PingDS$S

June 5, 2025

Ping

|dentity.

PINGDS
Version: 7.5

Copyright

All product technical documentation is
Ping Identity Corporation

1001 17th Street, Suite 100

Denver, CO 80202

USA.

Refer to https://docs.pingidentity.com for the most current product documentation.
Trademark

Ping Identity, the Ping Identity logo, PingAccess, PingFederate, PingID, PingDirectory, PingDataGovernance, PingIntelligence, and
PingOne are registered trademarks of Ping Identity Corporation ("Ping Identity"). All other trademarks or registered trademarks
are the property of their respective owners.

Disclaimer

The information provided in Ping Identity product documentation is provided "as is" without warranty of any kind. Ping Identity
disclaims all warranties, either express or implied, including the warranties of merchantability and fitness for a particular
purpose. In no event shall Ping Identity or its suppliers be liable for any damages whatsoever including direct, indirect, incidental,
consequential, loss of business profits or special damages, even if Ping Identity or its suppliers have been advised of the
possibility of such damages. Some states do not allow the exclusion or limitation of liability for consequential or incidental
damages so the foregoing limitation may not apply.

Table of Contents

Starthere. e e e e e e e e 8
Install DS e e e e e 10
Learn LDAP e e e e e e 18
Learn HDAP. e e e 27
Learnreplication. o e e e e e e e e 46
Measure performancCe. o i i e e e e e e e e e e e e 57
Learn access control. L e e e e e 66
Aboutdirectories. L e e e e e 85
Best practiCes. i e e e e e e e e e e e e e e 93
NeXt STEPS. . . . o o e 98
GloSSarY . . . e e e e e e 101
USeCases i e e e 111
Cross-regionreplication. e e 114
Backup andrestore e e e e e e 122
Disaster reCovery i i i e e e e e e e e e 129
Change password storage e e e e e e 140
Change LDAP schema e e 150
DSTor AM CTS e e e e e 162
Enforce limits. L L o e e 175
Deployment e e e e e e e e e 183
DS software. e e e e e e e e 185
Projectoutline L e e e e 193
Comprehensive plans e e e e 196
Deployment patterns e e e e e e e e 217
Provisioning systems L L e e e e e e e e e 230
Deployment checklists e e e 233
Installation L e e e 235
Unpack files. o o e e e e e e e e e 238
Setup hints L o e e e e e e e e 242
Setup profiles. L e e e e e e 246
Install DS for evaluation. e e 263
Install DS for AM CTS o e e e e e e e e 269
Install DS for AM configuration. e e 272
Install DS for platform identities. e 273
Install DS as an IDM repository. o o i i i e e e e e e e e e 274
Install DS foruserdata e e e e e e 276
Install DS for cUStOM Cases o o i i i i e e e e e e e e 278
Install @ directory ProxXy. vt e e e e e e e e e 280

Install DS for use With DS ProxXy o o i i e e e e e e e e e e 292

Install standalone servers (advanced). e 294

Use your own cryptographic keys o i i e e 297
Installan HDAP gateway i i e e e e e e e 299
Installa DSML gateway v it e e e e e e e e e e 301
Uninstallation e e e e 303
Filelayout. o e e e e 304
Upgrade. e e e e e e 306
Aboutupgrades e e e e e e e e e 308
Upgrade strategies. o v i i e e e e e e e e e e e e e e e e e 312
Strategy: in-place upgrade e e e e 314
Beforeyouupgradeinplace e 315
Directory SerVer. . . . o i e 317
DIreCtOry PrOXY . o v v v v e 318
Replication server e e e e 320

HDAP gateway i e e e e e e e e e e e e e 321

DSML gateway e e e e e e e e e e e e e 322
Afteryouupgradeinplace e 322
Strategy: NEW SEIVEIS it i e 336
Beforeyouadd new servers e e e e e e 336

Add NEW SEIVEIS L ot e e e e e e e e 338
Upgradefrom DS 7.4.0 it e e 342

Afteryouadd NeW SErVErS o i e e e e e e e e 342
Configuration. e e e e e e e 351
HTTP @CCeSS. . . . o o i et e 353
LDAP @CCOSS . . . o i et e 360
LDIFfile @access i i i i e e e e e e e e e 363
LDAP schema. e e e e e e 363
INdeXES e e e e e e e e e e e 376
Aboutindexes. e e e e e e e 376

INdeX types e e e e e e 379
Whattoindex. e e e 385

INdexing tools. e e e e e e e e 397
Configureindexes i i e e e e e e e 398

Verify indexes. o i e e e e e e e e 415
Debugamissingindex. e e e e 416

Data storage e e e e e e e e e e e e e e e e 420
GrOUPS. .« . ot o e 435
Virtual attributes. e e e e e e e e e 448
Collective attributes e e e e e e 454
Replication e e e e e e e 464
Aboutreplication. e e e e 465

Manual initialization e e e 470

Addanewreplica. e e e e 473

Replication status i i i e e 473

Manual purge o e e e e e e 474
Replication groups (advanced) e 474

Subtree replication (advanced). L 476
Fractional replication (advanced). e 476
Read-onlyreplicas i i e e 477

Trusted replicas (advanced). e 478

Listen addresses e e e e e 480

Disk space thresholds e 481

Recover from uUser error. o i i i e e e e e e e 482
Replicationconflicts 483
Bootstrap replicationservers. L e 486
Disablereplication e 487

Monitor replication. e e e 489
Changelog for notifications. e 489
Referrals. o o e e e e 498
Attribute UNIQUENESS L e e e e e e e e 503
Samba password SYNC. o o e e e e e e e e e e e e 509
LDAP ProXY . . . o o o o e 511
Proxy protocol e e e e e 532
Onload balancers e e e 533
Aboutrequesthandling. L e 535
SECUNILY . . . o o e e e e e e e e e e e e e e e 535
Threats e e e e 538
Security features. e e e e e e e 541
Operating systems. e e e e e e e e e e e e e e 543
Javaupdates e e e e e 546
Gateway SeCUNtY. e 547
SErVEr SECUNILY . . . o o o i et e 548
Cryptographic Keys e e e e e e e e e 551
Key management e e e e e e e e e e e e e e 559
PKCS#11 hardware securitymodule 571
Secure ConNNECtioNS L o e e e e e e e e e e e 579
Authentication mechanisms L 593
PassSWOrds e e e e e e e 617
Which password policy applies. e 618
Configure password policies e 618

List subentry password policies e 627

Assign password policies e e e e 628
Strongand safe passwords e e e 634

Sample password policies. e 649

About password policies. e 656
Administrativeroles. e e e e e e e 673

ACCESS CONLIOl e e e e 684

Dataencryption e e e e e e e e e e 705

Clientbest practices. o i i i i e e e e e e e e e e e 710
TSt . . o e e e e e e e e e e 711
Maintenance L e e e e e e 712
Maintenance tools. L e e e e e e e e e 714
SEIVEIN PrOCESSES . . o i o i e e i e 720
Backup andrestore e e e e e e e 724
ACCOUNTS . . . o o e 739
MOVE @ SEIVEI o o e 746
Performance tuning i e e e e e e 747
Troubleshooting e e e e e e e 760
LOgEING o e e e e e e e e e e e e e 778
Aboutlogs. o e e e e 780
Log HTTP accesstofiles. L o i e e e e 785
Log LDAP accesstofiles. e 789
LOgtoaserviCe. i i e e e e e e e e e e 797
Manage logs e e e e e 801
MOoNItoring e e e e e e e e e 812
Whatto monitor e e e e e e 814
HTTP-based monitoring. o e e e e e e e 815
LDAP-based monitoring. L e e e e 826
JMX-based monitoring. e e e e e e 838
Statusand tasks e 842
Pushto Graphite. e e e e 843
AlBrtS . . . e e e e e e e e e e 843
Metric types reference L e e e e 847
LDAP metrics reference. e e e 851
Prometheus metrics reference. e 863
Use LDAP e e e e e e e e e e e e e e e e 876
AboUt DS toO0IS e e e e e 878
Authentication (binds). L e e e e 880
LDAP search e e e e e e 884
LDAP compare e 902
LDAP updates. it e e e e e e e e e e e 903
LDIFtools o e e e e e e e e e 917
LDAP schema. e e e e e 920
Passwords and accounts e e e e e e e e 927
Proxied authorization e e e 934
Notification of changes e e 936
USE HDAP. .« o o e 941
HDAP APl reference o o i i e e e e e 943

Update e e e e e e e e e 981
Delete e e e e e 986
Patch. . . . e e e 992
ACLiONS . . L e e e 1004
QUEIY . . e e e e e e e e e e 1040
BiNary resoUrCeS o o o e e e e e e e e e e e e 1083
HDAP and password policies. e e 1088
Configuration reference e e 1104
Subcommands e 1106
Objects e 1115
Propertiesindex e e e e e e 1122
Duration syntax e e e e e e e e 1157
SizesyntaX e e e e e 1158
Property value substitution. 1158
LDAP reference e e e e e 1164
Supported standards L e e e e 1166
Supported LDAP controls. e e 1173
Supported LDAP extended operations e 1178
Support for languages and locales. 1179
LDAP result codes o i i i e e e e e e e e 1196
LDAP schemareference i i i e e e e 1205
AttribUte tYPeS e e e e e e e e 1208
DIT contentrules. e e e e e e e e 1240
DIT structure rules. o e e e e e e e e e e 1240
Matching rule uses. e e e 1241
Matchingrules e e e e 1241
Name forms e e e e e e e 1243
Objectclasses e e e e 1244
SYNEAXES. . . o e e e e e e e e e e e 1251
Log messagereference. e e 1253
Toolsreference e e e 1596
addrate e e e e e 1599
aUthrate. e e e e e e e e 1606
backendstat. L e e e 1613
basebd. . . . e e e e e e e e 1618
changelogstat e e e 1619
Create-rC-SCript. o e e e e e e e e e e e e e e e e e e 1622
dsbackup . . o o o e e e e e e e 1624
dsCONfig e e e e e e e e 1637
ASKEYMEr . . o o e e e e e e e e e e e e e 1644
dsrepl . . e e e e e e e 1649

export-ldif. e e e 1667

import-Idif. e e e e e e e e e 1672
[dapcompare o e e e e e e e e e e 1678
[dapdelete. e e e e e e 1683
Idapmodify e e e e e e e 1689
[dappasswordmodify e e e e 1695
Idapsearch e e e 1700
Idifdiff e e e e 1708
Idifmodify e e e e e e 1710
Idifsearch e e e 1711
makeldif-template L e e e e 1712
makeldif. e e e e e 1717
Manage-acCoUNt e e e e e e e 1719
Manage-tasks. e e e e e e e e e e 1729
MOArate. e e e e e e e e e e e e 1732
rebuild-index e e e e 1739
searchrate e e e e e e e 1743
setup-profile L e e e 1750
SELUP. .« . o e e e e e e e e e e e 1751
Start-ds e e e e e 1755
StAtUS . . . L e e e e e e e e 1756
STOP-AS . . . e e e e e e e e 1759
SUPPOIrtEXLract o o e e e e e e e e e e e e 1763
Upgrade e e e e e e e e e e 1765
verify-indeX e e e e e 1768

WINAOWS-SEIVICE v o o e 1769

Start here

M Pingldentity.

Start here PingDS

Use this guide to get a quick, hands-on look at what PingDS software can do. You will download, install, and use DS on your local
computer.

Expect to spend 30-120 minutes working through this guide.

& ios

Install DS Learn LDAP

Install DS software. Use DS LDAP tools.

o Ly

Learn REST/HTTP Learn replication

Access DS over HTTP. Replicate DS data.

s 4 -

Measure performance Learn access control

Measure LDAP operations. Learn DS ACls.

Product names changed when ForgeRock became part of Ping Identity. PingDS was formerly known as ForgeRock Directory
Services, for example. Learn more about the name changes in New names for ForgeRock products(Z in the Knowledge Base.

Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products

PingDS Start here

Install DS

Q Tip

DS software has no GUI. Instead, DS software is bundled with command-line tools.

Because LDAP is standard, you can use third-party GUI tools to view and edit directory data. For a short list, refer to
Try third-party tools.

Prepare for installation

1. To evaluate DS software, make sure you have 10 GB free disk space for the software and for sample data.
2. Verify that you have a supported Java version installed on your local computer.

For details, check the supported Java versions (.
3. If you plan to Learn HDAP, make sure the curl command is available.

For details, refer to the curl site .

Download DS software

1. If you do not have an account on Ping Identity Backstage (5, sign up for one.
2. Sign in to Ping Identity Backstage.

3. Find and download the latest PingDS ZIP distribution.

Install a directory server

1. Unzip the .zip file into the file system directory where you want to install the server.
The documentation shows the installation file system directory as /path/to/opendj .

For example:

Bash

$ unzip ~/Downloads/DS-7.5.2.zip -d /path/to

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-java
https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-java
https://curl.haxx.se
https://curl.haxx.se
https://backstage.forgerock.com
https://backstage.forgerock.com

Start here PingDS

PowerShell

PS C:\path\to> Expand-Archive DS-7.5.2.zip C:\path\to

This example installs DS files with the cross-platform zip. When using the native installer, refer to Use the
Windows MSI.

Zsh

% unzip ~/Downloads/DS-7.5.2.zip -d /path/to

2. Generate and save a deployment ID using the deployment ID password of your choice.

You will use this ID and its password when setting up DS servers in your deployment. The DS server uses the two together
when generating other keys to protect shared secret keys and secure connections to other DS servers:

Bash

$ /path/to/opendj/bin/dskeymgr create-deployment-id --deploymentIdPassword password
<deployment-id>
$ export DEPLOYMENT_ID=<deployment-id>

PowerShell

PS C:\path\to> C:\path\to\opendj\bat\dskeymgr.bat create-deployment-id --deploymentIdPassword password
<deployment-id>

Zsh

% /path/to/opendj/bin/dskeymgr create-deployment-id --deploymentIdPassword password
<deployment-id>
S export DEPLOYMENT_ID=<deployment-id>

Copyright © 2025 Ping Identity Corporation

PingDS Start here

3. Use the setup command to set up a server with the ds-evaluation profile. The evaluation profile includes Example.com
sample data, more lenient access control, and some other features.

@ Important

You must have write access to the folder where you install DS.

The following example runs the command non-interactively. Use the same settings shown here to be able to copy and
paste the commands shown in this guide:

Bash

$ /path/to/opendj/setup \
--serverId first-ds \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--monitorUserPassword password \
--hostname localhost \
--ldapPort 1389 \
--ldapsPort 1636 \
--httpsPort 8443 \
--adminConnectorPort 4444 \
--replicationPort 8989 \
--profile ds-evaluation \
--start \
--acceptlLicense
Validating parameters..... Done
Configuring certificates..... Done
Configuring server... Done
Configuring profile DS evaluation..................... Done
Starting directory server............... Done

To see basic server status and configuration, you can launch
/path/to/opendj/bin/status

Copyright © 2025 Ping Identity Corporation

Start here PingDS

PowerShell

PS C:\path\to> C:\path\to\opendj\setup.bat °
--serverId first-ds °
--deploymentId <deployment-id> °
--deploymentIdPassword password °
--rootUserDn uid=admin °
--rootUserPassword password °
--monitorUserPassword password °
--hostname localhost °
--ldapPort 1389 °
--ldapsPort 1636 °
--httpsPort 8443 °
--adminConnectorPort 4444 °
--replicationPort 8989 °
--profile ds-evaluation °

--start °
--acceptlLicense
Validating parameters..... Done
Configuring certificates..... Done
Configuring server..... Done
Configuring profile DS evaluation..................... Done
Starting directory server............... Done

To see basic server status and configuration, you can launch
C:\path\to\opendj\bat\status

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Zsh

% /path/to/opendj/setup \
--serverId first-ds \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--monitorUserPassword password \
--hostname localhost \

--ldapPort 1389 \
--ldapsPort 1636 \
--httpsPort 8443 \
--adminConnectorPort 4444 \
--replicationPort 8989 \
--profile ds-evaluation \
--start \

--acceptlLicense

Validating parameters..... Done

Configuring certificates..... Done

Configuring server... Done

Configuring profile DS evaluation..................... Done

Starting directory server............... Done

To see basic server status and configuration, you can launch
/path/to/opendj/bin/status

The setup command shown here has the following options:
--serverId first-ds

A server identifier string that's unique across servers in your deployment.
--deploymentId <deployment-id>

The deployment ID is a random string generated using the dskeymgr command. It's paired with a deployment ID
password, which is a random string that you choose, and that you must keep secret.

Together, the deployment ID and password serve to generate the shared master key that DS servers in the
deployment require for protecting shared encryption secrets. By default, they also serve to generate a private CA
and keys for TLS to protect communication between DS servers.

When you deploy multiple servers together, reuse the same deployment ID and password for each server
installation.

--deploymentIdPassword password
This is a random string that you choose, and that you must keep secret. It is paired with the deployment ID.
--rootUserDn uid=admin

These options set the credentials for the directory superuser. This user has privileges to perform all administrative
operations and isn't subject to access control. It's called the root user due to the similarity to the Linux root user.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

The root user distinguished name (DN) identifies the directory superuser. In LDAP, a DN is the fully qualified name
for a directory entry. The default name is uid=admin .

--monitorUserPassword password

The monitor user has the privilege to read monitoring data. This example doesn't set the --monitorUserDn option,
so the DN defaults to uid=Monitor .

--hostname localhost
The server uses the fully qualified domain name for identification between replicated servers.

Using localhost is a shortcut suitable only for evaluation on your local computer. In production, set this to the
fully qualified domain name, such as ds.example.com.

--ldapPort 1389

The reserved port for LDAP is 389 . Use StartTLS to secure connections to this port. The connections aren't secure
by default.

Examples in the documentation use 1389, which is accessible to non-privileged users.
--ldapsPort 1636
The reserved port for LDAPS is 636 . Secure connections to this port with TLS.

Examples in the documentation use 1636, which is accessible to non-privileged users.

--httpsPort 8443

The reserved port for HTTPS is 443 .

HTTP client applications access directory data and monitoring information on this port.

Examples in the documentation use 8443, which is accessible to non-privileged users.
--adminConnectorPort 4444

This is the service port used to configure the server and to run tasks. Secure connections to this port with TLS.

The port used in the documentation is 4444 , which is the initial port suggested during interactive setup.
--replicationPort 8989

This is the service port used for replication messages.

The port used in the documentation is 8989, which is the initial port suggested during interactive setup.
--profile ds-evaluation

The setup profile adds hard-coded entries for users like Babs Jensen, and groups like Directory Administrators. It
also generates 100,000 sample LDAP user entries. All generated users have the same password, literally password.
The generated user accounts are helpful for performance testing.

This profile adds entries under the base DN dc=example, dc=com. A base DN is the suffix shared by all DNs in a set
of directory data.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

A directory arranges LDAP entries hierarchically. The hierarchical organization resembles a file system ona PCor a
web server, often visualized as an upside down tree structure, or a pyramid. In the same way that a full path
uniquely identifies each file or folder in a file system, a DN uniquely identifies each LDAP entry.

Each DN consists of components separated by commas, such as uid=bjensen, ou=People, dc=example, dc=com.
The base DN matches the final components of each DN in that branch of the directory. A DN's components reflect
the hierarchy of directory entries. The user entry with DN uid=bjensen, ou=People, dc=example, dc=com is under
the organizational unit entry ou=People, dc=example, dc=com, which in turn is under dc=example, dc=com .

Basic components have the form attribute-name=attribute-value, such as dc=com. In the example dc=com,
the attribute dc (DNS domain component) has the value com. The DN dc=example, dc=com reflects the DNs
domain name example.com.

--start

By default, the setup command doesn't start the server. This lets you complete any necessary configuration steps
before starting the server for the first time, which may start the replication process.

In this case, you have no further configuration to do. This option causes the server to start immediately.
--acceptlLicense

Remove this option to read the license and then accept it interactively.
You can also run the setup command interactively by starting it without options.

4. Add the DS tools to your PATH to avoid having to specify the full path for each command:

Bash

S export PATH=/path/to/opendj/bin:${PATH}

PowerShell

PS C:\path\to> Senv:PATH += ";C:\path\to\opendj\bat"

Zsh

% export PATH=/path/to/opendj/bin:${PATH}

Copyright © 2025 Ping Identity Corporation

Start here PingDS

5. Run the status command:

Bash

S status \
--bindDn uid=admin \
--bindPassword password \
--hostname localhost \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

PowerShell

PS C:\path\to> status.bat °

--bindDn uid=admin °

--bindPassword password °

--hostname localhost °

--port 4444 °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin

Zsh

% status \
--bindDn uid=admin \
--bindPassword password \
--hostname localhost \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

The status command uses a secure connection to the administration port. To trust the server's certificate, the command
uses the server’s own truststore.

Read the output that the status command displays.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Learn LDAP

LDAP is short for Lightweight Directory Access Protocol, a standard Internet protocol. The examples that follow show you how to
use bundled DS command-line tools to send LDAP requests.

Before you try the examples, set up a server, as described in Install DS. Make sure you added the command-line tools to your
PATH:

Bash

S export PATH=/path/to/opendj/bin:${PATH}

PowerShell

PS C:\path\to> Senv:PATH += ";C:\path\to\opendj\bat"

Zsh

% export PATH=/path/to/opendj/bin:${PATH}

Search

Searching the directory is like searching for a phone number in a phone book. You can look up a subscriber’'s phone number
because you know the subscriber’s last name. In other words, you use the value of an attribute to find entries that have attributes
of interest.

When looking up a subscriber’s entry in a phone book, you need to have some idea where they live in order to pick the right
phone book. For example, a Los Angeles subscriber cannot be found in the New York phone book. In an LDAP directory, you need
to know at least the base DN to search under.

For this example, assume you know a user’s full name, Babs Jensen, and that Babs Jensen's entry is under the base DN
dc=example, dc=com. You want to look up Babs Jensen’s email and office location. The following command sends an appropriate
LDAP search request to the server you installed:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Bash

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
cn mail street 1

dn: uid=bjensen, ou=People, dc=example, dc=com
cn: Barbara Jensen

cn: Babs Jensen

1: San Francisco

mail: bjensen@example.com

street: 201 Mission Street Suite 2900

PowerShell

PS C:\path\to> ldapsearch.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=bjensen, ou=People, dc=example, dc=com °
--bindPassword hifalutin °
--baseDn dc=example, dc=com °
"(cn=Babs Jensen)"
cn mail street 1

dn: uid=bjensen, ou=People, dc=example, dc=com
cn: Barbara Jensen

cn: Babs Jensen

1: San Francisco

mail: bjensen@example.com

street: 201 Mission Street Suite 2900

Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com
mailto:bjensen@example.com

PingDS Start here

Zsh

% ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
cn mail street 1

dn: uid=bjensen, ou=People, dc=example, dc=com
cn: Barbara Jensen

cn: Babs Jensen

1: San Francisco

mail: bjensen@example.com

street: 201 Mission Street Suite 2900

Notice the following characteristics of the search:
* The command makes a secure connection to the server using LDAPS.
The command relies on the server’s truststore to trust the CA certificate used to sign the server certificate.

* The base DN option, --baseDn dc=example, dc=com, tells the server where to look for Babs Jensen’s entry. Servers can
hold data for multiple base DNs, so this is important information.

It is possible to restrict the scope of the search, but the default is to search the entire subtree under the base DN.

* The command uses a search filter, " (cn=Babs Jensen)" , which tells the server, "Find entries whose cn attribute exactly
matches the string Babs Jensen without regard to case."

The cn (commonName) attribute is a standard attribute for full names.

Internally, the directory server has an equality index for the cn attribute. The directory uses the index to quickly find
matches for babs jensen.The default behavior in LDAP is to ignore case, so "(cn=Babs Jensen)", "(cn=babs
jensen)",and " (CN=BABS JENSEN)" are equivalent.

If more than one entry matches the filter, the server returns multiple entries.

* The filter is followed by a list of LDAP attributes, cn mail street 1. This tells the server to return only the specified
attributes in the search result entries. By default, if you do not specify the attributes to return, the server returns all the
user attributes that you have the right to read.

* The result shows attributes from a single entry. Notice that an LDAP entry, represented here in the standard LDIF format,
has a flat structure with no nesting.

The DN that uniquely identifies the entry is uid=bjensen, ou=People, dc=example, dc=com . Multiple entries can have the
same attribute values, but each must have a unique DN. This is the same as saying that the leading relative distinguished
name (RDN) value must be unique at this level in the hierarchy. Only one entry directly under

ou=People, dc=example, dc=com has the RDN uid=bjensen.

Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

Start here PingDS

The mail, street, 1 (location), and uid attributes are all standard LDAP attributes like cn.

For additional examples, refer to LDAP search.

Modify

You installed the server with the ds-evaluation profile. That profile grants access to search Example.com data without
authenticating to the directory. When modifying directory data, however, you must authenticate first. LDAP servers must know
who you are to determine what you have access to.

In the following example Babs Jensen modifies the description on her own entry:

Bash

$ 1dapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin <<EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN uid=bjensen, ou=People, dc=example, dc=com

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

PS C:\path\to> New-Item -Path . -Name "description.ldif" -ItemType "file" -Value @"
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
replace: description
description: New description
"@
PS C:\path\to> ldapmodify.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=bjensen, ou=People, dc=example, dc=com °
--bindPassword hifalutin °
description.ldif

MODIFY operation successful for DN uid=bjensen, ou=People,dc=example, dc=com

Zsh

% ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin <<EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN uid=bjensen, ou=People, dc=example, dc=com

* Babs Jensen'’s authentication credentials are provided with the --bindDn and --bindPassword options. Notice that the
user identifier is Babs Jensen’s DN.

Authentication operations bind an LDAP identity to a connection. In LDAP, a client application connects to the server, then
binds an identity to the connection. An LDAP client application keeps its connection open until it finishes performing its
operations. The server uses the identity bound to the connection to make authorization decisions for subsequent
operations, such as search and modify requests.

If no credentials are provided, then the identity for the connection is that of an anonymous user. As a directory
administrator, you can configure access controls for anonymous users just as you configure access controls for other
users.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

A simple bind involving a DN and a password is just one of several supported authentication mechanisms. The
documentation frequently shows simple binds in examples because this kind of authentication is so familiar. Alternatives
include authenticating with a digital certificate, or using Kerberos.

« The modification is expressed in standard LDAP Data Interchange Format (LDIF).

The LDIF specifies the DN of the target entry to modify. It then indicates that the change to perform is an LDAP modify,
and that the value New description is to replace existing values of the description attribute.

+ Notice that the result is a comment indicating success. The command's return code—0, but not shown in the example—
also indicates success.

The scripts and applications that you write should use and trust LDAP return codes.

For additional examples, refer to LDAP updates and Passwords and accounts.

Add

Authorized users can modify attributes, and can also add and delete directory entries.

The following example adds a new user entry to the directory:

Bash

$ ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=admin \
--bindPassword password <<EOF
dn: uid=newuser, ou=People, dc=example, dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: New User
sn: User
ou: People
mail: newuser@example.com
userPassword: chngthspwd
EOF

ADD operation successful for DN uid=newuser, ou=People, dc=example, dc=com

Copyright © 2025 Ping Identity Corporation

mailto:newuser@example.com

PingDS Start here

PowerShell

PS C:\path\to> New-Item -Path . -Name "user.ldif" -ItemType "file" -Value @"
dn: uid=newuser, ou=People, dc=example, dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: New User
sn: User
ou: People
mail: newuser@example.com
userPassword: chngthspwd
'@
PS C:\path\to> ldapmodify.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=admin °
--bindPassword password °
user.1ldif

ADD operation successful for DN uid=newuser, ou=People,dc=example, dc=com

Copyright © 2025 Ping Identity Corporation

mailto:newuser@example.com

Start here PingDS

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=admin \
--bindPassword password <<EOF
dn: uid=newuser,ou=People, dc=example, dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: New User
sn: User
ou: People
mail: newuser@example.com
userPassword: chngthspwd
EOF

ADD operation successful for DN uid=newuser, ou=People, dc=example, dc=com

* The bind DN for the user requesting the add is uid=admin . It is also possible to authorize regular users to add entries.
* The entry to add is expressed in standard LDIF.

For additional examples, refer to LDAP updates.

Delete

The following example deletes the user added in Add:

Bash

$ ldapdelete \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=admin \
--bindPassword password \
uid=newuser, ou=People, dc=example, dc=com

DELETE operation successful for DN uid=newuser,ou=People, dc=example, dc=com

Copyright © 2025 Ping Identity Corporation

mailto:newuser@example.com

PingDS Start here

PowerShell

PS C:\path\to> ldapdelete.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=admin °

--bindPassword password °

uid=newuser, ou=People, dc=example, dc=com

DELETE operation successful for DN uid=newuser,ou=People, dc=example, dc=com

Zsh

% ldapdelete \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=admin \
--bindPassword password \
uid=newuser, ou=People, dc=example, dc=com

DELETE operation successful for DN uid=newuser,ou=People, dc=example, dc=com

Notice that the 1dapdelete command specifies the entry to delete by its DN.

For additional examples, refer to LDAP updates.

Learn HDAP

PingDS let you access LDAP data over HTTP using HTTP Directory Access Protocol (HDAP) APIs that transform HTTP operations
into LDAP operations.

Before you try the examples, follow the instructions in Install DS.

Prepare

Get the deployment CA certificate to trust the server:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Bash

S dskeymgr \

export-ca-cert \

--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--outputFile ca-cert.pem

PowerShell

Configure Windows to trust the deployment CA certificate. Import the deployment CA from the server truststore using
Microsoft Management Console (MMC):

1. Run Microsoft Management Console (mmc.exe).
2. Add the certificates snap-in to import the deployment CA certificate:
° In the console, select File > Add/Remove Snap-in, then Add.
o Select Certificates from the list of snap-ins and click Add.
° Finish the wizard.
3. Import the deployment CA certificate using the snap-in:
o Select Console Root > Trusted Root Certification Authorities > Certificates.
° In the Action menu, select Import to open the wizard.

o Use the wizard to import the deployment CA certificate from the server truststore file, C:
\path\to\opendj\config\keystore.

The truststore password is the text in the file C:\path\to\opendj\config\keystore.pin.

Zsh

% dskeymgr \

export-ca-cert \

--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--outputFile ca-cert.pem

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Create

Use HDAP to create a user resource:

Bash
S curl \
--request POST \
--cacert ca-cert.pem \
--user uid=admin:password \
--header 'Content-Type: application/json' \
--data '{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"objectClass"” : ["person", "inetOrgPerson", "organizationalPerson", "top" 1,
"cn" : ["New User" 1],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User"],
"telephoneNumber" : ["+1 488 555 1212"],
"uid" : ["newuser"]
P
"https://localhost :8443/hdap/dc=com/dc=example/ou=People?_prettyPrint=true’
{
"_id" : "dc=com/dc=example/ou=People/uid=newuser"”,
"objectClass" : ["person", "inetOrgPerson", "organizationalPerson", "top" 1,
"cn" : ["New User" 1],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager" : ["dc=com/dc=example/ou=People/uid=bjensen"”],
"sn" : ["User"],
"telephoneNumber" : ["+1 488 555 1212"],
"uid" : ["newuser"]
}

Copyright © 2025 Ping Identity Corporation

mailto:newuser@example.com
mailto:newuser@example.com

Start here PingDS

JavaScript

const { doRequest, getOptions } = require('./utils")

const options = getOptions({
path: '/hdap/dc=com/dc=example/ou=People?_action=create’,
credentials: 'uid=admin:password’,
method: 'POST',

body: {
"_id": "dc=com/dc=example/ou=People/uid=newuser",
"objectClass": ["person", "inetOrgPerson", "organizationalPerson", "top"]

cn": ["New User"],

"givenName": ["New"],

"mail": ["newuser@example.com"],

"manager”: ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn": ["User"],

"telephoneNumber”: ["“+1 408 555 1212"],

"uid": ["newuser"

H
doRequest('HDAP: create with POST', options)

.then(response => { console.log(response) })
.catch(error => { console.error(error) })

Source files for this sample: create-newuser.js, utils.js

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/js/create-newuser.js
file:///home/jenkins/target/_attachments/hdap/js/utils.js

PingDS

Start here

PowerShell

PS C:\path\to> S$Credentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes("uid=admin:password"))

SHeaders = @{
Authorization = "Basic S$Credentials"

}
Invoke-RestMethod °

-Uri https:/llocalhost:8443/hdap/dc=com/dc=example/0u=Peop1e[ﬂ)
-Method Post °

-Headers S$Headers °

-ContentType application/json °

-Body @"

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"objectClass" : ["person", "inetOrgPerson", "organizationalPerson",
"cn" : ["New User"],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager" : ["dc=com/dc=example/ou=People/uid=bjensen"],
"sn" : ["User" 1,
"telephoneNumber"” : ["+1 488 555 1212"],
"uid" : ["newuser"]

}

"@ | ConvertTo-JSON

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"objectClass" : ["person", "inetOrgPerson", "organizationalPerson",
"en" : ["New User" 1,
"givenName" : [“New"],
"mail" : ["newuser@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User" 1,
"telephoneNumber®” : ["+1 488 555 1212"],
"uid" : ["newuser"]

}

top" 1,

utopu]'

Copyright © 2025 Ping Identity Corporation

https://localhost:8443/hdap/dc=com/dc=example/ou=People
https://localhost:8443/hdap/dc=com/dc=example/ou=People
mailto:newuser@example.com
mailto:newuser@example.com

Start here PingDS

Python

#!/usr/bin/env python3

import requests
from requests.auth import HTTPBasicAuth
import utils

body = {
'_id': 'dc=com/dc=example/ou=People/uid=newuser’,
'objectClass': ['person', 'inetOrgPerson', 'organizationalPerson', 'top'],

cn': ['New User'],
'givenName': ['New'],
'mail' : ['newuser@example.com'],
'manager' : ['dc=com/dc=example/ou=People/uid=bjensen’],
'sn': ['User'],
"telephoneNumber': ['+1 488 555 1212'],
'uid': ['newuser']
}
headers = { 'Content-Type': 'application/json' }
response = requests.post(
f'https://{utils.host}:{utils.port}/hdap/dc=com/dc=example/ou=People",
auth=HTTPBasicAuth('uid=admin', 'password')
headers=headers,
json=body,
verify=utils.ca_pem)
print('Status code: %d\nJSON: %s' % (response.status_code, response.json()))

Source files for this sample: utils.py, create-newuser.py

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/py/utils.py
file:///home/jenkins/target/_attachments/hdap/py/create-newuser.py

PingDS Start here

Ruby

require_relative 'utils.rb’
require 'faraday'
require 'json'

utils = Utils.new('', ''")
options = { ca_file: utils.ca_pem }
hdap = Faraday.new(url: "https://#{utils.host}:#{utils.port}/hdap/", ssl: options) do |f|

f.headers['Content-Type'] = 'application/json’
f.request :authorization, :basic, 'uid=admin', 'password’
end
body = {
'_id' => "dc=com/dc=example/ou=People/uid=newuser",
'objectClass' => ["person”, "inetOrgPerson", "organizationalPerson", "top"]
‘cn' => ["New User"],
‘givenName' => ["New"],
'mail' => ["newuser@example.com"],
'manager' => ["dc=com/dc=example/ou=People/uid=bjensen”],
‘sn' => ["User"],
'telephoneNumber' => ["+1 488 555 1212"],
‘uid' => ["newuser"]
}

response = hdap.post do |h|
h.path = 'dc=com/dc=example/ou=People
h.body = JSON.generate(body)

end

puts "Status code: #{response.status}\nJSON: #{response.body}"

Source files for this sample: utils.rb, create-newuser.rb

HDAP Ruby examples require Ruby 3.2 and the faraday and json gems.

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/rb/utils.rb
file:///home/jenkins/target/_attachments/hdap/rb/create-newuser.rb

Start here

PingDS
Zsh
% curl \
--request POST \
--cacert ca-cert.pem \
--user uid=admin:password \
--header 'Content-Type: application/json' \
--data '{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"objectClass" : ["person", "inetOrgPerson", "organizationalPerson", "top"],
"cn" : ["New User"],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User"],
"telephoneNumber" : ["+1 488 555 1212"],
"uid" : ["newuser"]
PN
"https://localhost :8443/hdap/dc=com/dc=example/ou=People?_prettyPrint=true’
{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"objectClass" : ["person", "inetOrgPerson", "organizationalPerson", "top" 1,
"cn" ["New User"],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager" : ["dc=com/dc=example/ou=People/uid=bjensen"”],
"sn" : ["User" 1,
"telephoneNumber" : ["+1 488 555 1212"],
"uid" : ["newuser"]
}

* The command makes a secure connection to the server using HTTPS.
* The user performing the HTTP POST is the directory superuser.

The default authorization mechanism for HTTP access is HTTP Basic authentication. The superuser's HTTP user ID, admin,
is mapped to the LDAP DN, uid=admin . HDAP uses the DN and password to perform a simple LDAP bind for
authentication. The directory uses its LDAP-based access control mechanisms to authorize the operation.

* The successful response is the JSON resource that the command created.

Fields names starting with an underscore like _id are reserved. For details, refer to HDAP API reference.

For additional details, refer to HDAP API reference and Create.

Read

Use HDAP to read a user resource:

Copyright © 2025 Ping Identity Corporation

mailto:newuser@example.com
mailto:newuser@example.com

PingDS

Start here

Bash

S curl \

--request GET \

--cacert ca-cert.pem \

--user dc=com/dc=example/ou=People/uid=bjensen:hifalutin \
--header 'Content-Type: application/json' \

"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser?_prettyPrint=true’

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"_rev" : "<revision>",
"objectClass" : ["top", "person", "organizationalPerson"
"cn" : ["New User" 1],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen"”],
"sn" : ["User" 1,
"telephoneNumber" : ["+1 488 555 1212"],
"uid" : ["newuser"]

}

JavaScript

const { doRequest, getOptions } = require('./utils"')

const options = getOptions({
path: '/hdap/dc=com/dc=example/ou=People/uid=newuser’

})
doRequest('HDAP: read with GET', options)

.then(response => { console.log(response) })
.catch(error => { console.error(error) })

Source files for this sample: read-newuser.js, utils.js

"inetOrgPerson”],

Copyright © 2025 Ping Identity Corporation

mailto:newuser@example.com
file:///home/jenkins/target/_attachments/hdap/js/read-newuser.js
file:///home/jenkins/target/_attachments/hdap/js/utils.js

Start here PingDS

PowerShell

PS C:\path\to> SCredentials =
[System.Convert]: :ToBase64String([System.Text.Encoding]::ASCII.GetBytes("dc=com/dc=example/ou=People/
uid=bjensen:hifalutin"))
SHeaders = @{
Authorization = "Basic SCredentials"
}
Invoke-RestMethod °

-Uri https://10calhost:8443/hdap/dc=com/dc=examp1e/ou=Peop1e/uid=newuser[ﬂ)
-Method Get °

-Headers S$Headers °

-ContentType application/json | ConvertTo-JSON

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"_rev" "<revision>",
"objectClass" : ["top", "person", "organizationalPerson", "inetOrgPerson"],
"cn" : ["New User" 1],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User" 1,
"telephoneNumber"” : ["+1 488 555 1212"],
"uid" : ["newuser"]

}

Python

#!/usr/bin/env python3

import requests
from requests.auth import HTTPBasicAuth
import utils

response = requests.get(
f'https://{utils.host}:{utils.port}/hdap/dc=com/dc=example/ou=People/uid=newuser’,
auth=HTTPBasicAuth('dc=com/dc=example/ou=People/uid=kvaughan', 'bribery")
verify=utils.ca_pem)

print('Status code: %d\nJSON: %s' % (response.status_code, response.json()))

Source files for this sample: utils.py, read-newuser.py

Copyright © 2025 Ping Identity Corporation

https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser
https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser
mailto:newuser@example.com
file:///home/jenkins/target/_attachments/hdap/py/utils.py
file:///home/jenkins/target/_attachments/hdap/py/read-newuser.py

PingDS Start here

Ruby

require_relative 'utils.rb’
require 'faraday'

utils = Utils.new('', '")
options = { ca_file: utils.ca_pem }
hdap = Faraday.new(url: "https://#{utils.host}:#{utils.port}/hdap/", ssl: options) do |f|
f.headers['Content-Type'] = 'application/json'
f.request :authorization, :basic, 'dc=com/dc=example/ou=People/uid=bjensen’, 'hifalutin'
end

response = hdap.get('dc=com/dc=example/ou=People/uid=newuser")

puts "Status code: #{response.status}\nJSON: #{response.body}"

Source files for this sample: utils.rb, read-newuser.rb

HDAP Ruby examples require Ruby 3.2 and the faraday and json gems.

Zsh
% curl \
--request GET \
--cacert ca-cert.pem \
--user dc=com/dc=example/ou=People/uid=bjensen:hifalutin \
--header 'Content-Type: application/json' \
"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser?_prettyPrint=true’
{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"_rev" : "<revision>",
"objectClass" : ["top", "person", "organizationalPerson", "inetOrgPerson"],
"cn" : ["New User"],
"givenName" : ["New"],
"mail" : ["newuser@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User" 1,
"telephoneNumber" : ["+1 488 555 1212"],
"uid" : ["newuser"]
}

Authenticate when making this HTTP GET request. If no credentials are specified, the response is the HTTP 401 Unauthorized:

{"code" :401, "reason" :"Unauthorized", "message" :"Invalid Credentials"}

In other words, the HTTP Basic authorization mechanism requires authentication even for read operations.

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/rb/utils.rb
file:///home/jenkins/target/_attachments/hdap/rb/read-newuser.rb
mailto:newuser@example.com

Start here PingDS

For additional details, refer to HDAP API reference and Read. You can also query collections of resources, as described in Query.

Update

Use HDAP to update a user resource:

Bash

$ curl \
--request PUT \
--cacert ca-cert.pem \
--user uid=admin:password \
--header 'Content-Type: application/json' \
--header "If-Match: *" \
--data '{
"cn" : ["Updated User"],
"givenName" : ["Updated"],
"mail" : ["updated.user@example.com"],
"telephoneNumber" : ["+1 234 567 8910" |
oA
"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser?_prettyPrint=true’

"_id" : "dc=com/dc=example/ou=People/uid=newuser",

"objectClass" : ["top", "person", "organizationalPerson", "inetOrgPerson"],
“cn" : ["Updated User"],

"givenName" : ["Updated"],

"mail" : ["updated.user@example.com"],

"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],

"sn" : ["User"],

"telephoneNumber" : ["+1 234 567 8910"],

"uid" : ["newuser"]

Copyright © 2025 Ping Identity Corporation

mailto:updated.user@example.com
mailto:updated.user@example.com

PingDS Start here

JavaScript

const { doRequest, getOptions } = require('./utils")

const options = getOptions({
path: '/hdap/dc=com/dc=example/ou=People/uid=newuser’,
credentials: 'uid=admin:password’,
method: 'PUT',
body: {
"cn": ["Updated User"],
"givenName": ["Updated"],
"mail": ["updated.user@example.com"],
"telephoneNumber”: ["+1 234 567 8910"]

)
doRequest('HDAP: update newuser', options)

.then(response => { console.log(response) })
.catch(error => { console.error(error) })

Source files for this sample: update-newuser.js, utils.js

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/js/update-newuser.js
file:///home/jenkins/target/_attachments/hdap/js/utils.js

Start here

PingDS

PowerShell

PS C:\path\to> S$Credentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes("uid=admin:password"))

SHeaders = @{
"Authorization" = "Basic $Credentials"
"If-Match" = "&"
}
Invoke-RestMethod °
-Uri https://10calhost:8443/hdap/dc=com/dc=examp1e/ou=Peop1e/uid=newuser[ﬂ)
-Method Put °
-Headers SHeaders °
-ContentType application/json °
-Body @"
{
"cn" : ["Updated User"],

"givenName" ["Updated" 1],
"mail” ["updated.user@example.com"],
"telephoneNumber" ["+1 234 567 8910"]

}

"@ | ConvertTo-JSON

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"objectClass" ["top", "person", "organizationalPerson", "inetOrgPerson"],
“cn" : ["Updated User"],
"givenName" ["Updated" 1],
"mail” ["updated.user@example.com"],
"manager" ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User" 1,
"telephoneNumber" ["+1 234 567 8910"]
"uid" ["newuser"]

}

Copyright © 2025 Ping Identity Corporation

https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser
https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser
mailto:updated.user@example.com
mailto:updated.user@example.com

PingDS Start here

Python

#!/usr/bin/env python3

import requests
from requests.auth import HTTPBasicAuth
import utils

body = {
‘cn': ['Updated User'],
'givenName': ['Updated'],
'mail' : ['updated.user@example.com'],
'telephoneNumber': ['+1 234 567 8910']

}

headers = { 'Content-Type': 'application/json' }

response = requests.put(
f'https://{utils.host}:{utils.port}/hdap/dc=com/dc=example/ou=People/uid=newuser’,
auth=HTTPBasicAuth('uid=admin', 'password')
headers=headers,
json=body,
verify=utils.ca_pem)

print('Status code: %d\nJSON: %s' % (response.status_code, response.json()))

Source files for this sample: utils.py, update-newuser.py

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/py/utils.py
file:///home/jenkins/target/_attachments/hdap/py/update-newuser.py

Start here

PingDS

Ruby

require_relative 'utils.rb’
require 'faraday'
require 'json'

utils = Utils.new('', ''")
options = { ca_file: utils.ca_pem }
fields = { '_fields': 'telephoneNumber' }

hdap = Faraday.new(url: "https://#{utils.host}:#{utils.port}/hdap/", params: fields, ssl: options) do |f|

f.headers['Content-Type'] = 'application/json'
f.request :authorization, :basic, 'uid=admin', 'password’
end
body = {
"cn" => ["Updated User"],
"givenName" => ["Updated"],
"mail" => ["updated.user@example.com"],
"telephoneNumber" => ["+1 234 567 8910"]
}
response = hdap.put do |h|
h.path = 'dc=com/dc=example/ou=People/uid=newuser’
h.body = JSON.generate(body)
end

puts "Status code: #{response.status}\nJSON: #{response.body}"

Source files for this sample: utils.rb, update-newuser.rb

HDAP Ruby examples require Ruby 3.2 and the faraday and json gems.

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/rb/utils.rb
file:///home/jenkins/target/_attachments/hdap/rb/update-newuser.rb

PingDS Start here

Zsh

% curl \
--request PUT \
--cacert ca-cert.pem \
--user uid=admin:password \
--header 'Content-Type: application/json' \
--header "If-Match: *" \
--data '{
"“cn" : ["Updated User"],
"givenName" : ["Updated"],
"mail" : ["updated.user@example.com"],
"telephoneNumber" : ["+1 234 567 8910" |
P\
"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser?_prettyPrint=true’

"_id" : "dc=com/dc=example/ou=People/uid=newuser",

"objectClass" : ["top", "person", "organizationalPerson", "inetOrgPerson"],
"cn" : ["Updated User"],

"givenName" : ["Updated"],

"mail" : ["updated.user@example.com"],

"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],

"“sn" : ["User"],

"telephoneNumber" : ["+1 234 567 8910"],

"uid" : ["newuser"]

HDAP versions resources with revision numbers. A revision is specified in the resource’s _rev field.

The --header "If-Match: *" tells HDAP to replace the resource regardless of its revision. Alternatively, set --header "If-
Match: revision" to replace the resource only if its revision matches.

For additional details, refer to HDAP API reference and Update. You can also patch resources instead of replacing them entirely.
Refer to Patch.

Delete

Use HDAP to delete a user resource:

Copyright © 2025 Ping Identity Corporation

mailto:updated.user@example.com
mailto:updated.user@example.com

Start here

PingDS

Bash

S curl \

--request DELETE \

--cacert ca-cert.pem \

--user uid=admin:password \

--header 'Content-Type: application/json' \

"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser?_prettyPrint=true’

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"_rev" : "<revision>",
"objectClass" : ["top", "person", "organizationalPerson"
"en" : ["Updated User"],
"givenName" : ["Updated"],
"mail" : ["updated.user@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen"”],
"sn" : ["User" 1,
"telephoneNumber" : ["+1 234 567 8910"],
"uid" : ["newuser"]

}

JavaScript

const { doRequest, getOptions } = require('./utils"')

const options = getOptions({
path: '/hdap/dc=com/dc=example/ou=People/uid=newuser’,
credentials: 'uid=admin:password’,
method: 'DELETE'

H

doRequest('HDAP: delete newuser', options)

.then(response => { console.log(response) })
.catch(error => { console.error(error) })

Source files for this sample: delete-newuser.js, utils.js

"inetOrgPerson”],

Copyright © 2025 Ping Identity Corporation

mailto:updated.user@example.com
file:///home/jenkins/target/_attachments/hdap/js/delete-newuser.js
file:///home/jenkins/target/_attachments/hdap/js/utils.js

PingDS Start here

PowerShell

PS C:\path\to> SCredentials =

[System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes("uid=admin:password"))
SHeaders = @{

Authorization = "Basic S$Credentials"
}

Invoke-RestMethod °

-Uri https:/llocalhost:8443/hdap/dc=com/dc=example/0u=Peop1e/uid=newuser[ﬂ)
-Method Delete °

-Headers S$Headers °

-ContentType application/json | ConvertTo-JSON

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"_rev" : "<revision>",
"objectClass" : ["top", "person", "organizationalPerson", "inetOrgPerson"],
"cn" ["Updated User"],
"givenName" : ["Updated"],
"mail" : ["updated.user@example.com"],
"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User"],
"telephoneNumber" : ["+1 234 567 8918" |
"uid" : ["newuser"]

}

Python

#!/usr/bin/env python3

import requests

from requests.auth import HTTPBasicAuth
import utils

response = requests.delete(
f'https://{utils.host}:{utils.port}/hdap/dc=com/dc=example/ou=People/uid=newuser’,
auth=HTTPBasicAuth('uid=admin', 'password')
verify=utils.ca_pem)

print('Status code: %d\nJSON: %s' % (response.status_code, response.json()))

Source files for this sample: utils.py, delete-newuser.py

Copyright © 2025 Ping Identity Corporation

https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser
https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser
mailto:updated.user@example.com
file:///home/jenkins/target/_attachments/hdap/py/utils.py
file:///home/jenkins/target/_attachments/hdap/py/delete-newuser.py

Start here PingDS

Ruby

require_relative 'utils.rb’
require 'faraday'

utils = Utils.new('', '")

options = { ca_file: utils.ca_pem }

hdap = Faraday.new(url: "https://#{utils.host}:#{utils.port}/hdap/", ssl: options) do |f|
f.headers['Content-Type'] = 'application/json'
f.request :authorization, :basic, 'uid=admin', 'password’

end

response = hdap.delete('dc=com/dc=example/ou=People/uid=newuser")

puts "Status code: #{response.status}\nJSON: #{response.body}"

Source files for this sample: utils.rb, delete-newuser.rb

HDAP Ruby examples require Ruby 3.2 and the faraday and json gems.

Zsh

% curl \

--request DELETE \

--cacert ca-cert.pem \

--user uid=admin:password \

--header 'Content-Type: application/json' \
"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=newuser?_prettyPrint=true’

{
"_id" : "dc=com/dc=example/ou=People/uid=newuser",
"_rev" : "<revision>",
"objectClass" : ["top", "person", "organizationalPerson", "inetOrgPerson"],

"“cn" : ["Updated User"],

"givenName" : ["Updated"],

"mail" : ["updated.user@example.com"],

"manager"” : ["dc=com/dc=example/ou=People/uid=bjensen”],
"sn" : ["User" 1,

"telephoneNumber" : ["+1 234 567 8910"],

"uid" : ["newuser"]

For additional details, refer to HDAP API reference and Delete.

Learn replication

Replication provides automatic data synchronization between directory servers. It ensures that all directory servers eventually
share a consistent set of directory data.

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/hdap/rb/utils.rb
file:///home/jenkins/target/_attachments/hdap/rb/delete-newuser.rb
mailto:updated.user@example.com

PingDS Start here

Replication requires two or more directory servers and additional configuration. This page takes you though the setup process
quickly, providing commands that you can reuse. It does not explain each command in detail.

IIII IIII

lllﬁ lllﬁ

Client application Client application

LDAP LDAP

Az A%

LlA Replication LiA

Directory replica Directory replica
Eventually

consistent data

For a full discussion of the subject, refer to Replication and the related pages.

Add a replica

High-level steps:
1. Unpack the files for a second directory server in a different folder.

2. Set up the new server as a replica of the first server using the generated <deployment-id> from Install DS.

The following example demonstrates the process:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Bash

Unpack files for a second, replica server in a different folder:
cd ~/Downloads && unzip ~/Downloads/DS-7.5.2.zip && mv opendj /path/to/replica

Set up a second, replica server:
/path/to/replica/setup \
--serverId second-ds \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--hostname localhost \
--ldapPort 11389 \
--ldapsPort 11636 \
--adminConnectorPort 14444 \
--replicationPort 18989 \
--bootstrapReplicationServer localhost:8989 \
--profile ds-evaluation \
--start \
--acceptlLicense

PowerShell

Unpack files for a second, replica server in a different folder:
Expand-Archive DS-7.5.2.zip C:\Temp

Rename-Item -Path C:\Temp\opendj -NewName C:\Temp\replica
Move-Item C:\Temp\replica C:\path\to

Set up a second, replica server:
C:\path\to\replica\setup.bat °
--serverId second-ds °
--deploymentId <deployment-id> °
--deploymentIdPassword password °
--rootUserDn uid=admin °
--rootUserPassword password °
--hostname localhost °
--ldapPort 11389 °
--ldapsPort 11636 °
--adminConnectorPort 14444 °
--replicationPort 18989 \
--bootstrapReplicationServer locahost:8989 \
--profile ds-evaluation °
--start °
--acceptlLicense

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Zsh

Unpack files for a second, replica server in a different folder:
cd ~/Downloads && unzip ~/Downloads/DS-7.5.2.zip && mv opendj /path/to/replica

Set up a second, replica server:
/path/to/replica/setup \
--serverId second-ds \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--hostname localhost \
--ldapPort 11389 \
--ldapsPort 11636 \
--adminConnectorPort 14444 \
--replicationPort 18989 \
--bootstrapReplicationServer localhost:8989 \
--profile ds-evaluation \
--start \
--acceptlLicense

Try replication

With the new replica set up and started, show that replication works:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Bash

Update a description on the first server:

ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin << EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Replicate this

EOF

On the first server, read the description to see the effects of your change:
ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \

--baseDn dc=example, dc=com \

"(cn=Babs Jensen)" \

description

On the second server, read the description to see the change has been replicated:
ldapsearch \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

Update a description on the first server:

New-Item -Path . -Name "mod-desc.ldif" -ItemType "file" -Value @"
dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Replicate this

'@

ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=bjensen, ou=People, dc=example,dc=com °

--bindPassword password °

mod-desc.1dif

On the first server, read the description to see the effects of your change:
ldapsearch.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=bjensen, ou=People, dc=example, dc=com °

--bindPassword hifalutin °

--baseDn dc=example, dc=com °

"(cn=Babs Jensen)"

description

On the second server, read the description to see the change has been replicated:
ldapsearch.bat °

--hostname localhost °

--port 11636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=bjensen, ou=People, dc=example, dc=com °

--bindPassword hifalutin °

--baseDn dc=example,dc=com °

"(cn=Babs Jensen)"

description

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Zsh

Update a description on the first server:

ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin << EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Replicate this

EOF

On the first server, read the description to see the effects of your change:
ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \

--baseDn dc=example, dc=com \

"(cn=Babs Jensen)" \

description

On the second server, read the description to see the change has been replicated:
ldapsearch \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description

Show replication works despite crashes and network interruptions:

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Bash

Stop the second server to simulate a network outage or server crash:
/path/to/replica/bin/stop-ds

On the first server, update the description again:
ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin <<EOF
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
replace: description
description: Second server is stopped
EOF

On the first server, read the description to see the change:
ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description

Start the second server again to simulate recovery:
/path/to/replica/bin/start-ds

On the second server, read the description to check that replication has resumed:
ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \

--baseDn dc=example, dc=com \

"(cn=Babs Jensen)" \

description

Copyright © 2025 Ping Identity Corporation

Start here PingDS

PowerShell

Stop the second server to simulate a network outage or server crash:
C:\path\to\replica\bat\stop-ds.bat

On the first server, update the description again:

New-Item -Path . -Name "mod-desc2.1ldif" -ItemType "file" -Value @"
dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Second server is stopped

"@

ldapmodify.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=bjensen, ou=People, dc=example, dc=com °
--bindPassword password °
mod-desc2.1dif

On the first server, read the description to see the change:
ldapsearch.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=bjensen, ou=People, dc=example, dc=com °
--bindPassword hifalutin °

--baseDn dc=example,dc=com °

"(cn=Babs Jensen)"

description

Start the second server again to simulate recovery:
C:\path\to\replica\bat\start-ds.bat

On the second server, read the description to check that replication has resumed:
ldapsearch.bat °
--hostname localhost °
--port 11636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=bjensen, ou=People, dc=example, dc=com °
--bindPassword hifalutin °
--baseDn dc=example,dc=com °
"(cn=Babs Jensen)"
description

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Zsh

Stop the second server to simulate a network outage or server crash:
/path/to/replica/bin/stop-ds

On the first server, update the description again:
ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin <<EOF
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
replace: description
description: Second server is stopped
EOF

On the first server, read the description to see the change:
ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description

Start the second server again to simulate recovery:
/path/to/replica/bin/start-ds

On the second server, read the description to check that replication has resumed:
ldapsearch \

--hostname localhost \

--port 11636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \

--baseDn dc=example, dc=com \

"(cn=Babs Jensen)" \

description

Unlike some databases, DS replication does not operate in active-passive mode. Instead, you read and write on any running
server. Replication replays your changes as soon as possible. Show this to check your understanding:

1. Stop the first server.

Use the stop-ds command.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

2. Modify an entry on the second server.
Refer to Modify.
3. Restart the first server.
Use the start-ds command.
4. Search for the modified entry on the first server to check that replication replays the change.

Refer to Search.

Notifications

Some applications require notification when directory data updates occur. For example, IDM can sync directory data with another
database. Other applications do more processing when certain updates occur.

Replicated DS directory servers publish an external change log over LDAP. This changelog lets authorized client applications read
changes to directory data:

Bash

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \
--baseDN cn=changelog \
--control "ecl:false" \
"(&)" \
changes changelogCookie targetDN

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

C:\> ldapsearch.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=admin °

--bindPassword password °

--baseDN cn=changelog °

--control "ecl:false"

"(objectclass=%)"

changes changelLogCookie targetDN

Zsh

% ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \
--baseDN cn=changelog \
--control "ecl:false" \
"(&)" \
changes changelLogCookie targetDN

When looking at the output of the command (not shown here), notice that the changes values are base64-encoded in LDIF
because they include line breaks. You can use the DS base64 command to decode them. For details, refer to Changelog for
notifications.

