests that PingDataGovernance
Server forwards to an API server.

f. For API Server, specify meme-game. This is the API External Server you defined previously.
g. For Service, specify meme-game.user_answers.

You will use this service in the PingDataGovernance Policy Administration GUI to get a value to
define an attribute.

The following image shows this configuration.

h. Save your changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 387

2. Send a test request to the gateway to see how PingDataGovernance handles the request. The following
request uses Postman.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 388

3. Check the request in the Policy Administration GUI.

Go to Policies in the left pane and then click Decision Visualiser along the top. Under Recent
Decisions, click Refresh icon. Select the decision and click Request.

In the request, the attributes include a Gateway object. Items set in the gateway API endpoint in the
previous step are in this Gateway object. One of the items in the object is UserFromUrl, providing the
exact path component we want. The following image shows the Gateway object.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 389

4. Create an attribute to pull UserFromUrl from the object.

a. Go to Trust Framework and then click Attributes along the top.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with Users identifier from the URL.
d. Click the + next to Resolvers and click + Add Resolver.
e. Set Resolver type to Attribute and select the Gateway attribute.
f. Click the + next to Value Processors and click + Add Processor.
g. Set Processor to JSON Path to pull an item from a JSON object and specify a value of

$.UserFromUrl.

The following image shows this configuration.

h. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 390

5. Test the new attribute.

a. Click Test just above the attribute name.
b. Pass in a gateway object that uses UserFromUrl.

In the Request, set Attributes to Gateway and specify a value of {"UserFromUrl":"user.0"}.

The next image shows the test setup.

c. Click Execute.

The test results should be user.0.

Results
The Users identifier from the URL attribute is available for use in policies.

Getting the requestor identifier from the access token
We need the requestor identifier to check whether the resource owner has given the requestor access to
the resource.

About this task
The PingDataGovernance Policy Administration GUI provides many attributes, including
HttpRequest.AccessToken. The HttpRequest.AccessToken.subject attribute has the needed
information.

Steps

▪ Be prepared to use the HttpRequest.AccessToken attribute in a later step.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 391

Searching for consent by resource owner to requestor
Using the resource owner information from the Users identifier from the URL attribute, we need
to determine what consent the owner has granted to a given requestor.

About this task

This task is useful for:

▪ Resource sharing or delegation where consent is granted to an individual (based on the
collaborator claim)

▪ Data sharing where consent is granted to a third party (based on the audience claim)

This task uses the Trust Framework HTTP service to pull a claim from a request.

Steps

1. Make sure you understand the body of the request that you are pulling a claim from.

The following Postman image shows a request being made to a directory server.
The consent definition is in the request URL and has the form share-meme-game-
answers&subject=user.0&collaborator=user.1. The resource owner is given by the subject, and the
person being shared with is given by the collaborator.

We use the Consent Admin account for the service. In Postman, for Authorization, we use BasicAuth
with the username Consent Admin and its password.

The consent record is for the PingDirectory Consent API, but you can use other consent stores. We use
this consent record to determine who a resource owner has given consent to.

2. Copy the request URL to use in defining a Trust Framework service in the Policy Administration GUI.

3. Sign on to the Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 392

4. Create Trust Framework attributes for the Consent Admin account credentials.

This is the Consent Admin account we used with Postman. We will create attributes for the username
and password and then use those attributes when we define the Trust Framework HTTP service.

a. Go to Trust Framework and click Attributes.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with ConsentService and click Save changes.

This attribute will serve as a parent to the username and password attribute and will help organize
the attributes.

d. From the + menu, select Add new Attribute.

Because the ConsentService attribute is selected, the new attribute is a child to it.
e. For the name, replace Untitled with Username, set Default value to Consent Admin, select the

Secret option, and then click Save changes.

The following image shows this configuration.

f. From the + menu, select Add new Attribute.
g. For the name, replace Untitled with Password, set Default value to Consent Admin, select the

Secret option, and then click Save changes. Selecting the Secret option keeps the item out of logs.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 393

5. Create the HTTP service.

a. Click Services along the top.
b. From the + menu, select Add new Service.
c. For the name, replace Untitled with Search for consent to share game answers.
d. Set Service Type to HTTP.
e. Set URL to the request URL.

In this case, the URL is https://pingdirectory:18443/consent/v1/consents?definition=share-meme-
game-answers&subject=user.0&collaborator=user.1.

f. Set Authentication to Basic.

This setting requires a username and password. We will use the attributes we just created.

1. Set Username to ConsentService.Username.
2. Set Password to ConsentService.Password.

g. This setup uses a self-signed certificate, so set Server (TLS) to No Validation.

i Note: This case is for a development environment only. Do not use this setting for other
environments.

h. Under Value Settings, set Type to JSON.

The following image shows this configuration.

i. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 394

6. Test the service.

a. Click Test above the Search for consent to share game answers service name.
b. Click Execute.

The results should include a consents array.

So the service works with hard-coded values: subject=user.0&collaborator=user.1. We need to use
parameters in place of the subject and collaborator values so that the service works for anyone
using the API.

7. Click Details above the service name to update the service definition to replace the values with
parameters.

a. In the URL field, replace the collaborator value, which is user.1. Delete user.1
and type two open curly braces ({{). Use the pop-up that appears to choose the
HttpRequest.AccessToken.subject attribute. Recall from Getting the requestor identifier from

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 395

the access token on page 390 that this attribute specifies the requestor. The resource owner must
have a consent record for the requestor to grant access.

With this change, the URL changes from

https://pingdirectory:18443/consent/v1/consents?definition=share-meme-game-
answers&subject=user.0&collaborator=user.1

to

https://pingdirectory:18443/consent/v1/consents?definition=share-meme-game-
answers&subject=user.0&collaborator={{HttpRequest.AccessToken.subject}}

b. Click Save changes.
c. Test the change by clicking Test, in the Request section, setting Attributes to

HttpRequest.AccessToken.subject, specifying a value such as {"sub":"user.1"}, where
user.1 has a consent record in your consent store, and clicking Execute.

The result should include a consents array. Repeat the step for a user who does not have a consent
record to verify that those results do not include a consents array.

d. Click Details to replace the subject value with a parameter.

The subject is the resource owner. Recall from Getting a path component from the request URL on
page 385 that we have that information in the Users identifier from the URL attribute.
Using curly braces to interpolate that attribute, the URL becomes

https://pingdirectory:18443/consent/v1/consents?definition=share-
meme-game-answers&subject={{Users identifier from the
URL}}&collaborator={{HttpRequest.AccessToken.subject}}

e. Click Save changes.
f. Test this change the same way you tested the previous change, using two users where one has a

consent record and one does not.

In the Overrides section, set Attributes to Users identifier from the URL with the value
specifying the resource owner, which is user.0 in this case.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 396

8. Update the service to pull only the first consent record from the response instead of the entire response.

The response starts with

{"_embedded":{"consents":[{_links":"localization":

We want to pull the first consent record for the user, which starts after the square bracket ([).

a. Click Details to return to the service definition.
b. Click the + next to Value Processors and click + Add Processor.
c. Set Processor to JSON Path with a value of $._embedded.consents[0].
d. Set Value type to JSON.

This image shows such a screen.

e. Click Save changes.
f. Test the change by clicking Test, in the Request section, setting Attributes to

HttpRequest.AccessToken.subject, and specifying a value such as {"sub":"user.1"},
where user.1 has a consent record in your consent store. Then in the Overrides section, setting
Attributes to Users identifier from the URL with the value specifying user.0 again, and
clicking Execute.

Results
The service returns only the user's first consent record. With the record isolated, you can pull the given
requestor's status from the record.

Getting consent status from the consent record
This task defines an attribute that uses a service to get a consent record and then uses a processor to pull
the consent status from that record.

Steps

1. Sign on to the Policy Administration GUI.

2. Go to Trust Framework and click Attributes.

3. From the + menu, select Add new Attribute.

4. For the name, replace Untitled with Sharing consent status.

5. Click the + next to Resolvers.

6. Click + Add Resolver.

7. Set Resolver type to Service with a value of Search for consent to share game answers.

8. Click the + next to Value Processors.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 397

9. Click + Add Processor.

10.Set Processor to JSON Path with a value of $.status.

11.Set Value type to String.

The following image shows this configuration.

12.Click Save changes.

Results
The Sharing consent status attribute is available for use in policies.

Creating a policy to check consent and then permit or deny access
Using the Trust Framework attributes and services we created, we now create a policy for the meme
game API to get a user's answers. The policy permits access if consent exists and the consent status is
accepted.

Steps

1. In the Policy Administration GUI, go to Policies in the left pane and then click Policies along the top.

The following steps create a policy under an existing policy called meme-game policies. This existing
policy is for all requests to the meme game.

2. Select the existing meme-game policies policy.

3. From the + menu, select Add Policy.

4. For the name, replace Untitled with Requests for a user's answers.

5. Click the + next to Applies to.

6. Click Add definitions and targets, or drag from Components and add the meme-
game.user_answers service, which we set up in Getting a path component from the request URL on
page 385. Also add the inbound-GET action.

7. Set Combining Algorithm to Unless one decision is permit, the decision will be deny.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 398

8. Add a rule so that a user can access their own answers.

a. Click + Add Rule.
b. For the name, replace Untitled with Permit a user to request their own answers.
c. Click + Comparison.
d. From the Select an Attribute field, select Users identifier from the URL, which we also set up in

Getting a path component from the request URL on page 385.
e. In the second field, select Equals.
f. In the third field, click the C to toggle to an A (for attribute) so that you can select the

HttpRequest.AccessToken.subject attribute.

The following image shows this configuration.

g. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 399

9. Test the rule.

The following image shows a test with Postman making a request to the user.0 answers as user.0. The
response shows the rule works.

If we try again with user.1, the request is denied. Even though user.1 does have a consent record in our
consent store, the policy does not do anything with that consent record. We need another rule to look at
the consent record and get the status from that record.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 400

10.Add a rule to get status from a consent record.

a. Click + Add Rule.
b. For the name, replace Untitled with Permit if resource owner gave consent to share

answers.
c. Click + Comparison.
d. From the Select an Attribute field, select Sharing consent status, which we set up in Getting

consent status from the consent record on page 396.
e. In the second field, select Equals.
f. In the third field, type accepted.

This value is the status to check against.

The following image shows this rule.

g. Click Save changes.

11.Test the policy with both rules in place now.

A request to the user.0 answers as user.1 should now work.

However, a request to the user.0 answers as a user without a consent record, say user.2, is denied.

The user.2 request is denied because of the combining algorithm, Unless one decision is permit,
the decision will be deny. When the policy engine evaluates the policy rules, the Permit a user to
request their own answers rule does not produce a permit because user.2 is not requesting their own
answers. The Permit if resource owner gave consent to share answers rule uses the Sharing
consent status attribute. user.0 does not have a consent record for user.2. With no consent record
to get status from, the policy engine cannot evaluate the rule. So this rule also does not produce a
permit. Thus, the combining algorithm produces a deny for the user.2 request.

If user.0 revokes the consent given to user.1, the status in the consent record becomes revoked. The
rule no longer applies, so user.1 requests are then denied.

Use case: Using consent to change a response
PingDataGovernance can change a server response based on the resource owner's consent to share.

This feature is useful for:

▪ Data control
▪ Information security
▪ Resource management

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 401

Again, we continue using the meme games API used in Getting started with PingDataGovernance
(tutorials) on page 68.

We first set up some Trust Framework attributes and services to provide consent status. Then we create a
policy with rules that use the consent status to include, exclude, or modify attributes in the response. The
following topics cover the Trust Framework tasks. If you completed Use case: Using consent to determine
access to a resource on page 384, you have already finished the tasks of setting up Trust Framework
attributes and services. Those tasks are the same for both use cases.

1. Getting a path component from the request URL on page 385
2. Getting the requestor identifier from the access token on page 390
3. Searching for consent by resource owner to requestor on page 391
4. Getting consent status from the consent record on page 396
5. What is different for this use case is the policy itself. The following topic explains how to add rules with

advices to include, exclude, or modify attributes in the response.

Creating a policy to check consent and then change the server response on page 401

Creating a policy to check consent and then change the server response
Using the Trust Framework attributes and services we created, we now create a policy for the meme game
API to get a user's answers and change the server response with various advices based on the consent
status.

About this task

Here is a snippet of an unedited response. It shows the id, type, and attributes attributes.

{
 "data": [{
 "id": "1",
 "type": "answers",
 "attributes": {
 "url": "https: //l.imqflip.com/2fm6x.jpq",
 "captions": ["Still waiting for the bus to
 Jennie's"],
 "rating": null,
 "created_at": "2020-05-e6T22:25:06-00:00"
 }
 },

Steps

1. Sign on to the Policy Administration GUI, click Policies in the left pane and then click Policies along
the top.

2. Select the existing meme-game policies policy. The new policy is created under this policy.

3. From the + menu, select Add Policy.

4. For the name, replace Untitled with Control user's response to answers request.

5. Click + next to Applies to.

6. Click Add definitions and targets, or drag from Components and add the meme-
game.user_answers service, which we set up in Getting a path component from the request URL
on page 385. Also, because we want to control the response to the client, add the outbound-GET
action.

7. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 402

8. Add a rule to include attributes.

a. Click + Add Rule.

1. For the name, replace Untitled with If consent to share status is accepted then
include attributes.

2. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute field, select Sharing consent status, which we created in

Getting consent status from the consent record on page 396.
c. In the second field, select Equals.
d. In the third field, type accepted.

3. Specify the advice.

a. Click Show Advice and Obligations.
b. Click + next to Advice and Obligations.
c. Click + Add Advice# Include Attributes.

Use this advice to be explicit about what attributes to keep, especially when you have a large
set of attributes where you only need a small subset in the response.

For information about this advice, see Include Attributes on page 285.
d. For the name, replace Untitled with Include id and attributes attribute.
e. In the Code field, enter include-attributes.
f. From the Applies To list, select Permit.
g. In the Payload field, enter the following text to include the id attribute and the attributes

attribute but not the type attribute.

["data[*].id","data[*].attributes.*"]
h. Click Save changes.

The following screen shows the rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 403

With the policy in place, trying the request again gets a response with the type attribute removed,
as shown in the following snippet.

{
 "data": [{
 "attributes": {
 "url": "https: //l.imqflip.com/2fm6x.jpq",
 "captions": ["Still waiting for the bus to
 Jennie's"],
 "rating": null,
 "created_at": "2020-05-e6T22:31:06-00:00"
 "id": "1",
 }
 },

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 404

9. Add a rule to exclude attributes.

a. Click + Add Rule.

1. For the name, replace Untitled with If consent to share status is revoked then
exclude attributes.

2. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute field, select Sharing consent status, which we created in

Getting consent status from the consent record on page 396.
c. In the second field, select Equals.
d. In the third field, type revoked.

3. Specify the advice.

a. Click Show Advice and Obligations.
b. Click + next to Advice and Obligations.
c. Click + Add Advice# Exclude Attributes.

Use this advice to be explicit about what attributes to leave out. For example, a third-party
client might request banking records; the client does not need account numbers, so give them
everything but the account number.

For information about this advice, see Exclude Attributes on page 283.
d. For the name, replace Untitled with Exclude the id attribute.
e. In the Code field, enter exclude-attributes.
f. From the Applies To list, select Anything.
g. In the Payload field, enter the following text to exclude the id attribute.

["data[*].id"]
h. Click Save changes.

The following screen shows the rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 405

With the policy in place, trying the request again gets a response with the type attribute removed,
as shown in the following snippet.