Measure performance

DS directory servers offer high throughput and low response times for most operations. DS software includes the following
command-line tools for measuring performance of common LDAP operations:

* addrate measures LDAP adds and deletes
* authrate measures LDAP binds
* modrate measures LDAP modifications

» searchrate measures LDAP searches

Copyright © 2025 Ping Identity Corporation

Start here

PingDS

@ Note

Before trying the examples that follow, work through the previous examples. You should have two directory server
replicas running on your local computer, as described in Learn replication:

Performance rate tool

Modifications

Measure the LDAP modification rate:

LDAP

A
LY\
L{A

Directory replica

Replication

A
LY\
L{A

Directory replica

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Bash

Run modrate for 10 seconds against the first server:
modrate \
--maxDuration 10 \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--noRebind \
--numConnections 4 \
--numConcurrentRequests 4 \
--targetDn "uid=user.{1},ou=people, dc=example,dc=com" \
--argument "rand(0,100000)" \
--argument "randstr(16)" \
"description:{2}"

Read number of modify requests on the LDAPS port:
ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=monitor \
--bindPassword password \
--baseDN "cn=LDAPS, cn=connection handlers, cn=monitor" \
"(&)" O\
ds-mon-requests-modify

Copyright © 2025 Ping Identity Corporation

Start here PingDS

PowerShell

Run modrate for 10 seconds against the first server, and observe the performance numbers:
modrate.bat °

--maxDuration 10 °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °

--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °

--bindDn uid=bjensen, ou=People, dc=example, dc=com °

--bindPassword password °

--noRebind °

--numConnections 4 °

--numConcurrentRequests 4 °

--targetDn "uid=user.{1}, ou=people, dc=example, dc=com"

--argument "rand(©,100000)"

--argument "randstr(16)"

"description:{2}"

Read number of modify requests on the LDAPS port:
ldapsearch.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=monitor °
--bindPassword password °
--baseDN "cn=LDAPS, cn=connection handlers, cn=monitor"
"(objectclass=%)"
ds-mon-requests-modify

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Zsh

Run modrate for 10 seconds against the first server:
modrate \
--maxDuration 10 \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--noRebind \
--numConnections 4 \
--numConcurrentRequests 4 \
--targetDn "uid=user.{1},ou=people, dc=example,dc=com" \
--argument "rand(0,100000)" \
--argument "randstr(16)" \
"description:{2}"

Read number of modify requests on the LDAPS port:
ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=monitor \

--bindPassword password \

--baseDN "cn=LDAPS, cn=connection handlers, cn=monitor" \
"(&)" O\

ds-mon-requests-modify

When reading the modrate command output, notice that it shows statistics for throughput (operations/second), response times
(milliseconds), and errors/second. If you expect all operations to succeed and yet err/sec is not 0.0, the command options are
no doubt incorrectly set. For an explanation of the command output, refer to modrate.

Notice that the monitoring attributes hold similar, alternative statistics.

Searches

Measure the LDAP search rate:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Bash

Run searchrate for 10 seconds against the first server:
searchrate \
--maxDuration 10 \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--noRebind \
--numConnections 4 \
--numConcurrentRequests 4 \
--baseDn "dc=example,dc=com" \
--argument "rand(0,100000)" \
"(uid=user.{})"

Read number of subtree search requests on the LDAPS port:
ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=monitor \
--bindPassword password \
--baseDN "cn=LDAPS, cn=connection handlers, cn=monitor" \
"(&)"\
ds-mon-requests-search-sub

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

Run searchrate for 10 seconds against the first server:
searchrate.bat °
--maxDuration 10 °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=bjensen, ou=People, dc=example, dc=com °
--bindPassword password °
--noRebind °
--numConnections 4 °
--numConcurrentRequests 4 °
--baseDn "dc=example,dc=com"
--argument "rand(©,100000)"
"(uid=user.{})"

Read number of subtree search requests on the LDAPS port:
ldapsearch.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=monitor °
--bindPassword password °
--baseDN "cn=LDAPS, cn=connection handlers, cn=monitor"
"(objectclass=*)"
ds-mon-requests-search-sub

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Zsh

Run searchrate for 10 seconds against the first server:
searchrate \
--maxDuration 10 \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--noRebind \
--numConnections 4 \
--numConcurrentRequests 4 \
--baseDn "dc=example,dc=com" \
--argument "rand(0,100000)" \
"(uid=user.{})"

Read number of subtree search requests on the LDAPS port:
ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=monitor \
--bindPassword password \
--baseDN "cn=LDAPS, cn=connection handlers,cn=monitor" \
"(&)" \
ds-mon-requests-search-sub

Notice that searchrate command output resembles that of the modrate command. The searchrate output also indicates how
many entries each search returned. For an explanation of the command output, refer to searchrate.

Check replication

After running the performance tools, check that both replicas are up to date. The following example uses monitoring metrics to
check that replication delay is zero on each replica:

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Bash

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=monitor \

--bindPassword password \

--baseDN cn=monitor \

"(ds-mon-current-delay=*)" \

ds-mon-current-delay

dn: ds-mon-domain-name=dc=example\, dc=com,cn=replicas, cn=replication, cn=monitor
ds-mon-current-delay: ©

dn: ds-mon-server-id=second-ds,cn=remote replicas, ds-mon-domain-

name=dc=example\, dc=com, cn=replicas, cn=replication, cn=monitor
ds-mon-current-delay: @

PowerShell

PS C:\path\to> ldapsearch.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=monitor °

--bindPassword password °

--baseDN cn=monitor °

"(ds-mon-current-delay=%*)"

ds-mon-current-delay

dn: ds-mon-domain-name=dc=example\, dc=com, cn=replicas,cn=replication, cn=monitor
ds-mon-current-delay: ©

dn: ds-mon-server-id=second-ds,cn=remote replicas,ds-mon-domain-
name=dc=example\,dc=com, cn=replicas,cn=replication, cn=monitor
ds-mon-current-delay: ©

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Zsh

% ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=monitor \
--bindPassword password \
--baseDN cn=monitor \
"(ds-mon-current-delay=*)" \
ds-mon-current-delay

dn: ds-mon-domain-name=dc=example\, dc=com,cn=replicas, cn=replication, cn=monitor
ds-mon-current-delay: ©

dn: ds-mon-server-id=second-ds,cn=remote replicas, ds-mon-domain-

name=dc=example\, dc=com, cn=replicas, cn=replication, cn=monitor
ds-mon-current-delay: @

Learn access control

Until now, you have used the evaluation setup profile. The evaluation profile makes it easy to access Example.com data. It helps
you learn and demonstrate directory services without explicitly granting access after server setup.

In a production directory service where security is important, access is under tighter control. In most cases, access is denied by
default to prevent accidental information leaks. You must explicitly grant access where required. To grant access, use access
control instructions (ACIs).

@ Note

The sample ACls described here demonstrate some but not all ACI features.
For details, refer to Access control.

About AClIs

ACls are implemented as operational LDAP attributes. An operational attribute is not meant to store application data, but to
influence server behavior. Operational attributes are often left hidden from normal users. A server does not return operational
attributes on an entry unless explicitly requested.

Each ACl influences server behavior by indicating:
* Which directory data it targets
* Which permissions it allows or denies
» Which users or groups it applies to

+ Under which conditions (time, network origin, connection security, user properties) it applies

H Copyright © 2025 Ping Identity Corporation

PingDS Start here

The following example ACI gives users access to change their own passwords:

aci: (targetattr = "authPassword || userPassword")
(version 3.0;acl "Allow users to change their own passwords";
allow (write)(userdn = "ldap:///self");)

Consider the characteristics of this ACI attribute:

Target Entries and Scope
The target entries and scope for this ACl are implicit.
The default target is the entry with this aci attribute.
The default scope includes the target entry and all its subordinates.

In other words, if you set this ACl on ou=People, dc=example, dc=com, it affects all users under that base entry. For
example, Babs Jensen, uid=bjensen, ou=People, dc=example, dc=com, can set her own password.

Target Attributes

This ACI affects operations on either of the standard password attributes: (targetattr = "authPassword ||
userPassword") .

The ACl only has an effect when an operation targets either authPassword or userPassword, and any subtypes of those
attribute types.

Permissions

This ACI affects only operations that change affected attributes: allow (write) .

If this is the only ACI that targets password attributes, users have access to change their own passwords, but they do not
have access to read passwords.

Subjects
This ACI has an effect when the target entry is the same as the bind DN: (userdn = "ldap:///self").
This means that the user must have authenticated to change their password.

Documentation

The wrapper around the permissions and subjects contains human-readable documentation about the ACI: (version
3.0;acl "Allow users to change their own passwords”; .. ;).

Version 3.0 is the only supported ACl version.
Conditions
This ACI does not define any conditions. It applies all the time, for connections from all networks, and so forth.

Server configuration settings can further constrain how clients connect. Such constraints are not specified by this ACI,
however.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Use ACls
To write ACI attributes:
+ A user must have the modify-acl administrative privilege.
Privileges are server configuration settings that control access to administrative operations.
* An ACI must give the user permission to change aci attributes.

@ Important

By default, only the directory superuser has the right to add, delete, or modify ACI attributes. In fact, the directory
superuser has a privilege, bypass-acl, that allows the account to perform operations without regard to ACls.
Any account with permissions to change ACls is dangerous, because the power can be misused. The user with
permissions to change ACls can give themselves full access to all directory data in their scope.

Prepare to use the examples:
Use each server's stop-ds command to stop any DS servers running on your computer.
This lets the new server use ports that might already be in use by another server.

1. Download the Example.ldif file, shown in the following listing:

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/ldif/Example.ldif

PingDS Start here

Copyright 20626-2023 ForgeRock AS. All Rights Reserved

Use of this code requires a commercial software license with ForgeRock AS.
or with one of its affiliates. All use shall be exclusively subject
to such license between the licensee and ForgeRock AS.

H OB H R H ¥ B

dn: dc=example, dc=com
objectClass: domain
objectClass: top

dc: example

dn: ou=Groups,dc=example, dc=com
objectClass: organizationalUnit
objectClass: top

ou: Groups

dn: ou=Self Service, ou=Groups,dc=example,dc=com

objectClass: organizationalUnit

objectClass: top

description: Groups that authenticated users can manage on their own
ou: Self Service

dn: ou=People, dc=example, dc=com
objectClass: organizationalUnit
objectClass: top

description: Description on ou=People
ou: People

dn: uid=ACI Admin, ou=People,dc=example, dc=com
objectClass: person

objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top

cn: ACI Admin

givenName: ACI

mail: aci-admin@example.com

ou: People

sn: Admin

uid: ACI Admin

userPassword: 5up35tr@ng

dn: uid=bjensen, ou=People, dc=example, dc=com
objectClass: person

objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top

cn: Babs Jensen

givenName: Barbara

mail: bjensen@example.com

ou: People

sn: Jensen

uid: bjensen

userPassword: 5up35treéng

2. Save the file to your computer’s temporary directory, such as /tmp or C:\Temp .

1. Unzip the DS server .zip file into the folder where you want to install the server.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

2. Set up the directory server using the LDIF you downloaded.

Set up the server without the evaluation setup profile, so the access control settings are secure by default. The default
password policies require stronger passwords. The configuration grants very little access to regular users. Only
uid=admin has access to the data:

Bash

$ /path/to/opendj/setup \
--serverId learn-acis \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword str@ngAdminPa55word \
--hostname localhost \
--ldapPort 1389 \
--ldapsPort 1636 \
--httpsPort 8443 \
--adminConnectorPort 4444 \
--acceptlLicense

$ dsconfig \

create-backend \
--backend-name exampleData \
--type je \
--set enabled:true \
--set base-dn:dc=example,dc=com \
--offline \

--no-prompt

S import-1dif \

--backendId exampleData \
--1difFile /tmp/Example.ldif \
--offline

$ start-ds --quiet

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

PS C:\path\to> C:\path\to\opendj\setup.bat °
--serverId learn-acis °
--deploymentId <deployment-id> °
--deploymentIdPassword password °
--rootUserDn uid=admin °
--rootUserPassword str@ngAdminPa55word °
--hostname localhost °
--ldapPort 1389 °
--ldapsPort 1636 °
--httpsPort 8443 °
--adminConnectorPort 4444 °
--acceptlLicense
PS C:\path\to> C:\path\to\opendj\bat\dsconfig.bat °
create-backend °
--backend-name exampleData °
--type je °
--set enabled:true °
--set base-dn:dc=example,dc=com °
--offline °
--no-prompt
PS C:\path\to> C:\path\to\opendj\bat\import-1dif.bat °
--backendId exampleData °
--1difFile C:\Temp\Example.ldif °
--offline
PS C:\path\to> C:\path\to\opendj\bat\start-ds.bat --quiet

Copyright © 2025 Ping Identity Corporation

Start here

PingDS

Zsh

% /path/to/opendj/setup \
--serverId learn-acis \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword str@ngAdminPa55word \
--hostname localhost \

--ldapPort 1389 \
--ldapsPort 1636 \
--httpsPort 8443 \
--adminConnectorPort 4444 \
--acceptlLicense

% dsconfig \
create-backend \

--backend-name exampleData \
--type je \

--set enabled:true \

--set base-dn:dc=example,dc=com \
--offline \

--no-prompt

% import-1dif \

--backendId exampleData \
--1difFile /tmp/Example.ldif \
--offline

% start-ds --quiet

Grant the ACI Admin user access to modify ACIs:

Bash

S ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=admin \
--bindPassword str@ngAdminPa55word << EOF
dn: dc=example, dc=com
changetype: modify

add: aci
aci: (targetattr = "aci") (version 3.0;acl "ACI Admin can manage ACI attributes";
allow (write) userdn = "ldap:///uid=ACI Admin,ou=People, dc=example, dc=com" ;)

dn: uid=ACI Admin, ou=People, dc=example, dc=com
changetype: modify

add: ds-privilege-name

ds-privilege-name: modify-acl

EOF

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

PS C:\path\to> New-Item -Path . -Name "aci-admin.ldif" -ItemType "file" -Value @"
dn: dc=example, dc=com
changetype: modify

add: aci
aci: (targetattr = "aci") (version 3.0;acl "ACI Admin can manage ACI attributes";
allow (write) userdn = "ldap:///uid=ACI Admin, ou=People, dc=example, dc=com" ;)

dn: uid=ACI Admin, ou=People, dc=example, dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: modify-acl
"@
PS C:\path\to> ldapmodify.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn uid=admin °
--bindPassword str@ngAdminPa55word °
aci-admin.1ldif

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=admin \
--bindPassword str@ngAdminPa55word << EOF
dn: dc=example, dc=com
changetype: modify

add: aci
aci: (targetattr = "aci") (version 3.0;acl "ACI Admin can manage ACI attributes";
allow (write) userdn = "ldap:///uid=ACI Admin,ou=People,dc=example,dc=com";)

dn: uid=ACI Admin, ou=People, dc=example, dc=com
changetype: modify

add: ds-privilege-name

ds-privilege-name: modify-acl

EOF

Try examples from Learn LDAP.

You find that Babs Jensen does not have the access that she had with the evaluation setup profile. For production servers, the
best practice is to grant access only when required.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Examples

Prepare to use the examples before trying them. The ACI Admin account must have access to manage ACls. After you add an
example ACI, test users' access. For inspiration, refer to the examples in Learn LDAP.

ACI syntax is powerful, and sometimes difficult to get right. For details, refer to Access control.
ACI: access own entry

The following example grants authenticated users access to read their own entry, and modify some attributes:

Bash

$ ldapmodify \

--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Users can read their entries";
allow (read, search, compare) (userdn = "ldap:///self");)

add: aci

aci: (targetattr = "authPassword || description || displayName || homePhone |
jpegPhoto || preferredLanguage || userPassword")

(version 3.0;acl "Self-service modifications for basic attributes";
allow (write) (userdn = "ldap:///self");)
EOF

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

PS C:\path\to> New-Item -Path . -Name "self-access.ldif" -ItemType "file" -Value @"
dn: dc=example, dc=com
changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Users can read their entries";
allow (read, search, compare) (userdn = "ldap:///self");)

add: aci

aci: (targetattr = "authPassword || description || displayName || homePhone |
jpegPhoto || preferredLanguage || userPassword")

(version 3.0;acl "Self-service modifications for basic attributes";
allow (write) (userdn = "ldap:///self");)

'@
PS C:\path\to> ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °

self-access.ldif

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "*") (version 3.0;acl "Users can read their entries";
allow (read, search, compare) (userdn = "ldap:///self");)

add: aci

aci: (targetattr = "authPassword || description || displayName || homePhone |
jpegPhoto || preferredLanguage || userPassword")

(version 3.0;acl "Self-service modifications for basic attributes";
allow (write) (userdn = "ldap:///self");)
EOF

In this example, the list of attributes that users can read includes all user attributes. The list that users can modify is limited.
Other attributes might be governed by other applications. For example, a user's manager might only be changed through an HR
system. Perhaps the IT department is responsible for all changes to email addresses.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

ACI: access subSchemaSubEntry attribute

The subSchemaSubEntry attribute indicates the entry holding the LDAP schema definitions that apply to the current entry. Many
applications retrieve this attribute, and the associated schema, to properly display or validate attribute values.

The following example demonstrates how to grant access to read this attribute on directory entries:

Bash

$ 1dapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \
--bindPassword 5up35tr@ng << EOF
dn: dc=example, dc=com
changetype: modify
add: aci
aci: (targetattr = "subSchemaSubEntry")
(version 3.0;acl "Authenticated users can read subSchemaSubEntry";
allow (read, search, compare) (userdn = "ldap:///all");)
EOF

PowerShell

PS C:\path\to> New-Item -Path . -Name "subSchemaSubentry-access.ldif" -ItemType "file" -Value @"
dn: dc=example, dc=com
changetype: modify
add: aci
aci: (targetattr = "subSchemaSubEntry")

(version 3.0;acl "Authenticated users can read subSchemaSubEntry";
allow (read, search, compare) (userdn = "ldap:///all");)

'@
PS C:\path\to> ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °

subSchemaSubentry-access.1ldif

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "subSchemaSubEntry")
(version 3.0;acl "Authenticated users can read subSchemaSubEntry";
allow (read, search, compare) (userdn = "ldap:///all");)

EOF

ACI: manage group membership

For some static groups, you might choose to let users manage their own memberships. The following example lets members of
self-service groups manage their own membership:

Bash

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: ou=Self Service, ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "member") (version 3.0;acl "Self registration”;

allow (selfwrite) (userdn = "ldap:///uid=*, ou=People,dc=example,dc=com");)
EOF

Copyright © 2025 Ping Identity Corporation

Start here PingDS

PowerShell

PS C:\path\to> New-Item -Path . -Name "self-service-groups.ldif" -ItemType "file" -Value @"
dn: ou=Self Service, ou=Groups,dc=example, dc=com
changetype: modify

add: aci

aci: (targetattr = "member") (version 3.0;acl "Self registration”;

allow (selfwrite) (userdn = "ldap:///uid=*, ou=People,dc=example,dc=com");)
"o

PS C:\path\to> ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °

self-service-groups.1ldif

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: ou=Self Service, ou=Groups,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "member") (version 3.0;acl "Self registration”;

allow (selfwrite) (userdn = "ldap:///uid=*, ou=People,dc=example,dc=com");)
EOF

The selfwrite permission is for adding or deleting one’s own DN from a group.

ACIl: manage self-service groups

This example lets users create and delete self-managed groups:

Copyright © 2025 Ping Identity Corporation

PingDS Start here
Bash

$ ldapmodify \

--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: ou=Self Service, ou=Groups, dc=example, dc=com

changetype: modify

add: aci

aci: (targattrfilters="add=objectClass:(objectClass=groupOfNames)")
(version 3.0; acl "Users can create self-service groups";

allow (add) (userdn = "ldap:///uid=*,ou=People, dc=example, dc=com");)

add: aci

aci: (version 3.8; acl "Owner can delete self-service groups”;
allow (delete) (userattr = "owner#USERDN");)

EOF

PowerShell

PS C:\path\to> New-Item -Path . -Name "self-managed-groups.ldif" -ItemType "file"
dn: ou=Self Service, ou=Groups,dc=example, dc=com
changetype: modify
add: aci
aci: (targattrfilters="add=objectClass:(objectClass=groupOfNames)")
(version 3.0; acl "Users can create self-service groups";
allow (add) (userdn = "ldap:///uid=*,ou=People,dc=example, dc=com");)
add: aci
aci: (version 3.0; acl "Owner can delete self-service groups";
allow (delete) (userattr = "owner#USERDN");)
'@
PS C:\path\to> ldapmodify.bat °
--hostname localhost °
--port 1636 °
--useSsl °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °
self-managed-groups.1ldif

-Value @"

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: ou=Self Service, ou=Groups, dc=example, dc=com

changetype: modify

add: aci

aci: (targattrfilters="add=objectClass:(objectClass=groupOfNames)")
(version 3.0; acl "Users can create self-service groups";
allow (add) (userdn = "ldap:///uid=*,ou=People, dc=example, dc=com");)

add: aci

aci: (version 3.8; acl "Owner can delete self-service groups”;
allow (delete) (userattr = "owner#USERDN");)

EOF

ACI: full access
The following ACI grants Babs Jensen permission to perform all LDAP operations, allowing her full administrator access to the

directory data under dc=example,dc=com. Babs can read and write directory data, rename and move entries, and use proxied
authorization. Some operations also require administrative privileges not shown in this example:

Bash

$ 1dapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People,dc=example,dc=com" \
--bindPassword 5up35tr@ng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Babs has full access";

allow (all, export, import, proxy) (userdn = "ldap:///uid=bjensen,ou=People, dc=example,dc=com");)
EOF

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

PS C:\path\to> New-Item -Path . -Name "full-access.ldif" -ItemType "file" -Value @"
dn: dc=example, dc=com
changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Babs has full access";

allow (all, export, import, proxy) (userdn = "ldap:///uid=bjensen, ou=People, dc=example,dc=com") ;)
"o

PS C:\path\to> ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °

full-access.1ldif

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Babs has full access";

allow (all, export, import, proxy) (userdn = "ldap:///uid=bjensen, ou=People, dc=example,dc=com") ;)
EOF

(targetattr = "* || +") permits access to all user attributes and all operational attributes. allow (all, import, export,
proxy) permits all user operations, modify DN operations, and proxied authorization. Notice that all does not allow modify DN
and proxied authorization.

ACI: anonymous reads and searches

In LDAP, an anonymous user is one who does not provide bind credentials. By default, most setup profiles only allow anonymous
access to read information about the server's capabilities, or before using the StartTLS operation to get a secure connection
before providing credentials.

Unless you set up the server with the evaluation profile, anonymous users cannot read application data by default. You can grant
them access, however. First, change the global configuration to allow unauthenticated requests. Second, add an ACI to grant
access to the entries.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

The following command changes the global configuration property, unauthenticated-requests-policy, to allow
unauthenticated requests:

Bash

$ dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword str@ngAdminPa55word \
--set unauthenticated-requests-policy:allow \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

PowerShell

PS C:\path\to> dsconfig.bat °

set-global-configuration-prop °

--hostname localhost °

--port 4444 °

--bindDN uid=admin °

--bindPassword str@ngAdminPa55word °

--set unauthenticated-requests-policy:allow °
--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--no-prompt

Zsh

% dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword str@ngAdminPa55word \
--set unauthenticated-requests-policy:allow \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

This ACl makes all user attributes in dc=example,dc=com data (except passwords) world-readable:

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Bash

$ ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci
aci: (targetattr != "authPassword || userPassword") (version 3.0;acl "Anonymous read-search access";
allow (read, search, compare) (userdn = "ldap:///anyone");)
EOF
PowerShell

PS C:\path\to> New-Item -Path . -Name "anon-access.ldif" -ItemType "file" -Value @"
dn: dc=example, dc=com
changetype: modify

add: aci

aci: (targetattr != "authPassword || userPassword") (version 3.0;acl "Anonymous read-search access";
allow (read, search, compare) (userdn = "ldap:///anyone");)

"@

PS C:\path\to> ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °

anon-access.1ldif

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr != "authPassword || userPassword") (version 3.0;acl "Anonymous read-search access";
allow (read, search, compare) (userdn = "ldap:///anyone");)

EOF

Notice that ldap:///anyone designates anonymous users and authenticated users. Do not confuse that with 1dap:///all,
which designates authenticated users only.

ACI: permit insecure access over loopback only
This ACl uses IP address and Security Strength Factor subjects to prevent insecure remote access to dc=example,dc=com data. In

most cases, you explicitly grant permission with allow, making it easier to understand and to explain why the server permits a
given operation. This demonstrates one use case where it makes sense to deny permission:

Bash

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Restrict insecure LDAP to the loopback address";
deny (all) (ip != "127.0.0.1" and ssf <= "1");)

EOF

Copyright © 2025 Ping Identity Corporation

PingDS Start here

PowerShell

PS C:\path\to> New-Item -Path . -Name "deny-cleartext.ldif" -ItemType "file" -Value @"
dn: dc=example, dc=com
changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Restrict cleartext LDAP to the loopback address";
deny (all) (ip != "127.0.0.1" and ssf <= "1");)

"o

PS C:\path\to> ldapmodify.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDn "uid=ACI Admin, ou=People, dc=example,dc=com"
--bindPassword 5up35tréng °

deny-cleartext.ldif

Zsh

% ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn "uid=ACI Admin,ou=People,dc=example,dc=com" \
--bindPassword 5up35tréng << EOF

dn: dc=example, dc=com

changetype: modify

add: aci

aci: (targetattr = "* || +") (version 3.0;acl "Restrict insecure LDAP to the loopback address";
deny (all) (ip != "127.0.0.1" and ssf <= "1");)

EOF

+ ssf = 1 means that TLS is configured without a cipher. The server verifies integrity using packet checksums, but all
content is sent in plain text.

+ ssf = @ means that the content is sent plain text with no connection security.

About directories

A directory resembles a dictionary or a phone book. If you know a word, you can look up its entry in the dictionary to learn its
definition or its pronunciation. If you know a name, you can look up its entry in the phone book to find the telephone number and
street address associated with the name. If you are bored, curious, or have lots of time, you can also read through the dictionary,
phone book, or directory, entry after entry.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Where a directory differs from a paper dictionary or phone book is in how entries are indexed. Dictionaries typically have one
index, which is words in alphabetical order. Phone books, have one index as well, which is names in alphabetical order.
Directories' entries, however, are often indexed for multiple attributes, including names, user identifiers, email addresses, and
telephone numbers. This means you can look up a directory account by the user’'s name, their user identifier, their email address,
or their telephone number, for example.

PingDS implements the Lightweight Directory Access Protocol (LDAP). Nearly all of what follows is an introduction to LDAP.

PingDS also provide RESTful HTTP access to directory data. As a directory user, you will find it useful to understand the underlying
LDAP model even if most users are accessing the directory over HTTP rather than LDAP.

History

Phone companies have been managing directories for many decades. The Internet itself has relied on distributed directory
services like DNS since the mid 1980s.

It was not until the late 1980s, however, that experts from what is now the International Telecommunications Union published
the X.500 set of international standards, including Directory Access Protocol. The X.500 standards specify Open Systems
Interconnect (OSI) protocols and data definitions for general purpose directory services. The X.500 standards were designed to
meet the needs of systems built according to the X.400 standards, covering electronic mail services.

Lightweight Directory Access Protocol has been around since the early 1990s. LDAP was originally developed as an alternative
protocol that would allow directory access over Internet protocols rather than OSI protocols, and be lightweight enough for
desktop implementations. By the mid-1990s, LDAP directory servers became generally available and widely used.

Until the late 1990s, LDAP directory servers were designed primarily with quick lookups and high availability for lookups in mind.
LDAP directory servers replicate data. When an update is made, that update is applied to other peer directory servers. Thus, if
one directory server goes down, lookups can continue on other servers. Furthermore, if a directory service needs to support
more lookups, the administrator can simply add another directory server to replicate with its peers.

As organizations rolled out larger and larger directories serving more and more applications, they discovered the need for high
availability and fast updates. Around the year 2000, directories began to support multi-master replication; that is, replication with
multiple read-write servers. The organizations with the very largest directories became concerned about replicating so many
changes.

The DS code base began in the mid-2000s, when engineers solving the update performance issue decided that the cost of
adapting the existing C-based directory technology for high-performance updates would be higher than the cost of building new,
high-performance directory using Java technology.

LDAP data

LDAP directory data is organized into entries, similar to the entries for words in the dictionary, or for subscriber names in the
phone book:

Copyright © 2025 Ping Identity Corporation

PingDS Start here

dn: uid=bjensen, ou=People, dc=example, dc=com
uid: bjensen

cn: Babs Jensen

cn: Barbara Jensen
facsimileTelephoneNumber: +1 488 555 1992
gidNumber: 1000

givenName: Barbara

homeDirectory: /home/bjensen

1: San Francisco

mail: bjensen@example.com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person

objectClass: posixAccount
objectClass: top

ou: People

ou: Product Development
roomNumber: 0209

sn: Jensen

telephoneNumber: +1 408 555 1862
uidNumber: 1076

Barbara Jensen’s entry has a number of attributes, such as uid: bjensen, telephoneNumber: +1 488 555 1862, and
objectClass: posixAccount.(The objectClass attribute type indicates which types of attributes are required and allowed for
the entry. As the entries object classes can be updated online, and even the definitions of object classes and attributes are
expressed as entries that can be updated online, directory data is extensible on the fly.) When you look up her entry in the
directory, you specify one or more attributes and values to match. The directory server then returns entries with attribute values
that match what you specified.

The attributes you search for are indexed in the directory, so the directory server can retrieve them more quickly. Attribute values
are not necessarily strings. Some attribute values, like certificates and photos, are binary.

Each entry also has a unique identifier, shown at the top of the entry, dn: uid=bjensen, ou=People, dc=example,dc=com. DN is
an acronym for Distinguished Name. No two entries in the directory have the same distinguished name. DNs are typically
composed of case-insensitive attributes.

Sometimes distinguished names include characters that you must escape. The following example shows an entry that includes
escaped characters in the DN:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Bash

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=People, dc=example, dc=com \
--bindPassword bribery \
--baseDN dc=example, dc=com \
"(uid=escape)"

dn: cn=DN Escape Characters \" \# \+ \, \; \< = \> \\,dc=example, dc=com
objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: top

givenName: DN Escape Characters

uid: escape

cn: DN Escape Characters " # + , ; < = >\

sn: " # 4+, ;< =>\

mail: escape@example.com

PowerShell

PS C:\path\to> ldapsearch.bat °

--hostname localhost °

--port 1636 °

--useSsl °

--usePkcs12TrustStore C:\path\to\opendj\config\keystore °
--trustStorePassword:file C:\path\to\opendj\config\keystore.pin °
--bindDN uid=kvaughan, ou=People, dc=example, dc=com °
--bindPassword bribery °

--baseDN dc=example, dc=com °

"(uid=escape)"

dn: cn=DN Escape Characters \" \# \+ \, \; \< = \> \\,dc=example, dc=com
objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: top

givenName: DN Escape Characters

uid: escape

cn: DN Escape Characters " # + , ; < = >\

sn: " # 4+, ;< =>\

mail: escape@example.com

Copyright © 2025 Ping Identity Corporation

mailto:escape@example.com
mailto:escape@example.com

PingDS Start here

LDAP entries are arranged hierarchically in the directory. The hierarchical organization resembles a file system on a PC or a web
server, often imagined as an upside down tree structure, or a pyramid. The distinguished name consists of components
separated by commas, uid=bjensen, ou=People, dc=example,dc=com. The names are little-endian. The components reflect the
hierarchy of directory entries.

4)

Base DN dc=example,dc=com

ou=People s ~
uid=ajensen |dn: uid=bjensen,ou=People,dc=example,dc=co
RDNs uid: bjensen

UeSlsemses givenName: Barbara

uid=bjensea— surname: Jensen
cn: Babs Jensen
cn: Barbara Jensen

- J
- J

Barbara Jensen’s entry is located under an entry with DN ou=People, dc=example, dc=com, an organizational unit and parent
entry for the people at Example.com. The ou=People entry is located under the entry with DN dc=example, dc=com, the base
entry for Example.com. DC is an acronym for Domain Component. The directory has other base entries, such as cn=config, under
which the configuration is accessible through LDAP.

A directory can serve multiple organizations, too. You might find dc=example, dc=com, dc=mycompany,dc=com, and
o=myOrganization in the same LDAP directory. Therefore, when you look up entries, you specify the base DN to look under in
the same way you need to know whether to look in the New York, Paris, or Tokyo phone book to find a telephone number.

The root entry for the directory, technically the entry with DN "" (the empty string), is called the root DSE. It contains information
about what the server supports, including the other base DNs it serves.

A directory server stores two kinds of attributes in a directory entry: user attributes and operational attributes. User attributes hold
the information for users of the directory. All attributes shown in the entry above are user attributes. Operational attributes hold
information used by the directory itself. Examples of operational attributes include entryUUID, modifyTimestamp, and
subschemaSubentry .

When an LDAP search operation finds an entry in the directory, the directory server returns all the visible user attributes unless
the search request restricts the list of attributes by specifying those attributes explicitly. The directory server does not, however,
return any operational attributes unless the search request specifically asks for them.

Generally speaking, applications should change only user attributes, and leave updates of operational attributes to the server,
relying on public directory server interfaces to change server behavior. An exception is access control instruction (aci) attributes,
which are operational attributes used to control access to directory data.

Communication

In some client/server applications, like web browsing, a connection is set up and torn down for each client request.

LDAP has a different model. In LDAP, the client application connects to the server and authenticates. The client then requests any
number of operations, perhaps processing results in between requests. The client finally disconnects when done, potentially days
later.

Copyright © 2025 Ping Identity Corporation ﬂ

Start here PingDS

The standard operations are as follows:
Bind (authenticate)

The first operation in an LDAP session usually involves the client binding to the LDAP server w ith the server authenticating
the client. Authentication identifies the client’s identity in LDAP terms, the identity which is later used by the server to
authorize (or not) access to directory data that the client wants to lookup or change.

If the client does not bind explicitly, the server treats the client as an anonymous client. An anonymous client is allowed to
do anything that can be done anonymously. What can be done anonymously depends on access control and configuration
settings. The client can also bind again on the same connection.

Search (lookup)

After binding, the client can request that the server return entries based on an LDAP filter, which is an expression that the
server uses to find entries that match the request, and a base DN under which to search. For example, to look up all
entries for people with the email address bjensen@example.com in data for Example.com, you would specify a base DN
such as ou=People, dc=example, dc=com and the filter (mail=bjensen@example.com) .

Compare

After binding, the client can request that the server compare an attribute value that the client specifies with the value
stored on an entry in the directory.

Modify

After binding, the client can request that the server change one or more attribute values on an entry. Often administrators
do not allow clients to change directory data, so allow appropriate access for client application if they have the right to
update data.

Add
After binding, the client can request to add one or more new LDAP entries to the server.

Delete
After binding, the client can request that the server delete one or more entries. To delete an entry with other entries
underneath, first delete the children, then the parent.

Modify DN
After binding, the client can request that the server change the distinguished name of the entry. In other words, this
renames the entry or moves it to another location. For example, if Barbara changes her unique identifier from bjensen to
something else, her DN would have to change. For another example, if you decide to consolidate ou=Customers and
ou=Employees under ou=People instead, all the entries underneath must change distinguished names.
Renaming entire branches of entries can be a major operation for the directory, so avoid moving entire branches if you
can.

Unbind

When done making requests, the client can request an unbind operation to end the LDAP session.

n Copyright © 2025 Ping Identity Corporation

mailto:bjensen@example.com

PingDS Start here

Abandon

When a request takes too long to complete, or when a search request returns many more matches than desired, the client
can send an abandon request to the server to drop the operation in progress.

Controls and extensions

LDAP has standardized two mechanisms for extending the operations directory servers can perform beyond the basic operations
listed above. One mechanism involves using LDAP controls. The other mechanism involves using LDAP extended operations.

LDAP controls are information added to an LDAP message to further specify how an LDAP operation should be processed. For
example, the Server-Side Sort request control modifies a search to request that the directory server return entries to the clientin
sorted order. The Subtree Delete request control modifies a delete request so the server also removes child entries of the entry
targeted for deletion.

One special search operation that DS servers support is Persistent Search. The client application sets up a Persistent Search to
continue receiving new results whenever changes are made to data that is in the scope of the search, using the search as a form
of change notification. Persistent Searches are intended to remain connected permanently, though they can be idle for long
periods of time.

The directory server can also send response controls in some cases to indicate that the response contains special information.
Examples include responses for entry change notification, password policy, and paged results.

For the list of supported LDAP controls, refer to Supported LDAP controls.

LDAP extended operations are additional LDAP operations not included in the original standard list. For example, the Cancel
Extended Operation works like an abandon operation, but finishes with a response from the server after the cancel is complete.
The StartTLS Extended Operation allows a client to connect to a server on an unsecure port, then starts Transport Layer Security
negotiations to protect communications.

For the list of supported LDAP extended operations, refer to Supported LDAP extended operations.

Indexes

Directories have indexes for multiple attributes. By default, DS does not let normal users perform searches that are not indexed,
because such searches mean DS servers have to scan an entire directory database when looking for matches.

As directory administrator, part of your responsibility is making sure directory data is properly indexed. DS software provides
tools for building and rebuilding indexes, for verifying indexes, and for evaluating how well indexes are working.

For help with understanding and managing indexes, read Indexes and the related pages.

Schema

Some databases are designed to hold huge amounts of data for a particular application. Although such databases can support
multiple applications, data organization depends on the applications served.

In contrast, directories are designed for shared, centralized services. Although the first guides to deploying directory services
suggested taking inventory of all the applications that would access the directory, today many directory administrators do not
even know how many applications use their services. The shared, centralized nature of directory services fosters interoperability
in practice. It has helped directory services be successful in the long term.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Part of what makes this possible is the shared model of directory user information, in particular the LDAP schema. LDAP schema
defines what the directory can contain. This means that directory entries are not arbitrary data, but tightly codified objects whose
attributes are completely predictable from publicly readable definitions. Many schema definitions are in fact standard. They are
the same not just across a directory service but across different directory services.

At the same time, unlike some databases, LDAP schema and the data it defines can be extended on the fly while the service is
running. LDAP schema is accessible over LDAP. One attribute of every entry is its set of objectClass values. This gives you as
administrator great flexibility in adapting your directory service to store new data without losing or changing the structure of
existing data, and without ever stopping your directory service.

For a closer look, refer to LDAP schema.

Access control

Directory services support fine-grained access control.

As directory administrator, you can control who has access to what data when, how, where and under what conditions by using
access control instructions (ACI). You can allow some directory operations and not others. You can scope access control from the
whole directory service down to individual attributes on directory entries. You can specify when, from what host or IP address,
and the encryption strength required for an operation.

As ACls are stored on entries in the directory, you can update access controls while the service is running, and even delegate that
control to client applications. DS software combines the strengths of ACls with separate administrative privileges to help you
secure access to directory data.

For more information, read Access control.

Replication

DS replication consists of copying each update to the directory service to multiple directory servers. This brings both redundancy,
in the case of network partitions or of crashes, and scalability for read operations. Most directory deployments involve multiple
servers replicating together.

When you have replicated servers, all of which are writable, you can have replication conflicts. What if, for example, there is a
network outage between two replicas, and meanwhile two different values are written to the same attribute on the same entry
on the two replicas?

In nearly all cases, DS replication can resolve these situations automatically without involving you, the directory administrator.
This makes your directory service resilient and safe even in the unpredictable real world.

One counterintuitive aspect of replication is that although you add directory read capacity by adding replicas to your deployment,
you do not add directory write capacity by adding replicas. Each write operation must be replayed everywhere. As a result, if you
have N servers, you have N write operations to replay.

Replication is also loosely consistent. Loosely consistent means that directory data will eventually converge to be the same
everywhere, but it will not necessarily be the same everywhere at all times, or even at any time. Client applications sometimes get
this wrong when they write to a pool of load balanced directory servers, immediately read back what they wrote, and are
surprised that it is not the same. If your users are complaining about this, consider using a directory proxy server to mitigate their
poor practices.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

DSMLv2

Directory Services Markup Language (DSMLv2) v2.0 became a standard in 2001. DSMLv2 describes directory data and basic
directory operations in XML format, so they can be carried in Simple Object Access Protocol (SOAP) messages. DSMLv2 further
allows clients to batch multiple operations together in a single request, to be processed either in sequential order or in parallel.

DS software provides support for DSMLv2 as a DSML gateway, which is a servlet that connects to any standard LDAPV3 directory.
DSMLv2 opens basic directory services to SOAP-based web services and service oriented architectures.

@ Important

The interface stability of this feature is Deprecated.

To set up DSMLV2 access, refer to Install a DSML gateway.

HTTP access
DS software maps LDAP data as JSON resources over HTTP for REST clients (HDAP).
LDAP schemas define the HDAP data model:

+ LDAP entries hold sets of attributes, not arbitrarily nested objects.

Each HDAP resource is an JSON object with fields at the top level:

{
"_id" : "dc=com/dc=example/ou=People/uid=bjensen"”,
"_rev" : "<revision>",
"mail" : ["bjensen@example.com"],
"cn" : ["Barbara Jensen", "Babs Jensen"],
"sn" : ["Jensen"]
}

*JSON has arrays, ordered collections that can contain duplicates.
LDAP attributes are sets, unordered collections without duplicates.
HDAP arrays have set semantics in which no duplicates are allowed, and the element order is arbitrary.

If you want a field with nested JSON or an array instead of a set, define a json syntax attribute. For details, refer to Schema and
JSON.

You can deploy HDAP as a separate HDAP gateway servlet or through an HTTP connection handler on a DS server.

Deployment

This page serves as an introduction. When you have understood enough of the concepts to build the directory services that you
want to deploy, you must still build a prototype and test it before you roll out shared, centralized services for your organization.

Start with Deployment when beginning your project.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Best practices

Follow these best practices for writing effective, maintainable, high-performance directory client applications.

Authenticate correctly

Unless your application performs only read operations, authenticate to the directory server. Some directory services require
authentication to read directory data.

Once you authenticate (bind), directory servers make authorization decisions based on your identity. With servers that support
proxied authorization, once authenticated, your application can request an operation on behalf of another identity, such as the
identity of the end user.

Your application therefore should have an account, such as cn=My App, ou=Apps, dc=example, dc=com. The directory
administrator can authorize appropriate access for your application’s account, and monitor your application’s requests to help
you troubleshoot problems if they arise.

Applications can use simple, password-based authentication. When using password-based authentication, use secure
connections to protect credentials over the network. For applications, prefer certificate-based authentication if possible.

Reuse connections

LDAP is a stateful protocol. You authenticate (bind), you perform operations, you unbind. The server maintains a context that lets
it make authorization decisions concerning your requests. Therefore, reuse connections whenever possible.

Because LDAP supports asynchronous requests, it is normal and expected to make multiple requests over the same connection.
Your application can share a pool of connections to avoid the overhead of setting them up and tearing them down.

Check connection health

In a network built for HTTP applications, your long-lived LDAP connections can get cut by network equipment configured to treat
idle and old connections as stale resources to reclaim.

When you maintain a particularly long-lived connection, such as a connection for a persistent search, periodically perform a
health check to maintain the connection operational.

A health check involves reading or writing an attribute on a well-known entry in your data. It can serve the purposes of
maintaining the connection operational, and of verifying access to your data. A success result for a read indicates that the data is
available, and the application can read it. A success result for a write indicates that the data is available, and the application can
write to it. The exact check to perform depends on how your application uses the directory. Under some circumstances, your data
might be temporarily read-only, for example.

When using a connection timeout, take care not to set the timeout so low that long operations, such as unindexed searches, fail
to complete before the timeout.

Request exactly what you need all at once

By the time your application makes it to production, you should know what attributes you want. Request them explicitly, and
request all the attributes in the same search.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

For example, if you require mail and cn, then specify both attributes in your search request.

Use specific LDAP filters

The difference in results between a general filter (mail=*@example.com) , and a good, specific filter like
(mail=user@example.com) can be huge numbers of entries and enormous amounts of processing time, both for the directory
server that has to return search results, and for your application that has to sort through them.

Many use cases can be handled with short, specific filters. As a rule, prefer equality filters over substring filters.

DS servers reject unindexed searches by default, because unindexed searches are resource-intensive. If your application needs to
use a filter that results in an unindexed search, work with the directory administrator to find a solution, such as adding the
indexes required for your search filters.

Always use & with ! to restrict the potential result set before returning all entries that do not match part of the filter. For

example, (&(location=0slo)(!(mail=birthday.girl@example.com))) .

Make modifications specific

Specific modifications help directory servers apply and replicate your changes more effectively.

When you modify attributes with multiple values, such as a static group member attribute, replace or delete specific values
individually, rather than replacing the entire list of values.

Trust result codes

Trust the LDAP result code from the directory server. For example, if you request a modification, and you get a success result,
consider the operation a success. Do not immediately issue a search to get the modified entry.

LDAP replication model is loosely convergent. In other words, the directory server sends you the success result before replicating
the change to every directory server replica across the network. If you issue a read immediately after a write, a load balancer may
direct the request to another replica. The result might differ from what you expect.

The loosely convergent model means that the entry could have changed since you read it. If needed, use LDAP assertions to set
conditions for your LDAP operations.

Handle input securely

When taking input directly from a user or another program, use appropriate methods to sanitize the data. Failure to sanitize the
input data can leave your application vulnerable to injection attacks.

For Java applications, the PingDS format() methods for filters and DNs are similar to the Java String.format() methods. In
addition to formatting the output, they escape the input objects. When building a search filter, use one of the methods of the DS
APIs to escape input.

Check group membership on the account, not the group

Reading an entire large static group entry to check membership is wasteful.

If you need to determine which groups an account belongs to, request the DS virtual attribute, isMember0f , when you read the
account entry. Other directory servers use other names for this attribute that identifies the groups to an account belongs to.

Copyright © 2025 Ping Identity Corporation

mailto:user@example.com
mailto:birthday.girl@example.com

Start here PingDS

Check support for features you use

Directory servers expose their capabilities as operational attribute values on the root DSE, which is the entry whose DN is an
empty string, "" .

This lets your application discover capabilities at run time, rather than storing configuration separately. Putting effort into
checking directory capabilities makes your application easier to deploy and to maintain.

For example, rather than hard-coding dc=example, dc=com as a base DN in your configuration, read the root DSE
namingContexts attribute.

Directory servers also expose their schema over LDAP. The root DSE attribute subschemaSubentry shows the DN of the entry for
LDAP schema definitions.

Store large attribute values by reference

To serve results quickly with high availability, directory servers cache content and replicate it everywhere. If you already store
large attribute values elsewhere, such as photos or audio messages, keep only a reference to external content in a user's account.

Take care with persistent search and server-side sorting

A persistent search lets your application receive updates from the server as they happen by keeping the connection open and
forcing the server to check whether to return additional results any time it performs a modification in the scope of your search.
Directory administrators therefore might hesitate to grant persistent search access to your application.

DS servers expose a change log to let you discover updates with less overhead. If you do have to use a persistent search instead,
try to narrow the scope of your search.

DS servers support a resource-intensive, standard operation called server-side sorting. When your application requests a server-
side sort, the directory server retrieves all matching entries, sorts the entries in memory, and returns the results. For result sets of
any size, server-side sorting ties up server resources that could be used elsewhere. Alternatives include sorting the results after
your application receives them, or working with the directory administrator to enable appropriate browsing (virtual list view)
indexes for applications that must regularly page through long lists of search results.

Reuse schemas where possible

DS servers come with schema definitions for a wide range of standard object classes and attribute types. Directories use unique,
IANA D-registered object identifiers (OIDs) to avoid object class and attribute type name clashes. The overall goal is Internet-wide
interoperability.

Therefore, reuse schema definitions that already exist whenever you reasonably can. Reuse them as is. Do not try to redefine
existing schema definitions.

If you must add schema definitions for your application, extend existing object classes with AUXILIARY classes. Take care to name
your schemas such that they do not clash with other names.

When you have defined schema required for your application, work with the directory administrator to add your definitions to the
directory service. DS servers let directory administrators update schema definitions over LDAP. There is no need to interrupt the
service to add your application. Directory administrators can, however, have other reasons why they hesitate to add your schema
definitions. Coming to the discussion prepared with good schema definitions, explanations of why they should be added, and
evident regard for interoperability makes it easier for the directory administrator to grant your request.

n Copyright © 2025 Ping Identity Corporation

https://www.iana.org/
https://www.iana.org/

PingDS Start here

Read directory server schemas during initialization

By default, PingDS APIs use a minimal, built-in core schema, rather than reading the schema from the server. Doing so
automatically would incur a significant performance cost. Unless schemas change, your application only needs to read them
once.

When you start your application, read directory server schemas as a one-off initialization step.

Once you have the directory server schema definitions, use them to validate entries.

Handle referrals

When a directory server returns a search result, the result is not necessarily an entry. If the result is a referral, then your
application should follow up with an additional search based on the URIs provided in the result.

Troubleshooting: check result codes

LDAP result codes are standard, and listed in LDAP result codes.

When your application receives a result, it must rely on the result code value to determine what action to take. When the result is
not what you expect, read or at least log the additional message information.

Troubleshooting: check server logs

If you can read the directory server access log, then check what the server did with your application’s request. The following
excerpt shows a successful search by cn=My App, ou=Apps, dc=example, dc=com:

Copyright © 2025 Ping Identity Corporation

Start here PingDS

{"eventName" :"DJ-LDAP", "client" :{"ip" :"<clientIp>", "port":12345}, "server":{"ip" :"<serverIp>", "port":1636}, "request":
{"protocol":"LDAPS", "operation":"CONNECT", "connId":4}, "transactionId":"0", "response":

{"status":"SUCCESSFUL", "statusCode":"0", "elapsedTime" :

0, "elapsedTimeUnits" :"MILLISECONDS"}, "timestamp"” :"<timestamp>","_id":"<uuid>"}

{"eventName" :"DJ-LDAP", "client":{"ip" :"<clientIp>", "port":12345}, "server":{"ip":"<serverIp>", "port":1636}, "request"”:
{"protocol" :"LDAPS", "operation":"TLS", "connId":4}, "transactionId":"@", "response":

{"status":"SUCCESSFUL", "statusCode":"0", "elapsedTime" :0, "elapsedTimeUnits" :"MILLISECONDS"}, "security":
{"protocol":"TLSv1.3", "cipher":"TLS_AES_128_GCM_SHA256", "ssf":128}, "timestamp" :"<timestamp>","_id" :"<uuid>"}
{"eventName" :"DJ-LDAP", "client":{"ip" :"<clientIp>", "port":12345}, "server":{"ip" :"<serverIp>", "port":1636}, "request"”:
{"protocol":"LDAPS", "operation":"BIND", "connId":4, "msgId":1, "version":"3","dn" :"cn=My

App, ou=Apps, dc=example,dc=com", "authType" :"SIMPLE" }, "transactionId":"<uuid>", "response":

{"status":"SUCCESSFUL", "statusCode":"0", "elapsedTime" :1, "elapsedQueueingTime" :0, "elapsedProcessingTime" :

1, "elapsedTimeUnits":"MILLISECONDS", "additionalIltems":{"ssf":128}}, "userId":"cn=My

App, ou=Apps, dc=example,dc=com", "timestamp" :"<timestamp>","_id" :"<uuid>"}

{"eventName" :"DJ-LDAP", "client":{"ip" :"<clientIp>", "port":12345}, "server":{"ip" :"<serverIp>", "port":1636}, "request"”:
{"protocol":"LDAPS", "operation":"SEARCH", "connId" :4, "msgId":

2,"dn" :"dc=example,dc=com", "scope":"sub", "filter":" (uid=kvaughan)", "attrs":

["isMemberOf"]}, "transactionId":"<uuid>", "response":{"status":"SUCCESSFUL", "statusCode":"0", "elapsedTime" :

3, "elapsedQueueingTime" :0, "elapsedProcessingTime" :3, "elapsedTimeUnits" :"MILLISECONDS", "nentries":1, "entrySize":
430}, "userId":"cn=My App,ou=Apps,dc=example,dc=com", "timestamp":"<timestamp>","_id":"<uuid>"}
{"eventName" :"DJ-LDAP", "client":{"ip" :"<clientIp>", "port":12345}, "server":{"ip":"<serverIp>", "port":1636}, "request"”:
{"protocol":"LDAPS", "operation":"UNBIND", "connId" :4, "msgId":

3}, "transactionId":"<uuid>", "timestamp":"<timestamp>","_id":"<uuid>"}

{"eventName" :"DJ-LDAP", "client":{"ip" :"<clientIp>", "port":12345}, "server":{"ip" :"<serverIp>", "port":1636}, "request"”:
{"protocol":"LDAPS", "operation":"DISCONNECT", "connId":4}, "transactionId":"@", "response":

{"status" :"SUCCESSFUL", "statusCode":"0", "elapsedTime" :0, "elapsedTimeUnits" :"MILLISECONDS", "reason":"Client

Unbind"}, "timestamp" :"<timestamp>","_id":"<uuid>"}

Notice these features of the messages:
* The request operation types appear in upper case.

* The messages track the client information and identify the specific sequence of operations with connection ID (connId)
and message ID (msgID) numbers.

* The elapsedTime for the response indicates the total time to complete the request. The elapsedQueueingTime is the
time the request waited in the queue. The elapsedProcessingTime is the time actively processing the request.

* A status code 0 corresponds to a successful result, as described in RFC 4511 U,

For details about the message format, refer to Access log format.

Troubleshooting: inspect network traffic

If result codes and server logs are not enough, many network tools can interpret HTTP and LDAP packets. Install the necessary
keys to decrypt encrypted packet content.

Next steps

Once you have worked through the examples in this guide, try the following suggestions:

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/rfc/rfc4511.html#section-4.1.9
https://www.rfc-editor.org/rfc/rfc4511.html#section-4.1.9

PingDS Start here

Learn about replication

Data replication is sometimes called the "killer feature" of LDAP directories. Its strengths are in enabling very high availability for
directory services even during network outages, and automatically resolving conflicts that can occur when the network is down,
for example. LDAP directories have been improving and hardening replication features for decades.

Its weaknesses are that replication protocols have not been standardized for interoperability, and that unwary developers can
misunderstand its property of eventual consistency if they are too used to the strong, immediate consistency of monolithic,
transactional databases.

Replication necessarily involves multiple servers and additional configuration. You can learn more about it by reading Replication
and the related pages.

Browse DS documentation

Category Topics Covered

Release notes DS features, fixes, and known issues

Use cases Implementing common use cases for directory services

Deployment Deploying PingDS in on-premises and cloud environments

Installation Installing DS software

Upgrade Upgrading DS software

Configuration Configuring DS servers after installation

Security Ensuring a PingDS deployment is secure

Maintenance Day-to-day operations for maintaining DS servers

Logging Configuring DS server logs

Monitoring What to monitor when running DS servers, and where to look for metrics and other
information

Use LDAP How to use LDAP features and command-line tools

Use HDAP How to configure and use DS REST APIs for HTTP access (HDAP)

Configuration reference

The dsconfig subcommands and server configuration properties

DS Javadoc Evolving LDAP SDK and server APIs, including common APIs
LDAP reference LDAP-specific features of DS software
LDAP schema reference All default LDAP schema, including monitoring attributes and object classes

Copyright © 2025 Ping Identity Corporation ﬂ

https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html

Start here PingDS

Category Topics Covered
Log reference DS server error log messages by category and ID
Tools reference Tools bundled with DS software

Try third-party tools

LDAP is a standard protocol, and so you can use LDAP-compliant third-party tools to manage directory data:
* Admin4(Z
+ Apache Directory Studio S
*)Xplorer and JXWorkBench
* phpLDAPadmin@
* Softerra LDAP Administrator(
* web2ldap®
Many software solutions include support for LDAP authentication and LDAP-based address books.

Ping Identity does not endorse or support third-party tools.

Use DS with AM

+ Backend directory servers(J in the AM Deployment planning documentation
* Prepare external storesJ in the AM Installation documentation

« Configure CTS token stores 7 in the AM Core token service documentation.

* You can install DS directory servers for use as external AM stores.

For details, refer to Setup profiles.

Use DS with IDM

« External DS repository(Z and Select a repository(Z in the IDM Installation documentation
Also refer to Install DS as an IDM repository.

+ One-way synchronization from LDAP to IDMZ, Two-way synchronization between LDAP and IDMZ, and other LDAP-
related pages in the IDM Samples documentation

* DS repository configuration and Mappings with a DS repositoryZ in the IDM Object modeling documentation

* Synchronize passwords with DS(Z in the IDM Password synchronization documentation

Copyright © 2025 Ping Identity Corporation

http://www.admin4.org/
http://www.admin4.org/
https://directory.apache.org/studio/
https://directory.apache.org/studio/
http://jxplorer.org/
http://jxplorer.org/
https://github.com/leenooks/phpLDAPadmin/wiki
https://github.com/leenooks/phpLDAPadmin/wiki
https://www.ldapadministrator.com/
https://www.ldapadministrator.com/
https://pypi.org/project/web2ldap/
https://pypi.org/project/web2ldap/
https://docs.pingidentity.com/pingam/7.5/deployment-planning-guide/deploy-topologies-onprem.html#backend-ds
https://docs.pingidentity.com/pingam/7.5/deployment-planning-guide/deploy-topologies-onprem.html#backend-ds
https://docs.pingidentity.com/pingam/7.5/install-guide/prepare-ext-stores.html
https://docs.pingidentity.com/pingam/7.5/install-guide/prepare-ext-stores.html
https://docs.pingidentity.com/pingam/7.5/cts-guide/cts-openam-config.html
https://docs.pingidentity.com/pingam/7.5/cts-guide/cts-openam-config.html
https://docs.pingidentity.com/pingidm/7.5/install-guide/external-ds.html
https://docs.pingidentity.com/pingidm/7.5/install-guide/external-ds.html
https://docs.pingidentity.com/pingidm/7.5/install-guide/chap-repository.html
https://docs.pingidentity.com/pingidm/7.5/install-guide/chap-repository.html
https://docs.pingidentity.com/pingidm/7.5/samples-guide/sync-with-ldap.html
https://docs.pingidentity.com/pingidm/7.5/samples-guide/sync-with-ldap.html
https://docs.pingidentity.com/pingidm/7.5/samples-guide/sync-with-ldap-bidirectional.html
https://docs.pingidentity.com/pingidm/7.5/samples-guide/sync-with-ldap-bidirectional.html
https://docs.pingidentity.com/pingidm/7.5/objects-guide/repo-config.html#repo-ds-json
https://docs.pingidentity.com/pingidm/7.5/objects-guide/repo-config.html#repo-ds-json
https://docs.pingidentity.com/pingidm/7.5/objects-guide/explicit-generic-mapping-ds.html
https://docs.pingidentity.com/pingidm/7.5/objects-guide/explicit-generic-mapping-ds.html
https://docs.pingidentity.com/pingidm/7.5/pwd-plugin-guide/chap-sync-dj.html
https://docs.pingidentity.com/pingidm/7.5/pwd-plugin-guide/chap-sync-dj.html

PingDS Start here

Remove DS software

For details, refer to Uninstallation.

Glossary

Abandon operation

LDAP operation to stop processing of a request in progress, after which the server drops the connection without a reply to
the client application.

Access control
Control to grant or to deny access to a resource.

Access control instruction (ACl)

Instruction added as a directory entry attribute for fine-grained control over what a given user or group member is
authorized to do in terms of LDAP operations and access to user data.

ACls are implemented independently from privileges, which apply to administrative operations.
Related: Privilege

Access control list (ACL)

An access control list connects a user or group of users to one or more security entitlements. For example, users in group
sales are granted the entitlement read-only to some financial data.

Access log

Server log tracing the operations the server processes including timestamps, connection information, and information
about the operation itself.

Account lockout

The act of making an account temporarily or permanently inactive after successive authentication failures.

Active user

A user that has the ability to authenticate and use the services, having valid credentials.