{
 "data": [{
 "type": "answers",
 "attributes": {
 "url": "https: //l.imqflip.com/2fm6x.jpq",
 "captions": ["Still waiting for the bus to
 Jennie's"],
 "rating": null,
 "created_at": "2020-05-e6T22:35:06-00:00"
 }
 },

You can use the Decision Visualiser to see how the decision engine processed the decision. In
the Policy Administration GUI, click Policies in the left pane, then click Decision Visualiser along
the top, and then click Recent Decisions. Click a decision and follow the green paths to see what
polices are executed and which rules are invoked. Click Attributes along the top to see the names
and values of attributes that are used in the decision.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 406

10.Add a rule to modify attributes.

a. Click + Add Rule.

1. For the name, replace Untitled with If consent to share status is restricted
then modify attributes.

2. Specify the condition.

a. Click + Comparison.
b. From the Select an Attribute field, select Sharing consent status, which we created in

Getting consent status from the consent record on page 396.
c. In the second field, select Equals.
d. In the third field, type restricted.

3. Specify the advice.

a. Click Show Advice and Obligations.
b. Click + next to Advice and Obligations.
c. Click + Add Advice# Modify Attributes.

Use this advice to change attributes. For example, the client might request health records
and require all items from a record, such as a social security number, even if partially or fully
hidden.

For information about this advice, see Modify Attributes on page 286.
d. For the name, replace Untitled with Modify all the values in attributes.
e. In the Code field, enter modify-attributes.
f. From the Applies To list, select Permit.
g. In the Payload field, enter the following text to replace all values in the attributes attribute

with three dashes.

{"data[*].attributes.*":"---"}
h. Click Save changes.

The following screen shows the rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 407

With the policy in place, trying the request now gets a response with the id and type attributes
unchanged but all the attributes values changed to dashes, as shown in the following snippet.

{
 "data": [{
 "id": "168",
 "type": "answers",
 "attributes": {
 "url": "---",
 "captions": "---",
 "rating": "---",
 "created_at": "---"
 }
 },

Results
The following image shows the what policy applies to and the three rules.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 408

Use case: Using a SCIM resource type or a policy request action to control behavior
SCIM (System for Cross-domain Identity Management) resource types define a class of resources, such as
users or devices. The PingDataGovernance Server SCIM service provides a REST API for data stored in
external datastores that are based on the SCIM 2.0 standard.

The SCIM service translates each SCIM request or response into one or more policy requests to the policy
decision point (PDP).

These policy requests have an action value that you can reference in the policies you write to deny or
permit the action.

For more background information, see About the SCIM service on page 206.

For more information about actions, see SCIM policy requests on page 212.

This feature is useful for:

▪ Data control
▪ Information security
▪ Resource management

Example scenarios include:

▪ A bank that wants to prevent delete operations of their client profiles
▪ A health care system that should only allow the creation of new patient records and should not allow the

modification of existing patient records
▪ A university system that only allows the retrieval of student information from the student's defined

department; the system can modify the information differently based on the department

In this use case, we define services in the Trust Framework. We then create policies that use those
services or policy request actions to control various operations. The following topics cover these tasks.

1. Getting the SCIM resource type and the action being executed on page 409
2. Creating a policy to permit or deny the creation of resources on page 411
3. Creating a policy to control the set of actions for a specific resource on page 414

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 409

4. Creating a policy to restrict the ability to delete based on resource type on page 418
5. Creating a policy to modify a resource differently based on the SCIM resource type on page 421

Getting the SCIM resource type and the action being executed
The SCIM resource type indicates the class of resources with which to interact. The action indicates what
the user is trying to do. Here we define Trust Framework services to use in policies and locate the resource
type and actions.

About this task
The PingDataGovernance Policy Administration GUI provides a SCIM2 service in the Trust Framework.
This service is for the SCIM2 REST API and does not reference resource types. This task creates two
services: Users and Devices.

Steps

1. Sign on to the Policy Administration GUI.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 410

2. Create the Users and Devices services.

a. Go to Trust Framework and click Services.
b. Click the SCIM2 service so the service we create is listed under SCIM2.
c. From the + menu, select Add new Service.
d. For the name, replace Untitled with Users.
e. Click Save changes.
f. Click the SCIM2 service again.
g. From the + menu, select Add new Service.
h. For the name, replace Untitled with Devices.
i. Click Save changes.

With the services defined, you should have a screen similar to the following one.

We will use these services in the policies we create.

Also, we will use the attribute SCIM2.resource.meta.resourceType.

To see the attribute in the Trust Framework, click Attributes and navigate to it starting from SCIM2.

i Note: The SCIM2.resource attribute is only available when the SCIM resource exists. For
example, the search and create actions do not have this attribute. However, the search action does
have a policy request with a retrieve action that does have the attribute.

Your policy can use a service you define or the SCIM2.resource.meta.resourceType attribute.

Also, we can use these actions in our policies: create, delete, modify, retrieve, search, search-results.

To see the actions in the Trust Framework, click Actions.

When you are creating your policy, use the Policy Administration GUI's Decision Visualiser to make
sure your policy accurately reflects the policy requests. For example, consider the following screen
showing the request.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 411

We can use the following lines from the Decision Visualiser:

▪ service line

Verify the name of the service in your Trust Framework and policy.
▪ action line

Verify that the request produces the expected action that the policy uses.

The PingDataGovernance SCIM translates a get request in the SCIM REST API to retrieve action.
For more information about actions, see SCIM policy requests on page 212.

▪ RequestURI line

Verify that the endpoint belongs to the expected service.
▪ SCIM2 line

Scroll right to see the verify that the resourceType is as expected.

Creating a policy to permit or deny the creation of resources
This policy allows the creation of one resource type but not another. In particular, the policy focuses on the
create action and then allows the creation of Device resources but denies the creation of User resources.

Steps

1. In the Policy Administration GUI, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with User can only create Device resources.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the create action.

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 412

7. Add a rule to allow the creation of Device resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Permit the creation of Device resources.
c. Click + Comparison.
d. In the first field, click the A to toggle to an R and from that field's drop-down list, select Service.
e. In the second field, select Equals.
f. In the third field, select the SCIM2.Devices service.
g. Click Save changes.

You should have a screen similar to the following one for the policy and this rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 413

8. Add a rule to deny the creation of User resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Deny the creation of User resources.
c. Set Effect to Deny.
d. Click + Comparison.
e. In the first field, click the A to toggle to an R and from that field's drop-down list, select Service.
f. In the second field, select Equals.
g. In the third field, select the SCIM2.Users service.
h. Add advice to provide a custom message.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice# Denied Reason.
4. For the name, specify denied-reason.
5. Set Applies To to Deny.
6. In the Payload field:

▪ Remove

Example:
▪ Change

Human-readable error message

to

System has restricted the ability to create User resources
i. Click Save changes.

You should have a screen similar to the following one for the second rule.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 414

9. Send test requests to the SCIM service and verify data using the Policy Administration GUI's Decision
Visualiser.

Creating a policy to control the set of actions for a specific resource
For a given resource, control the outcomes (deny or permit) of actions on the resource. In particular, the
policy focuses on the Users resource, and then denies deletes but permits retrieves.

Steps

1. In the Policy Administration GUI, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with Control actions for the User resource.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the SCIM2.Users service.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 415

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

You should have a screen similar to the following one for the policy so far.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 416

7. Add a rule to deny the deletion of User resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Action: delete.
c. Set Effect to Deny.
d. Click + Comparison.
e. In the first field, click the A to toggle to an R and from that field's drop-down list, select Action.
f. In the second field, select Equals.
g. In the third field, select the delete action.
h. Add advice to provide a custom message.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice# Denied Reason.
4. For the name, specify denied-reason.
5. Set Applies To to Deny.
6. In the Payload field:

▪ Remove

Example:
▪ Change

Human-readable error message

to

System has restricted the ability to delete User resources
i. Click Save changes.

Your rule should be similar to the following one.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 417

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 418

8. Add a rule to permit the retrieval of User resources.

a. Click + Add Rule.
b. For the name, replace Untitled with Action: retrieve.
c. Click + Comparison.
d. In the first field, click the A to toggle to an R and from that field's drop-down list, select Action.
e. In the second field, select Equals.
f. In the third field, select the retrieve action.
g. Click Save changes.

Your rule should be similar to the following one.

9. Send test requests to the SCIM service and verify data using the Policy Administration GUI's Decision
Visualiser.

Creating a policy to restrict the ability to delete based on resource type
For a given resource type, restrict the ability to delete. In particular, the policy focuses on the delete action
and then denies the action when the resource type is Devices.

Steps

1. In the Policy Administration GUI, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with User cannot delete a Device resource.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the delete action.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 419

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

You should have a screen similar to the following one for the policy so far.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 420

7. Add a rule to deny the deletion of Device resources.

a. Click + Add Rule.
b. For the name, replace Untitled with If the SCIM resource type is Device, then deny.
c. Set Effect to Deny.
d. Click + Comparison.
e. In the Select an Attribute field, select the SCIM2.resource.meta.resourceType attribute.
f. In the second field, select Equals.
g. In the third field, specify Devices as the constant.
h. Add advice to provide a custom message.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice# Denied Reason.
4. For the name, specify denied-reason.
5. Set Applies To to Deny.
6. In the Payload field:

▪ Remove

Example:
▪ Change

Human-readable error message

to

System has restricted the ability to delete Device resources
i. Click Save changes.

Your rule should be similar to the following one.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 421

8. Send test requests to the SCIM service and verify data using the Policy Administration GUI's Decision
Visualiser.

Creating a policy to modify a resource differently based on the SCIM resource type
Given an attribute defined in multiple resource types, modify the attribute differently depending on the
resource type. In particular, this policy focuses on the retrieve action and changes the cn attribute to one
value for the Users resource type and to another value for the Devices resource type.

Steps

1. In the Policy Administration GUI, go to Policies in the left pane and then click Policies along the top.

2. From the + menu, select Add Policy.

3. For the name, replace Untitled with Modify cn attribute based on the resource type.

4. Click the + next to Applies to.

5. Click Add definitions and targets, or drag from Components and add the retrieve action.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 422

6. Set Combining Algorithm to Unless one decision is deny, the decision will be permit.

You should have a screen similar to the following one for the policy so far.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 423

7. Add a rule for the Users resource.

a. Click + Add Rule.
b. For the name, replace Untitled with If resource type is Users.
c. Click + Comparison.
d. From the Select an Attribute field, select the SCIM2.resource.meta.resourceType attribute.
e. In the second field, select Equals.
f. In the third field, specify Users as the constant.
g. Add advice to modify attributes.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice# Modify Attributes.
4. For the name, specify Modify cn for users resource.
5. Set Applies To to Permit.
6. Set the Payload field to {"cn":"USERS_MOD"}.

h. Click Save changes.

Your rule should be similar to the following one.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 424

8. Add a rule for the Devices resource.

a. Click + Add Rule.
b. For the name, replace Untitled with If resource type is Devices.
c. Click + Comparison.
d. From the Select an Attribute field, select the SCIM2.resource.meta.resourceType attribute.
e. In the second field, select Equals.
f. In the third field, specify Devices as the constant.
g. Add advice to modify attributes.

1. Within the rule, click Show Advice and Obligations.
2. Click + next to Advice and Obligations.
3. Click + Add Advice# Modify Attributes.
4. For the name, specify Modify cn for devices resource.
5. Set Applies To to Permit.
6. Set the Payload field to {"cn":"DEVICES_MOD"}.

h. Click Save changes.

Your rule should be similar to the following one.

9. Send test requests to the SCIM service and verify data using the Policy Administration GUI's Decision
Visualiser.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 425

Restricting the attributes that can be modified
Starting with PingDataGovernance 8.1, the Allow Attributes advice and Prohibit Attributes advice
are no longer supported. If you have policies that use those advices, change them to use the
impactedAttributes policy attribute.

About this task

The impactedAttributes attribute is defined in resource/policies/
defaultPolicies.SNAPSHOT. If you are using a branch created from that snapshot, the attribute
already exists in the branch. If not, create the attribute.

Steps

1. Go to Trust Framework, and then click Attributes.

2. From the + menu, select Add new Attribute.

3. For the name, replace Untitled with impactedAttributes.

4. Verify that in the Parent field, no parent is selected. To remove a parent, click the trash can icon to the
right of the Parent field.

5. Click + Add Resolver and set the Resolver type to Request.

6. In the Value Settings section:

a. Select the box next to Default value and specify square brackets with no space between them ([])
as the value.

b. Set Type to Collection.

7. Click Save changes.

Allowing attributes to be modified
To allow any attribute to be modified, such as for an administrator account, the policy decision point (PDP)
does not need to check the impactedAttributes attribute.

About this task

To create a policy that allows an administrator to modify any attributes, complete the following step.

Steps

▪ Create a policy with a rule with Effect set to Permit the decision based on the Condition that the user
is an administrator.

To check the user, for example, you can set up a condition to compare whether
HttpRequest.AccessToken.scope equals administrator.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 426

Whitelisting attributes
To allow the user to modify a set of attributes limited to a whitelist and return an error if the user attempts
to modify any attribute outside the whitelist, create a constant in the Trust Framework and then use the
constant in a policy.

Steps

1. Create a constant in the Trust Framework.

a. Go to Trust Framework and then Attributes.
b. From the + menu, select Add new Attribute.
c. For the name, replace Untitled with whitelistAttributes.
d. Verify that in the Parent field, no parent is selected. To remove a parent, click the trash can icon to

the right of the Parent field.
e. Click + Add Resolver and set the Resolver type to Constant.
f. Set the value of the constant to a set of square brackets that contains a comma-delimited list of the

attributes that can be modified.

For example, to allow the email or userName attributes to be modified, you would set the value of
the constant to [email, userName].

As another example, to allow the user to modify a property or any of its subproperties, you must
explicitly list them. So to allow modification of the name field on the default Users pass-through
schema, set the value of the constant to [name, name.formatted, name.givenName,
name.familyName].

g. In the Value Settings section, set Type to Collection.
h. Click Save changes.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 427

2. Modify or create a policy to use that constant collection.

a. Go to Policies.
b. Select a policy or create a new one.
c. In the Rules section:

1. Set the Combining Algorithm to Unless one decision is permit, the decision will be deny.
2. Click + Add Rule.
3. For the name, replace Untitled with Allow only the email and userName attributes.
4. Set the Effect to Permit.
5. Under Condition, click + Comparison.
6. In the comparison, we want to compare the constant collection of permitted attributes to the

impactedAttributes collection.

▪ For the left field, select the whitelistAttributes attribute, which is the constant collection
of permitted attributes defined in the beginning.

You might see the field as shown below. Click the R immediately above + Comparison to
toggle to attribute selection.

▪ Set the middle field (the operator) to Contains.
▪ Set the right field to the impactedAttributes attribute.

If that field has a C before it, click the C to toggle to attribute selection.

i Note:

If impactedAttributes is not available, see Restricting the attributes that can be modified
on page 425.

When applied to two collections, the Contains operator returns true if and only if the right-side
collection is a subset of the left-side collection. Thus, the rule only returns PERMIT if the set of
impactedAttributes is a subset of the list of allowed attributes in whitelistAttributes.

Test Suite
Use the Test Suite to define tests, scenarios, and assertions to validate behavior for most Trust Framework
and Policy Manager entities.

Policy writers can build a library of test cases to use as part of a test-driven development approach to
policy and Trust Framework design. The library you develop can form a suite of regression checks that you
run against each new version of policies or the Trust Framework.