Add operation

LDAP operation to add a new entry or entries to the directory.

Anonymous

A user that does not need to authenticate, and is unknown to the system.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Anonymous bind

A bind operation using simple authentication with an empty DN and an empty password, allowing anonymous access such
as reading public information.

Approximate index
Index is used to match values that "sound like" those provided in the filter.
Attribute

Properties of a directory entry, stored as one or more key-value pairs. Typical examples include the common name (¢cn) to
store the user’s full name and variations of the name, user ID (uid) to store a unique identifier for the entry, and mail to
store email addresses.

Attribute value assertion (AVA)

An attribute description and a matching rule assertion value for the attribute.

DS software uses AVAs in RDNs, and to determine whether an entry matches an assertion. For example, a search filter
specifying the AVA uid=bjensen asserts that matching entries have a uid attribute value equal to bjensen.

Audit log

Type of access log that dumps changes in LDIF.
Authentication

The process of verifying who is requesting access to a resource; the act of confirming the identity of a principal.
Authorization

The process of determining whether access should be granted to an individual based on information about that individual;
the act of determining whether to grant or to deny a principal access to a resource.

Backend

Repository that stores directory data. Different implementations with different capabilities exist.
Binary copy

Backup files from one replica are restored on another replica.
Bind operation

LDAP authentication operation to determine the client’s identity in LDAP terms, the identity which is later used by the
server to authorize (or not) access to directory data that the client wants to lookup or change.

Branch

The distinguished name (DN) of a non-leaf entry in the Directory Information Tree (DIT), and that entry and all its
subordinates taken together.

Some administrative operations allow you to include or exclude branches by specifying the DN of the branch.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Related: Suffix
Collective attribute

A standard mechanism for defining attributes that appear on all the entries in a particular subtree.
Compare operation

LDAP operation to compare a specified attribute value with the value stored on an entry in the directory.
Control

Information added to an LDAP message to further specify how an LDAP operation should be processed. DS supports many
LDAP controls.

Change sequence number (CSN)

An opaque string uniquely identifying a single change to directory data. A CSN indicates exactly when a change occurred
on which replica. An example CSN is 018f016df804edcadpo0B08fevaluation-only .

DS replication uses CSNs to replay replicated operations consistently on all replicas. DS replicas record CSNs in historical
data values for ds-sync-state and ds-sync-hist attributes.

When troubleshooting replication data consistency, it can be useful to interpret CSNs. Contact support for help.
Database cache

Memory space set aside to hold database content.
Delete operation

LDAP operation to remove an existing entry or entries from the directory.
Directory

A directory is a network service which lists participants in the network such as users, computers, printers, and groups. The
directory provides a convenient, centralized, and robust mechanism for publishing and consuming information about
network participants.

Directory hierarchy

A directory can be organized into a hierarchy in order to make it easier to browse or manage. Directory hierarchies
normally represent something in the physical world, such as organizational hierarchies or physical locations.

For example, the top level of a directory may represent a company, the next level down divisions, the next level down
departments, and down the hierarchy. Alternately, the top level may represent the world, the next level down countries,
next states or provinces, and next cities.

Directory Information Tree (DIT)

A set of directory entries organized hierarchically in a tree structure, where the vertices are the entries, and the arcs
between vertices define relationships between entries.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Directory object

A directory object is an item in a directory. Example objects include users, user groups, computers, and more. Objects may
be organized into a hierarchy and contain identifying attributes.

Related: Entry
Directory proxy server

Server that forwards LDAP requests to remote directory servers. A standalone directory proxy server does not store user
data.

Directory server

Server application for centralizing information about network participants. A highly available directory service consists of
multiple directory servers configured to replicate directory data.

Related: Replication
Directory Services Markup Language (DSML)

Standard language to access directory services using XML. DMSL v1 defined an XML mapping of LDAP objects, while
DSMLv2 maps the LDAP Protocol and data model to XML.

Directory superuser

Directory account with privileges to do full administration of the DS server, including bypassing access control evaluation,
changing access controls, and changing administrative privileges.

Related: Superuser
Distinguished name (DN)

Fully qualified name for a directory entry, such as uid=bjensen, ou=People, dc=example, dc=com, built by concatenating
the entry RDN (uid=bjensen) with the DN of the parent entry (ou=People, dc=example, dc=com).

Domain
A replication domain consists of several directory servers sharing the same synchronized set of data.
The base DN of a replication domain specifies the base DN of the replicated data.

DSML gateway

Standalone web application that translates DSML requests from client applications to LDAP requests to a directory service,
and LDAP responses from a directory service to DSML responses to client applications.

Dynamic group
Group that specifies members using LDAP URLs.
Entry

An entry is an object in the directory, defined by one of more object classes, and their related attributes.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Entry cache
Memory space set aside to hold frequently accessed, large entries, such as static groups.
Equality index

Index used to match values that correspond exactly (though generally without case sensitivity) to the value provided in the
search filter.

Errors log
Server log tracing server events, error conditions, and warnings, categorized and identified by severity.
Etime

Elapsed time within the server to process a request, starting from the moment the decoded operation is available to be
processed by a worker thread.

Export
Save directory data in an LDIF file.
Extended operation

Additional LDAP operation not included in the original standards. DS servers support several standard LDAP extended
operations.

Extensible match index

Index for a matching rule other than approximate, equality, ordering, presence, substring or VLV, such as an index for
generalized time.

External user

An individual that accesses company resources or services but is not working for the company. Typically, a customer or
partner.

Filter

An LDAP search filter is an expression that the server uses to find entries that match a search request, such as
(mail=*@example.com) to match all entries having an email address in the example.com domain.

Group
Entry identifying a set of members whose entries are also in the directory.
Generation ID

The initial state identifier for a replicated directory server base DN. It is a hash of the first 1000 entries of the base DN,
computed when creating the backend, importing data from LDIF, or initializing replication.

Replication can only proceed between base DNs that have the same generation ID.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

HDAP
Short for HTTP Directory Access Protocol.

HDAP is not a standard. HDAP is the name of the feature providing REST APIs and HTTP access to directory data. HDAP
translates HTTP requests to LDAP requests and LDAP responses to HTTP responses.

HDAP gateway
Standalone HDAP web application.
Idle time limit
Defines how long DS allows idle connections to remain open.
Import
Read in and index directory data from an LDIF file.
Inactive user
An entry in the directory that once represented a user but which is now no longer able to be authenticated.
Index

Directory server backend feature to allow quick lookup of entries based on their attribute values.

Related: Approximate index, Equality index, Extensible match index, Ordering index, Presence index, Substring index,
VLV index, Index entry limit

Index entry limit

When the number of entries that an index key points to exceeds the index entry limit, DS stops maintaining the list of
entries for that index key.

Internal user
An individual who works within the company either as an employee or as a contractor.
LDAP Data Interchange Format (LDIF)
Standard, portable, text-based representation of directory content.
Refer to RFC 28490,
LDAP URL
LDAP Uniform Resource Locator, such as 1ldaps://ds.example.com:636/dc=example, dc=com??sub?(uid=bjensen) .
Refer to RFC 225507,
LDAPS

LDAP over SSL.

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc2849
https://www.rfc-editor.org/info/rfc2849
https://www.rfc-editor.org/info/rfc2255
https://www.rfc-editor.org/info/rfc2255

PingDS Start here

Lightweight Directory Access Protocol (LDAP)

A simple and standardized network protocol used by applications to connect to a directory, search for objects and add,
edit or remove objects.

Refer to RFC 45107,

Matching rule

Defines rules for performing matching operations against assertion values. Matching rules are frequently associated with
an attribute syntax, and are used to compare values according to that syntax.

For example, the distinguishedNameEqualityMatch matching rule can be used to determine whether two DNs are equal
and can ignore unnecessary spaces around commas and equal signs, differences in capitalization in attribute names, and
other discrepancies.

Modify DN operation

LDAP modification operation to request that the server change the distinguished name of an entry.

Modify operation

LDAP modification operation to request that the server change one or more attributes of an entry.

Naming context

Base DN under which client applications can look for user data.

Object class

Identifies entries that share certain characteristics. Most commonly, an entry's object classes define the attributes that
must and may be present on the entry.

Object classes are stored on entries as values of the objectClass attribute. Object classes are defined in the directory
schema, and can be abstract (defining characteristics for other object classes to inherit), structural (defining the basic
structure of an entry, one structural inheritance per entry), or auxiliary (for decorating entries already having a structural
object class with other required and optional attributes).

Object identifier (OID)

String that uniquely identifies an object, such as ©.9.2342.19200306.100.1.1 for the user ID attribute or
1.3.6.1.4.1.1466.115.121.1.15 for DirectoryString syntax.

Operational attribute

An attribute that has a special (operational) meaning for the server, such as pwdPolicySubentry or modifyTimestamp .

Ordering index

Index used to match values for a filter that specifies a range.

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc4510
https://www.rfc-editor.org/info/rfc4510

Start here PingDS

Password policy

A set of rules regarding what sequence of characters constitutes an acceptable password. Acceptable passwords are

generally those that would be too difficult for another user, or an automated program to guess and thereby defeat the
password mechanism.

Password policies may require a minimum length, a mixture of different types of characters (lowercase, uppercase, digits,

punctuation marks, and other characters), avoiding dictionary words or passwords based on the user's name, and other
attributes.

Password policies may also require that users not reuse old passwords and that users change their passwords regularly.
Password reset
Password change performed by a user other than the user who owns the entry.

Password storage scheme

Mechanism for encoding user passwords stored on directory entries. DS implements a number of password storage
schemes.

Password validator

Mechanism for determining whether a proposed password is acceptable for use. DS implements a number of password
validators.

Plugin

Java library with accompanying configuration that implements a feature through processing that is not essential to the
core operation of DS servers.

As the name indicates, plugins can be plugged in to an installed server for immediate configuration and use without
recompiling the server.

DS servers invoke plugins at specific points in the lifecycle of a client request. The DS configuration framework lets
directory administrators manage plugins with the same tools used to manage the server.

Presence index

Index used to match the fact that an attribute is present on the entry, regardless of the value.
Principal

Entity that can be authenticated, such as a user, a device, or an application.
Privilege

Server configuration settings controlling access to administrative operations such as exporting and importing data,
restarting the server, performing password reset, and changing the server configuration.

Privileges are implemented independently from access control instructions (ACI), which apply to LDAP operations and user
data.

Related: Access control instruction

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Referential integrity

Ensuring that group membership remains consistent following changes to member entries.
Referint log

Server log tracing referential integrity events, with entries similar to the errors log.
Referral

Reference to another directory location, which can be another directory server running elsewhere or another container on
the same server, where the current operation can be processed.

Relative distinguished name (RDN)

Initial portion of a DN that distinguishes the entry from all other entries at the same level, such as uid=bjensen in
uid=bjensen, ou=People, dc=example, dc=com.

Replica
Directory server this is configured to use replication.
Replication
Data synchronization that ensures all directory servers participating eventually share a consistent set of directory data.
Replication server
Server dedicated to transmitting replication messages. A standalone replication server does not store user data.
Root DSE

The directory entry with distinguished name "" (empty string), where DSE is an acronym for DSA-Specific Entry. DSA is an
acronym for Directory Server Agent, a single directory server.

The root DSE serves to expose information over LDAP about what the directory server supports in terms of LDAP controls,
auth password schemes, SASL mechanisms, LDAP protocol versions, naming contexts, features, LDAP extended
operations, and other information.

Schema

LDAP schema defines the object classes, attributes types, attribute value syntaxes, matching rules and other constrains on
entries held by the directory server.

Search filter
Refer to: Filter
Search operation

LDAP lookup operation where a client requests that the server return entries based on an LDAP filter, and a base DN
under which to search.

Copyright © 2025 Ping Identity Corporation

Start here PingDS

Simple authentication
Bind operation performed with a user’s entry DN and user’s password.
Use simple authentication only if the network connection is secure.
Size limit
Sets the maximum number of entries returned for a search.
Static group
Group that enumerates member entries.
Subentry

An entry, such as a password policy entry, that resides with the user data but holds operational data, and is not visible in
search results unless explicitly requested.

Substring index
Index used to match values specified with wildcards in the filter.
Suffix

The distinguished name (DN) of a root entry in the Directory Information Tree (DIT), and that entry and all its subordinates
taken together as a single object of administrative tasks such as export, import, indexing, and replication.

Superuser

User with privileges to perform unconstrained administrative actions on DS server. This account is analogous to the Linux
root and Windows Administrator accounts.

The conventional default superuser DN is uid=admin . You can create additional superuser accounts, each with different
administrative privileges.

Superuser privileges include the following:

* bypass-acl: The holder is not subject to access control.

+ privilege-change : The holder can edit administrative privileges.

+ proxied-auth : The holder can make requests on behalf of another user, including directory superusers.
Related: Directory superuser, Privilege

Task

Mechanism to provide remote access to server administrative functions.

DS software supports tasks to back up and restore backends, to import and export LDIF files, and to stop and restart the
server.

Time limit

Defines the maximum processing time DS devotes to a search operation.

Copyright © 2025 Ping Identity Corporation

PingDS Start here

Unbind operation

LDAP operation to release resources at the end of a session.
Unindexed search

Search operation for which no matching index is available.

If no indexes are applicable, then the directory server potentially has to go through all entries to look for candidate
matches. For this reason, the unindexed-search privilege, which allows users to request searches for which no applicable
index exists, is reserved for the directory manager by default.

User

An entry that represents an individual that can be authenticated through credentials contained or referenced by its
attributes. A user may represent an internal user or an external user, and may be an active user or an inactive user.

User attribute

An attribute for storing user data on a directory entry such as mail or givenname .
Virtual attribute

An attribute with dynamically generated values that appear in entries but are not persistently stored in the backend.
Virtual directory

An application that exposes a consolidated view of multiple physical directories over an LDAP interface. Consumers of the
directory information connect to the virtual directory’s LDAP service.

Behind the scenes, requests for information and updates to the directory are sent to one or more physical directories
where the actual information resides. Virtual directories enable organizations to create a consolidated view of information
that for legal or technical reasons cannot be consolidated into a single physical copy.

Virtual list view (VLV) index

Browsing index designed to help the directory server respond to client applications that need, for example, to browse
through a long list of results a page at a time in a GUI.

Virtual static group
DS group that lets applications get dynamic groups represented as static groups.

X.500

A family of standardized protocols for accessing, browsing and maintaining a directory. X.500 is functionally similar to
LDAP, but is generally considered to be more complex, and has consequently not been widely adopted.

Copyright © 2025 Ping Identity Corporation

Use cases

M Pingldentity.

PingDS

Use cases

These pages show you how to implement common use cases for directory services. If directory services are new to you, first work

through the exercises in Start here.

The use cases show how IAM administrator Pat works in the directory services lab environment to develop and test processes
and procedures before scaling them up for staging and production deployments.

@ Note

These pages walk you through key aspects of DS. They're a great starting point but do not make you an expert.
Follow along to improve your practical know how. Use what you learned to help answer the additional questions.
Be sure read the related documentation and think through the answers to your questions before deploying directory

services into production.

Ly

Replication

Replicated DS across regions.

55

Disaster recovery

Recover quickly after a disaster.

Backup

Back up and restore DS data.

%

Password storage

Use stronger password storage.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

6 &

LDAP schema CTS store

Change LDAP schema definitions. Replicate AM CTS data.

) [

Enforceable limits

Enforce limits to protect directory services.

Cross-region replication

Simulate deploying replicated DS servers across multiple regions.

Description

Estimated time to complete: 25 minutes

DS replication works well across LANs and WANs. While some large and very high-performance deployments could call for
optimizations to reduce latency or network bandwidth to a minimum, most deployments don’t need them.

Q Tip

If you are running in Kubernetes, there’s an easier way. Try the ForgeOps Cloud Deployment Model (CDM)
reference implementation instead.

In this use case, you:
+ Set up DS servers as if you were replicating across the WAN to different regions.
+ Validate DS replicates data changes as expected.

+ Review additional options to optimize performance if necessary.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/forgeops/7.5/cdm/overview.html
https://docs.pingidentity.com/forgeops/7.5/cdm/overview.html

PingDS Use cases

Goals

In completing this use case, you learn to:
* Set up DS servers.
* Share secrets to protect network connections and encrypted data.
+ Use appropriate bootstrap replication servers.

+ Show replication in action.

Example scenario

As a directory service administrator, Pat plans to deploy directory services in multiple locations for redundancy.

Pat plans to show other identity administrators how the deployment would look and discuss whether the deployment would call
for any optimizations.

Prerequisites

Knowledge

Before you start:
* Make sure you are familiar with the command line on your operating system.

« If you're new to directory services, work through the examples to learn LDAP and to learn replication.

Deployment

When deploying replicated DS servers, be aware of these constraints:

Network
« All DS servers must be able to connect to each other; their network must be routed.
+ Each server FQDN must be unique and resolvable by all other DS servers; don't reuse FQDNs across regions.
+ To recover from network partitions without intervention, DS servers must connect often enough to replay each
other’s changes before the end of the replication purge delay (default: 3 days).
DS configuration

Each DS server must:
* Share the same deployment ID.
* Have a unique server ID.
+ Be able to contact its bootstrap replication servers.

A bootstrap replication server is one of the replication servers in a deployment other DS servers contact to discover
all the other DS servers in the deployment.

Copyright © 2025 Ping Identity Corporation

PingDS

Use cases
+ Be able to verify and trust the digital certificates other DS servers use to establish their identities.
DS tools must trust the server certificates to connect to DS servers securely. DS servers must trust each other’s
certificates to use secure connections for replication.
This sample uses DS tools to simplify setting up a private PKI for this purpose. Your organization can use its own
PKl in deployment.
Tasks

This sample deployment shows the steps to simulate a cross-region, replicated deployment on your computer. Use the same
steps with geographically distributed computers or virtual machines for a real deployment.

B % =|=

Client
Application

Client
Application reelE

Region 1 Region 2

Location: US west Location: Europe

A A A A
L Y\ L S\ L S\ L S\
L{A LfA L}A L}A

Host: r1-dsi Host: r1-ds2 Host: r2-dsl Host: r2-ds2

Data replication

+ Two regions, each with two DS servers.
* The DS servers are fully meshed for replication; each server connects to the other server.

* You don't necessarily need this many DS servers. Two DS servers are the minimum for replication and availability. If the
WAN has high bandwidth and low latency, one DS server per region is enough.

+ DS servers function the same in a simulated cross-region deployment and an actual cross-region deployment.

Replication requires distinct, stable server IDs and FQDNSs. For replication, it doesn’t matter whether the DS servers are on
the same network interface or separated by a WAN.

Perform these tasks to simulate replicated DS servers across multiple regions.
Task 1: Prepare for installation

1. Make sure the DS server systems can connect to each other.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

This sample simulates DNS on your computer by updating the hosts file(Z with an alias for each DS server:

Simulate DNS in a cross-region deployment
with FQDN aliases for the loopback address:

127.0.0.1 r1-ds1.example.com
127.0.0.1 r1-ds2.example.com
127.0.0.1 r2-ds1.example.com
127.0.0.1 r2-ds2.example.com

When deploying in a production environment, make sure you have properly configured the DNS.
2. Unpack the DS server files once for each server to install.

This sample uses folder locations aligned with the hostnames:

Base path Description
/path/to/r1-ds1 Region 1, first server
/path/to/r1-ds2 Region 1, second server
/path/to/r2-ds1 Region 2, first server
/path/to/r2-ds2 Region 2, second server

3. Define the key configuration details for the deployment.

This sample uses the following settings:

Server ID Bootstrap replication servers

ri-dsi r1-ds1.example.com
r2-ds1.example.com

r1-ds2

r2-dsi

r2-ds2

4. Define how the DS servers trust each other’s certificates.

This sample uses a private PKI based on the deployment ID. You generate a deployment ID for all DS servers using the
dskeymgr command:

$ /path/to/r1-ds1/bin/dskeymgr \
create-deployment-id \
--deploymentIdPassword password
<deployment-id>

Copyright © 2025 Ping Identity Corporation

https://en.wikipedia.org/wiki/Hosts_(file)
https://en.wikipedia.org/wiki/Hosts_(file)

Use cases PingDS

The deployment ID is a string. To use it, you must have the deployment ID password.
5. Determine the port numbers for the service.

This sample uses different port numbers for each DS server because all the servers are on the same computer:

Sample server Port numbers

ri-ds1i LDAP: 1389
LDAPS: 1636
HTTPS: 8443
Admin: 4444

Replication: 8989

ri-ds2 LDAP: 11389
LDAPS: 11636
HTTPS: 18443
Admin: 14444
Replication: 18989

r2-dsi LDAP: 21389
LDAPS: 21636
HTTPS: 28443
Admin: 24444
Replication: 28989

r2-ds2 LDAP: 31389
LDAPS: 31636
HTTPS: 38443
Admin: 34444
Replication: 38989

When installing each DS server on a different host, use the same port numbers everywhere.

Task 2: Install servers in "region 1"

Install servers in the first simulated region on your computer. In deployment, you would install each DS server on a separate host
system:
1. Make sure you have the deployment ID required to install each DS server.

S export DEPLOYMENT_ID=<deployment-id>

2. Install the first server in "region 1".

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/r1-ds1/setup \
--serverId r1-ds1 \
--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--monitorUserPassword password \
--hostname ri1-ds1.example.com \
--ldapPort 1389 \
--ldapsPort 1636 \
--httpsPort 8443 \
--adminConnectorPort 4444 \
--replicationPort 8989 \
--profile ds-evaluation \
--bootstrapReplicationServer r1-ds1.example.com:8989 \
--bootstrapReplicationServer r2-ds1.example.com:28989 \
--start \
--acceptlLicense

3. Install the second server in "region 1".

$ /path/to/r1-ds2/setup \

--serverId ri1-ds2 \

--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \

--rootUserDn uid=admin \

--rootUserPassword password \

--monitorUserPassword password \

--hostname ri1-ds2.example.com \

--ldapPort 11389 \

--ldapsPort 11636 \

--httpsPort 18443 \

--adminConnectorPort 14444 \

--replicationPort 18989 \

--profile ds-evaluation \

--bootstrapReplicationServer r1-ds1.example.com:8989 \
--bootstrapReplicationServer r2-ds1.example.com:28989 \
--start \

--acceptlLicense

Task 3: Install servers in "region 2"

Install servers in the second simulated region on your computer. In deployment, you would install each DS server on a separate
host system:

1. Make sure you have the deployment ID required to install each DS server.

S export DEPLOYMENT_ID=<deployment-id>

2. Install the first server in "region 2".

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ /path/to/r2-ds1/setup \
--serverId r2-dsi1 \
--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--monitorUserPassword password \
--hostname r2-ds1.example.com \
--1ldapPort 21389 \
--ldapsPort 21636 \
--httpsPort 28443 \
--adminConnectorPort 24444 \
--replicationPort 28989 \
--profile ds-evaluation \
--bootstrapReplicationServer r1-ds1.example.com:8989 \
--bootstrapReplicationServer r2-ds1.example.com:28989 \
--start \
--acceptlLicense

3. Install the second server in "region 2".

$ /path/to/r2-ds2/setup \

--serverId r2-ds2 \

--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \

--rootUserDn uid=admin \

--rootUserPassword password \

--monitorUserPassword password \

--hostname r2-ds2.example.com \

--ldapPort 31389 \

--ldapsPort 31636 \

--httpsPort 38443 \

--adminConnectorPort 34444 \

--replicationPort 38989 \

--profile ds-evaluation \

--bootstrapReplicationServer r1-ds1.example.com:8989 \
--bootstrapReplicationServer r2-ds1.example.com:28989 \
--start \

--acceptlLicense

Validation
Show updates to one simulated region getting replicated to the other region.
1. Modify an entry in the first region.

The following command changes a description to Description to replicate:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/r1-ds1/bin/1ldapmodify \

--hostname ri1-ds1.example.com \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/r1-ds1/config/keystore \
--trustStorePassword:file /path/to/r1-ds1/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin <<EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Description to replicate

EOF

2. Read the entry in the other region:

$ /path/to/r2-ds2/bin/ldapsearch \
--hostname r2-ds2.example.com \
--port 31636 \
--useSsl \
--usePkcs12TrustStore /path/to/r2-ds2/config/keystore \
--trustStorePassword:file /path/to/r2-ds2/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example,dc=com \
"(uid=bjensen)" description

dn: uid=bjensen, ou=People, dc=example, dc=com

description: Description to replicate

Notice description: Description to replicate in the output.

You have shown replication works across regions.

What's next

After successfully showing the demonstration to other administrators, Pat doesn't stop there.

Pat leads the administrators to review the tradeoffs they can choose to make for the production deployment. Some of the
questions to discuss include the following:

+ Are there any applications we must direct to the nearest DS server on the network? For example, there could be
applications with very low latency requirements, or the cost of network connections to remote servers could be much
higher.

If so, can those applications configure their own failover rules? Do we need a load balancer to do this for them?
+ Do our DS replicas generate so much replication traffic that we should take steps to limit traffic between regions?

If so, would standalone replication and directory servers be a good tradeoff? Should we configure replication group IDs to
have directory servers in a region connect preferentially to replication servers in the same region?

+ Should we use our own PKI to protect client-facing network connections over LDAP and HTTP?

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

This sample uses the server and CA certificates generated with the deployment ID and deployment ID password. You can
set up DS with your own keys, using your own PKI to protect secure connections.

* How many DS servers do we really need?

At a bare minimum, we need at least two DS servers to keep the service running while we upgrade, for example. The fewer
servers we have, the easier it is to manage the service.

The answers to these questions depend on costs and service-level performance requirements. Don’t optimize or pay extra for
high performance unless you need it.

Explore further
Related use cases
* Backup and restore

+ Disaster recovery

Reference material

Reference Description

ForgeOps CDMZ On Kubernetes? Use the ForgeOps CDM reference implementation instead.
Bootstrap replication servers Configure bootstrap replication servers.

Cryptographic keys Understand how DS uses secrets and keys.

Installation Install directory services.

Install standalone servers (advanced) Optimize network bandwidth for deployments with many servers.

On load balancers Read this before configuring a load balancer.

Performance tuning When performance is a concern, measure, tune, and test.

Replication Background and procedures for working with DS replication.

Use your own cryptographic keys Opt for your own PKI to protect network connections.

Backup and restore

Plan DS backup and restore procedures for your deployment.

Description

Estimated time to complete: 20 minutes

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/forgeops/7.5/cdm/overview.html
https://docs.pingidentity.com/forgeops/7.5/cdm/overview.html

PingDS Use cases

Safely and regularly back up your directory data to recover quickly when accidents happen.
In this use case, you:

* Back up directory data using DS tools.

+ Cause an incident requiring recovery.

+ Restore directory data after an incident.

+ Validate the data restore procedure.

Goals

In completing this use case, you learn to:
+ Use DS backup and restore tools.
* Schedule a recurring backup task.
* Restore directory data from backup files.

* Purge outdated backup files.

Example scenario

As a directory service administrator, Pat plans to deploy directory services for critical identity data such as login credentials.

Pat knows good backup and restore plans are a must for identity and access services. If the data is lost, end users cannot
authenticate, and account profiles are lost.

Pat plans to show other identity administrators how the backup and restore procedures work and get them to review the process

before deployment.

Prerequisites
Knowledge

Before you start, bring yourself up to speed with Pat:
« Pat is familiar with the command line on the target operating system, a Linux distribution in this example.
+ Pat knows how to use basic LDAP commands, having worked examples to learn LDAP.
* Pat has already successfully completed directory service installation and setup procedures.

Actions

Before you try this example, set up two replicated DS directory servers on your computer as described in Install DS and Learn
replication.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Tasks

Pat demonstrates how to back up and restore DS directory data from the evaluation profile. The order of the tasks is the same in
deployment, but the directory data is different.

Task 1: Schedule a recurring backup operation

When you use the DS tools, backup operations are incremental. You can take regular backups with a reasonable amount of disk
space relative to your data.

Configure backup tasks

1. Schedule a regular backup task.

The following example schedules an hourly backup task:

$ /path/to/opendj/bin/dsbackup \

create \

--backuplLocation bak \

--recurringTask "@@ * * * *" \

--description "Back up every hour" \

--taskId HourlyBackup \

--completionNotify diradmin@example.com \

--errorNotify diradmin@example.com \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

2. Schedule a task to remove backup data older than the replication purge delay.

When you restore data from backup, the backup you restore must be more recent than the replication purge delay. If you
restore from older data, the replica you restore can't replicate with other servers. The default replication purge delay is
three days.

The following example schedules an hourly task to remove outdated backup data:

Copyright © 2025 Ping Identity Corporation

mailto:diradmin@example.com
mailto:diradmin@example.com

PingDS Use cases

$ /path/to/opendj/bin/dsbackup \

purge \

--backupLocation bak \

--recurringTask "0@ * * * *" \

--description "Purge old backups every hour" \
--olderThan "3 days" \

--taskId HourlyPurge \

--completionNotify diradmin@example.com \

--errorNotify diradmin@example.com \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

This task ensures you won't fill up the disk with old backup data.

(Optional) Back up data now

At this point, the recurring backup task is scheduled; however, the next backup operation won't start until the top of the hour. If
you want to continue this example without waiting for the task to run, you can back up the data now.

These steps demonstrate offline backup:

1. Stop the server:

$ /path/to/opendj/bin/stop-ds

2. Back up the data with the server offline:

$ /path/to/opendj/bin/dsbackup \
create \
--backupLocation bak \
--offline

The command writes the backup data to the bak/ directory under the server installation directory.

3. Start the server:

$ /path/to/opendj/bin/start-ds

Task 2: Simulate the loss of a server

1. Make sure you have at least one set of backup files:

Copyright © 2025 Ping Identity Corporation

mailto:diradmin@example.com
mailto:diradmin@example.com

Use cases PingDS

$ /path/to/opendj/bin/dsbackup \
list \
--backupLocation bak \
--offline

This command runs on the files and can run in offline mode even if the server is up.
If you are waiting for the hourly backup task to run, there may not be any backup files yet.
2. Simulate the loss of a server by stopping it abruptly and deleting the files.

This example removes the second-ds server:

$ kill -9 <second-ds-pid>
$ rm -rf /path/to/replica

3. Change an entry.

You use this change later to validate the restore procedure and show replication replays changes occurring after the last
backup operation:

$ /path/to/opendj/bin/1ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin << EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Updated after the replica crashed

EOF

Task 3: Recover and restore the lost server

1. Replace the lost server with the same configuration but don't start it.

This example uses the evaluation profile:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ cd ~/Downloads && unzip ~/Downloads/opendj-7.5.2-20250513124640-de1088550ebabfaf1b3577b53f3eb9fc3bB3739¢c.zip
&& mv opendj /path/to/replica
$ export DEPLOYMENT_ID=<deployment-id>
S /path/to/replica/setup \
--serverId second-ds \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--hostname localhost \
--ldapPort 11389 \
--ldapsPort 11636 \
--adminConnectorPort 14444 \
--replicationPort 18989 \
--bootstrapReplicationServer localhost:8989 \
--profile ds-evaluation \
--set ds-evaluation/generatedUsers:0 \
--acceptlLicense

Rebuilding the basic server configuration depends on your deployment. For testing and deployment, adapt the commands
to fit your process.

2. Restore the server data from backup:

$ /path/to/replica/bin/dsbackup \
restore \
--offline \
--backendName dsEvaluation \
--backupLocation /path/to/opendj/bak

3. Start the server:

$ /path/to/replica/bin/start-ds

After the server starts and connects to other servers, replication replays changes from after the backup operation.

Validation

Demonstrate the server you restored has the same data as the other replica.

1. Read the description you changed after the backup operation and server crash on first-ds:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ /path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description
dn: uid=bjensen, ou=People, dc=example, dc=com
description: Updated after the replica crashed

2. Read the same data on the second-ds server you restored from backup:

/path/to/replica/bin/ldapsearch \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example,dc=com \
"(cn=Babs Jensen)" \
description
dn: uid=bjensen, ou=People, dc=example, dc=com
description: Updated after the replica crashed

The data is the same on both servers. You have shown your backup and restore procedure is sound.

What's next

After demonstrating the process, Pat implements backup and restore procedures for testing and deployment. These procedures
become part of the organization’s runbook, so operators can implement them quickly and easily.

Pat realizes disaster recovery is more than restoring backup files. Pat also implements disaster recovery procedures for testing

and deployment as part of the organization’s runbook.

Explore further

This use case can serve as a template for DS test and production deployments. Adapt this example for deployment:
« Make sure the backup tasks run on more than one DS replica to avoid a single point of backup failure.
* To keep things simple, this example shows a backup on the local filesystem.

In testing and deployment, make sure you store backup files remotely in a shared location. For example, consider backing
up to cloud storage.

A shared remote location for backup files makes it easier to restore from the same backup on multiple replicas.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

« If the filesystem on your servers supports atomic snapshots, consider backing up DS with filesystem snapshots.

Related use cases

+ Disaster recovery

Reference material

Reference Description

Backup and restore Includes detailed examples and alternatives for backing up and restoring directory
data

Cryptographic keys About keys, including those for encrypting and decrypting backup files

dsbackup Reference for the command-line tool

Server tasks On server tasks, like recurring backup operations

Disaster recovery

Directory services are critical to authentication, session management, authorization, and more. When directory services are
broken, quick recovery is a must.

In DS directory services, a disaster is a serious data problem affecting the entire replication topology. Replication can't help you
recover from a disaster because it replays data changes everywhere.

Disaster recovery comes with a service interruption, the loss of recent changes, and a reset for replication. It is rational in the
event of a real disaster. It's unnecessary to follow the disaster recovery procedure for a hardware failure or a server that's been
offline too long and needs reinitialization. Even if you lose most of your DS servers, you can still rebuild the service without a
service interruption or data loss.

@ Important

For disaster recovery to be quick, you must prepare in advance.
Don't go to production until you have successfully tested your disaster recovery procedures.

Description

Estimated time to complete: 30 minutes
In this use case, you:
* Back up a DS directory service.
* Simulate a disaster.
* Restore the service to a known state.

+ Validate the procedure.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Goals

In completing this use case, you learn to:
+ Back up and restore directory data.

* Restart cleanly from backup files to recover from a disaster.

Example scenario

Pat has learned how to install and configure replicated directory services and recognizes broken directory services could bring
identity and access management services to a halt, too.

Pat understands replication protects directory services from single points of failure. However, what happens if a misbehaving
application or a mistaken operator deletes all the user accounts, for example? Pat realizes replication replays the operations
everywhere. In the case of an error like this, replication could amplify a big mistake into a system-wide disaster. (For smaller
mistakes, refer to Recover from user error.)

Pat knows the pressure on the people maintaining directory services to recover quickly would be high. It would be better to plan
for the problem in advance and to provide a scripted and tested response. No one under pressure should have to guess how to
recover a critical service.

Pat decides to demonstrate a safe, scripted procedure for recovering from disaster:
« Start with a smoothly running, replicated directory service.
+ Cause a "disaster" by deleting all the user accounts.
* Recover from the disaster by restoring the data from a recent backup.
« Verify the results.

Pat knows this procedure loses changes between the most recent backup operation and the disaster. Losing some changes is still
better than a broken directory service. If Pat can discover the problem and repair it quickly, the procedure minimizes lost
changes.

Prerequisites
Knowledge

Before you start, bring yourself up to speed with Pat:

« Pat is familiar with the command line and command-line scripting on the target operating system, a Linux distribution in
this example. Pat uses shell scripts to automate administrative tasks.

+ Pat knows how to use basic LDAP commands, having worked examples to learn LDAP.

+ Pat has already scripted and automated the directory service installation and setup procedures. Pat already saves copies
of the following items:

o The deployment description, documentation, plans, runbooks, and scripts.

o The system configuration and software, including the Java installation.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

o The DS software and any customizations, plugins, or extensions.

o Arecent backup of any external secrets required, such as an HSM or a CA key.

o A recent backup of each server's configuration files, matching the production configuration.
o The deployment ID and password.

This example scenario focuses on the application and user data, not the directory setup and configuration. For simplicity,
Pat chooses to demonstrate disaster recovery with two replicated DS servers set up for evaluation.

+ Pat has a basic understanding of DS replication, including how replication makes directory data eventually consistent.

Actions

Before you try this example, set up two replicated DS directory servers on your computer as described in Install DS and Learn
replication.

Tasks

Pat demonstrates this recovery procedure on a single computer. In deployment, the procedure involves multiple computers, but
the order and content of the tasks remain the same.

@ Important

This procedure applies to DS versions providing the dsrepl disaster-recovery command.
For deployments with any earlier DS servers that don't provide the command, you can't use this procedure. Instead,
refer to How do | perform disaster recovery steps in DS?(5

* You perform disaster recovery on a stopped server, one server at a time.
+ Disaster recovery is per base DN, like replication.
+ On each server you recover, you use the same disaster recovery ID, a unique identifier for this recovery.

To minimize the service interruption, this example recovers the servers one by one. It is also possible to perform disaster
recovery in parallel by stopping and starting all servers together.

Task 1: Back up directory data

Back up data while the directory service is running smoothly.

1. Back up the directory data created for evaluation:

$ /path/to/opendj/bin/dsbackup \

create \

--start 0 \

--backupLocation /path/to/opendj/bak \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/How-do-I-perform-disaster-recovery-steps-in-DS
https://support.pingidentity.com/s/article/How-do-I-perform-disaster-recovery-steps-in-DS

Use cases PingDS

The command returns, and the DS server runs the backup task in the background.

When adapting the recovery process for deployment, you will schedule a backup task to run regularly for each database
backend.

2. Check the backup task finishes successfully:

$ /path/to/opendj/bin/manage-tasks \
--summary \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

The status of the backup task is "Completed successfully" when it is done.

Recovery from disaster means stopping the directory service and losing the latest changes. The more recent the backup, the
fewer changes you lose during recovery. Backup operations are cumulative, so you can schedule them regularly without using
too much disk space as long as you purge outdated backup files. As you script your disaster recovery procedures for deployment,
schedule a recurring backup task to have safe, current, and complete backup files for each backend.

Task 2: Simulate a disaster

1. Delete all user entries in the evaluation backend:

$ /path/to/opendj/bin/ldapdelete \

--deleteSubtree \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \

--bindPassword password \

ou=people, dc=example, dc=com

This command takes a few seconds to remove over 100,000 user entries. It takes a few seconds more for replication to
replay all the deletions on the other DS replica.

Why is this a disaster? Suppose you restore a DS replica from the backup to recreate the missing user entries. After the restore
operation finishes, replication replays each deletion again, ensuring the user entries are gone from all replicas.

Although this example looks contrived, it is inspired by real-world outages. You cannot restore the entries permanently without a
recovery procedure.

Task 3: Recover from the disaster

This task restores the directory data from backup files created before the disaster. Adapt this procedure as necessary if you have
multiple directory backends to recover.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

@ Important

All changes since the last backup operation are lost.

Subtasks:
* Prepare for recovery
* Recover the first directory server
* Recover remaining servers

Prepare for recovery

1. If you have lost DS servers, replace them with servers configured as before the disaster.
In this example, no servers were lost. Reuse the existing servers.

2. 0n each replica, prevent applications from making changes to the backend for the affected base DN. Changes made
during recovery would be lost or could not be replicated:

$ /path/to/opendj/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:internal-only \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

$ /path/to/replica/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:internal-only \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

In this example, the first server's administrative port is 4444 . The second server's administrative port is 14444 .
3. Record the ID of the last good backup before the disaster.

The following command lists backups for the dsEvaluation backend, the one affected by the disaster:

Copyright © 2025 Ping Identity Corporation

Use cases

PingDS

$ /path/to/opendj/bin/dsbackup \

list \

--backupLocation /path/to/opendj/bak \
--backendName dsEvaluation \

--last \
--offline

The output for a backup operation includes the date and the ID. Use the date shown in the output to find the ID of the last

good backup:

Backend name:
Server ID:
Backup Date:
Backup ID:

dsEvaluation

first-ds

17/Feb/20825 16:23:26 [Europe/Paris]
dsEvaluation_20256217152326308

Make sure you find the ID of the last backup before the disaster. This isn't necessarily the same ID as the last successful
backup. If the disaster only broke your data, not the service, the last successful backup could've run after the disaster.

4. Make sure the files for the last backup before the disaster are available to all DS servers you'll recover.

Disaster recovery includes restoring all directory server replicas from the same good backup files.

If you store backup files locally on each server, copy the backup files to each server. You can optionally purge backup files
you won't use to avoid copying more files than necessary. Only use the backup from the backup files you copied and not
the local backups on the server you're recovering. You'll recover the server from the good backup files and won't use the

local files.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Recover the first directory server

@ Important

DS uses the disaster recovery ID to set the generation ID, an internal, shorthand form of the initial replication state.
Replication only works when the data for the base DN share the same generation ID on each server.
There are two approaches to using the dsrepl disaster-recovery command. Use one or the other:

* (Recommended) Let DS generate the disaster recovery ID on a first replica. Use the generated ID on all other
Servers you recover.
When you use the generated ID, the dsrepl disaster-recovery command verifies each server you recover
has the same initial replication state as the first server.

+ Use the recovery ID of your choice on all servers.
Don't use this approach if the replication topology includes one or more standalone replication servers. It
won't work.
This approach works when you can't define a "first" replica, for example, because you've automated the
recovery process in an environment where the order of recovery is not deterministic.
When you choose the recovery ID, the dsrepl disaster-recovery command doesn’t verify the data match.
The command uses your ID as the random seed when calculating the new generation ID. For the new
generation IDs to match, your process must have restored the same data on each server. Otherwise,
replication won't work between servers whose data does not match.
If you opt for this approach, skip these steps. Instead, proceed to Recover remaining servers.

Don’'t mix the two approaches in the same disaster recovery procedure. Use the generated recovery ID or the
recovery ID of your choice, but do not use both.

This process generates the disaster recovery ID to use when recovering the other servers.

1. Stop the directory server you use to start the recovery process:
$ /path/to/opendj/bin/stop-ds

2. Restore the affected data on this directory server.

The following command restores data from the last good backup based on the ID you found in Prepare for recovery:

$ /path/to/opendj/bin/dsbackup \
restore \

--offline \

--backupId ${BACKUP_ID} \
--backupLocation /path/to/opendj/bak

Changes to the affected data that happened after the backup are lost. Use the most recent backup files prior to the
disaster.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Q Tip
This approach to restoring data works in deployments with the same DS server version. When all DS servers
share the same DS version, you can restore all the DS directory servers from the same backup data.
Backup archives are not guaranteed to be compatible across major and minor server releases. Restore backups

only on directory servers of the same major or minor version.

3. Run the command to begin the disaster recovery process.

When this command completes successfully, it displays the disaster recovery ID:

$ /path/to/opendj/bin/dsrepl \
disaster-recovery \
--baseDn dc=example,dc=com \
--generate-recovery-id \
--no-prompt

Disaster recovery id: <generatedId>

Record the <generatedld>. You will use it to recover all other servers.

4, Start the recovered server:
$ /path/to/opendj/bin/start-ds

5. Test the data you restored is what you expect.
6. Start backing up the recovered directory data.

The new backup is for potential future recoveries, not the current disaster recovery. To be safe, take new backups as soon
as you allow external applications to make changes again.

As explained in New backup after recovery, you can no longer rely on pre-recovery backup data after disaster recovery.
Unless the new backup is stored in a different location than the backup used for recovery, the operation won't take a long
time, as it takes advantage of the cumulative backup feature.

7. Allow external applications to make changes to directory data again:

$ /path/to/opendj/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:enabled \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

You have recovered this replica and begun to bring the service back online. To enable replication with other servers to resume,
recover the remaining servers.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Recover remaining servers

@ Important

Make sure you have:

+ Access to the good backup files and the ID you found for the last good backup in Prepare for recovery.
Use the last good backup from before the disaster for all servers to recover.
* The disaster recovery ID.
Use the same ID for all DS servers in this recovery procedure:
o (Recommended) If you generated the ID as described in Recover the first directory server, use it.
° If not, use a unique ID of your choosing for this recovery procedure.
For example, you could use the date at the time you begin the procedure.

You can perform this procedure in parallel on all remaining servers or on one server at a time. For each server:

1. Stop the server:
$ /path/to/replica/bin/stop-ds

2. Unless the server is a standalone replication server, restore the affected data from the same last good backup files you
used for the first server:

$ /path/to/replica/bin/dsbackup \
restore \
--offline \
--backupId ${BACKUP_ID} \
--backupLocation /path/to/opendj/bak

3. Run the recovery command.

The following command uses a generated ID. It verifies this server's data match the first server you recovered:

$ export DR_ID=<generatedId>

$ /path/to/replica/bin/dsrepl \
disaster-recovery \
--baseDn dc=example, dc=com \
--generated-id ${DR_ID} \
--no-prompt

If the recovery ID is a unique ID of your choosing, use dsrepl disaster-recovery --baseDn <base-dn> --user-
generated-id <recoveryId> instead. This alternative doesn't verify the data on each replica match and won't work if the
replication topology includes one or more standalone replication servers.

4. Start the recovered server:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ /path/to/replica/bin/start-ds

5. If this is a directory server, test the data you restored is what you expect.

6. If this is a directory server, allow external applications to make changes to directory data again:

$ /path/to/replica/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:enabled \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

After completing these steps for all servers, you have restored the directory service and recovered from the disaster.

Validation
After recovering from the disaster, validate replication works as expected. Use the following steps as a simple guide.
1. Modify a user entry on one replica.

The following command updates Babs Jensen’s description to Post recovery :

$ /path/to/opendj/bin/ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDn uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin <<EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Post recovery

EOF

MODIFY operation successful for DN uid=bjensen, ou=People, dc=example, dc=com

2. Read the modified entry on another replica:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/replica/bin/ldapsearch \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description
dn: uid=bjensen, ou=People, dc=example, dc=com
description: Post recovery

You have shown the recovery procedure succeeded.

What's next
Example scenario

With the plan for disaster recovery off to a good start, Pat's next steps are to:
+ Develop tests and detailed procedures for recovering from a disaster in deployment.
* Put in place backup plans for directory services.
The backup plans address these more routine maintenance cases and keep the directory service running smoothly.

* Document the procedures in the deployment runbook.

Explore further
This use case can serve as a template for DS test and production deployments. Adapt this example for deployment:
+ Back up files as a regularly scheduled task to ensure you always have a recent backup of each backend.

+ Regularly export the data to LDIF from at least one DS replica in case all backups are lost or corrupted. This LDIF serves as
a last resort when you can't recover the data from backup files.

« Store the backup files remotely with multiple copies in different locations.
« Purge old backup files to avoid filling up the disk space.
+ Be ready to restore each directory database backend.

Before deployment

When planning to deploy disaster recovery procedures, take these topics into account.

Recover before the purge delay

When recovering from backup, you must complete the recovery procedure while the backup is newer than the replication delay.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

If this is not possible for all servers, recreate the remaining servers from scratch after recovering as many servers as possible and
taking a new backup.

New backup after recovery

Disaster recovery resets the replication generation ID to a different format than you get when importing new directory data.

After disaster recovery, you can no longer use backups created before the recovery procedure started for the recovered base DN.
Directory servers can only replicate data under a base DN with directory servers having the same generation ID. The old backups
no longer have the right generation IDs.

Instead, immediately after recovery, back up data from the recovered base DN and use the new backups going forward when you
restore servers after the disaster recovery has completed.

You can purge older backup files to prevent someone accidentally restoring from a backup with an outdated generation ID.

Change notifications reset

Disaster recovery clears the changelog for the recovered base DN.
If you use change number indexing for the recovered base DN, disaster recovery resets the change number.

Standalone servers

If you have standalone replication servers and directory servers, you might not want to recover them all at once.

Instead, in each region, alternate between recovering a standalone directory server then a standalone replication server to
reduce the time to recovery.

Related use cases

* Backup and restore

Reference material

Reference Description

About replication In-depth introduction to replication concepts

Backup and restore The basics, plus backing up to the cloud and using filesystem snapshots
Cryptographic keys About keys, including those for encrypting and decrypting backup files
Data storage Details about exporting and importing LDIF, common data stores
Installation Examples you can use when scripting installation procedures
Configuration Examples you can use when scripting server configuration

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Change password storage

What seemed a secure password storage scheme a few years ago no longer looks safe. You can configure DS to migrate to
stronger password storage.

Description

Estimated time to complete: 30 minutes

With a reversible encryption scheme, an attacker who gains access to the server files can recover all the plaintext passwords. With
a strong one-way hash scheme, the attacker must use brute force methods for each password.

However, not all one-way hash schemes are safe, either. Older password storage schemes, such as the salted Secure Hash
Algorithm (SHA-1) schemes, use one-way hash functions designed for message authentication and digital signatures. SHA-1
schemes are fast; a server processes authentications with low latency and high throughput. On the downside, high-performance
algorithms also make brute force attack techniques more effective. Modern off-the-shelf GPUs can calculate billions of SHA-1
hashes per second. Dedicated hardware can calculate even more hashes per second.

Goals

In completing this use case, you learn to:
+ Discover password policies using outdated password storage schemes.
« List accounts using outdated password storage schemes.
+ Create a replicated password policy and configure its password storage scheme settings.

+ Assign accounts a password policy.

Example scenario

The security team where Pat works has mandated passwords must be stored with a computationally intensive one-way hash,
such as Argon2, Berypt, PBKDF2, or PKCS5S2.

Pat knows the default password storage scheme for the DS directory service has not changed in years. Many user accounts still
have salted SHA-1-based password storage.

Pat considers the options and decides to move to a PBKDF2-based scheme. Pat plans to show how to switch to PBKDF2 and to get
the other identity administrators to review the process.

At this point, the security team has not communicated a due date to implement the mandate. Pat expects the change to be
transparent for users and application developers.

As a directory service administrator, Pat must work with the deployment team to make sure DS systems have enough CPU.
PBKDF2 uses far more CPU resources than outdated storage schemes.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Prerequisites
Knowledge

Before you start, make sure you have the same background knowledge as Pat:
« Pat is familiar with the command line on the target operating system, a Linux distribution in this example.
+ Pat knows how to use basic LDAP commands, having worked through the examples to learn LDAP.
* Pat has already successfully completed directory service installation and setup procedures.

Background

The problem

Sometimes, people ask why DS doesn't provide a tool to move passwords from one storage scheme to another.

Pat explains DS uses one-way hash functions to store passwords. These are one-way functions because going from a password to
a hash is deterministic and straightforward. Going from a hash to a password is hard. For computationally intensive schemes like
PBKDF2, going from a hash to a password is effectively impossible.

Even given the PBKDF2-based password hashes for all the accounts in the directory service, you'd spend plenty of money and
computer resources cracking any of them to recover an original password.

Any tool to move passwords from one storage scheme to another must first crack every password hash. For this reason, DS does
not provide such a tool, and there are no plans to develop one.

The solution

One possible solution is to change the storage scheme in password policies, disable the target storage schemes, and require
users to reset the passwords for their accounts; however, this can be disruptive.

Pat knows a less disruptive solution is to wait until the next successful authentication, then let DS store the password with the
new storage scheme.

When you authenticate with a DN and password—an LDAP simple bind—you supply the password. If the authentication
succeeds, the password is valid. DS still has the password at this time, so it can hash the password according to the new scheme
and remove the hash computed by the old scheme.

In DS, the password policy defines the storage scheme to use. As an administrator, Pat configures a password policy to deprecate
the old scheme in favor of the new scheme. Pat then waits for accounts to bind and lets DS update the storage scheme.

Constraints

Waiting for accounts to bind is not a problem unless there are time constraints.

For example, if there's a mandate to move away from the deprecated scheme by a target date, then Pat will have to effectively
lock "inactive" accounts. Those accounts must reset their passwords after the date.

As an administrator, Pat can implement this by disabling the deprecated password storage scheme on the target date. Accounts
cannot bind with a password stored using a disabled scheme.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Pat knows to warn application owners and developers of end-user Uls and self-service account management tools "inactive"
accounts cannot authenticate when their passwords still use the old scheme after the target date.

Applications can rely on account usability features to discover why LDAP binds fail. Developers of end-user tools can use the hints
in their applications to reset user passwords and prompt users to set new passwords.

Tasks

Pat demonstrates how to change password storage with a single DS server using the evaluation profile. The order of the tasks is
the same in deployment, but the target storage schemes can differ.

Pat shows the process with a subentry password policy. You create an LDAP subentry and DS replicates it to the other replicas. If
you use per-server password policies instead, you must edit the configuration for each DS replica.

Task 1: Set up DS

1. Create a deployment ID to use when setting up DS:

$ /path/to/opendj/bin/dskeymgr create-deployment-id --deploymentIdPassword password
<deployment-id>
$ export DEPLOYMENT_ID=<deployment-id>

2. Set up a single DS server using the evaluation profile with an outdated password storage scheme:

$ /path/to/opendj/setup \
--serverId evaluation-only \
--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDn uid=admin \
--rootUserPassword password \
--monitorUserPassword password \
--hostname localhost \
--ldapPort 1389 \
--ldapsPort 1636 \
--httpsPort 8443 \
--adminConnectorPort 4444 \
--replicationPort 8989 \
--profile ds-evaluation \
--set ds-evaluation/useOutdatedPasswordStorage:true \
--start \
--acceptlLicense

The useOutdatedPasswordStorage sets the password storage scheme for users to Salted SHA-512.

Task 2: List password policies using outdated schemes

To show the process, Pat deprecates the outdated storage scheme in favor of a new stronger storage scheme.

1. List all available password storage schemes:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ /path/to/opendj/bin/dsconfig \
list-password-storage-schemes \
--hostname localhost \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \

--no-prompt
Password Storage Scheme : Type : enabled
3DES (LEGACY) : triple-des false
AES (LEGACY) : aes false
Argon2 : argon2 true
Base64 (LEGACY) : base64 false
Berypt . berypt true
Blowfish (LEGACY) : blowfish false
Clear (LEGACY) . clear false
CRYPT :crypt false
PBKDF2 : pbkdf2 . false
PBKDF2-HMAC-SHA256 . pbkdf2-hmac-sha256 : true
PBKDF2-HMAC-SHA512 . pbkdf2-hmac-sha512 : true
PKCS5S2 . pkcs5s2 false
Salted SHA-1 (LEGACY) : salted-sha1 false
Salted SHA-256 : salted-sha256 false
Salted SHA-384 . salted-sha384 false
Salted SHA-512 : salted-sha512 true
SCRAM-SHA-256 . scram-sha256 true
SCRAM-SHA-512 : scram-sha512 true
SHA-1 (LEGACY) : shai false

Accounts cannot authenticate with a password if their password policy depends on a disabled password storage scheme.
Only the enabled password storage schemes (enabled: true) matter for this procedure:

° Argon2

° Berypt

° PBKDF2-HMAC-SHA256
° PBKDF2-HMAC-SHA512
° Salted SHA-512

o SCRAM-SHA-256

° SCRAM-SHA-512

For this example, Pat migrates passwords away from Salted SHA-512 . The others are stronger password storage
schemes.

2. List the per-server password policies to identify any that use the outdated scheme.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/opendj/bin/dsconfig \
list-password-policies \
--hostname localhost \
--port 4444 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \

--no-prompt
Password Policy : Type . password-attribute : default-password-storage-scheme
Default Password Policy : password-policy : userPassword . Salted SHA-512
Root Password Policy : password-policy : userPassword : PBKDF2-HMAC-SHA256

The Default Password Policy uses the outdated storage scheme:
° The Default Password Policy applies to accounts in user and application data.
° The Root Password Policy applies to DS service accounts, such as the directory superuser (uid=admin).

3. List subentry password policies to check for any using the outdated scheme.

$ /path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \
--baseDn "" \
"(&(objectClass=subEntry) (objectClass=ds-pwp-password-policy))"

The command returns nothing; DS has no subentry password policies configured for the evaluation profile.

Task 3: List accounts using outdated schemes

DS has a userPassword index to the directory entries using each password scheme.
1. List the accounts using the outdated scheme.

This command uses a filter with an extensible match comparison, 1.3.6.1.4.1.36733.2.1.4.14:=Salted SHA-512.The
object identifier corresponds to password storage scheme quality match syntax. The filter matches entries whose
password is stored with Salted SHA-512 (SSHA512):

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ /path/to/opendj/bin/ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \

--bindPassword password \

--baseDn dc=example, dc=com \

"(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA512)" 1.1

An attribute list of 1.1 means the search should not return attribute values, just DNs.
If you have multiple password policies with outdated storage schemes, search like this for each one.

The response can be empty, meaning no accounts use the storage scheme. If a password policy uses an outdated
password storage scheme, but no accounts use it, update the password policy to deprecate the outdated scheme. Double-
check the response is still empty, and disable the outdated scheme in each DS configuration to prevent its use.

2. If you want to check which password policy an account has, request pwdPolicySubentry :

$ /path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \
--baseDn dc=example,dc=com \
"(cn=Babs Jensen)" \
pwdPolicySubentry
dn: uid=bjensen, ou=People, dc=example, dc=com
pwdPolicySubentry: cn=Default Password Policy,cn=Password Policies, cn=config

The pwdPolicySubentry has the DN of the applicable password policy for the entry. You could use pwdPolicySubentry
instead of 1.1 in the previous step to show the attribute for each user.

Task 4: Move accounts to the new scheme

These steps deprecate Salted SHA-512 in favor of PBKDF2-HMAC-256 :

1. Configure a password policy to deprecate the outdated scheme.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/opendj/bin/1ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: cn=New password policy,dc=example, dc=com
objectClass: top
objectClass: subentry
objectClass: ds-pwp-password-policy
objectClass: ds-pwp-validator
objectClass: ds-pwp-length-based-validator
cn: New password policy
ds-pwp-password-attribute: userPassword
ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256
ds-pwp-deprecated-password-storage-scheme: Salted SHA-512
ds-pwp-length-based-min-password-length: 8
subtreeSpecification: {base "", specificationFilter "(userPassword=*)" }
EOF
ADD operation successful for DN cn=New password policy,dc=example,dc=com

The subtreeSpecification applies the password policy to all accounts under dc=example, dc=com with a userPassword
attribute.

2. Check the new policies apply as expected.

The following command shows the new policy applies to a user account:

$ /path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password \
--baseDn dc=example,dc=com \
"(cn=Babs Jensen)" \
pwdPolicySubentry userPassword
dn: uid=bjensen, ou=People, dc=example, dc=com
userPassword: {SSHA512}<hash>
pwdPolicySubentry: cn=New password policy, dc=example, dc=com

The password is still hashed with the old scheme. The user hasn't authenticated since the password policy change.
3. Wait for accounts to bind with password-based authentication.
You can check progress using the searches described in Task 3: List accounts using outdated schemes.

4. (Optional) When enough accounts have changed storage schemes, disable stale password policies and the outdated
scheme.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Task 5: Plan any necessary communications

When you have no time constraints, there’s nothing to communicate to application developers or end users. Make sure DS
systems have the resources to process the stronger password policy; communicate about this with those providing systems for
testing and deployment. Eventually, DS updates the password storage scheme for all active accounts.

If you have a due date to finish the move, you must disable the outdated scheme at that time:

$ /path/to/opendj/bin/dsconfig \
set-password-storage-scheme-prop \

--scheme-name "Salted SHA-512" \

--set enabled:false \

--hostname localhost \

--port 4444 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \

--bindPassword password \

--no-prompt

This has the effect of locking inactive accounts—those who didn't authenticate before the date—because they are stuck with the
disabled storage scheme. An administrator must reset the passwords to activate the accounts.