The Test Suite has these components: Tests, scenarios, and assertions. The following table highlights
the similarities and differences. The components are very similar. However, with test cases, you specify a
Trust Framework or Policy Manager entity to test. Scenarios do not use such entities and are instead for
reuse across tests.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 428

Test cases Scenarios

A test case definition includes:

▪ A decision request
▪ Optional overrides for attributes
▪ Optional overrides for services
▪ An entity to test
▪ Optional assertions

A scenario definition includes:

▪ A decision request
▪ Optional overrides for attributes
▪ Optional overrides for services

You can reuse a scenario within a test suite.

Tests

In the Test Suite, use the Tests tab to view and manage tests and test groups. A test group is a collection
of tests.

To add a test or test group, click +.

When you create a test, keep the following items in mind.

Field Description

Name A unique name avoiding the following characters:

{ } | .

Description A description for the test to clarify its intention and usage.

Tested Entity The entity to verify with the test.

After you assign an entity, you can run the test on that entity using
the Test tab in the Trust Framework or Policy Manager pages.

Scenario Type The type of scenario to use, either inline or referenced.

With inline, you define the scenario on the same page where you
define the test.

With referenced, you select a scenario that you already defined in
the Scenarios tab.

i Tip: You can use a referenced scenario as a template for a
new inline scenario by selecting that referenced scenario and then
switching to Inline Scenario.

When you create a test group, you need only provide a name and description.

Scenarios

In the Test Suite, use the Scenarios tab to view and manage scenarios and scenario groups. A scenario
group is a collection of scenarios.

Scenarios define a decision request and optional attribute and service overrides to serve as input for a test.
After you define a scenario, you can reference it by name in your tests. Also, on the Test tab in the Trust
Framework or Policy Manager pages, you can load a scenario directly into the test by clicking the Load
Scenario button in the lower, right corner.

To add a test or test group, click +.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 429

You can specify request and override data by hand or by importing it in JSON format by clicking the Import
JSON button in the lower, right corner.

When you create a scenario group, you need only provide a name and description.

Assertions

After you define a test scenario, you can create assertions to verify content in the decision response
generated by the scenario. Use assertions to ensure that a particular property in the response is behaving
correctly.

In the Test Suite, use the Assertions tab to view and manage assertions and assertion groups.

To create an assertion, your options include:

▪ Using the Assertions tab.

For assertions you create using the Assertions tab, use them in a test by clicking + Add Assertion,
setting Assertion Type to Referenced, and then selecting the assertion in the drop-down list.

▪ Creating them inline when you define a test on the Tests tab.

When you define an assertion, you:

1. Provide a JSONPath accessor to extract information from the response.
2. Specify a matcher to indicate how to compare the extracted information against an expected value.
3. Specify the expected value type.
4. Specify the expected value.

The following image shows an assertion that checks whether result value equals PERMIT.

Test execution

After you assign a testable entity, such as a policy or attribute, to a test case, you can run the test. To view
and run the test, your options are:

▪ In the test definition, after you add the tested entity to the test and save changes, click the name of the
tested entity to view the entity. Next, click Test and then Tests.

▪ View the entity through a tab on the left, such as the Policies tab. Next, click Test and then Tests.

You see a table of the tests available for the entity. Click a test's Execute button to run that test. For longer
running tests, you can go to other tasks in the Policy Administration GUI and return to this page later to
check progress.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 430

If a test uses assertions, when you expand the row for the test case, an Assertions tab appears. Use this
tab to see the results for the assertions.

Advice types
An advice is additional information you can attach to a decision response. It returns to the governance
engine so that, depending on the evaluation response from the policy, PingDataGovernance can take the
appropriate action.

You add or modify advice as part of a policy definition.

This section describes the advice types built into PingDataGovernance Server.

Add Filter
Use add-filter to add administrator-required filters to System for Cross-domain Identity Management
(SCIM) search queries.

Applicable to SCIM.

Additional
information

The Add Filter advice places restrictions on the resources returned to an application that can
otherwise use SCIM search requests. The filters that the advice specifies are ANDed with any filter
that the SCIM request includes.

The payload for this advice is a string that represents a valid SCIM filter, which can contain multiple
clauses separated by AND or OR. If the policy result returns multiple instances of Add Filter advice,
they are ANDed together to form a single filter that passes with the SCIM request. If the original SCIM
request body included a filter, it is ANDed with the policy-generated filter to form the final filter value.

Combine SCIM Search Authorizations
Use combine-scim-search-authorizations to optimize policy processing for System for Cross-
domain Identity Management (SCIM) search responses.

Applicable to SCIM.

Additional
information

By default, SCIM search responses are authorized by generating multiple policy decision
requests with the retrieve action, one for each member of the result set. The default mode
enables policy reuse but might result in greater overall policy processing time.

When you use this advice type, the current SCIM search result set is processed using an
alternative authorization mode in which all search results are authorized by a single policy
request that uses the search-results action. The policy request includes an object with
a single Resources field, which is an array that consists of each matching SCIM resource.
Advices that the policy result returns are applied iteratively against each matching SCIM
resource, allowing for the modification or removal of individual search results.

This advice type does not use a payload.

For more information about SCIM search handling, see About SCIM searches on page 216.

Denied Reason
Use denied-reason to allow a policy writer to provide an error message that contains the reason for
denying a request.

Applicable to DENY decisions.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 431

Additional
information

The payload for Denied Reason advice is a JSON object string with the following fields:

▪ status – Contains the HTTP status code returned to the client. If this field is absent, the
default status is 403 Forbidden.

▪ message – Contains a short error message returned to the client.
▪ detail (optional) – Contains additional, more detailed error information.

The following example shows a possible response for a request made with insufficient scope

{"status":403, "message":"insufficient_scope", "detail":"Requested
operation not allowed by the granted OAuth scopes."}

Exclude Attributes
Use exclude-attributes to specify the attributes to exclude from a JSON response.

Applicable to PERMIT decisions, although you cannot apply Exclude Attributes advice directly to a System for
Cross-domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 287 advice type.

Additional
information

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath
into the response body of the request being authorized. Each JSONPath can select multiple
attributes in the object. The portions of the response that a JSONPath selects are removed
before sending the response to the client.

The following example instructs PingDataGovernance Server to remove the attributes secret
and data.private.

["secret","data.private"]

For more information about the processing of SCIM searches, see Filter Response on page
284.

Filter Response
Use filter-response to direct PingDataGovernance Server to invoke policy iteratively over each item
of a JSON array contained within an API response.

Applicable to PERMIT decisions from Gateway, although you cannot apply Filter Response advice directly to
a System for Cross-domain Identity Management (SCIM) search. However, the SCIM service
performs similar processing automatically when it handles a search result. For every candidate
resource in a search result, the SCIM service makes a policy request for the resource with an
Action value of retrieve.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 432

Additional
information

When presented with a request to permit or deny a multivalued response body, Filter Response
advice allows policies to require that a separate policy request be made to determine whether
the client can access each individual resource that a JSON array returns.

The following table identifies the fields of the JSON object that represents the payload for this
advice.

Field Required Description

Path Yes JSONPath to an array within the API's response body. The
advice implementation iterates over the nodes in this array and
makes a policy request for each node.

Action No Value to pass as the action parameter on subsequent policy
requests. If no value is specified, the action from the parent
policy request is used.

Service No Value to pass as the service parameter on subsequent policy
requests. If no value is specified, the service value from the
parent policy request is used.

ResourceType No Type of object contained by each JSON node in the array,
selected by the Path field. On each subsequent policy request,
the contents of a single array element pass to the policy
decision point as an attribute with the name that this field
specifies. If no value is specified, the resource type of the
parent policy request is used.

On each policy request, if policy returns a deny decision, the relevant array node is removed
from the response. If the policy request returns a permit decision with additional advice, the
advice is fulfilled within the context of the request. For example, this advice allows policy to
decide whether to exclude or obfuscate particular attributes for each array item.

For a response object that contains complex data, including arrays of arrays, this advice type
can descend through the JSON content of the response.

i Note:

Performance might degrade as the total number of policy requests increases.