+ Plan with other identity administrators and identity application developers how to automate the password reset and
change process to active locked accounts.

In a Ping Identity Platform deployment, you can configure self-service features to help end users help themselves.
* If possible, let end users know they need to sign on before the due date to keep their accounts active.

Let them know inactive accounts are locked out after the due date, and describe how they can activate their accounts after
the lockout.

Validation

Display a user's password before and after authentication to confirm the policy causes DS to update how it stores the password.

1. Read a userPassword as directory superuser to display the password storage scheme:

$ /path/to/opendj/bin/ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \

--bindPassword password \

--baseDn dc=example, dc=com \

"(cn=Babs Jensen)" \

userPassword
dn: uid=bjensen, ou=People, dc=example, dc=com
userPassword: {SSHA512}<hash>

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

The attribute shows the password storage scheme in braces before the hash. The user has not authenticated since the
policy change. The scheme is still Salted SHA-512 (SSHA512).

2. Read the userPassword again as the user to display the password storage scheme:

$ /path/to/opendj/bin/ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=People, dc=example, dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
userPassword
dn: uid=bjensen, ou=People, dc=example, dc=com
userPassword: {PBKDF2-HMAC-SHA256}10:<hash>

The --bindDn and --bindPassword indicate the user authenticates with an LDAP simple bind. DS updates the hash when
the user authenticates. The scheme is now PBKDF2-HMAC-SHA256 .

What's next

After demonstrating the process, Pat implements plans to deprecate outdated password storage schemes in deployment.

Pat is careful to make sure DS systems have the resources to process PBKDF2 hashes, in particular for binds. For example, Pat
can use the authrate command to generate LDAP binds before and after the change. Pat can also review logs and monitoring
data from the deployment to estimate peak bind rates.

@ Note

When you install DS, the setup command configures a PBKDF2-HMAC-SHA256 password storage scheme with 10
iterations instead of the default 10,000 iterations.
The server’s default password policy uses this storage scheme.

When DS systems have sufficient resources, Pat can increase the number of iterations for the PBKDF2-HMAC-SHA256 scheme; for
example, setting pbkdf2-iterations: 10000 and rehash-policy: only-increase inthe PBKDF2-HMAC-SHA256 scheme
configuration. DS updates the password storage hash for an account on the next successful authentication.

Explore further

This use case can serve as a template for DS test and production deployments. Adapt this example for deployment:
* Review the password storage schemes used in deployment to determine what to change.

* Make sure the directory service has appropriate resources to sustain authentication rates after moving to a resource-
intensive password storage scheme.

* Plan communications as necessary.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Reference material

Reference Description

Passwords DS password policy and storage schemes

Password Storage Scheme Supported password storage schemes

Authentication (binds) About LDAP bind operations

authrate Performance tool for generating LDAP bind operations
Passwords and accounts, Actions Client-side password and account management

Change LDAP schema

Learn how to change LDAP schema definitions online and offline.

Description

Estimated time to complete: 30 minutes

LDAP schema definitions determine the kinds of information in the directory and how the information is related. You can update
the schema definitions online and offline to change what the directory allows.

Develop and test schema changes online to catch any errors in the updated definitions. After you validate the schema changes,
you can deploy them online with the 1dapmodify command or offline by copying updated schema files. Replication replays the
LDAP schema changes to other DS servers.

In this use case, you:
* Understand a scenario where schema changes make sense.
+ Understand how schema changes can require rebuilding indexes.
+ Develop and test schema changes.

* Practice rolling out schema changes by copying updated schema files.

Goals

In completing this use case, you learn to:
* Use the ldapmodify command to change LDAP schema.
+ Rebuild indexes affected by schema changes.

+ Review and remove replication metadata from changed schema files.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Example scenario
One of the directory application owners asks Pat to let their application page through accounts by class of service.
Pat's directory deployment uses the definition for the classOfService attribute based on the evaluation profile.

Pat can add an index for the classOfService attribute, but wonders if the application owner has additional requirements. In
discussion with the application owner, Pat learns the application owner:

» Found the class of service attribute can accept any random string value.
They ask Pat if class of service could be restricted to an enumeration of bronze, silver, gold, and platinum.
* Wants a sharedQuota attribute like the diskQuota and mailQuota attributes.

The application owner doesn't use sharedQuota yet, but plans to use itin a few weeks.

Prerequisites
Knowledge
Before you start:

+ Make sure you are familiar with the command line on your operating system.

* If you're new to directory services, work through the examples to learn LDAP.

Actions

Before you try this example, install a DS server in evaluation mode.

Tasks

Pat shows the tasks with DS servers in evaluation mode. The order and content of the tasks for production deployments are the
same.

Task 1: Add a classOfService index

The application owner wants to page through accounts by class of service. Class of service has only a few values, and every user
account could have the attribute. This is a good match for a big index.

1. Create the index:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ /path/to/opendj/bin/dsconfig \

create-backend-index \

--backend-name dsEvaluation \

--index-name classOfService \

--set index-type:big-equality \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

2. Build the new index:

$ /path/to/opendj/bin/rebuild-index \

--baseDn dc=example, dc=com \

--index classOfService \

--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

Applications can now use the simple paged results control to page through entries with a specified class of service.

Task 2: Develop schema changes

Pat notices the classOfService attribute has SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 (directory string syntax). Pat can
change the schema definition to use a custom enumeration syntax, so DS only allows applications to set one of the desired
values. Pat can update the schema again to extend the enumeration as necessary.

Pat also adds a new sharedQuota attribute modeled on the diskQuota and mailQuota attributes.

Pat knows DS rejects malformed online modifications to schema definitions. Pat develops and tests the schema changes with the
ldapmodify command.

@ Important

When changing a schema definition, delete the existing value and add the new value as part of the same modification.
Otherwise, there's a window after you delete a definition and before you add the new one where an update could fail
or an index could become degraded due to the missing schema definition.

The definition you delete must match the definition in the schema LDIF exactly, not including space characters.

When you update schema definitions online, DS sets the X-SCHEMA-FILE value even if you don't.

1. Update the schema definitions.
The following example command:
o Adds an enumeration syntax for class of service

o Updates the classOfService attribute to use the enumeration syntax

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

o Adds a sharedQuota attribute to the cos object class for class of service attributes

Copyright © 2025 Ping Identity Corporation

Use cases

PingDS

$ /path/to/opendj/bin/1ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \
--bindPassword password << EOF
dn: cn=schema
changetype: modify
add: ldapSyntaxes
ldapSyntaxes: (example-custom-syntax-oid
DESC 'Enumeration syntax for class of service'
X-ENUM ('bronze' ‘'silver' 'gold' 'platinum’')
X-ORIGIN 'DS Documentation Examples')
delete: attributeTypes
attributeTypes: (example-class-of-service-attribute-type
NAME 'classOfService'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE userApplications
X-ORIGIN 'DS Documentation Examples')
add: attributeTypes
attributeTypes: (example-class-of-service-attribute-type
NAME 'classOfService'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX example-custom-syntax-oid
SINGLE-VALUE
USAGE userApplications
X-ORIGIN 'DS Documentation Examples')
add: attributeTypes
attributeTypes: (example-class-of-service-shared-quota
NAME 'sharedQuota’
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications
X-ORIGIN 'DS Documentation Examples')
delete: objectClasses
objectClasses: (example-class-of-service-object-class
NAME 'cos’
SUP top
AUXILIARY
MAY (classOfService $ diskQuota $ mailQuota)
X-ORIGIN 'DS Documentation Examples')

add: objectClasses
objectClasses: (example-class-of-service-object-class
NAME 'cos'

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

SUP top
AUXILIARY
MAY (classOfService $ diskQuota $ mailQuota $ sharedQuota)
X-ORIGIN 'DS Documentation Examples')
EOF

2. Rebuild affected indexes.

This update changes the classOfService syntax, so rebuild the index to use the new syntax:

$ /path/to/opendj/bin/rebuild-index \

--baseDn dc=example, dc=com \

--index classOfService \

--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

If the enumeration syntax changes again, rebuild the classOfService index.

Task 3: Save changed schema files

For the production servers, Pat doesn’t change the schema online. Pat keeps schema definition files under source control to track
all schema changes.

After modifying the schema online, Pat locates the schema definitions added and changed in the db/schema LDIF files. Pat
notices DS rewrites the updated LDIF files with one schema definition per line.

Before putting the changed LDIF files under source control, Pat takes care to remove the operational attributes including the ds-
sync-generation-id and ds-sync-state attributes. Using the wrong values for those attributes could break schema replication.
Pat lets DS replication manage the operational attributes.

In Pat's copies of the LDIF files, the schema definitions are folded for readability. Each line continuation starts with two spaces
before a schema element keyword. LDIF continuation consumes the first space. The second space separates the keyword from
the preceding text.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

dn: cn=schema
objectclass: top
objectclass: ldapSubentry
objectclass: subschema
cn: schema
ldapSyntaxes: (example-custom-syntax-oid
DESC 'Enumeration syntax for class of service'
X-ENUM ('bronze' ‘'silver' 'gold' 'platinum’')
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
attributeTypes: (example-class-of-service-disk-quota
NAME 'diskQuota'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
attributeTypes: (example-class-of-service-mail-quota
NAME ‘'mailQuota’
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
attributeTypes: (example-class-of-service-shared-quota
NAME 'sharedQuota’
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
attributeTypes: (json-attribute-oid
NAME 'json’
EQUALITY caseIgnoreJsonQueryMatch
SYNTAX 1.3.6.1.4.1.36733.2.1.3.1
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif"')
attributeTypes: (oauth2token-attribute-oid
NAME 'oauth2Token'
EQUALITY caseIgnoreOAuth2TokenQueryMatch
SYNTAX 1.3.6.1.4.1.36733.2.1.3.1
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
attributeTypes: (jsonToken-attribute-oid
NAME 'jsonToken'
EQUALITY caseIgnoreJsonTokenIDMatch
SYNTAX 1.3.6.1.4.1.36733.2.1.3.1
SINGLE-VALUE
X-ORIGIN 'DS Documentation Examples'
X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
attributeTypes: (example-class-of-service-attribute-type
NAME 'classOfService'
EQUALITY caseIgnoreMatch
ORDERING caseIgnoreOrderingMatch

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

SUBSTR caseIgnoreSubstringsMatch

SYNTAX example-custom-syntax-oid

SINGLE-VALUE

USAGE userApplications

X-ORIGIN 'DS Documentation Examples'

X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
objectClasses: (json-object-class-oid

NAME 'jsonObject’

SUP top

AUXILIARY

MAY json

X-ORIGIN 'DS Documentation Examples'

X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
objectClasses: (oauth2token-object-class-oid

NAME 'oauth2TokenObject'

SUP top

AUXILIARY

MAY oauth2Token

X-ORIGIN 'DS Documentation Examples'

X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
objectClasses: (json-token-object-class-oid

NAME 'JsonTokenObject'

SUP top

AUXILIARY

MAY jsonToken

X-ORIGIN 'DS Documentation Examples'

X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')
objectClasses: (example-class-of-service-object-class

NAME 'cos’

SUP top

AUXILIARY

MAY (classOfService $ diskQuota $ mailQuota $ sharedQuota)

X-ORIGIN 'DS Documentation Examples'

X-SCHEMA-FILE '60-ds-evaluation-schema.ldif')

dn: cn=schema
objectclass: top
objectclass: ldapSubentry
objectclass: subschema
cn: schema

Pat also keeps copies of the original DS schema files under source control. When upgrading, Pat compares the original files with
the upgraded files and applies any changes to the modified production files as necessary.

Task 4: Deploy changed schema files

To make a schema change in deployment, stop the server, add the custom schema, and restart the server.

1. Prepare to show schema change deployment by setting up two replicated DS directory servers as described in Install DS
and Learn replication.

2. Make sure you have local copies of the changed schema definition files:
60-ds-evaluation-schema.ldif

This file contains the changed schema definitions.

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/ldif/60-ds-evaluation-schema.ldif

Use cases PingDS

99-user.Idif
This file removes the replication metadata.

3. Stop a server:

$ /path/to/opendj/bin/stop-ds

4. Add the custom schema files and start the replica:

S cp 606-ds-evaluation-schema.ldif /path/to/opendj/db/schema/

5. Start the server:

$ /path/to/opendj/bin/start-ds

Replication applies the changes to other servers.

Task 5: Deploy the class0fService index

Create and build the index on each replica an application uses for searches:

1. Create the index on the first server:

$ /path/to/opendj/bin/dsconfig \

create-backend-index \

--backend-name dsEvaluation \

--index-name classOfService \

--set index-type:big-equality \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

2. Build the new index on the first server:

Copyright © 2025 Ping Identity Corporation

file:///home/jenkins/target/_attachments/ldif/99-user.ldif

PingDS Use cases

$ /path/to/opendj/bin/rebuild-index \
--baseDn dc=example, dc=com \
--index classOfService \
--hostname localhost \
--port 4444 \
--bindDn uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

3. Create the index on the second server:

$ /path/to/replica/bin/dsconfig \

create-backend-index \

--backend-name dsEvaluation \

--index-name classOfService \

--set index-type:big-equality \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/replica/config/keystore \
--trustStorePassword:file /path/to/replica/config/keystore.pin \
--no-prompt

4. Build the new index on the second server:

$ /path/to/replica/bin/rebuild-index \
--baseDn dc=example, dc=com \
--index classOfService \
--hostname localhost \
--port 14444 \
--bindDn uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/replica/config/keystore \
--trustStorePassword:file /path/to/replica/config/keystore.pin

The new schema definitions and indexes are ready to use.

Validation

After you deploy the changed schema definitions and classOfService indexes, follow these steps to check you can use the
updated schema definitions and index.

1. Page through entries with gold class of service on the second replica as a user who doesn't have the unindexed-search
privilege:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ ldapsearch \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/replica/config/keystore \
--trustStorePassword:file /path/to/replica/config/keystore.pin \
--bindDN uid=kvaughan, ou=People, dc=example, dc=com \
--bindPassword bribery \
--baseDn dc=example, dc=com \
--simplePageSize 5 \
"(classOfService=gold)" \
mail
dn: uid=abarnes, ou=People, dc=example, dc=com
mail: abarnes@example.com

dn: uid=ahall, ou=People, dc=example, dc=com
mail: ahall@example.com

dn: uid=aknutson, ou=People, dc=example, dc=com
mail: aknutson@example.com

dn: uid=alutz, ou=People, dc=example, dc=com
mail: alutz@example.com

dn: uid=ashelton, ou=People, dc=example, dc=com
mail: ashelton@example.com

Press RETURN to continue

2. Show users can now have platinum class of service:

$ /path/to/replica/bin/ldapmodify \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/replica/config/keystore \
--trustStorePassword:file /path/to/replica/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
replace: classOfService
classOfService: platinum
EOF

3. Show users can't have a random string for class of service:

Copyright © 2025 Ping Identity Corporation

mailto:abarnes@example.com
mailto:ahall@example.com
mailto:aknutson@example.com
mailto:alutz@example.com
mailto:ashelton@example.com

PingDS Use cases

$ /path/to/replica/bin/ldapmodify \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/replica/config/keystore \
--trustStorePassword:file /path/to/replica/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
replace: classOfService
classOfService: custom extended service
EOF
The LDAP modify request failed: 21 (Invalid Attribute Syntax)
Additional Information: When attempting to modify entry uid=bjensen, ou=People, dc=example,dc=com to replace
the set of values for attribute classOfService, value "custom extended service" was found to be invalid
according to the associated syntax: The provided value "custom extended service" cannot be parsed because it
is not allowed by enumeration syntax with OID "example-custom-syntax-oid"

What's next

Pat knows schema definition changes are safe in files under source control. The reasons for the schema changes are not so well
known. Pat plans to start and maintain a schema dictionary. The schema dictionary will describe each attribute known to be in
use. It will track:

* Who uses the attribute, including their contact information, and how they use it

* What data it stores, and who owns the data, including contact information

* Where the data comes from, especially if it comes from another system

* When there are maintenance windows for the attribute (for reindexing and so on)

In addition, Pat has more to discuss with the application owner, who asked for the new sharedQuota attribute. The diskQuota
and mailQuota attributes depend on the classOfService attribute for their values.

* How should DS define sharedQuota values?

* What should the quotas be for classOfService: platinum?

Explore further

Reference material

Reference Description

Indexes Background and how-to instructions for working with indexes
LDAP schema An in-depth look at LDAP schema definitions

LDAP schema LDAP schema in client applications

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Reference Description
JSON schema Schema for HTTP client applications
About This Reference A reference for all default schema definitions

DS for AM CTS

Show how to replicate AM core token service (CTS) data and fail over when a DS server is unavailable.

Description

Estimated time to complete: 45 minutes
AM uses DS to store CTS data, such as session tokens, data for SAML v2.0 and OAuth 2.0 applications, and push notifications.

Replicate the CTS data as you would any other directory data for availability, but realize AM applications are not necessarily built
with DS eventual consistency in mind. For this reason, configure AM to use affinity load balancing when connecting to the DS CTS
store. Affinity load balancing ensures each request for the same entry goes to the same DS server. If the DS server becomes
unavailable, AM fails over to another DS server.

Suppose an AM application makes several AM calls in quick succession, and each call requires AM to retrieve a CTS entry from DS.
Without affinity, if AM updates the CTS entry on one DS then reads it from another DS, it's possible replication won't have had
time to replay the changes between the update and the subsequent read. The application could get a confusing response when it
appears AM "forgets" the update.

With affinity, both the update and the read target the same DS server. The AM client application gets the expected response each
time.

In this use case, you:
+ Set up DS for AM CTS, configuration, and identity data.
+ Set up and configure AM to use the DS service with affinity and failover.

* Show AM continues to work as expected when a DS server is unavailable.

Goals

In completing this use case, you learn to:
+ Set up DS and AM together.
« Configure affinity and failover for AM connections to DS.

* Replicate CTS data effectively while minimizing the impact on AM clients.

Example scenario

As a directory service administrator, Pat plans to deploy directory services for AM CTS data.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Pat knows AM has a number of configuration options for CTS, but wants to clarify the basic deployment principles before tuning
the service for their specific deployment.

Pat plans to show the AM administrators the basic approach, and then discuss additional options.

Prerequisites
Knowledge

Before you start:
* Make sure you are familiar with the command line on your operating system.
« If you're new to directory services, consider working through the examples to learn LDAP and to learn replication.
* If you're new to AM, consider working through the AM evaluation tasks (2.
Actions
Before you start, download:
* The AM .war file
+ An appropriate version of Apache Tomcat

* The DS .zip file

Tasks

This sample deployment shows the steps to replicate CTS data on your computer. Use the same steps with geographically
distributed computers or virtual machines for a real deployment.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/eval-guide/preface.html
https://docs.pingidentity.com/pingam/7.5/eval-guide/preface.html

Use cases PingDS

Incoming HTTP: requests

CTS LDAP requests

A Replication A
LY \Cd LY\
LAA LA_\

b J

DS1 DS2

* Two AM servlets run in Apache Tomcat and serve HTTP requests from AM client applications.
« Two replicated DS servers provide storage for AM.
+ Each AM servlet makes LDAP requests to DS for CTS data.

Task 1: Prepare for installation
1. Make sure there's an FQDN for AM.
The cookie domain for AM session cookies depends on the FQDN, because the browser uses it to connect to AM.
This sample simulates DNS on your computer by updating the hosts file [with an alias for each DS server:

Simulate DNS with an FQDN alias for the loopback address:
127.0.0.1 am.example.com

When deploying in a production environment, make sure you have properly configured the DNS.
2. Unpack the server files once for each server to install.

This sample uses folder locations aligned with the hostnames:

Base path Description
/path/to/ds1 First DS server
/path/to/ds2 Second DS server

Copyright © 2025 Ping Identity Corporation

https://en.wikipedia.org/wiki/Hosts_(file)
https://en.wikipedia.org/wiki/Hosts_(file)

PingDS Use cases

Base path Description

/path/to/tomcat Apache Tomcat server

3. Determine the port numbers for the service.

This sample uses different port numbers for each server because all the servers are on the same computer:

Sample server Port numbers

ds1 LDAP: 1389
LDAPS: 1636
Admin: 4444

Replication: 8989

ds2 LDAP: 11389
LDAPS: 11636
Admin: 14444
Replication: 18989

Tomcat HTTPS: 8080

When installing each DS server on a different host, use the same port numbers everywhere.

4. Set the JAVA_HOME environment variable to a supported JDK home if it isn't already set:

S export JAVA_HOME=<supported-jdk-home>

5. Define how the DS servers trust DS server certificates.

This sample uses a private PKI based on the deployment ID. You generate a deployment ID for all DS servers using the
dskeymgr command:

$ /path/to/ds1/bin/dskeymgr \
create-deployment-id \
--deploymentIdPassword password
<deployment-id>

The deployment ID is a string. To use it, you must have the deployment ID password.

Once you generate the ID, set a DEPLOYMENT_ID environment variable for use in other steps of this sample:

$ export DEPLOYMENT_ID=<deployment-id>

6. Make sure Tomcat and AM trust DS server certificates for secure LDAPS connections.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

This sample uses the private PKI based on the deployment ID you generated. Prepare a truststore with the DS CA
certificate for Tomcat:

$ /path/to/ds1/bin/dskeymgr \
export-ca-cert \

--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \
--outputFile /path/to/ca-cert.pem

$ keytool \

-importcert \

-trustcacerts \

-alias ca-cert \

-file /path/to/ca-cert.pem \
-keystore /path/to/truststore \
-storepass changeit \
-storetype JKS \

-noprompt

$ export TRUSTSTORE=/path/to/truststore

Task 2: Set up DS

These sample commands prepare DS servers for AM CTS, configuration, and identities. They depend on the DEPLOYMENT_ID
environment variable you set.

1. Set up the first DS server:

S /path/to/ds1/setup \

--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \

--rootUserDN uid=admin \

--rootUserPassword password \
--monitorUserPassword password \

--hostname localhost \

--adminConnectorPort 4444 \

--ldapPort 1389 \

--enableStartTls \

--ldapsPort 1636 \

--replicationPort 8989 \
--bootstrapReplicationServer localhost:8989 \
--bootstrapReplicationServer localhost:18989 \
--profile am-config \

--set am-config/amConfigAdminPassword:5up35tréng \
--profile am-cts \

--set am-cts/amCtsAdminPassword:5up35tr@ng \
--profile am-identity-store \

--set am-identity-store/amIdentityStoreAdminPassword:5up35tr@ng \
--acceptlLicense \

--start

2. Set up the second DS server:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/ds2/setup \

--deploymentId $SDEPLOYMENT_ID \
--deploymentIdPassword password \

--rootUserDN uid=admin \

--rootUserPassword password \
--monitorUserPassword password \

--hostname localhost \

--adminConnectorPort 14444 \

--ldapPort 11389 \

--enableStartTls \

--ldapsPort 11636 \

--replicationPort 18989 \
--bootstrapReplicationServer localhost:8989 \
--bootstrapReplicationServer localhost:18989 \
--profile am-config \

--set am-config/amConfigAdminPassword:5up35tréng \
--profile am-cts \

--set am-cts/amCtsAdminPassword:5up35tr@ng \
--profile am-identity-store \

--set am-identity-store/amIdentityStoreAdminPassword:5up35tréng \
--acceptlLicense \

--start

At this point, both DS servers are running and replicating changes to each other.

Task 3: Set up Tomcat

1. Update Tomcat settings for AM:

This command uses the TRUSTSTORE environment variable you set:

echo "export CATALINA_OPTS=\"\SCATALINA_OPTS \
-Djavax.net.ssl.trustStore=${TRUSTSTORE} \
-Djavax.net.ssl.trustStorePassword=changeit \
-Djavax.net.ssl.trustStoreType=jks \

-server \

-Xmx2g \
-XX:MetaspaceSize=256m \
-XX:MaxMetaspaceSize=256m\

> /path/to/tomcat/bin/setenv.sh

2. Make the Tomcat scripts executable:

$ chmod +x /path/to/tomcat/bin/*.sh

3. Start Tomcat:

$ /path/to/tomcat/bin/startup.sh

At this point, Tomcat is ready for you to set up AM.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Task 4: Set up AM

These steps prepare AM to use DS with affinity load balancing and failover.

1. Copy the AM .war file to /path/to/tomcat/webapps/am1.war and /path/to/tomcat/webapps/am2.war .

2. Configure AM at http://am.example.com:8080/am1Z and http://am.example.com:8080/am2Z.

Use the following configuration settings:

Setting

Configuration Options

Server Settings > Default User Password
Server Settings > Server URL

Server Settings > Cookie Domain

Server Settings > Platform Locale

Server Settings > Configuration Directory

Configuration Data Store Settings > Configuration Data
Store

Configuration Data Store Settings > SSL/TLS Enabled
Configuration Data Store Settings > Host Name
Configuration Data Store Settings > Port

Configuration Data Store Settings > Encryption Key

Configuration Data Store Settings > Root Suffix
Configuration Data Store Settings > Login ID

Configuration Data Store Settings > Password

Choice

Create New Configuration.
Password
http://am.example.com:8080
example.com

en_US

/path/to/am1 or /path/to/am2

External DS

Enable

localhost

1636

Save the generated key (example:
w72dwbuhsLQzFNcUftA8eMCaw3a5ayhL) from am1 to use
when configuring am2 .

ou=am-config

uid=am-config, ou=admins, ou=am-config

5up35treng

Copyright © 2025 Ping Identity Corporation

http://am.example.com:8080/am1
http://am.example.com:8080/am1
http://am.example.com:8080/am2
http://am.example.com:8080/am2

PingDS Use cases

Setting Choice
Configuration Data Store Settings > Server New deployment (am1) or Additional server for existing
configuration deployment (am2)

® Note

The am2 server uses the same stores as those of
the existing deployment.

This choice causes the configurator to skip to the
Site Configuration settings for am2 .

User Data Store Settings > User Data Store Type ForgeRock Directory Services (DS)
User Data Store Settings > SSL/TLS Enabled Enable

User Data Store Settings > Directory Name localhost

User Data Store Settings > Port 1636

User Data Store Settings > Root Suffix ou=identities

User Data Store Settings > Login ID uid=am-identity-bind-

account, ou=admins, ou=identities
User Data Store Settings > Password 5up35treng

Site Configuration No

3. Configure the CTS store with affinity load balancing to both DS servers.
On the am1 servlet, make these configuration changes, which are shared with the am2 servlet:
1. Log in to the AM admin Ul at http://am.example.com/am1(Z as amadmin with Passwerd .
2. Browse to Configure > Server Defaults > CTS.

3. Use the following CTS settings, saving changes before switching tabs:

Setting Choice

CTS Token Store > Store Mode External Token Store

CTS Token Store > Root Suffix ou=famrecords, ou=openam-session, ou=tokens
External Store Configuration > SSL/TLS Enabled Enable

External Store Configuration > Connection String(s) localhost:1636, localhost:11636

External Store Configuration > Login Id uid=openam_cts, ou=admins, ou=famrecords, ou=opena

m-session, ou=tokens

Copyright © 2025 Ping Identity Corporation

http://am.example.com/am1
http://am.example.com/am1

Use cases PingDS

Setting Choice
External Store Configuration > Password 5up35treng
External Store Configuration > Affinity Enabled Enable

4. Configure the identity store with affinity load balancing to both DS servers.
In the am1 admin Ul, while connected as amadmin :
1. Browse to Top Level Realm > Identity Stores > ds1 > Server Settings.

2. Update the following identity settings:

Setting Choice

LDAP Server Add localhost:11636 .
Affinity Enabled Enable

Affinty Level Bind

3. Save your changes.
5. Configure the configuration store to use both DS servers.
In the am1 admin Ul, while connected as amadmin :
1. Browse to Deployment > Servers.
2. For each AM servlet:
m Browse to Server URL > Directory Configuration > Server.

m Add an entry for the second DS server and save the changes:

Setting Choice
NAME ds2

HOST NAME localhost
PORT NUMBER 11636
CONNECTION TYPE SSL

m Save your changes.
6. Log out of the AM admin UlI.

7. Restart Tomcat to take the configuration changes into account:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ /path/to/tomcat/bin/shutdown.sh
Wait a moment for Tomcat to shut down cleanly before starting it again.
$ /path/to/tomcat/bin/startup.sh

At this point, AM is ready to use.

Task 5: Create a test user

You will use this account for validation.
1. Log in to the AM admin Ul at http://am.example.com/am1Z as amadmin with Passwerd .
2. Browse to Top Level Realm > Identities and click + Add Identity.

3. Use the following settings for the test user:

Setting Choice

User ID bjensen

Password hifalutin

Email Address bjensen@example.com
First Name Babs

Last Name Jensen

Full Name Barbara Jensen

4. Log out of the AM admin Ul.

Validation
To validate your work, check:

+ A user can log in to one AM servlet and access the other with the same session while all servers are up.
* The session is still honored when a CTS store is unavailable.
The following sections show how to do this in detail.

Access AM as the test user

1. Log in to AM at http://am.example.com/am1(Z as bjensen with password hifalutin.

The AM Ul displays the user profile page:

Copyright © 2025 Ping Identity Corporation

http://am.example.com/am1
http://am.example.com/am1
http://am.example.com/am1
http://am.example.com/am1

Use cases PingDS

User profile

Basic Info Password
Username bjensen
First Name Babs
Last Name Jensen
Email address bjensen@example.com

Phone number

2. Switch AM servlets by updating the URL in the browser address bar, replacing am1 with am2 .
The AM Ul displays the same user profile page again.

3. On the command line, find the associated CTS token in DS:

$ /path/to/ds1/bin/ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--useJavaTrustStore "${TRUSTSTORE}" \

--trustStorePassword changeit \

--bindDn uid=openam_cts, ou=admins, ou=famrecords, ou=openam-session, ou=tokens \
--bindPassword 5up35tréng \

--baseDn ou=famrecords, ou=openam-session, ou=tokens \
"(coreTokenUserId=id=bjensen, ou=user, ou=am-config)" \

coreTokenObject
dn: coreTokenId=<token-id>, ou=famrecords, ou=openam-session, ou=tokens
coreTokenObject: {"clientDomain":"ou=am-config", "clientID":"id=bjensen,ou=user,ou=am-config","...":...}

Notice the CTS does not reference the test user account by its DN, but instead by its AM universal ID.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

{

"clientDomain": "ou=am-config",

"clientID": "id=bjensen, ou=user,ou=am-config",
"creationTimeInMillis": 1706087705386,
"listeners": {
"8f51ba31-a2e8-4f44-a998-91b411ffde3e" : true,
"fBe6df25-2a9c-4be7-a5bb-1ae22¢c834190" : true
s

"maxCachingTimeInMinutes": 3,
"maxIdleTimeInMinutes": 30,
"maxSessionTimeInMinutes": 1280,
"restrictedTokensBySessionID": {},
"sessionEventURLs": {},

"sessionID": {

"encryptedString":
"ecJSF_y5EMdaJhQ40J081JGiXAyU.*AAJTSQACMDEAAINLABxraFNLaytaenFKM1BtYjNmelpBdG9JTUU3ZEE9AAROeXBLAANDVFMAALIMXAAA .
o

B

"sessionProperties”: {

"Locale": "en_GB",

"authInstant": "2024-061-24T09:15:05Z",
"Organization": "ou=am-config",
"UserProfile": "Required",

"Principals": "bjensen",

"successURL": "/am1/console",

"CharSet": "UTF-8",

"Service": "ldapService",

"Host": "127.0.0.1",

"FullLoginURL": "/am1/UI/Login?realm=%2F",
"AuthLevel": "0",

"clientType": "genericHTML",

"AMCtxId": "4cc3e651-f4eb-4bd6-9355-03b2bBabb45b-319",
"loginURL": "/am1/UI/Login",

"UserId": "bjensen”,

"AuthType": "DataStore",

"sun.am.Universalldentifier": "id=bjensen, ou=user,ou=am-config",
"HostName": "127.0.0.1",

"amlbcookie": "01",

"Principal”: "id=bjensen, ou=user,ou=am-config",

"UserToken": "bjensen"

b

"sessionState": "VALID",
"sessionType": "USER",
"timedOutTimeInSeconds": ©

}

You have shown the test user session works for either AM servlet.

Test CTS failover

1. Stop the first DS server to force AM to use the second DS server:

$ /path/to/ds1/bin/stop-ds

2. Verify you can still access both AM servlets as bjensen .

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

For am1 and am2, the AM Ul displays the user profile page.
3. Start the first DS server and stop the second:

$ /path/to/ds1/bin/start-ds
$ /path/to/ds2/bin/stop-ds

4. Verify again you can still access both AM servlets as bjensen .
For am1 and am2, the AM Ul displays the user profile page.

You have demonstrated how AM can use DS as a CTS store with affinity load balancing and failover.

What's next

After successfully showing the sample to AM administrators, Pat leads a discussion to review the tradeoffs they can choose to
make for the production deployment. Some of the questions to discuss include the following:

* Do we back up CTS data?

If CTS data is lost, users must authenticate again.

If that's acceptable, then we won't back up CTS data, which is volatile and potentially large.
+ Should there be a separate DS service for CTS data?

CTS access patterns are very different from identity store access patterns. They cause DS to fill and empty its database
cache in very different ways.

In a high-volume deployment, it may make sense to split the data up.
* What AM features are in use?
Could we have DS reap expired tokens (optional) instead of AM (default)?

AM administrators can bring their own questions to the discussion.

Explore further

Related use cases

* Cross-region replication

Reference material

Reference Description

Core Token Service (CTS)Z In-depth information on setting up AM CTS with explanations of the tradeoffs
Install DS for AM CTS Details about DS for CTS

Install DS for AM configuration Details about DS for AM configuration

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/cts-guide/preface.html
https://docs.pingidentity.com/pingam/7.5/cts-guide/preface.html

PingDS Use cases

Reference Description
Install DS for platform identities Details about DS for AM identities
Entry expiration Settings for letting DS reap expired tokens

Enforce limits

Enforce application and user limits to protect against a denial of service.

Description

Estimated time to complete: 20 minutes
DS has many settings to prevent client applications from using more than their share of directory resources.

@ Important

Don't disable global limit settings.
Lift restrictions for specific trusted client applications, accounts, or groups.

Goals

In completing this use case, you learn:
* The DS alternatives for enforcing limits.
* How to change limits.

* The result codes when an application exceeds a limit.

Example scenario

As a directory service administrator, Pat knows directory services are critical for identity applications.

To prevent performance problems and denial of service, Pat wants to restrict what a misbehaving client can do. Pat also wants to
make it easy for applications and users to take advantage of directory services.

Pat knows DS offers many options to set limits and aims to review them in light of the directory service requirements.

Prerequisites
Knowledge

Before you start:
+ Make sure you are familiar with working with the command line on your operating system.

« If you're new to directory services, work through the examples to learn LDAP.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Actions

Before you try the sample commands, install a DS server in evaluation mode.

Tasks
Task 1: Review enforceable limits

The following tables list available options for enforcing limits. To change limits for:
* Asingle 1dapsearch command, use the size or time limit options.
+ An application, user or group of accounts, set operational attributes.

+ A DS server, update configuration settings with the dsconfig command.

ldapsearch options

Limit Option to use
Size limit ldapsearch --sizelimit <number>
Time limit ldapsearch --timelLimit <number-of-seconds>

Operational attributes

Attribute What it overrides

ds-rlim-idle-time-1limit: <number-of-seconds> How long an idle connection remains open.

ds-rlim-size-1limit: <number> The maximum number of entries returned for a search.

ds-rlim-time-1limit: <number-of-seconds> The maximum processing time for a search operation.
Request limit settings

Setting Scope Description

max-request-size Connection handler! The maximum size request this connection handler allows.

When client applications add groups with large numbers of
members, for example, requests can exceed the default limit.
This setting affects only the size of requests, not responses.
Default: 5 megabytes

T HTTP and LDAP connection handlers have this setting.

Copyright © 2025 Ping Identity Corporation

PingDS

Use cases

Connection Iimits7

Setting

allowed-client

denied-client

idle-time-limit

max-allowed-client-
connections

restricted-client

restricted-client-connection-

limit

Scope

Global,
Connection handler?

Global,
Connection handler?

Global

Global

Global,
Connection handler?

Global,
Connection handler?

' DS applies the settings in this order:

Description

The client applications that DS accepts connections from
identified by hostname or IP address.
Default: not set

The client applications that DS refuses connections from
identified by hostname or IP address.
Default: not set

The maximum number of seconds a client connection may
remain established since its last completed operation.

If the network drops idle connections, set this to a lower
value than the idle time limit for the network. This is
particularly useful when networks drop idle connections
without notification and without closing the connection. It
ensures DS shuts down idle connections in an orderly
fashion.

DS servers do not enforce idle timeout settings for persistent
searches.

Default: @ (seconds), meaning no limit

The total number of concurrent client connections DS
accepts.

Each connection uses memory. On Linux systems, each
connection uses a file descriptor.

Default:"0°, meaning no limit

The client applications DS limits to restricted-client-
connection-1limit connections.
Default: not set

The maximum number of concurrent connections for
specified clients.
Default: 108 (connections)

1.If the denied-client property is set, DS denies connections from any client matching the settings.

2.Ifthe restricted-client property is set, DS counts the connections from any client matching the settings.

If a matching client exceeds restricted-client-connection-1limit connections, DS refuses additional connections.

3. If the allowed-client property is set, DS lets any client matching the settings connect.

4. If the limits are not set, DS lets any client connect.

2 The settings on a connection handler override the global settings.

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

Search limit settings

Setting Scope Description

max-psearches Global The maximum number of concurrent persistent searches.
Default: -1, meaning no limit

size-limit Global The maximum number of entries returned for a single
search.
Default: 1000 (entries)

time-limit Global The maximum number of seconds to process a single search.
Default: @ (seconds), meaning no limit

Task 2: Override account limits

1. Give an administrator access to update the operational attributes:

$ ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: ou=People, dc=example, dc=com
changetype: modify
add: aci
aci: (targetattr = "ds-rlim-time-limit||ds-rlim-size-limit")
(version 3.08;acl "Allow Kirsten Vaughan to manage search limits";
allow (all) (userdn = "ldap:///uid=kvaughan, ou=People, dc=example, dc=com") ;)
EOF

2. Override the limits for a single entry:

S ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery << EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

add: ds-rlim-size-limit

ds-rlim-size-limit: 10

EOF

When Babs Jensen performs an indexed search returning more than 10 entries, she reads the following message:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=people, dc=example, dc=com \
--bindPassword hifalutin \
--baseDN dc=example, dc=com \
"(sn=jensen)"

The LDAP search request failed: 4 (Size Limit Exceeded)
Additional Information: This search operation has sent the maximum of 10 entries to the client

Task 2: Override group limits

1. Give an administrator the privilege to write subentries:

$ 1ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: uid=kvaughan, ou=People, dc=example, dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: subentry-write
EOF

Notice here that the directory superuser, uid=admin, assigns privileges. Any administrator with the privilege-change
privilege can assign privileges. However, if the administrator can update administrator privileges, they can assign
themselves the bypass-acl privilege. Then they are no longer bound by access control instructions, including both user
data ACls and global ACls. For this reason, do not assign the privilege-change privilege to normal administrator users.

2. Create an LDAP subentry to override the limits with collective attributes:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ 1dapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery << EOF
dn: cn=Remove Administrator Search Limits, dc=example, dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Remove Administrator Search Limits
ds-rlim-size-1imit;collective: ©
ds-rlim-time-1imit;collective: ©
subtreeSpecification: {base "ou=people", specificationFilter
"(isMemberOf=cn=Directory Administrators, ou=Groups, dc=example,dc=com)" }
EOF

The base entry identifies the branch with administrator entries. For details on how subentries apply, refer to About
subentry scope.

3. Show an administrator account has limits set to @ (no limit):

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery \

--baseDN uid=kvaughan, ou=people, dc=example, dc=com \
--searchScope base \

"(&)" \

ds-rlim-time-1limit ds-rlim-size-limit

dn: uid=kvaughan, ou=People, dc=example, dc=com

ds-rlim-size-limit: @
ds-rlim-time-limit: @

Task 3: Limit persistent searches

An LDAP persistent search maintains an open connection until the client application ends the search. Whenever a modification
changes data in the search scope, DS returns a search result. The more concurrent persistent searches, the more work the server
has to do for each modification:

Set the global property max-psearches to limit total concurrent persistent searches.

The following command sets a maximum of 30 persistent searches:

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set max-psearches:30 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Task 4: Limit connections

« Limit the total concurrent connections DS accepts.

The following command sets the limit to 64K (the minimum number of file descriptors to make available to DS on a Linux
system):

$ dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set max-allowed-client-connections:65536 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

* Set an idle timeout of 24 hours:

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set idle-time-limit:24h \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

+ Limit access to clients in the example.com domain:

Copyright © 2025 Ping Identity Corporation

Use cases PingDS

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set allowed-client:example.com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

« Limit clients on the 10.0.0.* network to 1000 concurrent connections each:

$ dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set restricted-client:"10.0.0.*" \
--set restricted-client-connection-1imit:1000 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Task 5: Permit large requests

The following command increases the limit to 20 MB for the LDAP connection handler. This lets client applications add large static
group entries, for example:

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAP \

--set max-request-size:20mb \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Result codes

When an LDAP application exceeds a limit, DS responds with the appropriate result code:
* 3: Time Limit Exceeded when the request took too long to process.
* 4: Size Limit Exceeded when the request returned too many entries.

* 11: Administrative Limit Exceeded when the request exceeded a limit imposed by one of the other settings.

Copyright © 2025 Ping Identity Corporation

PingDS Use cases

Refer to any additional information DS returns with the result to determine what action to take.

Copyright © 2025 Ping Identity Corporation

Deployment

M Pingldentity.

PingDS Deployment

This guide focuses on how to use PingDS software to build secure, high-performance, manageable directory services. It helps
directory service architects design scalable services that fit their needs.

ahula
Project Outline

DS Software

Use DS components. Outline a successful plan.

riT o

Complete Plans Deployment Patterns

Create comprehensive plans. Apply best practices.

X ¥ [

Provisioning Checklists

Prepare systems and hardware. Follow checklists.

DS software

A directory service provides LDAP and HTTP access to distributed, shared directory data. A deployed directory service consists of
one or more components. Each component plays a particular role in your directory service. Before you design your deployment,

you need to be familiar with the roles that each component can play:

Copyright © 2025 Ping Identity Corporation

Deployment

PingDS

Client
application Tools
@
[O] %
HTTP A LDAP
HDAP Directory
gateway proxy server
| m— 0| /\
LDAP

LDAP

Directory server

Client Client
application application

[— 1]

5
[O] [O |

/ LDAP [/4 HTTP

Directory DSML
proxy server gateway
/\ Ports: —
& - Admin | m— o]
LN | HTTRGS) ==

- LDAP(S)
- JMX
- SNMP

LDAP LDAP

Directory server

Replication

o O
LI —

Replication messages

Ports:
- Admin
- HTTP(S)
- LDAP(S)
- JMX
. : - SNMP
Reghcgtlon Data - Replication
L ()
RTE——
—

« Directory servers maintain and serve requests for directory data.

Directory servers use data replication to ensure their data sets eventually converge everywhere. This documentation refers

to a replicated directory server as a replica.

+ (Optional) Directory proxy servers forward LDAP requests to directory servers and return responses to client applications.

+ (Optional) Replication servers transmit data replication messages among replicas.

Some advanced deployments use standalone replication servers. These servers only broker replication change messages
and do not store directory data. In most deployments, each directory server acts as a replication server as well.

* (Optional) DSML gateways intermediate between DSML client applications and an LDAP directory.

+ (Optional) HDAP gateways intermediate between RESTful HTTP client applications and LDAP directories.

+ LDAP client tools and server administration tools serve to test and configure servers.

Directory servers

Directory servers have the following characteristics.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Roles

Directory servers provide access to their copy of the distributed directory database. A directory server usually functions as the
repository of identities for users, applications, and things. They respond to requests from client applications directly or indirectly
through directory proxy servers. This includes the following:

+ LDAP requests for authentication, reads, and updates.

An LDAP client application authenticates with the directory server, and then performs one or more operations before
either re-authenticating to reuse the connection or ending the session and closing the connection.

« HTTP read and update requests, often including credentials for authentication.
An HTTP request translates to one or more internal LDAP requests.

+ Administrative requests, such as requests to modify the server configuration or to perform a task such as backup or LDIF
export.

In deployments with multiple replicas, directory servers replay replicated operations. Expect each replica to replay every
successful update to any replica.

Data

In addition to the libraries and tools delivered with the server distribution, a directory server has the following persistent state
information and local data:

User data

Directory servers store user data. The directory server stores the data in local storage, such as an internal disk or an
attached disk array. The storage must keep pace with throughput for update operations.

The amount of user data depends entirely on the deployment, ranging from a few LDAP entries to more than a billion. The
amount of user data grows or shrinks depending on the pattern of update operations.

The directory server stores user data in a backend database. For details, refer to Data storage.

Metadata for replication

To avoid single points of failure, almost all real-world deployments depend on replication. Each directory server is a replica
of other directory servers, meaning it holds an eventually consistent copy of the data on the other replicas.

When serving a request to update directory data, the directory server modifies its data and makes a request to a
replication server. The replication server is usually but not always part of the same Java process as the directory server.
The replication server ensures all other replicas update their data to eventually reflect the current state of the data.

To tolerate network partitions, the directory service supports concurrent update operations on different replicas.
Concurrent updates potentially cause conflicts, but directory servers can resolve most conflicts automatically. To resolve
conflicts, a directory server stores historical metadata alongside user data, trading space for resilience. For details, refer to
About replication.

The directory server purges this historical metadata after a configurable interval. The volume of historical metadata
depends on the total number of updates made to the directory service since the purge interval.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

Server configuration

Each server has configuration data in its config directory. This includes the server configuration in LDIF and JSON files,
LDAP schema definitions in LDIF files, keystores, and some additional data.

When installing a server, the setup command instantiates this configuration data from templates.

When upgrading a server, the upgrade command applies necessary changes to the configuration data.
Log files
The server writes multiple log files by default, including error and access logs.

The server writes a message to the current access log for each operation. For high-volume directory services, log file
storage must keep pace with the requests to record access to the service.

Log file retention and rotation policies prevent log file data from filling the disk. For details, refer to Logging. As a result of
default retention policies, messages can eventually be lost unless you copy old files to another system for permanent
storage.

Backup files

When you export directory data to LDIF or create a backup, the directory server writes the files to the specified directory. If
you never purge or move these files, they can eventually fill the disk.

For details, refer to Import and export, and Backup and restore.

System resources

When deciding how to deploy a directory server, think of it as a copy of the database. A large, high-performance, distributed
database serving lots of applications requires more system resources than a small database serving one, simple application.

A directory server requires the following system resources:
« Sufficient RAM to cache frequently used data.
For best read performance, cache the entire directory data set in memory.
« Sufficient CPU to perform any required calculations.

Authentication operations generally use more CPU than other operations. In particular, password storage schemes like
PBKDF2 are designed to consume CPU resources. Calculations for transport layer security can use CPU as well, particularly
if many client requests are over short-lived HTTPS connections.

« Sufficient fast disk access to serve client applications, to replay replication operations, and to log access and errors.

The underlying disk subsystem must serve enough input/output operations per second (IOPS) to avoid becoming a
bottleneck when performing these operations. A small database that serves few client operations and changes relatively
infrequently requires fewer IOPS than a large database sustaining many updates and serving many clients.

Plan additional capacity for any backup or LDIF files stored on local partitions.

« Sufficiently fast network access to serve client applications and relay replication traffic.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

When considering network requirements, keep the following points in mind:
o Each LDAP search request can return multiple response messages.

o Each request to update directory data results in corresponding replication traffic. The operation must be
communicated to replication servers and replayed on each other directory server.

o Once established, and unlike most HTTP connections, LDAP connections remain open until the client closes the
connection, or until the server idles the connection. This is particularly true for applications using persistent
searches, which by design are intended to be permanent.

Replication servers

A replication server is usually but not always part of the same Java process as a directory server.
Replication servers have the following characteristics.

Roles

Replication servers provide the following services:
* Receive and transmit change messages between replicas.
Each replica is connected to one replication server at a time.

+ Maintain information about all other replication servers and directory servers in the deployment that replicate the same
data.

Change messages travel from a connected directory server to the replication server. The replication server transmits the
message to connected replicas and to the other replication servers, which in turn transmit the message to their connected
replicas. This hub-and-spoke communication model means directory services can be composed of many individual
servers.

* Respond to administrative requests.
+ Respond to requests for monitoring information.

In all deployments using replication, the replication service provides the foundation of directory service availability. This is as
important to the directory service as a naming service is for a network.

To avoid a single point of failure, always install two or more replication servers. For example, install at least two directory servers
operating as replication servers as well.

Data

In addition to the libraries and tools delivered with the server distribution, a replication server has the following persistent state
information and local data:

Change data

When serving a request to update directory data, a directory server, described in Directory servers, modifies its data and
makes a request to a replication server. The replication server makes sure all other replicas update their data to eventually
reflect the current state of the data.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

The replication protocol is proprietary. Replication servers expose a public record of changes in a change log, allowing
other applications to keep up to date with changes to user data. Replication servers store changes in change log files. For
details, refer to Changelog for notifications.

The replication server purges this historical metadata after a configurable interval. The volume of historical metadata
depends on the updates made to the directory service since the purge interval.

Server configuration

Each server has configuration data in its config directory. This includes the server configuration in LDIF and JSON files,
LDAP schema definitions in LDIF files, keystores, and some additional data.

When installing a server, the setup command instantiates this configuration data from templates.

When upgrading a server, the upgrade command applies necessary changes to the configuration data.
Log files

The server writes multiple log files by default, including error and access logs.

Log file retention and rotation policies prevent log file data from filling the disk. For details, refer to Logging. This means,
however, that messages are eventually lost unless you move old files to another system for permanent storage.

System resources

When deploying a replication server, keep its foundational role in mind. Directory servers communicate with other replicas
through replication servers. Directory proxy servers rely on replication servers to find directory servers.

A replication server requires the following system resources:
« Sufficient fast disk access to log and read change messages, and to update access and error logs.

The underlying disk subsystem must serve enough IOPS to avoid becoming a bottleneck when performing these
operations.

« Sufficiently fast network access to receive and transmit change messages for multiple replicas and for each other
replication server.

Directory proxy servers

Some deployments use directory proxy servers.
Directory proxy servers have the following characteristics.

Roles

Directory proxy servers provide the following services:
* Balance load of requests to LDAP directory servers.
* Receive and transmit LDAP client requests to LDAP directory servers.
+ Receive and transmit LDAP directory server responses to LDAP client applications.

* Respond to administrative requests.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

+ Respond to requests for monitoring information.

A directory proxy server can hide the underlying directory service architecture from client applications, enabling you to build a
single point of directory service access.

A directory proxy server can discover directory servers through a replication server. This capability depends on the replication
server configuration. If you use the proxy server with third-party directory service components, then you must manually maintain
the network locations for directory servers.

A directory proxy server provides LDAP access to remote LDAP directory servers. If you want to offer HTTP access to remote LDAP
directory servers, use a gateway instead. For details, refer to HDAP gateway.

Data

In addition to the libraries and tools delivered with the server distribution, a directory proxy server has the following persistent
state information and local data:

Server configuration

Each server has configuration data in its config directory. This includes the server configuration in LDIF and JSON files,
LDAP schema definitions in LDIF files, keystores, and some additional data.

When installing a server, the setup command instantiates this configuration data from templates.

When upgrading a server, the upgrade command applies necessary changes to the configuration data.
Log files
The server writes multiple log files by default, including error and access logs.

Log file retention and rotation policies prevent log file data from filling the disk. For details, refer to Logging. This means,
however, that messages are eventually lost unless you move old files to another system for permanent storage.

System resources

A directory proxy server decodes incoming and encodes outgoing requests and responses. When you deploy directory proxy
servers, the volume of decoding and encoding means you might need as many proxy servers as directory servers.

A directory proxy server requires the following system resources:
« Sufficient fast disk access to update access and error logs.

The underlying disk subsystem must serve enough IOPS to avoid becoming a bottleneck when performing these
operations.

« Sufficiently fast network access to receive and transmit client requests and server responses.
« Sufficient CPU to perform any required calculations.
Request and response decoding and encoding consume CPU resources.

« Sufficient RAM to maintain active connections.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

Command-line tools

When you install a server, its files include tools for setup, upgrade, configuration, and maintenance, and LDAP command-line
tools for sending LDAP requests and measuring directory service performance.

For details, refer to Server commands.

DSML gateway

@ Important

The interface stability of this feature is Deprecated.

The standalone DSML gateway web application has the following characteristics.
You can install this component independently of directory services. For details, refer to Install a DSML gateway.

Roles

DSML gateways provide the following services:
* Receive HTTP DSML requests from client applications, and transmit them as LDAP requests to a directory service.
+ Receive LDAP responses from a directory service, and transmit them as HTTP DSML responses to client applications.
A DSML gateway runs in a Java web application container. It is limited to one host:port combination for the LDAP directory service.

Data

A DSML gateway maintains only its own service configuration, recorded in the web application WEB-INF/web.xml file. It depends
on the host web application container for other services, such as logging.

System resources

A DSML gateway requires the following system resources:
« Sufficiently fast network access to receive and transmit client requests and server responses.
« Sufficient CPU to perform any required calculations.
Request and response decoding, encoding, and transformation all consume CPU resources.
Calculations to secure network connections also consume CPU resources.

« Sufficient RAM to maintain active connections.

HDAP gateway

The standalone HDAP gateway web application has the following characteristics. REST refers to the representational state
transfer architectural style. RESTful requests use the HTTP protocol.

You can install this component independently of directory services. For details, refer to Install an HDAP gateway.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Roles
HDAP gateways provide the following services:
* Receive HTTP requests from client applications, and transmit them as LDAP requests to a directory service.
+ Receive LDAP responses from a directory service, and transmit them as HTTP responses to client applications.

An HDAP gateway runs in a Java web application container. You can configure the gateway to contact multiple LDAP directory
servers.

Data

An HDAP gateway maintains only its own service configuration files. It depends on the host web application container for other
services, such as logging.

System resources
An HDAP gateway requires the following system resources:
« Sufficiently fast network access to receive and transmit client requests and server responses.
« Sufficient CPU to perform any required calculations.
Request and response decoding, encoding, and transformation all consume CPU resources.
Calculations to secure network connections also consume CPU resources.

« Sufficient RAM to maintain active connections.

Project outline

Consider the following when preparing the high-level project plan.

Needs assessment

Needs assessment is prerequisite to developing a comprehensive deployment plan. An accurate needs assessment is critical to
ensuring that your directory services implementation meets your business needs and objectives.

As part of the needs assessment, make sure you answer the following questions:
What are your business objectives?
Clarify and quantify your business goals for directory services.
Why do you want to deploy directory services?
Consider at least the following list when answering this question:
+ Is this a greenfield deployment?
+ Do you need to transition an existing deployment to the cloud?

+ Do you need to scale existing deployment for more users, devices, or things?

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

If you have an existing deployment, how do you upgrade?
Consider at least the following list when answering this question:
+ Do you require a graceful upgrade?
* What obsolete components need a graceful transition?
What should their replacements be?
* What are the costs related to the change?
How can you save cost by making the transition?

Define objectives based on your needs assessment. State your objective so that all stakeholders agree on the same goals and
business objectives.

Deployment planning

Deployment planning is critical to ensuring that your directory services are properly implemented within the time frame
determined by your requirements. The more thoroughly you plan your deployment, the more solid your configuration will be,
and you will meet timelines and milestones while staying within budget.

A deployment plan defines the goals, scope, roles, and responsibilities of key stakeholders, architecture, implementation, and
testing of your DS deployment. A good plan ensures that a smooth transition to a new product or service is configured and all
possible contingencies are addressed to quickly troubleshoot and solve any issue that may occur during the deployment process.

The deployment plan also defines a training schedule for your employees, procedural maintenance plans, and a service plan to
support your directory services.

Important questions

* What key applications does your system serve? Understand how key client applications will use your directory service
and what they require. Based on this understanding, you can match service level objectives (SLOs) to operational
requirements. This ensures that you focus on what is critical to your primary customers.

* What directory data does your system serve? Directory data can follow standard schema and be shared by many
applications. Alternatively, it can be dedicated to a single application such as AM CTS or IDM repository. Key applications
can impose how they access directory data, or the directory data definition can be your decision.

In addition, know where you will obtain production data, and in what format you will obtain it. You might need to maintain
synchronization between your directory service and existing data services.

* What are your SLOs? In light of what you know about key and other applications, determine your SLOs. An SLO is a target
for a directory service level that you can measure quantitatively.

What objectives will you set for your service? How will you measure the following?
o Availability
o Response times
o Throughput

° Support response

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

* What are your availability requirements? DS services are designed to run continuously, without interruption even during
upgrade. Providing a highly available service of course comes with operational complexities and costs.

If your deployment must be highly available, take care in your planning phase to avoid single points of failure. You will
need to budget for redundancy in all cases, and good operational policies, procedures, and training to avoid downtime as
much as possible.

If your deployment does not require true high availability, however, you will benefit from taking this into account during
the planning stages of your deployment as well. You may be able to find significant cost savings as a trade for lower
availability.

+ What are your security requirements? DS services build in security in depth, as described in Security.

Understand the specific requirements of your deployment in order to use only the security features you really need. If you
have evaluated DS software by setting up servers with the evaluation setup profile, be aware that access control settings
for Example.com data in the evaluation setup profile are very lenient.

+ Are all stakeholders engaged starting in the planning phase? This effort includes but is not limited to delivery resources,
such as project managers, architects, designers, implementers, testers, and service resources, such as service managers,
production transition managers, security, support, and sustaining personnel. Input from all stakeholders ensures all
viewpoints are considered at project inception, rather than downstream, when it may be too late.

Planning steps

Follow these steps to a successful deployment.
Project initiation
The project initiation phase begins by defining the overall scope and requirements of the deployment. Plan the following items:
+ Determine the scope, roles and responsibilities of key stakeholders and resources required for the deployment.
+ Determine critical path planning including any dependencies and their assigned expectations.
* Run a pilot to test the functionality and features of AM and uncover any possible issues early in the process.
« Determine training for administrators of the environment and training for developers, if needed.

Design

The design phase involves defining the deployment architecture. Plan the following items:

+ Determine the use of products, map requirements to features, and ensure the architecture meets the functional
requirements.

+ Ensure that the architecture is designed for ease of management and scale. TCO is directly proportional to the complexity
of the deployment.

+ Define the directory data model.
+ Determine how client applications will access directory data, and what data they have access to.

* Determine which, if any, custom DS server plugins must be developed. Derive specifications and project plans for each
plugin.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

+ Determine the replication configuration.

+ Define backup and recovery procedures, including how to recover all the servers, should disaster occur.
+ Define monitoring and audit procedures, and how the directory service integrates with your tools.

« Determine how to harden DS servers for a secure deployment.

+ Define the change management process for configurations and custom plugins.

+ Define the test criteria to validate that the service meets your objectives.

+ Define the operations required to maintain and support the running service.

+ Define how you will roll out the service into production.

+ Determine how many of each DS server type to deploy in order to meet SLOs. In addition, define the systems where each
of the servers will run.

Implementation

The implementation phase involves deploying directory services. Plan the following items:
* Provision the DS servers.
+ Maintain a record and history of the deployment for consistency across the project.
* Monitor and maintain the running service.

Automation and testing

The automation and continuous integration phase involves using tools for testing. Plan the following items:

+ Use a continuous integration server, such as Jenkins, to ensure that changes have the expected impact, and no change
causes any regressions.

« Ensure your custom plugins follow the same continuous integration process.

« Test all functionality to deliver the solution without any failures. Ensure that all customizations and configurations are
covered in the test plan.

« Non-functionally test failover and disaster recovery procedures. Run load testing to determine the demand of the system
and measure its responses. During this phase, anticipate peak load conditions.

Supportability

The supportability phase involves creating the runbook for system administrators and operators. This includes procedures for
backup and restore operations, debugging, change control, and other processes.

If you have a Ping Identity support contract, it ensures everything is in place prior to your deployment.

Comprehensive plans

Your comprehensive deployment plan should cover the following themes.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Team training

Training provides a common understanding, vocabulary, and basic skills for those working together on the project. Depending on
previous experience with access management and with DS software, both internal teams and project partners might need
training.

The type of training team members need depends on their involvement in the project:

+ All team members should take at least some training that provides an overview of DS software. This helps to ensure a
common understanding and vocabulary for those working on the project.

* Team members planning the deployment should take an DS training before finalizing their plans, and ideally before
starting to plan the deployment.

DS training pays for itself as it helps you to make the right initial choices to deploy more quickly and successfully.

« Team members involved in designing and developing DS client applications or custom plugins should take training in DS
development in order to help them make the right choices.

+ Team members who have already had been trained in the past might need to refresh their knowledge if your project
deploys newer or significantly changed features, or if they have not worked with DS software for some time.

Ping Identity training regularly offers training courses for DS topics.

When you have determined who needs training and the timing of the training during the project, prepare a training schedule
based on team member and course availability. Include the scheduled training plans in your deployment project plan.

Ping Identity also offers an accreditation program for partners, including an in-depth assessment of business and technical skills
for each Ping Identity product. This program is open to the partner community and ensures that best practices are followed
during the design and deployment phases.

Customization

DS servers provide a Java plugin API that allows you to extend and customize server processing. A server plugin is a library that
you plug into an installed server and configure for use. The DS server calls the plugin as described in Plugin types.

DS servers have many features that are implemented as server plugin extensions. This keeps the core server processing focused
on directory logic, and loosely coupled with other operations.

When you create your own custom plugin, be aware you must at a minimum recompile and potentially update your plugin code
for every DS server update. The plugin API has interface stability: Evolving. A plugin built with one version of a server is not
guaranteed to run or even to compile with a subsequent version. Only create your own custom plugin when you require
functionality that the server cannot be configured to provide. The best practice is to deploy DS servers with a minimum of custom
plugins.

@ Note

Ping Identity supports customers using standard plugins delivered as part of DS software.
If you deploy with custom plugins and need support in production, contact info@forgerock.com in advance to
determine how your deployment can be supported.

Copyright © 2025 Ping Identity Corporation

mailto:info@forgerock.com

Deployment PingDS

Although some custom plugins involve little development work, they can require additional scheduling and coordination. The
more you customize, the more important it is to test your deployment thoroughly before going into production. Consider each
custom plugin as sub-project with its own acceptance criteria. Prepare separate plans for unit testing, automation, and
continuous integration of each custom plugin. For details, refer to Tests.

When you have prepared plans for each custom plugin sub-project, you must account for those plans in your overall deployment
project plan.

Plugin types

Plugin types correspond to the points where the server invokes the plugin.

For the full list of plugin invocation points, refer to the Javadoc for PluginType. The following list summarizes the plugin invocation
points:

* At server startup and shutdown

+ Before and after data export and import

« Immediately after a client connection is established or is closed

+ Before processing begins on an LDAP operation (to change an incoming request before it is decoded)
* Before core processing for LDAP operations (to change the way the server handles the operation)

+ After core processing for LDAP operations (where the plugin can access all information about the operation including the
impact it has on the targeted entry)

* When a subordinate entry is deleted as part of a subtree delete, or moved or renamed as part of a modify DN operation
+ Before sending intermediate and search responses
« After sending a result

A plugin’s types are specified in its configuration, and can therefore be modified at runtime.

Plugin configuration

Server plugin configuration is managed with the same configuration framework that is used for DS server configuration.
The DS configuration framework has these characteristics:
« LDAP schemas govern what attributes can be used in plugin configuration entries.

For all configuration attributes that are specific to a plugin, the plugin should have its own object class and attributes
defined in the server LDAP schema. Having configuration entries governed by schemas makes it possible for the server to
identify and prevent configuration errors.

For plugins, having schema for configuration attributes means that an important part of plugin installation is making the
schema definitions available to the DS server.

* The plugin configuration is declared in XML files.

The XML specifies configuration properties and their documentation, and inheritance relationships.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

The XML Schema Definition files (.xsd files) for the namespaces used are not published externally. For example, the
namespace identifier http://opendj.forgerock.org/admin is not an active URL. An XML configuration definition has
these characteristics:

o The attributes of the <managed-object> element define XML namespaces, a (singular) name and plural name for
the plugin, and the Java-related inheritance of the implementation to generate. A managed object is a configurable
component of DS servers.

A managed object definition covers the object's structure and inheritance, and is like a class in Java. The actual
managed object is like an instance of an object in Java. Its configuration maps to a single LDAP entry in the
configuration backend cn=config.

Notice that the <profile> element defines how the whole object maps to an LDAP entry in the configuration. The
<profile> elementis mandatory, and should include an LDAP profile.

The name and plural-name properties are used to identify the managed object definition. They are also used
when generating Java class names. Names must be a lowercase sequence of words separated by hyphens.

The package property specifies the Java package name for generated code.
The extends property identifies a parent definition that the current definition inherits.
° The mandatory <synopsis> element provides a brief description of the managed object.

If a longer description is required, add a <description>.The <description> is used in addition to the synopsis,
so there is no need to duplicate the synopsis in the description.

o The <property> element defines a property specific to the plugin, including its purpose, its default value, its type,
and how the property maps to an LDAP attribute in the configuration entry.

The name attribute is used to identify the property in the configuration.

° The <property-override> element sets the pre-defined property java-class to the fully qualified
implementation class.

« Compilation generates the server-side and client-side APIs to access the plugin configuration from the XML. To use the
server-side APIs in a plugin project, first generate and compile them, and then include the classes on the project classpath.

When a plugin is loaded in the DS server, the client-side APIs are available to configuration tools like the dsconfig
command. Directory administrators can configure a custom plugin in the same way they configure other server
components.

* The framework supports internationalization.

The plugin implementation selects appropriate messages from the resource bundle based on the server locale. If no
message is available for the server locale, the plugin falls back to the default locale.

A complete plugin project includes LDAP schema definitions, XML configuration definitions, Java plugin code, and Java resource
bundles. For examples, refer to the sample plugins delivered with DS software.
Pilot projects

Unless you are planning a maintenance upgrade, consider starting with a pilot implementation, which is a long-term project that
is aligned with your specific requirements.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

A pilot shows that you can achieve your goals with DS software plus whatever custom plugins and companion software you
expect to use. The idea is to demonstrate feasibility by focusing on solving key use cases with minimal expense, but without
ignoring real-world constraints. The aim is to fail fast, before investing too much, so you can resolve any issues that threaten the
deployment.

Do not expect the pilot to become the first version of your deployment. Instead, build the pilot as something you can afford to
change easily, and to throw away and start over if necessary.

The cost of a pilot should remain low compared to overall project cost. Unless your concern is primarily the scalability of your
deployment, you run the pilot on a much smaller scale than the full deployment. Scale back on anything not necessary to
validating a key use case.

Smaller scale does not necessarily mean a single-server deployment, though. If you expect your deployment to be highly
available, for example, one of your key use cases should be continued smooth operation when part of your deployment becomes
unavailable.

The pilot is a chance to experiment with and test features and services before finalizing your plans for deployment. The pilot
should come early in your deployment plan, leaving appropriate time to adapt your plans based on the pilot results. Before you
can schedule the pilot, team members might need training. You might require prototype versions of functional customizations.

Plan the pilot around the key use cases that you must validate. Make sure to plan the pilot review with stakeholders. You might

need to iteratively review pilot results as some stakeholders refine their key use cases based on observations.

Directory data model

Before you start defining how to store and access directory data, you must know what data you want to store, and how client
applications use the data. You must have or be able to generate representative data samples for planning purposes. You must be
able to produce representative client traffic for testing.

When defining the directory information tree (DIT) and data model for your service, answer the following questions:
+ What additional schema definitions does your directory data require?
Refer to LDAP schema extensions.
* What are the appropriate base DNs and branches for your DIT?
Refer to The DIT.
+ How will applications access the directory service? Over LDAP? Over HTTP?
Refer to Data views.

* Will a single team manage the directory service and the data? Will directory data management be a shared task, delegated
to multiple administrators?

Refer to Data management.
+ What groups will be defined in your directory service?
Refer to Groups.

« What sort of data will be shared across many directory entries? Should you define virtual or collective attributes to share
this data?

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Refer to Shared data.

+ How should you cache data for appropriate performance?
Refer to Caching.

* How will identities be managed in your deployment?
Refer to Identity management.

LDAP schema extensions

As described in LDAP schema, DS servers ship with many standard LDAP schema definitions. In addition, you can update LDAP
schema definitions while the server is online.

This does not mean, however, that you can avoid schema updates for your deployment. Instead, unless the data for your
deployment requires only standard definitions, you must add LDAP schema definitions before importing your data.

Follow these steps to prepare the schema definitions to add:

1. If your data comes from another LDAP directory service, translate the schema definitions used by the data from the
existing directory service. Use them to start an LDIF modification list of planned schema updates, as described in Update
LDAP schema.

The schema definitions might not be stored in the same format as DS definitions. Translating from existing definitions
should be easier than creating new ones, however.

As long as the existing directory service performs schema checking for updates, the directory data you reuse already
conforms to those definitions. You must apply them to preserve data integrity.

2. If your data comes from applications that define their own LDAP schema, add those definitions to your list of planned
schema updates.

3. Match as much of your data as possible to the standard LDAP schema definitions listed in the LDAP schema reference.

4. Define new LDAP schema definitions for data that does not fit existing definitions. This is described in About LDAP
schema, and Update LDAP schema.

Add these new definitions to your list.
Avoid any temptation to modify or misuse standard definitions, as doing so can break interoperability.

Once your schema modifications are ready, use comments to document your choices in the source LDIF. Keep the file under
source control. Apply a change control process to avoid breaking schema definitions in the future.

Perhaps you can request object identifiers (OIDs) for new schema definitions from an OID manager in your organization. If not,
either take charge of OID assignment, or else find an owner who takes charge. OIDs must remain globally unique, and must not
be reused.

The DIT

When defining the base DNs and hierarchical structure of the DIT, keep the following points in mind:

* For ease of use, employ short, memorable base DNs with RDNs using well-known attributes.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

For example, you can build base DNs that correspond to domain names from domain component (dc) RDNs. The sample
data for Example.com uses dc=example, dc=com.

Well-known attributes used in base DNs include the following:

° ¢ :country, a two-letter ISO 3166 country code
o dc: component of a DNS domain name
o 1:locality
° 0:o0rganization
° ou:organizational unit
° st :state or province name

« For base DNs and hierarchical structures, depend on properties of the data that do not change.

For example, the sample data places all user entries under ou=People, dc=example, dc=com. There is no need to move a
user account when the user changes status, role in the organization, location, or any other property of their account.

* Introduce hierarchical branches in order to group similar entries.

As an example of grouping similar entries, the following branches separate apps, devices, user accounts, and LDAP group
entries:

° ou=Apps, dc=example, dc=com

° ou=Devices, dc=example, dc=com
° ou=Groups,dc=example, dc=com
° ou=People, dc=example, dc=com

In this example, client application accounts belong under ou=Apps . A user account under ou=People for a device owner
or subscriber can have an attribute referencing devices under ou=Devices . Device entries can reference their owner in
ou=People . Group entries can include members from any branch. Their members' entries would reference the groups
with isMemberoOf .

« Otherwise, use hierarchical branches only as required for specific features. Such features include the following:
o Access control

o Data distribution

o

Delegated administration
° Replication
° Subentries

Use delegated administration when multiple administrators share the directory service. Each has access to manage a
portion of the directory service or the directory data. By default, ACls and subentries apply to the branch beneath their
entry or parent. If a delegated administrator must be able to add or modify such operational data, the DIT should prevent
the delegated administrator from affecting a wider scope than you intend to delegate.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

As described in About replication, the primary unit of replication is the base DN. If necessary, you can split a base DN into
multiple branches. For example use cases, read Deployment patterns.

Once you have defined your DIT, arrange the directory data you import to follow its structure.

Data views

DS offers LDAP and HTTP connection handlers.
Connection handlers govern connection security and access from specified client hostnames or address masks.

Data management

In a shared or high-scale directory service, service management—installation and configuration, backup, and recovery—may be
the responsibility of only a few specialists. These tasks may be carefully scripted.

Directory data management is, however, often a task shared by multiple users. Many of these tasks may be performed manually.
In addition, users may be responsible for profile data in their own entry, including passwords, for example. You can arrange the
DIT hierarchically to make it easier to scope control of administrative access.

Your plan must define who should have what access to which data, and list the privileges and access controls to grant such
access. Read Administrative roles to review the alternatives.

Groups

As described in Groups, DS directory servers offer dynamic, static, and virtual static group implementations:
+ Dynamic groups identify members with an LDAP URL.

An entry belongs to a dynamic group when it matches the base DN, scope, and filter defined in a member URL of the
group. Changes to the entry can modify its dynamic group membership.

« Static groups enumerate each member. The size of a static group entry can grow very large in a high-scale directory.

+ Virtual static groups are like dynamic groups, but the server can be configured to have them return a list of members
when read.

Consider your data and client applications. Use dynamic or virtual static groups whenever possible.

Shared data

As described in Virtual attributes, and Collective attributes, DS servers support virtual and collective attributes that let entries
share attribute values. Sharing attribute values where it makes sense can significantly reduce data duplication, saving space and
avoiding maintenance updates.

Consider your directory data. You can use virtual or collective attributes to replace attributes that repeat on many entries and can
remain read-only on those entries. Familiar use cases include postal addresses that are the same for everyone in a given location,
and class of service properties that depend on a service level attribute.

Caching

A directory server is an object-oriented database. It will therefore exhibit its best performance when its data is cached in memory.
This is as true for large static groups mentioned in Groups as it is for all directory data.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

A disadvantage of caching all data is that systems with enough RAM are more expensive. Consider the suggestions in Database
Cache Settings, testing the results for your data when planning your deployment.

Identity management

DS servers have the following features that make them well-suited to serve identity data:
+ LDAP entries provide a natural model for identity profiles and accounts.

LDAP entries associate a unique name with a flat, extensible set of profile attributes such as credentials, location or
contact information, descriptions, and more. LDAP schemas define what entries can contain, and are themselves
extensible at runtime.

Because they are defined and accessible in standard ways, and because fine-grained access controls can protect all
attributes of each entry, the profiles can be shared by all network participants as the single source of identity information.

Profile names need not be identified by LDAP DNs. For HTTP access, DS servers offer several ways to map to a profile,
including mapping an HTTP user name to an LDAP name, or using an OAuth 2.0 access token instead. For devices and
applications, DS servers can also map public key certificates to profiles.

Directory services are optimized to support common authentication mechanisms.

LDAP entries easily store and retrieve credentials, keys, PKI metadata, and more. Where passwords are used, directory
services support multiple secure and legacy password storage schemes. You can also configure directory servers to
upgrade password storage when users authenticate.

Each individual server can process thousands of authentication requests per second.

PingAM integrates directory authentication into full access management services, including making directory
authentication part of a flow that potentially involves multiple authentication steps.

Directory services support user self-service operations and administrator intervention.

Directory services let you protect accounts automatically or manually by locking accounts after repeated authentication
failure, expiring old passwords, and tracking authentication times to distinguish active and inactive accounts. Directory
services can then notify applications and users about account-related events, such as account lockout, password
expiration, and other events.

Users can be granted access to update their own profiles and change their passwords securely. If necessary,
administrators can also be granted access to update profiles and to reset passwords.

PingIDM integrates directory account management features into full identity management services.

Further Reading on Managing Identities

Topics References

Account Management
* Accounts

* Active accounts

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Topics References

Authentication
 Authentication mechanisms

* Authentication (binds)

+ Certificate-based authentication
+ Pass-through authentication

« HDAP API reference

Authorization
+ Configure HTTP authorization

* Proxied authorization

Password Management
+ Password management

* Changing passwords over LDAP
* Changing passwords over HTTP

Directory access

Consider these topics when designing the access model for your deployment.

Separation of duties (SoD)

The fewer restrictions you place on an administrative account, the greater the danger the account will be misused.

As described in Administrative access, you can avoid using directory superuser accounts for most operations. Instead, limit
administrator privileges and access to grant only what their roles require. The first high-level distinction to make is between
operational staff who manage the service, and those users who manage directory data. Read the section cited for fine-grained
distinctions.

When your deployment involves delegated administration, it is particularly important to grant only required access to the
delegates. This is easier if your DIT supports appropriate access scopes by default, as described in The DIT.

Immutable and mutable configuration

An immutable configuration does not change at runtime. A mutable configuration does change at runtime.

With an immutable configuration, you maintain the server configuration as an artifact under source control, and manage changes
by applying the same process you use for other source code. This approach helps prevent surprises in production configurations.
If properly applied, there is little risk of rolling out an untested change.

With a mutable configuration, operational staff have more flexibility to make changes. This approach requires even more careful
change management for test and production systems.

DS server configurations can be immutable, except for the portion devoted to replication, which evolves as peer servers come
and go.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

DS directory data, however, must remain mutable to support write operations. As long as you separate directory data from the
configuration, this does not prevent you from replacing directory server replicas. As described in Manual initialization, new
replicas can start with existing data sets.

Fine-grained access

DS servers provide both HTTP and LDAP access to directory data. HTTP access to directory data eventually translates to LDAP
access internally. At the LDAP level, DS servers provide powerful, fine-grained access control.

The default server behavior is to refuse all access. All DS servers therefore grant some level of access through privileges, and
through access controls. For details, refer to Access control.

Access control instructions (ACIs) in directory data take the form of aci LDAP attributes, or global-aci properties in the server
configuration. You write ACls in a domain-specific language. The language lets you describe concisely who has access to what
under what conditions. When configuring access control, notice that access controls apply beneath their location in the directory
information tree. As a result, some ACls, such as those granting access to LDAP controls and extended operations, must be
configured for the entire server rather than a particular location in the data.

Privileges

Administrative privileges provide a mechanism that is separate from access control to restrict what administrators can do.

You assign privileges to users as values of the ds-privilege-name LDAP attribute. You can assign privileges to multiple users
with collective attribute subentries. For details, refer to Administrative privileges.

Take care when granting privileges, especially the following privileges:
* bypass-acl: The holder is not subject to access control.
+ config-write: The holder can edit the server configuration.
* modify-acl: The holder can edit access control instructions.
+ privilege-change : The holder can edit administrative privileges.

+ proxied-auth : The holder can make requests on behalf of another user, including directory superusers such as

uid=admin.
Authentication

DS servers support a variety of authentication mechanisms.
When planning your service, use the following guidelines:
+ Limit anonymous access to public data.
+ Allow simple (username and password) authentication only over secure connections.

+ Require client applications to authenticate based on public key certificates (EXTERNAL SASL mechanism) rather than
simple authentication where possible.

For details, refer to Authentication mechanisms.

Proxy layer

DS directory proxy servers and the DS HDAP gateway application offer access to remote directory services.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Unlike directory servers, directory proxy servers do not hold directory data, and so use global access policies rather than ACls.
You define global access policies as server configuration objects. For details, refer to Access control.

As mentioned in System resources, be aware that for high-performance services you may need to deploy as many proxy servers
or gateways as directory servers.

For details about DS LDAP proxy services, refer to LDAP proxy.

HTTP access

Refer to HTTP access or Install an HDAP gateway.

Higher-level abstraction

Although LDAP and RESTful HTTP access ensure high performance, your deployment may require a higher level of abstraction
than LDAP or HTTP can provide.

Other Ping Identity Platform components offer such higher-level abstractions. For example, PingAM software lets you plug into
directory services for authentication and account profiles, and then orchestrate powerful authentication and authorization
scenarios. PingIDM software can plug into directory services to store configuration and account profiles, to provide user self-
services, and to synchronize data with a wide variety of third-party systems.

For an introduction to the alternatives, read about the Ping Identity Platform(Z.

Data replication

Replication is the process of synchronizing data updates across directory servers. Replication is the feature that makes the
directory a highly available distributed database.

Consistency and availability

Replication is designed to provide high availability with tolerance for network partitions. In other words, the service continues to
allow both read and write operations when the network is down. Replication provides eventual consistency, not immediate
consistency.

According to what is called the CAP theorem, it appears to be impossible to guarantee consistency, availability, and partition
tolerance when network problems occur. The CAP theorem makes the claim that distributed databases can guarantee at most
two of the following three properties:

Consistency

Read operations reflect the latest write operation (or result in errors).
Availability

Every correct operation receives a non-error response.
Partition Tolerance

The service continues to respond even when the network between individual servers is down or operating in degraded
mode.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/platform/7.5/platform-guide/
https://docs.pingidentity.com/platform/7.5/platform-guide/

Deployment PingDS

When the network connection is down between two replicas, replication is temporarily interrupted. Client applications continue
to receive responses to their requests, but clients making requests to different servers will not have the same view of the latest
updates. The discrepancy in data on different replicas also arises temporarily when a high update load takes time to fully process
across all servers.

Eventual consistency can be a trap for the unwary. The client developer who tests software only with a single directory server
might not notice problems that become apparent when a load balancer spreads requests evenly across multiple servers. A single
server is immediately consistent for its own data. Implicit assumptions about consistency therefore go untested.

For example, a client application that implicitly assumes immediate consistency might perform a write quickly followed by a read
of the same data. Tests are all successful when only one server is involved. In deployment, however, a load balancer distributes
requests across multiple servers. When the load balancer sends the read to a replica that has not yet processed the write, the
client application appears to perform a successful write, followed by a successful read that is inconsistent with the write that
succeeded!

When deploying replicated DS servers, keep this eventual consistency trap in mind. Educate developers about the trade off,
review patches, and test and fix client applications under your control. In deployments with client applications that cannot be
fixed, use affinity load balancing in DS directory proxy servers to work around broken clients. For details, refer to Load balancing.

Deploying replication

In DS software, the role of a replication server is to transmit messages about updates. Directory servers receive replication
messages from replication servers, and apply updates accordingly, meanwhile serving client applications.

Deploy at least two servers in case one fails. Deploy more servers where necessary, knowing more servers means more
complexity for those managing the service.

After you install a directory server and configure it as a replica, you must initialize it to the current replication state. There are a
number of choices for this, as described in Manual initialization. Once a replica has been initialized, replication eventually brings
its data into a consistent state with the other replicas. As described in Consistency and availability, give a heavy update load or
significant network latency, temporary inconsistency is expected. You can monitor the replication status to estimate when
replicas will converge on the same data set.

Client applications can adopt best practices that work with eventual consistency, as described in Best practices, Optimistic
concurrency (MVCC), and Update. To work around broken client applications that assume immediate consistency, use affinity
load balancing in directory proxy servers. For details, refer to Load balancing.

Some client applications need notifications when directory data changes. Client applications cannot participate in replication
itself, but can get change notifications. For details, refer to Changelog for notifications.

Standalone replication servers

Q Tip

This information applies to advanced deployments.

In most modern deployments, each directory server acts as a replication server as well.

For deployments with many servers over slow or high-latency networks, DS software makes it possible to configure standalone
replication servers and directory servers.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

All replication servers communicate with each other. Directory servers always communicate through replication servers, even if
the replication service runs in the same server process as the directory server. By assigning servers to replication groups, you
ensure directory servers only connect to local replication servers until they must fail over to remote replication servers. This limits
the replication traffic over slow network links to messages between replication servers, except when all local replication servers
are down. For details, refer to Install standalone servers (advanced) and Replication groups (advanced).

Deploy the replication servers first. You can think of them as providing a network service (replication) in the same way DNS
provides a network service (name resolution). You therefore install and start replication servers before you add directory servers.

Scaling replication

When scaling replicated directory services, keep the following rules in mind:
+ Read operations affect only one replica.
To add more read performance, use more powerful servers or add servers.
« Write operations affect all replicas.
To add more write performance, use more powerful servers or add separate replication domains.

When a replica writes an update to its directory data set, it transmits the change information to its replication server for replay
elsewhere. The replication server transmits the information to connected directory servers, and to other replication servers
replicating the same data. Those replication servers transmit the message to others until all directory servers have received the
change information. Each directory server must process the change, reconciling it with other change information.

As a result, you cannot scale up write capacity by adding servers. Each server must replay all the writes.

If necessary, you can scale up write capacity by increasing the capacity of each server (faster disks, more powerful servers), or by
splitting the data into separate sets that you replicate independently (data distribution).

High availability

In shared directory service deployments, the directory must continue serving client requests during maintenance operations,
including service upgrades, during network outage recovery, and in spite of system failures.

DS replication lets you build a directory service that is always online. DS directory proxy capabilities enable you to hide
maintenance operations from client applications. You must still plan appropriate use of these features, however.

As described previously, replication lets you use redundant servers and systems to tolerate network partitions. Directory server
replicas continue to serve requests when peer servers fail or become unavailable. Directory proxy servers route around directory
servers that are down for maintenance or down due to failure. When you upgrade the service, you roll out one upgraded DS
server at a time. New servers continue to interoperate with older servers, so the whole service never goes down. All of this
depends on deploying redundant systems, including network links, to eliminate single points of failure. For more, refer to High
availability.

As shown in that section, your deployment may involve multiple locations. Some deployments even use separate replication
topologies, for example, to sustain very high write loads, or to separate volatile data from more static data. Carefully plan your
load balancing strategy to offer good service at a reasonable cost. By using replication groups, you can limit most replication
traffic over slow links to communications between replication servers. Directory proxy servers can direct client traffic to local
servers until it becomes necessary to fail over to remote servers.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

Sound operational procedures play as important a role in availability as good design. Operational staff maintaining the directory
service must be well-trained and organized so that someone is always available to respond if necessary. They must have
appropriate tools to monitor the service in order to detect situations that need attention. When maintenance, debugging, or
recovery is required, they should have a planned response in most cases. Your deployment plans should therefore cover the
requirements and risks that affect your service.

Before finalizing deployment plans, make sure that you understand key availability features in detail. For details about replication,
read Replication and the related pages. For details about proxy features, read LDAP proxy.

Backup and recovery

Make sure your plans define how you:
+ Back up directory data
« Safely store backup files
+ Recover your directory service from backup

DS servers store data in backends. A backend is a private server repository that can be implemented in memory, as a file, or as an
embedded database. DS servers use local backends to store directory data, server configuration, LDAP schema, and
administrative tasks. Directory proxy servers implement a type of backend for non-local data, called a proxy backend, which
forwards LDAP requests to a remote directory service.

For performance reasons, DS servers store directory data in a local database backend, which is a backend implemented using an
embedded database. Database backends are optimized to store directory data. Database backends hold data sets as key-value
pairs. LDAP objects fit the key-value model very effectively, with the result that a single database backend can serve hundreds of
millions of LDAP entries. Database backends support indexing and caching for fast lookups in large data sets. Database backends
do not support relational queries or direct access by other applications. For more information, refer to Data storage.

Backup and restore procedures are described in Backup and restore. When planning your backup and recovery strategies, be
aware of the following key features:

* Backups are not guaranteed to be compatible across major and minor server releases. Restore backups only on directory
servers of the same major or minor version.

« Backup and restore tasks can run while the server is online. They can, however, have a significant impact on server
performance.

For deployments with high performance requirements, consider dedicating a replica to perform only backup operations.
This prevents other replicas from stealing cycles to back up data that could otherwise be used to serve client applications.

* When you restore replicated data from backup, the replication protocol brings the replica up to date with others after the
restore operation.

This requires, however, that the backup is recent enough. Backup files older than the replication purge delay (default: 3
days) are stale and should be discarded.

« Directory data replication ensures that all servers converge on the latest data. If your data is affected by a serious
accidental deletion or change, you must restore the entire directory service to an earlier state.

For details, refer to Recover from user error.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

* When you restore encrypted data, the server must have the same shared master key as the server that performed the
backup.

Otherwise, the directory server cannot decrypt the symmetric key used to decrypt the data. For details, refer to Data
encryption.

« For portability across versions, and to save directory data in text format, periodically export directory data to LDIF.

The LDIF serves as an alternative backup format. In a disaster recovery situation, restore directory data by importing the
version saved in LDIF.

@ Important

LDIF stores directory data in text format. It offers no protection of the data.
Use an external tool to encrypt the LDIF you export to protect against data leaks and privacy breaches.

If you have stored passwords with a reversible encryption password storage scheme, be aware that the server must have
the same shared master key as the server that encrypted the password.

For details, refer to Import and export, and Manual initialization.
* You can perform a file system backup of your servers instead of using the server tools.

You must, however, stop the server before taking a file system backup. Running DS directory servers cannot guarantee that
database backends will be recoverable unless you back them up with the DS tools.

Monitoring and auditing
When monitoring DS servers and auditing access, be aware that you can obtain some but not all data remotely.
The following data sources allow remote monitoring:
* HTTP connection handlers expose a /metrics/prometheus endpoint for Prometheus monitoring software (.
For details, refer to Use administrative APIs.
* LDAP connection handlers expose a cn=monitor branch that offers LDAP access to monitoring data.
For details, refer to LDAP-based monitoring.
* JMX connection handlers offer remote access.
For details, refer to JMX-based monitoring.
* You can configure alerts to be sent over JMX or SMTP (mail).
For details, refer to Alerts.
+ Replication conflicts are found in the directory data.
For details, refer to Replication conflicts.
* Server tools, such as the status command, can run remotely.

For details, refer to Status and tasks.

Copyright © 2025 Ping Identity Corporation

https://prometheus.io/
https://prometheus.io/

Deployment PingDS

The following data sources require access to the server system:
« Server logs, as described in Logging.

DS servers write log files to local disk subsystems. In your deployment, plan to move access logs that you want to retain.
Otherwise, the server eventually removes logs according to its retention policy to avoid filling up the disk.

* Index verification output and statistics, as described in Rebuild indexes, and Verify indexes.
When defining how to monitor the service, use the following guidelines:

* Your service level objectives (SLOs) should reflect what your stakeholders expect from the directory service for their key
client applications.

If SLOs reflect what stakeholders expect, and you monitor them in the way key client applications would experience them,
your monitoring system can alert operational staff when thresholds are crossed, before the service fails to meet SLOs.

+ Make sure you keep track of resources that can expire, such as public key certificates and backup files from directory
server replicas, and resources that can run out, such as system memory and disk space.

+ Monitor system and network resources in addition to the directory service.
Make sure operational staff can find and fix problems with the system or network, not only the directory.
+ Monitor replication delay, so you can take action when it remains high and continues to increase over the long term.
In order to analyze server logs, use other software, such as Splunk(Z, which indexes machine-generated logs for analysis.

If you require integration with an audit tool, plan the tasks of setting up logging to work with the tool, and analyzing and
monitoring the data once it has been indexed. Consider how you must retain and rotate log data once it has been consumed, as a
high-volume service can produce large volumes of log data.

Hardening and security

When you first set up DS servers with the evaluation profile, the configuration favors ease of use over security for Example.com
data.

All other configurations and setup profiles leave the server hardened for more security by default. You explicitly grant additional
access if necessary.

For additional details, refer to Security.

Tests

In addition to planning tests for each custom plugin, test each feature you deploy. Perform functional and non-functional testing
to validate that the directory service meets SLOs under load in realistic conditions. Include acceptance tests for the actual
deployment. The data from the acceptance tests help you to make an informed decision about whether to go ahead with the
deployment or to roll back.

Functional tests

Functional testing validates that specified test cases work with the software considered as a black box.

Copyright © 2025 Ping Identity Corporation

https://www.splunk.com/
https://www.splunk.com/

PingDS Deployment

As Ping Identity already tests DS servers and gateways functionally, focus your functional testing on customization and service
level functions. For each key capability, devise automated functional tests. Automated tests make it easier to integrate new
deliveries to take advantage of recent bug fixes, and to check that fixes and new features do not cause regressions.

As part of the overall plan, include not only tasks to develop and maintain your functional tests, but also to provision and to
maintain a test environment in which you run the functional tests before you significantly change anything in your deployment.
For example, run functional tests whenever you upgrade any server or custom component, and analyze the output to understand
the effect on your deployment.

Performance tests

With written SLOs, even if your first version consists of guesses, you turn performance plans from an open-ended project to a
clear set of measurable goals for a manageable project with a definite outcome. Therefore, start your testing with service level
objectives clear definitions of success.

Also, start your testing with a system for load generation that can reproduce the traffic you expect in production, and underlying
systems that behave as you expect in production. To run your tests, you must therefore generate representative load data and
test clients based on what you expect in production. You can then use the load generation system to perform iterative
performance testing.

Iterative performance testing consists of identifying underperformance, and the bottlenecks that cause it, and discovering ways
to eliminate or work around those bottlenecks. Underperformance means that the system under load does not meet service level
objectives. Sometimes resizing or tuning the system can help remove bottlenecks that cause underperformance.

Based on SLOs and availability requirements, define acceptance criteria for performance testing, and iterate until you have
eliminated performance bottlenecks.

Tools for running performance testing include the tools listed in Performance tests, and Gatling(5, which uses a domain-specific
language for load testing. To mimic the production load, examine the access patterns, and the data that DS servers store. The
representative load should reflect the distribution of client access expected in production.

Although you cannot use actual production data for testing, you can generate similar test data using tools, such as the makeldif
command.

As part of the overall plan, include tasks to:
+ Develop and maintain performance tests.
* Provision and maintain a pre-production test environment that mimics your production environment.

Security measures in your test environment must mimic your production environment. Security measures can affect
performance.

Once you are satisfied that the baseline performance is acceptable, run performance tests again when something in your
deployment changes significantly with respect to performance. For example, if the load or number of clients changes significantly,
it could raise performance requirements. Also, consider the thresholds that you can monitor in the production system to estimate
when your system might no longer meet performance requirements.

Deployment tests

Here, deployment testing is a description rather than a term. It refers to the testing implemented within the deployment window
after the system is deployed to the production environment, but before client applications and users access the system.

Copyright © 2025 Ping Identity Corporation

https://gatling.io/
https://gatling.io/

Deployment PingDS

Plan for minimal changes between the pre-production test environment and the actual production environment. Then test that
those changes have not cause any issues, and that the system generally behaves as expected.

Take the time to agree upfront with stakeholders regarding the acceptance criteria for deployment tests. When the production
deployment window is small, and you have only a short time to deploy and test the deployment, you must trade off thorough
testing for adequate testing. Make sure to plan enough time in the deployment window for performing the necessary tests and
checks.

Include preparation for this exercise in your overall plan, as well as time to check the plans close to the deployment date.

Configuration changes

Make sure your plan defines the change control process for configuration. Identify the ways that the change is likely to affect your
service. Validate your expectations with appropriate functional, integration, and stress testing. The goal is to adapt how you
maintain the service before, during, and after the change. Complete your testing before you subject all production users to the
change.

Review the configuration options described here, so that you know what to put under change control.

Server configuration

DS servers store configuration in files under the server's config directory. When you set up a server, the setup process creates
the initial configuration files based on templates in the server's template directory. File layout describes the files.

When a server starts, it reads its configuration files to build an object view of the configuration in memory. This view holds the
configuration objects, and the constraints and relationships between objects. This view of the configuration is accessible over
client-side and server-side APIs. Configuration files provide a persistent, static representation of the configuration objects.

Configuration tools use the client-side API to discover the server configuration and to check for constraint violations and missing
relationships. The tools prevent you from breaking the server configuration structurally by validating structural changes before
applying them. The server-side API allows the server to validate configuration changes, and to synchronize the view of the
configuration in memory with the file representation on disk. If you make changes to the configuration files on disk while the
server is running, the server can neither validate the changes beforehand, nor guarantee that they are in sync with the view of the
configuration in memory.

DS server configuration

Method Notes

Tools (dsconfig and others) Stable, supported, public interfaces for editing server configurations. Most tools
work with local and remote servers, both online and offline.

Files Internal interface to the server configuration, subject to change without warning in
any release. If you must make manual changes to configuration files, always stop
the DS server before editing the files.

If the changes break the configuration, compare with the var/
config.ldif.startok file, and with the compressed snapshots of the main
configuration in the var/archived-configs/ directory.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Once a server begins to replicate data with other servers, the part of the configuration pertaining to replication is specific to that
server. As a result, a server effectively cannot be cloned once it has begun to participate in data replication. When deploying
servers, do not initialize replication until you have deployed the server.

Gateway configuration

You edit files to configure the DS gateway web applications.

A gateway does not have external configuration APIs. You must restart it after you edit configuration files for the changes to take
effect.

Documentation

The DS product documentation is written for readers like you, who are architects and solution developers, as well as for DS
developers and for administrators who have had DS training. The people operating your production environment need concrete
documentation specific to your deployed solution, with an emphasis on operational policies and procedures.

Procedural documentation can take the form of a runbook with procedures that emphasize maintenance operations, such as
backup, restore, monitoring and log maintenance, collecting data pertaining to an issue in production, replacing a broken server
or web application, responding to a monitoring alert, and so forth. Make sure you document procedures for taking remedial
action in the event of a production issue.

Furthermore, to ensure that everyone understands your deployment and to speed problem resolution in the event of an issue,
changes in production must be documented and tracked as a matter of course. When you make changes, always prepare to roll
back to the previous state if the change does not perform as expected.

Maintenance and support

If you own the architecture and planning, but others own the service in production, or even in the labs, then you must plan
coordination with those who own the service.

Start by considering the service owners' acceptance criteria. If they have defined support readiness acceptance criteria, you can
start with their acceptance criteria. You can also ask yourself the following questions:

* What do they require in terms of training in DS software?

+ What additional training do they require to support your solution?

+ Do your plans for documentation and change control, as described in Documentation, match their requirements?
+ Do they have any additional acceptance criteria for deployment tests, as described in Deployment tests?

Also, plan back line support with Ping Identity or a qualified partner. The aim is to define clearly who handles production issues,
and how production issues are escalated to a product specialist if necessary.

Include a task in the overall plan to define the hand off to production, making sure there is clarity on who handles monitoring and
issues.

Rollout

In addition to planning for the hand off of the production system, also prepare plans to roll out the system into production.
Rollout into production calls for a well-choreographed operation, so these are likely the most detailed plans.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

Take at least the following items into account when planning the rollout:

+ Availability of all infrastructure that DS software depends on, such as the following:
o Server hosts and operating systems
° Web application containers for gateways
o Network links and configurations
° Persistent data storage
o Monitoring and audit systems

+ Installation for all DS servers.

* Final tests and checks.

+ Availability of the personnel involved in the rollout.

In your overall plan, leave time and resources to finalize rollout plans toward the end of the project.

Ongoing change
To succeed, your directory service must adapt to changes, some that you can predict, some that you cannot.

In addition to the configuration changes covered in Configuration changes, predictable changes include the following:

Increases and decreases in use of the service
For many deployments, you can predict changes in the use of the directory service, and in the volume of directory data.

If you expect cyclical changes, such as regular batch jobs for maintenance or high traffic at particular times of the year, test
and prepare for normal and peak use of the service. For deployments where the peaks are infrequent but much higher
than normal, it may be cost effective to dedicate replicas for peak use that are retired in normal periods.

If you expect use to increase permanently, then decide how much headroom you must build into the deployment. Plan to
monitor progress and add capacity as necessary to maintain headroom, and to avoid placing DS servers under so much
stress that they stop performing as expected.

If you expect use to decrease permanently, at some point you will retire the directory service. Make sure all stakeholders
have realistic migration plans, and that their schedules match your schedule for retirement.

Depending on the volume of directory data and the growth you expect for the directory service, you may need to plan for
scalability beyond your initial requirements.

As described in Scaling replication, you can increase read performance by adding servers. To increase write performance,
first try more powerful servers and faster storage.

Single directory services can support thousands of replicated write operations per second, meaning millions of write
operations per hour. It may well be possible to achieve appropriate performance by deploying on more powerful servers,
and by using higher performance components, such as dedicated SSD disks instead of traditional disks.

When scaling up the systems is not enough, you must instead organize the DIT to replicate different branches separately.
Deploy the replicas for each branch on sets of separate systems. For details, refer to High scalability.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Directory service upgrades

Ping Identity regularly offers new releases of DS software. These include maintenance and feature releases. Supported
customers may also receive patch releases for particular issues.

Patch and maintenance releases are generally fully compatible. Plan to test and roll out patch and maintenance releases
swiftly, as they include important updates such as fixes for security issues or bugs that you must address quickly.

Plan to evaluate feature releases as they occur. Even if you do not intend to use new features immediately, you might find
important improvements that you should roll out. Furthermore, by upgrading regularly you apply fewer changes at a time
than you would by waiting until the end of support life and then performing a major upgrade.

Key rotation

Even if you do not change the server configuration, the signatures eventually expire on certificates used to secure
connections. You must at minimum replace the certificates. You could also change the key pair in addition to getting a new
certificate.

If you encrypt directory data for confidentiality, you might also choose to rotate the symmetric encryption key.

Unpredictable changes include the following:

Disaster recovery
As described in High availability, assess the risks. In light of the risks, devise and test disaster recovery procedures.

For details, refer to Disaster recovery.

New security issues

Time and time again, security engineers have found vulnerabilities in security mechanisms that could be exploited by
attackers. Expect this to happen during the lifetime of your deployment.

You might need to change the following at any time:
* Keys used to secure connections
+ Keys used to encrypt directory data
« Protocol versions used to secure connections
+ Password storage schemes
+ Deployed software that has a newly discovered security bug

In summary, plan to adapt your service to changing conditions. To correct security bugs and other issues and to recover from
minor or major disasters, be prepared to patch, upgrade, roll out, and roll back changes as part of your regular operations.

Deployment patterns

Use these patterns in your deployments.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

High availability

Q Tip

This information applies to all deployments.

When you deploy DS servers into a highly available directory service, you are implementing the primary use case for which DS
software is designed:

+ Data replication lets you eliminate single points of failure.
Replication favors availability over immediate consistency.
+ DS upgrade capabilities let you perform rolling upgrades without ever taking the whole service offline.

« If desired, DS proxy capabilities help you provide a single point of entry for directory applications, hiding the fact that
individual servers do go offline.

o [[Lemdwz]

-

A
L SN\
L{A

Directory Server

-

A
NA'A
L{A

Directory Server

A
NA'A
L}A

Directory Server

N

A
LN\
L}A

Directory Server

~

Replication

You build a highly available directory service of redundant servers in multiple locations. If possible, use redundant networks
within and between locations to limit network partitions.

Effective disaster recovery

Q Tip

This information applies to all deployments.

Avoiding downtime depends on redundant servers and operational readiness to recover quickly and effectively. Prepare and test
your plans. Even if disaster strikes, you will repair the service promptly.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Plan how you store backup files both onsite and offsite. Make sure you have safe copies of the master keys that let directory
servers decrypt encrypted data. For details, refer to Backup and restore.

When defining disaster recovery plans, consider at least the following situations:
* The entire service is down.

It is important to distinguish whether the situation is temporary and easily recoverable, or permanent and requires
implementation of disaster recovery plans.

If an accident, such as a sudden power cut at a single-site deployment, brought all the servers down temporarily, restart
them when the power returns. As described in Server recovery, directory servers might have to replay their transaction
logs before they are ready. This operation happens automatically when you restart the server.

In case of disaster, be prepared to rebuild the entire service. For details, refer to Disaster recovery.
* Part of the service is down.
Fail client applications over to healthy servers, and restart or rebuild servers that are down.

Directory proxy servers can fail over automatically and retry requests for certain types of failure. For details, refer to LDAP
proxy.

* The network is temporarily down between servers.

By default, you do not need to take immediate action for a temporary network outage. As long as client applications can
still communicate with local servers, replication is designed to catch up when the network connections are reestablished.

By default, when a directory server replica cannot communicate with a replication server, the isolation-policy setting
prevents the directory server replica from accepting updates.

In any case, if the network is partitioned longer than the replication purge delay (default: 3 days), then replication will have
purged older data, and cannot catch up. For longer network outages, you must reinitialize replication.

When defining procedures to rebuild a service that is permanently offline, the order of operations is the same as during an
upgrade:

1. Redirect client applications to a location where the service is still running.

If the proxy layer is still running, directory proxy servers can automatically fail requests over to remote servers that are still
running.

2. Rebuild any standalone replication servers.
3. Rebuild directory servers.
4. Rebuild any directory proxy servers.

Start up order

Q Tip

This information applies to advanced deployments.

Copyright © 2025 Ping Identity Corporation

Deployment

PingDS

Some advanced deployments compose the directory service using separate component servers for different functions. Bring

component servers online in the following order:

1. Standalone Replication Servers

Replication servers are the foundation for high availability. They communicate change messages to directory server

replicas. They also let other servers discover available replicas.

2. Directory Servers

Directory server replicas ultimately respond to client application requests. They hold an eventually convergent copy of the
directory data. They require a replication service to communicate with other replicas about changes to their copy of the

directory data.

3. Directory Proxy Servers

DS directory proxy servers discover DS replicas by querying the replication service. They forward requests to the directory

server replicas, and responses to the client applications.

High scalability

Q Tip

This information applies to advanced deployments.

A high-scale directory service requires very high throughput, very low response times, or both. It might have a large data set, such
as 100 million entries or more. When building a high-scale directory, the fundamental question is whether to scale up or scale

out.

Scaling up means deploying more powerful server systems. Scaling out means deploying many more server systems.

Scale Up or Scale Out

Scaling Up

Why Choose...? « Simpler architecture

« Cannot distribute or shard data

Advantages * Simpler architecture

* No need to distribute or shard data

Disadvantages * Limited by underlying platform
« Powerful (expensive) server systems
* Less isolation of issues

* Limited write scalability

Scaling Out

* Very high update load
« Can distribute or shard data

+ Not limited by underlying platform
* Smaller server systems

« Better isolation of issues

* High update scalability

« Complex architecture
» Must distribute/shard data somehow

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Plan to scale

Q Tip
This information applies to advanced deployments.
Before building a test directory service, start sizing systems by considering service level objectives (SLOs) and directory data.

Define SLOs as described in Performance requirements. Once you have defined the SLOs, model directory client traffic to test
them using your own tools, or the tools described in Performance tests.

Estimate the disk space needed for each server. This depends on the traffic, your SLOs, and on directory data like what you
expect in production:

1. Import a known fraction of the expected initial data with the server configured for production.

For help, refer to Generate test data. Make sure you adapt the template for your data. Do not rely only on the default
template for the makeldif command.

2. Check the size of the database.
Divide by the fraction used in the previous step to estimate the total starting database size.
3. Multiply the result to account for replication metadata.

To estimate the volume of replication metadata, set up replication with multiple servers as expected in production, and
run the estimated production load that corresponds to the data you used. Keep the load running until the replication
purge delay. After the purge delay, measure the size of the databases on a directory server, and the size of the changelog
database on a replication server. Assuming the load is representative of the production load including expected peaks and
normal traffic, additional space used since the LDIF import should reflect expected growth due to replication metadata.

4. Multiply the result to account for the overall growth that you expect for the directory service during the lifetime of the
current architecture.

5. To complete the estimate, add 2 GB for default access log files, and space for any backups or LDIF exports you expect to
store on local disk.

For a directory server, make sure the system has enough RAM available to cache the database. By default, database files are
stored under the /path/to/opendj/db directory. Ideally, the RAM available to the server should be at least 1.5 to 2 times the
total size of the database files on disk.

Scale up

Q Tip

This information applies to advanced deployments.

When scaling up, each server system must have the resources to run a high-scale DS server. As described in Scaling replication,
each directory server replica only absorbs its share of the full read load, but each replica absorbs the full write load for the service.

Make sure that the estimates you arrived at in Plan to scale remain within the capabilities of each server and system.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

In addition to the recommendations in Hardware [, and the tips in Performance settings, consider the following points to avoid
resource contention:

* For best performance, use dedicated servers.
* Run as few additional system services as possible.
* Run each server on a separate system.
+ Use fast disks with good IOPS, and put logs, databases, and backup files on separate disk subsystems.
+ Keep resource limitations for client applications to acceptable minimums.
+ Schedule backups and maintenance for minimum service impact.
Scale out

Q Tip

This information applies to advanced deployments.

When scaling out onto multiple server systems, you must find a usable way to distribute or shard the data into separate
replication domains.

In some cases, each replication domain holds a branch of the DIT with a similar amount of traffic, and an equivalent amount of
data. You can distribute entries based on location, network, or other characteristics. Branches can join at a base DN to bring all
the entries together in the same logical view. Separate at least the directory server replicas in each replication domain, so that
they share only minimal and top-level entries. To achieve this, use subtree replication, which is briefly described in Subtree
replication (advanced). Each replica can hold minimal and top-level entries in one database backend, but its primary database
backend holds only the branch it shares with others in the domain.

If the data to scale out is all under a single DN, consider using a DS proxy server layer to perform the data distribution, as
described in Data distribution.

When building a scaled-out architecture, be sure to consider the following questions:
+ How will you distribute the data to allow the service to scale naturally, for example, by adding a replication domain?
+ How will you manage what are essentially multiple directory services?

All of your operations, from backup and recovery to routine monitoring, must take the branch data into account, always
distinguishing between replication domains.

+ How will you automate operations?
* How will you simplify access to the service?

Consider using DS proxy servers for a single point of access.

Data sovereignty

Q Tip

This information applies to advanced deployments.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-hardware
https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-hardware

PingDS Deployment

In many countries, how you store and process user accounts and profile information is subject to regulations and restrictions that
protect user privacy. Data sovereignty legislation is beyond the scope of this document, but DS servers do include features to
build services in compliance with data sovereignty requirements:

* Data replication
+ Subtree replication
« Fractional replication

The following deployment patterns address questions of data storage. When planning your deployment, consider how client
applications access and process directory data. By correctly configuring access controls, as described in Access control, you can
restrict network access by hostname or IP address, but not generally by physical location of a mobile client application, for
example.

Consider developing a dedicated service layer to manage policies that define what clients can access and process based on their
location. If your deployment calls for dynamic access management, use PingDS together with PingAM software.

Replication and data sovereignty

Q Tip

This information applies to advanced deployments.

Data replication is critical to a high-scale, highly available directory service. For deployments where data protection is also critical,
you must make sure you do not replicate data outside locations where you can guarantee compliance with local regulations.

As described in Deploying replication, replication messages flow from directory servers through replication servers to other
directory servers. Replication messages contain change data, including data governed by privacy regulations:

« For details on replicating data that must not leave a given location, refer to Subtree replication.
« For details on replicating only part of the data set outside a given location, refer to Fractional replication.

Subtree replication

Q Tip

This information applies to advanced deployments.

The primary unit of replication is the base DN. Subtree replication refers to putting different subtrees (branches) in separate
backends, and then replicating those subtrees only to specified servers. For example, only replicate data to locations where you
can guarantee compliance with the regulations in force.

For subtree replication, the RDN of the subtree base DN identifies the subtree. This leads to a hierarchical directory layout. The
directory service retains the logical view of a flatter layout, because the branches all join at a top-level base DN.

The following example shows an LDIF outline for a directory service with top-level and local backends:
* The userData backend holds top-level entries, which do not directly reference users in a particular region.
* The region1 backend holds entries under the ou=Region 1,dc=example,dc=com base DN.

* The region2 backend holds entries under the ou=Region 2, dc=example,dc=com base DN.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

The example uses nested groups to avoid referencing local accounts at the top level, but still allowing users to belong to top-level
groups:

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

%<--- Start of LDIF for userData --->%
Base entries are stored in the userData backend:
dn: dc=example, dc=com # Base DN of userData backend

dn: ou=groups,dc=example, dc=com # Stored in userData backend
dn: ou=Top-level Group,ou=groups,dc=example,dc=com

member: ou=R1 Group,ou=groups,ou=Region 1,dc=example, dc=com

member: ou=R2 Group,ou=groups,ou=Region 2,dc=example, dc=com

dn: ou=people,dc=example, dc=com # Stored in userData backend

%<--- End of LDIF for userData --->%

%<--- Start of LDIF for Region 1 --->%

Subtree entries are stored in a country or region-specific backend.

dn: ou=Region 1,dc=example, dc=com # Base DN of regionl1 backend

dn: ou=groups,ou=Region 1,dc=example,dc=com # Stored in region1 backend

dn: ou=R1 Group, ou=groups,ou=Region 1,dc=example,dc=com

member : uid=aqeprfEUXIEuMa7M, ou=people, ou=Region 1,dc=example, dc=com
dn: ou=people,ou=Region 1,dc=example,dc=com # Stored in region1 backend

dn: uid=aqeprfEUXIEuMa7M, ou=people, ou=Region 1,dc=example, dc=com
uid: aqgeprfEUXIEuMa7M

%<--- End of LDIF for Region 1 --->%
%<--- Start of LDIF for Region 2 --->%
dn: ou=Region 2,dc=example, dc=com # Base DN of region2 backend

dn: ou=groups,ou=Region 2,dc=example,dc=com # Stored in region2 backend

dn: ou=groups,ou=R2 Group,ou=Region 2,dc=example, dc=com

member: uid=8Ev1fE@rRa3rgbXe, ou=people, ou=Region 2,dc=example, dc=com
dn: ou=people,ou=Region 2,dc=example,dc=com # Stored in region2 backend

dn: uid=8Ev1fE@rRa3rgbXe, ou=people, ou=Region 2,dc=example, dc=com
uid: 8Ev1fE@rRa3rgbXe

%<--- End of LDIF for Region 2 --->%

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

The deployment for this example has the following characteristics:
* The LDIF is split at the comments about where to cut the file:
%<--- Start|End of LDIF for ... --->%
+ All locations share the LDIF for dc=example, dc=com, but the data is not replicated.
If DS replicates dc=example, dc=com, it replicates all data for that base DN, which includes all the data from all regions.
Instead, minimize the shared entries, and manually synchronize changes across all locations.
* The local LDIF files are constituted and managed only in their regions:
o Region 1 data is only replicated to servers in region 1.
o Region 2 data is only replicated to servers in region 2.

+ The directory service only processes information for users in their locations according to local regulations.

A
A

Proxy Layer

Region 1 Region 2
dc=fec,dc=com dc=fec,dc=com
ou=FR,dc=fec,dc=com ou=UK,dc=fec,dc=com

ok ok
L0\ L5\ L0\ L0\

J J 7 7
Directory Server Directory Server Directory Server Directory Server
X ik X ik
L5\ L5\ L5\ L5\

)) J J
Replication Server Replication Server Replication Server Replication Server

Replication:dc=fec,dc=com
Figure 1. Separate replication domains for data sovereignty
In a variation on the deployment shown above, consider a deployment with the following constraints:
* Region 1 regulations allow region 1 user data to be replicated to region 2.
You choose to replicate the region 1 base DN in both regions for availability.

* Region 2 regulations do not allow region 2 user data to be replicated to region 1.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Z$§ Proxy Layer Z$§

dc=example,dc=com
ou=Region 1,dc=example,dc=com

dc=example,dc=com
ou=Region 1l,dc=example,dc=com

A
L SN\
L}A

Directory Server

N

-

A
SA'A
L}A

Directory Server

A
NA'A
LfA

Directory Server

A
LN\
L}A

Directory Server

Replication: ou=Region 1,dc=example,dc=com only

Figure 2. Mixed replication domains for data sovereignty

When you use subtree replication in this way, client applications can continue to read and update directory data as they normally
would. Directory servers only return locally available data.

Subtree replication and subordinate backends include important requirements and limitations. For more information, refer to
Subtree replication (advanced), and Subordinate backends.

Fractional replication

Q Tip

This information applies to advanced deployments.

In some deployments, regulations let you replicate some user attributes. For example, data sovereignty regulations in one region
let you replicate UIDs and class of service levels everywhere, but do not let personally identifiable information leave the user’s
location.

Consider the following entry where you replicate only the uid and classOfService attributes outside the user’s region:

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

dn: uid=aqeprfEUXIEuMa7M, ou=people, ou=Region 1, dc=example, dc=com
objectClass: top

objectClass: cos

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: posixAccount

cn: Babs Jensen

cn: Barbara Jensen

facsimiletelephonenumber: +1 488 555 1992

gidNumber: 1000

givenname: Barbara

homeDirectory: /home/bjensen

1: Region 1

mail: bjensen@example.com

manager: uid=2jD5Nanz0ZGjMmcz, ou=people, ou=Region 1,dc=example, dc=com
ou: People

ou: Product Development

preferredLanguage: en, ko;q=0.8

roomnumber: 06209

sn: Jensen

telephonenumber: +1 408 555 1862

uidNumber: 1076

userpassword: {PBKDF2-HMAC-SHA256}10000 :<hash>

Outside the user's region, you replicate only these attributes:
uid: aqgeprfEUXIEuMa7M

classOfService: bronze

To let you replicate only a portion of each entry, DS servers implement fractional replication. You configure fractional replication
by updating the directory server configuration to specify which attributes to include or exclude in change messages from
replication servers to the directory server replica.

The replication server must remain located with the directory server replicas that hold full entries which include all attributes. The
replication server can receive updates from these replicas, and from replicas that hold fractional entries. Each replication server
must therefore remain within the location where the full entries are processed. Otherwise, replication messages describing
changes to protected attributes travel outside the location where the full entries are processed.

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

A} A
LA LSS
Lf—\ Proxy Layer LeA

oo

dc=example,dc=com
dc=example,dc=com ou=Region l,dc=example,dc=com
ou=Region 1,dc=example,dc=com

A A A A
L SN L SN\ NaA' A LY\
L{A L{A L}A L}A

Directory Server Directory Server Directory Server Directory Server

A . J

Replication: dc=example,dc=com &
ou=Region 1,dc=example,dc=com (fractional)
Figure 3. Fractional replication for protected data

To leave schema checking enabled on the replicas that receive fractional updates, portions of entries that are replicated must
themselves be complete entries. In other words, in the example above, the entry’s structural object class would have to allow
classOfService and uid. This would require editing the schema, and the objectClass values of the entries. For details, refer
to LDAP schema.

For additional information, refer to Fractional replication (advanced).

Interoperability

The following use cases involve interoperability with other directory software.

Use Case Refer to...

More than one directory service Proxy layer

Credentials in another directory service Pass-through authentication

Must sync changes across directory services Data synchronization and migration

Proxy layer

Adding a directory proxy layer can help you deploy alongside an existing directory service. The proxy layer lets you provide a
single entry point to both new and old directory services.

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

You configure a directory proxy server to connect to servers in each directory. DS proxy servers can discover DS directory servers
by connecting to DS replication servers. For other directories, you must statically enumerate the directory server to contact. DS

proxy servers work with any LDAP directory server that supports the standard proxied authorization control defined in RFC 4370
“.

Each DS proxy server forwards client requests to the directory service based on the target DN of the operation. As long as the
base DNs for each directory service differ, the proxy layer can provide a single entry point to multiple directory services.

For details, refer to Single point of access.

Pass-through authentication

For cases where an existing directory service holds authentication credentials, DS servers provide a feature called pass-through
authentication.