Include Attributes
Use include-attributes to limit the attributes that a JSON response can return.

Applicable to PERMIT decisions, although you cannot apply Include Attributes advice directly to a System for
Cross-domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 287 advice type.

Additional
information

The payload for this advice is a JSON array of strings. Each string is interpreted as a JSONPath
into the response body of the request being authorized. The response includes only the portions
that one of the JSONPaths selects. When a single JSONPath represents multiple attributes, the
response includes all of them. If the policy result returns multiple instances of Include Attributes
advice, the response includes the union of all selected attributes.

For more information about the processing of SCIM searches, see Filter Response on page
284.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 433

Modify Attributes
Use modify-attributes to modify the values of attributes in the JSON request or response.

Applicable to All, although you cannot apply the Modify Attributes advice directly to a System for Cross-
domain Identity Management (SCIM) search.

Also, do not use this advice type with SCIM modifies. Instead, use the Modify SCIM Patch on
page 287 advice type.

Additional
information

The payload for this advice is a JSON object. Each key-value pair is interpreted as an attribute
modification on the request or response body of the request being authorized. For each pair, the
key is a JSONPath that selects the attribute to modify, and the value is the new value to use for
the selected attribute. The value can be any valid JSON value, including a complex value like an
object or array.

Modify Headers
Use modify-headers to modify the values of request headers before PingDataGovernance sends them
to the upstream server or to modify the values of response headers before PingDataGovernance returns
them to the client.

Applicable to All, although you cannot apply the Modify Headers advice directly to a System for Cross-domain
Identity Management (SCIM) search.

Additional
information

The payload for this advice is a JSON object. The keys are the names of the headers to set, and the
values are the new values of the headers.

A value can be:

▪ Null, which removes the header
▪ A string, which sets the header to that value
▪ An array of strings, which sets the header to all of the string values

If the header already exists, PingDataGovernance overwrites it.

If the header does not exist, PingDataGovernance adds it (unless the value is null).

If a payload value is an array of strings:

▪ Given a header that supports multiple values, such as Accept, PingDataGovernance repeats the
header for each string in the array.

▪ Given a header that does not support multiple values, such as Content-Type,
PingDataGovernance sends the last string in the array.

Modify Query
Use modify-query to modify the query string of the request sent to the API server.

Applicable to All.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 434

Additional
information

The payload for this advice is a JSON object. The keys are the names of the query parameters
that must be modified, and the values are the new values of the parameters. A value can be one
of the following options:

▪ null – Query parameter is removed from the request.
▪ String – Parameter is set to that specific value.
▪ Array of strings – Parameter is set to all of the values in the array.

If the query parameter already exists on the request, it is overwritten. If the query parameter
does not already exist, it is added. For example, if a request is made to a proxied API with
a request URL of https://example.com/users?limit=1000, you can set a policy to
limit certain groups of users to request only 20 users at a time. A payload of {"limit": 20}
causes the URL to be rewritten as https://example.com/users?limit=20.

Modify SCIM Patch
Use modify-scim-patch to add operations to a SCIM patch in a modify request before it is submitted to
the store adapter.

Applicable to SCIM requests with an action of modify.

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 435

Additional
information

The payload for this advice is either a JSON array or a JSON object.

If the payload is an array, PingDataGovernance treats it as a list of operations in the SCIM
patch format to add to the end of the operations in the patch. For example, assume the modify
has the following patch.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John Doe"}
]
}

Also, assume the advice payload is as follows.

[
 {"op": "add", "path": "name.first", "value": "John"},
 {"op": "remove": "path": "name.last"}
]

Then the resulting request to the store adapter looks like this.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John
 Doe"},
 {"op": "add", "path": "name.first", "value": "John"},
 {"op": "remove", "path": "name.last"}
]
}

If the payload is an object, PingDataGovernance interprets it as a set of new replace operations
to add to the end of the operations in the patch. In these replace operations, the keys from the
object become the paths to modify, and the values from the object become the values for those
paths. For example, assume the modify has the following patch.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John Doe"}
]
}

Also, assume the advice payload is as follows.

{"name.first": "John", "name.last": "Doe"}

Then the resulting request to the store adapter looks like this.

{
 "schemas": ["urn:ietf:params:scim:api:messages:2.0:PatchOp"],
 "Operations": [
 {"op": "replace", "path": "name.formatted", "value": "John
 Doe"},
 {"op": "replace", "path": "name.first", "value": "John"},
 {"op": "replace", "path": "name.last", "value": "Doe"}
]
}

Copyright ©2022

PingDataGovernance | PingDataGovernance Policy Administration Guide | 436

Regex Replace Attributes
Use regex-replace-attributes to specify a regex to search for attributes in a request or response
body and replace their values with a regex replacement string.

Applicable to All, although you cannot apply the Regex Replace Attributes advice directly to a System for Cross-
domain Identity Management (SCIM) search.

Additional
information

The payload for this advice is either a JSON object or an array of JSON objects. Each object
represents a single replacement operation and has up to four keys.

Key Description

"regex" Required.

Represents the regular expression to use to find the attribute values to replace.

"replace" Required.

Represents the regex replacement string to use to replace the attribute values with a
new value.

"path" Optional.

Is a JSONPath expression that represents the nodes to start searching under.

"flags" Optional.

Is a string that contains the regex flags to use.

Recognized flags are:

▪ "i"

Performs case-insensitive matching.
▪ "l"

Treats the "regex" value as a literal string.
▪ "c"

Performs "canonical equivalence" matching.

You can combine flags. For example: "il"

PingDataGovernance replaces any portion of the attribute value that matches the regular expression
in the "regex" value in accordance with the "replace" replacement string. If multiple substrings
within the attribute value match the regular expression, PingDataGovernance replaces all
occurrences.

The regular expression and replacement string must be valid as described in the API documentation
for the java.util.regex.Pattern class, including support for capture groups.

For example, consider the following body.

{
 "id":5,
 "username":"jsmith",
 "description":"Has a registered ID number of '123-45-6789'.",
 "secrets":{
 "description":"Has an SSN of '987-65-4321."
 }

Copyright ©2022

PingDataGovernance | Legal Information | 437

}

Also, consider the following payload.

{
 "path":"$.secrets",
 "regex":"(\\\\d{3}-\\\\d{2})-\\\\d{4}",
 "replace":"$1-XXXX"
}

Applying the advice produces the following body with a changed
"secrets.description" value.

{
 "id":5,
 "username":"jsmith",
 "description":"Has a registered ID number of '123-45-6789'.",
 "secrets":{
 "description":"Has an SSN of '987-65-XXXX."
 }
}

REST API documentation
The PingDataGovernance Policy Administration GUI provides a set of REST APIs for managing policies,
snapshots, and deployment packages. Swagger documentation for these APIs is available through the
PingDataGovernance Policy Administration GUI if it was installed in demo mode.

For more information, click API Reference in the Policy Administration GUI.

Legal Information

All product technical documentation is ©2004-2021 Ping Identity® Corporation. All rights reserved.

Ping Identity Corporation
1001 17th Street, Suite 100
Denver, CO 80202
U.S.A.

Some documentation related to policy administration is ©2014-2020 Symphonic Software® Limited. All
rights reserved.