With pass-through authentication, the DS server effectively redirects LDAP bind operations to a remote LDAP directory service. If
the DS and remote user accounts do not have the same DN, you configure the DS server to automatically map local entries to the
remote entries. Pass-through authentication can cache passwords if necessary for higher performance with frequent
authentication.

For details, refer to Pass-through authentication.

Data synchronization and migration

You may need to continually synchronize changes across multiple services, or to migrate data from an existing directory service.

For ongoing data synchronization across multiple services, consider PingIDM software or a similar solution. PingIDM software
supports configurable data reconciliation and synchronization at high scale, and with multiple data sources, including directory
services.

For one-time upgrade and data migration to DS software, the appropriate upgrade and migration depends on your deployment:
« Offline Migration

When downtime is acceptable, you can synchronize data, then migrate applications to the DS service and retire the old
service.

Depending on the volume of data, you might export LDIF from the old service and import LDIF into the DS service during
the downtime period. In this case, stop the old service at the beginning of the downtime period to avoid losing changes.

If the old service has too much data to fit the export/import operation into the downtime period, you can perform an
export/import operation before the downtime starts, but you must then implement ongoing data synchronization from
the old service to the DS service. Assuming you can keep the new DS service updated with the latest changes, the DS
service will be ready to use. You can stop the old service after migrating the last client application.

+ Online Migration

When downtime is not acceptable, both services continue running concurrently. You must be able to synchronize data,
possibly in both directions. PingIDM software supports bi-directional data synchronization.

Once you have bi-directional synchronization operating correctly, migrate applications from the old service to the DS
service. You can stop the old service after migrating the last client application.

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc4370
https://www.rfc-editor.org/info/rfc4370
https://www.rfc-editor.org/info/rfc4370

PingDS Deployment

Provisioning systems

Before running PingDS software in production, review the Requirements(Z section of the Release Notes, and the following
information.

Sizing systems

Given availability requirements and estimates on sizing for services, estimate the required capacity for individual systems,
networks, and storage. Sizing described here only accounts for DS servers. Monitoring and audit tools, backup storage, and client
applications require additional resources.

CPU, memory, network, and storage requirements depend in large part on the services you plan to provide. The indications in
Hardware (5 are only starting points for your sizing investigation.

For details about how each component uses system resources, refer to DS software.

CPU

Directory servers consume significant CPU resources when processing username-password authentications where the password
storage scheme is computationally intensive (Bcrypt, PBKDF2, PKCS5S2).

Using a computationally intensive password storage scheme such as Bcrypt will have a severe impact on
performance. Before you deploy a computationally intensive password storage scheme in production, you must
complete sufficient performance testing and size your deployment appropriately. Provision enough CPU resources to
keep pace with the peak rate of simple binds. If you do not complete this testing and sizing prior to deploying in
production, you run the risk of production outages due to insufficient resources.

DS servers also use CPU resources to decode requests and encode responses, and to set up secure connections. LDAP is a
connection-oriented protocol, so the cost of setting up a connection may be small compared to the lifetime of the connection.

HTTP, however, requires a new connection for each operation. If you have a significant volume of HTTPS traffic, provision enough
CPU resources to set up secure connections.

Memory

DS uses system memory to cache:
* Directory database nodes.
Caching all directory data requires 1.5-2 times as much available RAM as the total size of the database files on disk.

For most deployments, caching all data is a costly and poor tradeoff. Instead, cache all internal database nodes. Let the
file system cache hold database leaf nodes.

Small directory data sets can fit in the JVM heap, which can improve performance in some cases.
* ACls.
This makes a difference in deployments where applications routinely create ACls programmatically.

* Static groups.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-hardware
https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-hardware

Deployment PingDS

This makes a difference in deployments with many or large static groups.
+ LDAP subentries, such as replicated password policies or collective attribute definitions.
DS also uses system memory for:
* Argon2 password storage schemes.
+ Maintaining active connections and processes.
Learn more in Memory .

Network connections

When sizing network connections, account for all requests and responses, including replication traffic. When calculating request
and response traffic, base your estimates on your key client applications. When calculating replication traffic, be aware that all
write operations must be communicated over the network, and replayed on each directory server. Each write operation results in
at least N-1 replication messages, where N is the total number of servers. Be aware that all DS servers running a replication
service are fully connected.

In most modern deployments, WAN links are fast and responsive enough to prevent the extra traffic from causing problems.
Adapt your deployment if you measure that some network links are too slow or the latency is too high.

Make sure to size enough bandwidth for peak throughput, and do not forget redundancy for availability.

Disk 1/0 and storage

The largest disk I/0 loads for DS servers arise from logging and writing directory data. You can also expect high disk I/0 when
performing a backup operation or exporting data to LDIF.

I/0 rates depend on the service levels that the deployment provides. When you size disk I/0 and disk space, you must account for
peak rates and leave a safety margin when you must briefly enable debug-level logging to troubleshoot any issues that arise.

Also, keep in mind the possible sudden I/0 increases that can arise in a highly available service when one server fails and other
servers must take over for the failed server temporarily.

DS server access log files grow more quickly than other logs. Default settings prevent each access logger’s files from growing
larger than 2 GB before removing the oldest. If you configure multiple access loggers at once, multiply 2 GB by their number.

Directory server database backend size grows as client applications modify directory data. Even if data set's size remains
constant, the size of the backend grows. Historical data on modified directory entries increases until purged by the directory
server when it reaches the replication purge delay (default: 3 days). In order to get an accurate disk space estimate, follow the
process described in Plan to scale.

Replication server changelog backend size is subject to the same growth pattern as historical data. Run the service under load
until it reaches the replication purge delay to estimate disk use.

For highest performance, use fast SSD disk and separate disk subsystems logging, backup, and database backends.

Portability

DS client and server code is pure Java, and depends only on the JVM. This means you can run clients and servers on different
operating systems, and copy backup files and archives from one system to another.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-memory
https://docs.pingidentity.com/pingds/release-notes/requirements.html#prerequisites-memory

PingDS Deployment

Server portability

DS servers and data formats are portable across operating systems. When using multiple operating systems, nevertheless take
the following features into account:

Command-Line Tool Locations

DS server and command-line tools are implemented as scripts. The paths to the scripts differ on Linux and Windows
systems. Find Linux scripts in the bin directory. Find Windows scripts in the bat folder.

Native Packaging
When you download DS software, you choose between cross-platform and native packages.

+ Cross-platform .zip packaging facilitates independence from the operating system. You manage the server software
in the same way, regardless of the operating system.

* Native packaging facilitates integration with the operating system. You use the operating system tools to manage
the software.

Both packaging formats provide tools to help register the server as a service of the operating system. These scripts are
create-rc-script (Linux)and windows-service (Windows).

Gateway portability

The only persistent state for gateway applications is in their configuration files. The gateway configuration files are portable
across web application containers and operating systems.

Deployment checklists

Use these checklists when deploying your directory service:

Initiate the project

Task Done?
Understand the business requirements for your DS deployment 0
Identify key client applications O
Identify project stakeholders)
Define SLOs based on business requirements 0
Define project scope O
Define project roles and responsibilities m)
Schedule DS training for deployment team members m)

Copyright © 2025 Ping Identity Corporation

Deployment PingDS

Prepare supportability

Task Done?
Find out how to get help and support from Ping Identity and partners O
Find out how to get training from Ping Identity and partners O
Find out how to keep up to date with new development and new releases O
Find out how to report problems O

Design the service

Task Done?
Understand the roles of directory components m)
Define architecture, mapping requirements to component features O
Define the directory data model 0
Define the directory access model 0
Define the replication model 0
Define how to backup, restore, and recover data 0
Define how you will monitor and audit the service a
Determine how to harden and secure the service a

Develop the service

Task Done?
Engage development of custom server plugins as necessary 0
Apply configuration management 0
Create a test plan m)
Engage automation, continuous integration O
Create a documentation plan 0

Copyright © 2025 Ping Identity Corporation

PingDS Deployment

Task Done?
Create a maintenance and support plan O
Pilot the implementation O
Size systems to provision for production O
Execute test plans O
Execute documentation plans O
Create a rollout plan in alignment with all stakeholders O
Prepare patch and upgrade plans)

Implement the service

Task Done?
Ensure appropriate support for production services O
Execute the rollout plan 0
Engage ongoing monitoring and auditing services O
Engage ongoing maintenance and support O

Maintain the service

Task Done?
Execute patch and upgrade plans as necessary m)
Plan how to adapt the deployment to new and changing requirements 0

Copyright © 2025 Ping Identity Corporation

Installation

M Pingldentity.

PingDS

Installation

This guide shows you how to install and remove PingDS software.

&>
[-]
Evaluate DS

Try DS software.

DS for Identities

Store AM identities.

Setup Hints

Review setup options.

DS for CTS

Store AM CTS tokens.

DS as IDM Repo

Store IDM data.

4
h
DS Proxy

Install an LDAP proxy.

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Component Description

Directory server and tools Pure Java, high-performance server that can be configured as:

+ An LDAPv3 directory server with the additional capability to serve directory data to
REST applications over HTTP.

« An LDAPV3 directory proxy server providing a single point of access to underlying
directory servers.

* A replication server handling replication traffic with directory servers and with other
replication servers, receiving, sending, and storing changes to directory data.

Server distributions include command-line tools for installing, configuring, and managing
servers. The tools make it possible to script all operations.

DSML gateway (deprecated) DSML support is available through the gateway, which is a Java web application that you
install in a web container.

HDAP gateway The HDAP gateway is a Java web application offering REST access to a remote LDAPv3
directory service.

Java APIs Java server-side APIs for server plugins that extend directory services.
All Java APIs have interface stability: Evolving. Be prepared for incompatible changes in both
major and minor releases.

Read the Release notes(Z before installing DS software.

Product names changed when ForgeRock became part of Ping Identity. PingDS was formerly known as ForgeRock Directory
Services, for example. Learn more about the name changes in New names for ForgeRock productsZ in the Knowledge Base.

Unpack files

The following procedures only unpack the server files. You must then run the setup command to set up the server:

Unpack the cross-platform zip

You can use the .zip delivery on any supported operating system.
1. Review requirements for installation (5.
2. Unpack the cross-platform .zip file in the file system directory where you want to install the server.
Perform this step as a user with the same file system permissions as the user who will run the setup command.

The setup command uses the directory where you unzipped the files as the installation directory. It does not ask you
where to install the server. If you want to install elsewhere on the file system, unzip the files in that location.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

PingDS Installation

Use the Debian package

On Debian and related Linux distributions, such as Ubuntu, you can unpack files using the Debian package:
1. Review requirements for installation(Z.

In particular, install a Java runtime environment (JRE) if none is installed yet. The following example uses the javal1-
runtime virtual package:

$ sudo apt-get install javall-runtime

2. Install the server package:

$ sudo dpkg -i DS*.deb

The Debian package:
o Installs server files in the /opt/opendj directory.
o Adds documentation files under the /usr/share/doc/opendj directory.
o Adds man pages under the /opt/opendj/share/man directory.
o Generates systemd service files /etc/default/opendj and /etc/systemd/system/opendj.service.
By default, the system superuser (root) owns the files. The DS server can listen on privileged ports like 389 and 636 .
3. (Optional) Change the systemd configuration:
o Edit /etc/default/opendj directly to set any environment variables DS requires.
For example, set environment variables for property value substitutions.
o Use the systemctl edit command to change the service configuration; for example, to run DS as a specific user.
The command makes the changes in a new override.conf file that systemd reads automatically.

The changes you make in this way are independent of upgrades and changes to the package defaults. To avoid
compatibility problems, don't edit /etc/systemd/system/opendj.service directly.

4. Set up the server with the setup command, sudo /opt/opendj/setup.

Use the RPM package

On Red Hat and related Linux distributions, such as Fedora and CentOS, you can unpack files using the RPM package:
1. Review requirements for installation (5.

In particular, install a Java runtime environment (JRE) if none is installed yet. You might need to download an RPM to install
the Java runtime environment, and then install the RPM by using the rpm command:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

Installation PingDS

$ su
Password:
root# rpm -ivh jre-*.rpm

2. Install the server package:
root# rpm -i DS*.rpm

The RPM package:
o Installs server files in the /opt/opendj directory.
o Adds man pages under the /opt/opendj/share/man directory.
o Generates systemd service files /etc/default/opendj and /etc/systemd/system/opendj.service.
By default, the system superuser (root) owns the files. The DS server can listen on privileged ports like 389 and 636 .
3. (Optional) Change the systemd configuration:
o Edit /etc/default/opendj directly to set any environment variables DS requires.
For example, set environment variables for property value substitutions.
o Use the systemctl edit command to change the service configuration; for example, to run DS as a specific user.
The command makes the changes in a new override.conf file that systemd reads automatically.

The changes you make in this way are independent of upgrades and changes to the package defaults. To avoid
compatibility problems, don't edit /etc/systemd/system/opendj.service directly.

4. Set up the server with the setup command, /opt/opendj/setup.

By default, the server starts in run levels 2, 3, 4, and 5.

Use the Windows MSI

Make sure you can log on as Windows Administrator to install the files and run the setup.bat command.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

@ Important

Prevent antivirus and intrusion detection systems from interfering with DS software.
Before using DS software with antivirus or intrusion detection software, consider the following potential problems:

Interference with normal file access

Antivirus and intrusion detection systems that perform virus scanning, sweep scanning, or deep file inspection
are not compatible with DS file access, particularly write access.

Antivirus and intrusion detection software have incorrectly marked DS files as suspect to infection, because
they misinterpret normal DS processing.
Prevent antivirus and intrusion detection systems from scanning DS files, except these folders:
C:\path\to\opendj\bat\
Windows command-line tools
/path/to/opendj/bin/
Linux command-line tools
/path/to/opendj/extlib/
Optional .jar files used by custom plugins
/path/to/opendj/lib/
Scripts and libraries shipped with DS servers
Port blocking

Antivirus and intrusion detection software can block ports that DS uses to provide directory services.
Make sure that your software does not block the ports that DS software uses. For details, refer to
Administrative access.

Negative performance impact

Antivirus software consumes system resources, reducing resources available to other services including DS
servers.

Running antivirus software can therefore have a significant negative impact on DS server performance. Make
sure that you test and account for the performance impact of running antivirus software before deploying DS
software on the same systems.

GUI

1. Review requirements for installation (5.
2. Start the wizard as Windows Administrator:
1. If you are logged on as Administrator, double-click the Windows installer package, DS-7.5.2.msi.

2. If you are logged on as a regular user, hold the shift key while right-clicking DS-7.5.2.msi, select Run as different
user, and run the installer as Windows Administrator.

3. (Optional) Set the Destination Folder to the location for DS server files.
* The default location is under Program Files on the system drive.

For example, if the system drive is C: , the default location is
C:\Program Files (x86)\ForgeRock Directory Services\.

* The Windows installer has 32-bit dependencies but DS runs as a 64-bit Java application.

1. Complete the wizard.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

Installation PingDS

The installation program writes DS server files to the destination folder.
You must run the setup.bat command in the destination folder as Administrator to set up DS.

PowerShell

1. Review requirements for installation (5.
2. Start PowerShell as Windows Administrator:
1. If you are logged on as Windows Administrator, double-click Start > Windows PowerShell.

2. If you are logged on as a regular user, hold the shift key while right-clicking Start > Windows PowerShell and select
Run as Administrator.

3. Use the Microsoft msiexec.exe command to install the files.

The following example installs DS server files under C:\Users\opendj\ds. It writes an install.log file in the current
folder:

C:\> msiexec /i C:\Users\opendj\Downloads\DS-7.5.2.msi /1* install.log /q OPENDJ="C:\Users\opendj\ds"

The installation program writes DS server files to the destination folder.

You must run the setup.bat command in the destination folder as Administrator to set up DS.

Setup hints

The following table provides extensive hints for using setup command options in the order they are presented in interactive
mode, when you run the command without options.

For reference information, refer to setup:

Parameter Description Option(s)

Instance path Server setup uses tools and templates installed with the --instancePath
software to generate the instance files required to run an
instance of a server. By default, all the files are co-located.
This parameter lets you separate the files. Set the instance
path to place generated files in a different location from the
tools, templates, and libraries you installed.

Interactive setup suggests co-locating the software with the
instance files.

You cannot use a single software installation for multiple
servers. Tools for starting and stopping the server process,
for example, work with a single configured server. They do
not have a mechanism to specify an alternate server location.
If you want to set up another server, install another copy of
the software, and run that copy’'s setup command.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

PingDS

Installation

Parameter

Unique server ID

Deployment ID

Deployment ID
password

Root user DN

Root user
password

Monitor user DN

Monitor user
password

Description

A server identifier string that is unique for your deployment.
Choose a relatively short string, as the value is recorded
repeatedly in replicated historical data.

The deployment ID is a random string generated using the
dskeymgr command. It is paired with a deployment ID
password, which is a random string that you choose, and that
you must keep secret.

Together, the deployment ID and password serve to generate
the shared master key that DS servers in the deployment
require for protecting shared encryption secrets. By default,
they also serve to generate a private CA and keys for TLS to
protect communication between DS servers.

When you deploy multiple servers together, reuse the same
deployment ID and password for each server installation.
For details, refer to Deployment IDs.

This is a random string that you choose, and that you must
keep secret. It is paired with the deployment ID.

The root user DN identifies the initial directory superuser. This
user has privileges to perform any and all administrative
operations, and is not subject to access control. It is called
the root user due to the similarity to the Linux root user.

The default name is: uid=admin .

For additional security in production environments, use a
different name.

The root user authenticates with simple, password-based
authentication.

Use a strong password here unless this server is only for
evaluation.

The monitor user DN identifies a user with the privilege to
read monitoring data (monitor-read).

The account is replicated by default, so use the same DN on
each server.

The name used in the documentation is the default name:
uid=monitor .

The monitor user authenticates with simple, password-based
authentication.

The account is replicated by default, so use the same
password on each server.

Option(s)

--serverlId

--deploymentId

--deploymentIdPassword[:env|:file]

-D, --rootUserDn
-j, --rootUserPassword[:env|:filel
--monitorUserDn

--monitorUserPassword[:env|:file]

Copyright © 2025 Ping Identity Corporation

Installation

PingDS

Parameter
Fully qualified

directory server
domain name

Administration
port

Securing the
deployment

Start the server

Description

The server uses the fully qualified domain name (FQDN) for
identification between replicated servers.

Interactive setup suggests the hostname of the local host.

If this server is only for evaluation, then you can use
localhost.

Otherwise, use an FQDN that other hosts can resolve to
reach your server, and that matches the FQDN in the server
certificate.

This is the service port used to configure the server and to
run tasks.

The port used in the documentation is 4444 .

If the suggested port is not free, interactive setup adds 1000
to the port number and tries again, repeatedly adding 1000
until a free port is found.

Configure the firewall to allow access to this port from all
connecting DS servers.

Setup requires a keystore with the keys for securing
connections to the administration port, and to any other
secure ports you configure during setup.

You can choose to use the private PKI derived from the
deployment ID and passwords. For details, refer to
Deployment IDs.

You can also choose to use an existing keystore supported by
the JVM, which can be either a file-based keystore or a
PKCS#11 token. The existing keystore must protect the
keystore and all private keys with the same PIN or password.
If you choose a PKCS#11 token, you must first configure
access through the JVM, as the only input to the setup
command is the PIN.

Public key security is often misunderstood. Before making
security choices for production systems, read Cryptographic
keys.

By default, the setup command does not start the server.
Finish configuring the server, then use the /path/to/opendj/
bin/start-ds command.

If no further configuration is required, use the setup --
start option.

Option(s)

-h, --hostname

--adminConnectorPort

--useJavaKeyStore
--usedceKeyStore
--usePkcs11KeyStore
--usePkcs12KeyStore

-W, --
keyStorePassword[:env| :file]
--keyStorePasswordFilePath
-N, --certNickname
--useJavaTrustStore
--useJceTrustStore
--usePkcs12TrustStore

_T' oo

trustStorePassword[:env|:file]
--trustStorePasswordFilePath

-s, --start

Copyright © 2025 Ping Identity Corporation

PingDS

Installation

Parameter

LDAP and LDAPS
port

HTTP and HTTPS
ports

Replication port

Description

The reserved port for LDAP is 389 . The reserved port for
LDAPS is 636 .

Examples in the documentation use 1389 and 1636, which
are accessible to non-privileged users.

If you install the server with access to privileged ports (<
1824), and the reserved port is not yet in use, then
interactive setup suggests the reserved port number. If the
port is not free or cannot be used due to lack of privileges,
interactive setup adds 1000 to the port number and tries
again, repeatedly adding 1000 until a free port is found.
The LDAP StartTLS extended operation negotiates a secure
connection starting on the insecure LDAP port.

The reserved port for HTTP is 88 . The reserved port for
HTTPS is 443 . The interactive setup initially suggests 8086
and 8443 instead.

If the initially suggested port is not free or cannot be used
due to lack of privileges, interactive setup adds 1000 to the
port number and tries again, repeatedly adding 1000 until a
free port is found.

Examples in the documentation use HTTPS on port 8443 .

Port used for data replication messages. This port must be
accessible externally from other DS servers.

If this port is configured, the server acts as a replication
server. It maintains a replication change log, which it exposes
as an external change log by default.

If the initially suggested port is not free or cannot be used
due to lack of privileges, interactive setup adds 1000 to the
port number and tries again, repeatedly adding 1000 until a
free portis found.

Examples in the documentation use 8989 .

Option(s)
-p, --ldapPort

-q, --enableStartTls
-Z, --ldapsPort

--httpPort
--httpsPort

-r, --replicationPort

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Parameter Description Option(s)

Bootstrap Specify bootstrap server host:port pairs, where portis the --bootstrapReplicationServer
replication servers server’s replication port. The current server contacts the

bootstrap servers to discover other servers in the

deployment. The host:port pair may represent the current

server if it is a bootstrap server.

Specify the same list of bootstrap servers each time you set

up a replica or standalone replication server.

This option interacts with the -r, --replicationPort

option as follows:

« If both options are set, the server acts as a replication
server. It connects to the specified bootstrap
replication server(s) to discover other servers.

If only the -r, --replicationPort option is set, the
server acts as a replication server. It counts only itself
as the bootstrap replication server. In production,
specify the same list of at least two bootstrap servers
every time, including when you set up the bootstrap
servers.

If only the --bootstrapReplicationServer optionis
set, the server acts as a standalone directory server. It
connects to the specified bootstrap replication
server(s).

If neither option is set, the server is not configured for
replication at setup time.

Configure the For details, refer to Setup profiles. --profile
server for use --set
with other

applications

Setup profiles

A setup profile lets you configure a server for a specific use case. Profiles greatly simplify the directory server setup process for
such use cases, such as preparing a directory server to serve another Ping Identity Platform component product.

You can configure a setup profile using the setup command, or the setup-profile command after initial setup. The setup-
profile command runs on a server that is offline.

Select a profile with the --profile option. Each profile has its own parameters, some of which have default values. You specify
profile parameters with --set options.

The profile selection option takes the form --profile profileName[:version] . If you do not specify the optional :version
portion of the argument, the setup command uses the current DS software version, falling back to the previous version if the
current version does not match an available profile. Repeat the --profile option to apply multiple setup profiles.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

An option to set a parameter takes the form --set[:env|:file] parameterName:value where:
+ profileName/ indicates which profile the parameter applies to.

This name is required when you specify multiple profiles, and the parameter is available in more than one of the specified
profiles.

The profileName is case-insensitive.
+ parameterName specifies the parameter to set.
+ value specifies the value the parameter takes when the setup command applies the profile.
Use the setup --help-profiles or setup-profile --help command to list available profiles.

Use the --help-profile profileName[:version] option to list the parameters for the specified profile.

Different data under different base DNs

Nothing prevents you from configuring multiple setup profiles to use the same base DN for different directory data. Keep
different directory data under different base DNs.

When the different data sets are incompatible, reusing a base DN can lead to errors, such as the following:

category=CONFIG severity=ERROR msgID=116 msg=An error occurred while trying

to initialize a backend loaded from class org.opends.server.backends.jeb.JEBackend

with the information in configuration entry ds-cfg-backend-id=cfgStore, cn=Backends, cn=config:

An error occurred while attempting to register the base DNs [dc=reused,dc=base,dc=dn] in the Directory Server:
Unwilling to Perform: Unable to register base DN dc=reused, dc=base,dc=dn with the Directory Server

for backend cfgStore because that base DN is already registered for backend amCts.

This backend will be disabled.

Check profiles

The opendj/profiles.version file lists the profiles selected at setup time:

$ cat /path/to/opendj/config/profiles.version
ds-evaluation:7.5.2

Default indexes

For new backends, setup profiles create the following default indexes:
+ ds-certificate-fingerprint (equality index)
+ ds-certificate-subject-dn (equality index)
* member (equality index)
+ uid (equality index)

+ uniqueMember (equality index)

Copyright © 2025 Ping Identity Corporation

Installation PingDS

When a profile adds a backend with default user indexes, it also creates the following default indexes:
+ cn (equality and substring indexes)
* givenName (equality and substring indexes)
+ mail (equality and substring indexes)
+ sn (equality and substring indexes)

+ telephoneNumber (equality and substring indexes)

Default Setup Profiles

This page lists default profiles with their parameters.

AM Configuration Data Store 6.5.0

The am-config:6.5.0 profile has the following parameters:
backendName

Name of the backend for storing config
Default: --set am-config/backendName:cfgStore
Syntax: Name

baseDn

The base DN to use to store AM’s configuration in
Default: --set am-config/baseDn:ou=am-config
Syntax: DN

amConfigAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

AM CTS Data Store 6.5.0

The am-cts:6.5.0 profile has the following parameters:

backendName

Name of the backend for storing tokens
Default: --set am-cts/backendName:amCts
Syntax: Name

baseDn

The base DN to use to store AM's tokens in
Default: --set am-cts/baseDn:ou=tokens
Syntax: DN

Copyright © 2025 Ping Identity Corporation

PingDS Installation

amCtsAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

tokenExpirationPolicy

Token expiration and deletion
Default: --set am-cts/tokenExpirationPolicy:am

This parameter takes one of the following values:
+ am: AM CTS reaper manages token expiration and deletion

+ am-sessions-only : AM CTS reaper manages SESSION token expiration and deletion. DS manages expiration and
deletion for all other token types. AM continues to send notifications about session expiration and timeouts to
agents

+ ds: DS manages token expiration and deletion. AM session-related functionality is impacted and notifications are
not sent

AM Identity Data Store 7.5.0

The am-identity-store:7.5.8 profile has the following parameters:
backendName

Name of the backend for storing identities
Default: --set am-identity-store/backendName:amIdentityStore
Syntax: Name

baseDn

The base DN to use to store identities in
Default: --set am-identity-store/baseDn:ou=identities
Syntax: DN

amIdentityStoreAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

AM Identity Data Store 7.3.0
The am-identity-store:7.3.8 profile has the following parameters:
backendName

Name of the backend for storing identities
Default: --set am-identity-store/backendName:amIdentityStore
Syntax: Name

Copyright © 2025 Ping Identity Corporation

Installation PingDS

baseDn

The base DN to use to store identities in
Default: --set am-identity-store/baseDn:ou=identities
Syntax: DN

amIdentityStoreAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

AM Identity Data Store 7.2.0

The am-identity-store:7.2.@ profile has the following parameters:

backendName

Name of the backend for storing identities
Default: --set am-identity-store/backendName:amIdentityStore
Syntax: Name

baseDn

The base DN to use to store identities in
Default: --set am-identity-store/baseDn:ou=identities
Syntax: DN

amIdentityStoreAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

AM Identity Data Store 7.1.0

The am-identity-store:7.1.8 profile has the following parameters:

backendName

Name of the backend for storing identities
Default: --set am-identity-store/backendName:amIdentityStore
Syntax: Name

baseDn

The base DN to use to store identities in
Default: --set am-identity-store/baseDn:ou=identities
Syntax: DN

amIdentityStoreAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

Copyright © 2025 Ping Identity Corporation

PingDS Installation

AM Identity Data Store 7.0.0

The am-identity-store:7.0.8 profile has the following parameters:

backendName

Name of the backend for storing identities
Default: --set am-identity-store/backendName:amIdentityStore
Syntax: Name

baseDn

The base DN to use to store identities in
Default: --set am-identity-store/baseDn:ou=identities
Syntax: DN

amIdentityStoreAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

AM Identity Data Store 6.5.0

The am-identity-store:6.5.8 profile has the following parameters:
backendName

Name of the backend for storing identities
Default: --set am-identity-store/backendName:amIdentityStore
Syntax: Name

baseDn

The base DN to use to store identities in
Default: --set am-identity-store/baseDn:ou=identities
Syntax: DN

amIdentityStoreAdminPassword

Password of the administrative account that AM uses to bind to OpenD]
Syntax: Password

DS Evaluation 7.5.0

The ds-evaluation:7.5.0 profile has the following parameters:

generatedUsers

Specifies the number of generated user entries to import. The evaluation profile always imports entries used in
documentation examples, such as uid=bjensen. Optional generated users have RDNs of the form uid=user.%d, yielding
uid=user.0, uid=user.1, uid=user.2 and so on. All generated users have the same password, "password". Generated user
entries are a good fit for performance testing with tools like addrate and searchrate

Default: --set ds-evaluation/generatedUsers:100060

Syntax: Number

Copyright © 2025 Ping Identity Corporation

Installation PingDS

useOutdatedPasswordStorage

Use Salted SHA-512 as the password storage scheme for the import and default password policy for users.
Default: --set ds-evaluation/useOutdatedPasswordStorage:false

This parameter takes one of the following values:
* true
* false

DS Proxied Server 7.0.0

The ds-proxied-server:7.0.8 profile has the following parameters:
proxyUserDn

The proxy user service account DN. This will be used for authorization and auditing proxy requests.
Default: --set ds-proxied-server/proxyUserDn:uid=proxy
Syntax: DN

proxyUserCertificateSubjectDn

The subject DN of the proxy user’s certificate. The proxy must connect using mutual TLS with a TLS client certificate whose
subject DN will be mapped to the proxy service account.

Default: --set ds-proxied-server/proxyUserCertificateSubjectDn:CN=DS,0=ForgeRock.com

Syntax: DN

baseDn

Base DN for user information in the server. Multiple base DNs may be provided by using this option multiple times. If no
base DNs are defined then the server will allow proxying as any user, including administrator accounts.
Syntax: DN

DS Proxy Server 7.0.0
The ds-proxy-server:7.8.0 profile has the following parameters:

backendName

Name of the proxy backend for storing proxy configuration
Default: --set ds-proxy-server/backendName:proxyRoot
Syntax: Name

bootstrapReplicationServer

Bootstrap replication server(s) to contact periodically in order to discover remote servers
Syntax: host:port or configuration expression

Copyright © 2025 Ping Identity Corporation

PingDS Installation

rsConnectionSecurity

Connection security type to use to secure communication with remote servers
Default: --set ds-proxy-server/rsConnectionSecurity:ssl

This parameter takes one of the following values:
* ssl:UseSSL
* start-tls:Use Start TLS
keyManagerProvider

Name of the key manager provider used for authenticating the proxy in mutual-TLS communications with backend
server(s)

Default: --set ds-proxy-server/keyManagerProvider :PKCS12

Syntax: Name or configuration expression

trustManagerProvider

Name of the trust manager provider used for trusting backend server(s) certificate(s)
Syntax: Name or configuration expression

certNickname

Nickname(s) of the certificate(s) that should be sent to the server for SSL client authentication.
Default: --set ds-proxy-server/certNickname:ssl-key-pair
Syntax: Name or configuration expression

primaryGroupId

Replication domain group ID of directory server replicas to contact when available before contacting other replicas. If this
option is not specified then all replicas will be treated the same (i.e all remote servers are primary)
Syntax: String or configuration expression

baseDn

Base DN for user information in the Proxy Server.Multiple base DNs may be provided by using this option multiple times.If
no base DNs are defined then the proxy will forward requests to all public naming contexts of the remote servers
Syntax: DN or configuration expression

DS User Data Store 7.0.0

The ds-user-data:7.0.0 profile has the following parameters:

backendName

Name of the backend to be created by this profile
Default: --set ds-user-data/backendName:userData
Syntax: Name

Copyright © 2025 Ping Identity Corporation

Installation PingDS

baseDn

Base DN for your users data.
Syntax: DN

1difFile

Path to an LDIF file containing data to import. Use this option multiple times to specify multiple LDIF files
Syntax: File or directory path

addBaseEntry

Create entries for specified base DNs when the 'ldifFile' parameter is not used. When this option is set to 'false’ and the
'difFile’ parameter is not used, create an empty backend.
Default: --set ds-user-data/addBaseEntry:true

This parameter takes one of the following values:
* true
* false

IDM External Repository 7.5.0

The idm-repo:7.5.0 profile has the following parameters:
backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

IDM External Repository 7.4.0
The idm-repo:7.4.0 profile has the following parameters:

backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

Copyright © 2025 Ping Identity Corporation

PingDS Installation

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

IDM External Repository 7.3.0
The idm-repo:7.3.0 profile has the following parameters:

backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

IDM External Repository 7.2.0
The idm-repo:7.2.0 profile has the following parameters:

backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

IDM External Repository 7.1.0
The idm-repo:7.1.0 profile has the following parameters:

backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

Copyright © 2025 Ping Identity Corporation

Installation PingDS

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

IDM External Repository 7.0.0
The idm-repo:7.8.0 profile has the following parameters:

backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

IDM External Repository 6.5.0
The idm-repo:6.5.0 profile has the following parameters:

backendName

IDM repository backend database name
Default: --set idm-repo/backendName :idmRepo
Syntax: Name

domain

Domain name translated to the base DN for IDM external repository data. Each domain component becomes a

"dc" (domain component) of the base DN. This profile prefixes "dc=openidm" to the result. For example, the domain
"example.com" translates to the base DN "dc=openidm,dc=example,dc=com".

Default: --set idm-repo/domain:example.com

Syntax: Domain name

Create your own

If you have changes that apply to each server you set up, you can create and maintain your own setup profile.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

@ Important

The custom setup profile interface has stability: Evolving.
Be prepared to adapt your custom profiles to changes in each new release.

+ Add custom setup profiles under the opendj/template/setup-profiles/ directory.

The setup and setup-profile commands look for profiles in that location. The default profiles provide examples that
you can follow when building custom profiles.

+ Add custom setup profiles after unpacking the DS files, but before running the setup or setup-profile command.
* Each setup profile strictly follows the supported file layout.

The base path, version directories, and the .groovy files are required. The other files are shown here as examples:

opendj/template/setup-profiles/base-path/
— version

| F— base-entries.1ldif

| F— parameters.groovy

| F— profile.groovy

| L— schema

| L— schema-file-name.1ldif

L— name.txt

File or Directory Description
base-path The base path distinguishes the profile from all other profiles, and defines the profile name.
(required) Path separator characters are replaced with dashes in the name. For example, the base path

DS/evaluation yields the profile name ds-evaluation.

version The profile version, including either two or three numbers. Numbers can be separated by dots
(required) (.)ordashes(-).
Set this to the version of the software that the profile is for. For example, if you are writing a
profile for Transmogrifier 2.0, use 2.8 . Add multiple versions of your profile when using the
same DS version with different versions of your application.

base-entries.1ldif Optional LDIF file that templates the entries this profile adds to the directory.
This is an example of a file used by profile.groovy .

parameters.groovy Groovy script defining profile parameters that users can set.
(required) Refer to Parameters.

profile.groovy Groovy script that makes changes to the server.

(required) Refer to Profile script.

schema-file-name.1ldif Optional LDAP schema file required for entries added by this profile.

This is an example of a file used by profile.groovy .

Copyright © 2025 Ping Identity Corporation

Installation PingDS

File or Directory Description

name. txt If this file is present, it must hold the human-readable form of the profile name, not including
the version, in a single-line text file.

At setup time, the user cannot select more than one version of the same setup profile. The user can select multiple setup profiles
for the same server. You must ensure that your profile is not incompatible with other available profiles.

Parameters

You let users set parameters through the parameters.groovy script. The profile uses the parameters as variables in the
profile.groovy script, and resource files.

The parameters.groovy script lists all parameter definitions for the profile. It includes only parameter definitions. Each
parameter definition is resolved at runtime, and so must not be provided programmatically. Parameter definitions start with
define, and can have the following methods:

define.type "name"
advanced()
defaultValueFromSetupTool global-setup-option
defaultValue default
description "short-description”
help "help-message”
multivalued()
multivalued "help message(s)"
optional()
optional "help message(s)"
descriptionIfNoValueSet "short-description”
property "property-name"
prompt “prompt message(s)"
expressionAllowed()

s s s s -

Copyright © 2025 Ping Identity Corporation

PingDS

Installation

Element

type
(required)

name
(required)

advanced()

defaultValueFromSetupTool global-setup-
option

defaultValue default

description "short-description”

help "help-message"

multivalued()

Description

This mandatory parameter type is one of the following. The profile
mechanism converts the string input internally into a Java class:

* booleanParameter

* dnParameter (a DN)

* domainParameter
The input is a domain that the profile mechanism converts to a DN.
The domain example.com becomes dc=example, dc=com.

* hostPortParameter (a hostname:port pair)

+ doubleParameter (a Double number)

« floatParameter (a Float number)

+ integerParameter (an Integer number)

+ longParameter (a Long number)

* passwordParameter
The input is a password, and encoded with a password storage
scheme to avoid exposing the plain text.

* pathParameter

* stringParameter

This mandatory parameter name must be a valid Groovy name string.

This is an advanced parameter, meaning interactive mode does not show
the parameter or prompt for input.

When using advanced() , you must set a default parameter value.
Interactive mode sets this parameter to the default value.

This parameter takes its default from the value of the specified the global
setup option. The defaultValueFromSetupTool method only applies
when the profile is used by the setup command.

The global-setup-option is the option name without leading dashes.

This parameter’'s default must match the type.

This provides a brief summary of what the parameter does.
The "short-description” is a single paragraph with no trailing punctuation.

The message, used in online help, provides further explanation on how to
use the parameter.
The "help-message" is a single paragraph with no trailing punctuation.

This parameter takes multiple values, and no help message is required.
Use this, for example, when the property is advanced() .

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Element Description

multivalued "help message(s)" This parameter takes multiple values, and interactive mode prompts the
user for each one.
Each help message string is a single paragraph, and the final help message
has no trailing punctuation. Help message arguments are separated with

commas.
optional() This parameter is optional, and no help message is required.
optional "help message(s)" This parameter is optional, and interactive mode prompts the user for
input.

Each help message string is a single paragraph, and the final help message
has no trailing punctuation. Help message arguments are separated with

commas.
descriptionIfNoValueSet "short- The description is displayed when the parameter is optional, and the user
description"” has not set a value.

The "short-description" is a single paragraph with no trailing punctuation.

property "property-name" The profile replaces &{property-name} in resource files with the value of
this property.
The &{property-name} expressions follow the rules described in Property
value substitution.

prompt "prompt message(s)" In interactive mode, display one or more paragraphs when prompting the
user for input.
Each prompt message string is a single paragraph. If no default value is set
the final prompt message takes a trailing colon. Prompt message
arguments are separated with commas.

Profile script

When a user requests a profile, the profile.groovy script controls what the profile does.

When developing your profile script, you can use these classes and methods, which are bound into the execution context of your
script before it executes:

In addition, refer to the Javadoc for the setup model.

Default imports

The profile mechanism imports the following classes and methods, making them available by default in the context of your profile
script:

Copyright © 2025 Ping Identity Corporation

PingDS Installation

import static org.forgerock.il18n.LocalizableMessage.raw

import static org.forgerock.opendj.setup.model.Profile.ParameterType.of
import static java.nio.file.Files.*

import org.forgerock.i18n.LocalizableMessage

import org.forgerock.opendj.ldap.Dn

import org.forgerock.opendj.setup.model.SetupException

import java.nio.file.Paths

Server methods

A ds object is bound into the execution context of your profile script.

Allits methods throw a SetupException on failure. On failure, the setup process removes the server's db and config
directories. This allows the user to start over, applying the same profiles again.

All the ds methods run with the server offline:

Method Description

void ds.addBackend(String backendName, String Creates the backend, adds it to the server, and sets it as the

entryDn) working backend. When you use other methods to import
LDIF and create indexes, they operate on the working

void ds.addBackend(String backendName, Dn entryDn) backend.
Use importBaseEntry to add only the base entry, or

void ds.addBackendWithDefaultUserIndexes(String importLdif to add entries to the backend.

backendName, String entryDn) For new backends, setup profiles create the following default
indexes:

void ds.addBackendWithDefaultUserIndexes(String
backendName, Dn entryDn) + ds-certificate-fingerprint (equality index)

+ ds-certificate-subject-dn (equality index)
* member (equality index)

¢+ uid (equality index)

* uniqueMember (equality index)

When a profile adds a backend with default user indexes, it
also creates the following default indexes:

+ cn (equality and substring indexes)

+ givenName (equality and substring indexes)

« mail (equality and substring indexes)

* sn (equality and substring indexes)

+ telephoneNumber (equality and substring indexes)

void ds.setWorkingBackend(String backendName) Set the specified backend as the one to operate on when
importing LDIF and creating indexes.

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Method Description

void ds.importBaseEntry(Dn baseDn) Import the entry with the specified base DN as the base entry
of the working backend.
The import operation erases any previous content of the
backend before importing new content.

void ds.importLdifWithSampleEntries(Dn Import the specified number of sample entries with the

sampleEntryBaseDn, int nbSampleEntries, String.. specified base DN, based on the LDIF file templates provided,

1difFilePaths) to the working backend. The LDIF must contain the base
entry.

This method replaces &{property-name} in the LDIF with the
property values before import.

The import operation erases any previous content of the
backend before importing new content.

void ds.importLdifTemplate(String.. 1difFilePaths) Add the entries from the LDIF files provided to the working
backend. The LDIF must contain the base entry.

void ds.importLdifTemplate(Collection<Path> This method replaces &{property-name} inthe LDIF with the

1difFilePaths) property values before import.

The import operation erases any previous content of the
backend before importing new content.

void ds.importLdif(String.. 1difFilePaths) Add the entries from the LDIF files provided to the working
backend.
void ds.importLdif(Collection<Path> 1ldifFilePaths) The LDIF must contain the base entry. If there are multiple

files, each entry must appear only once.
The import operation erases any previous content of the
backend before importing new content.

void ds.addSchemaFiles() Copy LDIF-format schema files from the schema directory of
the profile to the db/schema directory of the server.
If no schema directory is present for the current version of
the profile, this method uses schema from a previous version
of the profile.

void ds.config(List<String> cliArgs) Run the dsconfig command in offline mode with the
specified arguments.
Use this method only for additional configuration, not when
creating backends or indexes.

void ds.addIndex(String attributeName, String.. Create indexes of the specified types in the working backend
types) for the specified attribute. For a list of available index types,

refer to index-type.

void ds.failSetup(String message) Cause the profile to fail with a SetupException having the
specified message.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Resource file methods

A resource object is bound into the execution context of your profile script. The resource methods let you retrieve arbitrary
files from the profile, and replace configuration expressions in resource files:

Method Description

Path resource.file(String path) Return the path to the specified resource file.
If the specified path is relative, the method first returns the
path of the file in the current profile version, or the path of
the file in the previous profile version if none is present in the
current version.
If the specified path is absolute, the method only converts
the string to a path.

void resource.applyTemplate(String template, String Convert the relative template path as

target) resource.file(template) the relative target path as an
absolute path, and copy the template file to the target file,
replacing &{property-name} with the property values.
The &{property-name} expressions follow the rules
described in Property value substitution.

Logging methods

Use the console object to write log messages when your profile script runs.
The console objectimplements SetupConsole, and so provides all the methods documented for that interface.

The setup and setup-profile commands log any exceptions that occur when your profile script runs, so there is no need to
catch exceptions just for logging purposes.

Install DS for evaluation

To set up the server, use the setup command-line tool.
When used without options, the command is interactive.

The following setup options are mandatory. When performing a non-interactive, silent installation, specify at least all mandatory
options as part of the command. If you use only these options, the command sets up a server listening only on an administration
port. The administration port is protected by a key pair specified or generated at setup time:

* --adminConnectorPort {port} (conventional port number: 4444)
* --hostname {hostname}

* --rootUserDN {rootUserDN} (default: uid=admin)

Copyright © 2025 Ping Identity Corporation

Installation PingDS

* --rootUserPassword {rootUserPassword}

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Generate a deployment ID unless you already have one:

S /path/to/opendj/bin/dskeymgr create-deployment-id --deploymentIdPassword password

your-deployment-id

Save the deployment ID and its deployment password. Keep the ID and the password safe, and keep the password secret.
Use the same deployment ID and password for all the servers in the same environment.

A deployment ID is a random string generated using the dskeymgr command. It is a deployment identifier, not a key, but it
is used with a password to generate keys.

A deployment ID password is a secret string at least 8 characters long that you choose.
The two are a pair. You must have the deployment ID password to use the deployment ID.
Each deployment requires a single, unique deployment ID and its password. DS uses the pair to:

° Protect the keys to encrypt and decrypt backup files and directory data.

o Generate the TLS key pairs to protect secure connections, unless you provide your own.

Store your deployment ID and password in a safe place, and reuse them when configuring other servers in the same
deployment.

The DS setup and dskeymgr commands use the pair to generate the following:
° (Required) A shared master key for the deployment.

DS replicas share secret keys for data encryption and decryption. DS servers encrypt backend data, backup files,
and passwords, and each replica must be able to decrypt data encrypted on another peer replica.

To avoid exposing secret keys, DS servers encrypt secret keys with a shared master key. DS software uses a
deployment ID and its password to derive the master key.

° (Optional) A private PKI for trusted, secure connections.

A PKI serves to secure network connections from clients and other DS servers. The PKl is a trust network, requiring
trust in the CA that signs public key certificates.

Building a PKI can be complex. You can use self-signed certificates, but you must distribute each certificate to each
server and client application. You can pay an existing CA to sign certificates, but that has a cost, and leaves control
of trust with a third party. You can set up a CA or certificate management software, but that can be a significant
effort and cost. As a shortcut to setting up a private CA, DS software uses deployment IDs and passwords.

DS software uses the deployment ID and its password to generate key pairs without storing the CA private key.
For additional details, refer to Deployment IDs.

3. Set the deployment ID as the value of the environment variable, DEPLOYMENT_ID :

Copyright © 2025 Ping Identity Corporation

PingDS Installation

$ export DEPLOYMENT_ID=your-deployment-id

Examples in the documentation show this environment variable as a reminder to use your own key. Other options are
available, as described by the setup --help command.

4. Run the setup command to install a directory server replica with the evaluation profile:

Set up a directory server for evaluation.
$ /path/to/opendj/setup \
--serverId evaluation-only \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword password \
--monitorUserPassword password \
--hostname localhost \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer localhost:8989 \
--profile ds-evaluation \
--start \
--acceptlLicense

° The setup command is located where you installed the files.
o The setup process uses the deployment ID you generated, and its password.

If you specify only a deployment password, and no deployment ID, the setup command generates a deployment
ID and displays it in the output.

° This example prepares a single server for evaluation, so the hostname is localhost .
In production, use fully qualified domain names, such as ds.example.com.
o The server is ready to replicate sample data with other servers, but there are no other replicas, yet.

For now, the server points to itself as a bootstrap replication server. To get started with replication, refer to Learn
replication.

o It sets a password for the default monitoring user account, uid=Monitor .
o The server listens for requests on the ports used in examples throughout the documentation.
° For evaluation purposes, no further configuration is required.

The --start option forces the server to start as part of the setup process.

Copyright © 2025 Ping Identity Corporation

Installation

Learn about the evaluation setup profile

PingDS

The evaluation setup profile helps you learn and demonstrate directory services. Unlike other setup profiles, which use secure,
production-ready access control settings, the evaluation setup profile provides easy access to sample data with the following

features:

+ Sample Example.com data.

The sample data has the base DN dc=example, dc=com. It includes more than 100 hand-written entries for users, groups,

and devices.

By default, it also includes 100,000 generated users, with DNs from uid=user.@, ou=people, dc=example.dc=com to
uid=user.99999, ou=people, dc=example.dc=com.

Use the --set ds-evaluation/generatedUsers:number option to generate a different number of additional entries. Each
generated user has the same password, which is password .

The hand-written sample Example.com data includes a group of directory administrators, cn=Directory
Administrators, ou=Groups, dc=example, dc=com . Members of this group, such as kvaughan, have full access to directory

data.

Examples throughout the documentation demonstrate features using this sample data.

+ Global permission to perform operations over insecure connections.

+ HDAP enabled by default.

+ Additional schema for examples demonstrating class of service and JSON attributes.

+ Custom matching rule providers for JSON attributes.

* Many permissions, such as anonymous read and search access, listed in the table that follows.

The evaluation setup profile lets you learn and demonstrate most directory features without adding any ACls.

Name

Anonymous extended operation access

Description

Anonymous and authenticated users
can request the LDAP extended
operations that are specified by OID or
alias. Modification or removal may
affect applications.

ACI definition

(targetcontrol="Assertion]| |
AuthorizationIdentity]| |
MatchedValues| |[NoOp]| |
PasswordPolicy]| |
PasswordQualityAdvice] |
PermissiveModify| |PostRead] |
PreRead| |RealAttrsOnly| |
SimplePagedResults]| |
TransactionId||VirtualAttrsOnly| |
V1iv") (version 3.0; acl "Anonymous
extended operation access”;
allow(read) userdn="ldap:///
anyone" ;)

Copyright © 2025 Ping Identity Corporation

PingDS

Name

Anonymous extended operation access

Anonymous read and search access

Authenticated control use

Authenticated users extended
operation access

Authenticated users extended
operation access

Directory administrator full access

Proxied authorization for apps

Copyright © 2025 Ping Identity Corporation

Description

Anonymous and authenticated users
can request the LDAP extended
operations that are specified by OID or
alias. Modification or removal may
affect applications.

Anonymous and authenticated
Example.com users can read the user
data attributes that are specified by
their names.

Authenticated Example.com users can
proxy and examine CSNs.

Authenticated users can request the
LDAP extended operations that are
specified by OID or alias. Modification
or removal may affect applications.

Authenticated users can request the
LDAP extended operations that are
specified by OID or alias. Modification
or removal may affect applications.

Example.com directory administrators
have access to read and write
Example.com directory data, rename
and move entries, and use proxied
authorization.

Example.com applications can make
requests on behalf of other users.

Installation

ACI definition

(extop="Cancel| |GetSymmetricKey| |
PasswordModify| |StartTls||WhoAmI")
(version 3.0; acl "Anonymous
extended operation access";
allow(read) userdn="ldap:///
anyone" ;)

(targetattr!="userPassword| |
authPassword| |debugsearchindex")
(version 3.0; acl "Anonymous read
and search access"; allow

(read, search, compare)
userdn="1dap:///anyone";)

(targetcontrol="ProxiedAuth||Csn")
(version 3.0; acl "Authenticated
control use"; allow(read)
userdn="1dap:///all";)

(targetcontrol="ManageDsalt]| |
RelaxRules| |ServerSideSort]| |
SubEntries| |SubtreeDelete")
(version 3.0; acl "Authenticated
users extended operation access";
allow(read) userdn="ldap:///all";)

(extop="PasswordPolicyState")
(version 3.0; acl "Authenticated
users extended operation access";
allow(read) userdn="ldap:///all";)

(targetattr="*") (version 3.0; acl
"Directory administrator full
access"; allow

(all, export, import, proxy)
groupdn="1ldap:///cn=Directory
Administrators, ou=Groups, dc=exampl
e,dc=com" ;)

(targetattr="*") (version 3.0; acl
"Proxied authorization for apps";
allow (all,proxy)

(userdn="1dap:///

cn=*, ou=Apps, dc=example, dc=com") ;)

Installation

Name

Self entry modification

Self entry read for passwords

Self service group creation

Self service group deletion

Self service group registration

User-Visible Monitor Attributes

Description

Authenticated users can modify the
specified attributes on their own
entries.

Authenticated users can read the
password values on their own entries.
By default, the server applies a one-way
hash algorithm to the password value
before writing it to the entry, so it is
computationally difficult to recover the
plaintext version of the password from
the stored value.

Authenticated Example.com users can
create self service groups.

The authenticated owner of a self
service group can delete the group.

Authenticated Example.com users can
sign themselves up as members of self
service groups.

Authenticated users can read
monitoring information if they have the
monitor read privilege. Modification or
removal may affect applications.

PingDS

ACI definition

(targetattr=" audio ||
authPassword || description ||
displayName || givenName ||
homePhone || homePostalAddress ||

initials || jpegPhoto ||
labeledURI || mobile || pager ||
postalAddress || postalCode ||
preferredLanguage ||
telephoneNumber || userPassword")
(version 3.0; acl "Self entry
modification"; allow (write)
userdn="1dap:///self";)

(targetattr="userPassword]| |
authPassword") (version 3.0; acl
"Self entry read for passwords"”;
allow (read, search, compare)
userdn="1dap:///self";)

(targattrfilters="add=objectClass:
(objectClass=groupOfNames)")
(version 3.0; acl "Self service
group creation"”;allow (add)
(userdn="1dap:///

uid=*, ou=People, dc=example, dc=com"

):)

(version 3.0; acl "Self service
group deletion";allow (delete)
(userattr="owner#USERDN") ;)

(targetattr="member") (version
3.0; acl "Self service group
registration”; allow (selfwrite)
(userdn="1dap:///

uid=*, ou=People, dc=example, dc=com”

)0

(target="1ldap:///cn=monitor")
(targetattr="*||+") (version 3.0;
acl "User-Visible Monitor
Attributes"; allow

(read, search, compare)
userdn="1dap:///all";)

Copyright © 2025 Ping Identity Corporation

PingDS

Name

User-visible operational attributes

User-Visible Root DSE Operational
Attributes

User-Visible Schema Operational
Attributes

Copyright © 2025 Ping Identity Corporation

Description

Anonymous and authenticated users
can read attributes that identify entries
and that contain information about
modifications to entries.

Anonymous and authenticated users
can read attributes that describe what
the server supports. Modification or
removal may affect applications.

Authenticated users can read LDAP
schema definitions. Modification or
removal may affect applications.

Installation

ACI definition

(targetattr=" createTimestamp ||
creatorsName || modifiersName ||
modifyTimestamp || entryDN ||
entryUUID || subschemaSubentry ||
etag || governingStructureRule ||
structuralObjectClass ||
hasSubordinates || numSubordinates
|| isMemberOf") (version 3.0; acl
"User-visible operational
attributes"; allow

(read, search, compare)
userdn="1dap:///anyone";)

(target="1ldap:///")
(targetscope="base")
(targetattr="objectClass]| |
namingContexts| |
subSchemaSubEntry| |
supportedAuthPasswordSchemes| |
supportedControl] |
supportedExtension]| |
supportedFeatures| |
supportedLDAPVersion]| |
supportedSASLMechanisms| |
supportedTLSCiphers]| |
supportedTLSProtocols| |
vendorName | |vendorVersion]| |
fullVendorVersion| |alive] |
healthy")(version 3.0; acl "User-
Visible Root DSE Operational
Attributes"; allow

(read, search, compare)
userdn="1dap:///anyone";)

(target="1ldap:///cn=schema")
(targetscope="base")
(targetattr="objectClass]| |
attributeTypes| |dITContentRules]| |
dITStructureRules ||ldapSyntaxes]| |
matchingRules| |matchingRuleUse]| |
nameForms| |objectClasses| |etag] |
modifiersName| |modifyTimestamp")
(version 3.0; acl "User-Visible
Schema Operational Attributes";
allow (read, search, compare)
userdn="1dap:///all";)

Installation PingDS

Install DS for AM CTS

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the appropriate setup command with the --profile am-cts option.

@ Important

Installation settings depend on AM token expiration and session capability requirements. Letting DS expire
tokens is efficient, but affects sending AM notifications about session expiration and timeouts to AM policy
agents.

> For details about AM token expiration options, refer to Manage expired CTS tokens (5.

o For details about the mechanism DS uses to expire tokens, refer to Entry expiration.

1. AM reaper manages all token expiration (AM default):

$ /path/to/opendj/setup \
--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rs1.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile am-cts \
--set am-cts/amCtsAdminPassword:5up35tréng \
--acceptlLicense

2. AM reaper manages only SESSION token expiration:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingam/7.5/cts-guide/cts-reaper.html
https://docs.pingidentity.com/pingam/7.5/cts-guide/cts-reaper.html

PingDS Installation

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rsi.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile am-cts \
--set am-cts/amCtsAdminPassword:5up35tréng \
--set am-cts/tokenExpirationPolicy:am-sessions-only \
--acceptlLicense

3. DS manages all token expiration:

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rs1.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile am-cts \
--set am-cts/amCtsAdminPassword:5up35tréng \
--set am-cts/tokenExpirationPolicy:ds \
--acceptlLicense

In the preceding example commands:

o The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers
in the same deployment with the same deployment ID and deployment ID password. For details, read Deployment
IDs.

° The service account to use in AM when connecting to DS has:
m Bind DN: uid=openam_cts, ou=admins, ou=famrecords, ou=openam-session, ou=tokens .
m Password: The password you set with am-cts/amCtsAdminPassword .

° The base DN for AM CTS tokens is ou=famrecords, ou=openam-session, ou=tokens .

Copyright © 2025 Ping Identity Corporation

Installation PingDS

AM and IDM expect exclusive access to the data in each setup profile. Keep the data separate by using distinct base
DNs and domains for each setup profile. Don't accidentally mix the data by choosing a base DN under another base
DN.

° The am-cts profile excludes the base DN from change number indexing.
For the full list of profiles and parameters, refer to Default setup profiles.
3. Finish configuring the server before you start it.
For a list of optional steps at this stage, refer to Install DS for custom cases.

4, Start the server:

$ /path/to/opendj/bin/start-ds

Install DS for AM configuration

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup command with the --profile am-config option:

S /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rs1.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile am-config \
--set am-config/amConfigAdminPassword:5up35tréng \
--acceptlLicense

° The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers
in the same deployment with the same deployment ID and deployment ID password. For details, read Deployment
IDs.

° The service account to use in AM when connecting to DS has:
m Bind DN: uid=am-config, ou=admins, ou=am-config.

m Password: The password you set with am-config/amConfigAdminPassword .

Copyright © 2025 Ping Identity Corporation

PingDS Installation

° The base DN for AM configuration data is ou=am-config.

AM and IDM expect exclusive access to the data in each setup profile. Keep the data separate by using distinct base
DNs and domains for each setup profile. Don't accidentally mix the data by choosing a base DN under another base
DN.

For the full list of profiles and parameters, refer to Default setup profiles.
3. Finish configuring the server before you start it.
For a list of optional steps at this stage, refer to Install DS for custom cases.

4, Start the server:

$ /path/to/opendj/bin/start-ds

Install DS for platform identities

Use this profile when setting up DS as an identity repository and user data store for AM alone or shared with IDM in a Ping
Identity Platform deployment. It includes the additional LDAP schema and indexes required to store the identities:

@ Important
When AM and IDM share multiple DS replicas for identities:

» Configure IDM for failover (2.
» Configure AM to fail over when connecting to DS replicas(Z in the same order as IDM.