Trademarks

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory,
PingDataGovernance, PingIntelligence, and PingOne are registered trademarks of Ping Identity
Corporation ("Ping Identity"). All other trademarks or registered trademarks are the property of their
respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty
of any kind. Ping Identity disclaims all warranties, either express or implied, including the warranties of
merchantability and fitness for a particular purpose. In no event shall Ping Identity or its suppliers be liable
for any damages whatsoever including direct, indirect, incidental, consequential, loss of business profits

Copyright ©2022

PingDataGovernance | Legal Information | 438

or special damages, even if Ping Identity or its suppliers have been advised of the possibility of such
damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Copyright ©2022

	Contents
	PingDataGovernance
	Release Notes
	PingDataGovernance Server 8.2.0.8 release notes
	PingDataGovernance Server 8.2.0.7 release notes
	PingDataGovernance Server 8.2.0.6 release notes
	PingDataGovernance Server 8.2.0.5 release notes
	PingDataGovernance Server 8.2.0.3 - March 2021
	PingDataGovernance Server 8.2.0.2 - February 2021
	PingDataGovernance Server 8.2.0.1 - January 2021
	PingDataGovernance Server 8.2.0.0 - December 2020
	Critical fixes
	Known issues and limitations
	Previous releases
	PingDataGovernance Server 8.1.0.5 release notes
	PingDataGovernance Server 8.1.0.3 Release Notes
	PingDataGovernance Server 8.1.0.2 Release Notes
	PingDataGovernance Server 8.1.0.1 Release Notes
	PingDataGovernance Server 8.1.0.0 Release Notes
	PingDataGovernance Server 8.0.0.5 release notes
	PingDataGovernance Server 8.0.0.3 Release Notes
	PingDataGovernance Server 8.0.0.2 Release Notes
	PingDataGovernance Server 8.0.0.1 Release Notes
	PingDataGovernance Server 8.0.0.0 Release Notes
	PingDataGovernance Server 7.3.0.10 release notes
	PingDataGovernance Server 7.3.0.9 Release Notes
	PingDataGovernance Server 7.3.0.8 Release Notes
	PingDataGovernance Server 7.3.0.7 Release Notes
	PingDataGovernance Server 7.3.0.6 Release Notes
	PingDataGovernance Server 7.3.0.5 Release Notes
	PingDataGovernance Server 7.3.0.4 Release Notes
	PingDataGovernance Server 7.3.0.3 Release Notes
	PingDataGovernance Server 7.3.0.2 Release Notes
	PingDataGovernance Server 7.3.0.1 Release Notes
	PingDataGovernance Server 7.3.0.0 Release Notes

	Introduction to PingDataGovernance
	Getting started with PingDataGovernance (tutorials)
	Using the tutorials
	Tutorial: Importing default policies
	Introduction to the Trust Framework and default policies

	Tutorial: Configuring fine-grained action access control for an API
	Configuring a reverse proxy for the Meme Game API
	Testing the reverse proxy
	For further consideration: The PingDataGovernance API security gateway, part 1
	Adding a policy for the Create Game endpoint
	For further consideration: The PingDataGovernance API security gateway, part 2
	Testing the policy from the Policy Administration GUI
	Testing the policy by making an HTTP request
	For further consideration: Decision Visualiser
	Modifying the rule for the Create Game endpoint
	For further consideration: Resolvers and value processors
	Conclusion

	Tutorial: Configuring attribute-based resource access control for an API
	Configuring the API security gateway
	Creating the gateway API endpoint
	Testing the gateway

	Creating a policy based on user credentials
	Creating a service for the Shared Answers endpoint
	Creating a policy for the Shared Answers endpoint
	Testing the policy
	Creating an attribute from user data
	Adding logic to allow non-Youngstown users
	Testing that the policy blocks Youngstown users

	Creating a policy based on the API response
	Creating an attribute from response data
	Adding logic to allow family-friendly memes
	Testing that the policy blocks Youngstown users from viewing age 13+ memes
	Allowing unrated memes
	Testing the default value
	Creating an advice to provide a more useful error message
	Testing the advice

	Conclusion

	Tutorial: Creating SCIM policies
	Tutorial: Creating the policy tree
	Tutorial: Creating SCIM access token policies
	Creating a policy for permitted access token scopes
	Testing the policy with cURL
	Defining the email scope
	Testing the email scope with cURL
	Defining the profile scope
	Testing the profile scope with cURL
	Defining the scimAdmin scope
	Adding the scimAdmin retrieve rule
	Adding the scimAdmin create/modify rule
	Adding the scimAdmin search rule
	Adding the scimAdmin delete rule

	Creating a policy for permitted OAuth2 clients
	Testing the client policy with cURL

	Creating a policy for permitted audiences
	Testing the audience policy with cURL

	Tutorial: Creating a policy for role-based access control
	Testing the policy with cURL

	Example files
	Conclusion

	Installing PingDataGovernance
	Docker installation
	Before you install using Docker
	Docker
	Browsers

	Installing the server and the Policy Administration GUI using Docker
	Installing the server using Docker
	Signing on to the Administrative Console (Docker installation)

	Installing PingDataGovernance Policy Administration GUI using Docker
	Post-setup steps (Docker installation)
	Signing on to the PingDataGovernance Policy Administration GUI
	Configuring an Authentication Server for OpenID Connect single sign-on

	Next steps

	Manual installation
	Before you install manually
	System requirements
	Platforms
	Java Runtime Environment
	Browsers

	About license keys
	Installing a Java dedicated to PingDataGovernance
	Preparing a Linux environment
	Setting the file descriptor limit
	Setting the maximum user processes
	Disabling file system swapping
	Managing system entropy
	Enabling the server to listen on privileged ports

	Obtaining the installation packages

	Installing the server and the Policy Administration GUI manually
	Installing the server manually
	About the server installation modes
	Installing the server interactively
	Installing the server noninteractively
	Signing on to the Administrative Console (manual installation)

	Installing PingDataGovernance Policy Administration GUI manually
	Installing the PingDataGovernance Policy Administration GUI interactively
	Example: Installing and configuring the PingDataGovernance Policy Administration GUI

	Installing the PingDataGovernance Policy Administration GUI noninteractively
	Example: Set up the PingDataGovernance Policy Administration GUI in demo mode
	Example: Set up the PingDataGovernance Policy Administration GUI in OIDC mode (PingFederate)
	Example: Set up the PingDataGovernance Policy Administration GUI in OIDC mode (generic OpenID Connect provider)

	Post-setup steps (manual installation)
	Signing on to the PingDataGovernance Policy Administration GUI
	Changing the Policy Administration GUI authentication mode
	Configuring an Authentication Server for OpenID Connect single sign-on

	(Optional) Configuring PingDataGovernance using server profiles
	Variable substitution
	Layout of a server profile
	setup-arguments.txt
	dsconfig/
	server-root/
	server-sdk-extensions/
	variables-ignore.txt
	server-root/permissions.properties
	misc-files/

	Workflows
	Creating a server profile
	Installing a new environment
	Scaling up your environment
	Rolling out an update

	Clustering and scaling
	Next steps

	Upgrading PingDataGovernance
	Upgrade considerations
	Docker upgrades
	Upgrading PingDataGovernance Server using Docker
	Upgrading the PingDataGovernance Policy Administration GUI using Docker

	Manual upgrades
	Upgrading PingDataGovernance Server manually
	Reverting an update
	Upgrading the PingDataGovernance Policy Administration GUI manually

	Backing up policies
	Upgrading the Trust Framework and policies

	Uninstalling PingDataGovernance
	PingDataGovernance Server Administration Guide
	Running PingDataGovernance
	Starting PingDataGovernance Server
	Running PingDataGovernance Server as a foreground process
	Starting PingDataGovernance Server at boot time (Unix/Linux)
	Starting PingDataGovernance Server at boot time (Windows)
	Registering PingDataGovernance Server as a Windows service
	Running multiple service instances
	Deregistering and uninstalling services
	Log files for services

	Starting PingDataGovernance Policy Administration GUI
	Stopping PingDataGovernance Server
	Stopping PingDataGovernance Policy Administration GUI
	Restarting PingDataGovernance Server

	About the API security gateway
	Request and response flow
	Gateway configuration basics
	API security gateway authentication
	API security gateway policy requests
	Policy request attributes
	Gateway API Endpoint configuration properties that affect policy requests
	Path parameters
	Basic example
	Advanced example

	API security gateway HTTP 1.1 support
	About error templates
	Configuring error templates example

	About the Sideband API
	API gateway integration
	Sideband API configuration basics
	Authenticating to the Sideband API
	Creating a shared secret
	Deleting a shared secret
	Rotating shared secrets
	Customizing the shared secret header

	Authenticating API server requests
	Sideband API policy requests
	Policy request attributes
	Sideband API Endpoint configuration properties
	Path parameters
	Path parameters: Basic example
	Path parameters: Advanced example

	Request context configuration
	Access token validation
	Error templates
	Example: Configure error templates

	About the SCIM service
	Request and response flow
	SCIM configuration basics
	About the create-initial-config tool
	Example: Mapped SCIM resource type for devices

	SCIM endpoints
	SCIM authentication
	SCIM policy requests
	Policy request attributes
	About SCIM searches
	SCIM search policy processing
	Search request authorization
	Search response authorization

	Using paged SCIM searches

	Lookthrough limit
	Disabling the SCIM REST API

	About the SCIM user store
	Defining the LDAP user store
	Defining the LDAP user store with create-initial-config
	Defining the LDAP user store manually

	Location management for load balancing
	Automatic backend discovery
	Joining a PingDataGovernance Server to an existing PingDirectory Server topology
	Joining a topology at setup
	Joining a topology with manage-topology

	Configuring a load-balancing algorithm with an LDAP external template
	Configuring automatic backend discovery

	LDAP health checks
	Configuring a health check using dsconfig

	Connecting non-LDAP data stores

	About the PDP API
	Request and response flow
	Requests
	Authorization
	Decision processing
	Responses
	Example

	Policy Administration GUI configuration
	Specifying custom configuration with an options file
	Example: Configure policy configuration keys
	Example: Configure a key store for a policy information provider
	Example: Configure a trust store for a policy information provider
	Example: Use environment variables

	Manage policy database credentials
	Setting database credentials at initial setup
	Changing database credentials
	Specifying database credentials when you start the GUI
	Docker: Setting the initial database credentials
	Docker: Changing database credentials

	Configuring SpEL Java classes for value processing
	Setting the request list length for Decision Visualizer

	Policy administration
	About the Trust Framework
	Create policies in a development environment
	Example: Configure external PDP mode
	Example: Change the active policy branch
	Default and example policies
	Importing and exporting policies
	Loading a policy snapshot
	Exporting a policy snapshot
	Exporting a deployment package

	Use policies in a production environment
	Example: Define policy configuration keys
	Example: Define a policy information provider key store for MTLS
	Example: Define a policy information provider trust store

	Policy database backups
	Restore a policy database from a backup
	Use signed deployment packages
	Example: Configure signed deployment packages for healthcare

	Environment-specific Trust Framework attributes
	Example
	Define the policy information provider in the Trust Framework
	Define policy configuration keys in a development environment
	Define policy configuration keys in a preproduction environment

	Make a user's profile available in policies

	Advice types
	Add Filter
	Combine SCIM Search Authorizations
	Denied Reason
	Exclude Attributes
	Filter Response
	Include Attributes
	Modify Attributes
	Modify Headers
	Modify Query
	Modify SCIM Patch
	Regex Replace Attributes

	Access token validators
	About access token validator processing
	Access token validator types
	PingFederate access token validator
	JWT access token validator
	Handling signed tokens
	Example: Use a locally configured trusted certificate
	Example: Use the issuer's JWKS endpoint

	Handling encrypted tokens

	Mock access token validator
	Third-party access token validator
	External API gateway access token validator

	Token resource lookup methods

	Server configuration
	Administration accounts
	About the dsconfig tool
	PingDataGovernance Administrative Console
	About the configuration audit log
	About the config-diff tool
	Certificates
	Replacing the server certificate
	Preparing a new keystore with the replacement key pair
	Using an existing key pair
	Replacing the certificate associated with the original key pair

	Importing earlier trusted certificates into the new keystore
	Updating the server configuration to use the new certificate
	Replacing the key store and trust store files with the new ones
	Retiring the previous certificate

	Configure the Policy Decision Service
	Configure a user store
	Configure access token validation
	Configure PingOne to use SSO for the PingData Administrative Console
	Examples: Configuring PingDataGovernance Server
	Configuring the PingDataGovernance user store
	Configuring the PingDataGovernance OAuth subject search
	Configuring PingDataGovernance logging

	Server status
	Server availability
	User Store Availability gauge
	Endpoint Average Response Time (Milliseconds) gauge
	HTTP Processing (Percent) gauge
	Example: auto-healing

	Available gauges
	Common alarms
	Managing monitoring
	Profiling server performance using the Stats Logger
	Enabling the Stats Logger
	Configuring multiple Periodic Stats Loggers

	Logging HTTP performance statistics using a Periodic Stats Logger
	StatsD monitoring endpoint
	Sending metrics to Splunk

	Managing HTTP correlation IDs
	About HTTP correlation IDs
	Enabling or disabling correlation ID support
	Configuring the correlation ID response header
	How the server manages correlation IDs
	Server SDK support
	Example: HTTP correlation ID

	Command-line tools
	Available command-line tools
	Saving options in a file
	Creating a tools properties file
	Evaluation of command-line options and file options

	Sample dsconfig batch files
	Running task-based tools

	Capture debugging data
	Exporting policy data
	Enable detailed logging
	Policy Decision logger
	Debug Trace logger
	Debug logger

	Visualizing a policy decision response
	Capture debugging data with the collect-support-data tool

	About the layout of the PingDataGovernance Server folders
	About the layout of the PingDataGovernance Policy Administration GUI folders

	PingDataGovernance Policy Administration Guide
	Getting started
	Version control (Branch Manager)
	Creating a new top-level branch
	Creating a subbranch from a commit
	Importing a branch
	Deleting a branch
	Merging branches
	Reverting changes
	Committing changes
	Generating snapshots
	Partial snapshot export and merging
	Creating a partial export
	Merging a partial snapshot

	Creating a deployment package
	Deleting a deployment package

	Trust Framework
	Domains (PDP API only)
	Services
	Resources
	Policy information providers
	Common settings
	HTTP services
	LDAP services
	Camel services

	Attributes
	Creating an attribute
	Attribute name, description, and location
	Resolvers
	Resolver types
	Conditional resolvers
	Value processing for a resolver

	Attribute caching
	Value processing for an attribute
	Value settings
	Attribute interpolation

	Actions
	Identity classifications and IdP support
	Identity properties
	Identity providers
	Identity classifications

	Named conditions
	Value processing
	Chained processors
	Testing

	Policy management
	Policy sets, policies, and rules
	Policies and policy sets
	Creating policies and policy sets
	Adding targets to a policy
	Conditional targets (applies when)
	Advice
	Provided advice
	Custom advice

	Properties
	Rules and combining algorithms
	Rule structure

	Testing
	Analysis of policies and policy sets

	Repeating policies and attributes
	Policy solutions
	Use case: Using consent to determine access to a resource
	Getting a path component from the request URL
	Getting the requestor identifier from the access token
	Searching for consent by resource owner to requestor
	Getting consent status from the consent record
	Creating a policy to check consent and then permit or deny access

	Use case: Using consent to change a response
	Creating a policy to check consent and then change the server response

	Use case: Using a SCIM resource type or a policy request action to control behavior
	Getting the SCIM resource type and the action being executed
	Creating a policy to permit or deny the creation of resources
	Creating a policy to control the set of actions for a specific resource
	Creating a policy to restrict the ability to delete based on resource type
	Creating a policy to modify a resource differently based on the SCIM resource type

	Restricting the attributes that can be modified
	Allowing attributes to be modified
	Whitelisting attributes

	Test Suite
	Advice types
	Add Filter
	Combine SCIM Search Authorizations
	Denied Reason
	Exclude Attributes
	Filter Response
	Include Attributes
	Modify Attributes
	Modify Headers
	Modify Query
	Modify SCIM Patch
	Regex Replace Attributes

	REST API documentation

	Legal Information