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup command with the --profile am-identity-store option:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingidm/7.5/install-guide/external-ds.html#two-ds-active-passive
https://docs.pingidentity.com/pingidm/7.5/install-guide/external-ds.html#two-ds-active-passive
https://docs.pingidentity.com/pingam/7.5/setup-guide/data-stores-opendj.html#ldap_server
https://docs.pingidentity.com/pingam/7.5/setup-guide/data-stores-opendj.html#ldap_server

Installation PingDS

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rsi1.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile am-identity-store \
--set am-identity-store/amIdentityStoreAdminPassword:5up35tréng \
--acceptlLicense

o The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers
in the same deployment with the same deployment ID and deployment ID password. For details, read Deployment
IDs.

° The service account to use in AM when connecting to DS has:

m Bind DN: uid=am-identity-bind-account, ou=admins, ou=identities.

m Password: The password you set with am-identity-store/amIdentityStoreAdminPassword .
o The base DN for AM identities is ou=identities.

AM and IDM expect exclusive access to the data in each setup profile. Keep the data separate by using distinct base
DNs and domains for each setup profile. Don't accidentally mix the data by choosing a base DN under another base
DN.

For the full list of profiles and parameters, refer to Default setup profiles.
3. Finish configuring the server before you start it.
For a list of optional steps at this stage, refer to Install DS for custom cases.

4, Start the server:

$ /path/to/opendj/bin/start-ds

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Install DS as an IDM repository

@ Important

When IDM uses multiple DS replicas, configure IDM for failover (.

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup command with the --profile idm-repo option:

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--hostname localhost \
--adminConnectorPort 34444 \
--ldapPort 31389 \
--enableStartTls \
--profile idm-repo \
--set idm-repo/domain:forgerock.com \
--acceptlLicense

o The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers
in the same deployment with the same deployment ID and deployment ID password. For details, read Deployment
IDs.

o The administrative account to use in IDM when connecting to DS has:

m Bind DN: The DN set with the --rootUserDN option.

m Password: The password set with the --rootUserPassword option.
o The base DN for IDM data is dc=openidm, dc=forgerock, dc=com.

AM and IDM expect exclusive access to the data in each setup profile. Keep the data separate by using distinct base
DNs and domains for each setup profile. Don't accidentally mix the data by choosing a base DN under another base
DN.

o IDM requires change number indexing with the default settings.
For the full list of profiles and parameters, refer to Default setup profiles.
3. Finish configuring the server before you start it.
For a list of optional steps at this stage, refer to Install DS for custom cases.
4. If all access to DS goes through IDM, IDM manages password policy.

In this case, relax the default password policy settings:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingidm/7.5/install-guide/external-ds.html#two-ds-active-passive
https://docs.pingidentity.com/pingidm/7.5/install-guide/external-ds.html#two-ds-active-passive

Installation PingDS

$ dsconfig \

set-password-policy-prop \

--policy-name "Default Password Policy" \
--reset password-validator \

--offline \

--no-prompt
$ dsconfig \

set-password-policy-prop \

--policy-name "Root Password Policy" \
--reset password-validator \

--offline \
--no-prompt

5. Start the server:

$ /path/to/opendj/bin/start-ds

Install DS for user data

This profile includes indexes for inetOrgPerson entries. It is not intended for deployments with AM or IDM identities.

It does not include the additional LDAP schema and indexes required to store AM identities. To set up a user data store for AM or
for sharing between AM and IDM, refer to Install DS for platform identities instead.

To import generated sample user data, refer to Install DS for evaluation instead:
1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup command with the --profile ds-user-data option:

Copyright © 2025 Ping Identity Corporation

PingDS Installation

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rsi1.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile ds-user-data \
--set ds-user-data/baseDn:dc=example,dc=com \
--set ds-user-data/ldifFile:/tmp/user-data.ldif \
--acceptlLicense

In this example, the /tmp/user-data.ldif file contains the user data entries to import. This is just a placeholder. When
you run the command, replace it with your LDIF file containing your own user data.

o The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers
in the same deployment with the same deployment ID and deployment ID password. For details, read Deployment
IDs.

° The data is stored in the userData backend.
For the full list of profiles and parameters, refer to Default setup profiles.
3. Finish configuring the server before you start it.
For a list of optional steps at this stage, refer to Install DS for custom cases.

4, Start the server:

$ /path/to/opendj/bin/start-ds

This setup profile creates the following indexes for user data:

Index Approx. Equality Ordering Presence Substring Entry Limit
aci - - - Yes - 4000

cn - Yes - - Yes 4000

dn2id Non-configurable internal index

ds-certificate- - Yes - - - 4000
fingerprint

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Index Approx. Equality Ordering Presence Substring Entry Limit
ds-certificate-subject- - Yes - - - 4000
dn

ds-sync-conflict - Yes - - - 4000
ds-sync-hist - - Yes - - 4000
entryUUID - Yes - - - 4000
givenName - Yes - - Yes 4000
id2children Non-configurable internal index

id2subtree Non-configurable internal index

mail - Yes - - Yes 4000
member - Yes - - - 4000
objectClass - Yes - - - 4000
sn - Yes - - Yes 4000
telephoneNumber - Yes - - Yes 4000
uid - Yes - - - 4000
uniqueMember - Yes - - - 4000

Install DS for custom cases

Follow these steps to install a DS replica with your own custom configuration:
1. Before proceeding, install the server files.
For details, refer to Unpack files.
2. Run the setup command with any required setup profiles.
3. Finish configuring the server.
Perform any of the following optional steps before starting the server.

Use the --offline option with commands instead of the credentials and connection information shown in many
examples:

o Add custom syntaxes and matching rules.

For examples, refer to Custom indexes for JSON.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

o Configure password storage.
For details, refer to Configure password policies.

Take care to configure the password policy import plugin as well. For details on the settings, refer to Password
Policy Import Plugin.

o Add custom LDAP schema.
For details, refer to LDAP schema.
o Configure one or more backends for your data.

For details, refer to Create a backend. When you create the backend, unless you choose not to replicate the data,
follow each step of the procedure, adapting the example commands for offline use:

m Configure the new backend using the dsconfig create-backend as shown.

m Verify that replication is enabled using the dsconfig get-synchronization-provider-prop command as
shown.

m Let the server replicate the base DN of the new backend, using the dsconfig create-replication-domain
command as shown to configure the replication domain.

m If you have existing data for the backend, make appropriate plans to initialize replication, as described in
Manual initialization.

o Configure indexes for the backends you configured.
For details, refer to Indexes.
o Make sure the server has the shared master key for encrypted data and backups.
If you set up the servers with a known deployment ID and password, you have nothing to do.
If you do not know the deployment ID and password, refer to Replace deployment IDs.
o Initialize replication.
For example, import the data from LDIF, or restore the data from backup.
For details, refer to Manual initialization, Import LDIF, or Restore.

4, Start the server:

$ /path/to/opendj/bin/start-ds

When you start the server, it generates initial state identifiers (generation IDs) for its replicated base DNs. If you perform the
above configuration steps on replicas separately after starting them, their generation IDs can be out of sync.

When generation IDs do not match on different replicas for a particular base DN, DS must assume that the replicas do not have
the same data. As a result, replication cannot proceed. To fix the mismatch of this replica’s generation IDs with other replicas,
stop the server and clear all replication data:

Copyright © 2025 Ping Identity Corporation

Installation PingDS

$ /path/to/opendj/bin/stop-ds
S /path/to/opendj/bin/dsrepl clear-changelog

@ Important

Clearing the changelog before all the changes have been sent to other replication servers can cause you to lose data.
Use the dsrepl clear-changelog command only when initially setting up the replica, unless specifically instructed to
do so by a qualified technical support engineer.

Complete any further configuration necessary while the replica is stopped to align it with other replicas. When you start the
replica again with the start-ds command, other replication servers update it with the data needed to resume replication.

For details on replication, refer to Replication and the related pages.

Install a directory proxy

Directory proxy servers forward LDAP requests for user data to remote directory servers. Proxy servers make it possible to
provide a single point of access to a directory service, and to hide implementation details from client applications.

Check compatibility

DS proxy servers connect to remote LDAP directory servers using proxied authorization. The proxied authorization control (OID:
2.16.848.1.1137306.3.4.18) is defined by RFC 4370(Z Lightweight Directory Access Protocol (LDAP) Proxied Authorization Control. If
the LDAP directory server does not support proxied authorization, it cannot be used with DS directory proxy server.

The following list of LDAP servers do not support proxied authorization, and so, do not work with DS directory proxy server:
*+ Microsoft Active Directory
* Oracle Internet Directory

The following list of LDAP servers support proxied authorization according to their documentation. Ping Identity does not test all
servers listed:

* PingDS

* PingDirectory

+ ApacheDS

* NetlQ eDirectory

* OpenD]J

* OpenLDAP

+ Oracle Directory Server Enterprise Edition

* Red Hat Directory Server

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc4370
https://www.rfc-editor.org/info/rfc4370

PingDS

Installation

If your LDAP server does not appear in the lists above, check its documentation regarding support for proxied authorization.
Alternatively, check the list of supportedControl values on the server's root DSE.

Try DS directory proxy

Before installing DS directory proxy server in production, or with a non-DS directory server, try it on your computer.

LDAP client

Binds with
LDAP account

Directory
Proxy Server

Binds with
proxy account

Directory Server replicas
¢ Support proxied authorizarion

* Each holds proxy account

S A‘ | A\ 2
(A A\

Proxied
authorization

L] s

Same LDAP schema definitions

Figure 1. Proxy Configuration

The following examples demonstrate DS directory proxy server forwarding LDAP requests to two DS replicas on your computer.
This demonstration includes the following high-level tasks:

* Install two DS directory server replicas as proxied servers.
+ Set up the DS directory proxy server to forward requests to the DS directory servers.
+ Send LDAP requests to the DS directory proxy server, and observe the results.

The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers in the same
deployment with the same deployment ID and deployment ID password. For details, read Deployment IDs.

Q Tip
The DS directory proxy server does not have backup files or directory data to encrypt and decrypt. But it does open
secure connections to the remote directory servers, and so must trust the certificates that the remote directory
servers present to negotiate TLS.
By default, DS deployments use TLS keys and a CA generated from the deployment ID and deployment ID password.
This is the same deployment ID and password used to configure the DS directory servers. Therefore, use the same
deployment ID and password when configuring DS directory proxy servers, so they can trust the directory server

certificates.

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Install two DS directory server replicas with the evaluation and proxied server profiles:

Unpack server files:
unzip -q ~/Downloads/DS-7.5.2.zip -d /tmp

Copy server files before setting up each replica:
mkdir /path/to/opendj && cp -r /tmp/opendj/* /path/to/opendj
mkdir /path/to/replica && cp -r /tmp/opendj/* /path/to/replica

Set up the servers as replicas of each other
with StartTLS support for the proxy connections:
/path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--hostname localhost \
--ldapPort 11389 \
--enableStartTls \
--ldapsPort 11636 \
--adminConnectorPort 14444 \
--rootUserDN uid=admin \
--rootUserPassword password \
--profile ds-evaluation \
--profile ds-proxied-server \
--set ds-proxied-server/baseDn:dc=example,dc=com \
--replicationPort 18989 \
--bootstrapReplicationServer localhost:28989 \
--acceptlLicense \
--start \
--quiet

/path/to/replica/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--hostname localhost \
--ldapPort 21389 \
--enableStartTls \
--ldapsPort 21636 \
--adminConnectorPort 24444 \
--rootUserDN uid=admin \
--rootUserPassword password \
--profile ds-evaluation \
--profile ds-proxied-server \
--set ds-proxied-server/baseDn:dc=example,dc=com \
--replicationPort 28989 \
--bootstrapReplicationServer localhost:18989 \
--acceptlLicense \
--start \
--quiet

Update PATH to include DS tools:
export PATH=/path/to/opendj/bin:${PATH}

Notice that the examples apply two setup profiles to each replica:
* The DS evaluation setup profile adds sample Example.com data.

For details, refer to Install DS for evaluation.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

* The DS proxied server setup profile adds a service account for the proxy server, and sets ACls to grant the account
permission to use proxied authorization. The proxy authenticates to the directory servers with its certificate, whose
subject DN is CN=DS, O=ForgeRock.com.

For details, refer to Install DS for use with DS proxy.

Set up a directory proxy server to forward requests to the replicas:

Copy server files before setting up the proxy:
mkdir /path/to/proxy && cp -r /tmp/opendj/* /path/to/proxy

Set up the proxy server to access the replicas:
/path/to/proxy/setup \
--serverId proxy \
--deploymentId $SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword password \
--hostname localhost \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--adminConnectorPort 4444 \
--profile ds-proxy-server \
--set ds-proxy-server/bootstrapReplicationServer:"localhost:14444" \
--set ds-proxy-server/bootstrapReplicationServer:"localhost:24444" \
--set ds-proxy-server/rsConnectionSecurity:start-tls \
--set ds-proxy-server/certNickname:ssl-key-pair \
--set ds-proxy-server/keyManagerProvider :PKCS12 \
--set ds-proxy-server/trustManagerProvider:PKCS12 \
--start \
--acceptlLicense

Grant access to data through the proxy server:

dsconfig \
create-global-access-control-policy \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--policy-name "Authenticated access to example.com data" \
--set authentication-required:true \
--set request-target-dn-equal-to:"dc=example,dc=com" \
--set request-target-dn-equal-to:"** dc=example,dc=com" \
--set permission:read \
--set permission:write \
--set allowed-attribute:"*" \
--set allowed-attribute:isMemberOf \
--set allowed-attribute-exception:authPassword \
--set allowed-attribute-exception:userPassword \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

As you set up only DS servers which all use the same default schema, there is no need to manually align the proxy LDAP schema
with the directory server schema.

Send LDAP requests to the DS directory proxy server, and observe the results.

Copyright © 2025 Ping Identity Corporation

Installation PingDS

The following example searches the directory through the proxy:

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery \
--baseDN "ou=people, dc=example,dc=com” \
"(|(cn=Babs Jensen)(cn=Sam Carter))" \
cn

dn: uid=bjensen, ou=People, dc=example, dc=com
cn: Barbara Jensen
cn: Babs Jensen

dn: uid=scarter,ou=People, dc=example, dc=com
cn: Sam Carter

The following example modifies directory data through the proxy:

$ 1dapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=people, dc=example, dc=com \
--bindPassword hifalutin << EOF

dn: uid=bjensen, ou=People, dc=example, dc=com

changetype: modify

replace: description

description: Modified by Babs Jensen

EOF

MODIFY operation successful for DN uid=bjensen, ou=People, dc=example, dc=com

Notice that the bind DNs and passwords are those of the users in the remote directory service.

For more background on each high-level task, read the rest of this page.

Create a service account

When preparing to use DS directory proxy servers with directory servers that are not DS servers, create a service account for the
proxy to connect to the non-DS remote directory service.

The directory proxy server binds with this service account, and then forwards LDAP requests on behalf of other users.

For DS directory servers, use the proxied server setup profile if possible. For details, refer to Install DS for use with DS proxy.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

The service account must have the following on all remote directory servers:
* The same bind credentials.
If possible, use mutual TLS to authenticate the proxy user with the backend servers.
* The right to perform proxied authorization.
Make sure the LDAP servers support proxied authorization (control OID: 2.16.840.1.113730.3.4.18).
For details, refer to RFC 43707, Lightweight Directory Access Protocol (LDAP) Proxied Authorization Control.

* When using a replication discovery mechanism with remote DS directory servers, the service account requires the
config-read and monitor-read privileges for the service discovery mechanism. It requires the proxied-auth privilege
and an ACI to perform proxied authorization.

The following listing shows an example service account that you could use with DS replicas. Adapt the account as necessary for
your directory service:

dn: uid=proxy
objectClass: top
objectClass: account
objectClass: ds-certificate-user
uid: proxy
ds-certificate-subject-dn: CN=DS, O=ForgeRock.com
ds-privilege-name: config-read
ds-privilege-name: monitor-read
ds-privilege-name: proxied-auth
aci: (targetcontrol="ProxiedAuth")
(version 3.0; acl "Allow proxied authorization";
allow(read) userdn="ldap:///uid=proxy";)

Set up a directory proxy

The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers in the same
deployment with the same deployment ID and deployment ID password. For details, read Deployment IDs.

Proxy to DS servers

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup --profile ds-proxy-server command.
The command is located where you installed the files, /path/to/opendj/setup:

The following example sets up a directory proxy server that discovers remote servers based on the DS replication
topology. It works with replicas set up using the ds-proxied-server setup profile.

This feature works only with DS servers. If the remote LDAP servers in your deployment are not DS servers, refer to Proxy
to non-DS servers.

This proxy forwards all requests to public naming contexts of remote servers. Generally, this means requests targeting
user data, as opposed to the proxy’s configuration, schema, or monitoring statistics:

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc4370
https://www.rfc-editor.org/info/rfc4370

Installation PingDS

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--hostname ds.example.com \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--adminConnectorPort 4444 \
--profile ds-proxy-server \
--set ds-proxy-server/bootstrapReplicationServer:"rs.example.com:4444" \
--set ds-proxy-server/rsConnectionSecurity:start-tls \
--set ds-proxy-server/certNickname:ssl-key-pair \
--set ds-proxy-server/keyManagerProvider :PKCS12 \
--set ds-proxy-server/trustManagerProvider:PKCS12 \
--start \
--acceptlLicense

This example uses mutual TLS with a certificate generated with a deployment ID and password. Adjust the security settings
as required for your deployment.

Proxy to non-DS servers

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Runthe setup --profile ds-proxy-server command.
The command is located where you installed the files, /path/to/opendj/setup:

The following example sets up a directory proxy server that has a static list of remote servers to connect to. It forwards
only requests targeting dc=example, dc=com :

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Initially configure the server with a fake replication service discovery mechanism:
$ /path/to/opendj/setup \
--deploymentId SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--hostname ds.example.com \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--adminConnectorPort 4444 \
--profile ds-proxy-server \
--set ds-proxy-server/bootstrapReplicationServer:"fake-rs.example.com:4444" \
--set ds-proxy-server/rsConnectionSecurity:start-tls \
--start \
--acceptlLicense
Create a static service discovery mechanism:
$ dsconfig \
create-service-discovery-mechanism \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword str@ngAdminPa55word \
--mechanism-name "Static Service Discovery Mechanism" \
--type static \
--set primary-server:locall.example.com:636 \
--set primary-server:local2.example.com:636 \
--set secondary-server:remotel.example.com:636 \
--set secondary-server:remote2.example.com:636 \
--set ssl-cert-nickname:ssl-key-pair \
--set key-manager-provider:PKCS12 \
--set trust-manager-provider:"JVM Trust Manager" \
--set use-ssl:true \
--set use-sasl-external:true \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt
Replace the fake replication service discovery mechanism with the static one:
$ dsconfig \
set-backend-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword str@ngAdminPa55word \
--backend-name proxyRoot \
--set shard:"Static Service Discovery Mechanism" \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

This example uses mutual TLS with a certificate generated with a deployment ID and password. Adjust the security settings
as required for your deployment.

Configure access control

1. Explicitly grant appropriate access to remote data.

The following example grants authenticated users access to data under dc=example, dc=com:

Copyright © 2025 Ping Identity Corporation

Installation PingDS

$ dsconfig \
create-global-access-control-policy \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword str@ngAdminPa55word \
--policy-name "Authenticated access to example.com data"” \
--set authentication-required:true \
--set request-target-dn-equal-to:"dc=example,dc=com" \
--set request-target-dn-equal-to:"**, dc=example,dc=com" \
--set permission:read \
--set permission:write \
--set allowed-attribute:"*" \
--set allowed-attribute:isMemberOf \
--set allowed-attribute-exception:authPassword \
--set allowed-attribute-exception:userPassword \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

DS proxy servers do not use ACls for access control. Instead, they use global access control policies. By default, the access
rights are configured the same as the default settings for a directory server. You no doubt need to adapt these policies for
your deployment. For additional examples, refer to Access control.

2. Make sure the backend directory servers are properly prepared, as described Create a service account.
For more background on LDAP proxy features, refer to LDAP proxy.

Default global policies

Access control rules are defined using individual access control policy entries. A user's access is defined as the union of all access
control rules that apply to that user. In other words, an individual access control rule can only grant additional access and can not
remove rights granted by another rule. This approach results in an access control policy which is easier to understand and audit,
since all rules can be understood in isolation.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Policy Settings

Anonymous extended operation and control access
authentication-required

* false

allowed-extended-operation
* Cancel
* GetSymmetricKey
* PasswordModify
* StartTLS
* WhoAmI

allowed-control
* Assertion
* MatchedValues
* NoOp
* PasswordQualityAdvice
* PermissiveModify
* PostRead
* PreRead
* RealAttrsOnly
* SimplePagedResults
* VirtualAttrsOnly
* AuthorizationIdentity
* PasswordPolicy
* TransactionId
* Vlv

Authenticated extended operation and control access
authentication-required

* true
allowed-extended-operation

* PasswordPolicyState
allowed-control

* ManageDsalt

* SubEntries

* RelaxRules

* SubtreeDelete

* ServerSideSort

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Policy Settings

Schema access
authentication-required

* true
request-target-dn-equal-to

* cn=schema
permission

* read

allowed-attribute
* objectClass
* @subschema
* etag
* ldapSyntaxes
* modifiersName

* modifyTimestamp

Root DSE access
authentication-required

* false

request-target-dn-equal-to

permission

* read

allowed-attribute
* objectClass
* namingContexts
* subSchemaSubEntry
* supportedAuthPasswordSchemes
* supportedControl
* supportedExtension
* supportedFeatures
* supportedLDAPVersion
* supportedSASLMechanisms
* supportedTLSCiphers
* supportedTLSProtocols
* vendorName
* vendorVersion
* fullVendorVersion
* alive
* healthy

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Policy Settings

Monitor access
authentication-required

* true
request-target-dn-equal-to

* cn=monitor
permission

* read
allowed-attribute

ok

.+

Align LDAP schema

Directory servers can reject LDAP change requests that do not comply with LDAP schema. LDAP client applications read LDAP
schema definitions from directory servers to determine in advance whether a change request complies with LDAP schema.

When an LDAP client requests LDAP schema from the proxy, the proxy returns its LDAP schema. Ideally, the LDAP schema
definitions on the proxy match the LDAP schema definitions on the remote directory servers. Otherwise, client applications might
check their requests against the proxy’'s LDAP schema, and yet still have their requests fail with schema violations when the proxy
forwards a request to a directory server.

If, after installation, the LDAP schema definitions on the directory servers and the proxy server differ, align the LDAP schema of
the proxy server with the LDAP schema of the remote directory servers.

For more information, refer to LDAP schema. Schema definitions on a non-DS remote directory server might require translation

from another format before you add them on DS directory proxy servers.

Troubleshooting

Common errors with DS directory proxy server installations include the following:
49 (Invalid Credentials)

When LDAP bind requests through the proxy invariably result in an invalid credentials error, but bind requests to the
directory server with the same credentials do not, the problem lies with the proxy service account.

The proxy service account must allow bind requests to the directory server. The following example demonstrates a
request sent directly to a directory server. The command makes a bind request and then a search request. The directory
server is set up according to the instructions in Try DS directory proxy:

Copyright © 2025 Ping Identity Corporation

Installation PingDS

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery \

--baseDN "ou=people, dc=example, dc=com" \

"(|(cn=Babs Jensen)(cn=Sam Carter))" \

cn

dn: uid=bjensen, ou=People, dc=example, dc=com
cn: Barbara Jensen

cn: Babs Jensen

dn: uid=scarter,ou=People, dc=example, dc=com
cn: Sam Carter

Start with the filtered directory server access log, logs/filtered-ldap-access.audit.json, to debug bind failures.

123 (Authorization Denied)

Make sure that access control on the remote LDAP servers allows the proxy service account to use the proxied
authorization control.

Proxied authorization does not allow operations on remote LDAP servers as the directory superuser (uid=admin). Do not
connect as directory superuser when trying to access a directory server through the proxy. For administrative requests on
remote LDAP servers, access the servers directly. This includes monitoring requests.

It is possible to configure proxied authorization so that an anonymous user (no bind DN, no bind password) can make a
request through the proxy server to the remote directory server. Avoid doing this, however, as it is less secure.

Many applications perform some operations anonymously, such as reading the root DSE or LDAP schema. These
operations are in fact requests to the proxy, not forwarded to remote LDAP servers. For applications to receive an
appropriate response for LDAP schema requests, align LDAP schema on the proxy with LDAP schema on the remote LDAP
servers as described above.

Install DS for use with DS proxy

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup command with the --profile ds-proxied-server option.

The example shows the profile used with the evaluation profile. Add this profile to the list so proxy servers can access other
profiles' data:

Copyright © 2025 Ping Identity Corporation

PingDS Installation

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword str@ngAdminPa55word \
--monitorUserPassword str@ngMonitorPa55word \
--hostname ds.example.com \
--adminConnectorPort 4444 \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--replicationPort 8989 \
--bootstrapReplicationServer rsi1.example.com:8989 \
--bootstrapReplicationServer rs2.example.com:8989 \
--profile ds-evaluation \
--profile ds-proxied-server \
--set ds-proxied-server/baseDn:dc=example,dc=com \
--acceptlLicense

o The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers
in the same deployment with the same deployment ID and deployment ID password. For details, read Deployment
IDs.

° The account the DS proxy can use to connect to DS replicas has:
m Bind DN: The DN from the --set ds-proxied-server/proxyUserDn option.
Default: uid=proxy .

m Certificate subject DN: The DN from the --set ds-proxied-server/proxyUserCertificateSubjectDn
option.

Default: CN=DS, O=ForgeRock.com.

m Access to use proxied authorization in the base DNs specified by the multivalued --set ds-proxied-
server/baseDn option.

If you do not specify any values for ds-proxied-server/baseDn, the proxy user can perform operations
with any account as authorization identity. This includes administrator accounts.

To understand what this means, read Proxied authorization.
o The DS proxy server binds using certificate-based authentication with the SASL EXTERNAL mechanism.
Make sure that the DS replicas' truststores lets them trust the proxy’s certificate.
o The DS proxy server uses proxied authorization to perform operations on the DS replicas.
The authorization identity for the operations must have appropriate access to the data on the DS replicas.
For the full list of profiles and parameters, refer to Default setup profiles.
3. Finish configuring the server before you start it.

For a list of optional steps at this stage, refer to Install DS for custom cases.

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Start the server:

$ /path/to/opendj/bin/start-ds

Install standalone servers (advanced)

Q Tip

This information applies to advanced deployments.

Standalone replication servers have no application data backends. They store only changes to directory data. They are dedicated to
transmitting replication messages, and to maintaining a replication change log.

Standalone directory servers store replicated copies of application data. These replicas send updates to and receive updates from
replication servers. They connect to one replication server at a time, and do not maintain a replication change log.

Each replication server in a deployment connects to all other replication servers. The total number of replication connections,

Total . increases like the number of replication servers squared. Large deployments that span slow, high-latency links can

benefit from having fewer replication servers.

Total (Nps * (Ng-1))/2 + Ny

conn ~

Here, Npq is the number of replication servers (standalone or running in a directory server), and N¢ is the number of standalone
directory servers.

A deployment with only a few standalone replication servers and many standalone directory servers, significantly limits the
number of connections for replication over slow links:

Copyright © 2025 Ping Identity Corporation

PingDS Installation

A A
N &
Directory Directory
Server A Server G
A A A N
LY \Cd LY\Cd
L] Ay L{.\ L{A Ay]
. Directory Directory .
Client Server B Replication Replication Server H Client
— Server 1 Server 2 -
A A
o &
. Directory Directory .
Client Server C Server | Client
A A
1| ® O
] Directory Directory]
Client Server D Server J Client
N — [——
A &ﬁz &ﬁa A
LY \Cd LY \Cd
| & & |
) Directory Replication Replication Directory)
Client Server E Server 3 Server 4 Server K Client
A A
/S &
Directory Directory
Server F Server L

Figure 1. Deployment for multiple data centers

The deployment ID for installing the server is stored in the environment variable DEPLOYMENT_ID . Install all servers in the same
deployment with the same deployment ID and deployment ID password. For details, read Deployment IDs.

Set up standalone replication servers

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Set up a server as a standalone replication server:

$ /path/to/opendj/setup \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword password \
--hostname rs-only.example.com \
--adminConnectorPort 4444 \
--replicationPort 8989 \
--bootstrapReplicationServer rs-only.example.com:8989 \
--bootstrapReplicationServer rs-only2.example.com:8989 \
--acceptlLicense

The standalone replication server has no application data.

It does have LDAP schema and changelog data. If you plan to add any additional schema to the replicas as part of the
setup process, also add the schema to this server before starting it.

3. Start the server:

Copyright © 2025 Ping Identity Corporation

Installation PingDS

$ /path/to/opendj/bin/start-ds

4. Repeat the previous steps on additional systems until you have sufficient replication servers to meet your availability
requirements.

To ensure availability, add at least one additional replication server per location. The following example adds a second
standalone replication server:

$ /path/to/opendj/setup \

--deploymentId $SDEPLOYMENT_ID \

--deploymentIdPassword password \

--rootUserDN uid=admin \

--rootUserPassword password \

--hostname rs-only2.example.com \

--adminConnectorPort 4444 \

--replicationPort 8989 \

--bootstrapReplicationServer rs-only.example.com:8989 \
--bootstrapReplicationServer rs-only2.example.com:8989 \
--acceptlLicense

The standalone replication servers use each other as bootstrap servers to discover other servers in the deployment.

Set up standalone directory servers

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Set up the server as a directory server.

Notice that the --bootstrapReplicationServer references the replication servers set up according to the steps in Set up
standalone replication servers.

The --replicationPort option is not used, because this is a standalone directory server:

$ /path/to/opendj/setup \
--serverId evaluation-only \
--deploymentId $SDEPLOYMENT_ID \
--deploymentIdPassword password \
--rootUserDN uid=admin \
--rootUserPassword password \
--adminConnectorPort 4444 \
--hostname ds-only.example.com \
--ldapPort 1389 \
--enableStartTls \
--ldapsPort 1636 \
--httpsPort 8443 \
--bootstrapReplicationServer rs-only.example.com:8989 \
--bootstrapReplicationServer rs-only2.example.com:8989 \
--profile ds-evaluation \
--acceptlLicense

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Finish configuring the server before you start it.
For a list of optional steps at this stage, refer to Install DS for custom cases.

4. Start the server:
$ /path/to/opendj/bin/start-ds

5. Repeat the previous steps on additional systems until you have sufficient directory servers to meet your availability and
performance requirements.

To ensure availability, add at least one additional directory server per location.

Use your own cryptographic keys

@ Important

When you set up a DS server with your own keys for PKI, account for the following points:

* You must also use a deployment ID and password.

Some DS features depend on the shared master key generated from the deployment ID and password. For
example, the dsbackup command depends on the shared master key for encryption.

* If you plan to store the shared master key in an HSM, read the documentation carefully before you install DS.
When you set up the server, you must avoid accidentally encrypting data while using the wrong shared master
key. For details, refer to PKCS#11 hardware security module.

* Make sure AM, IDM, and all other client applications can trust DS certificates.

The setup command has options to simplify setting up a server with existing keys:

For... Use...

Keystores containing server key pairs --useJavaKeyStore
--usedJceKeyStore
--usePkcs11KeyStore

--providerArg (for PKCS#11)
--providerClass or

--providerName (for PKCS#11)
--usePkcs12KeyStore

-W, --keyStorePassword[:env|:file]
-N, --certNickname

Truststores containing trusted CA or --useJavaTrustStore

self-signed certificates --useJceTrustStore
--usePkcs12TrustStore
-T, --trustStorePassword[:env|:file]

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Important features to be aware of:

« If the keystore file that holds the server key pair protects the server key with a password, that password must match the
password for the entire store.

DS does not support separate keystore and key passwords in keystore files.
« If you are using an HSM, also read PKCS#11 hardware security module.
« If you are using PEM format keys, read PEM format keys.
+ CAs can optionally set X.509 key usage extensions in server certificates.

If the CA does set key usage extensions, make sure it includes at least the required settings:

Protocol X.509 extension Required settings
HTTP KeyUsage digitalSignature
keyEncipherment
ExtendedKeyUsage serverAuth (TLS server authentication)
LDAP KeyUsage digitalSignature
keyEncipherment
ExtendedKeyUsage serverAuth (TLS server authentication)
Replication KeyUsage digitalSignature
keyEncipherment
ExtendedKeyUsage clientAuth (TLS client authentication)™

serverAuth (TLS server authentication)
1.3.6.1.4.1.36733.2.1.10.1 (for Trusted replicas
(advanced))

(1) Replication requires both TLS server and TLS client roles.
Follow steps similar to these to install a DS replica with existing cryptographic keys:

1. Before proceeding, install the server files.
For details, refer to Unpack files.

2. Run the setup command with the appropriate options.

The following example uses a PKCS#12 keystore file with the server's key pair, and a PKCS#12 truststore file with the CA’s
certificate.

This example installs the server with the evaluation setup profile. Adapt the command for your use:

Copyright © 2025 Ping Identity Corporation

PingDS Installation

Set up a directory server for evaluation using existing keys:
$ /path/to/opendj/setup \

--serverId evaluation-only \

--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--usePkcs12TrustStore /path/to/truststore \
--trustStorePassword password \
--certNickname ssl-key-pair \
--usePkcs12KeyStore /path/to/keystore \
--keyStorePassword password \

--rootUserDN uid=admin \

--rootUserPassword password \
--monitorUserPassword password \

--hostname localhost \

--adminConnectorPort 4444 \

--ldapPort 1389 \

--enableStartTls \

--ldapsPort 1636 \

--httpsPort 8443 \

--replicationPort 8989 \
--bootstrapReplicationServer localhost:8989 \
--profile ds-evaluation \

--acceptlLicense

3. Finish configuring the server.

4. Start the server:
$ /path/to/opendj/bin/start-ds

When you set up the server to use existing keystore files, the server configuration directly references those files. If you read the
server configuration, you find that a Key Manager Provider references the keystore, and that a Trust Manager Provider
references the truststore.

If you provide keystore and truststore passwords as strings, the setup command records them in files in the opendj/config
directory.

For details on using variables instead, refer to Property value substitution.

Install an HDAP gateway

The DS HDAP gateway web application translates HTTP requests in LDAP requests:
hdap

The HDAP gateway functions as a web application in a web application container. It runs independently of the LDAPv3 directory
service. The LDAPv3 directory service must support proxied authorization. In particular, this means you can use the HDAP
gateway with current and previous versions of DS.

Copyright © 2025 Ping Identity Corporation

Installation PingDS

Installation

1. Review the requirements for installation (J to verify the HDAP gateway supports your web application container.

2. Deploy the .war file according to the instructions for your web application container; for example:

$ cp DS-hdap-servlet-7.5.2.war /path/to/tomcat/webapps/

If you use Wildfly, you must unzip the .war file into the deployment directory.

3. Edit the configuration in the deployed gateway web application:
WEB-INF/classes/config. json
This file defines how the HDAP gateway connects to and interacts with LDAP directory servers.

At minimum, set the directory server hostnames, port numbers, and proxy user credentials. The proxy user LDAP
account performs proxied authorization. In a DS directory server set up for evaluation, the account with simple
bind credentials cn=My App, ou=Apps, dc=example,dc=com and password can act as a proxy user.

When connecting to the remote directory service over LDAPS or LDAP and StartTLS (recommended), configure the
gateway client-side trust manager to trust the server certificates. For help, refer to the examples showing how to
trust DS server certificates.

WEB-INF/classes/logging.properties
This file defines logging properties when you run the gateway in Apache Tomcat.
4. (Optional) Adjust the log level.

At the default log level of INFO, the HDAP gateway logs messages about HTTP requests. For log level definitions, refer to
java.util.logging.Level (.

If the HDAP gateway runs in Apache Tomcat, edit the logging.properties file. Otherwise, set the log level as described in
the container documentation.

5. (Recommended) Configure the web application container to use HTTPS for secure connections to the gateway.
Refer to the container documentation for details.

6. Restart the HDAP gateway or the web application container.
The gateway reloads its configuration.

7. Verify the directory service is up and the gateway connects correctly.

Verification
Install and configure the HDAP gateway before following these steps:
1. Set up a DS directory server for evaluation.

2. Read Babs Jensen's resource through the gateway.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.logging/java/util/logging/Level.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.logging/java/util/logging/Level.html

PingDS Installation

If necessary, adjust the protocol (https), port (8443), and base path (/hdap) for your configuration:

S curl \
--user dc=com/dc=example/ou=People/uid=bjensen:hifalutin \
"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=bjensen?_fields=cn&_prettyPrint=true’

{
"_id" : "dc=com/dc=example/ou=People/uid=bjensen"
'"_rev" : "<revision>",
"cn" : ["Barbara Jensen", "Babs Jensen"]

}

You have demonstrated the HDAP gateway works as expected.

Install a DSML gateway

The DSML gateway web application translates each HTTP request into one or more LDAP requests.

@ Important

The interface stability of this feature is Deprecated.

The translation depends on the DSML protocol. For authentication, you must configure how HTTP user IDs map to LDAP
identities.

Requests through a DSML gateway
Figure 1. Requests through a DSML gateway

The DSML gateway functions as a web application in a web application container.
The DSML gateway runs independently of the directory service.

You configure the gateway to access a directory service by editing parameters in the gateway configuration file,
WEB-INF/web.xml :

1. Review requirements for installation (2.

2. Deploy the .war file according to the instructions for your web application container.

3. Edit WEB-INF/web.xml to ensure the parameters are correct.
For details, refer to Configure DSML access.

4. Configure your web application container to use HTTPS for secure connections to the gateway.
Refer to your web application container documentation for details.

5. Restart the web application according to the instructions for your web application container.

Configure DSML access

Directory Services Markup Language (DSML) client access is implemented as a servlet web application. You edit the WEB-INF/
web.xml file after deploying the web application.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

Installation PingDS

The list of DSML configuration parameters are the following:
ldap.host
The hostname of the underlying directory service.
Default: localhost
ldap.port
The LDAP port number of the underlying directory service.
Default: 389
ldap.userdn
Optional parameter specifying the DN to bind to the underlying directory service.
Default: anonymous bind
ldap.userpassword
Optional parameter specifying the password to bind to the underlying directory service.
Default: anonymous bind
ldap.authzidtypeisid

Use this parameter to set up the DSML gateway to do HTTP Basic Access Authentication, given the appropriate mapping
between the user ID, and the user’s entry in the directory.

This takes a boolean parameter specifying whether the HTTP Authorization header field's Basic credentials in the request
hold a plain ID, rather than a DN.

If setto true, the gateway performs an LDAP SASL bind using SASL plain, enabled by default in DS servers to look for an
exact match between a uid in the server, and the plain ID from the header.

In other words, if the plain ID is bjensen, then the bind DN is uid=bjensen, ou=people, dc=example, dc=com.

Configure DS identity mappers as necessary to use a different attribute than uid . For background information, refer to
Identity mappers.

Default: false
ldap.usessl
Whether ldap.port uses LDAPS.
Default: false
ldap.usestarttls
Whether to use StartTLS when connecting to 1dap.port.

Default: false

Copyright © 2025 Ping Identity Corporation

PingDS Installation

ldap.trustall
Whether to blindly trust all server certificates when using LDAPS or StartTLS.

Default: false

ldap.truststore.path
The truststore used to verify server certificates when using LDAPS or StartTLS.

Required when using LDAPS or StartTLS and 1dap.trustall is false.

ldap.truststore.password
The password to read the truststore.
Required when using a truststore with a password.

For initial testing purposes, try JXplorer(, where the DSML Service is: /webapp-dir/DSMLServlet . The webapp-dir refers to the
name of the directory holding the DSML .war .

Uninstallation

Uninstall .zip

Follow these steps to remove software installed from the cross-platform .zip:
1. Log in as the user who installed and runs the server.

2. Stop the server:

$ /path/to/opendj/bin/stop-ds --quiet

3. Delete the files manually:

$ rm -rf /path/to/opendj

Uninstall the Debian package

When you uninstall the Debian package from the command-line, the server is stopped if it is running:

1. Purge the package from your system:

$ sudo dpkg --purge opendj

2. Remove any remaining server configuration files and directory data:

Copyright © 2025 Ping Identity Corporation

http://jxplorer.org/
http://jxplorer.org/

Installation PingDS

$ sudo rm -rf /opt/opendj

Uninstall the RPM package

When you uninstall the RPM package from the command-line, the server is stopped if it is running:

1. Remove the package from your system:

root# rpm -e opendj

2. Remove the server configuration files and any directory data:

$ sudo rm -rf /opt/opendj

Uninstall the Windows MSI

When you uninstall the files installed from the Windows installer package, only the installed files are removed.

GUI

1. Open Control Panel as Windows Administrator.
2. Browse to the page to uninstall a program.
3. Find the ForgeRock Directory Service in the list and uninstall it.

4. Manually remove the server configuration files and any directory data.

PowerShell

1. Open PowerShell as Windows Administrator.
2. Use the msiexec command.

The following command quietly removes installed files:

C:\> msiexec /x DS-7.5.2.msi /q

3. Manually remove the server configuration files and any directory data.

File layout

DS software installs and creates the following files and directories. The following table is not meant to be exhaustive.

Copyright © 2025 Ping Identity Corporation

PingDS Installation

File or directory Description

bak Directory intended for local backup data.

bat Windows command-line tools.

bin Linux command-line tools.

changelogDb Backend for replication changelog data.

classes Directory added to the server classpath, permitting individual classes to be
patched.

config (Optionally) immutable server configuration files.

config/audit-handlers Templates for configuring external Common Audit event handlers.

config/config.1ldif LDIF representation of current DS server configuration.

config/keystore Keystore and password (.pin) files for servers using PKI based on a deployment

config/keystore.pin ID and password.

config/MakeLDIF Templates for use with the makeldif LDIF generation tool.

db Default directory for backend database files.
For details, refer to Data storage.

extlib Directory for additional .jar files used by your custom plugins.
If the instance path is not the same as the binaries, copy additional files into the
instance-path/extlib/ directory.

import-tmp Working directory used when importing LDIF data.

1dif Directory for saving LDIF export files.

legal-notices

License information.

lib Scripts and libraries shipped with DS servers.

lib/extensions Directory for custom plugins.

locks Lock files that prevent more than one process from using the same backend.
logs Access, errors, and audit logs.

logs/server.pid

opendj_logo.png

README

Contains the process ID for a running server.
DS splash logo.

About DS servers.

Copyright © 2025 Ping Identity Corporation

Installation

PingDS

File or directory

samples(”

setup

setup.bat

template
template/setup-profiles
upgrade

upgrade.bat

var

var/archived-configs

var/config.1ldif.startok

Description

Samples for use with DS servers, such as:

« Asample Dockerfile and related files for building custom DS Docker
images.

+ A sample Grafana dashboard demonstrating how to graph DS server
metrics stored in a Prometheus database.

* Sample server plugins and extensions.

Linux setup tool.

Windows setup tool.

Templates for setting up a server instance.

Profile scripts to configure directory servers for specific use cases.
Linux upgrade tool.

Windows upgrade tool.

Files the DS server writes to during operation.
Do not modify or move files in the var directory.

Snapshots of the main server configuration file, config/config.1dif .
The server writes a compressed snapshot file when the configuration is changed.

The most recent version of the main server configuration file that the server
successfully started with.

() The samples are provided on an "as is" basis. Ping Identity does not guarantee the individual success developers may have in
implementing the samples on their development platforms or in production configurations.

For details about how to try the samples, refer to the accompanying README.md files.

Copyright © 2025 Ping Identity Corporation

Upgrade

M Pingldentity.

Upgrade PingDS

This guide shows you how to upgrade PingDS software.

1 A
About upgrades Upgrade strategies
Read this first. Choose between upgrading in place and

upgrading by adding servers.

o

Upgrade in place Upgrade by adding servers
Overwrite old software to upgrade on the same Add new servers then retire old ones.
server.

Read the Release notes(before you upgrade DS software.

Product names changed when ForgeRock became part of Ping Identity. PingDS was formerly known as ForgeRock Directory
Services, for example. Learn more about the name changes in New names for ForgeRock productsZ in the Knowledge Base.

About upgrades

DS 7 is a major release, much more cloud-friendly than ever before, and different in significant ways from earlier releases.

To upgrade successfully from DS 6.5 and earlier, make sure you understand the key differences beforehand. With these in mind,
plan the upgrade, how you will test the upgraded version, and how you will recover if the upgrade process does not go as
expected:

Fully compatible replication

While the replication protocol remains fully compatible with earlier versions, you must upgrade from DS 6 or later. Learn
more in Supported upgrades.

You can still upgrade servers while the directory service is online, but the process has changed.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products

Upgrade

Key configuration differences

DS 6.5 and earlier

You configure replication after installation.

You configure which servers replicate.

You configure trust and TLS when configuring replication.

Before retiring a server, you unconfigure replication for
the server.

Use the dsreplication command.

Replicas share secret keys through cn=admin data.

DS 7.0 and later

You configure replication during installation, before
starting the server.

You configure bootstrap replication servers. Replicas
discover other servers through them.

By default, you install servers with a shared deployment
ID and password that enables trust and TLS.

After retiring a bootstrap replication server, you remove it
from other servers' configurations. Otherwise, no
unconfiguration is necessary.

Use the dsrepl command.

Replicas protect secret keys with the shared deployment

ID and password.

In 6.5 and earlier, you set up DS servers that did not yet replicate. Then, when enough of them were online, you configured
replication.

In 7, you configure replication at setup time before you start the server. For servers that will have a changelog, you use the
setup --replicationPort option for the replication server port. For all servers, you use the setup --
bootstrapReplicationServer option to specify the replication servers that the server will contact when it starts up.

The bootstrap replication servers maintain information about the servers in the deployment. The servers learn about the
other servers in the deployment by reading the information that the bootstrap replication server maintains. Replicas
initiate replication when they contact the first bootstrap replication server.

As directory administrator, you no longer have to configure and initiate replication for a pure DS 7 deployment. DS 7 servers
can start in any order as long as they initiate replication before taking updates from client applications.

Furthermore, you no longer have to actively purge replicas you removed from other servers' configurations. The other servers
"forget" a replica that disappears for longer than the replication purge delay, meaning they eventually purge its state from
memory and from their changelogs. (DS servers do not "forget" bootstrap replication servers, because each server's
configuration explicitly references its bootstrap replication servers.) With earlier DS versions, you had to purge replicas
from other servers' configurations after they were removed. DS servers do this automatically now. No administrative
action is required.

These new capabilities bring you more deployment flexibility than ever before. As a trade off, you must now think about
configuring replication at setup time, and you must migrate scripts and procedures that used older commands to the new
dsrepl command.

Unique string-based server IDs

By default, DS 7 servers use unique string-based server IDs.

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

In prior releases, servers had multiple numeric server IDs. Before you add a new DS 7 server to a deployment of older
servers, you must assign it a "numeric" server ID.

Secure by default
The setup --production-mode option is gone. All setup options and profiles are secure by default.
DS 7 servers require:
* Secure connections.
+ Authentication for nearly all operations, denying most anonymous access by default.
« Additional access policies when you choose to grant access beyond what setup profiles define.
« Stronger passwords.

New passwords must not match known compromised passwords from the default password dictionary. Also in 7,
only secure password storage schemes are enabled by default, and reversible password storage schemes are
deprecated.

+ Permission to read log files.

Furthermore, DS 7 encrypts backup data by default. As a result of these changes, all deployments now require
cryptographic keys.

Deployment ID required

DS 7 deployments require cryptographic keys. Secure connections require asymmetric keys (public key certificates and
associated private keys). Encryption requires symmetric (secret) keys that each replica shares.

To simplify key management and distribution, and especially to simplify disaster recovery, DS 7 uses a shared master key
to protect secret keys. DS 7 stores the encrypted secret keys with the replicated and backed up data. This is new in DS 7,
and replaces cn=admin data and the keys for that backend.

A deployment ID is a random string generated using the dskeymgr command. A deployment ID password is a secret string
at least 8 characters long that you choose. The two are a pair. You must have a deployment ID's password to use the ID.

You generate a shared master key to protect encryption secrets, and optionally, asymmetric key pairs to protect
communications, with the dskeymgr command using your deployment ID and password. Even if you provide your own
asymmetric keys for securing connections, you must use the deployment ID and password to generate the shared master
key.

Copyright © 2025 Ping Identity Corporation

Deployment ID P

(You choose this.)

assSwo

-

(dskeymgr generates this.)

Deployment ID

DS stores all shared
symmetric keys encryp
by shared master k

for the deployment.

Shared master key
enables shared data
encryption across replic
for backends, backup
files, and more.

(Shared Master Ké
for Data Encryptic

Yy
n

ed
dskeymgr
derives these.

as

Mandatory

When you upgrade, or add a DS 7 server to a deployment of pre-7 servers, you must intervene to move from the old

model to the new, and unlock all the capabilities of DS 7.

New backup

- J

CA and Keys
for PKI/TLS

S

Default option: derive(

private CA signs serve

certificate for all TLS
connections.

D)

Deployment ID +
password always derives
same CA keys.

To override, provide yo
own keys and certificatq

e

1174
S

Optional

Upgrade

As before, backups are not guaranteed to be compatible across major and minor server releases. If you must roll back
from an unsuccessful upgrade, roll back the data as well as the software.

When you back up DS 7 data, the backup format is different. The new format always encrypts backup data. The new

format allows you to back up and restore data directly in cloud storage if you choose.

Backup operations are now incremental by design. The initial backup operation copies all the data, incrementing from
nothing to the current state. All subsequent operations back up data that has changed.

Restoring a backup no longer involves restoring files from the full backup archive, and then restoring files from each

incremental backup archive. You restore any backup as a single operation.

The previous backup and restore tools are gone. In their place is a single dsbackup command for managing backup and
restore operations, for verifying backup archives, and for purging outdated backup files.

For additional details, refer to the rest of the DS 7 documentation.

@ Important

To the extent possible, separate the upgrade process from the process of adopting new features. The DS upgrade

command encourages this by maintaining compatibility where possible.
Once you have validated that the upgrade has completed successfully, take advantage of the new features available.

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

Activate new features after upgrade

When you upgrade DS, the upgrade process preserves the existing configuration as much as possible. This maintains
compatibility, but it means that you do not have access to all new features immediately after upgrade.

You must take additional steps to complete the process, including activating new features. For details, refer to After you add new
servers.

Supported upgrades

From... To... Important Notes
Official DS release, version Official DS release, same Supported.
6.0 or later edition of directory server or

replication server

Official ForgeRock release, Official DS release, directory Not supported.

2.6.x to 5.5.x server or replication server Workaround: First, upgrade all servers in the deployment to
6.5 before upgrading further. For details on upgrading to 6.5,
refer to the DS 6.5 Installation Guide.

Official ForgeRock release, Official DS release, directory Not supported.

version 2.4 or 2.5 server or replication server Workaround: Upgrade all servers in the deployment to use at
least 2.6.0 before upgrading further. For details on upgrading
to that version, refer to Upgrading to OpenDJ 2.6.0.

Evaluation release Official DS release Not supported.
The evaluation version includes an additional server plugin
and configuration. Official releases do not have an upgrade
task to remove the plugin and its configuration.

Unofficial build Official DS release Not supported.

Upgrade strategies

When you upgrade to a new DS version, you choose between:
+ Upgrade in place: unpack the new software over the old software and run the upgrade command.
+ Add new servers then retire old ones.

@ Important

For some scenarios, like upgrading Docker images in a Kubernetes deployment, you must upgrade in place.

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

Upgrade in place

The most straightforward option when upgrading DS servers is to upgrade in place. DS software provides an upgrade command
to simplify the process.

One by one, you stop, upgrade, and restart each server individually, leaving the service running during upgrade:

Advantages Disadvantages

No additional systems to manage. During the upgrade, the host system must meet the
requirements for both the older version and the new release.
For example, you may need to have more than one Java
environment installed. The operating system must also be
supported for both releases.

Simpler to understand. Slower to roll back.
Rollback involves restoring each server to its pre-upgrade
state.
Once a replica’s databases have been upgraded, they cannot
be rolled back.

Easier to maintain compatibility. You must manually enable new features after the upgrade.
To the extent possible, the upgrade command leaves the
configuration as is.

On upgrading replicas

@ Important

The in-place upgrade process is designed to support a rolling (sequential) upgrade of replicated servers.

Do not upgrade all replicated servers at once in parallel, as this removes all replication changelog data
simultaneously, breaking replication.

If the deployment includes DS 7.4.0 servers with data encryption using default settings, you must add new servers
instead. For details, read Upgrade from DS 7.4.0.

When upgrading in place, follow these steps for each replica:
1. Direct client application traffic away from the server to upgrade.
2. Upgrade the replica.

3. Direct client application traffic back to the upgraded server.

Add new servers

Adding new servers and then retiring old ones is an alternative to upgrading in place. You replicate data between old and new
systems, leaving the service running during the upgrade:

Copyright © 2025 Ping Identity Corporation

Upgrade

PingDS

Advantages

Smoothly phase out old host systems.
After successfully completing the upgrade, you gradually
retire the old systems.

Faster to roll back.

Old servers remain in operation until the upgrade completes
successfully.

Strategy: in-place upgrade

Disadvantages

New host systems to manage.

Harder to maintain compatibility.

You must manually configure new servers to be fully
compatible with existing servers, rather than relying on the
upgrade command. This requires an in-depth understanding
of both your existing configuration and the new
configuration. Some new default settings may be
incompatible with the old default settings, for example.

Requires initializing the new replicas.

Depending on the volume of data to synchronize, you can
initialize at least the first new replica online. For deployments
with medium to large data sets, initialize from exported LDIF
or from backup files created using an upgraded DS server. In
either case, you must plan the operation.

While the upgrade is in progress, replication monitoring is
split between the older servers that use dsreplication
status and the newer servers that use dsrepl status.
Run both commands to get a more complete picture of
replication status.

You must manually enable new features after the upgrade.

These pages cover in-place upgrades. For servers, you unpack the new software over old and run the upgrade command, reusing
the same host systems. For details about alternative upgrade strategies, refer to Upgrade strategies.

@ Note

If you use encryption and the default cipher-transformation settings, you cannot upgrade in place from DS 7.4.0.
Upgrade by adding new servers instead and refer to Upgrade from DS 7.4.0 for details.

Next steps
[0 Perform these steps before you upgrade
[0 Upgrade each:
[l Directory server

1 Directory proxy

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

[0 Replication server
0 HDAP gateway
[0 DSML gateway

[0 Perform these steps after you upgrade

Before you upgrade in place

Fulfill these requirements before upgrading PingDS software, especially before upgrading the software in a production
environment. Also refer to the requirements listed in release notes(Z.

Global server IDs

Before upgrading, make sure you use unique global server IDs. Prior to DS 7.0, each server could have multiple server IDs. Global
server IDs were supported but optional in DS 6.5.

To update each DS 6.5 to use a unique global server ID, set the server-id global configuration property. The following example
sets the global server IDto 1:

$ dsconfig \
set-global-configuration-prop \
--hostname opendj.example.com \
--port 4444 \
--bindDN "cn=Directory Manager" \
--bindPassword password \
--set server-id:1 \
--trustAll \
--no-prompt

Server IDs were originally numeric for compatibility with DS 6.5 and earlier servers. In DS 7.0 and later, use strings as server IDs.

Supported Java

@ Important

+ Always use a JVM with the latest security fixes.
« Make sure you have a required Java environment installed on the system.
If your default Java environment is not appropriate, use one of the following solutions:
° Edit the default.java-home settingin the opendj/config/java.properties file.
o Set OPENDJ_JAVA_HOME to the path to the correct Java environment.
o Set OPENDJ_JAVA_BIN to the absolute path of the java command.
* When running the dskeymgr and setup commands, use the same Java environment everywhere in the
deployment and refer to CAs from deployment IDs.

DS software supports the following Java environments:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

Upgrade PingDS

Vendor Versions

OpenJDK, including Open]DK-based distributions: 17D, 21

» AdoptOpen]DK/Eclipse Temurin Java Development Kit (Adoptium)
* Amazon Corretto

+ Azul Zulu

+ Red Hat OpenJDK

Ping Identity tests most extensively with AdoptOpen]DK/Eclipse Temurin.
Use the HotSpot JVM if possible.

Oracle Java 170, 21

() DS requires Java 17.0.8 or later.
TLS cipher support depends solely on the JVM. For details, refer to TLS settings.

CAs from deployment IDs

Due to a change to the Java platform between versions 11 and 17, the key pairs you generate with the dskeymgr and setup
commands using Java 11 are incompatible with keys generated using Java 17 and later.

@ Note

Running DS servers with incompatible Java versions is a problem when you use deployment ID-based CA certificates.
If you use your own CA, not one derived from a deployment ID, skip this section.

Using different Java versions is a problem if you use deployment ID-based CA certificates. Replication breaks, for example, when
you use the setup command for a new server with a more recent version of Java than was used to set up existing servers.

Find troubleshooting suggestions in Incompatible Java versions.

Required credentials

Perform the upgrade procedure as the user who owns the server files.
Make sure you have the credentials to run commands as this user.

Back up first

Before upgrading, perform a full file system backup of the current server so that you can revert on failure. Make sure you stop the
directory server and back up the file system directory where the current server is installed.

Backup archives are not guaranteed to be compatible across major and minor server releases. Restore backups only on directory
servers of the same major or minor version.

Disable Windows service

If you are upgrading a server registered as a Windows service, disable the Windows service before upgrade:

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

C:\path\to\opendj\bat> windows-service.bat --disableService

After upgrade, enable the server as a Windows service again.

Next steps

Perform these steps before you upgrade
[0 Upgrade each:
[l Directory server
[0 Directory proxy
[0 Replication server
[0 HDAP gateway
[DSML gateway

[0 Perform these steps after you upgrade

Directory server

This page shows how to upgrade a directory server in place.

@ Important

Before upgrading, make sure you stop the server. Once you have unpacked the new server files, do not modify the
server configuration until after you have completed the upgrade process.
Failure to follow the upgrade instructions can result in the loss of all user data.

1. Make sure you've completed the tasks in Before you upgrade in place.
2. Stop the server.
3. Proceed to upgrade the server:
1. When upgrading a server installed from the cross-platform ZIP distribution:
m Unpack the new files over the old files as described in Unpack files.

m If the existing server uses a Java version that is no longer supported, follow the steps in Java updates, but do
not restart the server yet.

m Run the upgrade command to bring the server up to date with the new software delivery.

By default, the upgrade command runs interactively, requesting confirmation before making important
configuration changes. For some potentially long-duration tasks, such as rebuilding indexes, the default
choice is to defer the tasks until after upgrade.

You can use the --no-prompt option to run the command non-interactively. In this case, the --
acceptLicense option lets you accept the license terms non-interactively.

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

When using the --no-prompt option, if the upgrade command cannot complete because it requires
confirmation for a potentially long or critical task, then it exits with an error, and a message about how to
finish making the changes. You can add the --force option to force a non-interactive upgrade to continue
in this case, also performing long-running and critical tasks.

2. When upgrading a server installed from native packages, use the system package management tools.

Although unlikely, when the server configuration has changed in an incompatible way with the previous release, the
upgrade command can fail when performing property value substitution for a configuration expression. If this happens,
change the configuration to a static value during upgrade. Use the configuration expression again after you successfully
run the upgrade command.

4. When the mutable data mounted at runtime differs from that of the instance where you first run the upgrade command,
upgrade only mutable data by running the command again with the --dataOnly option at runtime.

The --dataOnly option can be useful when running the server in a Docker container, for example.
5. Start the upgraded server.

At this point, the upgrade process is complete. Refer to the resulting upgrade.log file for a full list of operations
performed.

Replication updates the upgraded server with changes that occurred during the upgrade process.

6. If you disabled the Windows service to upgrade, enable it again:

C:\path\to\opendj\bat> windows-service.bat --enableService

Next steps

Perform these steps before you upgrade
[0 Upgrade each:
Directory server
[l Directory proxy
[0 Replication server
[0 HDAP gateway
[DSML gateway

[0 Perform these steps after you upgrade

Directory proxy

This page shows how to upgrade a directory proxy server in place. A directory proxy server has no local user data.

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

@ Important

Before upgrading, make sure you stop the server. Once you have unpacked the new server files, do not modify the
server configuration until after you have completed the upgrade process.

1. Make sure you've completed the tasks in Before you upgrade in place.
2. Stop the server.
3. Proceed to upgrade the server:
1. When upgrading a server installed from the cross-platform ZIP distribution:
m Unpack the new files over the old files as described in Unpack files.

m If the existing server uses a Java version that is no longer supported, follow the steps in Java updates, but do
not restart the server yet.

® Run the upgrade command to bring the server up to date with the new software delivery.

By default, the upgrade command runs interactively, requesting confirmation before making important
configuration changes. For some potentially long-duration tasks, such as rebuilding indexes, the default
choice is to defer the tasks until after upgrade.

You can use the --no-prompt option to run the command non-interactively. In this case, the --
acceptLicense option lets you accept the license terms non-interactively.

When using the --no-prompt option, if the upgrade command cannot complete because it requires
confirmation for a potentially long or critical task, then it exits with an error, and a message about how to
finish making the changes. You can add the --force option to force a non-interactive upgrade to continue
in this case, also performing long-running and critical tasks.

2. When upgrading a server installed from native packages, use the system package management tools.

Although unlikely, when the server configuration has changed in an incompatible way with the previous release, the
upgrade command can fail when performing property value substitution for a configuration expression. If this happens,
change the configuration to a static value during upgrade. Use the configuration expression again after you successfully
run the upgrade command.

4, Start the upgraded server.

At this point, the upgrade process is complete. Refer to the resulting upgrade.log file for a full list of operations
performed.

5. If you disabled the Windows service to upgrade, enable it again:

C:\path\to\opendj\bat> windows-service.bat --enableService

Next steps

Perform these steps before you upgrade

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

[0 Upgrade each:
Directory server
Directory proxy
[0 Replication server
[0 HDAP gateway
0 DSML gateway

[0 Perform these steps after you upgrade

Replication server

This page shows how to upgrade a standalone replication server in place. A standalone replication server has no local user data. If
the server holds user data, refer to Directory server instead.

@ Important

Before upgrading, make sure you stop the server. Once you have unpacked the new server files, do not modify the
server configuration until after you have completed the upgrade process.

1. Make sure you've completed the tasks in Before you upgrade in place.
2. Stop the server.
3. Proceed to upgrade the server:
1. When upgrading a server installed from the cross-platform ZIP distribution:
m Unpack the new files over the old files as described in Unpack files.

m If the existing server uses a Java version that is no longer supported, follow the steps in Java updates, but do
not restart the server yet.

® Run the upgrade command to bring the server up to date with the new software delivery.

By default, the upgrade command runs interactively, requesting confirmation before making important
configuration changes. For some potentially long-duration tasks, such as rebuilding indexes, the default
choice is to defer the tasks until after upgrade.

You can use the --no-prompt option to run the command non-interactively. In this case, the --
acceptLicense option lets you accept the license terms non-interactively.

When using the --no-prompt option, if the upgrade command cannot complete because it requires
confirmation for a potentially long or critical task, then it exits with an error, and a message about how to
finish making the changes. You can add the --force option to force a non-interactive upgrade to continue
in this case, also performing long-running and critical tasks.

2. When upgrading a server installed from native packages, use the system package management tools.

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

Although unlikely, when the server configuration has changed in an incompatible way with the previous release, the
upgrade command can fail when performing property value substitution for a configuration expression. If this happens,
change the configuration to a static value during upgrade. Use the configuration expression again after you successfully
run the upgrade command.

4, Start the upgraded server.

At this point, the upgrade process is complete. Refer to the resulting upgrade.log file for a full list of operations
performed.

5. If you disabled the Windows service to upgrade, enable it again:

C:\path\to\opendj\bat> windows-service.bat --enableService

Next steps

Perform these steps before you upgrade
[0 Upgrade each:
Directory server
Directory proxy
Replication server
0 HDAP gateway
[0 DSML gateway

[0 Perform these steps after you upgrade

HDAP gateway

Replace the HDAP gateway with the newer version, as for a fresh installation, and rewrite the configuration to work with the new
version.

Next steps

Perform these steps before you upgrade
[0 Upgrade each:
Directory server
Directory proxy
Replication server
HDAP gateway

[0 DSML gateway

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

[0 Perform these steps after you upgrade

DSML gateway
Replace the DSML gateway with the newer version, as for a fresh installation.

Next steps

Perform these steps before you upgrade
Upgrade each:

Directory server

Directory proxy

Replication server

HDAP gateway

DSML gateway

[J Perform these steps after you upgrade

After you upgrade in place

The DS server upgrade process preserves the existing configuration as much as possible. This maintains compatibility, but there
are more steps you must take.

@ Note

Many example commands on this page use cn=Directory Manager as the name of the directory superuser account.
This was the default before DS 7.
Here, cn=Directory Manager stands for the name of the directory superuser account in DS 6.5 and earlier.

Checklist

Use this checklist to make sure you don't miss these important post-upgrade tasks:
[0 Use the new security model (for upgrades from DS 6.5 and earlier).

Back up your directory data.’

Update your scripts to account for incompatible changés.

Plan your move away from deprecatéd features.

Move to dedicated service accounts for your directory applications.2

Manually review and purge the DS server configurations for stale references to old servers.>

o 0o o o o o

Review what's new and changdéd and adopt useful improvements.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/changes.html
https://docs.pingidentity.com/pingds/release-notes/changes.html
https://docs.pingidentity.com/pingds/release-notes/deprecation.html
https://docs.pingidentity.com/pingds/release-notes/deprecation.html
https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html

PingDS Upgrade

Eliminate outdated password storage.

Clean up admin data (for upgrades from DS 6.5 and earlier).*
Add a monitor user account.

Update LDAP schema.

Tune settings.

Use string-based server IDs.

Use the entity tag plugin for ETags.

o ooooo o o

Activate cloud storage for backup.
[0 Set the cloud storage endpoint for backup if you back up to cloud storage.
T Backup files are not compatible between versions. Before starting this task, complete the work to Use the new security model.

2 You would not run all your applications as the Linux root user or the Windows Administrator. Stop using superuser accounts like
cn=Directory Manager as service accounts. Many DS setup profiles create service accounts for applications to use when
authenticating to DS. For examples of AM service accounts, refer to the base-entries.1ldif files in setup profiles under the
opendj/template/setup-profiles/AM directory.

3 You can read the opendj/config/config.1dif file to find stale references, but always use the dsconfig command to make
changes to the configuration.

4 Before starting this task, complete the work to Use the new security model and to Eliminate outdated password storage.

Use the new security model

@ Note

If you have upgraded DS 6.5 or earlier servers in place, enable upgraded servers to use the new security model. You
can’t add new servers using normal procedures until you have completed these steps. Some new features depend on the
new model.

DS release 7 changes the security model to configure replication at setup time, make disaster recovery more straightforward, and
simplify symmetric key distribution:

* In prior releases, trust and symmetric key distribution in a replication topology depend on the replicated cn=admin data
base DN. DS servers prior to release 7 reference each others' instance keys and use them to protect symmetric keys in
cn=admin data entries.

+ DS servers now rely on a deployment ID and password to derive a shared master key and offer a default PKI to trust each
others' certificates. DS servers protect symmetric keys using the shared master key to encrypt and decrypt them. For
details, refer to Deployment IDs.

The following examples demonstrate the process of creating keys and updating the configuration for replicas installed with the
DS 6.5 evaluation profile:

1. Make sure you have upgraded all DS servers to version 7 or later.

2. Generate a deployment ID for the deployment:

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

FHE

Generate a deployment ID for the topology.

Do this once and SAVE THE DEPLOYMENT ID:

S dskeymgr create-deployment-id --deploymentIdPassword password
<deployment-id>

For more command options, refer to dskeymgr. The default validity for the deployment ID is 10 years.

3. For each upgraded server, add at least the shared master key generated using the deployment ID:

H#i#
Use the same deployment ID on each server:
export DEPLOYMENT_ID=<deployment-id>

Add a shared master key based on the deployment ID:
dskeymgr \

export-master-key-pair \

--alias master-key \

--deploymentId SDEPLOYMENT_ID \

--deploymentIdPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file /path/to/opendj/config/keystore.pin

Deployment ID-based PKI?
Add a deployment ID CA certificate:
dskeymgr \
export-ca-cert \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--keyStoreFile /path/to/opendj/config/keystore \
--keyStorePassword:file /path/to/opendj/config/keystore.pin

Deployment ID-based PKI?
Add a deployment ID-based TLS certificate:
dskeymgr \
create-tls-key-pair \
--deploymentId $DEPLOYMENT_ID \
--deploymentIdPassword password \
--keyStoreFile /path/to/opendj/config/keystore \
--keyStorePassword:file /path/to/opendj/config/keystore.pin \
--hostname localhost \
--hostname opendj.example.com \
--subjectDn CN=DS, O=ForgeRock

The default validity for the certificate is one year.
4. For each upgraded server, start the server, if necessary.
5. For each upgraded server, update the configuration to use the new keys.

The following example uses the private PKI keys based on the deployment ID and password. At minimum, even if you use
your own keys for PKI, update the Crypto Manager to use the shared master key:

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

Copy the keys used to protect secret keys and replication traffic
to the default key manager keystore.
This makes the keys available for trust and decryption
after you switch to the default key and trust managers:
keytool \
-importkeystore \
-srckeystore /path/to/opendj/db/ads-truststore/ads-truststore \
-srcstorepass:file /path/to/opendj/db/ads-truststore/ads-truststore.pin \
-destkeystore /path/to/opendj/config/keystore \
-deststoretype PKCS12 \
-deststorepass:file /path/to/opendj/config/keystore.pin

Configure the server to wrap new secret keys
using the new shared master key:
dsconfig \
set-crypto-manager-prop \
--set key-manager-provider:"Default Key Manager" \
--set master-key-alias:master-key \
--reset digest-algorithm \
--reset mac-algorithm \
--reset key-wrapping-transformation \
--hostname localhost \
--port 4444 \
--bindDN "cn=Directory Manager" \
--bindPassword password \
--trustAll \
--no-prompt

Deployment ID-based PKI?
dsconfig \
create-trust-manager-provider \
--set enabled:true \
--set trust-store-file:config/keystore \
--set trust-store-pin:\&{file:config/keystore.pin} \
--set trust-store-type:PKCS12 \
--type file-based \
--provider-name PKCS12 \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \
--trustAll \

--bindPassword password \
--no-prompt

Switch to the new keys to secure
administrative and replication communications:
dsconfig \
set-administration-connector-prop \
--set ssl-cert-nickname:ssl-key-pair \
--set trust-manager-provider:PKCS12 \
--hostname localhost \
--port 4444 \
--bindDn "cn=Directory Manager" \
--trustAll \
--bindPassword password \
--no-prompt

dsconfig \
set-synchronization-provider-prop \
--provider-name "Multimaster Synchronization" \

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

--set key-manager-provider:"Default Key Manager" \
--set ssl-cert-nickname:ssl-key-pair \

--set trust-manager-provider:PKCS12 \

--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \
--trustAll \

--bindPassword password \
--no-prompt

Switch to the new keys for other secure communications:
dsconfig \
set-connection-handler-prop \
--handler-name HTTPS \
--set ssl-cert-nickname:ssl-key-pair \
--set trust-manager-provider:PKCS12 \
--hostname localhost \
--port 4444 \
--bindDn "cn=Directory Manager" \
--trustAll \
--bindPassword password \
--no-prompt

dsconfig \
set-connection-handler-prop \
--handler-name LDAP \
--set ssl-cert-nickname:ssl-key-pair \
--set trust-manager-provider:PKCS12 \
--hostname localhost \
--port 4444 \
--bindDn "cn=Directory Manager" \
--trustAll \
--bindPassword password \
--no-prompt

dsconfig \
set-connection-handler-prop \
--handler-name LDAPS \
--set ssl-cert-nickname:ssl-key-pair \
--set trust-manager-provider:PKCS12 \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \
--trustAll \

--bindPassword password \
--no-prompt

6. For each upgraded server, restart the server, causing it to generate new secret keys, wrapped using the shared master
key:

stop-ds --restart

Eliminate outdated password storage

Reversible password storage schemes (3DES, AES, Blowfish, RC4) have been deprecated since DS 7.0. Many password storage
schemes are no longer enabled by default for new installations.

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

After upgrading to DS 7 and later, migrate active accounts away from the following deprecated and outdated password storage
schemes:

* 3DES

* AES

* Base64

* Blowfish

« CRYPT

+ Clear

* PBKDF2

+ PKCS5S2

* SHA-1

+ Salted SHA-1

+ Salted SHA-256

* Salted SHA-384

+ Salted SHA-512
Follow these steps:

1. On at least one DS replica, add an index for passwords using deprecated or outdated storage schemes.

The following example creates the index on an upgraded server with data for dc=example, dc=com in a backend called
userRoot . The directory superuser account on the upgraded server has DN cn=Directory Manager :

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

dsconfig \

create-backend-index \

--backend-name userRoot \

--type generic \

--index-name userPassword \

--set index-type:big-extensible \

--set big-index-included-attribute-value:3DES \

--set big-index-included-attribute-value:AES \

--set big-index-included-attribute-value:Base64 \

--set big-index-included-attribute-value:Blowfish \

--set big-index-included-attribute-value:CRYPT \

--set big-index-included-attribute-value:Clear \

--set big-index-included-attribute-value:PBKDF2 \

--set big-index-included-attribute-value:PKCS5S2 \

--set big-index-included-attribute-value:RC4 \

--set big-index-included-attribute-value:SHA-1 \

--set big-index-included-attribute-value:Salted\ SHA-1 \
--set big-index-included-attribute-value:Salted\ SHA-256 \
--set big-index-included-attribute-value:Salted\ SHA-384 \
--set big-index-included-attribute-value:Salted\ SHA-512 \
--set big-index-extensible-matching-rule:1.3.6.1.4.1.36733.2.1.4.14 \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \

--bindPassword password \

--trustAll \

--no-prompt

rebuild-index \

--baseDN dc=example,dc=com \
--index userPassword \

--hostname localhost \

--port 4444 \

--bindDN "cn=Directory Manager" \
--bindPassword password \
--trustAll

The ds-evaluation setup profile, described in Install DS for evaluation, includes a userPassword big index for reversible
password storage schemes.

2. Search for accounts using these password storage schemes on the replica where you added the index:

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

ldapsearch \
--hostname localhost \
--port 1636 \
--useSSL \
--bindDN "cn=Directory Manager" \
--bindPassword password \
--trustAll \
--simplePageSize 100 \
--baseDn dc=example, dc=com \
"(|(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=3DES)\

(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=AES)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=BASE64)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=BLOWFISH)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=CRYPT)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=CLEAR)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=PBKDF2)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=PKCS5S2)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=RC4)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SHA)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA256)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA384)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA512))" \

1.1

If the search returns no matches, set enabled: false for the unused storage schemes in each server configuration. You
can skip to the rest of the steps in this procedure.

3. If the search returns any DNs, migrate active accounts to another storage scheme, such as PBKDF2-HMAC-SHA256 .

For details, refer to Deprecate a password storage scheme. When a user binds successfully with their existing password or
changes their password, DS stores the password with the new scheme.

4. Wait for all active accounts to bind or to update their passwords.

The definition of active depends on the deployment. You decide how long a user can go without binding before you
consider their account inactive. For details, refer to Active accounts.

5. Run the search again, adding a filter to match active accounts.
After the migration, the search ideally returns no results.

6. Once you are confident active accounts no longer use deprecated or outdated storage schemes, set enabled: false for
the unused storage schemes in each server configuration.

Inactive accounts—those with no binds during the migration—must now reset their passwords before they can bind.

For additional examples, refer to How do | change a password storage scheme and apply a new password policy to users in DS
(All versions)?J

Clean up admin data

These steps are required after you upgrade from DS 6.5 and earlier to ensure servers share secret keys according to the new
security model.

Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/a91487886
https://support.pingidentity.com/s/article/a91487886
https://support.pingidentity.com/s/article/a91487886

Upgrade PingDS

@ Important

If, after cleanup, your deployment still stores secret keys under the replicated cn=admin data base DN,

do not disable cn=admin data or remove the adminRoot database.

This applies, for example, to deployments that use (deprecated) reversible password storage schemes (3DES, AES,
Blowfish, RC4). It also applies to deployments where servers were set up in production mode, and use keys with
automatically generated, self-signed certificates to protect replication connections.

If you do choose to disable cn=admin data and remove the adminRoot database, you must first manually ensure
that admin data is no longer used, and then remove references to it from your configuration.

1. Make sure you have upgraded all DS servers to version 7 or later.

As explained in Checklist at the top of this page, this means purging stale references to retired servers from the new
servers' configurations, and updating bootstrap replication server settings to reference only the new, DS 7 servers.

2. Make sure you have followed the steps in Use the new security model.
3. Run the cleanup command.

For example, run the cleanup command on each server with directory superuser credentials. If the credentials are the
same on every server, it is enough to run the command once.

After upgrading from DS 6.5 or earlier, make sure you set the --bootstrapServer option. Target at least two servers for
redundancy. The following example uses the servers with IDs 1 and 2 as the bootstrap servers:

S dsrepl \
cleanup-migrated-pre-7-0-topology \
--bootstrapServer 1 \
--bootstrapServer 2 \

--bindDn "cn=Directory Manager" \
--bindPassword password \
--hostname localhost \

--port 4444 \

--trustAll \

--no-prompt

The command is idempotent. You can run it multiple times if the initial run cannot fully complete the cleanup process.

4. Remove unused configuration settings:

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

dsconfig \

delete-key-manager-provider \

--provider-name "Crypto Manager Key Manager" \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \

--trustAll \

--bindPassword password \

--no-prompt

dsconfig \
delete-key-manager-provider \
--provider-name "Replication Key Manager" \
--hostname localhost \
--port 4444 \
--bindDn "cn=Directory Manager" \
--trustAll \
--bindPassword password \
--no-prompt

dsconfig \
delete-trust-manager-provider \
--provider-name "Replication Trust Manager" \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \
--trustAll \

--bindPassword password \
--no-prompt

Skip this command if the deployment has passwords stored
with reversible password storage schemes:

dsconfig \

delete-backend \

--backend-name adminRoot \

--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \
--trustAll \

--bindPassword password \
--no-prompt

5. Replace references to Admin Data in the server configuration.

Find all references to admin data in your configuration:

$ grep -i "admin data" /path/to/opendj/config/config.ldif

How you replace or remove these references depends on your deployment.

6. Remove unused files:

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

Skip these commands if the deployment has passwords stored
with reversible password storage schemes:

$ rm -rf /path/to/opendj/db/adminRoot

S rm -rf /path/to/opendj/db/ads-truststore

Add a monitor user account

The dsrepl status command, and general server monitoring require an account with the monitor-read privilege. Since DS 6,
you can create a monitor user account at setup time; however, the setup process does not require that you create such an
account, and earlier versions do not offer the option.

If no such account exists, do one of the following:
+ Add the monitor-read privilege to an existing, replicated user entry, as demonstrated in Monitor privilege.

+ Add a separate, replicated monitor user account, as demonstrated in How do | create a dedicated user for monitoring in
PingDS?J

Use this replicated account when monitoring DS servers and when running the dsrepl status command.

Update LDAP schema

Update LDAP schema definitions to support new features.

When you upgrade servers, the servers inherit existing LDAP schema definitions. This ensures compatibility between the newer
and older servers during upgrade; however, upgrade does not apply changes that new features depend on.

Once all servers run the latest software, add LDAP schema definitions required to use additional features:
1. Make sure you have upgraded all DS servers to version 7 or later.
2. Compare current schema definitions with the schema templates.
The following example summarizes the differences for a new server added to a 6.5 deployment:

$ cd /path/to/opendj
$ diff -q db/schema template/db/schema
Files db/schema/@0-core.ldif and template/db/schema/@0-core.ldif differ
Files db/schema/@3-pwpolicyextension.ldif and template/db/schema/@3-pwpolicyextension.ldif differ
Files db/schema/@4-rfc2307bis.1ldif and template/db/schema/04-rfc2307bis.1dif differ

Only in db/schema: 60-ds-evaluation-schema.ldif
Only in db/schema: 99-user.ldif

The following table summarizes the changes in detail:

Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/How-do-I-create-a-dedicated-user-for-monitoring-in-PingDS
https://support.pingidentity.com/s/article/How-do-I-create-a-dedicated-user-for-monitoring-in-PingDS
https://support.pingidentity.com/s/article/How-do-I-create-a-dedicated-user-for-monitoring-in-PingDS

PingDS Upgrade
Schema File Notes Action
00-core.1ldif An update of the mail attribute to support UTF-8 Replace with template file
characters and cosmetic changes due to schema
replication:
° Each definition in db/schema/@8-core.ldif has
X-SCHEMA-FILE '@@-core.ldif' . No definitions
in template/db/schema/@@8-core.ldif have the
X-SCHEMA-FILE extension.
° Some object classes in db/schema/08-core.1ldif
are explicitly defined as STRUCTURAL .
Other minor differences:
o In 7, some attribute definitions have minimum
upper bounds.
o The schema for collective attributes is extended.
03- The new version was rewritten to support fully featured Replace with template file
pwpolicyextension.ldif replicated password policies.
04-rfc2307bis.1dif In DS 7.2 and later, the new version aligns schema Replace with template file

60-ds-evaluation-
schema.ldif

99-user.1ldif

Any schema file missing in
template/db/schema

definitions with those of the latest RFC 2703bis Internet-
Draft(Z, An Approach for Using LDAP as a Network
Information Service.

Added to existing version by the evaluation setup profile. Keep existing file

Contains replication metadata. Keep existing file

This includes schema from setup profiles and any custom Keep existing file
schema definitions for the deployment.

3. For each upgraded server, update the schema to the latest version.

The following example updates the schema on a single server. Always stop a server before making changes to its files:

cd /path/to/opendj
./bin/stop-ds

wr v v v

$./bin/start-ds

cp template/db/schema/08-core.1ldif db/schema
cp template/db/schema/@3-pwpolicyextension.ldif db/schema
cp template/db/schema/04-rfc2307bis.1ldif db/schema

4. Rebuild indexes for the following attributes, which DS considers degraded:

° automountInformation

° automountKey

° automountMapName

Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02
https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02
https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02

Upgrade PingDS

° gecos
° ipHostNumber
o ipNetworkNumber
° mail
° memberNisNetGroup
° memberUid
° nisMapEntry
° nisNetgroupTriple
For details, refer to Automate index rebuilds.

Tune settings

Major software releases include significant changes that can render existing tuning settings obsolete. When upgrading to a new
major release of DS or Java software, revisit the system configuration, server configuration, and Java settings. As part of the
upgrade process, adjust the settings appropriately to align your deployment with the new software version.

For information and suggestions on tuning, read the Release notes(and Performance tuning.

Use string-based server IDs

After upgrading from earlier releases, you can change server IDs to strings:
1. Make sure you have upgraded all DS servers to version 7 or later.
2. For each server, change the global server ID to the desired string.

The following example shows a command that changes a server’s global ID to a string:

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set server-id:ds-us-west-1 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

3. Restart the server for the change to take effect.

Use the entity tag plugin for ETags

The ETag plugin generates ETag attribute values more efficiently. For compatibility, the plugin is configured by default only on
new servers.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html

PingDS Upgrade

After upgrading all servers, you can configure the plugin manually on each server:
1. Make sure you have upgraded all DS servers.

2. For each server, configure the plugin:

$ dsconfig \

create-plugin \

--plugin-name "Entity Tag" \

--type entity-tag \

--set enabled:true \

--set invoke-for-internal-operations:true \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

The plugin generates real ETag attributes for new and updated entries.

Activate cloud storage for backup

When upgrading in place from DS 6.5.x and earlier, the upgrade process does not unpack the libraries required to store backup
files in the cloud, and does not configure the plugin used for the feature. You must activate cloud storage for backup if you want
to use the feature.

1. Unpack the libraries required to store backup files in the cloud:

$ cd /path/to/opendj
$ unzip -o -q extensions/backup-cloud-extension.zip

2. Restart DS.

3. Configure the cloud storage plugin to use the libraries:

$ dsconfig \

create-plugin \

--plugin-name Cloud\ Storage\ Plugin \
--type custom \

--set enabled:true \

--set java-class:com.forgerock.opendj.server.backup.cloud.CloudStoragePlugin \
--set plugin-type:initialization \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \
--trustAll \

--no-prompt

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

Set the cloud storage endpoint for backup

If you back up to cloud storage, set the storage endpoint to control where your backup files go.
Use one of these dsbackup options:

* --storage-property endpoint:endpoint-url

* --storage-property endpoint.env.var:environment-variable-for-endpoint-url
For details, refer to Cloud storage endpoint.

Upgrade complete

Perform these steps before you upgrade
Upgrade each:

Directory server

Directory proxy

Replication server

HDAP gateway

DSML gateway

Perform these steps after you upgrade

Strategy: new servers

These pages cover upgrade by adding new servers on new host systems, then retiring old servers. For details about alternative
upgrade strategies, refer to Upgrade strategies.
Next steps
[0 Perform these steps before you add servers
1 Add new servers:
[l Follow these instructions when upgrading from DS 6.5 or earlier
[0 Follow these instructions when upgrading from DS 7.4.0

[0 Perform these steps after you finish adding servers

Before you add new servers

Fulfill these requirements before upgrading PingDS software, especially before upgrading the software in a production
environment. Also refer to the requirements listed in release notes (.

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/requirements.html
https://docs.pingidentity.com/pingds/release-notes/requirements.html

PingDS Upgrade

Supported Java

@ Important

+ Always use a JVM with the latest security fixes.
* Make sure you have a required Java environment installed on the system.
If your default Java environment is not appropriate, use one of the following solutions:
o Edit the default.java-home settinginthe opendj/config/java.properties file.
o Set OPENDJ_JAVA_HOME to the path to the correct Java environment.
o Set OPENDJ_JAVA_BIN to the absolute path of the java command.
* When running the dskeymgr and setup commands, use the same Java environment everywhere in the
deployment and refer to CAs from deployment IDs.

DS software supports the following Java environments:

Vendor Versions

OpenJDK, including Open]DK-based distributions: 17, 21

+ AdoptOpen]DK/Eclipse Temurin Java Development Kit (Adoptium)
* Amazon Corretto

* Azul Zulu

* Red Hat OpenJDK

Ping Identity tests most extensively with AdoptOpen]DK/Eclipse Temurin.
Use the HotSpot JVM if possible.

Oracle Java 170 21

() DS requires Java 17.0.8 or later.
TLS cipher support depends solely on the JVM. For details, refer to TLS settings.

CAs from deployment IDs

Due to a change to the Java platform between versions 11 and 17, the key pairs you generate with the dskeymgr and setup
commands using Java 11 are incompatible with keys generated using Java 17 and later.

@ Note

Running DS servers with incompatible Java versions is a problem when you use deployment ID-based CA certificates.
If you use your own CA, not one derived from a deployment ID, skip this section.

Using different Java versions is a problem if you use deployment ID-based CA certificates. Replication breaks, for example, when
you use the setup command for a new server with a more recent version of Java than was used to set up existing servers.

Find troubleshooting suggestions in Overcome incompatible Java versions when adding new servers.

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

Next steps

Perform these steps before you add servers
[0 Add new servers:
[0 Follow these instructions when upgrading from DS 6.5 or earlier
[0 Follow these instructions when upgrading from DS 7.4.0

L1 Perform these steps after you finish adding servers

Add new servers

When upgrading by adding new DS 7 and later servers to a DS 6.5 or earlier deployment, add the new directory servers or
replication servers as described on this page.

If all the servers are DS 7 or later and use the new security model based on deployment IDs, not cn=admin data, then skip these
instructions. Install the new servers as described in the pages on Installation, and rebuild indexes as necessary.

@ Important

* Set up replication before upgrade. Do not set up replication for the first time between servers of different
versions.

* The new server you add must first connect to an existing replica that is a directory server, not a standalone
replication server.

+ Newer directory servers update LDAP schema definitions to add support for new features. The newer schema
definitions are not all compatible with older servers.

1. Install and set up a new server, but do not start it, yet.

Because replication is now configured at setup time, you may need to create the new server with some specific
arguments. The following table indicates which arguments are needed for which kind of server:

New server is a... Use this replication setup option
Combined DS/RS --replicationPort port
Standalone DS N/A

Standalone RS --replicationPort port

° Do not use the setup --bootstrapReplicationServer option. In a later step of this procedure, you will use the
dsrepl add-local-server-to-pre-7-8-topology command. That command configures the bootstrap replication
server settings for the new server based on the existing deployment.

o Do not use the setup --start option. In a later step of this procedure, you will start the server.

For details about setup options, refer to Setup hints, and many of the examples that use the setup command.

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

2. Configure the new server settings to be compatible with the settings of the existing servers.
Examples of incompatible default settings include:
o Password storage schemes not available in earlier versions.
o String-based server IDs. Server IDs were limited to numbers between 1 and 65535.

Remove leading @ (zero) characters when setting a numeric server ID. DS servers classify a server ID with a leading
@ as a string, not a number.

o String-based group IDs. Group IDs were also limited to numbers.
o TLS protocols and cipher suites.

For changes in the release, refer to Incompatible changes (. If the existing servers run a release older than 6.5, refer to
similar pages in the previous release notes.

3. Configure the new server as a replica of an existing server that is a directory server, and not a standalone replication
server:

S dsrepl \

add-local-server-to-pre-7-08-topology \

--hostname pre-7-ds.example.com \

--port 4444 \

--bindDn "cn=admin, cn=Administrators,cn=admin data" \
--bindPassword password \

--baseDn dc=example,dc=com \

--trustAll \

--no-prompt

The existing server in this example is a directory server, as suggested by the ds in the hostname. The dsrepl add-local-
server-to-pre-7-0-topology command does not support connecting to a standalone replication server.

The command configures the new server, discovering the replication servers in the deployment, and setting the bootstrap
replication servers.

The command also generates one or more dsrepl initialize commands. Copy those commands, and add required
credentials for use when initializing the new server.

In the example command shown here:

° The --bindDn and --bindPassword options reflect either the UID and password of the existing servers' global
replication administrator, or the DN and password of any user with sufficient access to act as global administrator
on all servers.

° The insecure --trustAll option is used to simplify this procedure.

To avoid using this option, add the remote server's CA or signing certificate to the new server’s keystore, and use
the appropriate keystore options.

4, Start the new server.

5. Initialize the new server:

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/changes.html
https://docs.pingidentity.com/pingds/release-notes/changes.html

Upgrade

PingDS

New server is a... Initialize these base DNs

Combined DS/RS cn=admin data, cn=schema, all directory data DNs
Standalone DS cn=admin data, cn=schema, all directory data DNs
Standalone RS cn=admin data

o For cn=admin data and cn=schema, use the dsrepl initialize command(s)from the previous step.

o For other base DN, if initializing over the network is appropriate—for example, because there is little directory

data under the base DN compared to available network bandwidth—use the dsrepl initialize command.

Otherwise, initialize from LDIF or from backup taken on another new server of the same version. For details, refer
to Manual initialization.

Q Tip
Test the initialization process to make sure you understand the duration and ramifications of the
chosen initialization method.
Use the results to make an evidence-based decision on whether to use backup/restore or export/

import instead of online initialization.

6. Align the change number indexing settings on the new servers to match the same settings on the existing servers.

7. Rebuild "degraded" mail indexes for the change to the mail attribute schema definition to allow UTF-8 characters.

The definitions for DS 7.3 and later allow UTF-8, whereas earlier versions allow only ASCII. The change does not affect the
data, but does affect mail indexes.

For details, refer to Automate index rebuilds.

8. Rebuild indexes as necessary for changes to schema definitions for the RFC 2703bis Internet-Draft(J, An Approach for
Using LDAP as a Network Information Service.

The definitions for DS 7.2 and later align with those of the latest Internet-Draft. The change does not affect the data, but
does affect indexes for the following attributes:

o

automountInformation
automountKey
automountMapName
gecos

ipHostNumber
ipNetworkNumber
memberNisNetGroup
memberUid

nisMapEntry

Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02
https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02

PingDS Upgrade

° nisNetgroupTriple

Use the new schema Use the old schema

When you add a new server, it replicates the new schema. Before upgrading, save a copy of the schema file, db/

Rebuild "degraded" indexes on existing, older servers. schema/@84-rfc2307bis.1dif, from an existing server.

For details, on rebuilding degraded indexes, refer to After upgrading:

Automate index rebuilds. o Replace the newer schema file with your saved
copy.

o Rebuild "degraded" indexes on the newer servers.

9. If necessary, add the deprecated /admin and /api (REST to LDAP) endpoints to the server configuration:

/admin
$ dsconfig \
create-http-endpoint \
--endpoint-name /admin \
--type admin-endpoint \
--set authorization-mechanism:"HTTP Basic" \
--set enabled:true \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

/api (REST to LDAP)
$ dsconfig \
create-http-endpoint \
--endpoint-name /api \
--type rest2ldap-endpoint \
--set authorization-mechanism:"HTTP Basic" \
--set config-directory:config/rest2ldap/endpoints/api \
--set enabled:true \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Next steps

Perform these steps before you add servers
Add new servers:
Follow these instructions when upgrading from DS 6.5 or earlier
[0 Follow these instructions when upgrading from DS 7.4.0

[0 Perform these steps after you finish adding servers

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

Upgrade from DS 7.4.0

If the deployment includes a DS 7.4.0 server with data encryption using default settings, follow the procedures in this page.
If the deployment has no DS 7.4.0 servers or does not use data encryption, skip this page.

The problem

Due to an issue (OPENDJ-10211) in the way DS 7.4.0 encrypts data on disk when using the default cipher-transformation: AES/
GCM/NoPadding setting, the backend or changelog data on disk and encrypted with 7.4.0 is incompatible with all other DS
versions.

If the deployment is configured with non-default cipher-transformation settings that do not use the AES algorithm and GCM
mode, the problem doesn't affect the deployment. In this case, skip this page.

Otherwise, the directory data on disk uses incompatible encryption. Any binary backups of the backend data are also affected.
You can't use the upgrade command to upgrade a DS server to 7.4.0 from earlier versions or from 7.4.0 to later versions.

The solution

You can upgrade by adding new DS servers; follow these steps:
1. Upgrade by adding new servers, leaving existing 7.4.0 servers in operation during the upgrade.

When initializing new servers, do not use backup files, as they use incompatible encryption. Instead, either initialize data
over the network or initialize all replicas from plaintext LDIF.

2. Change the bootstrap replication servers for each server to stop using the DS 7.4.0 servers.

3. If you use backup files, create them from the new servers with compatible encryption.

4. Stop directing client application traffic to the DS 7.4.0 servers.

5. Wait until the replication purge delay has elapsed (default: 3 days) and retire the DS 7.4.0 servers.

Next steps

Perform these steps before you add servers

Add new servers:
Follow these instructions when upgrading from DS 6.5 or earlier
Follow these instructions when upgrading from DS 7.4.0

[0 Perform these steps after you finish adding servers

After you add new servers

The DS server upgrade process preserves the existing configuration as much as possible. This maintains compatibility, but there
are more steps you must take.

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

Checklist

Use this checklist to make sure you don't miss these important post-upgrade tasks:
0 Back up your directory data.’

Update your scripts to account for incompatible changés .

Plan your move away from deprecatéd features.

Move to dedicated service accounts for your directory applications.?

Manually review and purge the DS server configurations for stale references to old servers.>

Update bootstrap replication servers.*

Review what's new and changdéd and adopt useful improvements.
Eliminate outdated password storage.

Clean up admin data (for upgrades from DS 6.5 and earlier).

Add a monitor user account.

Update LDAP schema.

o o0oooooo o o oo

Tune settings.
[0 Setthe cloud storage endpoint for backup if you back up to cloud storage.
1 Backup files are not compatible between versions. Before starting this task, complete the work to [upgrade-deployment-ids].

2 You would not run all your applications as the Linux root user or the Windows Administrator. Stop using superuser accounts like
cn=Directory Manager as service accounts. Many DS setup profiles create service accounts for applications to use when
authenticating to DS. For examples of AM service accounts, refer to the base-entries.1dif files in setup profiles under the
opendj/template/setup-profiles/AM directory.

3 You can read the opendj/config/config.1dif file to find stale references, but always use the dsconfig command to make
changes to the configuration.

4 After you upgrade by adding new servers, but before you retire old servers, update bootstrap replication server settings to
remove the old servers, and add the new, DS 7 servers.

> Before starting this task, complete the work to Eliminate outdated password storage.

Eliminate outdated password storage

Reversible password storage schemes (3DES, AES, Blowfish, RC4) have been deprecated since DS 7.0. Many password storage
schemes are no longer enabled by default for new installations.

After upgrading to DS 7 and later, migrate active accounts away from the following deprecated and outdated password storage
schemes:

* 3DES

* AES

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/changes.html
https://docs.pingidentity.com/pingds/release-notes/changes.html
https://docs.pingidentity.com/pingds/release-notes/deprecation.html
https://docs.pingidentity.com/pingds/release-notes/deprecation.html
https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html

Upgrade PingDS

* Base64

* Blowfish

* CRYPT

* Clear

+ PBKDF2

+ PKCS5S2

* SHA-1

+ Salted SHA-1

+ Salted SHA-256

* Salted SHA-384

+ Salted SHA-512
Follow these steps:

1. On at least one DS replica, add an index for passwords using deprecated or outdated storage schemes.

The following example creates the index on an upgraded server with data for dc=example,dc=com in a backend called
userRoot . The directory superuser account on the upgraded server has DN cn=Directory Manager :

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

dsconfig \

create-backend-index \

--backend-name userRoot \

--type generic \

--index-name userPassword \

--set index-type:big-extensible \

--set big-index-included-attribute-value:3DES \

--set big-index-included-attribute-value:AES \

--set big-index-included-attribute-value:Base64 \

--set big-index-included-attribute-value:Blowfish \

--set big-index-included-attribute-value:CRYPT \

--set big-index-included-attribute-value:Clear \

--set big-index-included-attribute-value:PBKDF2 \

--set big-index-included-attribute-value:PKCS5S2 \

--set big-index-included-attribute-value:RC4 \

--set big-index-included-attribute-value:SHA-1 \

--set big-index-included-attribute-value:Salted\ SHA-1 \
--set big-index-included-attribute-value:Salted\ SHA-256 \
--set big-index-included-attribute-value:Salted\ SHA-384 \
--set big-index-included-attribute-value:Salted\ SHA-512 \
--set big-index-extensible-matching-rule:1.3.6.1.4.1.36733.2.1.4.14 \
--hostname localhost \

--port 4444 \

--bindDn "cn=Directory Manager" \

--bindPassword password \

--trustAll \

--no-prompt

rebuild-index \

--baseDN dc=example,dc=com \
--index userPassword \

--hostname localhost \

--port 4444 \

--bindDN "cn=Directory Manager" \
--bindPassword password \
--trustAll

The ds-evaluation setup profile, described in Install DS for evaluation, includes a userPassword big index for reversible
password storage schemes.

2. Search for accounts using these password storage schemes on the replica where you added the index:

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

ldapsearch \
--hostname localhost \
--port 1636 \
--useSSL \
--bindDN "cn=Directory Manager" \
--bindPassword password \
--trustAll \
--simplePageSize 100 \
--baseDn dc=example, dc=com \
"(|(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=3DES)\

(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=AES)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=BASE64)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=BLOWFISH)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=CRYPT)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=CLEAR)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=PBKDF2)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=PKCS5S2)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=RC4)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SHA)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA256)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA384)\
(userPassword:1.3.6.1.4.1.36733.2.1.4.14:=SSHA512))" \

1.1

If the search returns no matches, set enabled: false for the unused storage schemes in each server configuration. You
can skip to the rest of the steps in this procedure.

3. If the search returns any DNs, migrate active accounts to another storage scheme, such as PBKDF2-HMAC-SHA256 .

For details, refer to Deprecate a password storage scheme. When a user binds successfully with their existing password or
changes their password, DS stores the password with the new scheme.

4. Wait for all active accounts to bind or to update their passwords.

The definition of active depends on the deployment. You decide how long a user can go without binding before you
consider their account inactive. For details, refer to Active accounts.

5. Run the search again, adding a filter to match active accounts.
After the migration, the search ideally returns no results.

6. Once you are confident active accounts no longer use deprecated or outdated storage schemes, set enabled: false for
the unused storage schemes in each server configuration.

Inactive accounts—those with no binds during the migration—must now reset their passwords before they can bind.

For additional examples, refer to How do | change a password storage scheme and apply a new password policy to users in DS
(All versions)?J

Clean up admin data

These steps are required after you upgrade from DS 6.5 and earlier to ensure servers share secret keys according to the new
security model. You must follow the upgrade procedures to add new DS 7 servers until you have completed these steps.

Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/a91487886
https://support.pingidentity.com/s/article/a91487886
https://support.pingidentity.com/s/article/a91487886

PingDS Upgrade

@ Important

If, after cleanup, your deployment still stores secret keys under the replicated cn=admin data base DN,

do not disable cn=admin data or remove the adminRoot database.

This applies, for example, to deployments that use (deprecated) reversible password storage schemes (3DES, AES,
Blowfish, RC4). It also applies to deployments where servers were set up in production mode, and use keys with
automatically generated, self-signed certificates to protect replication connections.

If you do choose to disable cn=admin data and remove the adminRoot database, you must first manually ensure
that admin data is no longer used, and then remove references to it from your configuration.

1. Make sure you have upgraded all DS servers to version 7 or later.
If you still have DS 6.5 or earlier servers, retire them before continuing.

As explained in Checklist at the top of this page, this means purging stale references to retired servers from the new
servers' configurations, and updating bootstrap replication server settings to reference only the new, DS 7 servers.

2. Run the cleanup command.

For example, run the cleanup command on each server with directory superuser credentials. If the credentials are the
same on every server, it is sufficient to run the command once:

S dsrepl \
cleanup-migrated-pre-7-0-topology \
--bindDn uid=admin \

--bindPassword password \
--hostname localhost \
--port 4444 \

--trustAll \

--no-prompt

The command is idempotent. You can run it multiple times if the initial run cannot fully complete the cleanup process.

3. Remove unused configuration settings:

Copyright © 2025 Ping Identity Corporation

Upgrade PingDS

dsconfig \

delete-key-manager-provider \

--provider-name "Crypto Manager Key Manager" \
--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--trustAll \

--bindPassword password \

--no-prompt

dsconfig \

delete-key-manager-provider \
--provider-name "Replication Key Manager" \
--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--trustAll \

--bindPassword password \

--no-prompt

dsconfig \

delete-trust-manager-provider \
--provider-name "Replication Trust Manager" \
--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--trustAll \

--bindPassword password \

--no-prompt

Skip this command if the deployment has passwords stored
with reversible password storage schemes:
dsconfig \

delete-backend \

--backend-name adminRoot \

--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--trustAll \

--bindPassword password \

--no-prompt

4. Replace references to Admin Data in the server configuration.

Find all references to admin data in your configuration:

$ grep -i "admin data" /path/to/opendj/config/config.ldif

How you replace or remove these references depends on your deployment.

5. Remove unused files:

Copyright © 2025 Ping Identity Corporation

PingDS Upgrade

Skip these commands if the deployment has passwords stored
with reversible password storage schemes:

$ rm -rf /path/to/opendj/db/adminRoot

S rm -rf /path/to/opendj/db/ads-truststore

Add a monitor user account

The dsrepl status command, and general server monitoring require an account with the monitor-read privilege. Since DS 6,
you can create a monitor user account at setup time; however, the setup process does not require that you create such an
account, and earlier versions do not offer the option.

If no such account exists, do one of the following:
+ Add the monitor-read privilege to an existing, replicated user entry, as demonstrated in Monitor privilege.

+ Add a separate, replicated monitor user account, as demonstrated in How do | create a dedicated user for monitoring in
PingDS?J

Use this replicated account when monitoring DS servers and when running the dsrepl status command.

Update LDAP schema

Update LDAP schema definitions to support new features.

When you upgrade servers, the servers inherit existing LDAP schema definitions. This ensures compatibility between the newer
and older servers during upgrade; however, upgrade does not apply changes that new features depend on.

Once all servers run the latest software, add LDAP schema definitions required to use additional features:
1. Make sure you have upgraded all DS servers to version 7 or later.
2. Compare current schema definitions with the schema templates.
The following example summarizes the differences for a new server added to a 6.5 deployment:

$ cd /path/to/opendj
$ diff -q db/schema template/db/schema
Files db/schema/@0-core.ldif and template/db/schema/@0-core.ldif differ
Files db/schema/@3-pwpolicyextension.ldif and template/db/schema/@3-pwpolicyextension.ldif differ
Files db/schema/@4-rfc2307bis.1ldif and template/db/schema/04-rfc2307bis.1dif differ

Only in db/schema: 60-ds-evaluation-schema.ldif
Only in db/schema: 99-user.ldif

The following table summarizes the changes in detail:

Copyright © 2025 Ping Identity Corporation

https://support.pingidentity.com/s/article/How-do-I-create-a-dedicated-user-for-monitoring-in-PingDS
https://support.pingidentity.com/s/article/How-do-I-create-a-dedicated-user-for-monitoring-in-PingDS
https://support.pingidentity.com/s/article/How-do-I-create-a-dedicated-user-for-monitoring-in-PingDS

Upgrade PingDS

Schema File Notes Action

00-core.1ldif An update of the mail attribute to support UTF-8 Replace with template file
characters and cosmetic changes due to schema
replication:

° Each definition in db/schema/@0-core.1ldif has
X-SCHEMA-FILE '@@-core.ldif' . No definitions
in template/db/schema/@@8-core.ldif have the
X-SCHEMA-FILE extension.

° Some object classes in db/schema/08-core.1ldif
are explicitly defined as STRUCTURAL .

Other minor differences:

o In 7, some attribute definitions have minimum
upper bounds.

o The schema for collective attributes is extended.

03- The new version was rewritten to support fully featured Replace with template file
pwpolicyextension.ldif replicated password policies.
04-rfc2307bis.1dif In DS 7.2 and later, the new version aligns schema Replace with template file

definitions with those of the latest RFC 2703bis Internet-
Draft(Z, An Approach for Using LDAP as a Network
Information Service.

60-ds-evaluation- Added to existing version by the evaluation setup profile. Keep existing file
schema.1ldif

99-user.1dif Contains replication metadata. Keep existing file

Any schema file missing in This includes schema from setup profiles and any custom Keep existing file
template/db/schema schema definitions for the deployment.

3. For each upgraded server, update the schema to the latest version.

The following example updates the schema on a single server. Always stop a server before making changes to its files:

cd /path/to/opendj

./bin/stop-ds

cp template/db/schema/08-core.1ldif db/schema

cp template/db/schema/@3-pwpolicyextension.ldif db/schema
cp template/db/schema/04-rfc2307bis.1ldif db/schema

$./bin/start-ds

wr v v v

4. Rebuild indexes for the following attributes, which DS considers degraded:
° automountInformation
° automountKey

° automountMapName

Copyright © 2025 Ping Identity Corporation

https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02
https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02
https://datatracker.ietf.org/doc/html/draft-howard-rfc2307bis-02

PingDS Upgrade

° gecos
° ipHostNumber
o ipNetworkNumber
° mail
° memberNisNetGroup
° memberUid
° nisMapEntry
° nisNetgroupTriple
For details, refer to Automate index rebuilds.

Tune settings

Major software releases include significant changes that can render existing tuning settings obsolete. When upgrading to a new
major release of DS or Java software, revisit the system configuration, server configuration, and Java settings. As part of the
upgrade process, adjust the settings appropriately to align your deployment with the new software version.

For information and suggestions on tuning, read the Release notes(and Performance tuning.

Set the cloud storage endpoint for backup

If you back up to cloud storage, set the storage endpoint to control where your backup files go.
Use one of these dsbackup options:

* --storage-property endpoint:endpoint-url

* --storage-property endpoint.env.var:environment-variable-for-endpoint-url
For details, refer to Cloud storage endpoint.

Upgrade complete

Perform these steps before you add servers

Add new servers:
Follow these instructions when upgrading from DS 6.5 or earlier
Follow these instructions when upgrading from DS 7.4.0

Perform these steps after you finish adding servers

Copyright © 2025 Ping Identity Corporation

https://docs.pingidentity.com/pingds/release-notes/preface.html
https://docs.pingidentity.com/pingds/release-notes/preface.html

Configuration

M Pingldentity.

PingDS

Configuration

This guide shows you how to configure DS server features.

HTTP

Access DS over HTTP.

Storage

Manage DS data.

Ly

Replication

Replicate DS data.

HTTP access

Set the HTTP port

6

LDAP

Access DS over LDAP.

Indexes

Index DS data.

4
h
LDAP Proxy

Configure proxy features.

The following steps demonstrate how to set up an HTTP port if none was configured at setup time with the --httpPort option:

1. Create an HTTP connection handler:

Copyright © 2025 Ping Identity Corporation

Configuration PingDS

$ dsconfig \

create-connection-handler \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name HTTP \

--type http \

--set enabled:true \

--set listen-port:8080 \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

2. Enable an HTTP access log.

1. The following command enables JSON-based HTTP access logging:

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "Json File-Based HTTP Access Logger" \
--set enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

2. The following command enables HTTP access logging:

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based HTTP Access Logger" \
--set enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

3. After you set up an HTTP port, enable an HTTP endpoint.

For details, refer to Use administrative APIs.

Set the HTTPS port

At setup time use the --httpsPort option.

Copyright © 2025 Ping Identity Corporation

PingDS Configuration

Later, follow these steps to set up an HTTPS port:
1. Create an HTTPS connection handler.

The following example sets the port to 8443 and uses the default server certificate:

$ dsconfig \

create-connection-handler \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name HTTPS \

--type http \

--set enabled:true \

--set listen-port:8443 \

--set use-ssl:true \

--set key-manager-provider:PKCS12 \

--set trust-manager-provider:"JVM Trust Manager" \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

If the key manager provider has multiple key pairs that DS could use for TLS, where the secret key was generated with the
same key algorithm, such as EC or RSA, you can specify which key pairs to use with the --set ssl-cert-nickname:serve
r-cert option. The server-cert is the certificate alias of the key pair. This option is not necessary if there is only one server
key pair, or if each secret key was generated with a different key algorithm.

2. Enable the HTTP access log.

1. The following command enables JSON-based HTTP access logging:

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "Json File-Based HTTP Access Logger" \
--set enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

2. The following command enables HTTP access logging:

Copyright © 2025 Ping Identity Corporation

Configuration PingDS

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based HTTP Access Logger" \
--set enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

3. If the deployment requires SSL client authentication, set the properties ssl-client-auth-policy and trust-manager-
provider appropriately.

4. After you set up an HTTPS port, enable an HTTP endpoint.

For details, refer to Use administrative APIs.

Configure HTTP authorization

HTTP authorization mechanisms map HTTP credentials to LDAP credentials.
Multiple HTTP authorization mechanisms can be enabled simultaneously.

These HTTP authorization mechanisms are supported:

HDAP (enabled by default)
Process anonymous, basic and bearer authorization requests.
This mechanism treats anonymous requests like the HTTP Anonymous mechanism.

For HTTP Basic requests, this mechanism matches an HDAP resource _id to the DN. The _id matches the suffix of the
path to the resource. For example, the default directory superuser _id is uid=admin . Babs Jensen’s _id is dc=com/
dc=example/ou=People/uid=bjensen.

For HTTP Bearer requests, this mechanism uses a JSON Web Token (JWT). Get the JWT with the HDAP authenticate
action. For details, refer to Bearer auth.

HTTP Anonymous (enabled by default)

Process anonymous HTTP requests, optionally binding with a specified DN.

If the client does not specify a bind DN (default), it binds as an anonymous LDAP user.

HTTP Basic (enabled by default)
Process HTTP Basic authorization requests by mapping the HTTP Basic identity to a user’s directory account.

By default, DS uses the exact match identity mapper with its default configuration to map the HTTP Basic username to an
LDAP uid . DS searches all local public naming contexts to find the user’s entry based in the uid value. For details, refer
to ldentity mappers.

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235

PingDS Configuration

HTTP OAuth2 CTS
Process OAuth 2.0J requests as a resource server, acting as the AM Core Token Service (CTS) store.

When the client bearing an OAuth 2.0 access token presents the token to access the JSON resource, DS tries to resolve the
access token against its CTS data. If DS finds the access token and it has not expired, DS extracts the user identity and
OAuth 2.0 scopes. If the required scopes are present and the token is valid, DS maps the user identity to a directory
account.

This mechanism makes an internal request, avoiding a request to AM. This mechanism does not ensure the token has been
replicated to the DS serving the request.

The AM CTS store is constrained to a specific layout. The authzid-json-pointer must use userName/@ for the user
identifier.

HTTP OAuth2 OpenAM
Process OAuth 2.0 requests as a resource server, sending requests to AM for access token resolution.

When the client bearing an OAuth 2.0 access token presents the token to access the JSON resource, DS requests token
information from AM. If the access token is valid, DS extracts the user identity and OAuth 2.0 scopes. If the required
scopes are present, DS maps the user identity to a directory account.

Send the requests to AM over HTTPS. Configure a truststore manager if necessary to trust the AM authorization server
certificate. Configure a keystore manager if necessary to send the DS server certificate for mutual authentication.

HTTP OAuth2 Token Introspection (RFC7662)

Handle OAuth 2.0 requests as a resource server, sending requests to an RFC 7662 (J-compliant authorization server for
access token resolution.

The DS server must be registered as a client of the authorization server.

When the client bearing an OAuth 2.0 access token presents the token to access the JSON resource, DS requests token
introspection from the authorization server. If the access token is valid, DS extracts the user identity and OAuth 2.0
scopes. If the required scopes are present, DS maps the user identity to a directory account.

Send the requests to the authorization server over HTTPS. Configure a truststore manager if necessary to trust the
authorization server certificate. Configure a keystore manager if necessary to send the DS server certificate for mutual
authentication.

@ Note

The HTTP OAuth2 File mechanism is an internal interface intended for testing, and not supported for production use.

When more than one authentication mechanism is specified, DS applies the mechanisms in the following order:

« If the client request has an Authorization header and an OAuth 2.0 mechanism is specified, DS attempts to apply the
OAuth 2.0 mechanism.

« If the client request has an Authorization header, or has the custom credentials headers specified in the configuration,
and an HTTP Basic mechanism is specified, DS attempts to apply the Basic Auth mechanism.

+ Otherwise, if an HTTP anonymous mechanism is specified, and none of the previous mechanisms apply, DS attempts to
apply the mechanism for anonymous HTTP requests.

Copyright © 2025 Ping Identity Corporation

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662

Configuration PingDS

There are many possibilities when configuring HTTP authorization mechanisms. This procedure shows only one OAuth 2.0 example.

The example below uses settings as listed in the following table. When using secure connections, make sure the servers can trust
each other’s certificates. Download PingAM software from the Backstage download site (Z:

Setting Value

OpenAM URL https://am.example.com:8443/openam
(When using HTTPS, make sure DS can trust the AM certificate.)

Authorization server endpoint /oauth2/tokeninfo (top-level realm)

Identity repository DS server configured by the examples that follow.
OAuth 2.0 client ID myClientID

OAuth 2.0 client secret password

OAuth 2.0 client scopes read, uid, write

Read the PingAM documentation if necessary to install and configure AM. Then follow these steps to try the demonstration:

1. Update the default HTTP OAuth2 OpenAM configuration:

$ dsconfig \

set-http-authorization-mechanism-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--mechanism-name "HTTP OAuth2 OpenAM" \

--set enabled:true \

--set token-info-url:https://am.example.com:8443/openam/oauth2/tokeninfo \
--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

2. Update the default HDAP endpoint configuration to use HTTP OAuth2 OpenAM as the authorization mechanism:

$ dsconfig \

set-http-endpoint-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--endpoint-name "/hdap" \

--set authorization-mechanism:"HTTP OAuth2 OpenAM" \
--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

Copyright © 2025 Ping Identity Corporation

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

PingDS Configuration

3. Obtain an access token with the appropriate scopes:

S curl \

--request POST \

--user "myClientID:password" \

--data "grant_type=password&username=bjensen&password=hifalutin&scope=read%20uid%20write" \

https://am.example.com:8443/openam/oauch/access_token[5|
{

"access_token": "<access-token>""
"scope": "uid read write",
"token_type": "Bearer",
"expires_in": 3599

}

Use HTTPS when obtaining access tokens.
4. Request a resource with HTTP Bearer authentication with the access token:
S curl \
--header "Authorization: Bearer <access-token>" \

--cacert ca-cert.pem \
"https://localhost:8443/hdap/dc=com/dc=example/ou=People/uid=bjensen?_prettyPrint=true’

Use HTTPS when presenting access tokens.

Use administrative APIs
The APIs for configuring and monitoring DS servers are under the following endpoints:
/alive

Check whether the server is currently alive, meaning its internal checks have not found any errors that would require
administrative action.

By default, this endpoint returns a status code to anonymous requests and supports authenticated requests. For details,
refer to Server is alive (HTTP).

/healthy

Check whether the server is currently healthy, meaning it is alive, the replication server is accepting connections on the
configured port, and any replication delays are below the configured threshold.

By default, this endpoint returns a status code to anonymous requests, and supports authenticated requests. For details,
refer to Server health (HTTP).

/metrics/prometheus

Access the server monitoring information in Prometheus monitoring software(format.

By default, DS protects this endpoint with the HTTP Basic authorization mechanism. Users reading monitoring information
must have the monitor-read privilege.

Copyright © 2025 Ping Identity Corporation

https://am.example.com:8443/openam/oauth2/access_token
https://am.example.com:8443/openam/oauth2/access_token
https://prometheus.io/
https://prometheus.io/

Configuration PingDS

To use these APIs, follow these steps:
1. Grant access to the /metrics/prometheus endpoint, if necessary, by assigning the monitor-read privilege.
For details, refer to Administrative privileges.
Alternatively, create a monitor user with the setup command when installing DS.
2. Adjust the authorization-mechanism settings for the Admin endpoint.

By default, DS uses the HTTP Basic authorization mechanism. The HTTP Basic authorization mechanism default
configuration resolves the user identity extracted from the HTTP request to an LDAP user identity as follows:

o If the request has an Authorization: Basic header for HTTP Basic authentication, DS extracts the username and
password.

o If the request has X-OpenIDM-Username and X-OpenIDM-Password headers, DS extracts the username and
password.

o DS uses the default exact match identity mapper to search for a unique match between the username and the UID
attribute value of an entry in the local public naming contexts of the DS server.

In LDAP terms, it searches all user base DNs for (uid=<http-username>) . The username kvaughan maps to the
example entry with DN uid=kvaughan, ou=People, dc=example, dc=com .

For details, refer to Identity mappers and Configure HTTP authorization.

3. Test access to the endpoint as an authorized user.

L